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Fluid approximation based analysis for
mode-switching population dynamics

PAUL PIHO, University of Edinburgh

JANE HILLSTON, University of Edinburgh

Fluid approximation results provide powerful methods for scalable analysis of models of popu-

lation dynamics with large numbers of discrete states and have seen wide ranging applications

in modelling biological and computer-based systems and model checking. However the applica-

bility of these methods relies on assumptions that are not easily met in a number of modelling

scenarios. This paper focuses on one particular class of scenarios in which rapid information

propagation in the system is considered. In particular, we study the case where changes in

population dynamics are induced by information about the environment being communicated

between components of the population via broadcast communication. We see how existing

hybrid fluid limit results, resulting in piecewise deterministic Markov processes, can be adapted

to such models. Finally, we propose heuristic constructions for extracting the mean behaviour

from the resulting approximations without the need to simulate individual trajectories.

CCS Concepts: •Mathematics of computing→Markov processes; •Computingmethod-
ologies→ Agent / discrete models; • Theory of computation→ Random walks and Markov
chains.

Additional Key Words and Phrases: fluid approximation, stochastic modelling, population

dynamics, hybrid models
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1 INTRODUCTION
Stochastic process models are often used to study real-life complex systems where the

dynamics of the system result from interactions between large numbers of individual

components. Examples range from models in systems biology to computer networks

and queueing. In particular, continuous time Markov chains (CTMCs) are a com-

mon target mathematical model supported by many high-level formal specification

languages like Chemical Reaction Networks [17, 20], Petri nets [2, 27] and process

algebras [4, 23], that aim to simplify the creation of models.
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2 Paul Piho and Jane Hillston

Most of the CTMC-based modelling frameworks mentioned offer natural ways to

describe behaviours of populations by specifying the behaviours of individual com-

ponents within the population. However, like all discrete state modelling paradigms,

CTMCs suffer from the state space explosion problemmaking the exact methods, based

on solutions to Chapman-Kolmogorov equations, prohibitively expensive in practice.

Without any extra information about the structure of the CTMC a common approach

to overcome this problem is to resort to sampling methods (Gillespie’s stochastic

simulation algorithm [17]) to gather Monte Carlo trajectories of the model and then

calculate summary statistics. For complex models this is often still computationally

very expensive. In cases where we have extra information about the model structure

we can attempt to study the models via model approximation methods, where the

original model is replaced with a simpler alternative that aims to give a faithful approx-

imation of the measures and characteristics of interest. A large body of work exists

connected to a special case of CTMCs where the structure of the model corresponds

to that of interacting populations (population CTMCs, pCTMCs). Such populations

are assumed to consist of a large collection of interacting components, or agents, that

are distinguishable only through their state, with the state space of the underlying

pCTMC giving the counts of agents in each of the possible states. For a recent review

starting from the Chemical Reaction Network viewpoint of population CTMCs please

refer to [32]. In particular, for population CTMCs the methods of fluid and central

limit approximation [16] offer a way to approximate the dynamics of the population

CTMC with a set of ordinary differential equations (ODEs). These techniques have

successfully been applied to model checking [5, 8, 9] as well as control synthesis [1, 14]

resulting in analysis scalable to systems with large numbers of interacting components.

The papers [7, 26] deal with extensions of fluid approximation results to situations

where the standard theoretical assumptions do not apply. In the case of [7] this in-

volves dealing with hybrid behaviour where not all components of the system are

present in large quantities, while [26] considers general CTMCs without a population

structure.

However, the issue of scalability remains relevant, for example, when modelling the

effects of communication and information available to the agents within a population

on themacro-level behaviour of the population. In particular, consider situations where

the agents are equipped with knowledge; moreover assume that they are learning

about their environment through experience, and sharing that information within the

population through broadcast communication. We assume that the behaviour of the

agents may change as they gain in knowledge. A consequence of this is that an action

of a single agent (a broadcast) can change the macro-level dynamics of the whole

population. For example, the objectives of agents may change as more information

is acquired, leading to a change in the overall behaviour of the population. In this

paper we focus our attention on cases of models which incorporate such information

cascades and consequent shifts in behaviour.

In previous our work [30], such changes in the macro-level behaviour were iden-

tified as mode-switching population dynamics, a particular form of hybrid model. In

this case, levels of knowledge and the related dynamics correspond to the different

dynamic modes of the population system. The aim in this paper is to provide a rigorous

treatment of such mode-switching population dynamics from the fluid approximation
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Fluid approximation based analysis for mode-switching population dynamics 3

point of view, making them amenable to efficient ODE-based analysis techniques. A

wealth of motivating examples can be drawn from the area of mean-field methods for

control of swarm robotics [15] where the described information propagation dynamics

have not yet been extensively studied.

The contributions of this paper are the following. We develop a formal framework

in which to study approximation methods for models with mode-switching population

dynamics in the context of existing hybrid fluid approximation results [7, 12]. This is

challenging because standard broadcast communication between components, and the

subsequent mode switches do not easily fit into the established fluid approximation

based methods, and there are subtle differences between these models and those previ-

ously considered when fluid approximations of hybrid systems have been established.

Secondly, we examine the computational challenges of applying the existing theo-

retical results and develop pragmatic approximations to overcome these challenges.

In particular, we see how an approximation for the mean dynamics of the hybrid

fluid approximation can be constructed iteratively, avoiding explicit simulation of the

hybrid model.

This paper is structured as follows. We start by presenting the technical back-

ground in Section 2. Section 3 introduces the class of models under study – namely

mode-switching population systems. Section 4 presents the relevant hybrid fluid ap-

proximation results and discusses their applicability to mode-switching populations.

Section 5 considers the constructions of marginal mean dynamics corresponding to the

population measures. In Section 6 we present the empirical analysis of the constructed

approximations for three examples inspired by robot swarms. Finally, we provide

related work and conclusions in Section 7 and Section 8 respectively.

2 BACKGROUND
In this section we briefly set up the definitions and some technical background from

stochastic modelling. The discussion in this paper is focussed on continuous time

Markov processes and in particular CTMCs. The definitions that follow are standard

and, for example [28], can be used as a more detailed reference.

A Markov process is a time-indexed family of random variables {𝑋 (𝑡), 𝑡 ∈ [0,∞)}
such that the future behaviour of the process is not dependent on its past. In the rest

of the paper we are going to employ the notation 𝑋 to denote a Markov process. The

process 𝑋 is a Markov process if for all collections of times 0 ≤ 𝑡1 ≤ 𝑡2 ≤ . . . ≤ 𝑡𝑛 and

states 𝑖1, 𝑖2, . . . , 𝑖𝑛 we have

P(𝑋 (𝑡𝑛) = 𝑖𝑛 | 𝑋 (𝑡𝑛−1) = 𝑖𝑛−1, . . . 𝑋 (𝑡0) = 𝑖0) = P(𝑋 (𝑡𝑛) = 𝑖𝑛 | 𝑋 (𝑡𝑛−1) = 𝑖𝑛−1)

A particular example of a Markov process that is going to be the topic throughout

this paper is the continuous time Markov chain (CTMC). A CTMC is defined via its

infinitesimal generator matrix describing rates at which the CTMC moves between its

states. For any 𝑡 ∈ [0,∞) let 𝑄 be a matrix with (𝑖, 𝑗)-th entry defined by 𝑞(𝑖, 𝑗) such
that the following properties hold.

(1) 0 ≤ −𝑞(𝑖, 𝑖) < ∞
(2) 0 ≤ 𝑞(𝑖, 𝑗) for 𝑖 ≠ 𝑗

(3)

∑
𝑗 𝑞(𝑖, 𝑗) = 0

, Vol. 1, No. 1, Article . Publication date: November 2020.



4 Paul Piho and Jane Hillston

With that in mind we can define a CTMC in terms of its 𝑄 matrix in the following

way [28].

Definition 1 (Continuous time Markov chain). Let 𝑋 be a Markov process with
values in a countable set 𝐸. Write 𝑄 = (𝑞(𝑖, 𝑗) | 𝑖, 𝑗 ∈ 𝐸) for the associated generator
matrix. For all 𝑛 ≥ 0, all times 0 ≤ 𝑡0 ≤ 𝑡1 ≤ · · · ≤ 𝑡𝑛+1 and all states 𝑖0, · · · , 𝑖𝑛+1

P(𝑋 (𝑡𝑛+1) = 𝑖𝑛+1 | 𝑋 (𝑡0) = 𝑖0, · · · , 𝑋 (𝑡𝑛) = 𝑖𝑛) = 𝑝 (𝑖𝑛+1; 𝑡𝑛+1 | 𝑖𝑛 ; 𝑡𝑛)

satisfying the following Kolmogorov forward equation

𝜕

𝜕𝑡
𝑝 ( 𝑗 ; 𝑡 | 𝑖; 𝑠) =

∑
𝑘

𝑝 (𝑘 ; 𝑡 | 𝑖; 𝑠)𝑞(𝑘, 𝑗), on (𝑠,∞) with 𝑝 ( 𝑗 ; 𝑠 | 𝑖; 𝑠) = 𝛿𝑖 𝑗 (1)

where 𝛿𝑖 𝑗 is the Kronecker delta taking the value 1 if 𝑖 and 𝑗 are equal and taking the
value 0 otherwise. Equation 1 is often referred to in biochemical modelling literature as
the chemical master equation.

When the generator matrices are constant and not dependent on time, the CTMC

is said to be time-homogeneous.

Example 1. We can consider the Poisson process, which is usually interpreted as a
counting process for arrival events, as the simplest example of a time-homogeneous CTMC.
For that suppose the CTMC𝑋 takes values in the set {0, 1, 2, . . .} with the generator matrix
𝑄 defined by

𝑞(𝑖, 𝑗) =


𝜆 for 𝑗 = 𝑖 + 1

−𝜆 for 𝑖 = 𝑗

0 otherwise
(2)

The defined process corresponds exactly to the Poisson process with arrival rate 𝜆.

