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Executive Summary 

Various methods exist for correcting biases in climate model precipitation data. This study 
has investigated four of these bias-correction methods, here called linear, non-linear, 
gamma and empirical, and extensively tested their performance and suitability for bias-
correcting daily precipitation outputs from a Regional Climate Model (RCM) for use as inputs 
to hydrological models over six test regions spanning the Great Britain.  

The RCM daily precipitation data were taken from the unperturbed variant of the Met Office 
Hadley Centre Regional Model Perturbed Physics Ensemble (HadRM3-PPE-UK), and 
observed daily precipitation data were taken from the Continuous Estimation of River Flows 
gridded precipitation dataset. Spatial downscaling (re-gridding) and correction of the fraction 
of rain-days were undertaken as pre-processing steps before the bias-correction procedure, 
which translated the RCM data from a 0.22° grid sca le to the 1 km grid scale of the observed 
dataset.  

Re-sampling tests were used to assess the performance of the bias-correction methods in 
terms of the first four statistical moments, and cumulative distribution functions (cdfs) were 
produced to compare the distribution of the bias-corrected precipitation with respect to the 
observed and pre-processed RCM precipitation. We found that whilst the first and second 
moments of the precipitation frequency distribution can be corrected robustly, correction of 
the third and fourth moments of the distribution is much more sensitive to the choice of bias-
correction procedure and to the selection of a particular calibration period. Overall, our 
results demonstrate that, if both precipitation datasets can be approximated by a gamma 
distribution, the gamma-based quantile-mapping technique offers the best combination of 
accuracy and robustness. In circumstances where precipitation datasets cannot adequately 
be approximated using a gamma distribution, the non-linear method is more effective at 
reducing the bias but the linear method is least sensitive to the choice of calibration period. 
The empirical quantile mapping method can be highly accurate, but results were very 
sensitive to the choice of calibration time period. Examination of the seasonal variation of the 
non-linear bias-correction factors showed that the bias-correction applied to the HadRM3 
daily precipitation varied with season, location, topography and precipitation intensity, 
suggesting that the method is capable of reproducing many features of the complex spatial 
and temporal patterns of UK daily precipitation. Taking the known limitations into account 
this study concluded that the gamma-based quantile-mapping technique is the most suitable 
for bias-correcting daily HadRM3 precipitation for use in hydrological modelling in the UK. 
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Section I Introduction 

The Future Flows and Groundwater Levels project was set up to provide estimates of the 
impact of climate change on UK river flows and groundwater levels. The project uses both 
probabilistic projections of climate change and transient regional climate model (RCM) runs 
from the UK Climate Projections 2009 (UKCP09) project (DEFRA, 2009). This report 
provides details on the pre-processing and bias-correction of the RCM precipitation data to 
correct systematic biases, prior to its use in hydrological modelling of river flow. This report is 
an extension of a manuscript submitted for publication in a peer-reviewed scientific journal 
by Lafon et al. (2012). 

Precipitation is the key driver of river flow and groundwater levels. In order to make accurate 
estimates of the impacts of climate change on these processes the reliability of the driving 
precipitation is essential. The accuracy of global climate models (GCMs) is continually 
improving, however, it is not yet the case that they can produce realistic local scale 
precipitation. The most common problem associated with predictions of precipitation made 
using GCMs is that, at a daily time-scale, precipitation occurs more frequently than 
observed, but often with a lower intensity (Osborne and Hulme, 1998). A more recent study 
has shown that although total land precipitation amounts were well estimated by a set of 18 
GCMs, the spatial patterns of frequency and intensity were more complex: most models 
overestimated the frequency of light precipitation (defined as 1–10 mm day-1), but 
underestimated its intensity (Sun et al., 2006). In contrast, most models underestimated the 
frequency of heavy precipitation (>10 mm day-1), but simulated the intensity well. 

In order to make precipitation predictions at hydrologically-relevant spatial scales (i.e., daily 
and spatially variable at a few kilometres scale), it is necessary to employ some form of 
downscaling technique. Many such techniques have been reviewed in the literature, 
including statistical downscaling, which uses empirical relations between climate model 
outputs and historical observed data, and dynamical downscaling which involves the use of 
a regional climate model (RCM) (see Fowler et al., 2007 for a detailed review). RCMs offer a 
more physically-realistic approach to downscaling because they provide an explicit 
representation of the mesoscale atmospheric processes that produce heavy precipitation. 
When nested within a GCM, RCMs provide regional detail that is not only consistent with the 
parent GCM, but which is spatially-coherent. That is, a degree of spatial persistence of large-
scale atmospheric features is automatically ensured, because the model generates these 
features dynamically. This feature is important in producing realistic forcing data for 
hydrological models because many floods and droughts are caused by spatially- and 
temporally-persistent rainfall patterns. Two major studies of the accuracy of RCM daily 
precipitation estimates used extreme precipitation statistics to compare the performance of 
several different RCMs nested within both ECMWF ERA-15 reanalysis data (Frei et al., 
2003), and within the Hadley Centre HadAM3 GCM (Frei et al., 2006). They found that the 
RCMs were capable of reproducing important mesoscale patterns of observed daily 
precipitation, particularly during autumn and winter, and in response to topographic effects 
which could be much better represented at regional scales. Nevertheless, Frei et al. (2006) 
found large model biases, most notably in summer, when convective precipitation 
dominates. 

Such evidence of bias in RCM daily precipitation has prompted many investigators to apply 
RCM-derived change factors to observed precipitation time series rather than using RCM 
daily outputs directly (e.g., Arnell et al., 2003). The biases in RCM daily precipitation may not 
be limited to bias in mean precipitation, but may affect precipitation variability and other 
derived measures that are of hydrological importance (Arnell et al., 2003, Diaz-Nieto and 
Wilby, 2005, Fowler et al., 2007). These effects include differences in variability and extreme 
values, and differences between the modelled and observed distribution of dry days, and 
periods of dry days. Many methods have been employed to adjust biases in RCM daily 
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precipitation, each correcting a different range of statistical moments. We group these 
published techniques into the following four families: (i) linear (e.g. monthly and spatially 
varying change factor (e.g., Lenderink et al., 2007)); (ii) non-linear (e.g. monthly and spatially 
varying change factor and exponent (e.g., Leander and Buishand, 2007)); (iii) distribution-
based quantile mapping (e.g., gamma distribution, Hay et al., 2002, Piani et al., 2010); (iv) 
and distribution-free quantile mapping (e.g., empirical distribution, Ashfaq et al., 2010, Wood 
et al., 2004, Wood et al., 2002). 

