

Edinburgh Research Explorer

Mining behavioral sequence constraints for classification

Citation for published version:
De Smedt, J, Deeva, G & De Weerdt, J 2019, 'Mining behavioral sequence constraints for classification',
IEEE Transactions on Knowledge and Data Engineering, vol. 32, no. 6, pp. 1130-1142.
https://doi.org/10.1109/TKDE.2019.2897311

Digital Object Identifier (DOI):
10.1109/TKDE.2019.2897311

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
IEEE Transactions on Knowledge and Data Engineering

Publisher Rights Statement:
“Mining behavioral sequence constraints for classification' by Johannes De Smedt. © © 2019 IEEE. Personal
use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.”

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 30. Jun. 2022

https://doi.org/10.1109/TKDE.2019.2897311
https://doi.org/10.1109/TKDE.2019.2897311
https://www.research.ed.ac.uk/en/publications/f2dc508b-7864-4a76-addd-f141a9f50364

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 0, NO. 0, MONTHX 20YY 1

Mining Behavioral Sequence Constraints
for Classification

Johannes De Smedt∗, Galina Deeva†, and Jochen De Weerdt†

Abstract—Sequence classification deals with the task of finding discriminative and concise sequential patterns. To this purpose, many
techniques have been proposed, which mainly resort to the use of partial orders to capture the underlying sequences in a database
according to the labels. Partial orders, however, pose many limitations, especially on expressiveness, i.e. the aptitude towards
capturing certain behavior, and on conciseness, i.e. doing so in a compact and informative way. These limitations can be addressed by
using a better representation. In this paper we present the interesting Behavioral Constraint Miner (iBCM), a sequence classification
technique that discovers patterns using behavioral constraint templates. The templates comprise a variety of constraints and can
express patterns ranging from simple occurrence, to looping and position-based behavior over a sequence. Furthermore, iBCM also
captures negative constraints, i.e. absence of particular behavior. The constraints can be discovered by using simple string operations
in an efficient way. Finally, deriving the constraints with a window-based approach allows to pinpoint where the constraints hold in a
string, and to detect whether patterns are subject to concept drift. Through empirical evaluation, it is shown that iBCM is better capable
of classifying sequences more accurately and concisely in a scalable manner.

Index Terms—Sequence classification, sequential pattern mining, behavioral constraint templates, Declare.

F

1 INTRODUCTION

S EQUENCE mining has experienced a vast surge in inter-
est in recent years, finding its application in numerous

domains, such as bioinformatics [1], text mining [2], road
analysis [3] and user behavior analysis [4]. More recently, it
has also been proven useful for analyzing educational data
[5].

There are various sequence classification techniques that
can discriminate between classes of sequences by deriving
sequential patterns from temporal databases, which in turn
can vary depending on the discovery technique, e.g. prefix-
oriented and constraint-based approaches, or in terms out-
comes, e.g. regular expressions and closed sequences. These
derived sequential patterns are then used for classifying
new database entries, which requires to construct the most
discriminating rather than the most complete set of features.

In our preliminary study [6], we introduced iBCM (in-
teresting Behavioral Constraint Miner), a novel sequence
classification technique that featurizes sequences according
to a predefined set of behavioral constraint templates. An
example template is alternate precedence(a,b), indicating
that every occurrence of b needs to be preceded by a
new occurrence of a. iBCM outputs a set of many such
constraints over the items in the sequences per class (e.g. the
document type). Together, the constraints form an image of
what sequential patterns are present and different for each
class. In this way, it is possible to obtain a more fine-granular
view of the temporal relations between items, which in turn
can be applied for classification.

This paper extends our previous work in four different
ways. First, iBCM is further developed into a window-

∗ Johannes De Smedt is with the University of Edinburgh, jo-
hannes.desmedt@ed.ac.uk
† Galina Deeva and Jochen De Weerdt are with KU Leuven, Belgium,
{galina.deeva,jochen.deweerdt}@kuleuven.be

based pattern discovery approach, which allows for better
capturing concept drift in a sequence database. When the
generator of the sequences changes its behavior over time,
this window-based approach is capable of recognizing this
change. Secondly, we explicitly demonstrate that iBCM is
more concise (less constraints to represent the same in-
formation), more expressive (a richer set of constraints,
e.g. also negative constraints), and more scalable. Thirdly,
it is shown how iBCM brings additional insight into the
characteristics of sequential databases, by exploiting the
information gain criterion at the level of constraint types to
get (meta-level) insight into the characteristics that can lead
to accurate classification of sequences. Finally, we present
an extensive comparative experimental evaluation of iBCM
w.r.t. alternative sequence classification techniques show-
ing that the presented technique is best capable to obtain
high discriminative power while minimizing the number
of features needed, and this with the lowest computational
complexity.

In summary, iBCM exhibits the following advantages:

• It employs a rich, varied set of behavioral constraint
templates that can be derived in a fast manner;

• It can be extended to incorporate any regular expres-
sion;

• It includes negative constraints for providing counter
evidence, useful towards classification;

• It includes both unary cardinalities, as well as relational
constraints;

• It enables easy comparison of constraint sets;
• It enables understanding what type of behavioral rela-

tions are present;
• It is capable of pinpointing the behavior to a certain part

of the string, and hence is also robust against concept
drift, defined as a change in the underlying system that

mailto:johannes.desmedt@ed.ac.uk
mailto:johannes.desmedt@ed.ac.uk
mailto:galina.deeva@kuleuven.be;jochen.deweerdt@kuleuven.bet

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 0, NO. 0, MONTHX 20YY 2

generates the items;
• It can be converted into a global automaton for repre-

senting behavior graphically.

This paper is structured as follows. Section 2 discusses
the state-of-the-art of both sequence mining and classifica-
tion. Next, we present the backdrop for mining behavioral
sequence patterns in Section 3, and consequently discuss the
inference part of iBCM in Section 4. Next, Section 5 reports
on an extensive comparative experimental evaluation with
other state-of-the-art techniques. Finally, Section 6 summa-
rizes the contributions and provides suggestions for future
work.

2 STATE-OF-THE-ART

This section gives an overview of existing sequence mining
and sequence classification techniques.

2.1 Sequence Mining

Sequence mining, also referred to as frequent ordered item-
set mining or temporal data mining, has been widely stud-
ied in recent years. The initial approach originated from
frequent itemset discovery [7], based on apriori-concepts,
and was subsequently enhanced in various ways, such as
achieving performance benefits through prefix representa-
tion of the dataset [8] or obtaining a more compact sequence
representation by mining closed sequences [9]. Another
algorithm that focused on reducing a number of redundant
sequential patterns was proposed in [10] in the form of
CCSpan, which adopts a snippet-growth paradigm and
includes several pruning techniques to discover a compact
set of closed contiguous sequential patterns.

The constraint-based approach cSPADE was introduced
in [11], and has recently received a strong interest towards
extending it along the declarative constraint programming
paradigm. More specifically, several studies investigated
how to generically build a knowledge base of constraints
covering the sequences in a temporal dataset. For instance,
[12] presented a satisfiability-based technique for enumer-
ating all frequent sequences using cardinalities for the con-
straints retrieved. In [13], the authors introduced a general
constraint programming approach with exists-embedding
global constraint for sequences and its more general for-
mulation, that steers away from explicit wildcards. This
approach, however, requires significant computational re-
sources. This was improved in [14] with a better prefix
representation of sequence mining constraints, based on
the prefix projection principle introduced in [8], and was
later extended for GAP constraints in [15]. Similarly, [16]
introduced an approach that speeds up the retrieval of
constraints by precomputing the relations between items in
a dataset to avoid reiterating over the sequences. These ap-
proaches also allow for fast retrieval of regular expressions.

A similar vein of research was pursued with Warmr [17],
an inductive logic programming pattern discovery algo-
rithm that relies on the Datalog formalization for express-
ing multi-dimensional patterns. It was elaborated further for
sequences in [18]. The proposed work is a special purpose
algorithm that mines for a subset of Datalog patterns.

2.2 Sequence Classification

While sequence mining and sequence classification share
many common insights, the nature of the objective is dif-
ferent. Rather than extracting the full set of supported
sequences or constraints, it is paramount that the feature
set exhibits the following characteristics.
• Informative: features of sequential patterns should be

supported in a database, but their usefulness towards
classification, i.e. their discriminative power, also de-
pends on other factors such as confidence and interest-
ingness [19]. In general, there is a need for striking a
balance in the feature set so that support values are in
between extremely high and low values [20].

• Concise: the informative feature set is preferably small
to aid comprehensibility (less features to grasp and
relate to each other), while being comprehensive (cap-
turing all information possible in the features) at the
same time. This can be obtained by generating a small
number of features that are informative enough to
capture all information regarding the classes.

