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Dissolved organic carbon from the 
upper Rio Negro protects zebrafish 
(Danio rerio) against ionoregulatory 
disturbances caused by low pH 
exposure
Rafael M. Duarte1,5, D. Scott Smith2, Adalberto L. Val1 & Chris M. Wood1,3,4

The so-called “blackwaters” of the Amazonian Rio Negro are rich in highly coloured dissolved organic 
carbon (DOC), but ion-poor and very acidic, conditions that would cause fatal ionoregulatory failure 
in most fish. However these blackwaters support 8% of the world’s ichthyofauna. We tested the 
hypothesis that native DOC provides protection against ionoregulatory dysfunction in this extreme 
environment. DOCs were isolated by reverse-osmosis from two Rio Negro sites. Physico-chemical 
characterization clearly indicated a terrigenous origin, with a high proportion of hydroxyl and phenolic 
sites, high chemical reactivity to protons, and unusual proteinaceous fluorescence. When tested 
using zebrafish (a model organism), Rio Negro DOC provided almost perfect protection against 
ionoregulatory disturbances associated with acute exposure to pH 4.0 in ion-poor water. DOC reduced 
diffusive losses of Na+ and Cl−, and promoted a remarkable stimulation of Na+ uptake that otherwise 
would have been completely inhibited. Additionally, prior acclimation to DOC at neutral pH reduced 
rates of branchial Na+ turnover, and provided similar protection against acid-induced ionoregulatory 
disturbances, even if the DOC was no longer present. These results reinforce the important roles that 
DOC molecules can play in the regulation of gill functions in freshwater fish, particularly in ion-poor, 
acidic blackwaters.

The dissolved component (DOM, dissolved organic matter) of aquatic natural organic matter (NOM) is now rec-
ognized to regulate many abiotic and biotic processes in freshwater systems1. Functionally, DOM is separated by 
0.45-μ m filtration, and quantified as dissolved organic carbon (DOC)2. For simplicity, we refer to DOM as DOC, 
recognizing that it contains approximately 50% carbon by mass. Important DOC functions include controlling 
transport, distribution and accumulation of ions and metals in various environmental compartments3,4, as well 
as promoting both indirect and direct physiological impacts on aquatic organisms5. DOC is derived from the 
decomposition of lignin-rich plant material and dead organic biomass, and also synthesis by aquatic microorgan-
isms2. DOC molecules have a generally irregular chemical structure and wide range of molecular weights (MW)6. 
The major components of aquatic DOC are “humic substances”, usually representing 50–90% of total content. 
These are a heterogeneous combination of higher MW “humic” acids and lower MW “fulvic” acids. Humic sub-
stances contain a variety of carboxylic, phenolic and carbonyl groups that are associated with the functional 
properties of DOC molecules in aquatic systems2,7,8. Other lower abundance components, such as amino acids 
(e.g. tyrosine, tryptophan) may also be important2.

All DOCs are not alike. In general, allochthonous (terrigenous) DOCs, derived from the degradation of 
land-based plant materials, are darker and higher in MW than the autochthonous DOCs synthesized in water 
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bodies by endogenous aquatic microorganisms. Many functional properties of DOCs, such as their affinity for 
protons and metal ions9, surface activity effects1, and ability to bind to biological membranes10, may be related to 
optical and physico-chemical characteristics11–14. In turn, functional consequences for aquatic organisms, such 
as the ability of a particular DOC to protect against metal toxicity7,15–21, and to exert effects on ionoregulatory 
physiology22–25 may be related to these same characteristics. In general, the darker and larger the DOM molecules, 
the greater are both protective effects against metal toxicity and physiological effects on ionoregulation5. Recently, 
Al-Reasi et al. (2013)8 related these two functions to the chemical reactivity of DOC to protons, as captured by a 
Proton Binding Index (PBI), which in turn was strongly correlated to colour originating from aromatic groups.

The blackwaters of the Rio Negro, the major tributary to the Amazon, contain some of the most darkly 
coloured and abundant DOCs in the world, typically 8-12 mg C L−1, but up to 35 mg C L−1 in small streams2,26. 
These waters are also highly acidic (pHs 3.0-5.5) and so low in essential ions (Na+, Cl−, Ca2+ <  50 μ mol L−1) that 
Sioli (1984)27 characterized them as ‘slightly contaminated distilled water’. Most fish, if exposed to these pHs and 
ion concentrations, would quickly die from ionoregulatory failure, due to inhibition of active ion uptake and 
acceleration of passive ion losses at the gills28,29. Yet approximately 8% of the world’s fish species are endemic to 
these blackwaters30. This has led to the hypothesis that Rio Negro DOCs have unique protective properties that 
allow fish to avoid ionoregulatory dysfunction in this extreme environment31–33.

