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Abstract

Enokipodins A, B, C, and D are antimicrobial sesquiterpenes isolated from the mycelial culture me-
dium of Flammulina velutipes, an edible mushroom. The presence of a quaternary carbon stereo-
center on the cyclopentane ring makes enokipodins A-D attractive synthetic targets. In this study,
nine different cytochrome P450 inhibitors were used to trap the biosynthetic intermediates of highly
oxygenated cuparene-type sesquiterpenes of F. velutipes. Of these, 1-aminobenzotriazole produced
three less-highly oxygenated biosynthetic intermediates of enokipodins A-D; these were identified as
(S)-(-)-cuparene-1,4-quinone and epimers at C-3 of 6-hydroxy-6-methyl-3-(1,2,2-trimethyl-
cyclopentyl)-2-cyclohexen-1-one. One of the epimers was found to be a new compound.

Key words: Antimicrobial compound, cuparene-1,4-quinone, edible mushroom, enokitake,
Flammulina velutipes.

Introduction

Flammulina velutipes (Curt. Fr.) Sing. (Enokitake in
Japanese), in the family Physalacriaceae (Agaricales,
Agaricomycetes), is one of the most popular edible mush-
rooms in Japan. Many bioactive metabolites have been iso-
lated from this fungus, including proteins (Komatsu et al.,
1963, Lin et al., 1974, Tsuda, 1979, Ko et al., 1995, Tomita
et al., 1998), glycoproteins (Ikekawa et al., 1985), polysac-
charides (Yoshioka et al., 1973, Leung et al., 1997, Yaoita
et al., 1998, Wasser and Wess, 1999, Smiderle et al., 2006),
sterols (Yaoita et al., 1998), and monoterpenetriol (Hirai et

al., 1998). In a previous screen for antimicrobial secondary
metabolites from edible mushrooms, we identified four
highly oxygenated cuparene-type sesquiterpenes,
enokipodins A-D (compounds 1-4), from F. velutipes

(Ishikawa et al., 2000, 2001). Enokipodins A-D demon-
strated antimicrobial activity against the fungus
Cladosporium herbarum (Ishikawa et al., 2000, 2001) and
the Gram-positive bacteria Bacillus subtilis and Staphylo-

coccus aureus (Ishikawa et al., 2005). Following our re-
port, several research groups synthesized these compounds
(Srikrishna and Rao, 2004, Saito and Kuwahara, 2005,

Srikrishna et al., 2006, Secci et al., 2007, Yoshida et al.,
2009, Luján-Montelongo and Ávila-Zarraga, 2010,
Srikrishna and Rao, 2010, Leboeuf et al., 2013). The influ-
ence of mycelial culture conditions on biosynthetic produc-
tion by F. velutipes was also studied (Ishikawa et al., 2005,
Melo et al., 2009). We speculated that the antimicrobial ac-
tivity of enokipodins A-D correlates to a highly oxygenated
cuparene nucleus. The involvement of cytochrome P450s
in many complex bioconversion processes, including de-
toxification reactions and the production of secondary me-
tabolites, has been established in fungi (van den Brink et

al., 1998). Although these enzymes carry out a wide range
of biocatalytic conversions, the general equation for all of
these reactions may be summarized as RH + NAD(P)H +
H+ + O2 � ROH + NAD(P)+ + H2O (van den Brink et al.,
1998). The presence of a quaternary carbon stereocenter on
the cyclopentane ring has made enokipodins A-D attractive
synthetic targets. However, considering the absence of bio-
synthetic studies involving these sesquiterpenes, the aim of
the present study was to trap the biosynthetic intermediates
of highly oxygenated cuparene-type sesquiterpenes of F.

velutipes using cytochrome P450 inhibitors.
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Materials and Methods

General notes

Merck Kieselgel 60 F254, 0.25-mm thick TLC plates
were used to purify the metabolites, while the spots were
viewed under UV light (254 and 365 nm). IR spectra were
recorded on a PerkinElmer 2000 FTIR, while mass spectra
were recorded on a JEOL JMS-SX 102 mass spectrometer.
1H- and 13C-NMR as well as 2D-NMR spectra were re-
corded on a Bruker AMX-500 spectrometer. Conformation
analysis was assisted by MM2 calculations using the
ChemBio3D molecular modeling program in ChemOffice
(CambridgeSoft).

Cultivation of the fungus

Flammulina velutipes (Fv-4) was cultivated in a
300 mL volume in 22 Erlenmeyer flasks containing 100 mL
of malt peptone broth (3% Difco malt extract and 0.3%
Merck peptone in distilled water, pH 4.5; the medium was
sterilized by autoclaving at 121 °C for 15 min). Each flask
was inoculated with five disks (7 mm i.d.) of freshly grown
mycelia on malt agar plates, and cultured for 30 days at
25 °C under stationary conditions.