Many sequence classification algorithms have been devel-
oped [21], [22], [23], each focusing on a different approach
ranging from extensions to sequential pattern mining algo-
rithms, to statistical approaches that infer the explanatory
power of subsequences. These algorithms can be either
direct, in which case the features are extracted according
to their usefulness for classification, or indirect, in which
all features are firstly generated and subsequently provided
as input to a classifier. In [21], the cSPADE algorithm was
extended with an interestingness measure based on both the
support and the window (cohesion) in which the items of
the constraint occur. Similarly, BIDE was extended to BIDE-
D(C) in [22] by incorporating information gain in order to
provide a direct sequence classification approach. In [23], the
sequence database is split up in smaller parts to be recreated
by a sparse knowledge base that punishes for infrequent
behavior by constructing a Bayesian network of posteriors
that is able to reconstruct the sequence database. A similar
approach is used in [24], where a strong emphasis is put on
finding interesting sequences.

In contrast to simple support counting, the weight of
information is used for finding interesting sequential pat-
terns in weighted sequential pattern mining [25]. Based on
this idea, a new method for mining time-interval weighted
sequential (TiWS) patterns was proposed in [26]. Finally, [27]
describes a method based on document-specific keyphrase
extraction, which is able to capture semantic relationship
between items.

In contrast to the previously mentioned techniques,
iBCM draws from insights in constraint programming, but
rather than constructing a complete constraint base that
is able to regenerate the sequence database as a whole,
iBCM employs highly diverse and informative behavioral
patterns that incorporate cardinality, alteration, gaps, as well
as negative information. By fixing the behavioral constraint
template base, it is possible to devise a tailor-made and
fast algorithm for retrieving them from large databases.
The technique employs only binary constraint templates,
however, other studies such as [21] have already revealed
that for sequence classification, the length of sequential

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 0, NO. 0, MONTHX 20YY 3

Table 1: Example sequence database.

ID Sequence Label ID Sequence Label
1 abbcaa 1 4 acbbcaacc 2
2 abbccaa 1 5 acbbcaa 2
3 abbaac 1 6 acbbcaa 2

patterns does not have to exceed 3, or even 2. However, the
techniques can be extended to use higher-order behavioral
constraints [28]. Finally, since sequence and especially text-
based data, being time-based, are often prone to concept
drift [29], [30], a window-based approach is devised as well.

3 THE FRAMEWORK OF BEHAVIORAL TEMPLATES

In this section, we establish the preliminaries and give an
overview of the behavioral constraint templates and their
characteristics.

3.1 Sequences and Sequence Databases
Sequence classification involves the concepts of a sequence
and a sequence database, as well as the labels needed to
distinguish between the classes.
Definition 1. A sequence σ = 〈σ1, σ2, ..., σn〉 ∈ Σ∗ is a list

of items with length |σ| = n out of the alphabet of items
Σ, where ∗ denotes Kleene star operator. We denote:
• σa = {σ | a ∈ σ, σ ∈ Σ} the strings containing a,
• occ(a, σ) = {i | σi = a, i ∈ N} the ordered set of

positions of item a ∈ Σ in sequence σ,
• min(occ(a, σ)) the first occurrence of item a,
• max(occ(a, σ)) the last occurrence of item a, and
• |occ(a, σ)| the number of occurrences of item a.

Sequences are typically bundled in sequence databases,
which can be defined as follows.
Definition 2. A sequence database SB is a list of sequences

with L : SB → N a labeling function assigning a class la-
bel to every sequence σ ∈ SB. The number of sequences
in the database is denoted |SB|, and lSB = |img(L(SB))|
is the number of different labels present in database SB.

Consider the example sequence database in Table 1, with
three items in the alphabet ΣSB = {a, b, c}, 6 sequences
|SB| = 6, and two labels lSB = 2.

3.2 The Declare Behavioral Constraint Template Base
iBCM is based on a set of behavioral constraint templates
from the Declare language [31], which in turn is inspired
by the formal verification patterns of Dwyer [32]. These
patterns are widely used for identifying not only sequen-
tial, but overall behavioral characteristics of programs and
processes. The Declare template base consists of a number
of patterns for modeling flexible business processes, which
are typically expressed in linear temporal logic (LTL), or
regular expressions and finite state machines (FSMs). The
template base is extensible, but the most widely-used en-
tries, which are used in this paper, are listed in Table 2.
The patterns contain both unary and binary constraints. The
unary constraints focus either on the position (first/last),
or the cardinality of items. The choice constraint can be
considered as an existence constraint over multiple items,

i.e., the occurrence of at least one of 2 items corresponds
to existence(a,b,1). The binary constraints exhibit a hier-
archy [35]. There are unordered constraints (responded/co-
existence), simple ordered (precedence, response, succession),
alternating ordered, and chain ordered constraints. The
presence of chain precedence(a,b) implies the presence of
alternate precedence(a,b), and precedence(a,b), as well as re-
sponded existence(b,a). This allows for expressing the presence
of certain groups of items, their ordering, and also the
repeating (alternation) and local (chain) behavior. Moreover,
negative constraints are able to express that behavior does
not occur, and, despite being proven especially useful in
the context of classification, they are typically not generated
by sequence classification techniques that only mine for
positive patterns. A constraint can be defined formally as
follows.
Definition 3. A sequence constraint π = (A, t) is a tuple

with A a set of items and t the type of constraint.

A binary constraint has an antecedent, implying the con-
straint, and a consequent. Both can exist out of a set of items,
however, in the rest of the paper we will assume both to
be singletons. The types of the constraints correspond with
the templates that are defined in Table 2. For convenience,
the constraints are written in an abbreviated fashion, e.g.
altPrec(a, b). They all correspond to a certain regular ex-
pression which can be converted into an FSM. We denote
the corresponding regular expression as §(t).
Definition 4. A sequence σ supports a constraint π iff

σ ∈ L(A(π)) where L denotes the language of the
corresponding FSM. The support of the constraint in the
database is sup(π)SB = |{σ|σ ∈ L(A(π)) ,∀σ ∈ SB}|.

E.g. in SB = {aab, abb}, σ1 ∈ L(§(altPrec(a, b))), σ2 /∈
L(§(altPrec(a, b))), and sup(π)SB = 1.

3.3 Motivation for Behavioral Constraint Templates
In this section, we detail the rationale behind the power
of the behavioral constraint templates by explaining how
each type of constraint template can improve expressiveness
and conciseness of patterns when compared to sequential
patterns used in classic sequence mining and classification
algorithms. The latter techniques often employ ordered
item sets or partial orders, thus essentially relying on a
representation allowing for a wildcard-based language. E.g.
a mined sequence such as abba, derived with any of the
other techniques that are used in Section 5, would be labeled
with a language expressed as [ˆab]*a.*b.*b.*a[ˆab]*. In the
following sections, it is illustrated how the different behav-
ioral constraint templates are more powerful than such a
representation.

3.3.1 Negative (and choice) constraints
First, finding behavior that is not present cannot be ex-
pressed with partial orders. Indeed, the absence of an item,
as well as the conditional presence of an item (e.g. all
responded existence-based constraints which comprise all the
ordered binary constraints) are impossible to include in a
partial order. Nonetheless, algorithms tailored towards min-
ing partial orders resort to finding sequences that approach
the absence of items, by generating many sequences that

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 0, NO. 0, MONTHX 20YY 4

Table 2: An overview of Declare constraint templates with their corresponding LTL formula and regular expression.

Type Template LTL Formula [33] Regular Expression [34]

Unary

Existence(A,n) 3(A ∧©(existence(n− 1, A))) .*(A.*){n}
Absence(A,n) ¬existence(n,A) [ˆA]*(A?[ˆA]*){n-1}
Exactly(A,n) existence(n,A) ∧ absence(n+ 1, A) [ˆA]*(A[ˆA]*){n}
Init(A) A (A.*)?
Last(A) 2(A =⇒ ¬X¬A) .*A

Unordered Responded existence(A,B) 3A =⇒ 3B [ˆA]*((A.*B.*) |(B.*A.*))?
Co-existence(A,B) 3A⇐⇒ 3B [ˆAB]*((A.*B.*) |(B.*A.*))?