To date, support for this hypothesis has been only circumstantial. Several studies have shown that native 
fish, when exposed to low pH in native Rio Negro water, exhibit better ionoregulatory performance than when 
exposed in synthetic waters of similar ionic composition but lacking DOC31,32,34. However, when a commer-
cial DOC was tested, it actually exacerbated ionoregulatory failure in one study34 yet protected in another33. 
Therefore, our goal was to test the hypothesis by isolating Rio Negro DOC by reverse-osmosis, characterizing its 
optical and physico-chemical properties by a range of techniques8,16, and then evaluating whether it protected 
against ionoregulatory dysfunction in fish exposed to low pH in typical ion-poor water. We used the zebrafish, 
a non-native model organism35, because the disturbances of its ionoregulatory physiology during low pH expo-
sure in the absence of DOC have been studied extensively29,36–38. Our results confirm the hypothesis, showing 
remarkable protective actions of upper Rio Negro DOC against ionoregulatory dysfunction in zebrafish at low pH 
in ion-poor water, effects which may be explained by the unusual physico-chemical characteristics of this DOC.

Results and Discussion
The physico-chemical properties of Rio Negro DOC isolates were determined in samples from two different 
sources, representing the aquatic systems of the upper and lower Rio Negro respectively, São Gabriel da Cachoeira 
(SGC) and Novo Airão (NA) The properties of the two isolates were similar, but those of the DOC from the 
SGC source were particularly extreme and unusual relative to other sources that our group has characterized 
by the same techniques8,16 (Table 1). The very high specific absorbances (SAC340) indicate the presence of a high 
content of ringed chromophores11,15 in both Rio Negro DOC samples, in accordance with their dark colour. 
Indeed the value of SAC340 for SGC was almost twice that of a DOC from another well-characterized, highly 
terrigenous source, a peat bog in Canada (Luther Marsh). Furthermore, the fluorescence indices (FI) were quite 
low, indicative of terrestrial origin12, and Abs254/365 values were very low, signalling a high mean MW for the DOC 
molecules13. Overall, these indices suggest large lignin-degradation products with high levels of aromatic humic 
and fulvic acids enriched in carboxylic and phenolic groups. Parallel factor analysis (PARAFAC) reinforced these 
conclusions, with humic-like components predominating in the excitation-emission matrices (EEM), followed 

DOC source Coordinates Type
SAC (cm2 

mg−1)b Abs254/365
c FId

Binding ligand capacities (LT, μ mol 
mg−1)e

Acid Intermediate Basic PBI

Dechlorinated 
Hamilton tap water 
(DC)a

— Tap water isolate 3.72 15.72 1.75 2.56 0.36 2.86 0.13

Lake Ontario (LO) a 43°29’N 79°79’W Autochthonous 4.85 9.75 2.54 1.32 0.50 3.75 0.20

Bannister Lake 
(BL) a 43°30’N 80°83’W Autochthonous 14.16 6.31 1.51 4.26 0.89 1.79 0.30

Preston Effluent 
(PE) a 43°39’N 80°35’W Sewage-derived 14.77 5.40 1.94 2.67 0.38 4.08 0.11

Nordic Reservoir 
(NR) a — Terrigenous 28.76 4.50 1.21 1.58 0.31 0.79 0.26

Luther Marsh (LM) a 43°37’N 80°26’W Terrigenous 39.30 3.72 1.19 1.74 0.70 1.45 0.44

Aldrich humic acid 
(AHA) a — Coal-derived 79.98 2.53 0.83 1.89 0.49 1.17 0.32

Novo Airão (NA) 2°37’S 60°56’W Terrigenous 59.00 2.90 1.42 1.01 0.73 2.89 0.38

São Gabriel da 
Cachoeira (SGC) 0°07’S 67°05’W Terrigenous 73.00 2.91 1.31 1.21 0.80 1.54 0.58

Table 1.   Summary of physicochemical properties of natural dissolved organic carbon (DOC) samples 
isolated by reverse osmosis from different freshwater systems. aData from Al-Reasi et al. (2013)8. bSAC340 is 
the specific absorbance coefficient at 340 nm normalized to DOC. cAbs254/365 is the ratio of absorbance at 254 nm 
to that at 365 nm. dFI is the fluorescence index. eLT is the binding site densities of DOC molecules. See text for 
description of each quality parameter.
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by fulvic-like moieties, though the humic component did not dominate to the same extent as in some other ter-
rigenous isolates such as Luther Marsh or Nordic Reservoir, and the tryptophan- and tyrosine-like components 
were not insignificant, suggesting some autochthonous input. One possible origin for these protein-like signals is 
violacein, a purple pigment produced by Chromobacterium violaceum, a microbe which is abundant in Rio Negro 
waters; additionally, this would contribute to the SAC340 signal39.

