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Introduction
Additive Manufacturing (AM) commonly known as 3D Printing or Rapid Prototyp-
ing enable the fabrication of geometrically complex components by precisely placing 
material(s) one layer at a time in position within a design domain. In general, the ben-
efits of AM include design freedom, low tooling start-up cost, rapid verification with 
reduced time to market in product development, service and increased R&D efficiency 
(AM Platform 2014; Redwood et al. 2017). AM is also constantly progressing with future 
perspectives in hardware, software, and materials to expand the potential of prototyp-
ing and applications across different industries including the textile, aerospace, con-
struction, pharmaceutical, and biomedical sectors. Recently, AM was instrumental in 
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the fight against COVID-19, through the development of personal protective equipment 
(PPE) and other medical equipment (e.g. test swabs, ventilators) (Singh et al. 2020).

More precisely, the rise in the adoption of AM has led to a significant transformation 
of the fashion and textile industry through innovation and technology. One of the pio-
neers of this adoption is the influential designer, Iris Van Herpen. In 2010, she show-
cased her first 3D printed dress, which led to greater awareness and exploitation of the 
technology being employed in the fashion industry (Van Herpen 2010). The role of AM 
has continually evolved with increasing awareness and interest in the technology from 
researchers and designers. The number of research publications on “3D Printing Tex-
tiles” has continuously increased over the past few years with over 4000 publications on 
Google Scholar in 2019. This figure shows that AM will potentially open up new oppor-
tunities in fashion and textile innovation, promoting localised production of on-demand 
and personalised garments, allowing smaller batches or home production to compete in 
the market (Table 1).

The combination of digital manufacturing techniques gives the possibility for a textile 
to be three-dimensionally manufactured without tedious labour work, complex pattern-
cutting, stitching, or the use of a specific mould. This approach also promotes a more 
environmental conscious and sustainable future for materials used in the fashion indus-
try (Flynt 2019; Kim et al. 2019; Mageean 2018; Van der Velden et al. 2015; Zapfl 2019). 
However, the production of AM textiles is machine-intensive which require extensive 
understanding of the materials, the design and modelling programs, and the printing 
production process.

This paper focuses on the development and testing of material extrusion (ME) AM 
polymer–textile composites, which involves direct printing of thermoplastics onto con-
ventionally manufactured textile fabric substrates. This novel material-joining technique 
highlights the synergy between conventional manufacturing processes and AM process 
to encourage a new vision of polymer–textile functionalisation and multi-material explo-
ration in the textile industry. This study contributes to new knowledge and understand-
ing of ME polymer–textile composites to facilitate future research development and 
integration of novel AM technology in textile design. For instance, Functionally Graded 
Additive Manufacturing (FGAM) with the integration of digital materials using PolyJet 
technology can offer sophisticated localised graded colours and different properties on 
a single piece of textile by varying the material organisation at a precisely defined area 
(Bader et al. 2016; Loh et al. 2018; Oxman 2011). New materials such as shape-memory 
materials can be used to create programmable or stimulus-responsive textiles that can 
transform or morph from one form to another when subjected to an external stimulus, 
known as 4D Printing (Leist et al. 2017; Pei and Loh 2018).

This paper discusses three key interconnected factors (i.e. printing material, textile 
substrate and printer settings) affecting the production and overall quality of the poly-
mer–textile composites. This paper also gives details of the manufacturing process, as 
well as the experimental setup, procedures, and analysis techniques used to quantify 
the adhesion properties for different orientations of bonded ME printed polymer–tex-
tile composites. This study investigates the effect of varying textile substrate parameters 
(i.e. different fibre types, structure, and weights) on the polymer–textile adhesion force. 
The printing material used, and ME printing parameters were kept constant. Different 
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combination of ME printed polymer–textile composites using PLA (printing material) 
and Nylon and Polyester (textile substrates) were manufactured to evaluate their manu-
facturing feasibility and assess their mechanical properties. The manufacturing demon-
stration and experimental results adds to the current limited knowledge of developing 
and testing of ME printed polymer–textile, which provide useful information for design-
ers and researchers to facilitate further research and increased uptake towards industry-
wide applications.