2.1 Population processes
A particular class of time-homogeneous CTMCs is defined through the following

formalisation of population dynamics. Consider a system of components evolving in a

finite state space 𝑆 = {1, . . . , 𝐾} with components only distinguishable through their

state. With that in mind a corresponding population CTMC (pCTMC) can be defined

by a tuple P = (𝑿 ,T ,𝑿0) where
• 𝑿 = (𝑋1, . . . , 𝑋𝐾 ) ∈ Z𝐾≥0

is a variable with the 𝑖-th entry representing the current

count of components in state 𝑖 ∈ 𝑆 .
• T is a set of transitions of the form 𝜏 = (𝑟𝜏 , 𝒗𝜏 ) where
– 𝑟𝜏 : Z𝐾≥0

→ R≥0 is the rate function associating transition 𝜏 with the rate of

an exponential distribution depending on the state of the model.

– 𝒗𝜏 : Z𝐾≥0
→ Z𝐾 is an update which gives the net change for each population

variable in 𝑿 caused by transition 𝜏 . In most common uses of pCTMCs the

update is a constant function that does not depend on the state of the popula-

tion before the transition. We are going to denote an update corresponding to

𝜏 as 𝒗𝜏 unless the dependence on the population state has to be made explicit.

• 𝑿0 is the initial state of the model.

, Vol. 1, No. 1, Article . Publication date: November 2020.



Fluid approximation based analysis for mode-switching population dynamics 5

For ease of presentation we are going to consider a special case of conservative

population CTMCs where the total number of components in the system remains

constant in time. That is, if the total population is 𝑁 then for all times 𝑡 ≥ 0,

𝐾∑
𝑖=1

𝑋𝑖 (𝑡) = 𝑁 .

We are going to use the notation P𝑁 = (𝑿𝑁 ,T𝑁 ,𝑿𝑁
0
) for such conservative

pCTMCs to make the population size explicit. While the assumption that the total

number of components remains fixed throughout the evolution of the system might

seem strong at first, most instances of engineered collectives can easily be considered

under this assumption. From the theoretical perspective this is one of the ways to

ensure appropriate scaling of population variables for the fluid approximation result

presented in the next section. The state variables of the scaled model are in our case

going to correspond to proportions of components in any given state. However the

assumption of the population being conservative is by no means the only way to

consider fluid approximations and is chosen here because it fits with the theme of

broadcast communication in man-made systems and simplifies the presentation of

the results. In the context of CRNs one often considers models where the volume in

which reactions take place remains fixed through the evolulution of the system. The

fluid approximation result that follow can then instead be derived with respect to a

scaling where the state space of the scaled system corresponds to concentrations in

unit volume [22].

Example 2. As our running example for the rest of the paper consider a swarm
foraging-inspired scenario where robots are looking for a designated target area and
gather to it. Let us suppose that the exploration stage of the robots can be modelled by a
random walk on a graph. Thus, for a specific example let us consider Figure 1 showing
the state transition diagram of individual robots, where edges labelled by the transition
rates.

The pCTMC resulting from considering a population of robots each behaving according
to Figure 1 is defined over four variables — one variable for the population counts in
each of the four locations (0, 1), (0, 0), (1, 0) and (1, 1). The set of transitions for this
pCTMC would consist of updates and associated rates that correspond to a single robot
component changing its location. For example, the transition corresponding to a robot
moving from (0, 0) to (1, 0) would have an update vector that decreases the population
at location (0, 0) and increases the population at location (1, 0) by one. The associated
rate, according to Figure 1, is given by 1

2
𝑟𝑚 for some fixed parameter 𝑟𝑚 > 0.

The approximation results considered in this paper rely on studying the behaviour

of conservative pCTMCs for increasing values of population size 𝑁 . In order to make

a meaningful comparison across the values of 𝑁 we are going to rescale the model

P𝑁 = (𝑿𝑁 ,T𝑁 ,𝑿𝑁
0
) to ˆP𝑁 = (𝑿̂𝑁

, ˆT𝑁 , 𝑿̂
𝑁

0
) such that 𝑿̂

𝑁
gives the proportion of

components in each of the states in 𝑆 . In the following we are going to describe how

such a scaled model is constructed and how this construction is applied to the running

example.

, Vol. 1, No. 1, Article . Publication date: November 2020.



6 Paul Piho and Jane Hillston

Firstly, the rescaled state of the system is given by 𝑿̂
𝑁 def

= 1

𝑁
𝑿𝑁

. Secondly, the

transitions in
ˆT𝑁

are of the form 𝜏 = (𝑟𝑁𝜏 , 1

𝑁
𝒗𝜏 ) where 𝑟𝑁𝜏 is the rate function over

scaled state variables. For this construction we only consider population processes

where the rates are density dependent. Formally, this means that for all 𝜏 ∈ T𝑁
there

exists a Lipschitz continuous function 𝑓 𝑁𝜏 : R𝐾 → R≥0 such that

𝑟𝜏 (𝑿𝑁 ) = 𝑁 𝑓 𝑁𝜏
(
𝑿𝑁

𝑁

)
The scaled rate function 𝑟𝑁 is then given by

𝑟𝑁
(
𝑿𝑁

𝑁

)
= 𝑓 𝑁𝜏

(
𝑿𝑁

𝑁

)
Finally, the constructed scaled pCTMC

ˆP𝑁
gives a R𝐾 -valued CTMC 𝑿̂

𝑁
with the

jump intensities given by

𝑞𝑁 (𝒙, 𝒙 ′) =
∑

𝜏 ∈ ˆT𝑁 |𝒗𝜏=𝒙′−𝒙

𝑟𝜏 (𝒙)

In particular, the rate of moving from state 𝒙 to 𝒙 ′
is given by adding the rates of

transitions which can cause the change of state.

Example 3. Returning to our running example and supposing we are dealing with a
population of 𝑁 robots let us denote the state of the population CTMC by

𝑿𝑁 = (𝑋𝑁
01
, 𝑋𝑁

00
, 𝑋𝑁

10
, 𝑋𝑁

11
)

where the variable 𝑋𝑁𝑖 𝑗 denotes the population count at location (𝑖, 𝑗). The variables of
the corresponding rescaled population CTMC would then be simply given by

𝑿̂
𝑁
=

1

𝑁
(𝑋𝑁

01
, 𝑋𝑁

00
, 𝑋𝑁

10
, 𝑋𝑁

11
)

and correspond to the proportion of robots in each of the available locations. The rescaling
of update vectors corresponding to the transitions is done analogously by dividing by the
size of the population 𝑁 . Finally, we need to consider the rescaled rates of the transitions.
Again, as an example let us consider the transition, denoted 𝜏 , corresponding to a robot
moving from (0, 0) to (1, 0). The corresponding scaled rate function is then given by the
following.

𝑟𝜏 (𝑿 ) = 1

2

𝑟𝑚𝑋
𝑁
00

= 𝑁
1

2

𝑟𝑚𝑋
𝑁
00

=⇒ 𝑟𝑁𝜏 (𝑿̂ ) = 1

2

𝑟𝑚𝑋
𝑁
00

2.2 Fluid approximation
As discussed in the introduction, our analysis of the mode-switching dynamics is

going to be based on fluid approximation results. In this section we introduce the

approximation result, due to Kurtz [21], in the context of conservative pCTMCs. A

detailed treatment of the results can be found in [16, 21]. The fluid approximation

arises from considering a sequence of continuous time Markov chains 𝑿̂
𝑁
derived

from a scaled population process
ˆP𝑁

as 𝑁 → ∞. Under the assumption that 𝑓 𝑁𝜏
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Fluid approximation based analysis for mode-switching population dynamics 7

(0,0)

(0,1)

(1,0)

(1,1)

1

2
𝑟𝑚 𝑟𝑚

1

2
𝑟𝑚

1

2
𝑟𝑚

𝑟𝑚 1

2
𝑟𝑚

Fig. 1. Single robot – random walk

converges uniformly, as 𝑁 → ∞, to a locally Lipschitz continuous function 𝑓𝜏 we can

construct the limit drift vector

𝐹 (𝒙̂) =
∑
𝜏 ∈ ˆT𝑁

𝒗𝜏 𝑓𝜏 (𝒙̂)

and state the following theorem.

Theorem 1 (Deterministic approximation theorem [21]). With 𝑿̂
𝑁

0
we assume

there exists a point 𝒙̂0 such that lim𝑁→∞ ∥𝑿̂𝑁

0
− 𝒙0∥ = 0 almost surely. Then for every

𝑡 ∈ [0,∞) and 𝜖 > 0 we have

P

(
lim

𝑁→∞
sup

𝑢≤𝑡
|𝑿̂𝑁 (𝑢) − 𝒙̂ (𝑢) | > 𝜖

)
= 0

where 𝒙̂ is a solution to 𝑑𝒙̂
𝑑𝑡

= 𝐹 (𝒙̂) with 𝒙̂ (0) = 𝒙̂0.

In particular, the discrete stochastic behaviour of the pCTMC is approximated by

a continuous deterministic one which corresponds to the limiting behaviour of the

stochastic process as the population size 𝑁 approaches infinity. Observe that the fluid

approximation can also be seen as the deterministic drift component of the linear

noise approximation.

Example 4. Applying this to the running example we can write down the limit drift
of the rescaled population system modelling a random walk on the graph structure in
Figure 1 as follows.

𝑑

𝑑𝑡
𝒙̂ (𝑡) =

©­­­«
𝑟𝑚 (−𝑥01 (𝑡) + 1

2
𝑥00 (𝑡))

𝑟𝑚 (−𝑥00 (𝑡) + 1

2
𝑥01 (𝑡) + 1

2
𝑥10 (𝑡))

𝑟𝑚 (−𝑥10 (𝑡) + 1

2
𝑥11 (𝑡) + 1

2
𝑥00 (𝑡))

𝑟𝑚 (−𝑥11 (𝑡) + 1

2
𝑥10 (𝑡))

ª®®®¬
For a non-random initial condition the above system of ODEs can then be easily solved
to get the fluid approximation of the population dynamics. According to Theorem 1 this
is the exact limiting behaviour as the population size 𝑁 tends to infinity. The resulting
trajectories and how they compare to stochastic simulation are show in Figure 2.
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8 Paul Piho and Jane Hillston
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Fig. 2. Fluid approximation trajectories for the population of robots in the running example
performing a random walk. The parameter 𝑟𝑚 corresponding to the movement rate was set to
1 for this example. For visual comparison, we have given one standard deviation around the
empirical mean from 5000 stochastic simulation trajectories.

