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Mucosal GenomicsQ1 Implicate Lymphocyte ActivationQ2 and LipidQ3

Metabolism in Refractory Environmental Enteric Dysfunction
Q53 Yael Haberman,1,2,* Najeeha T. Iqbal,3,4,* Sudhir Ghandikota,5 Indika Mallawaarachchi,6

Tzipi Braun,2 Phillip J. Dexheimer,1 Najeeb Rahman,3 Rotem Hadar,2 Kamran Sadiq,3

Zubair Ahmad,7 Romana Idress,7 Junaid Iqbal,3,4 Sheraz Ahmed,3 Aneeta Hotwani,3

Fayyaz Umrani,3 Lubaina Ehsan,8 Greg Medlock,8 Sana Syed,3,8 Chris Moskaluk,8

Jennie Z. Ma,6 Anil G. Jegga,1,5 Sean R. Moore,8 Syed Asad Ali,3 and Lee A. Denson1

1Department of Pediatrics, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine,
Cincinnati, Ohio; 2Department of Pediatrics, Sheba Medical Center, Tel-HaShomer, affiliated with the Tel-Aviv University, Israel;
3Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan; 4Department of Biological and Biomedical
Sciences, Aga Khan University, Karachi, Pakistan; 5Department of Computer Science, Cincinnati Children’s Hospital Medical
Center and the University of Cincinnati College of Engineering, Cincinnati, Ohio; 6Department of Public Health Sciences,
University of Virginia, Charlottesville, Virginia; 7Department of Pathology and Laboratory Medicine, Aga Khan University,
Karachi, Pakistan; and 8Department of Pediatrics, University of Virginia, Charlottesville, Virginia

BACKGROUND & AIMS: Environmental enteric dysfunction
(EED) limits the Sustainable Development Goals of improved
childhood growth and survival. We applied mucosal genomics
to advance our understanding of EED. METHODS: The Study of
Environmental Enteropathy and Malnutrition (SEEM) followed
416 children from birth to 24 months in a rural district in
Pakistan. Biomarkers were measured at 9 months and tested
for association with growth at 24 months. The duodenal
methylome and transcriptome were determined in 52 under-
nourished SEEM participants and 42 North American controls
and patients with celiac disease. RESULTS: After accounting for
growth at study entry, circulating IGFQ10 -1 and ferritin predicted
linear growth, whereas leptin correlated with future weight
gain. The EED transcriptome exhibited suppression of antioxi-
dant, detoxification, and lipid metabolism genes, and induction
of anti-microbial response, interferon, and lymphocyte activa-
tion genes. Relative to celiac disease, suppression of antioxidant

and detoxification genes and induction of antimicrobial
response genes were EED-specific. At the epigenetic level, EED
showed hyper-methylation of epithelial metabolism and barrier
function genes, and hypo-methylation of immune response and
cell proliferation genes. Duodenal coexpression modules
showed association between lymphocyte proliferation and
epithelial metabolic genes and histologic severity, fecal energy
loss, and wasting (weight-for-length/height Z < - Q112.0). Leptin
was associated with expression of epithelial carbohydrate
metabolism and stem cell renewal genes. Immune response
genes were attenuated by giardia colonization. CONCLUSIONS:
Children with reduced circulating IGF-1 are more likely to
experience stunting. Leptin and a gene signature for lympho-
cyte activation and dysregulated lipid metabolism are impli-
cated in wasting, suggesting new approaches for EED refractory
to nutritional intervention.

ClinicalTrials.gov, Number: NCT03588013. Q12

FLA 5.6.0 DTD � YGAST64107_proof � 5 March 2021 � 3:04 pm � ce

Gastroenterology 2021;-:1–17

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

BA
SI
C
AN

D
TR

AN
SL
AT

IO
NA

L
AT



Keywords: Anthropometrics; DNA Methylation; RNA
Sequencing; Intestine.

Enteropathy in early childhood can have irreversible
adverse effects on both growth and cognitive

development.1 Environmental enteric dysfunction (EED)2

and celiac disease3 are prevalent enteropathies in this age
group. Most previous studies of EED have used noninvasive
stool, blood, and urine biomarkers because endoscopy is
less commonly performed in the affected low-resource re-
gions. Causative factors for EED in the diseased gut tissue
have, therefore, remained incompletely defined. Previous
work from Gambia using duodenal biopsy immunohisto-
chemistry demonstrated a chronic T-cell–mediated enter-
opathy linked to malnutrition.4 In Bangladesh, recent work
has defined specific EED duodenal microbiota associated
with stunting, and transmission of histologic changes and
weight loss to germ-free mice.5 Epigenetically, undernour-
ishedQ15 cohorts from Bangladesh captured differential histone
methylation in peripheral blood,6 and from Jamaica and
Malawi characterized differential DNA methylation (DNAm)
of buccal mucosa samples, supporting epigenetic changes in
inflammatory and lipid metabolism pathways in this popu-
lation.7 However, epigenetic and transcriptional drivers of
EED pathogenesis in the affected small intestine and longi-
tudinal biomarkers to predict growth have not yet been
defined.

To better characterize the longitudinal development of
EED and growth failure during early childhood and to
define key gut factors in children with severe EED re-
fractory to nutritional intervention, we established the
SEEM Pakistan cohort (Study of Environmental Enteropa-
thy and Malnutrition).8 SEEM is an inception cohort
following 416 at-risk children from birth up to 24 months
of age. SEEM aimed to define longitudinal growth trajec-
tories during the first 2 years of life and identify severe
cases unresponsive to nutritional intervention that require
endoscopic evaluation, define EED pathogenesis using
histology, transcriptome, and epigenome (methylome) of
duodenal biopsy specimens, and use data including
noninvasive biomarkers collected up to 9 months of age to
predict growth at 24 months.