Simple ordered Response(A,B) 2(A =⇒ 3B) [ˆA]*(A.*B)*[ˆA]*
Precedence(A,B) (¬BUA) ∨ 2(¬B) [ˆB]*(A.*B)*[ˆB]*
Succession(A,B) response(A,B) ∧ precedence(A,B) [ˆAB]*(A.*B)*[ˆAB]*

Alternating Alternate response(A,B) 2(A =⇒ ©(¬AU B)) [ˆA]*(A[ˆA]*B[ˆA]*)*
ordered Alternate precedence(A,B) precedence(A,B) ∧ 2(B =⇒

©(precedence(A,B))
[ˆB]*(A[ˆB]*B[ˆB]*)*

Alternate succession(A,B) altresponse(A,B) ∧ precedence(A,B) [ˆAB]*(A[ˆAB]*B[ˆAB]*)*

Chain ordered Chain response(A,B) 2(A =⇒ ©B) [ˆA]*(AB[ˆA]*)*
Chain precedence(A,B) 2(©B =⇒ A) [ˆB]*(AB[ˆB]*)*
Chain succession(A,B) 2(A ⇐⇒ ©B) [ˆAB]*(AB[ˆAB]*)*

Negative Not co-existence(A,B) ¬(3A ∧3B) [ˆAB]*((A[ˆB]*) |(B[ˆA]*))?
Not succession(A,B) 2(A =⇒ ¬(3B)) [ˆA]*(A[ˆB]*)*
Not chain succession(A,B) 2(A =⇒ ¬(©B)) [ˆA]*(A+[ˆAB][ˆA]*)*A*

Choice Choice(A,B) 3A ∨3B .*[AB].*
Exclusive choice(A,B) (3A ∨3B) ∧ ¬(3A ∧3B) ([ˆB]*A[ˆB]*) |.*[AB].*([ˆA]*B[ˆA]*)

are not containing the behavior that is absent. However, this
only holds for sequences and not single items. The non-
occurrence of an item in 100% of the sequences indicates the
absence of that item, but this renders partial order-based
approaches incapable of finding absence in only subsets
of the sequences. Hence, for not succession(a,b), sequences
that do not contain b after an occurrence of a can be
distinguished by a classifier by generating different partial
orders that do not contain b after a. However, there would
be plenty of partial orders needed to express this, while for
iBCM not succession would be present as a single feature. For
absence(a,1) it would be possible to distinguish sequences
with and without a, but if there is no sequential information
available that contains a, the non-occurrence of the item
cannot be uncovered by partial orders.

For not chain succession, the same rationale as for the
chain constraints can be followed. Exclusive choice and not
co-existence follow a similar reasoning as for absence, while
choice(a,b) can be approached in the same way as exis-
tence(a,b), as explained below.

3.3.2 Position constraints
Last and init constraints are virtually impossible to detect
for a simple partial order representation. Hence, mining
a language such as a.* (init) or .*a (last) for one class
and [ˆa].*a.* and .*a.*[ˆa] (last) for another class does not
yield any discerning features when running partial order-
based classifiers, while iBCM with behavioral constraints
is capable of using only one constraint to distinguish both
classes.

3.3.3 Existence constraints
Existence(a,n) constraints count the number of times n an
item a occurs. In general, partial orders are also capable of
representing this number by indicating how many consecu-
tive occurrences of the item are present, e.g. a sequence aaa
shows that a occurs three times. However, the interpretation
of behavioral constraints is easier, since they are formally de-
fined, easily explained in regular expressions and executable

by automata. Furthermore, using the number of occurrences
as a feature (existence(a,3)) would make classification easier
than with simply occurrence existence(a,1), and allows to re-
duce the number of features as well by excluding constraints
through hierarchy reduction, e.g. excluding existence(a,1) as
existence(a,3) is present. However, occurrence of aa is not
removed as aaa holds, unless specifically implemented.

3.3.4 Unordered binary constraints
Responded existence is not used in iBCM, however, it
forms the base for precedence and response constraints.
[ˆa]*((a.*b.*)|(b.*a.*))? expresses that the presence of a re-
quires the presence of b, without specifying its location in
the string. This concept is hard to capture with partial or-
ders, as multiple orders have to be incorporated to establish
that the location is unimportant, hence requiring many dif-
ferent orders to approach the lack of importance of orders.
Also the possible absence of a cannot be expressed, as this is
negative information. Co-existence would require two partial
orders, i.e. ab, and ba, or the presence of both activities,
to capture the fact that although they occur together, the
position of the items is not fixed. The constraint does not
suffer from the possible absence of a or b.

3.3.5 Simple ordered constraints
Precedence and response form the base for partial orders.
However, their simple setup is deceiving. While partial
orders can capture sequences of items, simple order con-
straints are not capable of distinguishing very simple nu-
ances such as bbaabab vs. bbaababa. Indeed, the difference
between the extra occurrence of a at the end of the string,
turns the sequence from one where a precedence(a,b) con-
straint holds into one in which a response(a,b) holds. It
was tested by simulating both strings for different classes
with different items interleaved and mining them with the
techniques outlined in Section 5. Many were not capable
of distinguishing the difference between the classes, unless
many other patterns are generated as well. In a simula-
tion, cSPADE is not able to distinguish both traces, and

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 0, NO. 0, MONTHX 20YY 5

PrefixSpan needs 41 patterns to summarize the two strings
shown before. Moreover, the number of required sequences
increases with the length of the traces. MiSeRe is unable to
distinguish them as well, and the other algorithms SCIS and
BIDE learn the sequences by hard and churn out the two
simulated strings. Hence, they fail to capture the underly-
ing cause, which is the different end, which can manifest
itself in many different ways (it corresponds to the size of
the language of both constraints). For precedence, a similar
example can be constructed.

3.3.6 Alternating ordered constraints

For alternate constraints, the same nuances exist. Consider,
for example, abbabababb and abbaabababb. The presence of
one extra a makes alternate response(a,b) hold in the first, but
not for the latter sequence where only response(a,b) holds.
Again, the other algorithms are only capable of finding
this distinction by learning the full sequences, rather than
the concept of repetition. Furthermore, the different instan-
tiations of an alternate response renders the partial order
representation unable to distinguish shorter and longer
occurrences of such repetitions, e.g. the difference between
comparing abbabababb and abbabababbabbabaababb with
abbaabababb would make partial order-based techniques
generate even more features. The same line of thinking
can be applied to alternate precedence as well, where in
abaabab alternate precedence(a,b) holds and in abaabb only
precedence(a,b).

3.3.7 Chain ordered constraints

Typical partial order representations do not contain any
notion of ‘next’ position, and allow for any item to fill the
gap in between items in a sequence. If we use the same
example as for alternate constraints, but generate one label
with and one without gaps, none of the other algorithms is
capable of distinguishing the strings generated.

4 IBCM: ALGORITHM DESIGN AND IMPLEMENTA-
TION

This section outlines the algorithm for constructing the set
of features based on the constraint templates discussed
in Section 3. iBCM is an indirect sequence classification
approach, i.e. the featurization and classification parts are
separate. Afterwards, Section 5 will outline the classifica-
tion performance of the constraint templates when used as
binary input features (present/not present).

4.1 Featurizing Sequences with iBCM

Given that iBCM is an indirect sequence classification ap-
proach, in this section, we first outline the featurization part.
For inferring potentially discriminative sequential patterns
from a sequence database, iBCM applies a three step ap-
proach, as outlined in Algorithm 1. In a nutshell, the algo-
rithm derives the sequential patterns per class of sequences
by intelligently checking whether behavioral constraint tem-
plates hold or not.

4.1.1 Step 1: Retain frequent items

First, items that exceed the support threshold are withheld
in set A (Alg. 1 line 3). Only these items are used for check-
ing unary constraints, and subsequently checking binary
constraints in pairs.

4.1.2 Step 2: Generate constraints

In the next step, all the sequences belonging to a particular
class i with label l in the database are checked in the
following manner (starting line 5, Alg. 1). First, if the length
of the sequence |σ| is smaller than the number of windows
w, the sequence is not considered (line 6, Alg. 1). Then,
constraints are mined per window (Alg. 2). This involves
the computation of the number of items in a window and
deriving the bounds (lines 3-4, Alg. 2). Finally, constraints
are mined for every window.

Hereto, the (sub)sequence or window is traversed com-
pletely, and for every item in the sequence σi the positions
are stored in occ(σi, σ) (line 3, Alg. 3) to keep track of
the position of the occurrences of an item σi in σ. The
number of occurrences is denoted |occ(σi, σ)|. This allows
for easy verification of the constraints, as the position in
the string is used to quickly check the number of oc-
currences for unary constraints, and the position relative
to the other items for binary constraints. For every item
a ∈ A, |occ(a, σ)| is used for determining the cardinality
constraints, i.e. absence/exactly/existence (lines 5-7, Alg. 3)
for existence/absence/exactly constraints. It is also checked
whether it occurred as the first or last item in the sequence
(lines 8-9, Alg. 3) for checking init and last constraints.
Next, a is paired with every other b ∈ A\a to determine the
type of behavioral constraint pattern. First, co-existence of a
and b is checked. Next, if a occurs before b, the precedence
hierarchy is reviewed (lines 12-21, Alg. 3). For every next
occurrence of b, it is checked whether there was another
a preceding it for alternate precedence. In the meantime for
every occurrence, the exact position is checked for chain
precedence. If all occurrences of b are in the right position
for the constraint to hold, it is added to the constraint set.
Both checks stop when there is no further evidence, hence
constraints can be verified efficiently with minimal look ups.