We compare the range of established bias-correction techniques to determine which is the 
most reliable method for bias-correcting daily precipitation data over the whole of the UK. 
We apply each method to six regions in the UK and evaluate the performance using a range 
of statistics and tests. RCM daily precipitation was compared to an ‘observed daily gridded 
precipitation’ product derived by interpolation from Met Office rain gauges (Keller et al., 
2006). Regional climate model daily precipitation was obtained from the HadRM3.0-PPE-UK 
ensemble of perturbed-physics experiments employed in the UK Climate Impacts 
Programme study (Jenkins et al., 2009). 

This report is organised as follows. First, we investigate the suitability of spatial interpolation 
(‘smoothing’) methods as part of the downscaling procedure of the pre-processing of RCM 
precipitation. We then describe the four bias-correction methods applied in the study, along 
with the methodology used to assess the method performance. Next we present the test 
regions and the observed and RCM daily precipitation datasets. We test all four methods on 
all six test regions using a re-sampling approach similar to the jack-knife, which compare the 
sensitivity of the bias-correction procedure to the choice of calibration period. The results 
from this re-sampling procedure are presented for the first four statistical moments of the 
daily precipitation data (mean, standard deviation, skewness, kurtosis). Our results highlight 
some limitations of each of the methods, and indicate that the gamma-based quantile-
mapping technique is most suitable for application to the UK as a whole. 
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Section II Methods 

II. 1 Pre-processing 

A number of pre-processing steps which are particularly important when bias-correcting daily 
precipitation are described below. It should be noted that these steps may not be necessary 
for other climate variables. 

II. 1. 1.  Spatial interpolation 

To interpolate from 0.22º regional climate model data to 1 km data required for hydrological 
applications, we considered two alternatives: bilinear interpolation and cubic spline 
interpolation (Press et al., 1986). Bilinear interpolation smooths data within grid-boxes but 
the gradient of the interpolated function is discontinuous from grid-box to grid-box. As such, 
this interpolation method does not remove the 0.22º grid-box-related discontinuities in the 
RCM data. The alternative method, bicubic spline interpolation, in which thin-plate splines 
are fitted to the 0.22º dataset to permit interpolation to the 1 km level, was found to preserve 
the continuity in derivatives at grid-box boundaries, but an assessment of conservation of 
water following interpolation indicated the potential for serious underestimates on the order 
of 25 percent. This result is consistent with those obtained in several other studies looking at 
rainfall interpolation (Tait et al., 2006). As a result of these findings, it was considered unwise 
to perform interpolation without substantial further work beyond the scope of the present 
project. 

II. 1. 2.  Spatial downscaling (re-gridding) 

A spatial downscaling step (re-gridding) was required as the observed data were available at 
a finer resolution than the RCM (Wood et al., 2002; Wood et al., 2004; Kay et al., 2006). For 
our study, each daily time series from each of the 1 km grid box of the observed data (see 
Section IV for more information) was associated with the HadRM3 daily time series from the 
nearest 0.22º grid square. A consequence of the re-gridding step is that during bias-
correction the RCM daily precipitation data is corrected for topographic variations in 
precipitation which are present in the observed daily precipitation (i.e. some amount of 
spatial downscaling occurs during bias correction). 

II. 1. 3.  Wet/dry proportion matching 

For each 1 km grid box, wet/dry proportion matching was carried out so that the frequency of 
rain days in the pre-processed dataset matched that in the observed record. This procedure 
is important because the frequency of low precipitation values in climate models is often 
found to be too high (Sun et al., 2006). Moreover, the occurrence of hydrological extremes 
(both floods and droughts) is linked to the sequencing of wet and dry periods. Using a similar 
method to (Hay et al., 2002), we calculated the fraction of dry days (days with zero rain) 
relative the whole period of the observed daily precipitation time series for each grid and 
imposed this fraction on the corresponding 1 km RCM daily precipitation (i.e. all values 
below the threshold associated with this fraction are set to zero; the same threshold is used 
for the whole RCM time series of this grid). This procedure was done independently each 
month. 

II. 2 Correction Methods 

In this section each bias-correction method used in this study is explained in detail. The first 
two methods, linear and non-linear, use the statistical properties of the observed data to 
calculate a linear and non-linear transform respectively, these transforms are then applied to 
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the simulated data to correct the bias. In contrast, the third and fourth methods, gamma and 
empirical, involve ‘quantile mapping’, in which the probability distribution of the simulated 
dataset is mapped onto the probability distribution of the observed dataset using a gamma 
and empirical distribution respectively. 

Each bias-correction method was implemented independently for each month, to preserve 
the month-to-month characteristics of the climate data. Hence each method is explained 
assuming it is applied to a specific month. 

II. 2. 1.  Linear Bias-Correction Method 

Using the linear correction method, each of the RCM simulated daily precipitation amounts, 
P (having been corrected for the frequency of rain-days), is transformed into �� such that 
�� � ��, using a scaling factor, � � �� ��⁄ , wherein �� and �� are the values of monthly mean 
observed and simulated precipitation, respectively. The linear correction method has the 
same mathematical structure as the ‘factor of change’ or ‘delta change’ method (Hay et al., 
2000). A variant of this method, the change factor method, is employed in a wide range of 
studies (Arnell et al., 2003, Prudhomme et al., 2002, Prudhomme et al., 2010) as it has the 
advantage of simplicity and modest data requirement: only monthly climatological 
information is required in order to calculate monthly correction factors. However, correcting 
only the monthly mean precipitation can distort the relative variability of the inter-monthly 
precipitation distribution, and thus may adversely affect other moments of the probability 
distribution of daily precipitations (Arnell et al., 2003, Diaz-Nieto and Wilby, 2005). 

II. 2. 2.  Non-Linear Bias-Correction Method 

Noting that a linear scaling factor adjusts the mean but not the standard deviation of monthly 
precipitation, Shabalova et al. (2003) and Leander and Buishand (2007) advocate the use of 
a power-law correction such that �� � ���  , where 	 is a scaling exponent. The constants � 
and 	 are calculated in two stages: (i) the scaling exponent, 	, is calculated iteratively so that 
for each grid box in each month, the coefficient of variation of the simulated daily 
precipitation time-series matches that of the observed precipitation time-series. Here this is 
achieved using Brent’s method (Press et al., 1986); (ii) the prefactor, �, is then calculated so 
that the mean of the transformed precipitation values is equal to the observed mean. 

