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Sinopse 

Este estudo tem como objetivo prever áreas ambientalmente adequadas para a 

ocorrência dos quelônios de água doce na Amazônia, e avaliar se o grupo é protegido pela 

rede atual de áreas Protegidas (APAs) na Amazônia Brasileira (Gap analysis). Nós analisamos 

também a vulnerabilidade do grupo em relação ao desmatamento na Amazônia Brasileira. 

Áreas prioritárias para a conservação de quelônios foram selecionadas levando em 

consideração o desmatamento, o requerimento de habitat das espécies e a rede de APAs 

existente. Espécie com ampla extensão de ocorrência na Amazônia podem apresentar 

requerimentos distintos em diferentes áreas geográficas. Assim, nós testamos a transferência 

dos modelos de distribuição de espécies. Com a finalidade de entender como as mudanças 

climáticas afetam a razão sexual de espécies onde o sexo é dependente da temperatura, nós 

modelamos a “norma de reação” do crescimento do embrião e a sexualização em temperaturas 

de ninhos naturais em uma praia de areia e em uma área de Várzea na Amazônia central. 

Palavras-chave: tartarugas, Análise de Lacunas, vulnerabilidade, mudanças climáticas, 

modelo de razão sexual 
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RESUMO 

ESTRATÉGIAS E ÁREAS PRIORITÁRIAS À CONSERVAÇÃO DE QUELÔNIOS 

AQUÁTICOS E SEMI-AQUÁTICOS NA AMAZÔNIA 

Este estudo teve como objetivo avaliar ameaças relacionadas a tartarugas de água doce na 

Amazônia brasileira, a fim de propor estratégias e áreas prioritárias para a sua conservação. 

No primeiro capítulo, foram utilizados dados de distribuição de quelônios para prever áreas 

ambientalmente adequadas para a ocorrência do grupo (modelos de distribuição de espécies - 

SDM) e avaliar se as tartarugas são protegidas pela rede de reservas atuais (Gap Analysis). 

Identificamos apenas uma espécie-lacuna, Mesoclemmys nasuta. Outras espécies de quelônios 

tiveram pelo menos uma parte de sua área de distribuição incluída em áreas protegidas. 

Considerando Áreas de Proteção Integral (IPA), apenas Rhinoclemmys punctularia e 

Kinosternon scorpioides estão protegidas. A inserção de Áreas de Uso Sustentável (SUA) e 

Áreas de Territórios Indígenas (ITA) foram cruciais para considerar protegida a maioria das 

espécies. Quelônios podem ser sobreexplorados em áreas que não são protegidas 

integralmente. É necessário reestruturar as áreas protegidas na Amazônia, a fim de contemplar 

locais de captação dos rios. No segundo capítulo foi avaliada a exposição das tartarugas de 

água doce ao desmatamento. Nós também identificamos áreas prioritárias para a conservação 

do grupo com base nas exigências do habitat das espécies, o desmatamento e a rede de áreas 

protegidas atuais. As áreas prioritárias para conservação estão localizadas no norte do 

Amazonas e elas não abrangem áreas de grande desmatamento. No entanto, o maoir número 

de espécies afetadadas pelo desmatamento está no centro-nordeste da Amazônia, onde o 

desmatamento está progredindo. Phrynops geoffroanus, Kinosternon scorpioides e 

Rhinoclemmys punctularia apresentaram maior porcentagem de SDMs perdidos devido ao 

desmatamento. As reservas incluíram grande quantidade de área exigida na conservação de 

quelônios, mas elas não estão localizadas em áreas de maior riqueza. Nossos resultados 

destacam as regiões mais importantes para investir na conservação das tartarugas de água 

doce na Amazônia brasileira. No terceiro capítulo, nós analisamos se os Modelos de Nicho 

Ecológico (ENM) de uma espécie amplamente distribuída, Podocnemis expansa, são 

transferíveis para outras partes de seu range geográfico. Todos os valores de TSS foram 

baixos, indicando que os modelos não podem ser transferidos de uma área da Amazônia para 

outra. Por outro lado, a AUC apresentaram excelentes e bons valores, não importa o conjunto 

de dados e a seleção de preditores. A área predita para a ocorrência da espécie em número de 

pixels mostrou forte relação com os valores de AUC e TSS. Nosso estudo demonstra a 

importância de capturar mudanças relevantes nas necessidades da espécie em cada região. 

Devido à falta de transferência, a soma das áreas adequadas prevista para ambas as regiões do 

conjunto de dados que produziram modelos mais acurados podem ser utilizados para 

representar a distribuição das espécies. No quarto capítulo, determinamos a razão sexual de 

filhotes de P. unifilis baseado na dependência da taxa de crescimento do embrião a partir de 

uma série histórica de temperaturas de incubação de ninhos naturais na Amazônia central. O 

nosso estudo é a primeiro a mostrar que a temperatura influencia a taxa de desenvolvimento 

do embrião e a determinação do sexo de um modo diferente. Temperatura média diária do 

ninho foi relacionada com a distância dele até a vegetação, temperatura do ar e da área. 

Variação termal diária está relacionada com a temperatura diária do ninho e ambas são 

responsáveis pela determinação do sexo. A praia de areia mostra alto padrão de feminização, 

mas a praia de Várzea ainda é um importante local de produção do sexo masculino e parece 

ser crucial para a manutenção da viabilidade populacional. 
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ABSTRACT 

STRATEGIES AND PRIORITY AREAS FOR THE CONSERVATION OF AQUATIC 

AND SEMI-AQUATIC AMAZON TURTLES  

This study aimed to evaluate some threats to freshwater turtles in Brazilian Amazon in order 

to propose strategies and priority areas to their conservation. In the first chapter, we used 

chelonian distribution data to generate species distribution model (SDM) that predict suitable 

areas for the occurrence of the group and to evaluate if turtles are protected by the current 

reserve networks (Gap Analysis). We identified only one gap species, Mesoclemmys nasuta. 

Other chelonian species had at least a portion of their distribution range included in protected 

areas. Considering Integral protected Areas (IPA), only Rhinoclemmys punctularia and 

Kinosternon scorpioides are protected. The insertion of Sustainable Use Areas (SUA) and 

Indigenous Territories Areas (ITA) was crucial to consider protected most of turtles. 

Chelonians may be overharvested in non-integral protected areas due their importance as a 

food resource. It is necessary to restructure the protected areas in Amazon in order to 

contemplate river catchment sites. In the second chapter we evaluated the exposition of the 

freshwater turtles to deforestation. We also identified priority areas to the group conservation 

based on the habitat requirements of the species, deforestation and the network of protected 

areas. The priority areas to freshwater chelonian conservation are located in northern Amazon 

and they do not encompass high deforestation areas. However, higher vulnerability of turtle 

richness to deforestation is located in central-northeastern Amazon, where the deforestation is 

currently progressing. Phrynops geoffroanus, Kinosternon scorpioides and Rhinoclemmys 

punctularia had higher percentage of their SDMs lost due to deforestation. Protected areas 

included large amount of sites required by chelonian conservation but they are not located in 

areas with higher turtle richness. Our results highlight the regions more important to invest in 

conservation of freshwater turtles in Brazilian Amazon. In the third chapter, we analized if the 

Ecological Niche Model (ENM) of a large distributed species, Podocnemis expansa, are 

transferable to other parts of its geographical range. All TSS values were low, indicating that 

the models cannot be transferred from one Amazon area to another. On the other hand, AUC 

showed excellent and good values, no matter the dataset and predictor selection. The 

predicted area in number of pixels showed strong relationship with the TSS and AUC values 

using both predictor selections. Our study demonstrates the importance of capture relevant 

drivers of change in the requirements of the species in each region. Given the lack of 

transferability, the sum of the suitable areas predicted to both regions of the dataset which 

produced the more accurate model may be used to represent species distribution. In the fourth 

chapter, we determined sex ratio of P. unifilis hatchlings based on the dependency of the 

embryo growth rate from a time series of incubation temperatures of natural nests in central 

Amazonia. Our study is the first one to show that temperature influences the embryo 

developmental rate and sex determination in a different way. Daily mean nest temperature 

was related to distance to vegetation, air temperature and area. Daily thermal variance is 

related to daily mean nest temperature and both are responsible to sex determination. The 

sand beach shows high feminization pattern, but the flooding site is still an important source 

of male production and it seems to be crucial to the maintenance of the population viability. 
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INTRODUÇÃO GERAL 

 

A biogeografia de quelônios possui forte concordância com a fragmentação da Pangea 

no Jurássico. Durante o Cretáceo, o grupo (exceto as tartarugas marinhas) apresentou padrões 

fortes de provincianismo, relacionados aos conjuntos de terra resultantes daquela cisão 

(Hirayama et al., 2000). Um dos maiores padrões de distribuição é a separação das duas 

subordens de quelônios existentes hoje no Cretáceo, onde Pleurodira exerceu domínio na 

Gondwana, na parte sul e Cryptodira exerceu domínio na Laurásia, na parte norte (Broin e De 

la Fuente, 1993). Na América do Sul, a diversidade de quelônios parece ser bastante 

influenciada pelo tempo de especiação, pois as famílias mais diversas nessa região são de 

origem Gonduânica (Hirayama et al., 2000; De la Fuente et al., 2014). Eventos de especiação 

geográfica alopátrica são tidos como os responsáveis pela riqueza de espécies na Amazônia 

(Haffer, 1969; Bush, 1994; Haffer, 1997; Moritz et al., 2000; Cheviron et al., 2005). Haffer 

(2008) afirma que a explicação mais plausível da origem da maioria das espécies na região 

Neotropical é resultado de eventos ecológicos simultâneos de vicariância através de 

flutuações globais climático-vegetacionais que separaram repetidos "refúgios" ecológicos por 

muitos milhões de anos. O avanço final do rio Amazonas em direção ao seu curso moderno 

ocorreu com a elevação final da Cordilheira Central dos Andes (Gregory-Wodzicky, 2000) e 

o aumento do arco Purus (Lundberg et al., 1998). Depois de regressões marinhas, a dinâmica 

andina levou à fragmentação do Alto Amazonas, com diversos arcos que formaram o 

estabelecimento final dos principais afluentes (Rasanen et al., 1987; 1992; Hoorn et al., 

1995). A diversidade de peixes amazônicos e suas áreas de endemismo podem ser atribuídas 

ao aumento dos arcos e à persistência de água doce na terra emergida durante a transgressão 

marinha no Mioceno-Plioceno (Albert e Reis, 2011). Os mesmos eventos também devem ter 

influenciado na diversidade e áreas de endemismo de quelônios de água doce. 