If b occurs after a, the response hierarchy is scrutinized
(lines 22-34, Alg. 3). Similar to alternate precedence, every
occurrence of a is checked for a subsequent b before the
next occurrence. If every next occurrence of a is b, chain
response is stored. After every pairwise check, the respec-
tive succession constraints are added if both (alternate/chain)
response and precedence are present in the sequence. When b
is not present in the sequence, there is evidence for exclusive
choice. Afterwards, in line 35 of Algorithm 3, constraints are
merged if they can be combined into a constraint higher up
the hierarchy (i.e. the simultaneous presence of response and
precedence forms succession) to reduce the size of the number
of features. Since the algorithm is focused on only retaining
constraints when both items are present, all constraints are
mined with 100% confidence. Techniques that take confi-
dence for Declare constraints into account while avoiding
discovering vacuous constraints exist as well [35], [36], [37]

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 0, NO. 0, MONTHX 20YY 6

4.1.3 Step 3: Retain frequent constraints
Finally, for every constraint it is checked whether it satisfies
the minimum support level for the different labels in the
sequence database in line 9 of Algorithm 1. This allows
for the precise measuring of sequential behavior, as some
sequences might support both response and precedence, and
others might not. Distinguishing between the slight nuance
between these two constraints allows for a better capturing
of the distinctive behavior present for different labels.

The binary constraints can be derived very efficiently by
boolean and string operations, as it is clear from Algorithm
3, which is inspired by [35] and [36]. However, for classi-
fication purposes the sequences need to be labeled right
away. In [36], Büchi automata based on the LTL formulas
are used to check constraints for each frequent pair. Doing
this on a sequence level is computationally expensive, as
it would require running each string many times. In [35],
a knowledge base of occurrence and precedence relations
is built and the support for constraints is calculated, which
avoids single string run-throughs, but does not label strings
individually for the presence of the constraints. iBCM rather
analyzes the strings in one run, hence avoiding replaying
strings over separate automata for each constraint, and ob-
taining the information regarding the features immediately.

Finally, on line 11 of Algorithm 1, the hierarchy reduc-
tion is applied, where all the constraints are subsumed by
constraints down the hierarchy, e.g. alternate response(a,b)
removes response(a,b), as well as responded existence(a,b), and
existence(a,3) removes existence(a,2), and existence(a,1).

Algorithm 1 Mining constraint features per class i
1: procedure RETRIEVE CONSTRAINTS(SB,minsup,w) . Input: Data,

minimum support, and number of windows
2: for l ∈ [1, lSB] do
3: A← {a | a ∈ Σ, |σa| ≥ minsup} . STEP 1
4: Cl ← ∅ . Cl a list with the constraints supporting label l
5: for σ ∈ SB ∧ L(σ) = l do . STEP 2
6: if |σ| ≥ w then
7: Cl ← Cl ∪mineConstraints(σ,A,w)

8: for c ∈ Cl do . STEP 3
9: if |{c|c ∈ Cl}| ≥ |Cl| ×minsup then

10: CSB,l ← CSB,l ∪ c
11: applyHierarchyReduction
12: return CSB

Algorithm 2 Mining constraints in a string per window
1: procedure MINECONSTRAINTS(σ,A,w)
2: C ← ∅ . C is a set of constraints
3: winSize = b |σ|w c
4: bounds← {ub | ub mod w = 0, ub ≤ |σ|} ∪ |σ|
5: sort(bounds)
6: i← 0
7: for b ∈ bounds do
8: σi,b ← {σs | σs ∈ σ, s ≥ winSize× i+ 1, s ≤ b}
9: C ← C ∪mineConstraintsInWindow(σi,b, A)

10: i+ +

11: return C

The window-based nature of the approach allows to find
constraints in different parts of the sequence, hence being
able to capture underlying changes in the system generating
the items. By varying the window parameter w, the algo-
rithm can be made more sensitive to changes in the dataset,
being capable of dealing with both abrupt shocks, or more
gradual changes [38]. Consider, for example, ababaabbab.
In the first 5 steps, alternate precedence(a,b) holds, while

Algorithm 3 Mining behavioral constraint templates
1: procedure MINECONSTRAINTSINWINDOW(σ,A)
2: C ← ∅ . C is a set of constraints
3: for σi ∈ σ do occ(σi, σ)← i

4: for a ∈ A ∩ Σσ do . Σσ is the alphabet of the sequence
5: if |occ(a, σ)| = 0 then C ← C ∪ absence(a, 1) . Unary constraints
6: else if |occ(a, σ)| > 2 then C ← C ∪ existence(a, 3)
7: else C ← C ∪ exactly(a, |occ(a, σ)|)
8: if 1 ∈ occ(a, σ) then C ← C ∪ init(a)

9: if |σ| ∈ occ(a, σ) then C ← C ∪ last(a)

10: for b ∈ {A ∩ Σσ} \ {a} do . Binary constraints
11: C ← C ∪ CoExist(a, b)
12: if min(occ(a, σ)) < min(occ(b, σ)) then
13: C ← C ∪ prec(a, b)
14: i← min(occ(b, σ))
15: chain← (i− 1) ∈ occ(a, σ), continue← >
16: while ∃n ∈ occ(b, σ), n > i ∧ continue do
17: if ∃p ∈ occ(a, σ), i < p < n then i← n
18: if ¬chain ∨ (n− 1) /∈ occ(a, σ) then chain← ¬
19: else continue← ¬
20: if continue ∧ |occ(b, σ)| > 1 then C ← C ∪ altPrec(a, b)
21: if chain then C ← C ∪ chainPrec(a, b)
22: if max(occ(a, σ)) < max(occ(b, σ)) then
23: C ← C ∪ resp(a, b)
24: if max(occ(a, σ)) < min(occ(b, σ)) then
25: C ← C ∪ notSuc(a, b)
26: i← min(occ(a, σ))
27: chain← (i+ 1) ∈ occ(b, σ), continue← >
28: while ∃n ∈ occ(a, σ), n > i ∧ continue do
29: if ∃p ∈ occ(b, σ), i < p < n then
30: i← n
31: if ¬chain ∨ (n+ 1) /∈ occ(b, σ) then chain← ¬
32: else continue← ¬
33: if continue ∧ |occ(a, σ)| > 1 then C ← C ∪ altResp(a, b)
34: if chain then C ← C ∪ chainResp(a, b)
35: add succession if (alternate/chain) response and precedence
36: if b /∈ Σσ ∧ b ∈ A then C ← C ∪ exclChoi(a, b)
37: return C

in the latter 5 steps, the sequence has shifted towards a
alternate response(a,b)-based pattern. Overall, neither of these
constraints hold. iBCM is capable of capturing such nuances
if they are informative for distinguishing classes.

Once all constraints are obtained per class label, i.e., all
CSB,l are found, they can be used for classification. First,
constraints present in all classes are removed from all CSB,l
as they are not discriminative. Next, the presence of every
constraints in C =

⋃
l CSB,l can be used as a binary feature

for unseen sequences for classification.

4.2 Considerations on the Constraint Template Base
Not all Declare constraint templates are suitable to be
considered for obtaining features from single sequences.
First of all, constraints might suffer from being vacuously
satisfied, i.e. they are satisfied because no counterevidence
is provided. Hence, only binary pairs that are both present
in a sequence are considered. This automatically satisfies
the choice constraint, as well as responded existence and co-
existence. Secondly, in a single sequence, absence, exactly,
and existence are not distinguishable. It is opted not to
generate all of them, but rather to stick with a layered
approach of absence for no occurrences, exactly for 1 to 2
occurrences, and existence for more than 3 occurrences. It
would be possible to check them separately, and merge them
afterwards, however, experiments showed that this does
not have an impact on the results. Finally, exclusive choice
and not chain succession both mine for negative behavior
that reflects everything that is not present in the sequences.
While absence does the same, the magnitude of the number

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 0, NO. 0, MONTHX 20YY 7

Table 3: The behavioral constraints present in the sequence
database of Table 1. The constraints that are supported at
100% are left out for 50%.

Support Label Supported constraint templates

100% 1 init(a), existence(a,3), exactly(b,2), re-
sponse(b,a), precedence(a,c), succession(b,c),
not succession(c,b), precedence(a,b)

2 init(a), existence(a,3), exactly(b,2), re-
sponse(b,a), precedence(a,c), precedence(c,b),
response(b,c), precedence(a,b)

50% 1 exactly(c,1), last(a), response(c,a), alternate
precedence(a,c), alternate precedence(b,c),

2 last(a), exactly(c,2), response(c,a)

of non-existing sequence pairs is vastly larger. Although
mining for negative information is one distinctive feature
of the proposed approach, the gain in accuracy performance
does not outweigh the burden in terms of the number of
extra constraints generated. Hence, these constraints are not
included in the final constraint set. Not succession is the only
negative constraint used.

4.3 Comparison with Other Sequence Constraint Rep-
resentations

The iBCM approach is not intended to be able to reproduce
the database, but rather to capture the most discerning
sequence-based features. Consider for example the database
in Table 1. Table 3 lists the constraints present for both labels.
For label 1, a does not always precede b. Also, for label
2, c occurs before b. This can be discerned by only three
constraints per support level, which are marked in bold.
Hence, with only three features, it is possible to classify
the traces correctly. Lowering the support threshold results
in more constraints being different, although the number
of constraints does not have to drastically increase, as for
example response(a,b) will eventually be replaced by alternate
response(a,b) because of the contraints’ hierarchy. It is harder
to achieve the same results with typical sequence-based
constraints in algorithms such as cSPADE, as non-local in-
formation that is present in some constraints, e.g. succession,
requires either longer or more sequences to approach the
behavior that will converge towards the language of the
regular expression. This is illustrated below.