Factors affecting ME printed polymer–textile composites
ME as a category of AM process described in ISO-ASTM 52900 (ISO/ASTM 2017), 
often known as “Fused Deposition Modelling (FDM)” and “Fused Filament Fabrica-
tion (FFF)” is the predominant method of manufacturing polymer–textile composites 
(Chatterjee and Ghosh 2020). The AM process involves the material from a spool of 
filament loaded into the printer, melted above its glass transition temperature  (Tg) for 

Table 1 Examples of  applications and  future research direction for  ME polymer–textile 
composite

Development Application Brand/subject Description Refs.

Product Wearables LabeledBy; Tamicare Personalised, local-
ised, and sustain-
able garments and 
fabrics

LabeledBy (2020), Lopez 
(2020), Tamicare 
(2020)

Mounting or emboss-
ing elements

Braille on textiles Modifications of 
textile surface prop-
erties to support 
blind people

Kreikebaum et al. (2017)

Orthopaedic devices Glove; knee brace Customised ortho-
paedic devices

Ahrendt and Karam 
(2020), Uysal and 
Stubbs (2019)

Research Programmable or 
stimulus-responsive 
textiles (4D print-
ing)

Hybrid textiles Polymer–elastic 
textiles composite: 
the elastic textile is 
pre-stretched prior 
to printing, the 
stored energy in the 
textile material prior 
to printing causes 
a change in form 
when the energy is 
released

Narula et al. (2018), 
Papakonstantinou 
(2015)

Shape change and 
self-assembly

Stimulus-responsive 
polymer–tex-
tile composite: 
stimulus-responsive 
textiles that that 
can self-transform 
or morph from one 
form to another 
when subject to an 
external stimulus

Leist et al. (2017), 
Momeni et al. (2017), 
Zapfl (2019)

Textile-based sensors 
or electronics

Self-sensing or 
actuator

Conductive materi-
als or biohybrid 
materials—textile 
composite: sensing 
body and sensing 
element

BioLogic (2015), Gehrke 
et al. (2019), Kumar 
et al. (2019)
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amorphous polymers and above its melt temperature  (Tm) for semi-crystalline poly-
mers. The polymer is then selectively dispensed through the heated extrusion nozzle 
and deposited onto the build platform at a predetermined location (Loh et al. 2020; 
Redwood et al. 2017). This technology of additively building up material by selectively 
dispensing through a nozzle or orifice allows AM parts to be built directly on the 
surface of the textile substrate. Sanatgar et al. (2017) described it as a thermal weld-
ing method for joining of the printing material (adhesive) and the textile substrate 
(adherent) during the ME process (see Fig. 1).

There are three major interconnected factors that affect the fabrication, polymer–
textile adhesion and the overall quality of ME polymer–textile composites (Loh and 
Pei 2019; Melnikova et al. 2014; Pei et al. 2015).

a. Printing material,
b. Textile substrate, and
c. Printer settings.

Printing material

ME makes use of thermoplastics in the form of filaments, which are typically 1.75 mm 
or 3  mm in diameter (Redwood et  al. 2017). ME processes allow a wide variety of 
materials with diverse characteristics and properties to be used, ranging from com-
modities, engineering, to high-performance thermoplastics, composites, and func-
tional materials (Loh et  al. 2020). Table  2 gives details of some of the common 
thermoplastics used in ME, their key material characteristics, cost as well as their 
printing parameters including the nozzle and build platform temperature. The print-
ing temperature, performance and cost of the materials increase through each mate-
rial category from PLA to Polyetherimide (PEI) (Redwood et al. 2017; Rigid.Ink 2019). 
In general, the better the engineering properties of thermoplastics, the higher the 
temperature required to heat the material to a deformable state, and therefore, the 
more difficult the material is to print (Redwood et al. 2017). The use of materials with 

Fig. 1 Desktop ME printer (Original Prusa i3 MK3S 3D Printer) setup for ME onto the textile substrate
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lower printing temperature is recommended to avoid damaging or burning the textile 
substrate during direct deposition of the polymer.

Table 2 Common thermoplastics used in ME and their properties

Material type Filament 
material

Material 
characteristics

Cost (£/kg) Nozzle 
temperature 
(°C)

Build 
platform 
temperature 
(°C)

Refs.