The acid-base properties revealed by titration of Rio Negro DOC samples, specifically their acidity constants 
(pKa) and their densities (LT, mmol mg−1), were similar to those previously reported by Al-Reasi et al. (2013)8 for 
DOC molecules from other terrigenous sources such as such as Nordic Reservoir and Luther Marsh (Table 1). 
However, the Rio Negro DOCs exhibited lower acidic peaks and higher basic peaks, which suggests a lesser 
contribution of carboxylic sites. Thus, hydroxyl and phenolic sites likely occur in higher proportion in these Rio 
Negro DOCs, than in either Nordic Reservoir or Luther Marsh DOC. The presence of two intermediate peaks in 
the pKa spectra was another important feature of Rio Negro DOC (Supplementary Fig. S1 online). These likely 
represent the contribution of proteinaceous material, such as tryptophan-like and tyrosine-like fluorophores that 
are not usually seen in DOC molecules from other terrigenous sites. The values for the Proton Binding Index 
(PBI) were high for both Rio Negro isolates, especially SGC DOC (Table 1), which fits with the prediction that 
the darker the organic matter, the greater is their PBI8. Both the spectroscopic features of DOC5,24 and the PBI8 
have proven to be useful (and correlated) predictors of the ability of DOC molecules to interact directly with 
the gills of fish5. Interestingly, these same properties also correlate with protective effects against metal toxicity 
in freshwater organisms7,8,16,17,19–21 (see Supplementary Fig. S2 online for additional information). Based on the 
more pronounced physico-chemical properties, we selected SGC DOC for all experimental tests with zebrafish.

Series 1 evaluated the potential protective effects of Rio Negro DOC on the ionic balance of zebrafish acutely 
exposed to low pH. Exposure to pH 4.0 in ion-poor water without DOC (IPW – pH 4.0) caused a complete 
blockade of unidirectional sodium influx (JNa

in), as well as a very large stimulation of unidirectional sodium efflux 
(JNa

out), when compared with rates of fish at ion-poor water at pH 7.0 (IPW – pH 7.0)  (Fig. 1). Therefore net 
sodium flux (JNa

net) became highly negative, equal to JNa
out. Upon return to pH 7.0, JNa

out recovered completely, but 
JNa

in remained substantially depressed for at least 3 h (Fig. 1). Net fluxes of Cl− (JCl
net) became similarly negative 

during exposure to IPW- pH 4.0, increasing more than 3-fold, but recovered fully upon return to pH 7.0 (Fig. 2). 
These results agree with many previous studies that have also reported reduced influxes, and increased diffu-
sive effluxes and net losses of Na+ and Cl− in both temperate and tropical fish exposed to low pH, especially in 
ion-poor water28,29,33,37,38,40–43. However, the presence of SGC DOC (10 mg L−1) greatly ameliorated these effects, 
which helps to explain how many fish species can thrive in acidic, ion-poor Rio Negro water. The increase in 

Figure 1.  Unidirectional sodium influx (JNa
in, upward positive solid bar), unidirectional sodium efflux 

(JNa
out, downward negative solid bars) and net sodium flux rates (JNa

net, cross-hatched bars) of adult 
zebrafish in ion-poor water (IPW). Means ±  1 SEM (N =  10 in each treatment). In the left-hand panel, the first 
three sets of bars represent fish initially tested (0-3 h) under the same control condition (no DOC) to which they 
were all acclimated (IPW – pH 7.0), and then in the middle panel acutely exposed (3–6 h) to either IPW +  DOC 
– pH 7.0, or IPW – pH 4.0, or IPW +  DOC – pH 4.0, followed in the right-hand panel by a recovery period 
(6–9 h) in which all fish were again exposed to the common acclimation condition (IPW – pH7.0). In addition, 
the fourth and fifth bars represent sodium flux rates of zebrafish which had been acclimated to DOC at pH 7.0 
for two weeks prior to test. In the left-hand panel, these fish were initially tested (0–3 h) under their common 
acclimation condition (IPW +  DOC – pH 7.0), and then in the middle panel acutely exposed (3–6 h) to either 
IPW – pH 4.0, or IPW +  DOC – pH 4.0, followed in the right-hand panel by a recovery period (6–9 h) in which 
both groups were again exposed to their common acclimation condition (IPW +  DOC – pH 7.0). Upper case 
letters represent significant differences (p <  0.05) in JNa