In common with the linear method, this approach has the advantage that it requires 
observed data at monthly frequency, although it also requires monthly information on the 
coefficient of variation of precipitation. This approach results in the mean and the standard 
deviation of the daily precipitation distribution becoming equal to those of the observed 
distribution. Higher order moments are not corrected by the non-linear method. 

II. 2. 3.  Gamma Distribution Bias-Correction Method 

The gamma distribution-based correction method assumes that the probability distributions 
of both observed and simulated daily precipitation datasets can be approximated using a 
gamma distribution, for example: 

    
��; �, �� � ���� ������ �⁄ �
������ ,    [1] 

where � > 0 and � � 0 are the form and scaling parameters of a gamma distribution, 
respectively. In the present application, the parameters � and � were estimated for each grid 
box for each month, using the method of moments: 

    � �  ���
 !

"
,      [2] 
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    � �   #

��  ,      [3] 

where �� and $ are the sample mean and standard deviation of �, respectively. 

In order to perform the bias correction, each daily RCM precipitation amount was expressed 
as a quantile, %��; �, ��, calculated as: 

    %��; �, �� �  &��,�/��
���� ,     [4] 

wherein γ is the lower incomplete gamma function, and k and � are the parameters of the 
gamma distribution fitted to the RCM simulated precipitation. This quantile was then used to 
calculate the corrected precipitation amount by re-sampling from the gamma distribution 
fitted to the observed precipitation amounts. This method is designed to correct the first two 
statistical moments and was found to perform well when used to correct biases in GCM 
outputs at Global and European scales (Piani et al., 2010). 

II. 2. 4.  Empirical Distribution Bias-Correction Method  

The empirical distribution-based correction method follows the same approach as the 
gamma distribution method, with the RCM-driven distributions transformed to match the 
observed distribution through a transfer function. However, unlike the gamma distribution 
correction method which assumes that the observed and simulated precipitation amounts 
follow a gamma distribution, the empirical method does not make any such a priori 
assumptions. 

To implement the empirical distribution-based correction method, the range of observed 
precipitation values is divided into a number of discrete quantiles (in practice, 25, 50, 75 and 
100 quantile divisions were used in the comparison presented here). For each quantile 
division, a linear correction factor was calculated by dividing the observed mean precipitation 
in that quantile by the RCM simulated mean precipitation in the same quantile. The number 
of quantile divisions controls the accuracy of the method: using fewer quantiles might omit 
much of the information contained within the observed record, while using too many 
quantiles might result in overfitting of the model to the data. The number of statistical 
moments corrected by the method depends on the number of quantiles used. This method 
has been shown to perform well when implemented in the United States (Wood et al., 2004, 
Wood et al., 2002). 

II. 3 Re-sampling Procedure 

During the study we quantified the sensitivity of each bias-correction method to the choice of 
correction period. We used a re-sampling technique similar to the jack-knife (Bissell and 
Ferguson, 1975), in order to cross-validate the bias-correction methods and to estimate the 
range of variability in the bias and standard error of the statistics of a bias-corrected daily 
precipitation dataset. We used a 40-year period (1961–2000), and re-computed the bias-
correction factors having systematically removed contiguous ten-year periods beginning in 
1961,1962,…,1991. This procedure provided a set of 31 bias-corrected datasets (i.e. the 
bias correction models were fitted on 30 ‘calibration’ years and applied to the 10 ‘validation’ 
remaining years), and by examining the central tendency and spread among these 
realisations, we evaluated the sensitivity of each method to the choice of time period. A 
similar procedure has been used  to evaluate the robustness of a gamma-based quantile 
mapping technique in Northern Eurasia (Li et al., 2010). 
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Section III Test Regions  

It is important that daily precipitation bias-correction methods are capable of correcting over 
the full extent of the spatial area of interest. The UK has a wide range of annual average 
precipitation and topography; hence, a method which successfully corrects biases in one 
region may not necessarily be as effective in another. To explore this question more 
comprehensively, the four bias-correction methods were each applied to six test regions. 

The six test regions were chosen by comparing river catchments from the National River 
Flow Archive (NRFA) Hydrometric Register (Marsh and Hannaford, 2008). The starting point 
for choosing the catchments was the benchmark network, which is a subset of the NRFA 
stations which have a nearly natural flow regime and little impact from human activity 
(Bradford and Marsh, 2003). The catchments were compared using statistics such as 
elevation range and mean annual average rainfall. It had been hoped that it would be 
possible to choose six reasonably large catchments from the benchmark network which 
encompassed a range of these statistics. However, in some cases it was not possible to find 
sufficiently large catchments. In these cases stations outside the benchmark network were 
chosen, or one or more catchments were extended to form rectangular regions which were 
sufficiently large to accurately test the correction methods, but small enough so that they 
were still representative of the region. Details of the six test regions are given in Table 1 and 
their locations are shown in Figure 1. 

Name NRFA 
Catchment 

ID/s 

Mean Annual 
Rainfall (mm/yr) 

Elevation 
Range (m) 

Easting 
Distance 
(km) 

Northing 
Distance 
(km) 

Location Type 

Northern 
Scotland 

95001 B 2201 1409 130 20 
Northern 
Scotland 

R 

Tay 15006 B 1461 1184 147 75 
Eastern 
Scotland 

C 

Ribble 71001 B 1345 678 60 70 
North West 
England 

C 

Conway 66011 2183 1028 39 30 North Wales C 

Severn 54001 924 809 115 76 
Midlands of 
England 

C 

East Anglia 

33019 B 641 60 

61 69 
South East 
England 

R 

36008 609 92 

Table 1: Test Region Information: Information about  the six test regions used in the 
study. NRFA catchment ID (followed by a B if the ca tchment is in the benchmark 
network), mean annual rainfall and elevation range all come from (Marsh and 
Hannaford, 2008). The easting and northing distance s are the number of 1km grid 
squares required in each direction to encompass the  region. The type indicates 
whether the region is delimited by a catchment outl ine (C) or a rectangle (R).  
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Figure 1: Location of Test Regions: Location of the  six test regions in the UK. For the 
rectangular regions the catchments from which the s tatistics in Table 1 derive are 
shown inside the region.  
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Section IV Data 

IV. 1 Observed Data 

The observed precipitation dataset used in this study was the daily precipitation data from 
the Continuous Estimation of River Flows (CERF) project (Keller et al., 2006). The CERF 
precipitation dataset was created by the Centre for Ecology and Hydrology using 
observations from 17,812 UK Met Office raingauges. The observations were interpolated 
using the triangular planes method, a domain-based interpolation method, and normalised 
based on average annual rainfall (Jones, 1983). The dataset extends over England, 
Scotland and Wales, is projected on to the UK National Grid at a horizontal resolution of 1 
km and encompasses the period 1961–2008. 