Methods
Study Design

SEEM is an Aga Khan University (AKU) prospective cohort
study that enrolled children at birth in Matiari, Pakistan be-
tween 2016 and 2019 undergoing evaluation for EED and
growth up to 24 months of age.8 The SEEM cohort consisted of
416 children (365 malnourished cases and 51 well-nourished
healthy controls) with a median enrollment time of 5 days af-
ter birth. Anthropometry data were collected monthly, and
participants received nutritional education.8 Child length was
measured from birth to 24 months, and we refer to length/
height throughout. Blood, urine, and fecal samples were
collected at 9 months of age. Nutritional intervention according
to Pakistan’s Community Management of Acute Malnutrition

protocol9 using high-calorie AchaMum Q16therapeutic food and
close monitoring was offered to 189 cases with wasting
(weight-for- length/height z score [WHZ] < -2) at age 9–10
months up to the age of 12 months (Supplementary Figure 1).
Esophagogastroduodenoscopy was performed as part of the
clinical workup for 63 children with EED who did not respond

WHAT YOU NEED TO KNOW

BACKGROUND & CONTEXT

Environmental Enteric Dysfunction (EED) in early
childhood causes significant morbidity and mortality in
the developing world. Clinical and histological
similarities suggest potential shared pathogenesis in the
most prevalent enteropathies, celiac disease and EED.

NEW FINDINGS

Random forest and linear regression models which
accounted for initial weight and length identified
associations between circulating IGF-1, ferritin, and
leptin, and future growth. A core EED intestinal
transcriptome was defined, emphasizing unique
antimicrobial immune responses and detoxification
functions relative to celiac disease. Specific immune and
metabolic epigenetic and gene co-expression modules
in EED were linked to histologic severity, fecal energy
loss, and wasting.

LIMITATIONS

We were not able to include a control group of age-
matched children in Pakistan with normal growth for
endoscopy and mucosal genomic data, and utilized the
duodenal biopsy obtained for research in the refractory
EED participants to generate bulk DNA methylation and
RNASeq data. Therefore, mucosal genomic results may
have been limited by ethnic differences in cases and
controls, and lack of single cell resolution.

IMPACT

Data suggest specific immune and metabolic pathways
which may inform more effective interventions for
wasting in EED.

LAY SUMMARY

Environmental Enteric Dysfunction (EED) causes
significant morbidity and mortality. The duodenal
methylome and transcriptome implicates lymphocyte
activation and dysregulated lipid metabolism in EED
refractory to nutritional intervention.

*Authors share co-first authorship.

Abbreviations used in this paper: AKU, Aga Khan University; CRFs, con-
ditional random forests; Ctl, control; DMRs, differentially methylated re-
gions; DNAm, DNA methylation; EED, environmental enteric dysfunction;
FDR, -; HAZ, length/height-for-age z score; IFNG, --; IGF, ---;
mRNAseq, messenger RNA; rDMR, regulatory DMR; SEEM, Study of
Environmental Enteropathy and Malnutrition; WAZ, weight-for-age z
score; WHZ, weight-for- length/height z score; WGCNA, weighted gene
coexpression network analysis. Q13 Q14
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access article under the CC BY license (http://creativecommons.org/
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to the nutritional intervention. Histology was evaluated cen-
trally at AKU by 2 pathologists by a consensus assessment. One
researchQ17 duodenal biopsy specimen10 for molecular profiling
was obtained from each of the 57 participants, and RNA for
transcriptomics was available for 52. Due to ethical consider-
ations and lack of clinical indications to perform endoscopy on
well-nourished Matiari controls, biopsies from this population
were not included. A prior study from Gambia demonstrated
the utility of including healthy pediatric controls from the
United Kingdom in defining pathogenic mechanisms in EED.4

We, therefore, enrolled 25 controls and 17 celiac disease sub-
jects at the Cincinnati Children’s Hospital Medical Center.
Controls were subjects who were investigated for digestive
symptoms but had normal endoscopic and histologic findings.
Celiac disease diagnosis was based on previously described
algorithms11 including tissue transglutaminase auto-antibodies
and characteristic histologic features. Supplementary Figure 1
illustrates the cases and controls for the transcriptomics anal-
ysis, and for the biomarker analysis. Each site’s Institutional
Review Board approved the protocol and safety monitoring
plan. Informed consent/assent was obtained for each
participant.

Outcomes
SEEM was designed to understand the pathophysiology,

growth predictors, and potential management strategies of
EED. The primary outcome was length/height-for-age z score
(HAZ), as a measure of stunting, at 24 months of age. The
secondary outcomes were WHZ, as a measure of wasting, and
weight-for-age z score (WAZ), as a measure of underweight at
24 months, and to define genes and pathways linked to EED
pathogenesis.

Messenger RNAseqQ18 , Methylation Array, and
Bioinformatic Analyses

Detailed messenger RNA (mRNAseq), methylation array,
and bioinformatics methods are provided in the Supplementary
Methods. Briefly, the duodenal biopsy global pattern of gene
expression was determined using TruSeq mRNAseq library
preparation and the Illumina platform.12 Genome-wide DNAm
was profiled using the Illumina Infinium MethylationEPIC
BeadChip platform (Illumina, Cambridge, UK; WG-317).13

Signed weighted gene coexpression network analysis
(WGCNA) was implemented to identify modules of coexpressed
genes.14 For each module in WGCNA, the first principal
component, referred to as the eigengene, summarizes and
represents the expression profiles of all the genes in a module.
Candidate modules were identified based on the correlations
between their respective module eigengenes and the pheno-
typic traits.