in or JNa
out among fish under different exposure regimes 

(different shading schemes) within the same flux period. Lower case letters represent significant differences 
(p <  0.05) in JNa

in or JNa
out of animals in the same regime of exposure (bars with same shading scheme), among 

different flux periods. Bars sharing the same letter are not significantly different.
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JNa
out during pH 4.0 exposure was reduced by 50% in the presence of SGC DOC (IPW +  DOC – pH 4.0), and the 

blockade of JNa
in was replaced by a stimulation, such that there was no longer a significant change in JNa

net (Fig. 1). 
SGC DOC also completely eliminated the elevation in the negative JCl

net (Fig. 2).
Previous studies have shown qualitatively similar but smaller protective effects when comparing the responses 

of fish in Rio Negro water with responses in synthetic ion-poor water of similar ionic composition but lacking 
DOC31,32,43. These authors speculated that DOC was involved, but Wood et al. (2003)43 reported that experimental 
addition of a commercially available DOC (Aldrich humic acid) actually exacerbated the effects of low pH expo-
sure. Following up this previous finding, the present study is the first to demonstrate that it is the specific DOC 
native to the Rio Negro (or some component thereof) that is the protective agent against disturbances in both the 
active influx and diffusive efflux components, effects which are seen even in a non-native fish species.

How might this work? Traditionally, diffusive ion losses at low pH were thought to occur mainly through 
the paracellular pathways in the gills due to a leaching of Ca2+ and accompanying disturbance of transmem-
brane tight junction proteins such as occludins and claudins28,38. Recently, increased paracellular permeability 
and the protective role of water Ca2+ were directly confirmed in zebrafish exposed to low pH29,37. In Rio Negro 
fish in synthetic water at low pH, experimental increases in water Ca2+ concentration have protective effects31,32,43 
similar to those seen with DOC in the present study. This suggests that in Ca2+ -poor waters, Rio Negro DOC 
molecules can rapidly modulate the tightness of the gill epithelium of zebrafish, perhaps through Ca2+ -like 
effects on tight junction integrity and/or through post-translational regulation of claudins and occludins44. A 
seminal study by Campbell et al. (1998)10 demonstrated that DOC molecules can actually bind to the surface 
membranes of isolated gill cells; this phenomenon was favoured by low pH, suggesting a hydrophobic bonding 
or a hydrogen-bonding sorption mechanism. Presumably, the negatively charged sites on DOC are titrated by the 
increased H+ concentration, making it easier for these amphiphilic DOC molecules to bind to key sites such as 
tight junctions. The high proportion of hydroxyl and phenolic sites, high chemical reactivity to protons (indicated 
by PBI), and unusual proteinaceous content of SGC DOC may all contribute to this property. DOC-binding may 
stabilize the junctions in the same way as Ca2+ ions (now displaced by low pH), thereby reducing passive paracel-
lular Na+ and Cl− effluxes, or even altering the transcellular permeability (see below).

Protection by SGC DOC against the inhibitory effects of pH 4.0 on active Na+ influx (JNa
in) was even more 

impressive (Fig. 1). In tests with “laboratory waters”, JNa
in is inhibited by acute exposure to this level of acidity 

in almost all freshwater teleosts, except in some native to Rio Negro blackwaters28,29,33. Clearly, the immediate 
complete protection, indeed overcompensation, against this effect in zebrafish by the presence of realistic levels 
of SGC DOC (Fig. 1), suggests some type of fast physicochemical interaction. Possibilities include higher pH or 
higher Na+ levels in the gill boundary layer due to the presence of bound DOC molecules, hindered access of 
external H+ ions to Na+ gill transport sites, favourable changes in transepithelial potential24, and/or direct solubi-
lisation of DOC molecules into branchial lipoprotein cell membranes45, thereby changing fluidity and transporter 
characteristics in the transcellular pathway. However the prior acclimation experiments of Series 2 (see below) 

Figure 2.  Net chloride flux rates (JCl
net) of adult zebrafish in ion-poor water (IPW). Means ±  1 SEM (N =  10 

in each treatment). In the left-hand panel, the first three bars represent fish initially tested (0-3 h) under the 
same control condition (no DOC) to which they were all acclimated (IPW – pH 7.0), and then in the middle 
panel acutely exposed (3–6 h) to either IPW +  DOC – pH 7.0, or IPW – pH 4.0, or IPW +  DOC – pH 4.0, 
followed in the right-hand panel by a recovery period (6–9 h) in which all fish were again exposed to the 
common acclimation condition (IPW – pH7.0). In addition, the fourth and fifth bars represent JCl

net values 
of zebrafish which had been acclimated to DOC at pH 7.0 for two weeks prior to test. In the left-hand panel, 
these fish were initially tested (0–3 h) under their common acclimation condition (IPW +  DOC – pH 7.0), and 
then in the middle panel acutely exposed (3–6 h) to either IPW – pH 4.0, or IPW +  DOC – pH 4.0, followed in 
the right-hand panel by a recovery period (6–9 h) in which both groups were again exposed to their common 
acclimation condition (IPW +  DOC – pH 7.0). Statistical significance (p <  0.05) is shown as in Fig. 1.
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suggest that these acute physicochemical interactions affecting permeability, uptake, or both may not be the 
whole story.