IV. 2 Regional Climate Model Data 

The RCM precipitation dataset used in this study was the daily precipitation data from the 
Met Office Hadley Centre Regional Climate Model Perturbed Physics Ensemble simulations 
for the 21st Century for the UK domain (http://badc.nerc.ac.uk/data/hadrm3-ppe-uk/). The 
HadRM3-PPE-UK dataset is composed of an ensemble of eleven variants of the Hadley 
Centre Regional Climate Model (HadRM3) ten of which are perturbed using different 
atmospheric parameterisations. In this study comparing bias-correction methods, only the 
unperturbed version of the model HadRM3.0, also known as afgcx, was used for most of the 
study. In this RCM run, the regional climate of the UK is simulated over the period 1950–
2100, at 0.22° horizontal resolution (approximately  25 km). Lateral boundaries for the model 
are taken from the HadCM3 GCM using the SRES A1B emission scenario (rapid, regionally-
convergent growth with a balance of fossil and non-fossil fuels). 
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Section V Results 

V. 1 Method Performance 

Each bias-correction method was implemented for each test catchment as presented in 
Section II, including the pre-processing steps of downscaling (re-gridding) and wet/dry 
proportion matching. The bias-corrected daily precipitation datasets were generated on the 
same 1 km grid as the observed daily precipitation data set. 

The method performance was assessed by generating cumulative distribution functions 
(cdfs) on observed, pre-processed and bias-corrected daily precipitation for the period 1961–
2000. All three daily precipitation datasets were extracted from a single grid square in each 
test region. Only one of the empirical method variations – that with 100 quantiles – was 
chosen for this comparison. The cdfs are shown in Figure 2 to Figure 5, for the linear, non-
linear, gamma and empirical bias-correction methods respectively. The linear method 
improves the distribution of the daily precipitation overall, however, it causes overestimation 
of the highest intensity events in four of the six regions and underestimation of the low-
intensity events in three regions. The non-linear method provides a better fit to the high and 
mid-intensity events but also underestimates the low intensity events to some degree in all 
regions. The gamma method produces a distribution which deviates from the observed 
record for all but the highest intensity events in all test regions. The empirical method 
produces cumulative distributions which are very well matched to the observed daily 
precipitation distributions in all regions. 
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Figure 2: Linear Method Cumulative distribution Fun ctions: Cumulative distribution 
functions (cdfs) of observed (black), pre-processed  (blue) and linear bias-corrected 
(green) non-zero daily precipitation for the period  1961 – 2000. The data is from one 
grid square for each test region as follows: Northe rn Scotland (75, 10), Tay (75, 40), 
Ribble (30, 30), Conway (15, 15), Severn (60, 40) a nd East Anglia (35, 40). The cdfs are 
presented on a log scale to enable easier analysis of the extremes of the distribution. 
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Figure 3: Non-Linear Method Cumulative distribution  Functions: As for Figure 2 but 
with non-linear bias-corrected data. 



Results 
 

Page 12 Future Flows and Groundwater Levels – SC090016 – Science Report/Project Note - SC090016/PN3 

 

Figure 4: Gamma Method Cumulative distribution Func tions: As for Figure 2 but with 
gamma bias-corrected data. 



Results 
 

Future Flows and Groundwater Levels – SC090016 – Science Report/Project Note - SC090016/PN3 Page 13 

 

Figure 5: Empirical Method Cumulative distribution Functions: As for Figure 2 but 
with empirical bias-corrected data using 100 quanti les. 

Reliability of the four bias-correction methods was assessed using a re-sampling procedure 
(see II. 3) for each method and each test region. The procedure was applied between the 
years of 1961–2000, i.e., 31 ten-year runs were produced for each method and each test 
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region as validation periods. The observed, the RCM and the bias-corrected daily 
precipitation data were compared using each of the ten-year validation periods, which were 
excluded from the calculation of the bias-correction factors and transfer functions (i.e. the 
30-year calibration period does not contain the 10-year of the validation period; this is 
equivalent to a cross validation methodology on an independent sample of the calibration 
sample). Relative errors between seasonal bias-corrected and observed statistics were 
calculated for each of the sets of 31 validation runs and averages errors estimated. As 
described in section II. 2. 4. the accuracy of the empirical method depends on the number of 
quantiles used. To explore this further the above procedure was carried out for four 
variations of the empirical method with 25, 50, 75 and 100 quantiles in each case. 

To provide an indication of the degree of improvement (i.e., how well the statistical 
properties of observed daily precipitation are captured by the RCM-driven daily precipitation) 
that can be achieved using bias-correction methods instead of a simple pre-processing of 
RCM daily precipitation data, the same procedure as described above for the bias-correction 
methods was used to calculate the statistics for the pre-processed daily precipitation (which 
does not include any account of elevation other than from the wet/day frequency).  

The results of the re-sampling performance tests are shown in Figure 6. It can be seen that 
most of the bias-correction methods in most regions produce an improvement in at least the 
lower order statistical moments. The linear method consistently improves the average but 
rarely improves the higher order moments. In some cases it actually produces a slightly 
poorer correspondence with the higher order moments than the pre-processed daily 
precipitation. In most of the test regions the non-linear and gamma methods show similar 
performance with a reduction of errors achieved at higher order moments. However, both of 
these methods struggle to improve the higher order moments in the summer season, with 
the non-linear method being the worse of the two. This trend is most apparent in the East 
Anglia region where summer precipitation is dominated by convective storms. The empirical 
method offers the most hope for improving the higher order moments, however, it can be 
seen that the performance of this method can be erratic, and produces some unexpectedly 
high values in the lower order moments in all test regions. This issue is discussed further in 
section V. 2. 1.  