4.4 Scalability

The computational tractability of the technique relies heav-
ily on two components. First of all, the length of the se-
quence is an important factor as every sequence is traversed
completely. Hence, the performance is bound in the extreme
by the length of the longest sequence. Secondly, the min-
imum support determines the number of activities, hence
the number of pairs and constraint templates that need to
be checked. In the worst case, all pairs have to be checked
for all binary templates. Most constraints can be checked
by simple lookups, but in case the templates in the upper
part of the hierarchy are checked, the complexity in the
worst case is the length of the string for checking alternating
and chain behavior. This results in O(|A|2 × max(|σ|)).
However, as it is clear from experimental evaluation, iBCM
can achieve good results at high minimum support levels,
reducing |A| drastically.

5 EXPERIMENTAL EVALUATION

In this section, iBCM is evaluated against eight state-of-the-
art sequence classification algorithms using six widely-used
datasets.

5.1 Setup
Below, we provide an overview of the datasets, the bench-
mark sequence classification techniques, and the implemen-
tation.

5.1.1 Data
The datasets are summarized in Table 4. They vary signif-
icantly in terms of the number of sequences, distinct items
and classes, and also in terms of the average and maximum
length of the sequences. For more details about the datasets,
we refer to [23] and [21].

Table 4: Characteristics of the datasets used for comparative
evaluation.

|SB| |ΣSB| lSB avg(|σ|) max(|σ|)
aslbu 424 250 7 13.05 54
auslan2 200 16 10 5.53 18
context 240 94 5 88.39 246
pioneer 160 178 3 40.14 100
reuters 4,976 27,884 5 139.96 6,779
Unix 5,472 1,697 4 32.34 1,400

5.1.2 Benchmark Sequence Classification Techniques
iBCM is benchmarked against eight state-of-the-art tech-
niques, namely cSPADE [11], GoKrimp [39], Interesting
Sequence Miner (ISM) [23], Sequence Classification based
on Interesting Sequences (SCIP) [21], BI-directional Exten-
sion (BIDE) [9], Prefix-projected Sequential pattern min-
ing (PrefixSpan) [8], and Mining Sequential Classification
Rules (MiSeRe) [24]. Furthermore, we test Long Short-Term
Memory networks (LSTMs) [40] for their prevalence and
recent popularity for modelling sequences. For the indi-
rect approaches, i.e. the algorithms generating sequences
without considering the label, cSPADE, PrefixSpan, BIDE,
iBCM, and SCIP, the support levels were set at 0.1-1.0 by
0.1 intervals. SCIP was used for a minimum interestingness
level of 0.05 and a maximum sequence length of 2 (this
length was devised by the authors in [21], and a longer
length increased computation time and did not return better
results)1. The direct approaches, i.e. algorithms that generate
sequences according to their discriminative power for the
labels, have different parameters. For MiSeRe, 1, 2, 5, and 10
second run times were considered. GoKrimp was used both
in supervised and unsupervised fashion for generating the
sequences. ISM was applied with a maximum number of
iterations of 200, and a maximum number of optimization
steps of 10,000. No notable differences were reported when
using different settings. LSTMs were trained for both 3 and

1The standard implementation performs cross-validation on all
sequences. This was reported in the first iBCM paper [6]. This results in
more constraints, as they all have different levels of interestingness. In
this paper, this cross-validation was dismissed and all sequences were
mined in 1 set to be more comparable with the other techniques. This
resulted in less constraints, but very poor performance in accuracy. For
more details on SCIP, we refer to [6] and the original paper of [21].

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 0, NO. 0, MONTHX 20YY 8

50 epochs, to illustrate the difference in accuracy achieved
by longer learning times. Finally, iBCM was tested for a
number of window settings w, where w = 5 performed best
in terms of accuracy and the number of constraints gen-
erated. In the results, both w = 1 and w = 5 are included,
and for the latter only the results of classifying with random
forests were included as there was no significant difference
in terms of accuracy when using the other classifiers.

5.1.3 Implementation
All techniques first generate interesting sequential patterns.
Next, a predictive model is built by using the obtained se-
quential patterns as binary features for the sequences. More
specifically, for all the techniques, sequential patterns were
first extracted to be used as features for the sequences, which
were labelled according to whether the sequential pattern
(feature) is present in the respective sequence or not. All
features that were common for all the different classes were
removed, as they do not have any discriminative power.
Three classifiers were considered, namely naive Bayes (NB),
support vector machines (SVM) and random forests (RF),
for which the Weka2 Java implementation was used.

All techniques have been implemented in Java by the
respective authors, while cSPADE, GoKrimp, BIDE and Pre-
fixSpan were retrieved from the SPMF library [41]. LSTMs
were implemented using the Keras Python library3. The
implementation of the benchmark can be found online4. All
runs were executed using a Java 8 Virtual Machine on an
Intel Xeon E3-1230 (v5) CPU with 32GB DDR4 memory. A
10-fold cross-validation was applied to all the experiments.
All support-based algorithms were prevented from running
longer than 30 minutes (and are indicated as NA in case
they ran out of time) to generate the sequential patterns to
be used for classification. All timings were recorded after
the data was loaded and the sequence database established.
Every algorithm (except LSTMs) was allowed only one
thread to execute, while the 8 thread results of iBCM are
included (with the tag MT). All ExecutorService objects
were retrieved from the code and set to use only 1 thread,
however, cSPADE nevertheless used a full multithreaded
approach that could not be prevented. BIDE also launched
more than 1 thread for a negligible part of the execution.

5.2 Results
The results in terms of accuracy, the number of generated
constraints, and the best performing classifier can be found
in Table 6. The full results can be found in Appendix A. The
results for the direct approaches are reported in Table 5, as
they do not use support as a parameter. The best results for
every algorithm for every dataset are indicated in bold, and
the best performing algorithm in terms of accuracy for the
lowest number of constraints over all other algorithms (over
the two tables) is indicated in red.

5.2.1 Accuracy and Number of Constraints Generated
Overall, iBCM is capable of achieving a high accuracy for
all the datasets, outperforming other sequence mining algo-
rithms. Most notably, for datasets aslbu, auslan2, and Unix,

2http://www.cs.waikato.ac.nz/ml/weka/
3https://keras.io/
4https://feb.kuleuven.be/public/u0092789/

iBCM and its window-based variant perform significantly
better in terms of accuracy and the amount of constraints
generated. iBCM with a window of 1 is outperformed on
a few occasions by PrefixSpan (e.g. for pioneer PrefixSpan
achieves high accuracy sooner with less constraints). In
general, iBCM retrieves a slightly larger constraint set than
BIDE, SCIP and cSPADE, and typically more constraints
than PrefixSpan for a higher support level, but less for a
lower support level. For a higher window size, the con-
straint set is smaller, and the accuracy is the highest. iBCM
and SCIP are the only techniques that are capable of finding
features, and that do not run out of time or memory in
case the support values are low. For the context dataset,
they are the only algorithms that retrieve constraints timely.
The others also fail to produce any constraints for higher
constraint values, e.g. for aslbu and Unix.

While the direct approaches typically achieve high ac-
curacy, they generate significantly more constraints due to
their setup, i.e. mining as many interesting constraints in
as little time possible. Especially ISM seems to provide
generally strong results for which is does need a large set
of features and performs similar, or outperforms GoKrimp
and MiSeRe. LSTMs do not seem to add competitive results,
although the number of epochs drastically improves the
results, albeit at a significant runtime cost. In general, the
level of accuracy of the direct approaches is still not as high
as the one produced by iBCM’s constraints for aslbu, auslan2,
and Unix.

The other techniques provide sequence constraints that
are less suitable for classification, as the results for the differ-
ent classifiers tend to be less stable. While not reflected in the
table, especially for PrefixSpan and cSPADE, the classifiers
report different accuracy values (note that the full results
can also be found on the iBCM website4). This is especially
noticeable for aslbu, auslan2, and Unix. On the contrary,
iBCM does not have this issue, as the values of accuracy
produced by different classifiers are indistinguishable.

Especially for reuters, text-based data, and pioneer,
sensor-based data, the difference between iBCM with w = 1
and w = 5 is significant. This suggests that for data sources
that are prone to concept drift [38] iBCM is indeed capable
of performing adequately. Still, it does not suffer from
a reduction in accuracy when no drift is present, as the
window-based approach always performs equally well, or
outperforms the single window approach.