Series 2 tested whether prior acclimation of zebrafish to Rio Negro DOC would confer protection against 
disturbances of ionic fluxes caused by low pH. Acclimation to SGC DOC resulted in significantly lower JNa

in and 
JNa

out values at pH 7.0 (i.e. lower Na+ turnover), with no change in JNa
net (Fig. 1) or JCl

net (Fig. 2), in comparison 
to fish acclimated to IPW–pH 7.0 with no DOC. Acute exposure to both IPW – pH 4.0 and IPW +  DOC–pH 
4.0 resulted in similar responses, revealing protective effects of prior DOC exposure against acidity, which were 
present regardless of the presence or absence of DOC during the low pH exposure. These included significant 
increases in JNa

in, lesser elevations in JNa
out, substantially attenuated net losses of Na+ and Cl−, and more complete 

recovery, similar to the protective effects seen when DOC was presented only acutely (Figs 1 and 2).
These results suggest direct effects of long-term acclimation to SGC DOC on both permeability and transport 

processes, effects which can persist even when the DOC is no longer present in the water. To our knowledge, such 
phenomena have not been reported previously. These could occur because DOC molecules remain persistently 
bound to gill sites for some time, involving any or all of the acute protective mechanisms suggested above, or 
because their presence has elicited persistent physiological or structural changes in the gills. With respect to the 
latter, increased branchial Na+, K+ -ATPase activity46 and altered Na+, Cl− and Ca2+ uptake kinetics22,23,25,43 have 
been seen in organisms exposed to DOC for various periods. Recent evidence indicates that the stress hormone 
cortisol plays a critical role in allowing zebrafish to acclimate to low pH over the longer term47. Is it possible that 
the phenolic ring structure of SGC DOC mimics the action of cortisol? In current models of gill transport func-
tions in freshwater fish, Na+uptake is linked to ammonia excretion via a metabolon involving Rhesus (Rh) glyco-
proteins, Na+ and H+ transporters, and carbonic anhydrase48–50. Especially in ion-poor, acidic waters, ammonia 
excretion plays a key role in driving Na+ uptake29,36,37,51. Yet in the absence of DOC, the complete blockade of 
JNa

in by exposure to IPW-pH 4.0 in Series 1 (Fig. 1) was paradoxically accompanied by a substantial increase in 
net ammonia excretion (JAmm

net). This apparent uncoupling upon acute exposure to low pH has been reported 
frequently, and explained by H + blockade of Na+ uptake and simultaneous increased passive diffusion of NH3, 
facilitated by acid-trapping in the boundary layer of the gill epithelium (reviewed by Wilkie, 2002)52. Damage 
may also be involved, because both the inhibition of JNa

in and the stimulation of JAmm
net were also seen during the 

recovery period (i.e. IPW – pH 7.0; Figs 1 and 3). Yet the presence of SGC DOC during the acid-exposure period 
actually stimulated JNa

in while allowing the increase in JAmm
net to still occur, and facilitated the rapid recovery 

process for both flux rates. Prior acclimation to DOC in Series 2 resulted in very similar responses during the acid 
exposure and recovery periods (Figs 1 and 3).

DOC appears to maintain the coupling of Na+ uptake to ammonia excretion in zebrafish during and after 
exposure to low pH in ion-poor water. Indeed, JAmm

net was correlated with JNa
in in gills of zebrafish under all 

experimental conditions (r2 =  0.639; Fig. 4), except under IPW – pH 4.0, in fish not acclimated to DOC, where the 
processes were uncoupled during and after acid exposure. The upregulation of JAmm

net (Fig. 3) has been reported 

Figure 3.  Net ammonia flux rates (JAmm
net) of adult zebrafish in ion-poor water (IPW). Means ±  1 SEM 