The Gamma method was seen not to well capture low intensity rainfall distribution; when 
used as cross-validation however (results of Figure 6) it shows overall good results 
suggesting it is much less sensitive to the choice of calibration period than linear and non-
linear methods and hence likely to be more robust when used outside the calibration range 
(e.g. when looking at future time horizons). 
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Figure 6: Statistical Comparison of Correction Meth ods: A comparison of the 
performance of the bias-correction methods for each  test catchment using the re-
sampling tests. Relative errors between RCM-driven (pre-processed and bias-
corrected) and observed daily precipitation are giv en for each season and five key 
statistics. PrePro, Lin, N-Ln, and Gam refer to the  pre-processing, linear, non-linear 
and gamma methods respectively. E 25q, E 50q, E75q and E100q are the empirical 

PrePro Lin N-Ln Gam E 25q E 50q E 75q E 100q PrePro Lin N-Ln Gam E 25q E 50q E 75q E 100q

Ave Win 0.26 0.06 0.05 0.03 1532.83 708.18 3.1E+05 376.09 Ave Win 0.25 0.03 0.03 0.03 0.06 0.09 0.66 0.07

Ave Spr 0.17 0.03 0.04 0.04 0.06 0.05 0.04 0.04 Ave Spr 0.25 0.03 0.03 0.03 0.04 0.04 6.51 0.03

Ave Sum 0.23 0.02 0.03 0.03 0.03 0.03 0.03 0.03 Ave Sum 0.26 0.01 0.01 0.01 0.02 0.01 0.01 0.01

Ave Aut 0.39 0.03 0.03 0.05 170.22 83.69 3.2E+05 49.22 Ave Aut 0.28 0.02 0.02 0.02 0.04 0.24 30.37 0.08

Sdv Win 0.21 0.34 0.04 0.06 6504.02 4002.50 3.8E+06 3001.65 Sdv Win 0.20 0.11 0.04 0.03 0.11 0.29 4.08 0.22

Sdv Spr 0.17 0.06 0.07 0.05 0.16 0.13 0.11 0.11 Sdv Spr 0.20 0.08 0.01 0.02 0.04 0.03 34.51 0.03

Sdv Sum 0.17 0.09 0.03 0.02 0.05 0.04 0.04 0.04 Sdv Sum 0.18 0.15 0.02 0.03 0.04 0.03 0.02 0.02

Sdv Aut 0.24 0.22 0.01 0.02 627.87 405.89 3.5E+06 333.80 Sdv Aut 0.20 0.17 0.03 0.03 0.08 1.71 161.13 0.58

Cvr Win 0.25 0.25 0.01 0.03 0.04 0.13 0.27 0.23 Cvr Win 0.15 0.09 0.01 0.02 0.02 0.02 0.02 0.02

Cvr Spr 0.04 0.05 0.03 0.02 0.10 0.08 0.07 0.07 Cvr Spr 0.09 0.11 0.04 0.05 0.03 0.02 0.02 0.02

Cvr Sum 0.10 0.11 0.01 0.02 0.03 0.02 0.02 0.01 Cvr Sum 0.12 0.16 0.02 0.03 0.03 0.02 0.01 0.01

Cvr Aut 0.24 0.23 0.01 0.03 0.12 0.13 0.16 0.19 Cvr Aut 0.21 0.14 0.01 0.02 0.03 0.03 0.03 0.02

Skw Win 0.19 0.19 0.18 0.13 0.08 0.16 0.25 0.26 Skw Win 0.20 0.14 0.08 0.07 0.07 0.09 0.10 0.10

Skw Spr 0.13 0.13 0.13 0.11 0.12 0.17 0.23 0.23 Skw Spr 0.11 0.12 0.06 0.06 0.09 0.07 0.06 0.06

Skw Sum 0.10 0.10 0.17 0.12 0.07 0.06 0.06 0.06 Skw Sum 0.10 0.09 0.19 0.08 0.06 0.04 0.03 0.03

Skw Aut 0.14 0.15 0.13 0.07 0.11 0.14 0.17 0.18 Skw Aut 0.27 0.22 0.07 0.08 0.06 0.06 0.06 0.06

Krt Win 0.20 0.20 0.17 0.13 0.08 0.15 0.24 0.21 Krt Win 0.17 0.13 0.08 0.07 0.10 0.12 0.12 0.13

Krt Spr 0.13 0.13 0.11 0.10 0.11 0.15 0.20 0.20 Krt Spr 0.12 0.13 0.06 0.07 0.10 0.09 0.07 0.08

Krt Sum 0.10 0.10 0.15 0.12 0.08 0.07 0.06 0.06 Krt Sum 0.11 0.11 0.16 0.07 0.07 0.06 0.04 0.04

Krt Aut 0.13 0.13 0.14 0.08 0.10 0.13 0.15 0.17 Krt Aut 0.26 0.21 0.07 0.08 0.05 0.06 0.05 0.05

PrePro Lin N-Ln Gam E 25q E 50q E 75q E 100q PrePro Lin N-Ln Gam E 25q E 50q E 75q E 100q

Ave Win 0.15 0.02 0.02 0.02 0.02 0.02 0.02 0.02 Ave Win 0.27 0.03 0.03 0.02 0.03 0.03 0.02 0.03

Ave Spr 0.14 0.04 0.04 0.06 0.06 0.05 0.03 0.04 Ave Spr 0.29 0.04 0.05 0.05 0.07 0.05 0.04 0.04

Ave Sum 0.16 0.02 0.03 0.03 0.03 0.02 0.02 0.02 Ave Sum 0.31 0.05 0.06 0.04 0.05 0.05 0.05 0.05

Ave Aut 0.27 0.02 0.02 0.02 0.02 0.01 1875.66 0.01 Ave Aut 0.27 0.02 0.02 0.03 0.01 0.01 2.46 0.01

Sdv Win 0.14 0.08 0.02 0.01 0.03 0.03 0.02 0.02 Sdv Win 0.23 0.09 0.02 0.03 0.04 0.04 0.03 0.03

Sdv Spr 0.14 0.14 0.04 0.02 0.10 0.08 0.05 0.06 Sdv Spr 0.25 0.21 0.04 0.03 0.13 0.09 0.06 0.07

Sdv Sum 0.20 0.12 0.02 0.02 0.06 0.05 0.05 0.05 Sdv Sum 0.24 0.15 0.04 0.04 0.06 0.06 0.05 0.05

Sdv Aut 0.20 0.05 0.02 0.02 0.05 0.04 1.0E+04 0.03 Sdv Aut 0.25 0.03 0.03 0.07 0.03 0.02 14.28 0.02

Cvr Win 0.06 0.10 0.01 0.03 0.02 0.02 0.01 0.01 Cvr Win 0.11 0.13 0.01 0.04 0.01 0.01 0.01 0.01