5.2.2 Execution time
The execution times are reported in log(time) milliseconds
and can be found in Figure 1, showing that many techniques
produce their results very quickly. iBCM typically outper-
forms the other algorithms, and multi-threaded implemen-
tations of the algorithms as well outperform the single
threaded for the larger database (w = 5 is also performed
in multi-threaded fashion). Otherwise, thread management
slightly hinders fast execution. iBCM scales well with the
size of the database, and exponentially when the alphabet
grows in size which can be seen from the results of reuters.
The algorithm always goes through the full strings, but can
quickly decide on what type of constraints are present. Only
if constraints higher in the hierarchy are present (alternating
or chain constraints), iBCM has to perform multiple item

http://www.cs.waikato.ac.nz/ml/weka/
https://keras.io/
https://feb.kuleuven.be/public/u0092789/

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 0, NO. 0, MONTHX 20YY 9

Table 5: Accuracy results of the best classifier for MiSeRe, ISM, LSTMs, and GoKrimp. All durations are log(time).

dataset MiSeRe 1s (#) MiSeRe 2s (#) MiSeRe 5s (#) MiSeRe 10s (#) ISM (#) LSTM 3 ep. (ms) LSTM 50 ep. (ms) GoKrimp unsup. (#-ms) GoKrimp sup. (#-ms)
aslbu 0.55 (127) 0.55 (129) 0.552 (129) 0.55 (129) 0.623 (2274) 0.376 (3.298) 0.576 (4.049) 0.482 (10 - 2.474) 0.478 (10 - 2.417)
auslan2 0.32 (252) 0.32 (252) 0.32 (252) 0.32 (252) 0.26 (2401) 0.15 (3.223) 0.3 (3.571) 0.255 (3 - 1.23) 0.256 (3 - 1.447)
context 0.936 (590) 0.928 (1151) 0.935 (2653) 0.94 (4860) 0.888 (3568) 0.146 (3.673) 0.417 (4.685) 0.89 (38 - 4.128) 0.89 (38 - 4.143)
pioneer 0.956 (82) 0.91 (123) 0.852 (210) 0.823 (268) 1 (2342) 0.594 (3.327) 0.938 (3.336) 0.937 (18 - 2.371) 0.933 (18 - 2.32)
reuters 0.93 (2783) 0.93 (2783) 0.93 (2792) 0.93 (2800) 0.971 (3445) 0.594 (3.3) 0.765 (7.754) 0.63 (150 - 6.629) 0.63 (150 - 6.625)
Unix 0.865 (299) 0.54 (310) 0.716 (661) 0.7 (701) 0.91 (2842) 0.9 (5.347) 0.924 (6.571) 0.678 (78 - 5.308) 0.678 (78 - 5.337)

Table 6: An overview of the accuracy produced by the best classifier (in brackets) and the number of sequence constraints
generated by the different algorithms for the 6 datasets. The highest accuracy with the lowest number of constraints for
every classifier for every dataset is indicated in bold, and the best performing classifier per dataset in red.

Technique

dataset support SCIS iBCM (w=5) BIDE PrefixSpan cSPADE iBCM
acc #con acc #con acc #con acc #con acc #con acc #con

aslbu

0.2 0.663 (NB) 59 0.952 (RF) 330 0.788 (RF) 134 0.937 (RF) 1930 0.812 (NB) 245 0.967 (NB) 455
0.4 0.483 (NB) 8 0.994 (NB) 56 0.695 (NB) 26 0.779 (NB) 97 0.700 (SVM) 45 0.994 (RF) 86
0.6 NA NA 0.569 (NB 23 0.428 (RF) 6 0.474 (NB) 12 0.398 (RF) 12 0.526 (NB) 17
0.8 NA NA NA NA 0.416 (SVM) 1 0.437 (RF) 3 0.405 (NB) 3 0.394 (NB) 1

1 NA NA NA NA NA NA NA NA NA NA NA NA

auslan2

0.2 0.2 (NB) 29 0.580 (SVM) 163 0.545 (NB) 47 NA NA 0.380 (NB) 78 0.698 (RF) 130
0.4 0.2 (NB) 21 0.675 (SVM) 90 0.460 (RF) 15 0.420 (RF) 831 0.420 (NB) 58 0.602 (SVM) 89
0.6 NA NA 0.706 (NB) 52 0.335 (NB) 5 0.390 (RF) 128 0.255 (NB) 30 0.5493 (SVM) 39
0.8 NA NA 0.652 (RF) 21 0.275 (RF) 3 0.405 (RF) 48 0.205 (RF) 14 0.358 (NB) 15

1 NA NA 0.383 (SVM) 10 0.095 (NB) 2 0.120 (RF) 12 0.105 (RF) 7 0.26 (NB) 9

context

0.2 0.903 (NB) 762 0.992 (RF) 4339 NA NA NA NA NA NA 0.971 (RF) 4603
0.4 0.900 (SVM) 562 0.991 (NB) 2202 NA NA NA NA NA NA 0.974 (RF) 2932
0.6 0.892 (RF) 349 0.99 (SVM) 1268 NA NA NA NA NA NA 0.98 (SVM) 2151
0.8 0.966 (NB) 106 0.99 (SVM) 663 NA NA NA NA NA NA 0.988 (RF) 1534

1 0.412 (NB) 6 0.965 (NB) 121 NA NA NA NA NA NA 0.996 (SVM) 632

pioneer

0.2 0.994 (NB) 374 0.993 (NB) 773 0.975 (RF) 3434 0.981 (RF) 9804 0.988 (RF) 1645 0.973 (SVM) 3616
0.4 0.95 (NB) 103 0.856 (RF) 357 0.981 (RF) 228 1.000 (RF) 602 0.994 (SVM) 218 1.000 (NB) 436
0.6 0.838 (NB) 42 0.893 (NB) 78 0.994 (RF) 64 1.000 (SVM) 161 0.988 (RF) 55 0.831 (NB) 87
0.8 1.000 (NB) 6 0.899 (NB) 5 0.762 (RF) 2 1.000 (NB) 9 0.787 (NB) 6 0.769 (NB) 8

1 1.000 (NB) 6 NA NA 1.000 (NB) 2 1.000 (NB) 6 1.000 (NB) 6 1.000 (NB) 5

reuters

0.2 0.887 (NB) 75 0.976 (RF) 1443 NA NA NA NA 0.960 (RF) 621 1.000 (NB) 1213
0.4 0.837 (NB) 23 0.988 (SVM) 412 0.911 (RF) 109 0.994 (RF) 963 0.915 (RF) 89 1.000 (RF) 186
0.6 NA NA 0.998 (RF) 196 0.852 (RF) 21 0.982 (RF) 59 0.861 (RF) 21 0.958(SVM) 41
0.8 NA NA 0.990 (SVM) 67 0.548 (RF) 2 0.920 (SVM) 6 0.564 (NB) 2 0.250 (RF) 1

1 NA NA NA NA NA NA NA NA NA NA NA NA

Unix

0.2 0.817 (NB) 54 1.000 (RF) 389 0.902 (RF) 59 NA NA 0.902 (RF) 59 1.000 (NB) 118
0.4 0.826 (NB) 9 0.998 (NB) 113 0.851 (RF) 11 0.945 (RF) 32 0.835 (SVM) 11 0.996 (RF) 30
0.6 0.760 (RF) 3 0.981 (NB) 24 0.771 (NB) 3 0.822 (SVM) 4 0.763 (SVM) 3 0.9184 (NB) 18
0.8 NA NA 0.573 (NB) 12 NA NA NA NA NA NA 0.541 (NB) 8

1 NA NA NA NA NA NA NA NA NA NA NA NA

0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

support

lo
g
(t
im
e)

(m
s)

iBCM (MT) iBCM (ST)
iBCM (w = 5) SCIS

cSPADE BIDE
PrefixSpan

(a) aslbu

0.2 0.4 0.6 0.8 1
0

1

2

3

support

lo
g
(t
im
e)

(m
s)

(b) auslan2

0.2 0.4 0.6 0.8 1
0

1

2

3

4

support

lo
g
(t
im
e)

(m
s)

(c) context

0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

support

lo
g
(t
im
e)

(m
s)

(d) pioneer

0.2 0.4 0.6 0.8 1
0

2

4

6

support

lo
g
(t
im
e)

(m
s)

(e) reuters

0.2 0.4 0.6 0.8 1
0

2

4

6

support

lo
g
(t
im
e)

(m
s)

(f) Unix

Figure 1: Overview of the performance of the different algorithms.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 0, NO. 0, MONTHX 20YY 10

position checks (see Algorithm 3). Since those constraints
are not as prevalent, the execution is typically unaffected
by support, but this makes iBCM slower for higher sup-
port values, and fast for lower support values. However,
the difference is negligible, and for larger datasets iBCM
clearly outperforms the other algorithms. Overall, BIDE and
PrefixSpan perform competitively for higher support values.