Atualmente existem 442 espécies de quelônios, sendo 327 espécies e 115 subespécies 

(van Dijk et al., 2014). A riqueza de quelônios segue um gradiente latitudinal, com 

aproximadamente 250 espécies localizadas nas regiões tropical e subtropical (Bour et al., 

2008). A precipitação anual é a variável responsável pela riqueza global de tartarugas quando 

diferentes bacias hidrográficas são avaliadas (Iverson, 1992; Hecnar, 1999; Moll e Moll, 

2004). E o mesmo padrão é verificado na América do Sul (Souza, 2005). Além disso, os 

padrões espaciais dos quelônios continentais sul-americanos estão relacionados a formações 
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geológicas e vegetacionais (abertas e fechadas) e outras variáveis climáticas, resultando em 

diferentes áreas de endemismo (Pritchard e Trebbau, 1984; Hecnar, 1999; Ippi e Flores, 2001; 

Souza, 2005). A Amazônia é uma região com grande riqueza de quelônios (Buhlmann et al., 

2009), onde 12 são endêmicas (Rhodin et al., 2010). O Brasil, por sua vez, é o quinto país em 

riqueza de quelônios juntamente com a China (Rhodin et al., 2010), apresentando 35 espécies 

(Sbh, 2015).  

As espécies de quelônios, tanto as extintas como as atuais, apresentam características 

morfológicas muito semelhantes, sugerindo que a manutenção da forma como o grupo explora 

o ambiente foi bem sucedida evolutivamente e conservada (Ernst e Barbour, 1989; Páez et al., 

2012). Entretanto, atualmente o grupo está entre os vertebrados mais ameaçados (Klemens, 

2000): 10% das espécies existentes são consideradas criticamente ameaçadas (Buhlmann et 

al., 2002; IUCN, 2011) e aproximadamente 74% se encontram em algum grau de ameaça 

(Turtle Taxonomy Working Group - van Dijk et al., 2012). O declínio mundial do grupo é 

atribuído em grande parte pela perda de habitats aquáticos, a fragmentação de habitats devido 

a fatores antrópicos de uso da terra (Millennium Ecosystem Assessment, 2005) e sobre-

exploração (Gibbons et al., 2000; Klemens, 2000). International Union for Conservation of 

Nature (IUCN, 2011) classificou sete espécies Amazônicas em alguma categoria de ameaça.  

Uma grande ameaça aos quelônios na região da Amazônia consiste na sua importância 

como recurso alimentar para as populações indígenas e ribeirinhas e o comércio ilegal. 

Indivíduos adultos têm sido capturados e seus ovos têm sido colhidos há muitas gerações 

(Pritchard e Trebbau, 1984; Fachín-Terán et al., 1996; Vogt, 2001). A maior pressão de caça 

encontra-se na família Podocnemididae (Klemens e Thorbjarnarson, 1995; Vogt, 2001), tendo 

provocado uma drástica redução de suas populações (Mittermeier, 1975; Vogt, 2001). Em 

geral, Podocnemis expansa (tartaruga-da-amazônia) e P. unifilis (tracajá) são as espécies mais 

consumidas, devido ao fato de atingirem tamanhos maiores, mas a preferência no consumo de 

quelônios varia de acordo com a região (Fachín-Terán, 2000; Vogt, 2001; Silva, 2004), 

estação do ano (Pezzuti et al., 2010) e disponibilidade (Fachín-Terán, 2000). Uma análise 

conservativa sugeriu que nas décadas de 80 e 90 cerca de 38.790 a 95.110 adultos de P. 

unifilis e de 59.150 a 145.020 adultos de P. expansa foram consumidos anualmente por 

famílias ruuais na Amazônia Brasileira (Peres, 2000). 

Na família Podocnemididae, a maioria das espécies tem o sexo dos filhotes 

determinado pela temperatura no interior dos ninhos (TSD), onde maiores temperaturas são 

favoráveis à produção de fêmeas (Ewert et al., 1994; Viets et al., 1994). Grandes padrões de 
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mudanças climáticas tem sido descritos para as próximas décadas e TSD espécies são 

particularmente vulneráveis a essas modificações (Karl et al., 1996; Magnusson, 2001; 

Intergovernmental Panel on Climate Change - IPCC, 2007; Deutsch et al., 2008; Kallimanis, 

2010; Mitchell e Janzen, 2010). O aquecimento global pode aumentar a proporção de fêmeas 

nas populações (Hawkes et al., 2009; Hays et al., 2010; Limpus, 2006; Schwanz, 2013), 

modificar a sobrevivência dos ninhos (Broderick et al., 2001; Godley et al., 2001; Hawkes et 

al., 2007) e alterar a distribuição de espécies (Brown et al., 1997; Parmesan et al., 1999; 

Walther et al., 2002). Quelônios podem mudar seu comportamento, escolhendo locais de 

nidificação mais frios ou mudando a época de desova para diminuir uma razão sexual 

desproporcional (Hawkes et al., 2007; Schwanz e Janzen, 2008). Entretanto, não está claro se 

as tartarugas podem se adaptar tão rapidamente ao aquecimento global atual. Quelônios são 

organismos de longa duração, possuem maturidade tardia (Avise et al., 1992; Zug et al., 

2002) e tem evoluído para mudanças climáticas a um ritmo muito mais lento do que as 

projeções sugerem para os próximos cem anos (Hamann et al., 2007).  

Os preditores da paisagem mais importante no declínio de tartarugas são a cobertura 

florestal e a quantidade de habitats aquáticos (Reese e Welsh, 1998; Gibbons et al., 2000; 

Quesnelle et al., 2013). Apesar de não existir estudos que quantifiquem os impactos da 

fragmentação florestal nas populações de quelônios da região amazônica, a perda e 

degradação de habitat são apontadas por serem grandes ameaças ao grupo nesse bioma 

(Rhodin et al., 2009; Berry e Iverson, 2011; Magnusson e Vogt, 2014; Mittermeier et al., 

2015). O índice atual e a extensão cumulativa do desmatamento na Amazônia abrangem áreas 

enormes, principalmente em função de políticas de desenvolvimento na região (Fearnside, 

2005), tais como pecuária bovina, exploração madeireira e agricultura (Fearnside, 2003; 

Alencar et al., 2004; Laurance et al., 2004). Quando a floresta é convertida para usos tais 

como as pastagens, as funções da bacia hidrográfica são perdidas (Fearnside, 2005).  

A conservação dos ecossistemas muitas vezes entra em conflito com outros interesses 

socioeconômicos. Assim, a criação de áreas protegidas parece ser a melhor técnica para 

diminuir os impactos antrópicos sobre as espécies e conservar populações viáveis nos seus 

ambientes naturais (Rodrigues et al., 2004; Loucks et al., 2008). No entanto, várias análises 

de lacunas a nível regional e continental revelam que as áreas existentes para a proteção da 

biodiversidade são inadequadas (Scott et al., 2001; Ochoa-Ochoa et al., 2007). Áreas com 

elevada riqueza podem apresentar uma composição similar no que diz respeito às espécies que 

ocorrem nesses locais. Assim, a escolha de áreas prioritárias para a conservação deve ser 
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embasada na complementaridade de áreas que representem toda biodiversidade (Bonn e 

Gaston, 2005). Para a avaliação desses parâmetros é necessário o conhecimento da 

distribuição das espécies. Esses dados, entretanto, são raramente disponíveis, especialmente 

em regiões tropicais pobremente amostradas (Crisci, 2001). 

Modelos de Distribuição de Espécies (SDM) ou Modelos de Nicho Ecológico (ENM), 

entre outros nomes (Araújo e Perteson, 2012; Peterson e Soberón, 2012) podem constituir 

uma importante ferramenta para preencher as lacunas na informação sobre a distribuição das 

espécies (Raxworthy et al., 2003; Costa et al., 2010). Esses modelos definem a 

adequabilidade ambiental para a sobrevivência das populações (Guisan e Thuiller, 2005; Elith 

e Leathwick, 2009; Franklin, 2010; Peterson et al., 2011) por meio da identificação de 

relações estatísticas entre suas ocorrências e um grupo de preditores ambientais (Guisan e 

Zimmermann, 2000). As áreas adequadas são projetadas no espaço geográfico para estimar a 

distribuição das espécies (Peterson, 2001).  

A falta de conhecimento sobre padrões de distribuição de quelônios e sua 

vulnerabilidade em escala Amazônica dificulta o planejamento adequado de ações 

conservacionistas para o grupo nesse bioma. As ações de manejo desenvolvidas para 

quelônios focam na proteção dos sítios de desova para a proteção de filhotes, entretanto, 

usualmente não existem informações sobre a sua razão sexual. Devido a grande proporção de 

ameaças que o grupo enfrenta, torna-se urgente o desenvolvimento de medidas de proteção 

em locais além dos seus sítios reprodutivos.   

Com base no exposto, a presente tese foi dividida em quatro capítulos. O primeiro 

capítulo tem como objetivo prever áreas ambientalmente adequadas para a ocorrência dos 

quelônios de água doce na Amazônia; e avaliar se o grupo é protegido pela atual rede de áreas 

Protegidas na Amazônia Brasileira (Gap Analysis). O segundo capítulo trata da 

vulnerabilidade das tartarugas de água doce em relação ao desmatamento na Amazônia 

brasileira e identifica áreas prioritárias para a conservação do grupo. A seleção dessas áreas 

foi baseada no desmatamento, no requerimento das espécies, além de considerar a rede atual 

de áreas protegidas no bioma.  