Biomarkers
Circulating, urine, and fecal biomarkers were measured at 9

months using commercial assays (Supplementary Methods).
For AKU cases that underwent endoscopy, the presence of
giardia in a duodenal aspirate (n ¼ 50Q19 ) was determined
(TaqMan Assay), and stool (n ¼ 47) was collected to calculate
fecal energy loss (cal/g) using bomb calorimetry.15

Statistical Analysis
SEEM is reported as per the STROBE Q20statement for obser-

vational cohort studies. The SEEM birth cohort study was
designed to replicate the birth cohort study of 380 children
conducted at AKU from 2013 to 2015 that identified EED bio-
markers including IGF-1 and ferritin associated with linear
growth rate at 18 months.16 Based on these findings, we
planned to enroll 350 malnourished cases (WHZ < -2) and 50
well-nourished controls (WHZ > 0).6 In SEEM, 250 children
with complete biomarker data at 9 months of age and growth
data at 24 months of age were included in the final predictive
model development, which provided 90% power to detect a
slope of 0.22 for HAZ with 5% type I error. For the gene
expression analysis, we planned to enroll 30 Cincinnati well-
nourished controls Q21and 50 malnourished children with EED
from the SEEM cohort to provide 90% power to detect a 6-fold
difference in duodenal IFNG Q22and APOA1 Q23gene expression with
5% type I error.17,18 Data were summarized descriptively as
median (25th, 75th percentile) for continuous variables and
frequency and percentage for categorical variables. Differences
between the groups were evaluated using Wilcoxon rank sum
test for independent continuous variables, and with chi-square
test for categorical variables. The overall cohort with complete
biomarker and growth data (n ¼ 250) was randomly divided
into independent training and validation groups with a 2:1
ratio. Model building was done using the training dataset,
whereas the validation dataset was used to test the model
performance. Conditional random forests (CRFs) analysis was
performed using the training dataset to evaluate the relative
importance of risk factors and log-transformed biomarkers
while accounting for their correlations with a threshold of �
0.5. The top predictors from CRF were used to develop the
growth prediction models using linear regression. Statistical
tests were conducted with 2-sided alpha level of .05. All data
analyses were performed using the statistical packages SAS 9.4
(SAS Institute; Cary, NC) and R 4.0 (www.r-project.org).

Data availability. Q50Data have been deposited in GEO Q24un-
der accession number GSE159495 (mRNAseq) and GSE157914
(methylation array chip).

Results
Participants

The SEEM-AKU birth cohort included 365 malnourished
cases and 51 controls with adequate growth (Table 1,
Supplementary Figure 1, and Supplementary Table 1) fol-
lowed up to 24 months of age in Matiari, Pakistan. Positive
correlations (r > 0.4; P < .001) for biomarkers16 measured
at 9 months of age for the overall cohort were noted be-
tween IGF-1 and leptin, CRP Q25and AGP, and tumor necrosis
factor a Q26and IFNg (Supplementary Figure 2). SEEM-AKU
controls exhibited higher levels of urine creatinine, blood
prealbumin, IGF1, GLP2 Q27, and leptin, and significantly
reduced levels of urine Claudin15 and blood ferritin
(Supplementary Table 1), in comparison with the
malnourished cases. In this study, 189/365 participants
with ongoing wasting (WHZ < -2) received nutritional
intervention from age 9–10 months through 12 months.
This resulted in a modest improvement in WAZ (mean
change of 0.263 ± standard deviation [SD] of 0.704; P <
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.0001), but the infants still exhibited severe underweight
(mean WAZ < -3) and stunting (mean HAZ < -2.5). Partic-
ipants with ongoing wasting (median HAZ -3.2, WAZ -2.9,
and WHZ of -2.2) were offered endoscopic evaluation (n ¼
63) around 20 months of age, and 1 research duodenal bi-
opsy was obtained from eachQ28 of the 52 for molecular
profiling. Each had characteristic EED histologic features

with severity scoring completed10 (Supplementary Table 2).
We lacked indications to perform endoscopy on adequately
growing local Matiari children, and, therefore, included 25
children with gastrointestinal symptoms but normal endo-
scopic findings, and 17 celiac cases, from Cincinnati as
healthy and disease controls (Table 1). Supplementary
Figure 1 illustrates the cases and controls for the

Table 1.Clinical and Demographic Characteristics.

Demographics N AKU (N ¼ 416) N
AKU endoscopy

(N ¼ 52) N
Cincinnati

controls (N ¼ 25) N
Cincinnati

celiac (N ¼ 17)

Female sex 166 40% 16 31% 11 44% 9 53%

Ethnicity (South-Asian) 416 100% 52 100%

Ethnicity (Caucasian) 24 96% 17 100%

Nutritional intervention 189 45.43% 52 100.00%

Age at entry (mo) 416 0.16 (0.07, 0.33) 52 0.2 (0.07, 0.44)

HAZ at entry 414 -1.61 (-2.41, -0.87) 52 -1.87 (-2.81, -1.09)

WAZ at entry 413 -1.88 (-2.76, -1.16) 51 -2.12 (-3.15, -1.63)

WHZ at entry 349 -1.24 (-1.99, -0.54) 42 -1.62 (-1.99, -0.96)

Biomarkers 9 mo of agea

Urine creatinine (umol/L) 364 126.17 (88.23, 216.47) 52 122.68 (77.82, 181.94)

CRP (mg/dL) 340 0.16 (0.06, 0.41) 48 0.17 (0.08, 0.57)

Ferritin (ng/mL) 340 17.75 (7.00, 37.00) 48 21.50 (9.50, 54.00)

Hemoglobin (g/L) 335 10.50 (9.50, 11.4) 49 10.20 (9.00, 11.30)

IGF1 (ng/mL) 340 20.25 (12.44, 32.73) 50 16.87 (6.65, 27.04)

Prealbumin (mg/dL) 317 14.20 (12.20, 16.70) 30 13.65 (11.80, 16.10)

AGP (mg/dL) 340 101.6 (77.0, 136.0) 48 111.0 (85.5, 139.5)

Urine Claudin15 (ng/mL) 364 1.35 (0.79, 2.43) 52 1.31 (0.700, 2.40)

GLP2 (pg/mL) 321 1,208.9 (815.22, 1760.5) 31 1,101.1 (754.7, 1411.6)

Leptin (pg/mL) 320 181.19 (102.51, 293.79) 31 180.81 (94.06, 271.91)

Stool myeloperoxidase (ng/mL) 366 3,742.8 (1531, 9850) 51 3,050 (979.5, 6475)