Incubation with cytochrome P450 inhibitors

On day 20 of fermentation, a 1 mM ethanolic solution
(1 mL) of each inhibitor was passed through a Millipore
membrane filter (0.22 nm pore size) and added to two flasks
under aseptic conditions. To investigate the mechanism of
enokipodin oxygenation, the fungus was inoculated with
nine cytochrome P450 inhibitors: 1-aminobenzotriazole,
�-naphthoflavone, ancymidol, 1-benzylimidazole, chloro-
choline chloride, ketoconazole, miconazole, SKF-525A,
and xanthotoxin. Of these, 1-aminobenzotriazole produced
three less highly oxygenated metabolites (compounds 5-7).
The carbon atoms in compounds 5-7 were numbered on the
basis of biosynthetic considerations. Two flasks inoculated
with ethanol (1 mL each) and two uninoculated flasks were
used as a negative control. Fermentation was carried out at
25 °C for an additional 10 days. The mycelia were filtered,
washed with water and ethyl acetate (EtOAc), and the broth
thus obtained was extracted with EtOAc (600 mL each).
The extracts were concentrated in a vacuum and the crude
extracts thus obtained were spotted on TLC plates in paral-
lel with an aliquot of enokipodins A-D as references. The
analysis suggested that 1-aminobenzotriazole produced
two less-polar new spots (B-1 and -2). In this test, the Rf
values using toluene-acetone (4:1), in order of polarity,
were: enokipodin C (Rf 0.09), enokipodin D (Rf 0.23),
compound B-2 (Rf 0.30), enokipodin A (Rf 0.43), enoki-
podin B (Rf 0.75), and compound B-1 (Rf 0.87). The exper-
iment was therefore scaled up to 5 L and repeated using
1-aminobenzotriazole. Part (567 mg) of the gum (810 mg)
thus obtained was chromatographed on a silica gel (tolu-
ene: acetone = 6:1) to give two fractions containing B-1 and

-2, respectively. The fractions containing B-1 were purified
by TLC using hexane-EtOAc (20:1) as a mobile phase to
obtain compound 5 (6.1 mg). Those fractions containing
B-2 were purified by preparative TLC using toluene-ace-
tone (15:1) and hexane-EtOAc (3:1) to give compounds 6
and 7 (14.0 mg) as a 3.7:1 mixture of epimers (1H-NMR
analysis).

Compound 5

M.p.: 68-75 °C (lit. 72-73 °C) (Matsuo et al., 1977).
[�]D

24: -7º (c 0.01, CHCl3), +10º for (R)-enantiomer
(Matsuo et al., 1977). IR max (film) 2959, 1642, 1370 cm-1.
EIMS m/z (rel. int.): 233 (M+1+, 6), 232 (M+, 36), 217
(M+-15, 32), 202 (8), 189 (43), 164 (100), 150 (34), 149
(19), 137 (18), 95 (22), and 69 (28). HREIMS m/z 232.1486
(C15H20O2 requires 232.1464). For 1H and 13C spectral anal-
ysis, see Table 1.

A 3.7:1 mixture of compounds 6 and 7

[�]D
24: -61º (c 0.01, CHCl3), IR max (film) 3445,

1645 cm-1. EIMS m/z (rel. int.): 237 (M++1, 9), 237 (M+,
50), 218 (M+-H2O, 16), 203 (15), 180 (34), 135 (38), 121
(52), 109 (100), 91 (77), 79 (40), and 43 (81). HREIMS m/z

236.1770, (C15H24O2 requires 236.1772). For 1H and 13C
spectral analyses of the major diastereomer compound 6,
see Table 2.

Compound 7
1H NMR (CDCl3, 500 MHz): (Apparent signals were

selected.) 1.97 (1H,ddd, H�-2), 2.10 (1H, ddd, H�-2), 2.42
(1H, dddd, H�-1), 2.59 (1H, ddd, H�-1), 3.63 (1H, s, OH),
6.00 (1H, d, H-5). 13C NMR � (CDCl3, 125 MHz) 19.3,
22.3, 24.0, 24.9, 26.3, 27.8, 35.7, 36.7, 40.6, 44.6, 52.7,
72.3, 122.2, 172.6, and 202.7.

Results and Discussion

1-Aminobenzotriazole inhibited the biosynthesis of
enokipodins A-D (1-4) to produce two less-highly oxygen-
ated metabolites (compounds 5-7) by inhibiting the activity
of the fungal cytochrome P450 enzymes.