(N =  10 in each treatment). In the left-hand panel, the first three bars represent fish initially tested (0–3 h) 
under the same control condition (no DOC) to which they were all acclimated (IPW – pH 7.0), and then in the 
middle panel acutely exposed (3–6 h) to either: IPW +  DOC – pH 7.0, or IPW – pH 4.0, or IPW +  DOC – pH 
4.0, followed in the right-hand panel by a recovery period (6–9 h) in which all fish were again exposed to the 
common acclimation condition (IPW – pH 7.0). In addition, the fourth and fifth bars represent JAmm

net values 
of zebrafish which had been acclimated to DOC at pH 7.0 for two weeks prior to test. In the left-hand panel, 
these fish were initially tested (0–3 h) under their common acclimation condition (IPW +  DOC – pH 7.0), and 
then in the middle panel acutely exposed (3–6 h) to either IPW – pH 4.0, or IPW +  DOC – pH 4.0, followed in 
the right-hand panel by a recovery period (6–9 h) in which both groups were again exposed to their common 
acclimation condition (IPW +  DOC – pH 7.0). Statistical significance (p <  0.05) is shown as in Fig. 1.
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as a compensatory response to enhance JNa
in in zebrafish in the face of elevated diffusive Na+ losses during acid 

exposure29,36,37. However, in these studies, the phenomena developed slowly (hours to days) and the possible 
involvement of DOC was not investigated. The present results suggest that DOC supports functional coupling of 
Na+ uptake to ammonia excretion via the Rh metabolon48,53 allowing an immediate compensatory response, but 
the mechanism awaits future investigation.

In conclusion, this study provides clear evidence confirming the hypothesis31–33 that Rio Negro DOC protects 
freshwater fish against ionoregulatory disturbances associated with acute low pH exposure in ion-poor water. 
This protection includes both controlling the “tightness” of the gills so as to reduce diffusive losses of Na+ and 
Cl− during acid stress, and promoting a remarkable stimulation of Na+ uptake that otherwise would have been 
completely inhibited. The latter seems to involve maintenance of a functional coupling whereby increased ammo-
nia excretion can drive elevated Na+ uptake during low pH exposure. Interestingly, prior acclimation to SGC 
DOC at neutral pH reduces rates of branchial Na+ turnover, and provides similar protection against acid-induced 
ionoregulatory disturbances. The latter occurs even if the DOC is no longer present, suggesting that acclimation 
to DOC induces persistent changes in gill physiology which provide greater tolerance to low pH. These results 
reinforce the important roles that DOC molecules can play in the regulation of gill functions in freshwater fish, 
and their critical importance for life in ion-poor, acidic blackwaters. In future, it will be of interest to evaluate if 
the pattern of ionoregulatory responses seen in zebrafish to DOC is widespread in other teleost fish species, par-
ticularly in those fish inhabiting acidic ion-poor waters, and also its correlation to specific structural properties of 
DOC from distinct aquatic environments.

Methods and Materials
Experimental animals and holding.  Adult zebrafish (0.377 ±  0.10 g) were purchased from Pets Mart 
(Hamilton, Canada), fed daily to satiation with a commercial food (Newlife Spectrum, Homestead, USA), main-
tained on a 12 h/12 h light/dark regime and kept in 50-liter aquaria for one month in moderately hard Lake 
Ontario water (Na+ 600 μ M, Cl− 800 μ M, K+ 50 μ M, Ca2+ 900 μ M and Mg2+300 μ M). After this first acclimation 
period, 50% of the water was replaced daily with reconstituted ion-poor water (IPW) until the desired final com-
position was reached (Na+ 50 μ M, Cl− 80 μ M, K+ 15 μ M, Ca2+ 10 μ M and Mg2+3 μ M) simulating the ion-poor 
levels of natural Rio Negro water30. Fish were allowed to acclimate for at least 1 week to this IPW condition.

All the experimental procedures and protocols using zebrafish were previously approved by the McMaster 
University Animal Research Ethics Board (AUP 12-12-45), and were performed in accordance with the guidelines 
on “The care and use of fish in research, teaching and testing” of the Canadian Council for Animal Care (2005).

Collection and characterization of Rio Negro DOC.  DOCs were from two pristine sites representing 
the upper and lower Rio Negro: São Gabriel da Cachoeira (SGC) district and Novo Airão (NA) city, 850 km and 
180 km upstream from Manaus, respectively (see Supplementary Table S1 for water chemistry). At each site, water 
from the main channel of the Rio Negro was pumped through 1-μ m wound string filters to a reverse-osmosis unit 
(Vontron® ULP21-4021 polyamide membrane, Permution, model PEOS-0001, Curitiba, Brazil)54,55. After collec-
tion, the NOM concentrates were treated with a cation exchange resin (Amberlite IR-118 (H), Sigma-Aldrich, St. 
Louis, USA), to avoid interferences by cations built up during reverse-osmosis7. Concentrates were then 0.45-μ m 