TNF-a (pg/mL) 343 64.96 (36.81 ,115.06) 50 57.175 (35.5 ,113.03)

IFNg (pg/mL) 343 7.48 (0.78 ,26.74) 50 7.995 (0.84 ,39.72)

At the time of endoscopy

Age (y) 52 1.7 (1.4, 1.9) 25 5.4 (3.8, 6.8) 17 7.3 (5.8,10)

HAZ 52 -3.2 (-3.6, -2.3) 25 0.09 (-0.51, 0.8) 17 -0.2 (-0.61, 1.17)

WAZ 52 -2.9 (-3.5, -2.6) 25 -0.08 (-1.07, 0.8) 17 -0.04 (-0.78, 0.41)

WHZ 52 -2.2 (-2.6, -1.8)

24 mo anthropometrics

HAZ 343 -2.33 (-3.2, -1.51) 51 -2.82 (-3.36, -2.29)

WAZ 344 -2.25 (-2.96, -1.51) 51 -2.89 (-3.54, -2.5)

WHZ 344 -1.31 (-2.03, -0.62) 51 -1.91 (-2.48, -1.4)

NOTE. Data are shown as n (%) or median (25th,75th).
AGP, Alpha-1 Acid Glycoprotein; GLP2, Glucagon Like Peptide 2; TNF, tumor necrosis factor.
aBiomarkers measured at 9 mo were measured in blood unless indicated elsewhere.
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Table 2.Models for HAZ, WAZ, and WHZ at 24 Mo of Age.

CRF prioritization using training
dataset (n ¼ 166)a

Linear models
using top 3

CRF variables
Training data
(n ¼ 166)

Validation data
(n ¼ 84)

24 months HAZ

Parameterb Estimate P-value Estimate P-value

Intercept -1.965 (-2.571, -1.359) <.001 -2.152 (-3.18, -1.125) <.001

HAZ at entry 0.519 (0.372, 0.667) <.001 0.489 (0.241, 0.736) <.001

ln(IGF1) 0.278 (0.134, 0.422) <.001 0.411 (0.206, 0.615) <.001

ln(Ferritin) -0.120 (-0.217, -0.024) .015 -0.216 (-0.429, -0.003) .047

RMSE: 0.87, R2: 31% (19%, 42%),
Adjusted R2: 29% (14%, 45%)

RMSE: 1.08, R2: 35% (23%, 46%),
Adjusted R2: 32% (17%, 48%)
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Table 2.Continued

CRF prioritization using training
dataset (n ¼ 166)a

Linear models
using top 3

CRF variables
Training data
(n ¼ 166)

Validation data
(n ¼ 84)

24 mo WAZ

Parameter Estimate P-value Estimate P-value

Intercept -2.701 (-3.656, -1.745) <.001 -4.246 (-5.59, -2.901) <.001

WAZ at entry 0.469 (0.322, 0.615) <.001 0.408 (0.179, 0.638) .001

ln(IGF1) 0.247 (0.072, 0.422) .006 0.150 (-0.075, 0.374) .189

ln(Leptin) 0.134 (-0.073, 0.340) .204 0.460 (0.168, 0.752) .002

RMSE: 0.92, R2: 26% (15%, 37%),
Adjusted R2: 25% (10%, 40%)

RMSE: 1.03, R2: 30% (19%, 42%),
Adjusted R2: 28% (13%, 43%)
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Table 2.Continued

CRF prioritization using training
dataset (n ¼ 166)a

Linear models
using top 3

CRF variables
Training data
(n ¼ 166)

Validation data
(n ¼ 84)

24 mo WHZ

Parameter Estimate P-value Estimate P-value

Intercept -2.674 (-3.675, -1.674) <.001 -2.710 (-3.974, -1.445) <.001

WHZ at entry 0.258 (0.114, 0.402) .001 0.179 (-0.034, 0.392) .098

ln(Leptin) 0.362 (0.173, 0.551) <.001 0.326 (0.089, 0.563) .008

ln(urine Claudin15) -0.148 (-0.348, 0.053) .148 0.088 (-0.176, 0.353) .509

RMSE: 0.98, R2: 15% (6%, 25%),
Adjusted R2: 14% (1%, 27%)

RMSE: 0.97, R2: 11% (2%, 19%),
Adjusted R2: 7% (-3%, 18%)

NOTE. Estimates and R2 are given with 95% confidence intervals.
RMSE Q49, xxx.
aGraphs show the variable importance plots obtained with CRF for HAZ at 24 mo, WAZ at 24 mo, and WHZ at 24 mo.
bBlood IGF1, ferritin and leptin biomarkers and urine Claudin15 were obtained at 9 mo, values were analyzed using natural log transformation (ln).
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molecular duodenal biopsy analysis, and for the biomarker
growth model analysis.