Cvr Spr 0.12 0.18 0.01 0.04 0.03 0.02 0.02 0.02 Cvr Spr 0.20 0.24 0.01 0.05 0.05 0.03 0.02 0.02

Cvr Sum 0.09 0.14 0.01 0.04 0.03 0.03 0.03 0.03 Cvr Sum 0.16 0.19 0.02 0.06 0.02 0.02 0.01 0.01

Cvr Aut 0.14 0.07 0.01 0.01 0.03 0.02 0.02 0.02 Cvr Aut 0.03 0.03 0.01 0.04 0.02 0.02 0.01 0.01

Skw Win 0.14 0.16 0.03 0.08 0.05 0.05 0.03 0.03 Skw Win 0.18 0.17 0.02 0.13 0.05 0.05 0.04 0.04

Skw Spr 0.18 0.20 0.09 0.05 0.07 0.08 0.07 0.07 Skw Spr 0.27 0.27 0.10 0.09 0.06 0.08 0.08 0.08

Skw Sum 0.08 0.09 0.14 0.04 0.07 0.07 0.08 0.08 Skw Sum 0.11 0.10 0.20 0.04 0.04 0.04 0.03 0.04

Skw Aut 0.19 0.15 0.06 0.08 0.06 0.07 0.08 0.08 Skw Aut 0.04 0.04 0.04 0.08 0.05 0.07 0.08 0.07

Krt Win 0.16 0.19 0.03 0.09 0.07 0.06 0.04 0.04 Krt Win 0.24 0.24 0.04 0.17 0.05 0.06 0.06 0.06

Krt Spr 0.20 0.22 0.06 0.06 0.07 0.07 0.07 0.07 Krt Spr 0.29 0.28 0.08 0.11 0.04 0.06 0.06 0.06

Krt Sum 0.10 0.10 0.12 0.04 0.07 0.07 0.07 0.07 Krt Sum 0.12 0.11 0.18 0.04 0.05 0.05 0.04 0.04

Krt Aut 0.18 0.14 0.05 0.07 0.06 0.07 0.07 0.07 Krt Aut 0.04 0.04 0.03 0.09 0.04 0.06 0.07 0.06

PrePro Lin N-Ln Gam E 25q E 50q E 75q E 100q PrePro Lin N-Ln Gam E 25q E 50q E 75q E 100q

Ave Win 0.17 0.01 0.01 0.01 0.02 0.02 1235.97 0.10 Ave Win 0.31 0.01 0.01 0.01 0.02 0.22 0.02 0.37

Ave Spr 0.15 0.03 0.04 0.05 0.04 0.04 0.04 0.04 Ave Spr 0.39 0.02 0.03 0.04 0.05 0.04 0.03 0.03

Ave Sum 0.16 0.04 0.04 0.05 0.02 0.02 0.04 0.04 Ave Sum 0.21 0.02 0.03 0.03 0.03 0.02 0.02 0.02

Ave Aut 0.20 0.02 0.02 0.02 0.05 0.04 0.73 0.03 Ave Aut 0.07 0.01 0.01 0.01 0.02 0.02 0.01 0.01

Sdv Win 0.13 0.06 0.02 0.02 0.04 0.03 7690.10 0.64 Sdv Win 0.27 0.05 0.01 0.02 0.04 1.29 0.04 2.30

Sdv Spr 0.10 0.09 0.06 0.04 0.07 0.07 0.07 0.07 Sdv Spr 0.16 0.20 0.05 0.02 0.14 0.12 0.09 0.10

Sdv Sum 0.10 0.07 0.02 0.03 0.05 0.03 0.03 0.03 Sdv Sum 0.05 0.16 0.03 0.02 0.06 0.04 0.03 0.03

Sdv Aut 0.15 0.08 0.04 0.03 0.10 0.08 4.01 0.07 Sdv Aut 0.04 0.05 0.02 0.01 0.04 0.04 0.03 0.03

Cvr Win 0.08 0.06 0.01 0.01 0.02 0.01 0.01 0.01 Cvr Win 0.04 0.06 0.01 0.02 0.02 0.02 0.01 0.01

Cvr Spr 0.09 0.10 0.02 0.01 0.03 0.03 0.03 0.03 Cvr Spr 0.17 0.22 0.01 0.03 0.06 0.05 0.05 0.05

Cvr Sum 0.07 0.10 0.04 0.07 0.06 0.04 0.02 0.03 Cvr Sum 0.14 0.18 0.03 0.05 0.04 0.03 0.02 0.02

Cvr Aut 0.11 0.08 0.02 0.02 0.04 0.04 0.03 0.03 Cvr Aut 0.03 0.06 0.01 0.02 0.02 0.02 0.02 0.02

Skw Win 0.09 0.08 0.04 0.04 0.05 0.04 0.04 0.04 Skw Win 0.06 0.05 0.09 0.07 0.05 0.05 0.05 0.05

Skw Spr 0.11 0.10 0.17 0.10 0.06 0.07 0.09 0.09 Skw Spr 0.16 0.17 0.21 0.09 0.09 0.12 0.14 0.14

Skw Sum 0.09 0.09 0.13 0.06 0.11 0.09 0.06 0.06 Skw Sum 0.11 0.11 0.31 0.20 0.05 0.05 0.07 0.07

Skw Aut 0.12 0.11 0.05 0.06 0.06 0.08 0.09 0.09 Skw Aut 0.09 0.08 0.16 0.11 0.04 0.04 0.05 0.05

Krt Win 0.13 0.11 0.08 0.09 0.07 0.06 0.06 0.06 Krt Win 0.06 0.06 0.10 0.07 0.06 0.06 0.05 0.05

Krt Spr 0.10 0.10 0.14 0.08 0.05 0.06 0.07 0.07 Krt Spr 0.18 0.19 0.19 0.07 0.06 0.09 0.12 0.12

Krt Sum 0.09 0.09 0.11 0.06 0.13 0.11 0.08 0.08 Krt Sum 0.11 0.11 0.29 0.17 0.05 0.05 0.06 0.06

Krt Aut 0.12 0.11 0.05 0.06 0.05 0.07 0.08 0.08 Krt Aut 0.08 0.07 0.14 0.10 0.04 0.04 0.05 0.05

Northern Scotland Tay

Ribble Conway

Severn East Anglia
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method with 25, 50, 75 and 100 quantiles. Ave, Sdv,  Cvr, Skw and Krt are the 
statistical moments; average, standard deviation, c oefficient of variation (standard 
deviation divided by average), skewness and kurtosi s. Win, Spr, Sum and Aut are 
winter (December, January, Febuary), spring (March,  April, May), summer (June, July, 
August) and autumn (September, October, November) r espectively. Dark green, 
yellow and blue colours represent low, medium and h igh relative errors respectively. 