Commodity PLA Biopolymer, 
lower impact 
strength and 
temperature 
resistance

32 180–210 20–45 Rigid.Ink (2019), 
Tyson (2020c)

PLA Plus+ Very durable 
biopolymer, 
vibration 
absorbing 
and less brit-
tle version of 
PLA

37 220–230 50–60 Gregurić (2020), 
Rigid.Ink 
(2019)

Flexible PLA Flexible and 
durable 
biopolymer, 
good vibra-
tion dampen-
ing

37 240–250 30–60 Griffin (2019), 
Rigid.Ink 
(2019)

ABS Strong and 
durable, good 
temperature 
resistance but 
susceptible to 
warping

32 230–250 90–95 Rigid.Ink (2019), 
Tyson (2020e)

Engineering PETG Extremely 
durable, high 
impact and 
chemical 
resistance, 
low shrinkage

40 220–245 70–80 Rigid.Ink (2019), 
Tyson (2020b)

TPU Flexible and 
rubber-like, 
stretchy 
properties 
with good 
elongation 
but difficult 
to print accu-
rately

49 210–240 20–70 Rigid.Ink (2019), 
Tyson (2020d)

Nylon (PA 12) Extremely dura-
ble, flexible, 
low friction for 
high impact 
and high 
stress prints

38 255–275 100–110 Rigid.Ink (2019), 
Tyson (2020a)

High perfor-
mance

PEI Excellent 
strength to 
weight, fire, 
and chemical 
resistance

250 355–390 120–160 3D4Makers 
(2020)
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Textile substrate

Table 3 describes the variables of the textile substrates that affect the polymer–textile 
adhesion of ME printed polymer–textile composites. These properties include, but not 
limited to, the types of fibres, fabric weight, weave pattern, weft density and surface 
properties. These variables determine the type of print structure layout appropriate for 
the chosen textile substrate proposed in Table 4. Print layout A involves embedding the 
textile substrate between two print layers to form a laminated composite, while print 

Table 4 Types of print layout

Print layout A

Print layout B

Table 5 The list of  ME printer settings taken into  consideration during  the  fabrication 
of the polymer–textile composites

Printer parameters List of variables Settings or suggestions Refs.

Z-distance Build platform to extrusion nozzle Calibrate the optimum Z-height 
through first layer calibration

Grimmelsmann 
et al. (2018), 
Prusa3D 
(2018)

Build platform to extrusion nozzle 
adding fabric thickness

Multiple first layer calibration and 
preliminary printing tests results 
given that the optimum Z-height 
increment is by adding halved 
of the fabric thickness. (i.e. incre-
ment between + 0.05 mm and 
+ 0.07 mm for fabric thickness 
of 0.15 mm). This is applicable 
when using mid-weight to 
heavy-weight and textured textile 
substrates

Sanatgar et al. 
(2017), Spahiu 
et al. (2017)

Printing temperature Nozzle temperature Increase 5 °C to 10 °C on top of 
suggested temperature by manu-
facturer

Build platform temperature As suggested by manufacturer

Layer height First layer 0.2 mm

Subsequent layer 0.1 mm

Printing speed First layer 20 mm/s

Perimeters 45 mm/s

Fill Pattern Rectilinear

Angle 0°; solid infill threshold area 90°

Density 100%

Extrusion width 
(nozzle diameter: 
0.4 mm)

First layer 0.42 mm

Subsequent layer 0.45 mm

Flow rate N/A 100%

Surface Build platform PEI sheet, blue painter’s tape, Build 
Tak, flex plate, Magigoo or heated 
glass

Loh et al. (2020)



Page 9 of 21Loh et al. Fash Text             (2021) 8:2  

layout B involves a one-sided print, deposited directly on the textile substrate. Print lay-
out A is suitable for printing on “open” mesh or perforated textile substrates, whereas 
print layout B is suitable for “closed” tightly woven textile substrates (Meyer et al. 2019).

Printer settings

Desktop Cartesian ME printer uses a system of X–Y–Z coordinates to determine the 
location of the extrusion nozzle, which allows direct ME onto the textile substrate. The 
setup is shown in Fig.  1 using an Original Prusa i3 MK3S ME machine with a single 
extruder. ME machines with multiple extruders can be used to create multi-material AM 
components, achieved by swapping the filament materials at a predetermined location 
or between layer changes.