As espécies com distribuição ampla podem apresentar requerimentos distintos em 

diferentes áreas geográficas. A compreensão dos fatores ecológicos que determinam a 

adequabilidade de habitats em cada local é importante para a conservação das espécies em 

toda a sua extensão de ocorrência. Assim, para a maior aplicação de modelos de predição nas 

ações de manejo, no terceiro capítulo nós testamos a transferência de modelos de distribuição 
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de P. expansa para diferentes áreas da Amazônia. O desempenho dos modelos foi baseado na 

seleção de preditores para controlar autocorrelação e escolha do background. Discutimos 

também a aplicabilidade e limitações da abordagem da transferabilidade na conservação de 

organismos. 

O conhecimento da relação entre as alterações climáticas e a proporção de fêmeas e 

machos produzida em cada período de tempo é muito importante para entender como o 

aquecimento global pode afetar a sobrevivência das espécies onde o sexo é dependente da 

temperatura. Assim, no quarto e último capítulo nós modelamos a “norma de reação” do 

crescimento do embrião e a sexualização sob temperaturas de ninhos naturais em uma praia 

de areia e em uma área de Várzea na Amazônia central, com a finalidade de predizer 

proporção de machos e fêmeas, e de determinar os fatores que influenciam a temperatura do 

ninho. O nosso estudo é o primeiro a mostrar que a temperatura influencia a taxa de 

desenvolvimento do embrião e a determinação do sexo de uma maneira distinta e os modelos 

feitos até então não modelaram essas características separadamente. 
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OBJETIVOS 

 

O objetivo geral da tese foi: 

Avaliar ameaças relacionadas a tartarugas de água doce na Amazônia Brasileira e 

propor estratégias e áreas prioritárias à sua conservação.  

Os objetivos específicos de cada capítulo foram: 

Capítulo 1: Predizer áreas adequadas à ocorrência de quelônios de água doce na 

Amazônia. Avaliar se o grupo é protegido pela atual rede de áreas Protegidas na 

Amazônia Brasileira. 

Capítulo 2: Verificar a vulnerabilidade das tartarugas de água doce na Amazônia 

brasileira ao desmatamento. Além disso, esse capítulo teve como objetivo indicar áreas 

prioritárias para a conservação do grupo. 

Capítulo 3: Testar a transferabilidade dos Modelos de Nicho Ecológico (ENMs) de 

Podocnemis expansa para outras partes de sua extensão geográfica na Amazônia. 

Capítulo 4: Modelar a “norma de reação” do crescimento do embrião e a sexualização 

de filhotes de Podocnemis unifilis em relação a temperaturas de incubação de ninhos 

naturais. Determinar fatores que afetam a temperatura dos ninhos. 
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 16 

Short running title: A gap analysis for amazonian freshwater turtles 17 

ABSTRACT 18 

Aim We used chelonian distribution data to: (1) predict suitable areas of the occurrence 19 

for freshwater turtle species using species distribution models; and (2) evaluate if these 20 

turtles are protected by the current network of protected areas (PAs). 21 

 22 

Location The Brazilian Amazon 23 

 24 

Methods We generated predictions of suitable areas for chelonian occurrence based on 25 

BIOCLIM, SVM, GLM and Maximum Entropy statistical methods. We used Maximum 26 

Entropy to run the Gap Analysis and compared the effectiveness of three kinds of 27 

protected areas with different levels of protection: (1) Integral Protection Areas (IPA) 28 

only; (2) Integral Protection Areas + Sustainable Use Areas (IPA+SUA); and (3) 29 

Integral Protection Areas + Sustainable Use Areas + Indigenous Lands (IPA+SUA+IL).  30 
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Results We identified only one full gap species, Mesoclemmys nasuta, whose 31 

distribution is not included in any PAs. Other chelonian species have at least a portion 32 

of their distribution included in PAs. Some protected species and partial gap species 33 

occur in areas with high rates of deforestation. Considering PAs with the highest level 34 

of protection (IPA), only Rhinoclemmys punctularia and Kinosternon scorpioides 35 

achieve their conservation targets. In the IPA+SUA scenario, conservation targets of 36 

some species with small range sizes are not achieved. When all PA types were 37 

considered (IPA+SUA+IL), only two targets fail to achieve their conservation targets, 38 

Acanthochelys macrocephala and M. nasuta. 39 

 40 

Main conclusions Despite the large number of PAs in the Brazilian Amazon, IPAs 41 

alone are not sufficient for capturing suitable areas for freshwater turtles. The inclusion 42 

of SUA and IL is crucial for achieving coverage targets for most species. However, 43 

chelonians may be overharvested in SUAs and ILs, due their importance as a food 44 

resource. Areas that have high turtle richness next to existing PAs and the needs of 45 

traditional cultures should be considered in management planning for freshwater turtles. 46 

 47 

Keywords  48 

Amazon, gap analysis, turtle conservation, vulnerability of freshwater organisms. 49 

 50 

INTRODUCTION 51 

 52 

The need for conservation planning is particularly urgent in the tropics (Klink & 53 

Machado, 2005; Cayuela et al., 2009) where habitat loss and degradation contribute to 54 

the decline in fauna, generating what is known as the “biodiversity crisis” (Myers, 55 

1996). For instance, deforestation in the Amazon Basin is driven by socio-economic 56 

development, mainly cattle ranching (Fearnside, 2005a, 2008; Macedo et al., 2012; 57 

Castello et al., 2013; Souza & De Marco Jr, 2013). A large proportion of the basin has 58 

been deforested or altered, and deforestation rates since 1991 have trended upward 59 

(Fearnside, 2005a). Most megadiverse areas currently occur in the tropics (Myers et al., 60 

2000) and the Amazon includes ecoregions with high levels of richness and endemism 61 

of aquatic organisms (Abell et al., 2008). To decrease threats associated with 62 
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deforestation, it has been suggested that megareserves be created to represent different 63 

biological assemblages, including aquatic vertebrates (Peres & Terborgh, 1995; Peres, 64 

2005).  65 

Knowledge about species’ distributions is an important basic piece of 66 

information for conservation planning and prioritization (Peres, 2005; Thieme et al., 67 

2007). Lack of information about biogeography and the distribution of organisms, the 68 

so-called “Wallacean shortfall” (Lomolino, 2004; Diniz et al., 2010), is widely 69 

recognized as a critical limitation for effective management actions, especially in 70 

tropical regions (Myers et al., 2000; Brooks et al., 2001). Frequently the only available 71 

information about species distributions are range maps, which are typically coarse 72 

overestimates of species occurrence (Rodrigues et al., 2003; Rondinini et al., 2006; 73 

Hurlbert & Jetz, 2007). Records for most chelonian species in the Amazon are limited 74 

to a few localities within their ranges (Souza, 2004, 2005; Brito et al., 2012). In this 75 

context, predictive distribution models can be an important tool to fill gaps in 76 

knowledge about species’ distributions (Raxworthy et al., 2003; Costa et al., 2010). 77 

These models are commonly called Species Distribution Models (SDM) (Araújo & 78 

Peterson, 2012; Peterson & Soberón, 2012) and in this study we use this term because 79 

we are trying to generate hypotheses about species distributions, rather than modelling 80 

their niche (Van Loon et al., 2011).  81 

Independent of the terminologies that are used, predictive distribution models 82 

have the same purpose: to identify suitable habitat for populations of a species (Guisan 83 

& Thuiller, 2005; Elith & Leathwick, 2009; Franklin, 2010; Peterson et al., 2011), 84 

through identification of statistical relationships between species’ occurrences and a set 85 

of environmental predictors (Guisan & Zimmermann, 2000). Suitable areas can be then 86 

projected into geographic space to estimate species’ geographic distribution (Peterson, 87 

2001). These analyses are performed using different statistical methods for modelling, 88 

depending on different theoretical conditions and assumptions (Elith et al., 2006; 89 

Austin, 2007; Elith & Leathwick, 2009). Different methods often show substantial 90 

variation in performance (Elith et al., 2006; Peterson et al., 2007). 91 

Species distribution models are useful for management (Peterson et al., 2001; 92 

Guisan & Thuiller, 2005; Araújo et al., 2011; Crowder & Heppell, 2011; Nóbrega & De 93 

Marco Junior, 2011) because they produce maps showing the environmental suitability 94 
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for species occurrence in areas that have not been previously sampled, and can produce 95 

valuable information about overall spatial patterns in biological diversity (Cayuela et 96 

al., 2009; Nóbrega & De Marco Jr, 2011). Thus, these models are advantageous for 97 

evaluating the efficiency of existing protected area networks in representing species 98 

distribution, as assessed in formal gap analyses (Rodrigues, 2003; Phillips et al., 2006; 99 

Loucks et al., 2008). Protected areas have been an effective tool for maintaining viable 100 

populations of threatened species or species potentially impacted by human occupation 101 

(Rodrigues, 2003; Sánchez-Azofeifa et al., 2003; Veríssimo et al., 2011). However, gap 102 

analyses have demonstrated that existing protected area (PA) networks in the Americas 103 

are usually inadequate to conserve biodiversity (Scott et al., 2001; Ochoa-Ochoa et al., 104 

2007). 105 

The applicability of SDMs in the freshwater aquatic realm has been poorly 106 

explored (Wiley et al., 2003) due to the lack of distribution data for freshwater species 107 

(Thieme et al., 2007) and limited data describing local environmental conditions (Iguchi 108 

et al., 2004; McNyset, 2005; Oakes et al., 2005). Freshwater biodiversity has been more 109 

impacted than the most of terrestrial organisms (Sala et al., 2000). However, priority 110 

areas for conservation are typically established based on terrestrial species and 111 

ecosystems (Brooks et al., 2006; Castello et al., 2013), and aquatic habitats are only 112 

protected by chance (Skelton et al., 1995; Peres, 2005). Conservation planning and 113 

strategies that encompass both terrestrial and aquatic environments are crucial for 114 

effective management, especially in Amazon, where freshwater ecosystems cover 115 

between 14 and 29% of the basin area (Thieme et al., 2007; Castello et al., 2013).  116 

Turtles are one of the most threatened groups of vertebrates (van Dijk et al., 117 