3 MODE-SWITCHING POPULATION SYSTEMS
In this section we define a class of stochastic population models for modelling systems

where the dynamics of a population can be separated into discrete modes of behaviour.

In [30] we argued that such models arise naturally from broadcast communication in

collective systems with modes corresponding to information that the collective has

about its operating environment. To start off we extend our running example to give

the following motivating example.

Example 5. So far in our running example we have considered the exploration phase
of the simple foraging-inspired scenario. We are going to extend this model so that
an exploration phase is followed by aggregating to the target area. The switch from
the exploration to the aggregation phase happens when an individual in the swarm
detects the target area and broadcasts this information to the rest of the swarm. After
receiving the information via the broadcast communication each robot in the swarm
will perform a directed walk towards the target node. For the example let us consider
the target to be location (1, 1). The behaviour of the robots in each of the two modes is
illustrated in Figure 3. This simple population model can be easily expressed in a high-level
process algebraic modelling language resulting in a pCTMC over 8 counting variables.
The counting variables specify how many robots are present in each of the locations
and whether the robots in those locations are following dynamics given in Figure 3a or
Figure 3b.

Note that the example described above features two clear dynamic modes. This

can be viewed as a particular instance of the class of stochastic models that we are

interested in, mode-switching population systems.

Definition 2. We define a mode-switching population system as a joint Markov
processes 𝒀 (𝑡) = (𝑿 (𝑡), 𝑍 (𝑡)) ∈ Z𝑛≥0

× Z≥0 where we make the assumption that each
transition only changes the state of 𝑿 (𝑡) or 𝑍 (𝑡) but not both. Moreover, suppose that

• conditional on 𝑍 = 𝑧, the process {𝑿 (𝑡)), 𝑡 ≥ 0} is given by a population process
P𝑧 = (𝑿𝑧,T𝑧,𝑿0) with jump intensities 𝑞𝑧𝑿 (𝒙, 𝒙

′).
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(0,0)

(0,1)

(1,0)

(1,1)

1

2
𝑟𝑚 𝑟𝑚

1

2
𝑟𝑚

1

2
𝑟𝑚

𝑟𝑚 1

2
𝑟𝑚

(a) Before broadcast – random walk

(0,0)

(0,1)

(1,0)

(1,1)

𝑟𝑚

𝑟𝑚

𝑟𝑚

(b) After broadcast – directed walk

Fig. 3. Behaviour of individuals in the swarm model with 4 locations. The parameters 𝑟𝑚 and
𝑟𝑠 give the movement rate between locations and the sensing rate respectively.

• conditional on 𝑿 = 𝒙 , the process {𝑍 (𝑡), 𝑡 ≥ 0} is a continuous time Markov chain
with intensities 𝑞𝒙

𝑍
(𝑧, 𝑧 ′).

The transition intensities of transitioning from state (𝒙, 𝑧) to (𝒙 ′, 𝑧 ′) for the joint process
𝒀 (𝑡) = (𝑿 (𝑡), 𝑍 (𝑡)) are thus defined as

𝑞(𝒙, 𝒙 ′, 𝑧, 𝑧 ′) =


𝑞𝑧𝑿 (𝒙, 𝒙

′) for 𝑧 = 𝑧 ′

𝑞𝒙
𝑍
(𝑧, 𝑧 ′) for 𝒙 = 𝒙 ′

0 otherwise

The definition above has similarities to hybrid systems considered in the context of

biochemical systems under decomposition of the state-space into low and high-copy

number components (see Section 7 for further discussion).

4 LIMITS FOR MODE-SWITCHING POPULATION SYSTEMS
In order to analyse the mode-switching population system introduced in the previous

section we are going focus on fluid approximation-based methods motivated by appli-

cation in mean-field control methods in swarm behaviours [15]. Note that Bortolussi

in [7] presents a comprehensive set of results on fluid limits of population CTMCs

exhibiting hybrid behaviour where the limiting behaviour is given in terms of piece-

wise deterministic Markov Processes (PDMP) [13]. For example, guarded behaviour,

instantaneous transitions and stochastic jumps coupled with a population structure

were considered.

Due to the construction of the mode-switching dynamics the most general treatment

of PDMPs is unnecessary for the discussion that follows. An aspect of the constructed

models that simplifies the analysis is that the transitions of the mode-switching process

do not change the state of the population variables. With this in mind we start by

giving a definition of a subclass of PDMPs sufficient here (a similar restriction was

also considered in [6]). The intuition is that a PDMP defines a process with continuous

deterministic dynamics interrupted by random switching.

Definition 3 ((Simplified) piecewise deterministicMarkov process (PDMP) [13]).

Let 𝐸 be a countable set and𝑀 ⊂ R𝑛 a compact subset giving the domain of the continuous
evolution. We assume that
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10 Paul Piho and Jane Hillston

• for all 𝑒 ∈ 𝐸 we have a smooth time-independent vector field 𝑭 𝑒 : 𝑀 → R𝑛 such
that the ODE 𝑑

𝑑𝑡
𝒚(𝑡) = 𝑭 𝑒 (𝒚(𝑡)), for each initial condition𝒚(0) ∈ 𝑀 , has a unique

solution such that 𝒚(𝑡) ∈ 𝑀 for all 𝑡 ≥ 0.
• all states 𝑧, 𝑧 ′ ∈ 𝐸 are identified with unit vectors 𝒆𝑧, 𝒆𝑧′ in R |𝐸 | and for all 𝒙 ∈ 𝑀
there is a continuous time Markov chain defined via the infinitesimal generator
matrix 𝑄𝒙 with entries 𝑞𝒙 (𝑧, 𝑧 ′).

We define the corresponding PDMP as a stochastic process (𝑿 (𝑡), 𝑍 (𝑡)) ∈ 𝑀×𝐸 satisfying
the equation(

𝑿 (𝑡)
𝑍 (𝑡)

)
=

(
𝑿 (0) +

∫ 𝑡
0
𝑭 (𝑿 (𝑠))𝑑𝑠

𝑍 (0) + ∑
𝑧

∑
𝑧′≠𝑧 (𝒆𝑧′ − 𝒆𝑧)𝑁𝑧𝑧′

(∫ 𝑡
0
𝑞𝑋 (𝑠) (𝑍 (𝑡), 𝑧, 𝑧 ′))𝑑𝑠

))
where

𝑭 (𝑋 (𝑠)) = 𝑭 𝑧 (𝑋 (𝑠)) if 𝑍 (𝑠) = 𝒆𝑧

𝑞𝑋 (𝑠) (𝑍 (𝑠), 𝑧, 𝑧 ′) =
{
𝑞𝑋 (𝑠) (𝑧, 𝑧 ′) if 𝑍 (𝑠) = 𝒆𝑧
0 otherwise

and each 𝑁𝑧𝑧′ is a time-inhomogeneous Poisson process with rate 1 counting the number
of transitions from state 𝑧 to 𝑧 ′.

We have given the process 𝑍 in terms of the Poisson representation of Markov

chains [16] and constructed it so that the state of it is always given by a unit vector in

R |𝐸 |
. The time parameter is transformed 𝑡 ↦→ 𝑞𝑋 (𝑠) (𝑍 (𝑠), 𝑧, 𝑧 ′) based on the state of

𝑋 and 𝑍 so that the process 𝑁𝑧𝑧′ counts transitions from 𝑧 to 𝑧 ′ only. This gives us a
compact definition of PMDPs. In the rest of the paper we are going to use a shorthand

and describe the state space of 𝑍 by integer values. However, the underlying construc-

tion as a process taking values in R |𝐸 |
remains in place. Details and the definition of

PDMPs in a more general setting can be found in [13]. For limit results in [7] the more

general definition was considered, for example, to deal with instantaneous transitions.

In the following we are going to apply the results of [7] to conservative mode-

switching population systems as introduced in Definition 2. We denote the joint

process corresponding to a mode-switching population process of a fixed number of

components by (𝑿𝑁 , 𝑍𝑁 ) to indicate the population size 𝑁 . For each state 𝑧 of the

mode-switching process𝑍𝑁 we have a pCTMCP𝑁
𝑧 = (𝑿𝑁

𝑧 ,T𝑁
𝑧 ,𝑿𝑁

0
) corresponding to

the population dynamics for the given mode 𝑧. We are going to consider the following

conditions:

(1) The pCTMCs P𝑁
𝑧 scale for all 𝑧 as described in Section 2.1. In particular, for all

𝑧 consider the scaled pCTMC
ˆP𝑁
𝑧 = (𝑿̂𝑁

𝑧 ,
ˆT𝑁
𝑧 , 𝑿̂

𝑁

0
).

(2) For the intensities 𝑞
𝒙,𝑁
𝑍

(𝑧, 𝑧 ′) of the process 𝑍𝑁 conditional on the state of the

population 𝑿𝑁 = 𝒙 we require that there exists a Lipschitz continuous function

𝑓 𝑁
𝑧𝑧′ : R𝐾 → R such that

𝑞
𝒙,𝑁
𝑍

(𝑧, 𝑧 ′) = 𝑓 𝑁𝑧𝑧′
( 𝒙
𝑁

)
and 𝑓 𝑁

𝑧𝑧′ converges uniformly to a continuous function 𝑓𝑧𝑧′ as 𝑁 → ∞. Thus, the

scaling for the mode-switching system or discrete variables follows different
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rules than the scaling for population variables. In particular, transition rates for

the discrete variables vary with the scaled population variables rather than the

number of components that are part of a given transition.

If the above conditions are satisfied then we can state the hybrid fluid limit theorem

in the context of the mode-switching population system as follows.