Table 5 identifies some of the ME processing parameters taken into consideration and 
the settings used during the fabrication of polymer–textile composites. These results are 
based on preliminary tests and literature review. The processing parameters include the 
Z-distances, printing temperature (Table  2), layer height, printing speed, fill settings, 
extrusion width, flow rate as well as build platform surface. The printer settings have a 
great impact on the visual and haptic finishing of the printed structure (Pei et al. 2015). 
The Z-distance has a significant effect on the adhesion of polymers to the textile sub-
strate and quality of the print. An increment in Z-distance (build platform to extrusion 
nozzle adding fabric thickness) must be applied while printing on mid-weight to heavy-
weight or textured textile substrate to compensate the fabric thickness. An optimum 
Z-distance adjustment should prevent the extruder nozzle from getting caught on the 
fabric but close enough to press the extruded polymer into the textile substrate with no 
gaps between deposited parameters. In line with an optimum Z-distance between the 
nozzle and the build platform used, 0.1 mm and 0.2 mm layer height can usually provide 
good linear surface finishing with no scars on the top surface, messy first layer or gaps 
between infill and outline (Loh et al. 2020). A layer height greater than 0.2 mm exhibited 
a negative effect on dimensional accuracy and adhesion force (Spahiu et al. 2017). The 
printing temperature and printing speed have the largest effect on the adhesion force 
(Sanatgar et al. 2017). High nozzle temperature can reduce the material viscosity, allow-
ing deeper and stronger material penetration into the textile substrate (Spahiu et  al. 
2017). For printing taller or larger components, the nozzle temperature can be adjusted 
back to the suggested temperature after five print layers on top of embedded textile to 
prevent overheating. Although Sanatgar et  al. (2017) claimed that the build platform 
temperature does not affect the adhesion force, an optimum build platform tempera-
ture can provide better first layer adhesion to build platform and prevent warping. The 
extrusion width should be set at 100% or 150% greater than the default nozzle diameter 
(> 0.4 mm) in order to generate enough material to penetrate into the textile fabric (Spa-
hiu et al. 2017). The study by Spahiu et al. (2017) also revealed that increasing the print-
ing speed and polymer flow rate showed no substantial effect on the polymer–textile 
adhesion.
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Methods
Materials and AM process

This work explains the procedure of direct ME off-the-shelf PLA on selected mesh 
fabrics using print layout A. Three different combinations of polymer–textile–poly-
mer composites were produced as shown below:

a. PLA—Nylon (net structure)—PLA,
b. PLA—Polyester (voile structure)—PLA, and
c. PLA—Nylon (voile structure)—PLA.

The printing material was Prusa PLA filament with a diameter of 1.75  mm. PLA is 
cost-effective and relatively easier to print at a lower nozzle and build platform tempera-
ture, without burning the textile substrates. This is because PLA has a melting point of 
260 to 270 °C (Callister and Rethwisch 2018). It has relatively low warping and stringing 
properties, leading to high detail finishing and better overall aesthetical quality (Tyson 
2020c). The three different types of textiles substrates used were namely Nylon (net 
structure), Polyester (voile structure) and Nylon (voile structure). Table 6 gives the prop-
erties of the three lightweight mesh fabrics. The woven Polyester and Nylon voile shared 
relatively similar properties, comprising fabric thicknesses, non-stretch properties, fine 
pore sizes with smooth and sheer surface texture. On the other hand, the knitted Nylon 

Table 6 Properties of the three textile substrates (mesh fabrics) used for the ME polymer–
textile composites

Name Structure Process Thickness 
(mm)

Pore size Stretch Melting point 
(°C)

Ref.

Nylon Net Knitted 0.25 Large One-direc-
tional (hori-
zontally)

260–270 Callister and 
Rethwisch 
(2018)

Polyester Voile Woven 0.13 Fine Non-stretch 260–270

Nylon Voile Woven 0.14 Fine Non-stretch 260–270

Fig. 2 Illustration of the ME polymer–textile composite for the T-Peel test (not drawn to scale)
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net fabric had larger thicknesses (almost double), stretchable horizontally, relatively 
larger pore sizes of approximately 2 × 1.5 mm with rough surface texture.

Adhesion affects the durability and quality of the final product (i.e. polymer–textile 
composite). Therefore, it was deemed appropriate to investigate the mechanical prop-
erties (via T-peel tests) of the bonded ME polymer–textile composites, to determine 
the optimum printing material and textile substrate combination and orientation. 
The ME polymer–textile composites designed for the T-Peel test were in line with 
British Standards (BS) EN ISO 11339 (2010) (Fig.  2). To manufacture the polymer–
textile composites using ME, the CAD design of the printed structure (L × W × H of 
200 mm × 150 mm × 0.5 mm) was created using SolidWorks, exported as an STL.file, 
imported into Slic3r for slicing and exported as a G-code for printing. The polymer–
textile composites were manufactured using an Original Prusa i3 MK3S 3D Printer 
with a 250 mm by 230 mm build platform and a nozzle diameter of 0.4 mm, using the 
printer settings specified in Table 5. The nozzle temperature to print Prusa PLA was 
220 °C, while the build platform temperature was set at 60 °C.