2000; Gibbons et al., 2000; Turtle Conservation Fund 2002; IUCN, 2008). Böhm et al. 118 

(2013) estimated that 52% of freshwater turtles are threatened. There are 16 freshwater 119 

species of turtles in the Brazilian Amazon, seven of which are in some threat category 120 

(IUCN, 2011). In this context, the knowledge about current distribution patterns of 121 

turtles and the contribution of PAs to their conservation could not be more important 122 

(Iverson, 1992a; Stuart & Thorbjarnarson, 2003; Rhodin, 2006). Thus, our objectives in 123 

this study are to: (1) predict suitable areas of occurrence for freshwater Amazon 124 

chelonians; and (2) evaluate if the group is protected by the existing network of 125 

Amazonian PAs. 126 
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METHODS 127 

 128 

Species occurrence records 129 

 130 

We compiled an occurrence database for 16 freshwater turtles (see Table 1) 131 

including data from the following sources: an extensive literature review, Brazilian 132 

scientific collections and museum specimens obtained from Species Link (CRIA, 2015), 133 

unpublished data from our research group and from a governmental project, Projeto 134 

Quelônios da Amazônia (IBAMA, 2015a). In addition, we utilized species data 135 

provided by the EMYSystem Global Turtle Database (Iverson et al., 2003), which 136 

records depict the maps produced by Iverson (1992a,b,c). To minimize modelling 137 

problems caused by errors in geo-referencing, we deleted occurrence records that were 138 

obviously erroneous, records with imprecise geographic coordinates, and generalized 139 

location descriptions. This process resulted in 1826 occurrence records (Table 1).  140 

We included in the analyses not only exclusively aquatic species, but also semi-141 

aquatic species, that live in small temporary and perennial water bodies in forests. As 142 

such, we covered the entire area of the Brazilian Amazon in our modelling efforts, as 143 

opposed to only including the aquatic ecosystems. The area was divided into a grid of 144 

approximately 4 km2 cells. We considered only one occurrence record of each species in 145 

each cell (spatially unique records) to help avoid effects of sampling bias (Dennis & 146 

Thomas, 2000; Kadmon et al., 2004) (Table 1).  147 

 148 

Environmental data 149 

 150 

Aquatic organisms are influenced by a suite of local environmental variables 151 

(Mendonça et al., 2005) for which spatial information is not readily available. However, 152 

some studies have shown that macroscale variables performed similarly to local 153 

variables when modelling the distribution of aquatic species (Watson & Hillman 1997; 154 

Porter et al., 2000). In the Brazilian Amazon, limnological and macroscale predictors 155 

are highly correlated (Frederico et al., 2014). Following this reasoning, we used 42 156 

variables: 37 climatic predictors, three variables that reflect terrain shifts and two 157 

predictors that characterize the aquatic environment (See Appendix S1 in Supporting 158 

Information). We performed a principal components analysis (PCA) of the 159 
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environmental variables to decrease collinearity among environmental variables and to 160 

avoid model overfitting. For the PCA, we compiled all layers at a resolution of 4 km2. 161 

The PCA scores were used as environmental layers in the SDM procedures (Jiménez-162 

Valverde et al., 2011; Dormann et al., 2012). Considering the Kaiser-Guttman criterion 163 

of principal components selection (Peres-Neto et al., 2005), we selected 12 principal 164 

components which were responsible for more than 95% of the variation in the 165 

environmental variables data (See Appendix S2 in Supporting Information). We then 166 

used these principal components as predictor variables to develop our species 167 

distribution models (Guisan & Truiller, 2005; Peterson et al., 2011).  168 

 169 

Species Distribution Modelling 170 

 171 

We calculated four different statistical methods for modelling to provide a more 172 

reliable estimate of the distribution of turtles (Rocchini et al., 2011): a ‘presence-only’ 173 

method called BIOCLIM (Nix, 1986; Piñero et al., 2007); a ‘presence/pseudo-absence’ 174 

approach via Generalized Linear Modeling (GLM - Stockwell & Peters, 1999. Guisan et 175 

al., 2002); and two-class Support Vector Machines (SVM - Schölkopf et al., 2001; Tax 176 

& Duin, 2004; Guo et al., 2005). These methods relate known occurrence localities with 177 

“pseudo-absences” extracted from sites at which the species is not known to occur in the 178 

study area (Peterson et al., 2011). In addition, we used one ‘presence/background’ 179 

approach, Maximum Entropy (Phillips et al., 2006; Phillips & Dudik, 2008; Elith et al., 180 

2010). This approach assesses the relation between the environment at the locations of 181 

known records and the environment across the entire study area (Peterson et al., 2011). 182 

We used the software MaxEnt to run Maximum Entropy (Phillips et al., 2006), and the 183 

“dismo” package on R Software (R Development Core Team 2012) to run the other 184 

modelling methods. Considering possible restriction of accessibility (Barve et al., 185 

2011), we created and evaluated all models for the entire Amazon Basin. 186 

We divided occurrence data of species that had more than 15 spatially unique 187 

records into 80-20% training-test subsets. We used the training subset to fit the species 188 

distribution models and the test subset to evaluate the predictions. We based the 189 

evaluation of model performance on the elements of a confusion matrix or on the 190 

measures derived from this matrix (Elith et al., 2006; Peterson et al., 2011). We used 191 
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10.000 random pseudo-absence localizations for GLM and SVM methods and 10.000 192 

background data for Maximum Entropy. For species that had less than 15 spatially 193 

unique records, we fit and tested the SDMs with the same dataset. 194 

The conversion of the continuous suitability gradient produced by the SDMs into 195 

binary predictions of species distribution requires the choice of a threshold (Elith et al., 196 

2006; Peterson, 2006). The threshold that we chose is derived from the ROC curve.  By 197 

plotting the sensitivity against 1- specificity for all existing thresholds, the method 198 

identifies the value at which the omission and commission errors intersect (Pearce & 199 

Ferrier, 2000; Jiménez-Valverde & Lobo, 2007). The models were evaluated using a 200 

threshold-dependent method, the True Skilled Statistics (TSS - Allouche et al., 2006; 201 

Liu et al., 2011). The TSS varies from -1 to +1. Negative and near zero values are no 202 

better than random and values near +1 denote the same observed and modeled 203 

distributions (Liu et al., 2009). We judged models acceptable only if they had TSS 204 

values > 0.5 (Fielding & Bell, 1997). We calculated the TSS confidence interval as 205 

proposed by Allouche et al. (2006). We used repeated measures ANOVAs to compare 206 

differences in TSS values of each species using different statistical methods for 207 

modelling. The significant level of this analysis was 0.05. 208 

 209 

Gap Analysis 210 

 211 

We based the Gap Analysis on the presence of a particular set of environmental 212 

conditions appropriate to the species occurrence in protected areas (Rodrigues et al., 213 

2003). We used the statistical method that showed higher TSS values to assess the 214 

degree that PAs overlap the distribution of turtle species considered as conservation 215 

target.  216 

In Brazil, there are two principle categories of PAs: Integral Protected Areas 217 

(IPA), which are created for biodiversity preservation and to be free of human 218 

interference, and Sustainable Use Areas (SUA) where the sustainable extraction of 219 

natural resources is allowed based on management strategies. Each of these types is 220 

further divided into various sub-categories (SNUC, 2002). In addition, the country has a 221 

large percentage of Indigenous Lands (IL), where indigenous populations have 222 

possession and usage rights. We downloaded the official maps of the state and federal 223 
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PAs from the government website (MMA, 2015), and converted to a resolution of 4 km2 224 

for performing the gap analysis. 225 

We ran the analysis considering three kinds of protected areas with different 226 

levels of protection: (1) IPA only; (2) IPA+SUA; and (3) IPA+SUA+IL. According to 227 

Rodrigues et al. (2003), the target amount for protecting species should be related to 228 

species range sizes. Small range size species (< 1.000 km2) should have 100% of their 229 

distributions captured in PAs, and species with large ranges (> 250.000 km2) should 230 

have at least 10% of their distributions captured in PAs. Targets for species with 231 

intermediate range sizes were based on a logarithmic interpolation between 10 and 232 

100%.  233 

We evaluated the protection targets considering the Brazilian Amazon region, 234 

where most turtle species are widely distributed. Thus, we classified species as 235 

Protected (P) when the target percentage of the distribution size was in fact included 236 

within PAs, Partial Gap (PG) when only a portion of the target percentage was included 237 

within PAs; and Full Gap (FG) when the entire range of the species was outside of the 238 

PA network (Rodrigues et al., 2003). For fully aquatic species of turtles, we made a 239 

500m buffer zone around the Amazonian streams and performed the Gap Analysis only 240 

in this portion of the SDMs.  241 

The annual rates of deforestation in the Brazilian Amazon are concentrated in a 242 

region known as “Arc of Deforestation”. To determine if P, PG and FG species are 243 

located in areas that show high anthropic pressure, we overlapped the arc of 244 

deforestation with species distribution maps. We obtained the arc of deforestation map 245 

from the government website (IBAMA, 2015b). 246 

 247 

RESULTS 248 

 249 

Species Distribution Modelling 250 

 251 

According to the TSS evaluation method, BIOCLIM produced non-acceptable 252 

models for all turtle species (0.0 – 0.14) (See Appendix S3 in Supporting Information). 253 

GLM generated acceptable models only for Rhinoclemmys punctularia and Podocnemis 254 

unifilis (0.11 – 0.52). The TSS values for SVM methods ranged from 0.05 to 0.72, 255 

producing non-acceptable models for 11 species and acceptable models for five species. 256 
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Maximum Entropy generated acceptable models for 14 species (0.38 – 0.99) (See 257 

Appendix S3 in Supporting Information). Species that have a more restricted 258 

distribution in the Amazon, such as Acanthochelys macrocephala, M. nasuta, M. 259 

vanderhaegei and R. rufipes exhibited the highest TSS values. The confidence interval 260 

for the TSS values can be seen in Appendix S3 in Supporting Information. 261 

Repeated measures ANOVAs indicated that the best statistical method for 262 

modelling in relation to TSS values (F = 69.052; P < 0.05) was Maximum Entropy (see 263 