V. 2 Improvements to the Distribution Based Methods  

V. 2. 1.  Empirical Distribution Method 

Figure 6 shows that the empirical method can generate daily precipitation time series which, 
when compared to observations using the first two statistical moments, show large 
discrepancies. In order to determine the reason for these differences it was necessary to 
examine the bias-correction factors calculated for each percentile of the distribution. It was 
found that in some months, in localised areas of the test regions, the bias-correction factors 
for certain percentiles (generally the lower percentiles) were of the order of a million. These 
high correction factors occur when, in a certain quantile, the pre-processed precipitation is 
significantly lower than the observed precipitation. An example of this in the Tay test region 
is shown in Figure 7 and the reasons for these high correction factors are discussed further 
in section VI. 1. In view of the unrealistic values produced using this bias correction method 
the decision was taken not to proceed with this technique in the present project. 

 

Figure 7: Empirical Method Bias-Correction Factors – Tay Region: Map of Tay region 
bias-correction factors for January, percentile 14,  from the empirical method 75 
quantile run for the time period 1971-1980. The col our key for the bias-correction 
factors is given on the right hand side. 

V. 2. 2.  Gamma Distribution Method 

The gamma method is one of the best performing methods according to Figure 6, as it 
generates daily precipitation time series whose moments (both lower and higher) 
consistently show small relative errors compared with observations. However Figure 4 
shows that the distribution of the gamma bias-corrected daily precipitation does not match 
the distribution of the observed precipitation. Further assessment revealed whilst the 
observed and pre-processed daily precipitation data could not be approximated using a 
gamma distribution at the 1-km grid scale, the goodness-of-fit of the gamma distribution 
could be greatly improved by using area-averaged rainfall data (at the scale of RCM grids) 
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from each HadRM3-PPE members for 1961
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rather than 1 km rainfall data. As a result of this finding, the bias-correction procedure was 
amended so that prior to bias correction the observed data were aggregated to 25 km spatial 
resolution in line with the underlying resolution of the RCM data.  

Using the observed gridded rainfall averaged at HadRM3-PPE scale and gridded rainfall 
PPE members for 1961-1990, catchment/ regional average for the 

and three additional regions were calculated. Parameters of the best
gamma distribution were estimated using the method of moments, and the goodness of fit to 
the gamma distribution was assessed using a Chi-squared test, the results of which are 

value represents the probability of obtaining a 
statistic at least as extreme as that which was observed between the precipitation 

fit gamma distribution, under the assumption that the time
fit gamma distribution. Applying a typical significance threshold of 0.05 

shows that in over 80 percent of cases the rainfall distributions were indistinguishable from 
fit gamma distribution at the 0.05 significance level (i.e. 95% confidence level)

: Goodness of fit statistics for Chi -squared test comparing CERF and RCM 
with gamma distribution. Bold type indicates that t he data are 

indistinguishable from those drawn from a gamma dis tributio n at the 0.05 significance 
PPE ensemble members is used here, associated acron yms 

given in the second line (afgcx, afixa etc...)  Ng gives the number of 
for which a gamma distribution provides a reliable fit for each 

The clearest evaluation of the success of the RCM-scale bias-correction procedure used 
here is obtained through the examination of cumulative distributions of rainfall value

corrected time-series, respectively. These plots are given in
Note that the raw RCM data (i.e. before a wet-day correction was applied) is shown 

mapping method accurately corrects the higher quantiles of the 
distribution and considerably improves the accuracy of the lower quantiles. In each case the 

corrected data are brought closer to those of the observed data, 
scale gamma approach. A slight mismatch remains at low quantile 

values (typically when values of precipitation rate are less than 1 mm per day). This 
mismatch is not likely to be important when the data are used in hydrological models in 
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mismatch is not likely to be important when the data are used in hydrological models in 
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circumstances where daily evaporation rates are greater than 1 mm per day. There appears 
to be no consistent spatial pattern in the results.  

 

 Figure 8: RCM-scale Gamma Method Cumulative Distrib ution Functions: Cumulative 
distribution functions (cdfs) of observed (solid), and gamma bias-corrected (dotted) 
non-zero daily precipitation for the period 1961 – 2000. Cumulative distribution 
function of original RCM data (before wet-dry corre ction is applied) is shown with 
dashed line. 
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Section VI Summary, Discussion and Further Work 

VI. 1 Method Performance 

The performance of each bias-correction method was broadly as expected.  

The linear method performed the worst overall, where the majority of the improvement to the 
daily precipitation was confined to the first statistical moment. This is as expected as the 
linear method is a simple scaling method which only corrects the mean of the distribution. 
Hence, in agreement with (Leander and Buishand, 2007) we suggest that the linear method 
is suitable only where the estimation of hydrological extremes is not important.  

The non-linear method performed well in the re-sampling tests. At the lower order moments 
it was often the best of the four methods, especially in the autumn and winter seasons. At 
the higher order moments it did not offer such a significant improvement, but again in the 
autumn and winter seasons it performed similarly to the distribution-based methods in four of 
the six test regions. However, this method did not perform as well in the summer season at 
higher order moments. In all the test regions the relative difference between the observed 
and non-linear bias-corrected skewness and kurtosis in the summer season is greater than 
that between the observed and pre-processed daily precipitation time series. This means 
that the non-linear bias-correction method could be introducing additional uncertainties in the 
summer daily precipitation distribution. It is well known that the summer season is the often 
the most difficult when it comes to bias-correction (Li et al., 2010). In their study of non-linear 
bias-correction for the Rhine basin (Terink et al., 2010) found that the length of period 
chosen to calculate bias-correction factors had an effect on the accuracy of the bias-
correction in summer months. They found that periods of less than 65 days led to worse 
bias-corrections for July and August. In our study the bias-correction period is monthly, ~30 
days, hence this could be a factor in the poor performance of the non-linear method in the 
summer months. In terms of bias-correcting the distribution of daily precipitation the non-
linear method performed well for daily precipitation intensities over ~1 mm but 
underestimated the lowest intensity precipitation in the majority of test regions. 