As far as the printing procedure for ME polymer–textile composites (print layout 
A) was concerned, the first or base PLA layer (0.2 mm layer height) was printed on 
the build platform using the calibrated Z-distance between build platform to extru-
sion nozzle. While the first layer print was almost complete, the nozzle height was 
increased to a new Z-distance to offset the fabric thickness. The printer was paused 
immediately once the first layer was completed. The Z-axis will automatically be lifted 
from the build platform by the system (Table  7A). To create the T-Peel test panel, 
a section of blue tape was applied on the surface of PLA layer to create a 50  mm 
unbonded area, separating with the subsequent print layers during the printing pro-
cess (Table  7B). Thereafter, the textile substrate, which was cut prior, to match the 
size of the build platform was placed above the blue tape separator, secured, and ten-
sioned using binder clips to remove any wrinkles or crease. It is extremely important 
to position the clips carefully to prevent any obstruction in the path (top–bottom and 
both sides of the built platform). Afterwards, the printer was resumed to complete 
the print (Table 7C).

The T-Peel test panel was printed as a whole sheet, then cut into six individual strips 
in 200  mm (L) × 25  mm (W) × 0.5  mm (H). Six T-Peel test panels for each polymer–
textile combination were created, producing a total of 18 specimens to be tested. The 
unbonded area was pull separated by hand to form a “T” angle for the T-Peel speci-
men to be fixed to the top and bottom clamps on the testing machine for the T-peel test 
(Fig. 2). The adhesion value of the separated section will not be considered in the result 
as the unbonded area of the T-Peel test panel was designed to be clamped on the univer-
sal testing machine. Therefore, the net structure belonging to the upper or lower part of 
the unbonded area would not affect the adhesion result of this experiment.

Test procedures

T-peel tests were carried out on the bonded ME printed polymer–textile composites to 
determine the peel force and peel strength required to separate the bonded polymers. 
Figure 3 shows a schematic diagram and dimensions of the bonded ME printed poly-
mer–textile composites in line with BS EN ISO 11339 (2010).
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All the specimens had the same nominal dimensions. The peel force was divided by 
the width (25  mm), to compute the peel strength. The tests were carried out using a 
universal testing machine (Instron 5969), which had a maximum load capacity of 500 N. 
The grips of the machine were used to secure the ends of the specimens so that they 
were subjected to uniform tension. The crosshead displacement was applied at a rate of 
10 mm/min, based on the guideline given in BS EN ISO 11339 (2010). A digital camera 
was used to monitor the failure modes of the specimens.

Table 7 The printing procedure involved in manufacturing ME polymer–textile composite 
(print layout A) to create T-Peel test panel

1. First layer calibration for optimum Z-distance between build 
platform to extrusion nozzle

2. Print first or base PLA layer using 0.2 mm layer height
3. Add nozzle height increment while the first layer print was 

almost complete
4. Pause printer immediately once the first layer was completed

5. Apply blue tape on the printed PLA layer

6. Place and secure the textile substrate above the layers using 
binder clips

7. Resume the printer to complete the subsequent print layers

8. Cut the T-Peel panel into six individual strips
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Fig. 3 Technical drawing of the T-Peel test specimen in line with BS EN ISO 11339 (2010)

Fig. 4 a Test setup, b failure mode for the PLA—Nylon (net structure)—PLA orientation and c failure of an 
adherend (cohesive substrate failure)
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Results and discussion
PLA in general printed well on Polyester and Nylon textile substrate with good linear 
and haptic finishing. Due to a limited volume of turquoise coloured Prusa PLA fila-
ment, a white coloured Prusa PLA filament was used to create the remaining test speci-
mens. The material properties remained the same whist the material colour would not 
have an impact on the T-Peel test results. Figures 4, 5 and 6 show the test setup on and 

Fig. 5 a Test setup, b failure mode for the PLA—polyester (voile structure)—PLA orientation and c adhesion 
failure (delamination)