Theorem 2 (Hybrid fluid limit [7]). Let (𝑿𝑁 , 𝑍𝑁 ) be a mode switching population
system satisfying the scaling conditions above and let (𝑿̂𝑁

, 𝑍𝑁 ) be the corresponding
scaled process. Then the sequence of scaled processes {(𝑿̂𝑁

, 𝑍𝑁 )} converges weakly to a
process (𝒙̂, 𝑍 )(

𝒙̂ (𝑡)
𝑍 (𝑡)

)
=

(
𝒙̂0 +

∫ 𝑡
0
𝑭 (𝒙̂ (𝑠))𝑑𝑠

𝑍 (0) + ∑
𝑧

∑
𝑧′≠𝑧 (𝒆𝑧′ − 𝒆𝑧)𝑁𝑧′𝑧

(∫ 𝑡
0

¯𝑓𝑧𝑧′ (𝒙̂ (𝑠))𝑑𝑠
))

where

𝑭 (𝒙̂ (𝑠)) =
∑
𝜏 ∈ ˆT𝑧

𝑓𝜏 (𝒙̂ (𝑠)) if 𝑍 (𝑠) = 𝑧

¯𝑓𝑧𝑧′ (𝑍 (𝑠), 𝒙̂ (𝑠)) =
{
𝑓𝑧𝑧′ (𝒙̂ (𝑠)) if 𝑍 (𝑠) = 𝑧
0 otherwise

The rates 𝑓𝜏 for 𝜏 ∈ ˆT𝑧 are given by the constructions in Section 2.1 applied to the pCTMC
ˆP𝑁
𝑧 = (𝑿̂𝑁

𝑧 ,
ˆT𝑁
𝑧 , 𝑿̂

𝑁

0
) defining the process 𝑿̂𝑁

conditional on the state 𝑧 of the mode-
switching process. The process is an example of a PDMP [13] as in between stochastic
jumps of 𝑍 the state of 𝑍 is constant while the evolution of 𝒙̂ is given with respect to a
deterministic drift.

Proof. The idea of the proof is to consider the limiting behaviour of the process

𝑿̂
𝑁
inductively between the stochastic jumps of the process 𝑍𝑁 . The details of the

proof will not be recreated here and can be found in [7]. □

For a case like the running example we are not quite ready to apply the above

theorem yet. To see that let us consider the following example.

Example 6. Suppose each of the robots that reaches the location (1, 1) is capable of
causing the mode switch at some rate 𝑟𝑠 . Let the mode corresponding to exploration be
denoted by 𝑍 = 0 and the mode corresponding to gathering to the target location be
denoted by 𝑍 = 1. The total rate at which the mode switch happens is given by the
number of robots at (1, 1), denoted 𝑋11, multiplied by the rate 𝑟𝑠 . That is, we get

𝑞
𝑿 ,𝑁
𝑍

(0, 1) = 𝑟𝑠𝑋11

which does not satisfy the scaling requirement defined above for the mode switches
due to the dependence on the non-scaled population variables. Considering the limiting
behaviour for such transitions would not lead to anything interesting. In particular, taking
𝑁 → ∞, the limiting behaviour of the corresponding mode switching process is such that
the probability

P(broadcast has happened by time 𝑡) → 1 for all 𝑡 > 0
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12 Paul Piho and Jane Hillston

Thus, the limit behaviour of the mode-switching process corresponding to a broadcast
message being sent is expected to immediately reach its absorbing state. While the limit
of the switching population constructed in such a way is valid it is not very useful when
our aim is to understand the behaviour of the system at a fixed finite population size 𝑁 .

In the following we construct an approximation dependent on the population size.

To that end, in order to leverage Theorem 2 in the case of running example we start

by constructing a special instance of the mode-switching process 𝑍𝑁 that fixes the

behaviour of the mode-switching process to a given population size.

Suppose we are interested in approximate dynamics of the mode-switching popu-

lation (𝑿𝑁 , 𝑍𝑁 ) for a fixed population size 𝑁̃ . The choice of 𝑁̃ is entirely up to the

modeller and is chosen based on the modelling problem at hand. For example, if we

are interested in the approximate behaviour of the system with 100 homogeneous

individual components we would set 𝑁̃ = 100. In order to construct an approximation

for the population dynamics at the chosen population level suppose that for intensities

𝑞
𝒙,𝑁
𝑍

(𝑧, 𝑧 ′) of the mode-switching process 𝑍𝑁 given the state of the population process

𝑿𝑁 = 𝒙 there exists a Lipschitz continuous function 𝑓 𝑁
𝑧𝑧′ : R𝐾 → R such that

𝑞
𝒙,𝑁
𝑍

(𝑧, 𝑧 ′) = 𝑁 𝑓 𝑁𝑧𝑧′
( 𝒙
𝑁

)
and 𝑓 𝑁

𝑧𝑧′ converges uniformly to a continuous function 𝑓𝑧𝑧′ as 𝑁 → ∞. As noted before

this does not satisfy the scaling requirements for the discrete variables that would

allow us to make use of the hybrid fluid approximation directly. To overcome this

problem we construct a special instance 𝑍𝑁 of 𝑍𝑁 with intensities given by

𝑞
𝒙,𝑁

𝑍
(𝑧, 𝑧 ′) = 𝑁̃ 𝑓 𝑁𝑧𝑧′

( 𝒙
𝑁

)
In particular,

• the density-dependent scaling for rates 𝑓 𝑁
𝑧𝑧′ is done according to the population

size 𝑁 which is later taken to the limit 𝑁 → ∞.

• multiplied by the chosen population level 𝑁̃ which is going to be kept constant.

Effectively this fixes the behaviour of the mode-switching process 𝑍𝑁 to the case

where, for the purpose of switching, the total population size is assumed to be 𝑁̃ .

Example 7. Let us consider the running example. If again the population size at the
location (1, 1) is 𝑋11 then the broadcast happens with rate 𝑟𝑠𝑋11. Similarly, the broadcast
for the scaled population process given population density 𝑋11

𝑁
at location (1, 1) happens

with the rate 𝑁𝑟𝑠 𝑋11

𝑁
. The special instance of the joint process at population level 100

according to the construction above is then defined by saying that the rate of broadcast
is given by 100𝑟𝑠

𝑛
𝑁
. This now satisfies the scaling condition for the mode-switching

transitions.

Note that the scaled joint process (𝑿̂𝑁
, 𝑍𝑁 ), constructed from (𝑿𝑁 , 𝑍𝑁 ) via taking

the special instance of 𝑍𝑁 , satisfies the conditions of Theorem 2 and thus converges

weakly, as 𝑁 → ∞ to the PMDP (𝒙̂, 𝑍 ) with 𝑍 defined by the intensities 𝑞
𝒊,𝑁

𝑍
as

𝑁 → ∞. As mentioned, the motivation here is that while the behaviour of the scaled

population process is taken to its asymptotic limit the behaviour of the mode-switching

process is kept fixed to correspond to a chosen population level 𝑁̃ .
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Example 8. For the running example we can easily see that the deterministic behaviour
is given by the following drifts.

𝑑

𝑑𝑡
𝒙̂ (𝑡) =



©­­­­«
𝑟𝑚 (−𝑥01 (𝑡) + 1

2
𝑥00 (𝑡))

𝑟𝑚 (−𝑥00 (𝑡) + 1

2
𝑥01 (𝑡) + 1

2
𝑥10 (𝑡))

𝑟𝑚 (−𝑥10 (𝑡) + 1

2
𝑥11 (𝑡) + 1

2
𝑥00 (𝑡))

𝑟𝑚 (−𝑥11 (𝑡) + 1

2
𝑥10 (𝑡))

ª®®®®¬
for 𝑍 (𝑡) = 0

©­­­­«
−𝑟𝑚𝑥01 (𝑡)

𝑟𝑚 (−𝑥00 (𝑡) + 𝑥01 (𝑡))
𝑟𝑚 (−𝑥10 (𝑡) + 𝑥00 (𝑡))

𝑟𝑚 (𝑥10 (𝑡))

ª®®®®¬
for 𝑍 (𝑡) = 1

(3)

with

𝒙̂ (𝑡) =
(
𝑥01 (𝑡) 𝑥00 (𝑡) 𝑥10 (𝑡) 𝑥11 (𝑡)

)𝑇
and initial conditions given by

𝒙̂ (0) =
(
0 1 0 0

)𝑇
𝑍 (0) = 0

If we continue with the same choice of 𝑁̃ as in the previous example then the switching
from state 0 of 𝑍 to state 1 of 𝑍 happens at rate 100𝑟𝑠𝑥11.

The difficulty of treating the approximation numerically still remains as 𝑍 is a

random process depending on 𝒙̂ while 𝒙̂ depends on 𝑍 . Although, it is possible to draw

realisations of the time-inhomogeneous Poisson processes describing the evolution of

the mode-switching process the computational demand of the problem remains high.

This is due to the parameters of the Poisson processes depending continuously on

the population variables. In the next section, however, we are going to observe that

certain constraints on the structure of the mode-switching processes greatly simplify

the numerical calculations.

5 MARGINAL DYNAMICS
We start with the observation that, in general, the dynamics of interest are those of the

marginal process describing the population. That is, using the notation (𝒙̂, 𝑍 ) to denote
the hybrid fluid limit of a mode-switching population system, we are interested in the

behaviour of the marginal process 𝒙̂ . The naive approach would be to marginalise out

the effects of the switching process 𝑍 .