Factors Associated With Growth at 24 Months of
Age

We used available clinical data and biomarkers
measured at 9 months of age to predict length/height (HAZ)
and weight (WAZ and WHZ) at 24 months of age. Subjects
with complete biomarker and growth data (n ¼ 250) were
randomly divided into independent training (n ¼ 166) and
validation (n ¼ 84) groups (Supplementary Table 3). Model
building was performed using the training dataset, and
performance was tested on the validation subset. CRFs were
used to prioritize factors to test in linear regression models,
with adjustedQ29 R2 used to test for overfitting (Table 2,
Supplementary Table 4). For the continuous growth mea-
sures at 24 months (i.e., HAZ, WAZ, and WHZ as the primary
responses), we presented R2, adjusted R2, and root mean
square error as the primary model fitting measure. Higher
HAZ around birth, and higher IGF1 and lower ferritin at 9
months, predicted higher HAZ at 24 months (adjusted R2 of
29% in the training and 32% in the validation groups;
Table 2). A scatter plot for HAZ at 24 months vs IGF at 9
months is shown in Supplementary Figure 3A (Spearman
rho ¼ 0.305; P < .001). Higher WAZ around birth and higher
IGF1 and leptin at 9 months predicted higher WAZ at 24
months (adjusted R2 of 25% in the training and 28% in the
validation groups). A scatter plot for WAZ at 9 months vs
IGF at 9 months is shown in Supplementary Figure 3B
(Spearman rho ¼ 0.356; P < .001). This may imply that IGF-
1 is to some extent a surrogate marker of nutritional status.
TheQ30 CRF prioritized WHZ around birth, leptin and urine
claudin15 for WHZ at 24 months. However, these factors
accounted for a small amount of the variation in WHZ at 24
months (adjusted R2 of 14% in the training and 7% in the
validation groups). Scatterplots of predicted vs observed
values in the validation cohort for all the models built on the
basis of data from the discovery cohort are shown in
Supplementary Figure 3C. In agreement with our prior
report, these data replicated circulating IGF-1 and ferritin as
biomarkers to identify infants at risk for stunting (lower
HAZ). However, although circulating leptin was strongly
associated with wasting (lower WHZ), the multivariable
model including leptin did not explain enough of the vari-
ation in weight gain to provide clinical utility. We, therefore,
next tested whether the mucosal transcriptome would
reveal novel immune and metabolic functions linked to
wasting (lower WHZ).

The EED Intestinal Transcriptome and Pathways
We first defined the EED transcriptome in the affected

duodenum. This included 1,262 genes (Figure 1,
Supplementary Dataset 1) differentially expressed (FDRQ31 <
0.05 and fold change � 1.5) in a training group of 31 SEEM
participants with EED vs 21 healthy North American con-
trols (Ctl; Supplementary Table 5). These differentially
expressed genes were validated in an independent group of
21 EED and 4 Ctl (Figure 1, Supplementary Dataset 1).

Figure 1A highlights the most differentially expressed genes,
including up-regulation of antimicrobial DUOX2, LCN2, and
IFNG, and down-regulation of digestion and metabolic genes
PPARGC1A, MMP28, LIPF, and SI. Unsupervised hierarchal
clustering using the EED transcriptome demonstrated that
all Ctl and 49/52 EED from both the training and inde-
pendent validation subsets clustered together
(Supplementary Figure 4; chi squares on the validation set;
P ¼ 2.1E-5). Similarly, principal component analysis to view
participants’ separation using the EED gene list showed that
Ctl separated from EED in the training but also in the in-
dependent validation cohorts (Figure 1B). Functional
enrichment analysis of the 481 down-regulated EED genes
identified suppressed epithelial transporters and channels
(P ¼ 9.00E-10), oxidoreductases and aldo-keto reductases
(P ¼ 4.68E-09), lipid metabolism (P ¼ 2.83E-11), genes
localized to microvillus and brush border (P ¼ 3.06E-07),
and metallothioneins (metal-binding proteins) with antiox-
idant function (P ¼ 5.50E-08). Up-regulated enriched EED
pathways included immune activation (P ¼ 7.33E-98),
response to external biotic stimulus (P ¼ 7.36E-76), cyto-
kine (P ¼ 7.80E-35) and interferon (P ¼ 2.25E-22)
signaling, alpha beta (P ¼ 5.02E-77) and gamma delta (P ¼
3.09E-69) T cells, and natural killer Q32cells (P ¼ 9.23E-64)
(Figure 1C and D, Supplementary Dataset 1).

Similarities and Differences Between EED and
Celiac Disease

Impaired growth, increased intestinal permeability, and
T-cell–mediated enteropathy are shared features between
celiac disease and EED,4 and we, therefore, included 17
celiac cases as disease controls. Representative histology for
the healthy controls, celiac disease, and EED cases is shown
in Figure 2A. Histology features used to define EED
severity10 included villus blunting, intraepithelial lympho-
cytes, and Paneth cell depletion (Supplementary Table 2).
The mean (SD) histology score of the EED cases was 5.7
(2.7), whereas the mean (SD) score for the celiac cases was
8.3 (4). In comparison to celiac disease, the EED cases
demonstrated less pronounced intraepithelial lymphocytes
and villous blunting, and more pronounced Paneth cell
depletion (Supplementary Figure 5).

The celiac transcriptome included 718 genes (Figure 2,
Supplementary Dataset 1) differentially expressed (FDR <
0.05 and fold change � 1.5) between 17 celiac cases and 25
Ctl. A Venn diagram (Figure 2B, Supplementary Dataset 1)
indicates the overlap between EED and celiac signatures,
whereas the heat map in Figure 2C illustrates the expression
of the core EED genes across EED, celiac, and controls. The
bacterial sensor DUOX2 and its adaptor DUOXA2, anti-viral
defense genes (IFITM family), lipocalin-2 (LCN2), and
several CCL chemokines were more specifically up-regulated
in EED, whereas IFNG was up-regulated in both disorders.
Shared down-regulated genes included the bile-acid trans-
porter SLC10A2, carbohydrate (SI), lipid (APOA1), and
retinol metabolic genes, whereas reduction of genes linked
to detoxification (ALDH3A1), metal binding (metal-
lothioneins family), and the aldo-keto reductase (AKR1C)
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family were specific to EED. Enrichment analyses are shown
in Figure 2D and E, highlighting shared signals for up-
regulation of alpha-beta and gamma-delta T lymphocytes,
and for cell cycle and mitosis. More unique enrichments for
EED included activation of innate responses to microbes,
and cell adhesion. Shared down-regulated signals included
genes linked with brush border functions, and lipid and
retinol metabolism, whereas a more unique EED signal was
linked with suppression of detoxification and aldo-keto
reduced nicotinamide adenine dinucleotide phosphateQ33

reduction functions. Consistent with this, a greater level of
LCN2 and DUOX2 protein staining (per stained surface area)
was detected in duodenal biopsy specimens from EED
subjects vs controls (Figure 2F and G, Supplementary
Figure 6). Although there was some LCN2 stain detected
also in celiac disease, DUOX2 staining was specific to the

EED cases, and no LCN2 and DUOX2 was detected in con-
trols. GZMB was observed in mononuclear inflammatory
cells present in the lamina propria, and EED samples
exhibited a higher number of granzyme-positive cells when
compared with both celiac disease cases and controls
(Supplementary Figure 6).