Fig. 6 a Test setup, b failure mode for the PLA—Nylon (voile structure)—PLA orientation and c failure of an 
adherend (cohesive substrate failure)
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failure modes for the PLA—Nylon (net structure)—PLA, PLA—Polyester (voile struc-
ture)—PLA and PLA—Nylon (voile structure)—PLA orientations, respectively. The fail-
ure mode classification was based on BS EN ISO 10365 (1995). For the two orientations 
with Nylon net structure (Fig. 4) and voile structure (Fig. 6), both were the failure of an 
adherend, caused by the fracture of printed PLA layer (cohesive substrate failure). On 
the other hand, the orientation with Polyester voile structure showed an adhesion failure 
mode, delamination of printed PLA layer (substrate) from the textile, shown in Fig. 5c.

Fig. 7 Force versus extension plots for six specimens with the PLA—Nylon (net structure)—PLA orientation

Fig. 8 Force versus extension plots for six specimens with the PLA—Polyester (voile structure)—PLA 
orientation
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Figures 7, 8 and 9 show the force versus extension responses for the six specimens for 
the three different combinations of polymer–textile composites, (a) PLA—Nylon (net 
structure)—PLA, (b) PLA—Polyester (voile structure)—PLA, and (c) PLA—Nylon (voile 
structure)—PLA. For comparison, Fig. 10 shows a representative force versus extension 
responses for the three different combinations of polymer–textile composites. Similar to 
their failure modes, the force versus extension responses for PLA on Nylon net structure 
and voile structure were similar, far better results as compared to Polyester. For both 
PLA—Nylon composites, the initial force exceeded 40 N and included a few force peaks, 
up to a maximum extension of about 20 mm, which subsequently dropped leading to 
failure of the PLA polymer, reflecting a relatively stronger bond compared to PLA on 
Polyester textile.

Fig. 9 Force versus extension plots for six specimens with the PLA—Nylon (voile structure)—PLA orientation

Fig. 10 Comparison of the force versus extension plots for the three bonded ME printed polymer–textile 
composites
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In comparison, the force versus extension responses for the PLA—Polyester (voile 
structure) composite showed an initial linear response until about 7 N. After that, there 
were several force peaks (i.e. undulating curve), reflecting the gradual separation of the 
Polyester textile from the PLA polymer, until the end of the test. For all the PLA—Pol-
yester (voile structure)—PLA T-Peel specimens, there was no damage to both printed 
polymer layer and textile substrate.

Following the recommendation given in BS EN ISO 6133 (2015), the average peel force 
was determined based on the midpoint of the minimum and maximum peak force val-
ues, whilst ignoring the initial rise at the start of the test. Table 8 gives the average peel 
forces, peel strengths and coefficients of variation for the three bonded ME printed poly-
mer–textile composites. The peel strengths for the PLA—Nylon (net structure)—PLA, 
PLA—Polyester (voile structure)—PLA and PLA—Nylon (voile structure)—PLA poly-
mer–textile composites were 1.3 N/mm, 0.4 N/mm and 1.4 N/mm, respectively.

The results show that the average peel forces and strengths for both PLA—Nylon com-
posites (net and voile structure) were about three times greater than PLA—Polyester 
composite (voile structure), which explained the breaking of the deposited layer at the 
beginning of extension in all samples during the T-Peel test. The statistical analyses show 
that the PLA—Nylon (voile structure)—PLA orientation had the lowest coefficient of 
variation of 9% and the PLA—Polyester (voile structure)—PLA orientation had a coef-
ficient of variation of 18%, representing a relatively larger variation across the tested 
specimens.

PLA printed on Polyester textile did not show high peel strength result, which revealed 
that both materials were less compatible. According to the diffusion theory, the fine pore 
properties of voile structure decrease the amount of infiltration between the two poly-
mer layers for polymer–polymer adhesion. As a result, the deposited polymer cannot 
protrude through the textile layer to create a form-locking connection (Eutionnat-Diffo 
et  al. 2019; Sabantina et  al. 2015; Unger et  al. 2018). However, this theory was chal-
lenged when comparing the results obtained from both voile structures and the two 
PLA—Nylon composites. Despite both nylon textiles have different mesh structure (net 
and voile), weave type, thickness and pore sizes, there were no substantial differences 
on their peel force and strength. It can be concluded that the fibre type has a predomi-
nant effect on the interfacial bonding strength between the printing material and textile 
substrate due to the chemical nature of both and interpolymer polar interactions (Van 
der Waals dipole–dipole interactions) across phase boundaries as explained by Sanatgar 
et al. (2017). The compatibility between the printing material and the textile substrate 