To start let us consider the marginal process 𝒙̂ (𝑡) given a sample trajectory 𝒙𝑠−
in the time interval [0, 𝑠]. Moreover, let 𝒙𝑠 denote the state of sample trajectory 𝒙𝑠−
at time 𝑠 . Denoting the limit drift vector of the process 𝒙̂ (𝑡) given the state of the

mode-switching process is 𝑍 (𝑡) = 𝑧 as 𝑭 𝑧 and the 𝑖-th component of the vector as 𝑭 𝑧
𝑖
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we get

𝜕

𝜕𝑡
𝑝 (𝒙 ; 𝑡 | 𝒙𝑠− ; 𝑠) = 𝜕

𝜕𝑡

∑
𝑧

𝑝 (𝑧; 𝑠 | 𝒙𝑠− ; 𝑠)
∑
𝑧′
𝑝 (𝒙, 𝑧 ′; 𝑡 | 𝒙𝑠 , 𝑧; 𝑠) (4)

=
∑
𝑧

𝑝 (𝑧; 𝑠 | 𝒙𝑠− ; 𝑠)
∑
𝑧′

[
−

∑
𝑖

𝜕𝑖𝑭
𝑧
𝑖 (𝒙)𝑝 (𝒙, 𝑧 ′; 𝑡 | 𝒙𝑠 , 𝑧; 𝑠) (5)

+
∑
𝑘,𝑘≠𝑧′

[
𝑝 (𝒙, 𝑘 ; 𝑡 | 𝒙𝑠 , 𝑧; 𝑠)𝑞𝒙

𝑍
(𝑘, 𝑧 ′) − 𝑝 (𝒙, 𝑧 ′; 𝑡 | 𝒙𝑠 , 𝑧; 𝑠)𝑞𝒙

𝑍
(𝑧 ′, 𝑘)

] ]
(6)

where 𝑝 (𝒙, 𝑧 ′; 𝑡 | 𝒙𝑠 , 𝑧; 𝑠) denotes the probability that the joint process (𝒙̂, 𝑍 ) takes
the value (𝒙, 𝑧 ′) at time 𝑡 and the value (𝒙𝑠 , 𝑧) at time 𝑠 ≤ 𝑡 . The above makes use of

the characterisation of the forward equation for stochastic hybrid systems [3]

𝜕

𝜕𝑡
𝑝 (𝒙, 𝑧 ′; 𝑡 | 𝒙𝑠 , 𝑧; 𝑠) = −

∑
𝑖

𝜕𝑖𝑭
𝑧
𝑖 (𝒙)𝑝 (𝒙, 𝑧 ′; 𝑡 | 𝒙𝑠 , 𝑧; 𝑠)

+
∑
𝑘,𝑘≠𝑧′

[
𝑝 (𝒙, 𝑘 ; 𝑡 | 𝒙𝑠 , 𝑧; 𝑠)𝑞𝒙

𝑍
(𝑘, 𝑧 ′) − 𝑝 (𝒙, 𝑧 ′; 𝑡 | 𝒙𝑠 , 𝑧; 𝑠)𝑞𝒙

𝑍
(𝑧 ′, 𝑘)

]
describing the time evolution of the probability density function of the joint system

(𝒙̂, 𝑍 ). Note that here the forward equation gives an exact description of the probability
density of the PDMP (𝒙̂, 𝑍 ) rather than an approximation.

The expression in Equation 6 depends on the continuous evolution given by the

limit drifts 𝑭 𝑧 and discrete jumps of the mode-switching process. Note that the discrete

jumps do not have a direct effect on the state of the population variables by Definition 2

and thus, evaluated at 𝑡 = 𝑠 , we get the following time-evolution of the marginal

process where the contribution from the discrete jumps vanishes.

𝑑

𝑑𝑡
𝑝 (𝒙 ; 𝑡 | 𝒙𝑡− ) = E𝑍 |𝒙𝑡−

[
−

∑
𝑖

𝜕𝑖𝑭
𝑍
𝑖 (𝒙)

]
The problem here lies in the future behaviour of the marginal process 𝒙̂ at time 𝑡 is

given in terms of history of the process up to time 𝑡 . Thus, in order to understand the

marginal process 𝒙̂ we have to reconstruct the stochastic process 𝑍 at time 𝑡 from a

trajectory 𝒙𝑡− . Using the notation

𝜋𝑡 (𝑧 ′) = 𝑝 (𝑧 ′; 𝑡 | 𝒙𝑡− )

to denote the distribution corresponding to the probability of𝑍 = 𝑧 ′ given the observed
history 𝒙𝑡− of the population process 𝒙̂ can be derived to be

𝑑

𝑑𝑡
𝜋𝑡 (𝑧 ′) =

∑
𝑧

𝜋𝑡 (𝑧)𝑞𝒙𝑍 (𝑧, 𝑧
′) − 𝜋𝑡 (𝑧 ′)

[∑
𝑖

𝜕𝑖𝑭
𝑧′
𝑖 (𝒙) − E𝑍 |𝒙𝑡−

[∑
𝑖

𝜕𝑖𝑭
𝑍
𝑖 (𝒙)

] ]
where the first part of the equation can be recognised as the Kolmogorov forward

equation for the marginal process 𝑍 . The second part of the equation contains the

information gained from observing the trajectory 𝒙𝑡− . The contributions of this part
are more significant for the states 𝑧 ′ that are not too unlikely given the trajectory

𝒙𝑡− (that is, 𝜋𝑡 (𝑧 ′) not too small) and for which the flow out of state 𝒙 differs from

the expected flow out of 𝒙 with respect to the filtering distribution. That is, we gain
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information about the state of 𝑍 from observing the trajectory of 𝒙̂ due to the fact

that the dynamics of 𝒙̂ depend on 𝑍 .

The derivation of the filtering distribution follows analogously to the one given for

CTMCs in [10]. The full derivation is given for completeness in Appendix A. We are

going to follow the established terminology and call the distribution 𝜋𝑡 (𝑧 ′) a filtering
distribution [29].

Example 9. If the dynamics of the process 𝒙̂ do not change depending on the state
of the process 𝑍 then part of the equation corresponding to observing the history of the
process 𝒙𝑡− becomes 0. In particular,∑

𝑖

𝜕𝑖𝑭
𝑧′
𝑖 (𝒙) = E𝑍 |𝒙𝑡−

[∑
𝑖

𝜕𝑖𝑭
𝑍
𝑖 (𝒙)

]
Based on that the construction of a useful approximate description of the marginal

process 𝒙̂ relies on the problem of finding a sufficiently simple description of the

filtering distribution. Here we are going to propose the following, as the first order

heuristic for deriving approximate dynamics:

𝑑

𝑑𝑡
𝜋𝑡 (𝑧 ′) ≈

∑
𝑧

𝜋𝑡 (𝑧)𝑞𝒙
𝑍
(𝑧, 𝑧 ′) (7)

𝑑

𝑑𝑡
𝑝 (𝒙 ; 𝑡) ≈ E𝑍

[
−

∑
𝑖

𝜕𝑖𝑭 𝑖 (𝒙)
]

(8)

Recall here that the only source of stochasticity that was left in the PDMP approxima-

tion of the mode-switching populations resulted from the jump process describing

the mode-switching. The result of discarding the information about the history of the

process is that we lose all information about the stochasticity of the marginal process.

In particular, Equation 8 describes a deterministic system with the time-derivative

given by

𝑑

𝑑𝑡
𝒙̂ (𝑡) = E𝑍 [𝑭 (𝒙̂ (𝑡))] (9)

We are going to use the above as an approximation to the marginal process 𝒙̂ of the

limit PDMP (𝒙̂, 𝑍 ). That is, the approximation to the mean of the population marginal

process now follows the expectation with respect to the marginal mode-switching

process. In the following we are going to consider the computational treatment of this

model.

5.1 Direct coupling
The first approach we are going to consider for solving the system given in Equation 9

is to directly couple the approximate filtering distribution

𝑑

𝑑𝑡
𝜋𝑡 (𝑧 ′) =

∑
𝑧

𝜋𝑡 (𝑧)𝑞𝒙
𝑍
(𝑧, 𝑧 ′)

with the approximation of the deterministic drift given by

𝑑

𝑑𝑡
𝒙̂ (𝑡) = E𝑍 [𝑭 (𝒙̂ (𝑡))] =

∑
𝑧

𝜋𝑡 (𝑧)𝑭 𝑧 (𝒙̂ (𝑡))
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Fig. 4. Fluid approximation directly coupled with the probability density for mode-switching.

This is done by setting
𝑑
𝑑𝑡
𝜋𝑡 (𝑧 ′) =

∑
𝑧 𝜋𝑡 (𝑧)𝑞

𝒙̂ (𝑡 )
𝑍

(𝑧, 𝑧 ′). If the number of modes is not

too large this can easily be solved as a system of ODEs.

Example 10. The running example features a single mode switch and thus we can
construct the following system of ODEs

𝑑

𝑑𝑡
𝒙̂ (𝑡) = 𝜋𝑡 (0)

©­­­«
𝑟𝑚 (−𝑥01 (𝑡) + 1

2
𝑥00 (𝑡))

𝑟𝑚 (−𝑥00 (𝑡) + 1

2
𝑥01 (𝑡) + 1

2
𝑥10 (𝑡))

𝑟𝑚 (−𝑥10 (𝑡) + 1

2
𝑥11 (𝑡) + 1

2
𝑥00 (𝑡))

𝑟𝑚 (−𝑥11 (𝑡) + 1

2
𝑥10 (𝑡))

ª®®®¬ + 𝜋𝑡 (1)
©­­­«

−𝑟𝑚𝑥01 (𝑡)
𝑟𝑚 (−𝑥00 (𝑡) + 𝑥01 (𝑡))
𝑟𝑚 (−𝑥10 (𝑡) + 𝑥00 (𝑡))

𝑟𝑚 (𝑥10 (𝑡))

ª®®®¬
𝑑

𝑑𝑡
𝜋𝑡 (0) = −𝜋𝑡 (0)𝑟𝑠𝑥11 (𝑡)𝑁̃

𝑑

𝑑𝑡
𝜋𝑡 (1) = 𝜋𝑡 (0)𝑟𝑠𝑥11 (𝑡)𝑁̃

where 𝑁̃ is the chosen population size. According to the constructions presented in Sec-
tion 4 the jump rates of the mode-switching process depend on the population size. The
construction of population dynamics uses the scaling given for population transitions
presented in Section 2.1 and illustrated in Example 3. We have linked the behaviour of the

, Vol. 1, No. 1, Article . Publication date: November 2020.



Fluid approximation based analysis for mode-switching population dynamics 17

0 1 · · · 𝑛 − 1 𝑛

Fig. 5. Pure birth process.

0 1

Fig. 6. Stochastic
switch.

01 11
· · · 0𝑛 1𝑛 · · ·

Fig. 7. Pure birth process from sto-
chastic switch.

mode-switching process to a population level of interest 𝑁̃ . In the following calculations
we set 𝑁̃ = 100. The above system can then be solved using standard ODE solvers for
initial conditions

𝒙 (0) = (0, 1.0, 0, 0) 𝜋𝑡 (0) = 1 𝜋𝑡 (1) = 0

and parameters 𝑟𝑚 = 1, 𝑟𝑠 = 0.2. Figure 4 gives a visual comparison of the resulting
solution with the mean from 5000 runs of the stochastic simulation.