Fig. 1). 264 

 265 

Gap Analysis 266 

 267 

Turtle species richness was higher in the sedimentary portion of the Amazon 268 

Basin, in the Amazon/Solimões River drainage and in the Rio Negro drainage. These 269 

basins comprise an important region for freshwater chelonian conservation.  270 

To perform the Gap Analysis, we used suitability maps produced by the 271 

Maximum Entropy method, because it produced the best TSS values. These suitability 272 

maps can be seen in Appendix S4 in Supporting Information. We identified only one 273 

full gap species, M. nasuta. The suitable areas for the occurrence of this species were 274 

not protected by any category of PA. Other chelonian species were classified as partial 275 

gap species or as fully protected species. 276 

In the highest level of protected area (IPA), only Rhinoclemmys punctularia and 277 

Kinosternon scorpioides achieved their protection targets (see Fig. 2a). Thus, IPAs 278 

alone do not effectively capture the most suitable areas for turtle occurrence. Under the 279 

second level of protected areas (IPA + SUA), we identified 13 species (68.7%) as 280 

protected and two species (12.5%) as partial gap (see Fig. 2b and Fig. 3b). The partial 281 

gap species occurring in this category of protected areas were M. vanderhaegei and A. 282 

macrocephala. These species have the smallest suitable areas in the Amazon, and 283 

IPA+SUA protected areas were not sufficient to attain conservation targets for these 284 

species. The species considered fully protected in IPA+SUA scenario had a maximum 285 

of 29.2% of their suitable habitat captured in PAs (Fig. 2b, Table 1). Considering  all 286 

categories of conservation areas (IPA + SUA + IL), A. macrocephala and M. nasuta 287 

were the only species that still did not achieve their conservation targets and were 288 

classified as partial gap species (Fig. 3c). All the other species in this scenario were 289 
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classified as protected and they had 27.7- 45.1% of their suitable habitat captured by 290 

PAs (Table 1).  291 

 292 

DISCUSSION 293 

 294 

Despite the fact that PAs cover 22.2% the Amazon and Indigenous Lands cover 295 

an additional 21.7% (Veríssimo et al., 2011), we found some notable gaps in protection 296 

of freshwater turtles. The network of Integral Protection Areas is insufficient in 297 

capturing the suitable areas for chelonian occurrence. Only R. punctularia and K. 298 

scorpioides are protected by IPAs. These species are semi-aquatic turtles that live in a 299 

wide variety of habitats, mostly in small temporary or perennial water bodies in forests. 300 

Kinosternon scorpioides is a polytypic species that has a wide distribution, from Mexico 301 

to Northern Argentina (Rueda-Almonacid et al., 2007; Vogt, 2008). For all other 302 

species, we found it was also necessary to consider Sustainable Use Areas (SUA) and 303 

Indigenous Lands (IL) to reach target protection values, demonstrating the importance 304 

of these PA types for effective conservation of freshwater turtles in the Brazilian 305 

Amazon.  306 

Our results support the claim that PAs in the Amazon were primarily established 307 

to protect terrestrial taxa from overharvesting and deforestation (Peres & Terborgh, 308 

1995; Veríssimo et al., 2011). However, such strategies to protect terrestrial species and 309 

ecosystems usually do not effectively conserve freshwater ecosystems and their 310 

associated fauna (Thieme et al., 2007; Castello et al., 2013). Much of the existing PA 311 

network ignores river catchment sites (Wishart & Davies, 2003) and freshwater threats 312 

like dams, waterways, oil exploration, pollution (Castello et al., 2013) and flow 313 

modification (Abell, 2002; Dudgeon et al., 2006; Davidson et al., 2012; Castello et al., 314 

2013). The mitigation of the impacts of these threats on freshwater ecosystems in 315 

Amazon is particularly important because these habitats cover a large area of the basin 316 

(Castello et al., 2013) and contribute to the well-being and sustenance of a large number 317 

of people (Kvist & Nebel, 2001).  318 

Peres (2005) suggested that megareserves based on biogeographic units defined 319 

primarily by the overlap of main river barriers and a vegetation matrix would be 320 

adequate to protect Amazon flora and fauna, including aquatic ones. However, we 321 
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suggest that a catchment-based system for conserving basins would be more 322 

appropriate, with identification of areas where terrestrial and freshwater conservation 323 

priorities overlap (Castello et al., 2013). Amis et al. (2009) noticed that integrating 324 

priority areas for conservation of freshwater and terrestrial biodiversity improved 325 

management plans in South Africa. Only in particular cases should ecosystems be 326 

maintained separately (Thieme et al., 2007). Creating additional PAs in a region where 327 

existing PAs already cover a large portion of land is a huge challenge. Thus, a 328 

potentially effective strategy for improving protection of freshwater resources  would be  329 

to prioritize important areas that are also adjacent to existing or proposed PAs, reducing 330 

costs (e.g., start-up costs, stakeholder engagement costs)  by adding more freshwater 331 

biodiversity to existing management efforts (Abell, 2002; Thieme et al., 2007).  332 

Since 1991, most PAs created by the Brazilian government as a policy action for 333 

biodiversity protection are sustainable-use reserves (Peres, 2011). Conservation 334 

strategies that attempt to reconcile biodiversity conservation and human needs are 335 

among the most effective conservation measures (Peres, 2011). However, use of natural 336 

resources is often not properly supervised in sustainable-use PAs (Peres & Terborgh, 337 

1995; Peres, 2011). Human pressure induces forest loss, and this impact is one of the 338 

major causes of biodiversity loss (Laurance, 1999; Fearnside, 2005a). The rural 339 

population in Amazon has increased from 6 million in 1960 to 25 million in 2010 340 

(Davidson et al., 2012). Human population densities in Amazonian reserves are 341 

frequently larger than in non-protected areas (Peres, 2011) and even strictly protected 342 

reserves in Brazilian Amazon contain illegal human communities (SNUC, 2002). Since 343 

their formal establishment, SUAs have lost 298.500 ha of forest (Veríssimo et al., 344 

2011). Because development in the Amazon is concentrated around waterways, aquatic 345 

and semi-aquatic wildlife species are likely heavily impacted (Peres, 2000, 2011).  346 

Conservation success has often been judged by measuring vegetation cover 347 

change across large scales (Gaston et al., 2008). The rates of forest loss in Amazon are 348 

higher in “arc of deforestation”, a continuous area stretching from the southwest to 349 

northwest part of the Amazonian Basin (Fearnside, 2005a). According to our analysis, 350 

suitable areas for several chelonian species occur in this region and are partly captured 351 

by the existing PA network, primarily SUAs and ILs. However, turtles may be 352 

overharvested even in well forested areas, because hunting is usually unsustainable in 353 
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an extraction scale (Peres & Lake, 2003). Many populations of game species have been 354 

eradicated in extractive reserves (Peres & Palacios, 2007), and chelonians are important 355 

in the diet of traditional communities in the Amazon (Kemenes & Pezzutti, 2007; Vogt, 356 

2008; Schneider et al., 2011). Over-collection of adult females and eggs have been 357 

reported as the main threats to the survival of turtle populations, mainly 358 

Podocnemididae (Fachín-Terán & von Mülhen, 2003; Fachín-Terán, 2005; Caputo et 359 

al., 2005; Vogt, 2008).  One conservative analysis suggested that in the 80’s and 90’s, 360 

between 38.79-95.11 adults of P. unifilis and from 59.15-145.02 adults of P. expansa 361 

were consumed annually by the low-income rural communities in the Brazilian Amazon 362 

(Peres, 2000). Hence, sustainable use reserves may not be sufficient on their own to 363 

conserve some freshwater turtles.  364 

According to our analysis, a substantial amount of suitable habitat for species of 365 

genus Podocnemis is captured in IPAs and SUAs. However, these PAs are not sufficient 366 

to capture suitable habitats for species that have restricted distributions in the Brazilian 367 

Amazon, such as M. vanderhaegei, M. nasuta and A. macrocephala. Acanthochelys 368 

macrocephala and M. nasuta are not protected in the Amazon, even when we 369 

considered all the categories of PAs (IPA+ SUA + IL). The distribution of 370 

Acanthochelys macrocephala in the Amazon is limited to a small part of the southeast 371 

region, and the species also occurs in the Brazilian Pantanal, northern Paraguay and a 372 

very small part of Chaco ecoregion in Bolivia, where the effectiveness of PAs could be 373 

different (Rhodin et al., 2009). Mesoclemmys nasuta is restricted to the Guianas and 374 

northernmost Amazon, in the state of Amapá (Bour & Zaher, 2005). Practically no data 375 

concerning the biology and ecology of M. nasuta currently exists considering that, until 376 

recently, M. nasuta was considered conspecific with M. raniceps. Future genetic studies 377 

may recombine these allopatric species.  378 

The sedimentary basin in northern Amazon is recognized as an important region 379 

in terms of turtle richness, as identified by Buhlmann et al. (2009). The area includes 380 

priority areas for freshwater turtle conservation. In this region, some of IPAs, such as 381 

Reserva Biológica do Rio Uatumã, Reserva Biológica do Rio Trombetas, Reserva 382 

Biológica do Abufari and Estação Ecológica de Jutaí-Solimões have already 383 

implemented conservation actions for the most impacted species (P. expansa, P. unifilis 384 

and P. sextuberculata). Nevertheless, current activities are restricted to environmental 385 
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education for traditional communities and protection of nesting beaches during the 386 

nesting season (Instituto Chico Mendes de Conservação da Biodiversidade, personal 387 

communication; Wildlife Conservation Society Brazil, personal communication). A 388 

more local analysis would be an important step for identifying specific sites for 389 

protection and specific management actions. Conservation targets should be developed 390 

in agreement with local communities and, in most cases, management activities should 391 

be carried out by them. According to Peres & Lake (2003), effective community-based 392 

conservation requires a capacity-building program, regulation of immigration into PAs, 393 

establishment of sustainable harvest quotas, and the creation of intangible zones within 394 

reserve boundaries. 395 

In our study, species distribution models were useful to predict the geographic 396 

range of chelonian species. The distribution of the majority of freshwater turtles in 397 