Figure 4.  The relationship between net ammonia flux rates (JAmm
net) and unidirectional Na+ uptake rates 

(JNa
in) of adult zebrafish in different exposure conditions in ion-poor water (IPW). Means ±  1 SEM. Gray 

circles represents flux rates of both JAmm
net and JNa

in of zebrafish under the acclimation conditions (i.e. IPW – pH 
7.0 or IPW +  DOC – pH7.0; 0–3 h), and then acutely exposed to either IPW +  DOC – pH 7.0, or IPW – pH 
4.0 or IPW +  DOC – pH 4.0 (3–6 h), followed by a recovery period in which they were again exposed to their 
acclimation condition (IPW – pH 7.0 or IPW +  DOC – pH 7.0). Note that the two black circles (not used in the 
regression) represent data from fish acutely exposed to IPW – pH 4.0 (no DOC), and these same fish during the 
recovery period at IPW – pH 7.0, where JAmm

net was entirely uncoupled from JNa
in. Nonlinear regression analysis 

was performed using Sigma Plot v 11.0. r2 =  0.639; p =  0.001, F =  19.531.
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filtered (AcrodiscTM, Pall, Ann Arbour, USA), stored at 4 °C, and characterized for physico-chemical properties 
and/or used in live fish experiments.

Acid-base titrations employed DOC isolates (68.36 ±  1.96 mg C L−1) diluted in 0.01 M KNO3 (Sigma-Aldrich, 
St. Louis, MO, USA). Base (0.1 N NaOH, from a standardized 1.005 N NaOH stock, Sigma-Aldrich) was added to 
stirred DOC solutions (pH 3.0) so as to increase pH in ~0.1-unit intervals until pH 11.0. Five titration replicates 
were carried out for each DOC sample, as well as three titration replicates with EpureTM water (MilliQ, Millipore, 
Etobicoke, Canada) acidified with 1.000 N hydrochloric acid (HCl, Sigma-Aldrich) to standardize the NaOH 
titrant. Proton binding constants (pKa) and their site densities (LT, μ mol mg−1) were determined through a fully 
optimized continuous model (FOCUS) using in-house MatlabTM (Mathworks, Natick, USA) programs56. Binding 
site densities within a specific pKa range were determined by integration of the area under the curve in the pKa 
spectrum.

For optical measurements, isolates were diluted with EpureTM water to 10 mg C L−1 and pH adjusted to 
~7.0 (0.1 N NaOH). The specific absorbance coefficient at 340 nm (SAC340) was determined as an indicator 
of the aromatic composition11, while the fluorescence index (FI) was used as an indicator of DOC origin12. 
The ratio of absorbance at 254 nm to that at 365 nm (Abs254/365) was measured as an indicator of MW13. Full 
excitation-emission matrices (EEMs) were generated and subjected to parallel factor analysis (PARAFAC) that 
quantitatively partitions the origin of the fluorescence14,57. The spectral EEMs were modeled using the PLS 
Toolbox from Eigenvector Research Inc. (Wenatchee, WA, USA) running on a MatlabTM platform. PARAFAC 
assigned the fluorescence on a percentage basis based on the a priori assumption that there were four components 
(humic-like, fulvic-like, tyrosine-like, and tryptophan-like)7,8.

Experimental design for flux measurements.  Following the characterization of DOCs from the two 
Rio Negro sites, we selected SGC DOC for all experimental tests because of its more distinctive physicochem-
ical properties. DOC concentrate was diluted (to a nominal concentration of 10 mg C L−1) with reconstituted 
ion-poor water, and test solutions were stored in the dark for 24 h21. The final pH of all experimental solutions 
was adjusted to neutral (pH 7.0; 0.01 N KOH) or acid (pH 4.0; 0.01 N HNO3) as appropriate. Throughout the 
experiments, pH values in all chambers were adjusted to the desired level (neutral or acidic) with 0.001 N KOH 
or 0.001 N HNO3 when necessary (see Supplementary Table S2 for pH, DOC, and water ions in experimental 
solutions).