5.2 Iterative method
The method in the previous section of directly coupling the equations for approximate

probability density for the marginal process 𝑍 arising from the heuristic approxi-

mations of the filtering equation gives a reasonably good estimate for the mean of

the marginal population process in the case of the running example. However, from

Figure 4a we can see that even for this simple example the method does not accurately

capture the mode-switching dynamics. In this section we present a slightly modified

method based on the hybrid fluid approximation that in the case of a certain restricted

class of models allow us to more accurately capture the mean dynamics. In particular,

we consider mode-switching processes which do not branch.

Non-branching mode-switching processes. In this section, we consider non-branching

mode-switching processes 𝑍 , where from each state there is at most one transition out.

This will allow us to set up an iterative construction presented in this section. Two

examples of such processes are pure birth (or death) processes depicted in Figure 5

and a stochastic switch given in Figure 6. As long as there is no branching the mode-

switching processes featuring loops, like the stochastic switch given in Figure 6, can

be treated equivalently to pure birth processes. In particular, we can unroll the loops

by considering the process describing how many times a given state has been visited.

Supposing the stochastic switch is initially in state 0 we would then consider the

process depicted in Figure 7

The key characteristic of such non-branching processes is that we can characterise

their behaviour in terms of a sequence of first hitting time problems. To see that, let

us give a standard definition of first hitting times.

Definition 4. Let 𝜑 be a continuously differentiable function on the space R𝐾+1 (state
space of the process (𝑿 , 𝑍 )) with 𝜑 (𝑿 , 𝑍 ) > 0. Let ℎ denote the first hitting time given by

ℎ = inf{𝑡 | 𝜑 (𝑿 (𝑡), 𝑍 (𝑡)) ≤ 0}

With that in mind, if ℎ𝑛 denotes the first hitting time corresponding to reaching

the state 𝑛 of the pure birth process in Figure 5 then the probability of the process 𝑍
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being in state 𝑛 at time 𝑡 can be given by

𝑝 (𝑧 = 𝑛; 𝑡) = 𝑝 (ℎ𝑛 ≤ 𝑡, ℎ𝑛+1 > 𝑡)
This corresponds to the joint probability that the state 𝑛 has been reached before time

𝑡 but the state 𝑛 + 1 has not. Similarly, conditioned on ℎ𝑛+1 > 𝑡 we have for the pure

birth structure that

𝑝 (𝑧 = 𝑛; 𝑡 | ℎ𝑛+1 > 𝑡) = 𝑝 (ℎ𝑛 ≤ 𝑡)
In the next section we are going to use these observations to iteratively construct the

mean dynamics from the hybrid fluid approximation (𝒙̂, 𝑍 ) under a simplification of

the filtering distribution that discards the history of the process.

Construction of mean dynamics. We propose an iterative method for constructing the

marginal dynamics of 𝒙̂ in a finite time interval [0,𝑇 ). For a non-branching mode-

switching process 𝑍 let us consider a sequence of first hitting times ℎ1, ℎ2, . . . , ℎ𝑛 . . .

corresponding to mode-switching times into state 1, 2, . . . 𝑛 . . . of 𝑍 . As before we are

going to leverage the constructed approximate dynamics given by

𝑑

𝑑𝑡
𝜋𝑡 (𝑧 ′) ≈

∑
𝑧

𝜋𝑡 (𝑧)𝑞𝒙
𝑍
(𝑧, 𝑧 ′) (10)

𝑑

𝑑𝑡
𝑝 (𝒙̂ ; 𝑡) ≈ E𝑍

[
−

∑
𝑖

𝜕𝑖𝑭
𝑍
𝑖 (𝒙̂)

]
(11)

Recall that the sum inside the expectation operator is given over the components of

the limit drift vector 𝑭𝑍 given the state of 𝑍 . As the structure of the mode-switching

process is assumed to be non-branching we can conclude that

𝑑

𝑑𝑡
𝒙̂ (𝑡) ≈

∑
𝑗

𝑝 (ℎ 𝑗 < 𝑡, ℎ 𝑗+1 ≥ 𝑡)𝑭 𝑗 (𝒙̂ (𝑡)) (12)

Note that the sum above is given over the states of 𝑍 . The iterative construction we

propose relies on conditioning the behaviour of the population on a limited set of

behaviours of 𝑍 up to some time 𝑡 . In that case, we let 𝑍 𝑖𝑡− denote the mode-switching

process that takes values up to state 𝑖 within the time interval [0, 𝑡) and consider the

probability distribution

𝑝 (𝑧 ′; 𝑡 | 𝑍 𝑖𝑡− )
We can then take the derivative with respect to 𝑡 and consider the time evolution

of the above distribution given the mode-switching process is contained within the

singleton set {0} defined by a non-random initial condition.

𝑑

𝑑𝑡
𝑝 (𝑧 ′; 𝑡 | 𝑍 0

𝑡− ) =
𝑑

𝑑𝑡

[∑
𝒙

𝑝 (𝑧 ′; 𝑡 | 𝒙, 𝑍 0

𝑡− ; 𝑡)𝑝 (𝒙 ; 𝑡 | 𝑍 0

𝑡− )
]

=
∑
𝒙

[
𝑝 (𝒙 ; 𝑡 | 𝑍 0

𝑡− )
𝑑

𝑑𝑡
𝑝 (𝑧 ′; 𝑡 | 𝒙, 𝑍 0

𝑡− ; 𝑡) + 𝑝 (𝑧 ′; 𝑡 | 𝒙, 𝑍 0

𝑡− ; 𝑡) 𝑑
𝑑𝑡
𝑝 (𝒙 ; 𝑡 | 𝑍 0

𝑡− )
]

As we have assumed that the mode-switching process does not leave the singleton

set {0} the term 𝑝 (𝑧 ′; 𝑡 | 𝒙, 𝑍 0

𝑡− ; 𝑡) is only non-zero if 𝑧 ′ = 0. Furthermore, the term

𝑝 (𝑧 ′; 𝑡 | 𝒙, 𝑍 0

𝑡− ; 𝑡) corresponds to our heuristic simplification of the filtering equation
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under the additional assumption that the mode-switching process 𝑍 stays in state 0,

denoted 𝜋𝑡 (𝑧 ′ | 𝑍 0

𝑡− ). This gives us
𝑑

𝑑𝑡
𝑝 (𝑧 ′ = 1; 𝑡 | 𝑍 0

𝑡− ) =
∑
𝒙

𝑝 (𝒙 ; 𝑡 | 𝑍 0

𝑡− )
∑
𝑧

𝜋𝑡 (𝑧 | 𝑍 0

𝑡− )𝑞𝒙𝑍 (𝑧, 1)

= E𝒙̂ |𝑍 0

𝑡−

[
𝜋𝑡 (0 | 𝑍 0

𝑡− )𝑞𝒙𝑍 (0, 1)
]
= E𝒙̂ |𝑍 0

𝑡−

[
𝑞𝒙
𝑍
(0, 1)

]
(13)

The above gives the initial step in our iterative construction. In order to illustrate it

let us briefly consider again the running example.

Example 11. If the population at location (1, 1), given the mode-switching process is
in state 0 at time 𝑡 , is denoted as 𝑥0

11
(𝑡) we get

E𝒙̂ |𝑍 0

𝑡−

[
𝑞𝒙̂
𝑍
(0, 1)

]
= 𝑞

𝑥0

11
(𝑡 )

𝑍
(0, 1)

Conditioning the population dynamics on 𝑍 0

𝑡− we can easily find the population variable
𝑥0

11
(𝑡) by solving the following system.

𝑑

𝑑𝑡
𝒙̂0 (𝑡) = 𝑭 0 (𝒙̂0 (𝑡)) =

©­­­«
𝑟𝑚 (−𝑥01 (𝑡) + 1

2
𝑥00 (𝑡))

𝑟𝑚 (−𝑥00 (𝑡) + 1

2
𝑥01 (𝑡) + 1

2
𝑥10 (𝑡))

𝑟𝑚 (−𝑥10 (𝑡) + 1

2
𝑥11 (𝑡) + 1

2
𝑥00 (𝑡))

𝑟𝑚 (−𝑥11 (𝑡) + 1

2
𝑥10 (𝑡))

ª®®®¬
Let us consider the same non-random initial conditions and parametrisation as previously.

𝒙̂ (0) =
(
0 1 0 0

)𝑇
𝑍 (0) = 0
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Fig. 8. Relative error between the empirical mean for the location (1, 1) from 5000 stochastic
simulation runs and the iterative and direct coupling approximations constructed from the
hybrid fluid approximation of the running example.

Based on Equation 13 we can find the cumulative rate corresponding to the mode

switch to state 1 — or equivalently cumulative rate out of state 0. This is given by

Λ1 (𝑡) =
∫ 𝑡

0

E𝒙̂ |𝑍 0

𝑠−

[
𝑞𝒙
𝑍
(0, 1)

]
𝑑𝑠
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From that the cumulative distribution function corresponding to the first hitting time

of state 1 of 𝑍 is given by

𝑝 (ℎ1 ≤ 𝑡) = 1 − 𝑒−Λ1 (𝑡 )

This is enough to the construct an approximation of the marginal behaviour of the

population process 𝒙̂ conditioned on 𝑍 1

𝑡− . That is, for the system that does not leave

the mode-switching states {0, 1} we get
𝑑

𝑑𝑡
𝒙̂ (𝑡) = 𝑝 (𝑧 = 0; 𝑡)𝑭 0 (𝒙̂ (𝑡)) + 𝑝 (𝑧 = 1; 𝑡)𝑭 1 (𝒙̂ (𝑡))

= 𝑝 (ℎ1 > 𝑡)𝑭 0 (𝒙̂ (𝑡)) + 𝑝 (ℎ1 ≤ 𝑡)𝑭 1 (𝒙̂ (𝑡))

The general construction up to the 𝑘-th mode-switch for populations where the

mode-switching process has the pure birth structure can then be given by

𝑑

𝑑𝑡
𝒙̂ (𝑡) =

𝑘∑
𝑖=1

𝑝 (ℎ𝑖 ≤ 𝑡)𝑭 𝑖 (𝒙̂ (𝑡))

where the distribution 𝑝 (ℎ𝑘 ≤ 𝑡) is found by constructing the mode-switching process

up to the (𝑘 − 1)-th mode giving rise to the iterative construction.