South America is poorly known (Souza, 2004). The predictive capacity of SDMs has 398 

been important in addressing urgent conservation problems, especially for rare and 399 

unknown species (Pearson et al., 2007; Siqueira et al., 2008). SDMs have also be 400 

critical for rigorous gap analyses and the establishment of conservation priorities 401 

(Loiselle et al., 2003; Martinez et al., 2006; Nóbrega & De Marco, 2011). For particular 402 

turtle species, several studies have applied SDMs to help develop conservation policies 403 

(Forero-Medina et al. 2012; Ihlow et al., 2012; Millar & Blouin-Demers, 2012). 404 

However, the only other study that uses SDMs to generate conservation priorities based 405 

on geographic patterns of species richness and vulnerability information for a large 406 

group of chelonian species (Trionychidae and Pelomedusidae) was for African 407 

freshwater turtles (Bombi et al., 2011).  408 

Comparatively, Maximum Entropy produced the most reliable SDMs, according 409 

to the performance evaluation method we used (TSS). Elith et al. (2006) and Pearson et 410 

al. (2007) suggested that this statistical method is one of the most reliable SDM 411 

methods, especially for biased data. However, even using the TSS, which may control 412 

for differences in prevalence (Allouche et al., 2006), models for some species, such as 413 

M. raniceps, M. gibba and P. geoffroanus were not acceptable. There are known 414 

identification and taxonomic challenges with these species that may contribute to poor 415 

model performance. Phrynops geoffroanus does not have a clear distribution pattern and 416 

is absent only at high southern latitudes (Souza, 2005). The species also seems to be a 417 



21 

 

 

  

complex of sibling species (Pritchard & Trebbau, 1984). Mesoclemmys gibba has a 418 

wide distribution, rather similar to that of M. raniceps (Pritchard & Trebbau, 1984; 419 

Iverson, 1992b; McCord et al., 2001) and may be misidentified in some occasions 420 

(Ferronato et al., 2011). To improve SDMs and conservation planning for these species, 421 

we recommend that taxonomic revision efforts be continued for these groups and that 422 

new inventory studies be completed. 423 

 424 

CONCLUSIONS 425 

 426 

Amazonia covers an area of large turtle richness (Buhlmann et al. 2009), 427 

composing an important region for their conservation. However, suitable areas for 428 

freshwater turtle’s occurrence are not protected by the current network of IPA. The 429 

insertion of SUA and IL was crucial to consider protected large-range species, but some 430 

chelonians may be overharvested in those areas. Facing the current condition, it is 431 

necessary to shift the Amazon conservation focus and restructure the PAs in order to 432 

contemplate river catchment sites in whole basins. It is necessary to include protection 433 

actions that handle the upstream drainage network, the riparian area and in the case of 434 

migratory species, the downstream drainage (Pusey & Arthington, 2003). At this level 435 

of protected areas coverage, not only turtles but all freshwater species would benefit 436 

(Dudgeon et al., 2006). The approach would require a new distribution of the PAs and 437 

the use of large portions of land as PAs. Thus, a more practical manner to develop a 438 

chelonian conservation planning could take into account important areas for turtle 439 

richness conservation next to existent PAs and consider features of the traditional 440 

cultures in conservation planning in order to attend their needs. 441 
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Table 1 The number of spatially unique occurrence records (at 4 km2 resolution) for 16 freshwater turtles in Brazilian Amazon. We also show the 1012 

amount of suitable habitats (km2), proportion of the conservation targets (%) and the proportion of the conservation targets attained (%) for those 1013 

species using (a) only the Integral Protection Areas (IPA), (b) Integral Protection Areas + Sustainable Use Areas (IPA + SUA) and (c) Integral 1014 

Protection Areas + Sustainable Use Areas + Indigenous Lands (ITA + SUA + IL). 1015 

 1016 

 1017 Species 
Unique 

records 

Suitable 

habitats 

Conservation  

target 
IPA IPA+SUA IPA+SUA+IL 

Semi-aquatic       

Kinosternon scorpioides  67 2.915.552 10 10.7 27.3  45.1 

Rhinoclemmys punctularia  40 1.602.432 10 11.3 21.2 44.2 

Acanthochelys macrocephala  13 91.360 50.5 19.3 25.4 40.5 

Mesoclemmys vanderhaegei  18 222.864 35.9 9.9 23.8 43.4 

Mesoclemmys gibba  48 4.111.632 10 6.4 15.6 29.3 

Platemys platycephala  45 2.281.552 10 7.1 12.9 27.7 

Aquatic       

Chelus fimbriata  71 1.676.768 10 5.5 22.5 34.1 

Mesoclemmys raniceps  28 3.489.664 10 7.7 22.9 39.6 

Mesoclemmys nasuta  11 10.336 81.7 0 0 0.07 

Phrynops geoffroanus  39 1.799.584 10 5.8 11.9 29.9 

Rhinemmys rufipes  13 1.416.640 10 9.1 29.2 42.9 

Peltocephalus dumerilianus  78 802.768 10 9.8 28.1 37.6 

Podocnemis erythrocephala  97 1.537.360 10 8.7 23.1 35.8 

Podocnemis expansa  305 2.147.648 10 7.1 22.1 35.1 

Podocnemis sextuberculata  168 2.085.968 10 7.4 22.8 37.1 

Podocnemis unifilis  329 2.107.616 10 7.5 22.9 35.5 
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APPENDIX S1 1018 
 1019 

The 42 environmental variables used for predicting freshwater turtle habitat suitability in Amazon. The table also shows the variables 1020 

code, their description and source 1021 

Variables (units) Code Description 

Annual Mean Temperature (°C) 1 Bio 01 Calculated  from the minimum and maximum temperatures 

Mean Diurnal Range (°C) 1 Bio 02 Calculated  from the minimum and maximum temperatures: (Mean of monthly (max temp - min temp)) 

Isothermality 1 Bio 03 Calculated  from the minimum and maximum temperatures: (Bio02/Bio07) 

Temperature Seasonality (CV) 1 Bio 04 Calculated  from the minimum and maximum temperatures: (standard deviation *100) 

Max Temperature of Warmest Month (°C) 1 Bio 05 The maximum temperature of warmest month 

Min Temperature of Coldest Month  (°C) 1 Bio 06 The minimum temperature of clodest month 

Temperature Annual Range (°C)1 Bio 07 Calculated  from the minimum and maximum temperatures: (Bio5-Bio6) 

Mean Temperature of Wettest Quarter  (°C) 1 Bio 08 Calculated  from the minimum, maximum temperatures and rainfall (mm month-1) 

Mean Temperature of Driest Quarter  (°C) 1 Bio 09 Calculated  from the minimum, maximum temperatures and rainfall (mm month-1) 

Mean Temperature of Warmest Quarter  (°C) 1 Bio 10 Calculated  from the minimum and maximum temperatures 

Mean Temperature of Coldest Quarter  (°C) 1 Bio 11 Calculated  from the minimum and maximum temperatures 

Annual Precipitation (mm) 1 Bio 12 Calculated  from the rainfall (mm month-1) 

Precipitation of Wettest Month (mm) 1 Bio 13 Calculated  from the rainfall (mm month-1) 

Precipitation of Driest Month (mm) 1 Bio 14 Calculated  from the rainfall (mm month-1) 

Precipitation Seasonality (mm) 1 Bio 15 Calculated  from the rainfall (mm month-1) 

Precipitation of Wettest Quarter (mm) 1 Bio 16 Calculated  from the rainfall (mm month-1) 

Precipitation of Driest Quarter (mm) 1 Bio 17 Calculated  from the rainfall (mm month-1) 

Precipitation of Warmest Quarter (mm) 1 Bio 18 Calculated  from the minimum, maximum temperatures and rainfall (mm month-1) 

Precipitation of Coldest Quarter (mm) 1 Bio 19 Calculated  from the minimum, maximum temperatures and rainfall (mm month-1) 

Annual mean radiation (W m-2) 2 Bio 20 Calculated  from the radiation (W m-2d-1) 

Highest weekly radiation (W m-2) 2 Bio 21 Calculated  from the radiation (W m-2d-1) 
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Lowest weekly radiation (W m-2) 2 Bio 22 Calculated  from the radiation (W m-2d-1) 

Radiation seasonality (CV) 2 Bio 23 Calculated  from the radiation (W m-2d-1) 

Radiation of wettest quarter (W m-2) 2 Bio 24 Calculated  from the rainfall (mm month-1) and radiation (W m-2d-1) 

Radiation of driest quarter (W m-2) 2 Bio 25 Calculated  from the rainfall (mm month-1) and radiation (W m-2d-1) 

Radiation of warmest quarter (W m-2) 2 Bio 26 Calculated  from the minimum, maximum temperatures and radiation  (W m-2d-1) 

Radiation of coldest quarter (W m-2) 2 Bio 27 Calculated  from the minimum, maximum temperatures and radiation  (W m-2d-1) 

Annual mean moisture index2 Bio 28 Calculated  from the rainfall (mm month-1) and pan evaporation (mm d-1) 

Highest weekly moisture index2 Bio 29 Calculated  from the rainfall (mm month-1) and pan evaporation (mm d-1) 

Lowest weekly moisture index2 Bio 30 Calculated  from the rainfall (mm month-1) and pan evaporation (mm d-1) 

Moisture index seasonality (CV) 2 Bio 31 Calculated  from the rainfall (mm month-1) and pan evaporation (mm d-1) 

Mean moisture index of wettest quarter 2 Bio 32 Calculated  from the rainfall (mm month-1) and pan evaporation (mm d-1) 

Mean moisture index of driest quarter 2 Bio 33 Calculated  from the rainfall (mm month-1) and pan evaporation (mm d-1) 

Mean moisture index of warmest quarter 2 Bio 34 Calculated  from the minimum, maximum temperatures, rainfall (mm month-1) and pan evaporation (mm d-1) 

Mean moisture index of coldest quarter 2 Bio 35 Calculated  from the minimum, maximum temperatures, rainfall (mm month-1) and pan evaporation (mm d-1) 