The EIMS of compound 5 showed a molecular ion
peak at m/z 232, which was confirmed by recording the
FDMS. HREIMS of the metabolite showed the precise mo-
lecular mass to be 232.1486, corresponding to the molecu-
lar formula C15H20O2, and hence proved that the compound
contained one less oxygen and two more protons than
enokipodin B. The 1H-NMR, 13C-NMR, and HMQC spec-
tra of compound 5 exhibited the presence of four methyl,
three methylene, two methane, and six quaternary carbons.
Two quaternary carbons resonated at � 188.2 and 188.5 due
to the carbonyls of the quinone moiety. A quaternary ole-
finic and an olefinic methine carbon were featured at �

143.6 and 135.5, respectively. Assignments of all proton
and carbon signals were made based on HMQC, HMBC,
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Table 2 - 1H and 13C NMR spectral data of compound 6 in CDCl3.

Position �Ca �Ha (J, Hz)
1H-1H COSY HMBC NOESYb

1 27.1 CH2 �2.39 dddd (2.5, 4, 13, 16) 1�, 2�� 6 1�, 2��, 12 (s), 13, 15(s)

�2.65 ddd (2, 4, 16) 1�, 2� 3, 5, 6 1�, 2��, 8�, 12, 13(w), 14 (w)

2 36.7 CH2 �2.13 ddd (2, 4, 12) 1��, 2� 3, 4, 6, 15 1�, 2�, 15

�1.95 ddd (4, 12, 13) 1��, 2� 1, 3, 4, 6, 15 1��, 2�

3 72.3 C - - - -

4 202.7 C - - - -

5 122.1 C 5.98 d (2.5) - 1, 3, 7 8��(s), 13(w), 14, 15(w)

6 172.5 C - - - -

7 52.7 C - - - -

8 36.1 CH2 �2.22 m 8�, 9 14 8�, 9, 13

�1.53 m 8�, 9 7, 10, 14 8�, 14

9 18.9 CH2 �� ca. 1.69 m 8, 10 10 8�(s), 8�(w), 10�, 12, 13(w), 14

10 40.2 CH2 � ca. 1.56 m 9, 10� 9, 11, 13 8� 10�, 12 13, 14

� ca. 1.69 m 9, 10� 9 8�, 10�, 12, 13(w), 14

11 44.3 C - - - -

12 24.3 CH3 1.08 s - 7, 10, 11, 13 1�(s), 1�(w), 5, 13(s)

13 26.1 CH3 0.82 s - 7, 10, 11, 12 1�(s), 1�(w), 5(w), 8�(s), 12, 15(s)

14 22.3 CH3 1.10 s - 6, 7, 8. 11 1�(w), 1�(s), 5(w), 8�, 10�

15 23.9 CH3 1.31 - 2, 3, 4 1�, 2�, 5(w), 13(s)

OH 3.65 - 2, 3, 4 15

aFrom DEPT. bw; weak cross peak, s: strong cross peak.

Table 1 - 1H and 13C NMR spectral data of compound 5 in CDCl3.

Position �Ca �Ha (J, Hz)
1H-1H COSY HMBC NOESYb

1 188.2 C - - - -

2 135.5 CH 6.50 d (2) 15 4, 6, 15 15

3 143.6 C - - - -

4 188.5 C - - - -

5 133.8 CH 6.65 s - 1, 3, 7 8�(s), 8�(w), 12(w), 13(w), 14(w)

6 154.9 C - - - -

7 51.4 C - - - -

8 38.6 CH2 �2.24 m 8�, 9 -c
5(s), 8�, 9, 13(w)

�1.60 m 8�, 9 10 8�, 14

9 19.9 CH2 �� ca. 1.7 m 8, 10 -c
8��, 10�, 12, 13, 14

10 41.6 CH2 �1.54 m 9, 10� -c
10�, 13

�1.73 m 9, 10� -c
8�, 10�, 12

11 44.1 C - - - -

12 25.3 CH3 1.12 s - 7, 10, 11, 13 5(w), 13(s), 14(s)

13 27.9 CH3 0.74 s - 7, 10, 11, 12 5(w), 8�(w), 10�, 12

14 23.0 CH3 1.29 s - 6, 7, 8, 11 5(w), 8�, 10�

15 14.9 CH3 2.01 d (2) 2 2, 3, 4 2

aFrom HMQC. bw; weak cross peak, s: strong cross peak. cAccumulation time was not enough.