5.3 Information Gain
To get a better understanding of the contribution of each be-
havioral constraint template to the classification, we report
the average information gain [42] for the different levels of
support. Note that, in this case, the window parameter of
iBCM was set to the default of w = 1. The overview can
be found in Figure 2. The results for alternating ordered
constraints for Unix/auslan2/aslbu and the results for po-
sition constraints for context/pioneer/reuters were omitted
because the scores were always below 0.1. The information
gain can be used to explain the results obtained from the
classification:
• Simple ordered constraints are somewhat informative

in most datasets, especially for auslan2, pioneer, and
context.

• It appears that, in general, alternate constraints are not
generating many insights, except for the context dataset.

• Chain constraints, especially the response and succes-
sion versions, perform well for auslan2 and peak for
context.

• The last constraint is informative in the Unix dataset.
• The existence(1) constraint is the most informative for

most of the datasets, but existence(3) proves informa-
tive for context.

• The absence and exactly constraints perform well over-
all. Absence even scores consistently over the whole
support spectrum.

• Co-existence and not succession are both informative
for auslan2, and especially for the context and pioneer
datasets.

Taking into account these insights, the performance in Table
6 can be further explained: iBCM is better capable of gaining
insights in aslbu (lower support), auslan2, and Unix. The first
observation can be linked to the presence of simple ordered,
as well as existence, but probably absence constraints being
generated. The second observation regarding auslan2, can be
linked to the overall presence of a more varied set of con-
straints which is still smaller than the second best contender
(PrefixSpan). Many negative constraints are generated as
well (absence/not succession). Finally, the use of absence and
exactly constraints make up for the strongest informative
features for the Unix dataset.

Overall, it can be concluded that the introduction of
negative constraints indeed increases the accuracy in places
where other sequence classification algorithms fall short in
terms of expressiveness. The results also show that there
might be little need for sequential information to be gener-
ated, even in sequential data, as the alternate constraints are
not informative, and the exactly/existence/absence constraints
perform well in terms of information gain. This also leaves
the opportunity to fine-tune the types of constraints used in
iBCM (i.e. mainly the negative information is informative).

Note that co-existence is not part of the final constraint
set, however, its performance overlaps with existence/exactly
constraints as was indicated in Section 4.2.

5.4 Conclusion
In general, we can conclude that iBCM outperforms the
other classifiers either by providing better accuracy, fewer
constraints, faster runtime, or all three at the same time.
Especially text-based datasets can be mined more accu-
rately and faster for higher support values and with fewer
constraints, as becomes apparent from the aslbu, auslan2,
reuters, and Unix datasets. Clearly, the inclusion of negative
constraints increases the accuracy, and the window-based
approach pays off in many occasions as well.

6 CONCLUSION AND FUTURE WORK

This paper presented iBCM, a novel powerful sequence
classification algorithm. It extends our initial approach in
several ways, but most importantly by making the tech-
nique window-based so as to accommodate for concept
drift. iBCM is driven by a rich set of behavioral constraint
templates, which are checked with respect to the sequences
in a database. In an extensive comparative experimental
evaluation, it is shown that iBCM is able to improve clas-
sification accuracy and runtime because of its increased
expressiveness and conciseness. Furthermore, it can also be
applied towards descriptively interpreting the nature of the
sequential patterns present in a sequence database, offering
insights into what types of interplay between items are
present in the data.

For future work, we foresee several directions. First of
all, a further in-depth comparison of the types of constraints
that contribute most to the classification task for different
types of datasets could lead to devising a direct sequence
classification technique. Next, data-aware versions of the
constraint templates could be leveraged for more complex
sequential databases. Finally, other important areas of future
investigation exist with respect to including non-sequential
information [43] to bridge the gap with Datalog [17], and
the target-branched version of Declare [28], which would
allow for constraint templates with a consequent being a set
rather than a singleton.

REFERENCES

[1] J. T. Wang, S. Rozen, B. A. Shapiro, D. E. Shasha, Z. Wang, and
M. Yin, “New techniques for DNA sequence classification,” Journal
of Computational Biology, vol. 6, no. 2, pp. 209–218, 1999.

[2] H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. J.
C. H. Watkins, “Text classification using string kernels,” Journal of
Machine Learning Research, vol. 2, pp. 419–444, 2002.

[3] J. Lee, J. Han, X. Li, and H. Cheng, “Mining discriminative patterns
for classifying trajectories on road networks,” IEEE Trans. Knowl.
Data Eng., vol. 23, no. 5, pp. 713–726, 2011.

[4] F. Eichinger, D. D. Nauck, and F. Klawonn, “Sequence mining for
customer behaviour predictions in telecommunications,” in Pro-
ceedings of the Workshop on Practical Data Mining at ECML/PKDD,
2006, pp. 3–10.

[5] M. Jaber, P. T. Wood, P. Papapetrou, and A. González-Marcos,
“A multi-granularity pattern-based sequence classification frame-
work for educational data,” in DSAA. IEEE, 2016, pp. 370–378.

[6] J. De Smedt, G. Deeva, and J. De Weerdt, “Behavioral constraint
template-based sequence classification,” in ECML/PKDD, ser. Lec-
ture Notes in Computer Science. Springer, 2017.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 0, NO. 0, MONTHX 20YY 11

[7] R. Agrawal, T. Imielinski, and A. N. Swami, “Mining association
rules between sets of items in large databases,” in SIGMOD
Conference. ACM Press, 1993, pp. 207–216.

[8] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal,
and M. Hsu, “Prefixspan: Mining sequential patterns by prefix-
projected growth,” in ICDE. IEEE Computer Society, 2001, pp.
215–224.

[9] J. Wang and J. Han, “BIDE: efficient mining of frequent closed
sequences,” in ICDE. IEEE Computer Society, 2004, pp. 79–90.

[10] J. Zhang, Y. Wang, and D. Yang, “Ccspan: Mining closed contigu-
ous sequential patterns,” Knowl.-Based Syst., vol. 89, pp. 1–13, 2015.

[11] M. J. Zaki, “Sequence mining in categorical domains: Incorporat-
ing constraints,” in CIKM. ACM, 2000, pp. 422–429.

[12] E. Coquery, S. Jabbour, L. Saı̈s, and Y. Salhi, “A sat-based ap-
proach for discovering frequent, closed and maximal patterns in
a sequence,” in ECAI, ser. Frontiers in Artificial Intelligence and
Applications, vol. 242. IOS Press, 2012, pp. 258–263.

[13] B. Négrevergne and T. Guns, “Constraint-based sequence mining
using constraint programming,” in CPAIOR, ser. Lecture Notes in
Computer Science, vol. 9075. Springer, 2015, pp. 288–305.

[14] A. Kemmar, S. Loudni, Y. Lebbah, P. Boizumault, and T. Charnois,
“PREFIX-PROJECTION global constraint for sequential pattern
mining,” in CP, ser. Lecture Notes in Computer Science, vol. 9255.
Springer, 2015, pp. 226–243.

[15] ——, “A global constraint for mining sequential patterns with
GAP constraint,” in CPAIOR, ser. Lecture Notes in Computer
Science, vol. 9676. Springer, 2016, pp. 198–215.

[16] J. O. R. Aoga, T. Guns, and P. Schaus, “Mining time-constrained
sequential patterns with constraint programming,” Constraints,
vol. 22, no. 4, pp. 548–570, 2017.

[17] L. Dehaspe and H. Toivonen, “Discovery of frequent DATALOG
patterns,” Data Min. Knowl. Discov., vol. 3, no. 1, pp. 7–36, 1999.

[18] F. Esposito, N. D. Mauro, T. M. A. Basile, and S. Ferilli, “Multi-
dimensional relational sequence mining,” Fundam. Inform., vol. 89,
no. 1, pp. 23–43, 2008.

[19] B. Cule and B. Goethals, “Mining association rules in long se-
quences,” in PAKDD (1), ser. Lecture Notes in Computer Science,
vol. 6118. Springer, 2010, pp. 300–309.

[20] H. Cheng, X. Yan, J. Han, and C. Hsu, “Discriminative frequent
pattern analysis for effective classification,” in ICDE. IEEE
Computer Society, 2007, pp. 716–725.

[21] C. Zhou, B. Cule, and B. Goethals, “Pattern based sequence
classification,” IEEE Trans. Knowl. Data Eng., vol. 28, no. 5, pp.
1285–1298, 2016.

[22] D. Fradkin and F. Mörchen, “Mining sequential patterns for clas-
sification,” Knowl. Inf. Syst., vol. 45, no. 3, pp. 731–749, 2015.

[23] J. M. Fowkes and C. A. Sutton, “A subsequence interleaving model
for sequential pattern mining,” in KDD. ACM, 2016, pp. 835–844.

[24] E. Egho, D. Gay, M. Boullé, N. Voisine, and F. Clérot, “A
parameter-free approach for mining robust sequential classifica-
tion rules,” in ICDM. IEEE Computer Society, 2015, pp. 745–750.

[25] S. Lo, “Binary prediction based on weighted sequential mining
method,” in Proceedings of the 2005 IEEE/WIC/ACM International
Conference on Web Intelligence. IEEE Computer Society, 2005, pp.
755–761.