Flow accumulation (number of cells) 3 FACC Defines the amount of upstream area draining into each cell 

Flow direction (number of cells) 3 FDIR Defines the direction of flow from each cell in the conditioned DEM to its steepest down-slope neighbor 

Shuttle Radar Topography Mission (m) 4 SRTM Digital elevation data 

Slope (°) 5 SLP The maximum rate of elevation between each cell and its eight neighbors 

Compound Topographic Index 5 CTI Reflects a function of the upstream contributing area and the slope of the landscape 

Annual Actual Evapotranspiration (mm) 6 AAE 
Effective quantity of water that is removed from the soil due to evaporation and transpiration processes, 

alternative indicator of energy availability 

Annual Water Balance (mm) 6 AWB Defines the fraction of Water Content available for evapotranspiration processes 

 1022 

The layers references and website for download: 1 Hutchinson et al. (2009), available on http://www.worldclim.org/download; 2 Hutchinson et al. 1023 
(2009), available on https://www.climond.org/Download.aspx; 3 Lehner et al. (2006), available on http://hydrosheds.cr.usgs.gov/index.php; 4 Farr 1024 
et al. (2007), available on  https://lta.cr.usgs.gov/SRTM2; 5 Moore et al (1991), available on https://lta.cr.usgs.gov/HYDRO1K; 6 Ahn & Tateishi 1025 
(1994), available on http://edit.csic.es/Climate.html. 1026 

http://www.worldclim.org/download
https://www.climond.org/Download.aspx
http://hydrosheds.cr.usgs.gov/index.php
http://earthexplorer.usgs.gov/
http://earthexplorer.usgs.gov/
https://lta.cr.usgs.gov/SRTM2
https://lta.cr.usgs.gov/HYDRO1K
http://edit.csic.es/Climate.html


38 

 

 

  

APPENDIX S2 1027 
 1028 

Summary of the principal components (PCA) used as environmental layers. Each cell value represents the individual loadings of 1029 

variables in each PC. The proportion of individual and cumulative explanation of each PCA is also shown 1030 

Environmental variables Principal components 

 

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 

Annual Actual Evapotranspiration (mm) 0.190 0.012 -0.047 -0.011 0.080 -0.002 -0.034 0.015 -0.071 0.310 -0.209 -0.450 

Annual Mean Temperature (°C) 0.171 -0.221 -0.055 -0.178 -0.014 -0.065 -0.018 -0.016 0.059 -0.015 0.009 0.065 

Mean Diurnal Range (°C) -0.185 0.025 0.122 -0.029 0.243 0.027 0.037 -0.009 0.050 0.019 -0.381 0.330 

Isothermality 0.140 0.160 -0.041 0.119 -0.243 -0.243 -0.152 -0.020 -0.199 -0.146 -0.183 0.126 

Temperature Seasonality (CV) -0.167 -0.004 -0.112 -0.130 0.079 0.382 0.246 0.022 0.326 -0.083 0.087 -0.066 

Max Temperature of Warmest Month (°C) 0.126 -0.273 -0.024 -0.200 0.069 -0.028 0.019 -0.018 0.120 0.013 -0.097 0.169 

Min Temperature of Coldest Month  (°C) 0.199 -0.162 -0.076 -0.091 -0.117 -0.101 -0.048 -0.013 0.006 -0.032 0.072 -0.014 

Temperature Annual Range (°C) -0.190 -0.036 0.099 -0.072 0.271 0.136 0.101 0.001 0.124 0.068 -0.228 0.212 

Mean Temperature of Wettest Quarter  (°C) 0.154 -0.226 -0.068 -0.232 0.002 -0.021 0.007 -0.014 0.098 -0.018 0.048 0.063 

Mean Temperature of Driest Quarter  (°C) 0.185 -0.208 -0.048 -0.115 -0.055 -0.097 -0.035 -0.016 0.027 -0.018 -0.014 0.061 

Mean Temperature of Warmest Quarter  (°C) 0.158 -0.235 -0.070 -0.195 -0.015 -0.023 0.011 -0.014 0.104 -0.026 0.023 0.066 

Mean Temperature of Coldest Quarter  (°C) 0.184 -0.206 -0.032 -0.139 -0.032 -0.119 -0.054 -0.018 0.006 0.000 -0.004 0.075 

Annual Precipitation (mm) 0.214 0.057 -0.045 0.086 0.194 0.020 0.027 -0.009 0.053 -0.017 -0.026 0.128 

Precipitation of Wettest Month (mm) 0.172 -0.088 -0.034 0.227 0.287 -0.038 0.003 -0.022 0.024 -0.160 0.064 0.004 

Precipitation of Driest Month (mm) 0.162 0.214 -0.138 -0.063 -0.062 0.066 0.039 0.010 0.029 0.016 -0.141 0.321 

Precipitation Seasonality ( mm) -0.170 -0.187 0.091 0.096 0.069 -0.041 0.014 -0.028 0.016 -0.298 -0.028 -0.002 

Precipitation of Wettest Quarter (mm) 0.177 -0.080 -0.015 0.206 0.306 -0.031 0.006 -0.025 0.034 -0.140 0.048 0.016 

Precipitation of Driest Quarter (mm) 0.172 0.208 -0.135 -0.052 -0.048 0.065 0.042 0.009 0.043 0.017 -0.127 0.271 

Precipitation of Warmest Quarter (mm) 0.077 0.199 -0.044 -0.220 0.378 0.042 0.019 -0.021 0.088 0.015 0.247 0.055 
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Precipitation of Coldest Quarter (mm) 0.169 0.007 -0.058 0.268 -0.152 0.141 0.138 0.014 0.227 -0.279 -0.195 0.011 

Annual mean radiation (W m-2) -0.136 -0.044 -0.386 0.054 0.043 0.014 -0.001 -0.001 -0.014 -0.037 -0.036 -0.007 

Highest weekly radiation (W m-2) -0.103 -0.174 -0.284 0.191 -0.053 0.176 0.041 0.042 -0.043 0.258 0.102 0.133 

Lowest weekly radiation (W m-2) -0.125 0.047 -0.390 -0.024 0.054 -0.081 -0.035 -0.021 -0.031 -0.165 -0.075 -0.106 

Radiation seasonality (CV) 0.092 -0.135 0.341 0.130 -0.082 0.185 0.052 0.050 -0.008 0.330 0.164 0.171 

Radiation of wettest quarter (W m-2) -0.124 0.034 -0.397 -0.069 0.033 -0.003 0.007 -0.010 0.056 -0.136 -0.001 -0.133 

Radiation of driest quarter (W m-2) -0.059 -0.209 -0.192 0.297 -0.027 0.077 -0.025 0.045 -0.166 0.345 0.048 0.234 

Radiation of warmest quarter (W m-2) -0.062 -0.196 -0.321 0.163 -0.059 0.152 0.055 0.026 0.039 0.144 0.121 0.032 

Radiation of coldest quarter (W m-2) -0.141 0.019 -0.213 -0.123 0.223 -0.276 -0.187 -0.034 -0.306 0.136 -0.111 0.132 

Annual mean moisture index 0.216 0.110 -0.032 0.089 0.100 0.011 -0.007 0.004 -0.031 0.092 0.086 -0.017 

Highest weekly moisture index 0.175 -0.049 -0.004 0.272 0.257 -0.054 -0.028 -0.014 -0.069 -0.063 0.110 -0.041 

Lowest weekly moisture index 0.167 0.230 -0.112 -0.051 -0.091 0.062 0.019 0.014 -0.002 0.064 0.000 0.148 

Moisture index seasonality (CV) -0.162 -0.217 0.094 0.095 0.149 -0.082 -0.021 -0.027 -0.041 -0.168 -0.094 0.079 

Mean moisture index of wettest quarter 0.180 -0.041 0.013 0.251 0.271 -0.050 -0.030 -0.015 -0.073 -0.031 0.100 -0.042 

Mean moisture index of driest quarter 0.176 0.221 -0.106 -0.034 -0.079 0.063 0.020 0.015 0.007 0.077 0.027 0.098 

Mean moisture index of warmest quarter 0.089 0.269 -0.035 -0.157 0.245 0.061 0.011 -0.010 0.012 0.079 0.296 -0.073 

Mean moisture index of coldest quarter 0.188 0.025 -0.057 0.233 -0.174 0.116 0.099 0.022 0.159 -0.175 -0.078 -0.073 

Flow accumulation (number of cells) 0.008 -0.007 0.011 0.015 -0.033 0.346 -0.455 -0.819 0.032 -0.004 -0.029 -0.005 

Flow direction (number of cells) -0.001 -0.012 0.012 -0.010 0.046 0.268 -0.764 0.545 0.194 -0.069 -0.040 -0.012 

Slope (°) -0.119 0.162 0.003 0.153 -0.076 -0.280 -0.123 -0.054 0.248 -0.124 0.331 0.386 

Shuttle Radar Topography Mission (m) -0.167 0.210 0.040 0.203 0.003 0.038 0.001 0.015 -0.065 0.034 -0.024 -0.023 

Compound Topographic index 0.089 -0.046 0.027 -0.153 0.001 0.460 0.088 0.114 -0.672 -0.381 0.088 0.144 

Annual Water Balance (mm) 0.185 0.052 -0.017 0.065 0.165 0.073 0.053 0.013 0.039 0.138 -0.481 -0.066 

Proportion explained by each PC  42.646 17.080 9.983 7.569 5.688 2.620 2.407 2.320 1.958 1.424 1.060 0.988 

Accumulated variation proportion  42.646 59.726 69.709 77.278 82.966 85.586 87.993 90.312 92.270 93.694 94.754 95.742 
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APPENDIX S3 1031 
 1032 

Summary of the evaluation of the species distribution models (SDMs) according True Skilled Statistics (TSS) method to each statistical 1033 

method for modelling to each chelonian species and its confidence interval 1034 

 1035 

Species TSS1 TSS2 TSS3 TSS4 

Podocnemis expansa 0.09 (0.06-0.97) 0.36 (0.21-0.92) 0.59 (0.55-1) 0.60 (0.51-1) 