Table 8 Average peel forces and  strengths and  coefficients of  variation for  the  three 
bonded ME printed polymer–textile composites

Orientation Peel force Peel strength

Average (N) Coefficient 
of variation (%)

Average (N/
mm)

Coefficient 
of variation 
(%)

PLA—Nylon (net structure)—PLA 33.5 12 1.3 12

PLA—Polyester (voile structure)—PLA 9.5 18 0.4 18

PLA—Nylon (voile structure)—PLA 33.8 9 1.4 9
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fibre type has a significant effect on the polymer–textile adhesion. With respect to the 
textile stretchability, there was no direct and substantial effect of the textile stretch on 
the peel resistance, nevertheless, working with low level or non-stretch textile substrate 
improves the ease of printing process. It can be equally stretched in both vertical and 
horizontal directions to be secured on the build platform and no pre-strain to cause 
irregular pore circularity and pore area which will cause an inconsistent amount of infil-
tration of the printed polymer at the time of printing, which will correspondingly affect 
the peel strength (Narula et al. 2018).

Concerning the limitations of this study, the ME printing production process is dem-
onstrated and tailored for Cartesian XZ hot end, Y bed ME desktop printer (i.e. Prusa i3 
MK3S). Although the manufacturing concept is similar, there will be slight differences 
in the calibration and printing steps to accommodate the function of each ME print-
ers, such as the Cartesian XY hot end, Z bed ME desktop printer (I.e. Ultimaker) (3D 
Printing Beta 2020). This study examined the mechanical and adhesion properties of ME 
polymer–textile composites using basic structure design to meet the standards’ require-
ment BS EN ISO 11339 (2010). Future work could explore printing different geometrical 
structures on more variety of textile substrates of different properties (i.e. weight and 
texture). PLA with different performance, mechanical properties and flexural character-
istics mentioned in Table 2 can be explored. For instance, PLA Plus+ can be used for 
greater mechanical performance and resistance than regular PLA and has lower printing 
temperature compared to ABS and PETG (Gregurić 2020). Flexible PLA can be used to 
create soft and flexible prints that can drape according to the fluidity of the textile fabric 
(Griffin 2019).

Conclusion
In this paper, the three key interconnected factors (the printing material, textile sub-
strate, and printer settings) which affect the production, printed quality and adhesion 
strength of the polymer–textile composites were discussed. The experimental setup, 
procedures, and analysis techniques to quantify the adhesion properties of polymer–tex-
tile composites have been described, and the results were compared and discussed.

This study investigated the influence of varying textile substrate parameters (i.e. dif-
ferent fibre types, structure, and weights) on polymer–textile adhesion force. The 
printing material used, and ME printing parameters were kept constant. Different ME 
printed polymer–textile composites were manufactured using PLA (printing material) 
and Nylon and Polyester (textile substrates), to evaluate their manufacturing feasibil-
ity and assess their mechanical properties. The ME printed polymer–textile composites 
included (a) PLA—Nylon (net structure)—PLA; (b) PLA—Polyester (voile structure)—
PLA; and (c) PLA—Nylon (voile structure)—PLA. Based on the results from the T-peel 
tests, it can be concluded that the compatibility between the printing material and the 
textile substrate fibre type has a dominant effect on the peel resistance of ME polymer–
textile composite. The average peel forces and strengths for both printed PLA on Nylon 
textiles composites were nearly three times stronger than Polyester textile despite the 
differences in in their mesh structures, pore properties and weave type.

Finally, the work reported in this paper has not only added to the current lim-
ited knowledge of developing and testing of ME printed polymer–textile but also 
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demonstrated and visualised the potential of direct ME of polymers onto textile fabrics 
as a material-joining technique for the development of new textile functionalisation and 
multi-material composite explorations. This new AM technique can exploit and promote 
new visions of personalised, localised and scalable garments with added functionalities, 
and boost the uptake of innovative and sustainable models for the textile industry. The 
principles and procedures uncovered from this study can be also applied for new appli-
cations or be extended to necessitate future research textile development.
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