1H-1H COSY, and NOESY spectra (Table 1) to give the
structure of compound 5 as shown. Compound 5 was previ-
ously isolated from the liverworts Jungermannia rosulans

(Matsuo et al., 1977), Radula javanica (Asakawa et al.,
1991), Lejeunea aquatic (Toyota et al., 1997), and
Lejeunea flava (Toyota et al., 1997). The 1H and 13C spec-
tral data for compound 5 were identical to those for synthe-
sized racemic 5 (Paul et al., 2003). Thus, we report here for
the first time the complete 1H- and 13C-NMR assignments
of compound 5. The NOE data for compound 5 revealed the
conformation of the main or averaged rotamer as shown in
Figure 1. The ring current in quinone shows a deshielding
effect on H�-8 (� 2.24) and shielding effect on H-13
(� 0.74).

Compounds 6 and 7 were difficult to separate; there-
fore, they were analyzed as a mixture. The 1H spectrum of
the mixture of compounds 6 and 7 revealed that the chemi-
cal shift and coupling pattern corresponding to each signal
in compounds 6 and 7 were quite similar; the ratio was
3.7:1. The carbon signal patterns for those compounds were
also similar. Since they seemed to be epimers, the major
one (compound 6) was examined first (Table 2). The mo-
lecular formula for compounds 6 and 7 was determined to
be C15H24O2 by HREIMS. The DEPT spectra of compound
6 showed the presence of 12 aliphatic carbons containing 4
methyl, 5 methylene, and 3 quaternary carbons. The re-

1288 Ishikawa et al.

Figure 1 - A stable conformation of (S)-(-)-cuparene-1,4-quinone (5). Im-
portant NOE correlations is shown by arrow.

Figure 2 - Planar structure of compound 6, with 1H-1H connectivities rep-
resented by dotted lines, HMBC correlations indicated by bold-faced
bonds and those of H-4 and H-14 indicated by arrow.

Figure 3 - (A) A stable conformation for compound 6. (B) Key NOEs observed of the cyclohexenone moiety in 6. (C) Key NOEs observed between the
protonse of the cyclohexenone moiety and those of the cyclopentane moiety in 6. (D) A possible conformation for compound 7.



maining three carbons (122.1, 172.5, and 202.7) may form
an �� �-unsaturated ketone moiety. An IR absorption at
3445 cm-1, dehydration ion at m/z 218 by EIMS, and the
presence of a tertiary carbonyl carbon resonating at � 72.3
in the 13C-NMR spectrum indicated compound 6 to be a ter-
tiary alcohol. A sharp signal corresponding to a hydroxy
proton was observed at � 3.65 in the 1H-NMR spectrum, in-
dicating the existence of intramolecular hydrogen bonding
between the hydroxy proton and carbonyl oxygen. The
HMBC spectrum revealed five- and six-membered rings in
compound 6 (Figure 2). The HMBC correlations of H-5 to
C-7 and H-14 to C-6 led to the assignment of a cuparene
skeleton for compound 6. The relative stereochemistry of
compound 6 as shown in Figure 3A is derived from several
lines of data: i) the observed NOEs of H-15/H�-1
(1,3-diaxial), H-15/H-5, and H-15/H�-2; ii) an allyl cou-
pling (2.5 Hz) between H-5 and H�-1 (pseudoaxial) in Fig-
ure 3B; and iii) the observed NOEs of H-15/H-13,
H-5/H��-8, H��-1/H-12,13, and H-14/H�-1 in Figure 3C.

In light of the model of biogenesis shown in Figure 4,
the configuration at C-7 in compound 6 must be S, as indi-
cated. The IUPAC name for compound 6 will be, therefore,
(S)-6-hydroxy-6-methyl-3-[(S)-1,2,2-trimethylcyclopentyl]-
2-cyclohexen-1-one. Compound 7 is deduced, tentatively,
to be an epimer of compound 6 at C-3 and a novel com-
pound. Very recently, compounds 5 and 6 and related com-
pounds were isolated from a solid culture of F. velutipes

growing on cooked rice (Wang et al., 2012a, 2012b). The
1H and 13C spectral data for compound 6 are identical to
those reported for flamvelutpenoid C (Wang et al., 2012a).
Compound 5 showed weak antibacterial activity against B.

subtilis (Wang et al., 2012a). Flamvelutpenoid C showed
weak antibacterial activity against Escherichia coli, B.

subtilis, and methicillin-resistant S. aureus (Wang et al.,
2012b). This means that appropriate strains of the fungus
can produce a series of cuparene-type sesquiterpenes under

suitable culture conditions. The precise assignment of 1H
signals for flamvelutpenoid C is reported here.

Three intermediates, compounds 5-7, were isolated
using 1-aminobenzotriazole as a cytochrome P450 inhibi-
tor in this study. Of these, compounds 6 and 7 are likely key
precursors of the phenolic ring in cuparene-type sesqui-
terpenes, including enokipodins A-D (1-4).
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