The gamma method performed well in the re-sampling tests (performed on 1-km scale bias 
correction) showing a low sensitivity to the choice of calibration period and accurately 
captured the distribution of observed daily precipitation when the observed data were 
aggregated to the same spatial scale as the RCM data (see Section V. 2. 2. ). Its overall 
performance in the re-sampling tests was similar to the non-linear method. However, it was 
better at the higher order moments in the summer in all regions other than East Anglia. 

The empirical method performed with mixed success. Where it performed as intended e.g. 
the 25, 50 and 100 quantile tests in the Ribble region (see Figure 6), the empirical method 
was successful at correcting all statistical moments, with greater strength at the lower order 
moments. However, in all regions there was at least one of the empirical tests which did not 
perform as intended, seen by the high relative differences between the observed and bias-
corrected lower order moments in some seasons. It was found that these statistics were 
caused by unusually high bias-correction factors in the mid to low quantiles of the empirical 
distribution. These high correction factors occur when, in a certain quantile, the pre-
processed precipitation is significantly lower than the observed precipitation. It is known that 
the climate model precipitation often has a ‘drizzle’ effect whereby too much low intensity 
precipitation is simulated (Sun et al., 2006). This effect is what leads to mid to low quantiles 
containing precipitation which is significantly lower than the observed precipitation and 
hence, excessively high correction factors from the empirical method. In theory the empirical 
method should be able to correct all moments of the simulated distribution but, as shown 
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here, if the shape of the two distributions is too different then the performance of the 
empirical method is erratic.  

The bias correction method used to derive FF-HadRM3-PPE for precipitation is the quantile 
mapping method based on the RCM-scale Gamma distribution after a wet-day correction 
was applied to the whole series. Monthly correction models (wet day and gamma) were 
calibrated on 1961-1990 period. The correction was applied to all the ensemble members of 
HadRM3-PPE to generate 1950-2099 daily precipitation grids of the same scale than 
HadRM3-PPE. The downscaling to 1-km was done subsequently at through the snow-melt 
processing described in Morris (2012). 

VI. 2 Further Work 

We have identified three main areas for further work; increased record lengths, varying 
correction factor windows, and alternative distributions and fitting methods.  

The presence of significant natural variability in precipitation means that, for all methods, 
uncertainty on the 95th percentile can be greatly reduced by increasing the record length. 
This is true for all correction methods hence all methods may benefit from increased 
historical record length available for calculating correction factors. It may be possible to 
increase the observed record length by using a pooling technique (using data from long 
record stations to estimate data elsewhere) similar to that used in the Flood Estimation 
Handbook (Hydrology, 1999). RCM daily precipitation could be extended by pooling data 
from different model ensemble members over the historical period e.g. 1950 – 2000 as was 
demonstrated in Kendon et al (2008).  

In this study we calculated monthly bias-correction factors using daily precipitation from the 
same month for the full range of the bias-correction period (e.g., ten years for the re-
sampling tests in a cross-validation procedure, and forty years for the extra non-linear tests, 
i.e. on all available observed record). We then applied the appropriate monthly bias-
correction factor to daily precipitation data. Both Leander and Buishand (2007) and Terink et 
al (2010) calculated non-linear bias-correction factors for five day periods using a sixty-five 
day moving window centred on the period of interest, for the Meuse and Rhine basins 
respectively. Terink et al (2010) carried out a sensitivity analysis and found that periods less 
than sixty-five days led to worse results in the summer months. It may be possible to 
improve the performance of all four bias-correction methods by varying the window length 
used to calculate correction factors and also considering the use of a moving window.  

We have shown that the observed and pre-processed RCM daily precipitation used in this 
study were well represented by a gamma distribution when aggregated to the RCM scale 
and when fitted using the method of moments. However, a superior fit may be achieved by 
using the method of L-moments which is well suited to datasets with extreme outliers such 
as high intensity precipitation events (Hosking and Wallis, 1997). In addition to this it may be 
useful to test alternative distributions such as the Generalised Extreme Value distribution 
which may produce a better fit to the precipitation data used in this study. 
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Section VII Conclusion 

In this study four methods for bias-correcting HadRM3 daily precipitation data were tested 
over six regions spanning the UK, in order to determine the best bias-correction method for 
use in hydrological modelling applications.  

Re-sampling tests were used to assess the performance of the bias-correction methods in 
terms of the first four statistical moments and cumulative distribution functions were 
produced to compare the distribution of the bias-corrected daily precipitation with respect to 
the observed and pre-processed daily precipitation distributions. The linear method was 
shown to produce improvements in only the first two statistical moments, as was expected 
since it is the simplest of the four methods based solely on scaling the mean of the 
distribution. This method improved the distribution for mid-intensity daily precipitation, in 
some cases closely matching the observed, but did not do as well for the extremes. In most 
cases the empirical method produced an improvement in all the statistical moments, 
however its performance was erratic and it sometimes produced unrealistically high 
correction factors (and associated very large errors on the first moment in cross-validation). 
Despite this unreliability, in areas where it did work correctly, the empirical method improved 
the daily distribution at all precipitation intensities. The performance of the non-linear and 
gamma methods was similar in terms of the statistical moments with large improvements in 
the low order moments and moderate to significant improvements in the higher order 
moments. The non-linear method improved the majority of the daily precipitation distribution, 
only deviating significantly from the observed precipitation at daily intensities of less than 1 
mm.  

Following this initial testing phase the linear and empirical methods were ruled out. The 
linear method was deemed unsuitable as it did not improve the higher order moments of the 
distribution. Hence, daily precipitation generated in this way would not be suitable for 
hydrological modelling where accuracy at the extremes is important. The empirical method 
was discarded due to its unstable behaviour leading to unrealistically high bias-correction 
factors. However, as this method performed well in all other ways it is possible that with 
refinement it could be a dependable and accurate technique for bias-correcting daily 
precipitation. 

The gamma method was subjected to a further test to determine whether the observed and 
pre-processed daily precipitation fit a gamma distribution. The results of the Chi-squared test 
showed that a gamma distribution was an adequate fit to both the observed and pre-
processed daily precipitation in all the test regions, but only if the data were first aggregated 
to the scale of the RCM.  

Taking the known limitations, such as uncertainty in daily precipitation intensities of less than 
1 mm per day, into account this study concludes that the RCM-scale gamma-distribution-
based bias correction method is the most suitable for use with daily HadRM3 data for 
hydrological modelling applications in the UK. 
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