Variation in DNAm Associated With EED Gene
Expression

Epigenetic mechanisms including DNAm mediate envi-
ronmental influences on gene expression.19 Evidence in
animal models20 and in humans21 suggests that maternal
factors influence the offspring’s DNAm, and thereby traits
including postnatal growth. We, therefore, analyzed
genome-wide DNAm of EED and control duodenal biopsy
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Figure 1. The EED intestinal transcriptome and enriched biologic pathways. The core EED transcriptome was comprised of
1,262 genes (481 down- and 781 up-regulated) differentially expressed between 31 AKU-EED malnourished cases and 21
Cincinnati well-nourished controls in the training set (FDR < 0.05 and fold change [FC] �1.5 using bulk RNASeq of duodenal
RNA) and assessed in an independent validation set of 21 EED and 4 Ctl. Unsupervised hierarchical clustering is visualized as
a heatmap in (A) demonstrating the averaged normalized expression in AKU-EED malnourished cases and Cincinnati well-
nourished controls in the training and validation groups for the top differentially expressed genes (more detailed heatmap
in Supplementary Figure 4). (B) Principal component analysis (PCA) using the 1,262 EED genes transcriptome (determined only
using the training subset) showing separation of the AKU-EED malnourished cases and the well-nourished controls from
Cincinnati in both the training and validation groups on the PC1 axis that explains 38% of the total variance in gene
expression. Functional enrichment analyses of the 781 up- (C) and 481 down-regulated (D) genes between AKU-EED
malnourished cases and Cincinnati well-nourished controls was performed using ToppGene/ToppCluster34 and was visual-
ized using Cytoscape.35
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specimens. Principal component analysis showed separation
between EED and controls (Supplementary Figure 7). We
identified 31,500 (between 31 EED vs 20 Ctl) and 9,102
(between 33 EED vs 9 Ctl) differentially methylated regions
(DMRs) with FDR � 0.01Q34 (Supplementary Dataset 2), which
when overlapped resulted in EED DMRs linked to 5,507
protein coding genes in both comparisons. A Manhattan plot
(Figure 3A) illustrated the most significant findings linked
with EED. Those included hyper-methylation in regions near
genes involved in gene transcription (HOXA/HOXB), wound
healing (TNXB), and epithelial adhesion (SERPINB5). Hypo-
methylated DMR included TSPAN32, located in the Beck-
with Wiedemann overgrowth imprinted gene domain, the
transcription factor RUNX3 involved in chromatin modifi-
cations, differentiation, and proliferation, and the anti-viral
IFITM gene family. We then defined regulatory DMR
(rDMR) that spanned genes also differentially expressed in
EED (Figure 3B). Down-regulated genes were enriched for
differential methylation (47%; 225/481) in comparison
with other expressed genes (34%; 4,539/13,464; chi-square
P < .0001). We noted a trend toward enrichment of rDMR
among the up-regulated genes (37%; 288/781 vs 34%;
4,539/13,464; chi-square P ¼ .07). Figure 3C and D illus-
trates representative differentially methylated points within
rDMR, focusing on up- and down-regulated genes that were
previously shown to be expressed in human ileal epithelial
cells13 and in an epithelial single cell data set22 (https://
singlecell.broadinstitute.org). Increased gene expression in
EED and hypo-methylation was noted in AOAH that hydro-
lyzes the acyl chain to detoxify LPSQ35 , CHI3L2, and PARP9
involved in interferon-mediated anti-viral responses.
Decreased gene expression in EED coupled with hyper-
methylation was noted in the mitochondria biogenesis and
lipid metabolic regulator PPARGC1A, wound repair gene
MMP28, and the tight junction CLDN15 gene that was
increased in the urine of EED cases (Table 1).

Gene Expression Modules Associated With
Clinical Variables

We applied WGCNA within EED cases aiming to capture
networks linked with clinical factors and biomarkers and
identified 7 modules that were linked (6 with P < .05 and

the cyan model with P ¼ .08) with EED diagnosis
(Figure 4A). The complete 13-module WGCNA heat map and
gene lists including modules hub genes Q36(top 10% with
highest gene expression significance) are in Supplementary
Figure 8 and Supplementary Dataset 3. The red and green
modules showed the strongest positive correlation with
EED diagnosis, followed by the salmon, black, and cyan
modules. Those modules show enrichment for innate and
adaptive immune responses, whereas the black and salmon
modules were also enriched for stem cells and cell prolif-
eration (Figure 4B). The presence of giardia (detected in 32/
50 available duodenal aspirates) was negatively correlated
with these inflammatory modules (Figure 4A). In contrast,
the brown and pink modules showed negative associations
with EED diagnosis. Those modules were linked with
metabolism of amino acids and lipids, oxidation reduction,
and weight (WHZ) at study entry. Modules enriched for
lymphocyte and monocyte/macrophage activation and
proliferation were associated with EED severity as deter-
mined using histology scoring, and more specifically with
intraepithelial lymphocytes, villous blunting, and Paneth cell
depletion (Figure 4A). Remarkably, the salmon module
linked to lymphocyte and monocyte/macrophage prolifera-
tion and stem cell function was specifically correlated with
fecal energy loss detected using bomb calorimetry, and WHZ
(wasting) both at study entry and at the time of biopsy
(Figure 4, Supplementary Figure 8). The black module also
showed significant association with WHZ (wasting). Hub
genes from the brown and pink modules showed significant
enrichment for genes that were also differentially methyl-
ated (Supplementary Dataset 3; 47% [103/221] for brown
and 66% [21/32] for pink modules vs 34%; 4,539/13,464;
chi-square P < .03). Consistent with this, the top 15 hub
genes that are also differently methylated from the pink,
brown, and salmon modules and their associated pathways
emphasize likely epigenetic regulation of digestive (buty-
rate/butanoate, tryptophan, lipid, and amino acid meta-
bolism) and adaptive immune networks, fecal energy loss,
and wasting (Figure 4C and D). Interestingly, leptin also
correlated with the duodenal pink (r ¼ -0.27; P ¼ .05) and
magenta (r ¼ -0.44; P < .001; Supplementary Figure 8)
coexpression gene modules encoding cellular metabolic
functions.