[26] J. H. Chang, “Mining weighted sequential patterns in a sequence
database with a time-interval weight,” Knowl.-Based Syst., vol. 24,
no. 1, pp. 1–9, 2011.

[27] F. Xie, X. Wu, and X. Zhu, “Efficient sequential pattern mining
with wildcards for keyphrase extraction,” Knowl.-Based Syst., vol.
115, pp. 27–39, 2017.

[28] C. Di Ciccio, F. M. Maggi, and J. Mendling, “Efficient discovery
of target-branched declare constraints,” Inf. Syst., vol. 56, pp. 258–
283, 2016.

[29] F. Mourão, L. C. da Rocha, R. B. Araújo, T. Couto, M. A. Gonçalves,
and W. M. Jr., “Understanding temporal aspects in document
classification,” in WSDM. ACM, 2008, pp. 159–170.

[30] G. Lebanon and Y. Zhao, “Local likelihood modeling of temporal
text streams,” in ICML, ser. ACM International Conference Pro-
ceeding Series, vol. 307. ACM, 2008, pp. 552–559.

[31] M. Pesic, H. Schonenberg, and W. M. P. van der Aalst, “DECLARE:
full support for loosely-structured processes,” in EDOC. IEEE
Computer Society, 2007, pp. 287–300.

[32] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in property
specifications for finite-state verification,” in ICSE. ACM, 1999,
pp. 411–420.

[33] M. Pesić, “Constraint-based work on management systems: Shift-
ing control to users,” Ph.D. dissertation, PhD thesis, Eindhoven
University of Technology, 2008. 26.

[34] M. Westergaard, C. Stahl, and H. A. Reijers, “Unconstrainedminer:
efficient discovery of generalized declarative process models,”
BPM Center Report BPM-13-28, BPMcenter. org, p. 28, 2013.

[35] C. Di Ciccio and M. Mecella, “A two-step fast algorithm for the
automated discovery of declarative workflows,” in CIDM. IEEE,
2013, pp. 135–142.

[36] F. M. Maggi, R. P. J. C. Bose, and W. M. P. van der Aalst, “Efficient
discovery of understandable declarative process models from
event logs,” in CAiSE, ser. Lecture Notes in Computer Science,
vol. 7328. Springer, 2012, pp. 270–285.

[37] F. M. Maggi, M. Montali, C. Di Ciccio, and J. Mendling, “Semanti-
cal vacuity detection in declarative process mining,” in BPM, ser.
Lecture Notes in Computer Science, vol. 9850. Springer, 2016, pp.
158–175.

[38] J. Gama, I. Zliobaite, A. Bifet, M. Pechenizkiy, and A. Bouchachia,
“A survey on concept drift adaptation,” ACM Comput. Surv.,
vol. 46, no. 4, pp. 44:1–44:37, 2014.

[39] H. T. Lam, F. Mörchen, D. Fradkin, and T. Calders, “Mining com-
pressing sequential patterns,” Statistical Analysis and Data Mining,
vol. 7, no. 1, pp. 34–52, 2014.

[40] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[41] P. Fournier-Viger, A. Gomariz, T. Gueniche, A. Soltani, C. Wu, and
V. S. Tseng, “SPMF: a java open-source pattern mining library,”
Journal of Machine Learning Research, vol. 15, no. 1, pp. 3389–3393,
2014.

[42] J. T. Kent, “Information gain and a general measure of correlation,”
Biometrika, vol. 70, no. 1, pp. 163–173, 1983.

[43] F. M. Maggi, M. Dumas, L. Garcı́a-Bañuelos, and M. Montali,
“Discovering data-aware declarative process models from event
logs,” in BPM, ser. Lecture Notes in Computer Science, vol. 8094.
Springer, 2013, pp. 81–96.

Johannes De Smedt is currently a lecturer in
business analytics at the University of Edinburgh
Business School. His research interests include
constraint-based process modeling and mining,
ontologies in processes, and sequence mining.
He received his PhD in Information Systems
Engineering at KU Leuven and his work has
been published in well-known information sys-
tems engineering and machine learning confer-
ences and journals.

Galina Deeva is a PhD researcher at the De-
partment of Decision Sciences and Information
Management of KU Leuven. She obtained her
MSc in Management Science at Harbin Institute
of Technology, China. Her research interests in-
clude sequence and process mining, machine
learning and learning analytics.

Jochen De Weerdt is an assistant professor at
the Department of Decision Sciences and Infor-
mation Management of KU Leuven. He received
his PhD in Business Economics at KU Leuven
and worked as a postdoctoral research fellow at
the Information Systems School of Queensland
University of Technology. His research exper-
tise is mainly in process mining, data analytics,
and business process management. His findings
have been published in well-known international
journals and conferences.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 0, NO. 0, MONTHX 20YY 12

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

support

In
fo

rm
at

io
n

G
ai

n

Prec. Unix Resp. Unix Suc. Unix

Prec. auslan2 Resp. auslan2 Suc. auslan2

Prec. aslbu Resp. aslbu Suc. aslbu

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

support

In
fo

rm
at

io
n

G
ai

n

Prec. context Resp. context Suc. context

Prec. pioneer Resp. pioneer Suc. pioneer

Prec. reuters Resp. reuters Suc. reuters

(a) Simple ordered

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

support

In
fo

rm
at

io
n

G
ai

n

Alt. prec. context Alt. resp. context Alt. suc. context

Alt. prec. pioneer Alt. resp. pioneer Alt. suc. pioneer

Alt. prec. reuters

(b) Alternating ordered

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

support

In
fo

rm
at

io
n

G
ai

n

Ch. prec. Unix Ch. resp. Unix Ch. suc. Unix

Ch. prec. auslan2 Ch. resp. auslan2 Ch. suc. auslan2

Ch. prec. aslbu Ch. resp. aslbu Ch. suc. aslbu

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

support

In
fo

rm
at

io
n

G
ai

n

Ch. prec. context Ch. resp. context Ch. suc. context

Ch. prec. pioneer Ch. resp. pioneer Ch. suc. pioneer

Ch. prec. reuters Ch. resp. reuters Ch. suc. reuters

(c) Chain ordered

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

support

In
fo

rm
at

io
n

G
ai

n

Init Unix Last Unix Init auslan2

Last auslan2 Init aslbu Last aslbu

(d) Position

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

support

In
fo

rm
at

io
n

G
ai

n

Exi. Unix Exi. 2 Unix Exi. 3 Unix

Exi. auslan2 Exi. 2 auslan2 Exi. 3 auslan2

Exi. aslbu Exi. 2 aslbu

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

support

In
fo

rm
at

io
n

G
ai

n

Exi. context Exi. 2 context Exi. 3 context

Exi. pioneer Exi. 2 pioneer Exi. 3 pioneer

Exi. reuters Exi. 2 reuters

(e) Existence

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

support

In
fo

rm
at

io
n

G
ai

n
Abs. context Exa. context Exa. 2 context

Abs. pioneer Exa. pioneer Exa. 2 pioneer

Abs. reuters Exa. reuters Exa. 2 reuters

(f) Absence and exactly (1)

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

support

In
fo

rm
at

io
n

G
ai

n

Abs. Unix Exa. Unix Exa. 2 Unix

Abs. auslan2 Exa. auslan2 Exa. 2 auslan2

Abs. aslbu Exa. aslbu Exa. 2 aslbu

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

support

In
fo

rm
at

io
n

G
ai

n

Not suc. Unix Co-ex. Unix Not suc. auslan2

Co-ex. auslan2 Not suc. aslbu Co-ex. aslbu

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

support

In
fo

rm
at

io
n

G
ai

n

Not suc. context Co-ex. context Not suc. pioneer

Co-ex. pioneer Not suc. reuters Co-ex. reuters

(g) Absence and exactly (2) and not succession and co-existence

Figure 2: Overview of the information gain of the constraints per dataset.

	Introduction
	State-of-the-art
	Sequence Mining
	Sequence Classification

	The Framework of Behavioral Templates
	Sequences and Sequence Databases
	The Declare Behavioral Constraint Template Base
	Motivation for Behavioral Constraint Templates
	Negative (and choice) constraints
	Position constraints
	Existence constraints
	Unordered binary constraints
	Simple ordered constraints
	Alternating ordered constraints
	Chain ordered constraints

	iBCM: Algorithm Design and Implementation
	Featurizing Sequences with iBCM
	Step 1: Retain frequent items
	Step 2: Generate constraints
	Step 3: Retain frequent constraints

	Considerations on the Constraint Template Base
	Comparison with Other Sequence Constraint Representations
	Scalability

	Experimental Evaluation
	Setup
	Data
	Benchmark Sequence Classification Techniques
	Implementation

	Results
	Accuracy and Number of Constraints Generated
	Execution time

	Information Gain
	Conclusion

	Conclusion and Future Work
	References
	Biographies
	Johannes De Smedt
	Galina Deeva
	Jochen De Weerdt