Λ𝑘 (𝑡) =
∫ 𝑡

0

E𝒙̂ |𝑍𝑘−1

𝑠−

[
𝑞𝒙
𝑍
(𝑘 − 1, 𝑘)

]
𝑑𝑠

𝑝 (ℎ𝑘 ≤ 𝑡) = 1 − 𝑒−𝑝 (ℎ𝑘−1≤𝑡 )Λ𝑘 (𝑡 )
(14)

The scheme is iterated once for all mode-switching events that can happen in a chosen

finite time-interval for which the dynamics are considered. In the case of the running

example with two modes and unidirectional switching this means two iterations.

Alternatively, the iterative scheme can be terminated early if the probability of the

next jump being considered is small in the finite time-interval.

Example 12. Based on the discussion in this section and the trajectories from exam-
ple 11 we can calculate the distribution 𝑝 (ℎ1 ≤ 𝑡) and solve the system

𝑑

𝑑𝑡
𝒙̂ (𝑡) = 𝑝 (ℎ1 > 𝑡)𝑭 0 (𝒙̂ (𝑡)) + 𝑝 (ℎ1 ≤ 𝑡)𝑭 1 (𝒙̂ (𝑡))

where 𝑭 0 corresponds to the drift giving the random walk over the grid structure in the
running example and 𝑭 1 corresponds to the drift towards the target. In Figure 8 we give
a comparison of the resulting probability distributions for 𝑍 (𝑡) = 1 and the relative
errors for the population measure of location (1, 1) between the stochastic simulation
and the fluid approximation based iterative construction. The distribution for 𝑍 (𝑡) = 1

and relative errors from the direct coupling method in the previous section are given
for comparison. Note that for this simple example this approach gives a more accurate
representation of the distribution 𝑍 (𝑡) = 1. In addition the relative error, if discarding
the values near 𝑡 = 0.0 due to numerical inaccuracies when population levels are low, is
improved. In particular, the maximum relative error is diminished and the error reaches
values near zero faster. Both of the relative error trajectories feature points where the
error becomes zero. These points occur when the constructed solutions cross the empirical
estimate.
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6 RESULTS
In this section we conduct an empirical analysis of presented direct coupling-based

and iterative constructions of mean dynamics. For evaluation the approximations are

compared against the empirical mean from 5000 stochastic simulations. To demonstrate

the extensibility and scalability of the presented modelling and analysis ideas, we first

introduce a larger model inspired by maze navigation.

Example 13. This example considers a 4-by-4 grid with connections between nodes
constructed as shown in Figure 9. The mode transitions happen, as before, through
instantaneous broadcast communication when a robot navigating the structure reaches
(2, 2) or (3, 3) and detects them as targets with rate 𝑟𝑠 . We assume that the robot can give
the rest of the swarm enough information to reach its location. This splits the dynamics
of the collective into three modes — random walk and directed walks towards locations
(2, 2) and (3, 3), respectively. Approximations to the mean dynamics are then constructed
based on the previous section. Analogously to the running example the entire swarm is
assumed to start at location (0, 0).

(0,0)

(0,1)

(0,2)

(0,3)

(1,0)

(1,1)

(1,2)

(1,3)

(2,0)

(2,1)

(2,2)

(2,3)

(3,0)

(3,1)

(3,2)

(3,3)(3,3)

(2,2)

Fig. 9. Spatial structure of the maze example.

Themaze navigation example presented above has an absorbing state corresponding

to all the robots being in location (3, 3). In contrast, the following provides an example

where there is no such absorbing state.

Example 14. The second example we are going to consider extends the running example,
set up in Example 5, with an additional mode switch. Recall that the initial dynamic
mode in this example is given by a random walk on the graph structure over a 2-by-2 grid
in Figure 3. We are going to consider the case where, from the second mode describing a
directed walk towards (1, 1), the population dynamics can revert back to the initial mode.
After reverting to initial random walk dynamics the dynamics will no longer change.
We are going to say that the change from the second mode, defined by the directed walk
towards (1, 1), to the third mode, defined by the random walk, is caused again by a
broadcast action sent out by a robot at location (1, 1) happening at rate 0.1𝑟𝑠 .

Let us consider the direct coupling and iterative methods for the two examples at 5

different population levels (100, 200, 300, 500, 1000). In order to study the behaviour of

the approximations under different parametrisations we consider, for each population

level, 50 parameter values for 𝑟𝑚 and 𝑟𝑠 that are randomly sampled from the interval
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(0, 1). Thus we consider 50 different models operating over the same graph structure,

and for each of these we consider five different population levels, giving 250 models in

total. The resulting approximations are then compared to mean population measures

acquired from 5000 stochastic simulation runs.

Table 1 gives an overview of the mean computation times for Example 13 based

on the maze navigation example. The experiments were implemented using Differen-
tialEquations.jl package [31] for the Julia programming language and run in batches

corresponding to the population size. In each case the timings of the calculations for

first parametrisations were not considered as they include the just-in-time compilation

overhead of Julia.

Table 1. Comparison of mean computation times for the maze example (seconds).

Population size 𝑁 Direct coupling Iterative Sampled trajectories (5000)

100 0.0010 0.15 2.01

200 0.0011 0.14 7.12

300 0.0013 0.15 10.95

500 0.0011 0.15 16.56

1000 0.0011 0.15 27.22

Table 2 presents an error analysis for the two examples considered in this section.

For the maze example we consider the approximations to the expected population at

location (3, 3) while for the 2-by-2 example we consider the location (1, 1). For each
experiment corresponding to a parametrisation of 𝑟𝑚 , 𝑟𝑠 and choice of population

level 𝑁 we calculate the maximum absolute errors with respect to the empirical mean

derived from corresponding stochastic simulation runs. In order to make the absolute

errors comparable we have normalised them based on the population size to reflect the

error in terms of the proportion of considered population. For each of the population

levels the table displays the mean and standard deviation of these maximum errors as

well as the largest of the calculated maximum errors. As we can see from Table 1 the

iterative method creates some computational overhead in the implementation. At the

same time, based on Table 2, in most of the tested cases the iterative construction offers

in most case better accuracy than directly coupling the approximate filtering equations

with the fluid drifts. Finally, Figures 10 and 11 give the corresponding error surfaces

for the 4-by-4 maze and the three mode 2-by-2 example respectively at population

levels 100 and 200. In particular, maximum errors for each of the parametrisations

of 𝑟𝑚 and 𝑟𝑠 are plotted. These indicate that the iterative construction deals better

with the parametrisations where the rate of movement parameter 𝑟𝑚 is much lower

than the parameter 𝑟𝑠 defining the rate of broadcasting. The precise reasons why the

iterative construction gives an improved estimate for the mean are proposed as a

subject for further research.

7 RELATEDWORK
The construction proposed in this paper will result in a specific class of models which

we call mode-switching population systems. These systems have many similarities

with bistable or hybrid behaviour in the context of models of biochemical reactions

, Vol. 1, No. 1, Article . Publication date: November 2020.



Fluid approximation based analysis for mode-switching population dynamics 23
Table 2. Comparison of mean maximum errors. For the maze example the errors are calculated
for location (3, 3). For the 2-by-2 example with three modes the errors are calculated for location
(1, 1).

4-by-4 maze 2-by-2 three modes

mean (sd) max. max. mean (sd) max. max.

𝑡 ∈ [0, 100.0] 𝑡 ∈ [0, 100.0]

𝑁 = 100 Direct coupling 14.5 (7.2)% 39.4% 2.4 (2.9)% 13.5%

Iterative 7.3 (3.2)% 17.4% 1.7 (1.6)% 6.9%

𝑁 = 200 Direct coupling 9.9 (6.3)% 33.7% 1.5 (1.8)% 8.5%

Iterative 4.3 (2.5)% 13.5% 1.2 (1.3)% 5.8%

𝑁 = 300 Direct coupling 7.8 (5.2)% 28.7% 1.1 (1.5)% 6.9%

Iterative 3.2 (1.9)% 10.1% 1.0 (1.1)% 5.1%

𝑡 ∈ [0, 100.0] 𝑡 ∈ [0, 10.0]

𝑁 = 500 Direct coupling 5.9 (4.2)% 21.9% 0.8 (1.0)% 4.7%

Iterative 2.2 (1.4)% 7.1% 0.7 (1.0)% 4.1%

𝑁 = 1000 Direct coupling 4.0 (3.0)% 15.7% 0.6 (0.7)% 3.3%

Iterative 1.4 (1.0)% 4.9% 0.5 (0.8)% 3.4%

under the presence of low-copy number components. The terminology used in this

paper is chosen to emphasise the fact that the way in which such dynamics arise

from the population processes differs. In particular, we are not considering the usual

constructions where the state space of the pCTMC is partitioned into parts describing

the evolution of high and low-copy number components (usually referred to as species

in biochemical literature). Nevertheless, the approximate models that arise from our

constructions have obvious counterparts and existing analysis methods. These are

commonly referred to by the name of hybrid methods and it is prudent to give a short

overview of a few of them.

The hybrid methods can be categorised based on how the variables describing the

evolution of high-copy number components are treated. The usual approach is that the

variables corresponding to high-copy components get a continuous description. For

example, [19, 25] derive expressions that represent the mean behaviour of abundances

of high-copy components. In the case of [19] models considered assume that the

discrete stochastic variables are mutually independent and independent of continuous

variables. The conditional mean equations derived in [25] on the other hand coincide

with the method of conditional moments presented in [18] and give rise to a system

of differential algebraic equations. Solutions to the resulting systems of differential

algebraic equations are generally not trivial. Finally, the papers [11, 33] consider the

linear noise approximation coupled with discrete stochastic evolution of the low-

copy components and make use of the time-scale separation to give approximate

closed-form solutions to arising hybrid models.