=
Figure 2. Shared and disease-specific immune and metabolic intestinal gene expression features of EED and celiac disease.
(A) Representative hematoxylin and eosin stained duodenal biopsy specimens from a Cincinnati well-nourished control, a
Cincinnati celiac disease patient (Marsh celiac disease score 3a; EED histology score of 12), a malnourished AKU-EED-1 case
with EED histology score of 9, and a malnourished AKU-EED-2 case with EED histology score of 4 are shown. *Paneth cells in
a Cincinnati well-nourished control. Arrow indicates villous blunting and arrowhead indicates intraepithelial lymphocytes in a
patient from Cincinnati with celiac disease and a malnourished AKU-EED case. Bar equals 247 mm. (B) The Venn diagram
shows the overlap between the 718 genes comprising the celiac disease transcriptome (differentially expressed genes be-
tween 17 patients from Cincinnati with celiac disease and 25 well-nourished controls from Cincinnati, FDR < 0.05 and fold
change [FC] � 1.5 using bulk RNASeq of duodenal RNA) and 1,262 genes comprising the EED transcriptome. This demon-
strates 212 shared down- and 85 shared up-regulated genes. (C) Unsupervised hierarchical clustering heatmap with the top
differentially expressed genes in the EED transcriptome demonstrating the averaged normalized expression across
malnourished AKU-EED cases, patients from Cincinnati with celiac disease, and Cincinnati well-nourished controls. Functional
enrichment analysis of the up- (D) and down-regulated (E) shared and unique genes Q45in the EED and celiac disease tran-
scriptomes was performed using ToppGene/ToppCluster34 and was visualized using Cytoscape.35 (F) Immunohistochemistry
was performed using antibodies against DUOX2 (yellow chromogen) and LCN2 (teal chromogen) in a dual stain. Original
magnification x200 for i & ii. (G) Data for the relative tissue area exhibiting staining for the analytes, normalized against the total
area of tissue in each sample, are shown for controls (n ¼ 10), celiac disease (n ¼ 10), and EED (n ¼ 57); Kruskal-Wallis test
with Dunn multiple comparisons test; **P < .01; *P < .05.
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Discussion

SEEM Pakistan is a unique birth cohort that followed
416 at-risk children with varying degrees of growth

impairment from birth to 24 months of age. Epigenetic and
gene expression assays in the affected small intestine
defined pathogenic mechanisms in children with wasting
resistant to nutritional intervention. Coexpression module
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Figure 3. Variation in DNAm associated with expression of immune and metabolic genes in EED. Genome-wide intestinal
DNAm was profiled in DNA prepared from duodenal biopsy specimens using the Illumina Infinium MethylationEPIC BeadChip
platform. (A) A Manhattan plot is shown displaying the overlapping DMRs associated with EED in 2 methylation profile batches
including 31 malnourished AKU-EED cases compared with 21 well-nourished Cincinnati controls in batch 1, and 33
malnourished AKU-EED cases compared with 9 well-nourished Cincinnati controls in batch 2, of which 12 AKU-EED cases
and 5 Cincinnati controls were tested in both batches. The corrected P values (�log10 Stouffer) of each DMR are plotted
against their respective positions on each chromosome. (B) The Venn diagram shows the overlap between 481 down- and 781
up-regulated genes in the EED transcriptome and DMRs highlighting 453 rDMR including genes that show evidence for both
differential methylation (DM) and differential expression (DE). Beta-value methylation levels of differentially methylated points
within rDMR showing a significant relationship (P < 1E-6) between methylation levels and expression (TPM Q46) of specific down-
(C) and up-regulated (D) genes as indicated. We highlight genes that are expressed in intestinal epithelial cells based upon a
previous isolated ileal epithelial cell dataset13 and single-cell datasets Q47.22 The gray lines illustrate a linear model fit, whereas rho
values indicate the Spearman correlation coefficients.
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analysis identified associations between genes encoding
lymphocyte and monocyte/macrophage proliferation and
stem cell function and key histologic features including
intraepithelial lymphocytes, villous blunting, and Paneth cell
depletion, in conjunction with fecal energy loss and wasting.
Modules enriched for immune cell proliferation and meta-
bolic functions demonstrated a differential epigenetic signal,
which correlated with wasting (WHZ) around birth and at
the time of biopsy. Infants with higher circulating IGF1, and
lower ferritin, at 9 months were less likely to be stunted at
24 months, providing external replication of the results
from our previous EED birth cohort16 and another recent
EED study fromQ37 Bangladesh.5 Adjusted R2 of 32% and 28%
for HAZ and WAZ, respectively, in our validation set indi-
cated that the variations in responses can be explained fairly
well, which may be useful in clinical practice and future
research studies to identify children at greatest risk for
stunting and associated future neurocognitive deficits. Here
we further implicate leptin, previously shown to predict
mortality in severely malnourished children,19 as a
biomarker for future weight gain in a more stable popula-
tion. Leptin measured at 9 months was associated with both
duodenal expression of metabolic and stem cell renewal
genes around 20 months, and the degree of wasting at 24
months. Collectively, these data define molecular
pathways and biomarkers of EED pathogenesis, outcome,
and severity.