For experiments, fish (N =  10 per treatment) were transferred from the holding aquaria to individual 40-ml 
aerated chambers filled with reconstituted ion-poor water representing the control condition (see below for 
details) for a 1-h settling period. Then 0.01 μ Ci ml−1 of 22NaCl (Amersham, Little Chalfont, U.K.) was added to 
each chamber. Following 5 min of mixing by aeration, a 3-h flux measurement was started with 6-ml samples 
taken at 0 h and 3 h. After the first 3-h flux period, water in each chamber was removed with a 60-ml syringe, tak-
ing care not to air-expose the fish, and replaced with a fresh reconstituted ion-poor water solution representing 
one of the experimental conditions. Again, 0.01 μ Ci ml−1 of 22NaCl was added, and following 5 min of mixing, 
another 3-h flux measurement was carried out. Following the second 3-h flux period, water in the chambers was 
changed again, back to fresh ion-poor water at pH 7.0, and after addition of radioisotope, a 3-h recovery flux 
measurement was performed. Water samples were kept at 4 °C prior to measurements of 22Na radioactivity, and 
total Na+, Cl− and ammonia. After the experiments, fish were weighed and monitored; no mortalities occurred 
under any of the experimental conditions tested.

The goal of Series 1 was to test whether DOC, presented simultaneously with low pH, would protect fish 
against ionoregulatory disturbances during acute exposure to pH 4.0. Therefore, in the control period, all three 
groups were exposed to the same water quality, ion-poor water at pH 7.0. In the experimental period, the three 
treatments were ion-poor water plus DOC at pH 7.0 (IPW +  DOC – pH 7.0), ion-poor water with no DOC at pH 
4.0 (IPW – pH 4.0), and ion-poor water plus DOC at pH 4.0 (IPW +  DOC – pH 4.0) so as to assess the separate 
and combined effects of acid exposure and DOC exposure. During the recovery period, all three groups were 
exposed to soft water at pH 7.0 with no DOC.

The goal of Series 2 was to test whether prior acclimation to DOC would protect zebrafish against acute expo-
sure to pH 4.0. To this end, animals were acclimated for 2 weeks to IPW +  DOC - pH 7.0 (8 mg C L−1 of SGC 
DOC), prior to the experimental exposures. All experimental procedures were conducted as described above, 
but in the first 3-h flux period, both groups were exposed to the acclimation condition, IPW +  DOC – pH 7.0. 
The 3-h experimental treatment was either IPW – pH 4.0 (i.e. no DOC) or IPW +  DOC – pH 4.0, followed by a 
final 3-h recovery period for both groups in IPW +  DOC – pH 7.0. The two experimental conditions served to 
differentiate effects dependent on the continued presence of DOC from those acquired entirely from the prior 
acclimation to DOC.

Sodium unidirectional fluxes and chloride and ammonia net fluxes.  Unidirectional and net Na+ 
flux rates (in nmol g−1 h−1) were measured according to Wood (1992)58. 22Na radioactivities in all water samples 
were determined using a Wizard 1480 Auto Gamma Counter (Perkin Elmer, Waltham, USA), and total Na+ con-
centrations using atomic absorption spectrophotometry (Varian SpectrAA 220FS, Mulgrave, Australia). Briefly, 
mean specific activity (SA) of the radioisotope (cpm nmol−1) in water samples was determined as the mean ratio 
between the concentration of 22Na radioactivity (cpm ml−1), and the concentration of total Na+ in the water 
(nmol ml−1) during the flux period. Unidirectional influx rates (JNa

in) of fish during each period were calculated 
as:

= ( − ) ( ) ( )−⁎ ⁎ ⁎J cpm cpm V SA T W 1in i f
1
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where cpmi =  radioisotope cpm ml−1 at the beginning of flux period, cpmf =  radioisotope cpm ml−1 at the end 
of flux period, V =  volume of water in the experimental chamber (ml), T =  flux period (h) and W =  wet mass of 
fish (g).

Total Cl− and ammonia concentrations in water samples were determined colorimetrically through the mer-
cury thiocyanate59 and salicylate/hypochlorite methods60, respectively. The net flux rates (Jnet) of Na+, Cl− and 
ammonia were calculated as:

= ( − ) ( ) ( )−⁎ ⁎X V T WJ X 2net 1 2
1

where X1 and X2 were, respectively, the initial and final Na+, Cl− or total ammonia concentrations (nmol ml−1) in 
the water during the flux period. Unidirectional efflux rates (Jout) were calculated as:

= − ( )J JJ 3out net in

Statistical analyses.  All data are reported as means ±  1 s.e.m. (N =  10). Statistical significance was accepted 
at p <  0.05. Significant differences in Na+ influx (Jin), efflux (Jout), and net flux rates (Jnet), and also in both Cl− and 
ammonia Jnet values, were determined through a one-way ANOVA, followed by the a posteriori Dunnett’s multiple 
comparison test. In the case of a failed normality test, a non-parametric Kruskal-Wallis test was performed. All 
statistical analyses and graphics employed Sigma Stat and Sigma Plot software (Jandel Scientific, San Jose, USA).
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