8 CONCLUSION
Fluid approximations are a powerful technique for scalable treatment of population

CTMC dynamics. However, existing results rely on assumptions which are not shared

by all population systems. For example, broadcast communication and information
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(d) Iterative – population 200

Fig. 10. Error surfaces for the maze example. Displays the randomly sampled pairs of 𝑟𝑚 and 𝑠
against the corresponding maximum errors for location (3, 3).

cascades provide an interesting modelling challenge where actions of single agents

can cause changes in the macro-level dynamics of the population. This is motivated

by scenarios where the population accumulates knowledge about its operating envi-

ronment throughout the course of its evolution. Mode-switching dynamics relating to

information or knowledge spread include subtle but important differences from the

more commonly studied bi-stable behaviour of pCMTCs. In the context of broadcast

communication we have presented a framework in which to study CTMC models of

population dynamics where the collective behaviour of the population goes through

mode and demonstrated how fluid approximation based analysis can be adapted

to such scenarios. Finally, we have introduced two constructions for approximate

marginal population dynamics based on the hybrid fluid approximation results and

presented a comparison between them. These show that methods that make explicit

use of special structures of the mode-switching process, like the iterative construction

of mean dynamics, may in some cases offer improved accuracy and should be of

interest for further study.
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(d) Iterative – population 200

Fig. 11. Error surfaces for the three mode 2-by-2 grid example. Displays the randomly sampled
pairs of 𝑟𝑚 and 𝑠 against the corresponding maximum errors for the location (1, 1).

The methods presented open up fluid approximation results for model checking

and control in cases where density-dependence is violated relatively infrequently

during the transient evolution. However, there are several interesting questions that

remain open for further investigation. For example, what are the precise conditions

under which the presented iterative construction can be expected to offer an improved

approximation. Additionally, as further work we aim to study the behaviour and

limitations in situations where the mode switching process can exhibit branching, for

example, based on the uncertain order in which the knowledge is acquired. Finally, we

are considering applications of central-limit approximation [16] and moment-closure

approximations [24] to gain a better description of the stochastic behaviour of the

transient evolution of population systems.
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A FILTERING DISTRIBUTION
We are going to work with the hybrid fluid limit PDMP (𝒙̂, 𝑍 ), introduced in Section 4,

of a mode-switching population system and derive the evolution equation for the

filtering distribution 𝜋𝑡 (𝑧 ′)

𝑑

𝑑𝑡
𝜋𝑡 (𝑧 ′) =

𝑑

𝑑𝑡
𝑝 (𝑧 ′; 𝑡 | 𝒙𝑡− ) (15)

corresponding to the probability that the mode-switching process 𝑍 is in state 𝑧 ′ given
a sample trajectory 𝒙𝑡− of the population process. As mentioned in the main text

of this paper the derivation of the filtering distribution follows the same outline as

given for continuous time Markov chains in [10] and is presented here mainly for

completeness of presentation. The piece of background information needed in the

following is how the transition densities 𝑝 (𝒙̂, 𝑧; 𝑡 | 𝒙, 𝑧; 𝑠) of the PDMPs considered in

this paper depend on time 𝑡 . This is characterised by the following forward equation
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derived for example in [3].

𝜕

𝜕𝑡
𝑝 (𝒙̂, 𝑧; 𝑡 | 𝒙, 𝑧; 𝑠) = L∗𝑝 (𝒙̂, 𝑧; 𝑡 | 𝒙, 𝑧; 𝑠)

= −
∑
𝑖

𝜕𝑖𝑭
𝑧
𝑖 (𝒙)𝑝 (𝒙, 𝑧 ′; 𝑡 | 𝒙𝑠 , 𝑧; 𝑠)

+
∑
𝑘,𝑘≠𝑧

[
𝑝 (𝒙̂, 𝑘 ; 𝑡 | 𝒙, 𝑧; 𝑠)𝑞𝒙𝑍 (𝑘, 𝑧) − 𝑝 (𝒙̂, 𝑘 ; 𝑡 | 𝒙, 𝑧; 𝑠)𝑞𝒙𝑍 (𝑧, 𝑘)

]
Evaluated at 𝑡 = 𝑠 the above gives us

L∗𝑝 (𝒙̂, 𝑧; 𝑠 | 𝒙, 𝑧; 𝑠) =
{
−∑

𝑖 𝜕𝑖𝑭
𝑧
𝑖
(𝒙) + ∑

𝑘,𝑘≠𝑧

[
𝑞𝒙
𝑍
(𝑘, 𝑧) − 𝑞𝒙

𝑍
(𝑧, 𝑘)

]
for 𝒙̂ = 𝒙, 𝑧 = 𝑧

0 otherwise

The differences between the derivation in [10], that makes our case somewhat simpler,

is that we are only going to consider continuous sample paths 𝒙𝑡− . The reason for

that is given in Section 4 where we assumed that the transitions affecting the mode-

switching process do no change the state of the population process directly. In order

to derive the Equation 15 we are going to consider the value of 𝜋𝑡+Δ𝑡 (𝑧 ′) and directly

apply the definition of a derivative. First of all, by leveraging the Bayes’ rule, we get

𝜋𝑡+Δ𝑡 (𝑧 ′) = 𝑝 (𝑧 ′; 𝑡 + Δ𝑡 | 𝒙 (𝑡+Δ𝑡 )− )

=
∑
𝑧

𝑝 ((𝑧 ′; 𝑡 + Δ𝑡) ∩ (𝑧; 𝑡) | 𝒙𝑡− ∩ 𝒙𝑡+Δ𝑡 )

=
∑
𝑧

𝑝 (𝑧 ′, 𝒙𝑡+Δ𝑡 ; 𝑡 + Δ𝑡 | 𝑧, 𝒙𝑡− ; 𝑡)𝜋𝑡 (𝑧)
𝑝 (𝒙𝑡+Δ𝑡 ; 𝑡 + Δ𝑡 | 𝒙𝑡− )

=
∑
𝑧

𝜋𝑡 (𝑧) [𝑝 (𝑧 ′, 𝒙𝑡 ; 𝑡 | 𝑧, 𝒙𝑡 ; 𝑡) + Δ𝑡L∗𝑝 (𝑧 ′, 𝒙𝑡 ; 𝑡 | 𝑧, 𝒙𝑡 ; 𝑡) + 𝑜 (Δ𝑡)]

1 + Δ𝑡E𝑍 |𝒙𝑡−

[
−∑

𝑖 𝜕𝑖𝑭
𝑍
𝑖 (𝒙)

]
+ 𝑜 (Δ𝑡)

The last line results from the Taylor expansion of 𝑝 (𝑧 ′, 𝒙𝑡+Δ𝑡 ; 𝑡 + Δ𝑡 | 𝑧, 𝒙𝑡− ; 𝑡) around
𝑡 . Putting the above into the definition of a derivative we get

𝑑

𝑑𝑡
𝜋𝑡 (𝑧 ′) = lim

Δ𝑡→0

𝜋𝑡+Δ𝑡 (𝑧 ′) − 𝜋𝑡 (𝑧 ′)
Δ𝑡

=

= lim

Δ𝑡→0

1

Δ𝑡

[∑
𝑧

𝜋𝑡 (𝑧) [𝑝 (𝑧 ′, 𝒙𝑡 ; 𝑡 | 𝑧, 𝒙𝑡− ; 𝑡) + Δ𝑡L∗𝑝 (𝑧 ′, 𝒙𝑡 ; 𝑡 | 𝑧, 𝒙𝑡 ; 𝑡) + 𝑜 (Δ𝑡)]

1 + Δ𝑡E𝑍 |𝒙𝑡−

[
−∑

𝑖 𝜕𝑖𝑭
𝑍
𝑖 (𝒙)

]
+ 𝑜 (Δ𝑡)

−
𝜋𝑡 (𝑧 ′)

[
1 + Δ𝑡E𝑍 |𝒙𝑡−

[
−∑

𝑖 𝜕𝑖𝑭
𝑍
𝑖 (𝒙)

]
+ 𝑜 (Δ𝑡)

]
1 + Δ𝑡E𝑍 |𝒙𝑡−

[
−∑

𝑖 𝜕𝑖𝑭
𝑍
𝑖 (𝒙)

]
+ 𝑜 (Δ𝑡)

]
(16)

Now let us concentrate on the numerator of the fraction inside the brackets. First

of all note that 𝑝 (𝑧 ′, 𝒙𝑡 ; 𝑡 | 𝑧, 𝒙𝑡− ; 𝑡) is 1 exactly when 𝑧 ′ = 𝑧 and zero otherwise. In
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particular, we get

𝜋𝑡 (𝑧 ′) +
∑
𝑧

𝜋𝑡 (𝑧) [Δ𝑡L∗𝑝 (𝑧 ′, 𝒙𝑡 ; 𝑡 | 𝑧, 𝒙𝑡 ; 𝑡) + 𝑜 (Δ𝑡)]

− 𝜋𝑡 (𝑧 ′)
[
1 + Δ𝑡E𝑍 |𝒙𝑡−

[
−

∑
𝑖

𝜕𝑖𝑭
𝑍
𝑖 (𝒙)

]
+ 𝑜 (Δ𝑡)

]
=

∑
𝑧

𝜋𝑡 (𝑧) [Δ𝑡L∗𝑝 (𝑧 ′, 𝒙𝑡 ; 𝑡 | 𝑧, 𝒙𝑡 ; 𝑡) + 𝑜 (Δ𝑡)]

− 𝜋𝑡 (𝑧 ′)
[
Δ𝑡E𝑍 |𝒙𝑡−

[
−

∑
𝑖

𝜕𝑖𝑭
𝑍
𝑖 (𝒙)

]
+ 𝑜 (Δ𝑡)

]
The above gives the numerator in Equation 16. Multiplying the numerator by

1

Δ𝑡 and

taking the limit Δ𝑡 → 0 in both the numerator and denominator of Equation 16 then

gives us

𝑑

𝑑𝑡
𝜋𝑡 (𝑧 ′) =

∑
𝑧

𝜋𝑡 (𝑧)L∗𝑝 (𝑧 ′, 𝒙𝑡 ; 𝑡 | 𝑧, 𝒙𝑡 ; 𝑡) − 𝜋𝑡 (𝑧 ′)E𝑍 |𝒙𝑡−

[∑
𝑖

𝜕𝑖𝑭
𝑍
𝑖 (𝒙)

]
=

∑
𝑧

𝜋𝑡 (𝑧)𝑞(𝑧, 𝑧 ′) − 𝜋𝑡 (𝑧 ′)
[∑

𝑖

𝜕𝑖𝑭
𝑧
𝑖 (𝒙) − E𝑍 |𝒙𝑡−

[∑
𝑖

𝜕𝑖𝑭
𝑍
𝑖 (𝒙)

] ]
as claimed in Section 5.
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