We focused on celiac disease as a highly relevant en-
teropathy disease control group.10 Although there was
substantial overlap at the molecular level between celiac
and EED, we also emphasize EED-specific genes and path-
ways. These include up-regulation of an innate anti-
microbial DUOX2 and LCN2 gene signature coupled with
reduction of metallothioneins (MT family) that buffer
against toxic metals, and aldo-keto nicotinamide adenine
dinucleotide phosphate–dependent reduction genes (AKR1C
family) involved in detoxification of environmental com-
pounds. Those features widely overlap with the intestinal
Crohn’s disease transcriptome,17,23 suggesting similar
pathogenic mechanisms involving altered gut microbiota.5

In fact, the antimicrobial gene signature detected in SEEM
is quite consistent with the recent report of duodenal
microbiota, and host defense proteins, associated with
stunting in children in Bangladesh5 and Zambia.24 Similarly,
genes linked with cell cycling were linked with more severe
enteropathy and histologic features in the Zambia cohort as
observed in our cohort.24 Importantly, the specificity of the
antimicrobial DUOX2 staining can potentially be used to
differentiate between celiac disease and EED that require
different therapeutic approaches, but further studies in the
undernourished areas should further confirm its use as a
discriminatory biomarker between those enteropathies.
Collectively these data support the potential for microbial-
directed therapy to improve growth in EED. Microbiome-
directed complementary feeding approaches are an active
field of research.5,25

Gene coexpression modules regulating immune and
metabolic functions in EED were linked to histologic
severity, fecal energy loss, and wasting, with data

supporting epigenetic regulation. Features of the EED
transcriptome indicate a maladaptive gut inflammatory
response, supporting results from a randomized controlled
trial in Kenyan children with severe acute malnutrition in
which treatment with the anti-inflammatory medication
mesalazine was well-tolerated and produced modest re-
ductions in several inflammatory markers vs placebo.26 We
also observed suppression of metabolic pathways (part of
the brown coexpression module; Figure 4C) with reduced
butyrate, tryptophan, sphingolipid, and lipid metabolism,
which were linked with wasting (WHZ). Similarly, low
plasma tryptophan was recently associated with infections,
chronic immune activation, and stunting.27 Interestingly,
we observed that the presence of giardia significantly
attenuated the inflammatory coexpression modules and
may, therefore, play a role in the decreased response to
vaccination noted in children with EED.28 This fascinating
finding aligns with recent findings that showed reduced
response to vaccination during helminth colonization in an
animal model.29

Development, aging, diet, and gut microbes directly in-
fluence DNAm in the intestine. Promoting better nutrition
and the gut microbial health through the lens of optimizing
intestinal DNAm could inform therapies for EED that sur-
mount its persistence in children and adults despite
aggressive nutritional, pharmacological, and water, sanita-
tion, and hygiene interventions and even immigration from
low- to high-income countries. Our findings suggest that
intestinal DNAm may provide a therapeutic target to reverse
EED in children. Anthropometrics within the first month of
life were strong predictors of growth at 24 months and such
findings were consistent with that from the birth cohort
studies in Bangladesh.28,30 Interestingly, wasting (WHZ)
around the time of birth also showed significant association
with several immune and metabolic duodenal gene coex-
pression modules measured around 20 months, some of
which were also enriched for epigenetic DNAm modifica-
tions. Prenatal and perinatal environmental exposures19

that were not part of the current dataset may influence
tissue DNAm21 and thereby traits expressed later in life
including growth and inflammatory responses.13 Our find-
ings linking early wasting to genes that are differentially
expressed and methylated align with those previous ob-
servations and early determinates. Supplementation with
folate—an essential methyl donor nutrient—is an effective
adjunct therapy for persistent diarrhea in children with
malnutrition.31 Further, intestinal stem cell–specific dele-
tion of DNA methyltransferase 132 or a diet deficient in
folate and choline33 Q38recapitulates several features of EED in
mice. Further, the abundance of differentially methylated
genes detected in our study suggests fecal intestinal
epithelial cell methylation screens might be developed for
EED to provide a noninvasive stool-based approached for
detection and monitoring of EED, as is currently done for
colorectal cancer. Additionally, healthy gut microbiota pro-
vides an endogenous source of methyl donor nutrient pro-
ducers and microbiome-directed complementary feeding
approaches are an active field of research.25 Collectively
data suggest that interventions targeting epigenetic drivers
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of the core regulatory genes at an early time point, even
prenatally, may be necessary to reverse mucosal injury and
improve energy balance in EED.

Our work has several strengths because we investigated
EED in a large birth cohort in Matiari, Pakistan, where

children are at risk for undernutrition, and analyzed
duodenal biopsy specimens from participants with wasting
unresponsive to nutritional intervention defined in a pro-
spective manner. The prospective study design afforded a
unique opportunity to define the molecular basis for EED
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pathogenesis using state-of-the-art whole-genome methyl-
ome and transcriptome analyses of the affected gut and to
characterize predictive biomarkers in independent training
and validation groups. Limitations included the need to use
an older group of North American healthy controls for the
molecular comparisons due to lack of indications to perform
endoscopy on adequately growing local Matiari controls and
the use of bulk biopsies rather than single-cell separationQ39 ,
which would have been challenging in the setting of EED
case sampling. We also lacked data for gestational age or
birth weight and microbial data. Ongoing data generation
and analysis, including future studies using more advanced
technologies and biopsies from similar age and ethnic
background may overcome some of these challenges.

Conclusions
We defined a core EED intestinal transcriptome,

emphasizing unique antimicrobial immune responses and
detoxification functions relative to celiac disease. Specific
gene coexpression modules regulating immune and meta-
bolic functions in EED were linked to histologic severity,
fecal energy loss, and wasting, with data supporting epige-
netic regulation. Random forest and linear regression
models, which accounted for initial weight and length,
identified circulating IGF-1, ferritin, and leptin as informa-
tive biomarkers for future growth. Collectively, these data
will inform enrollment of infants at greatest risk for future
wasting and stunting into interventional trials of more tar-
geted therapies in the future.

Supplementary Material
Note: To access the supplementary material accompanying
this article, visit the online version of Gastroenterology at
www.gastrojournal.org, and at https://doi.org/10.1053/
j.gastro.2021.01.221.
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