Podocnemis erythrocephala 0.04 (0.03-0.98) 0.39 (0.25-0.91) 0.78 (0.75-1) 0.43 (0.34-0.99) 

Podocnemis unifilis 0.09 (0.05-1) 0.50 (0.39-1) 0.62 (0.57-1) 0.64 (0.52-0.97) 

Podocnemis sextuberculata 0.06 (0.03-0.98) 0.36 (0.20-0.96) 0.71 (0.68-1) 0.50 (0.44-0.97) 

Peltocephalus dumerilianus 0.05 (0.05-1) 0.27 (0.13-91) 0.76 (0.68-1) 0.35 (0.31-0.91) 

Mesoclemmys gibba 0.01 (0.01-0.96) 0.15 (0.07-0.96) 0.38 (0.31-1) 0.20 (0.16-0.89) 

Rhinemys rufipes 0.01 (0.01-1) 0.17 (0.10-0.97) 0.85 (0.85-1) 0.72 (0.60-1) 

Mesoclemmys raniceps 0.00 (0.00-0.95) 0.15 (0.09-0.99) 0.50 (0.37-1) 0.05 (0.02-0.95) 

Acanthochelys macrocephala 0.14 (0.09-1) 0.34 (0.21-0.93) 0.99 (0.98-1) 0.65 (0.52-0.92) 

Platemys platycephala 0.01 (0.01-0.94) 0.15 (0.11-0.97) 0.63 (0.53-1) 0.08 (0.05-0.94) 

Phrynops geoffroanus 0.01 (0.01-0.95) 0.13 (0.08-0.97) 0.56 (0.43-1) 0.11 (0.07-0.92) 

Chelus fimbriatus 0.03 (0.02-0.97) 0.30 (0.22-0.95) 0.59 (0.49-1) 0.17 (0.09-0.94) 

Kinosternon scorpioides 0.02 (0.02-0.96) 0.22 (0.16-0.98) 0.64 (0.57-1) 0.20 (0.14-0.89) 

Mesoclemmys vanderhaegei 0.02 (0.02-0.95) 0.16 (0.09-0.94) 0.80 (0.63-1) 0.16 (0.16-0.90) 

Rhinoclemmys punctularia 0.02 (0.02-0.94) 0.52 (0.46-1) 0.75 (0.66-1) 0.35 (0.22-0.94) 

Mesoclemmys nasuta 0.09 (0.06-1) 0.11 (0.06-0.98) 0.98 (0.98-1) 0.69 (0.58-1) 

The numbers indicate the statistical methods for modelling: 1 – BIOCLIM; 2- Generalized Linear Model (GLM); 3- Maximum Entropy; 4- 1036 

Support Vector Machines (SVM). 1037 
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APPENDIX S4 

 

Environmentally suitable areas for the occurrence of 16 freshwater turtles in the 

Amazon using Maximum Entropy statistical method 
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Figure captions 

 

Figure 1 Differences in TSS values calculated for turtle species using different statistical 

methods for modelling. 

 

Figure 2 Number of freshwater turtles in Brazilian Amazon fully protected by the 

reserve networks. The conservation targets are based on the amount of suitable areas 

generated by Maximum Entropy method in protected areas. Different levels of protected 

areas evaluated include: (a) IPA (Integral Protection Areas); (b) IPA + SUA (Integral 

Protection Areas + Sustainable Use Areas); (c) IPA+ SUA + IL (Integral Protection 

Areas + Sustainable Use Areas + Indigenous Lands). 

 

Figure 3 Number of freshwater turtles in Brazilian Amazon that are not protected by the 

reserve networks (partial gap). The conservation targets are based on the amount of 

suitable area generated by Maximum Entropy method in protected areas. Different 

levels of protected areas evaluated include: (a) IPA (only Integral Protection Areas); (b) 

IPA + SUA (Integral Protection areas + Sustainable Use Areas); (c) IPA+ SUA + IL 

(Integral Protection Areas + Sustainable Use Areas + Indigenous Lands). 
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Vulnerability of freshwater chelonian in Brazilian Amazon to deforestation: indicating 48 

priority areas for conservation 49 

 50 

Abstract: Forest cover is accounted to play a great role in freshwater turtle decay. 51 

Amazon forest has been quickly fragmented due to the development policies in the 52 

region. Thus, this study aimed to evaluate the exposition of the freshwater turtles to 53 

deforestation in Brazilian Amazon and evaluate biological traits that are more 54 

vulnerable to habitat loss. We also identified priority areas to the group conservation 55 

based on the habitat requirements of the species, deforestation and the network of 56 

protected areas. The only component of vulnerability that we analyzed was exposure. 57 

We calculated the areas of species distribution modelling (SDM) lost by deforestation 58 

and identified the most vulnerable regions to turtle richness. We used the software 59 

Zonation to identify priority areas for chelonian conservation. We assigned higher 60 

conservation weight to semi-aquatic turtles and a negative weight to the deforestation 61 

areas, running scenarios with and without reserve networks. The priority areas to 62 

freshwater chelonian conservation are located in northern Amazon and they do not 63 

encompass high deforestation areas. However, higher vulnerability of turtle richness to 64 

deforestation is located in central-northeastern Amazon, where the deforestation is 65 

currently progressing. Phrynops geoffroanus, Kinosternon scorpioides and 66 

Rhinoclemmys punctularia had higher percentage of their SDMs lost due to 67 

deforestation. Protected areas included large amount of sites required by chelonian 68 

conservation but they are not located in areas with higher turtle richness. Despite of we 69 

did not consider the social importance of chelonian as a food resource, our results have 70 

significant practical implications for conservation agencies because it highlights the 71 
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regions more important to invest in conservation of freshwater turtles in Brazilian 72 

Amazon and the exposition of the species to deforestation.  73 

 74 

Introduction 75 

 76 

Chelonians are among the most threatened vertebrate groups (Klemens 2000) 77 

and they show a particular conservation concern because they are long-lived animals 78 

with late sexual maturity and low reproductive output. Impacts in their populations may 79 

remain unnoticed by many decades (Klemens 2000). The worldwide decline of 80 

freshwater turtles is largely attributed to wetland loss and habitat fragmentation due to 81 

anthropogenic land-uses (Millennium Ecosystem Assessment 2005) and 82 

overexploitation (Gibbons et al. 2000). Brazil is the fifth country in turtle richness along 83 

with China (Rhodin et al. 2010) and Amazon is the region with the higher chelonian 84 

diversity, where 12 freshwater species are endemic (Rhodin et al.,2010). In this biome, 85 

seven Amazonian turtles were classified in some threatened category by the 86 

International Union for Conservation of Nature (IUCN 2011). It is well reported that 87 

turtles have vast importance as a food resource for indigenous and riverine populations 88 

in Amazon (Pritchard & Trebbau 1984; Fachín-Terán et al. 1996; Vogt 2001). The 89 

higher hunting pressure is focused on Podocnemididae family (Klemens & 90 

Thorbjarnarson 1995; Vogt 2001), resulting in a drastic reduction of their populations 91 

(Mittermeier 1975; Vogt 2001).  92 

Despite the relevance of overexploitation on chelonian conservation, freshwater 93 

turtles are largely influenced by anthropogenic change on the landscape level (Rizkalla 94 

& Swihart 2006; Sterrett et al. 2011). Forest cover is accounted to be the most important 95 
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landscape predictor to chelonian occurrence and plays a greater role in freshwater turtle 96 

decay (Quesnelle et al. 2013). In some locals, decline of turtle populations is also 97 

related to the decrease of the amount of natural wetland habitats (Reese & Welsh 1998; 98 

Gibbons et al. 2000). Amazon forest has been quickly fragmented due to the 99 

development policies in the region (Alencar et al. 2004; Laurance et al. 2004; Fearnside, 100 

2005; Pereira et al. 2010). Fragmentation converts previously continuous landscapes in 101 

a set of disconnected fragments surrounded by an anthropic matrix and this process 102 

encompasses two components: habitat loss and connectivity loss (Fahrig 2003). The 103 

main drivers of the Amazon deforestation are the expansion of infrastructure and 104 

agriculture (Soares-Filho et al. 2006; Pereira et al. 2010), which is usually the greatest 105 

threat to some turtle species (Richter et al. 1996) because of its high potential to 106 

fragment landscapes and induce wetland loss (Rytwinski & Fahrig 2012). Many 107 

freshwater species use a variety of wetlands types and exhibit interwetland movements 108 

that are dependent of the habitat isolation (Joyal et al. 2001). Uplands connect aquatic 109 

habitats and are critical in the dispersion of the freshwater turtles that use terrestrial 110 

habitats in greater extension (Gray 1995; Marchand & Litvaitis 2004) and may be 111 

determinant in the maintenance of the populations of many chelonian species (Semlitsch 112 

& Jensen 2001).  113 

Vulnerability is the extent which a species or population is threatened and it is 114 

usually partitioned into three components: exposure, sensitivity and adaptive capacity 115 

(Dawson et al. 2011). The exposition is directly measured based on the overlap between 116 

species distribution and the threat. Nevertheless, both sensitivity to threat and adaptive 117 

capacity to new conditions are difficult to predict without large amount of knowledge 118 

on individual species ecology (Dawson et al. 2011). Clearly, habitat changes affect 119 
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species differently, according to aspects of their natural history, as migration patterns, 120 

habitat use, among others (Pearman 1997; Becker et al. 2007). Semi-aquatic chelonians 121 

should be particularly affected by forest loss, because forest provides complementary 122 

resources to this species such as seasonally abundant food, rehydration and mating and 123 

nesting sites (Buhlmann & Gibbons 2001; Grgurovic & Sievert 2005; Beaudry et al. 124 

2009). Turtle movement depends on the amount of vegetation (Buhlmann & Gibbons 125 

2001), since some species prefer to move in forest than in open areas, probably to 126 

reduce thermal stress (Bowne 2008). During overland movements in altered areas 127 

species may be more exposed to natural predation and human exploitation (Gibbons 128 

1986; Buhlmann & Gibbons 2001). In addition, human altered watersheds may show 129 

overall reduced water quality of wetlands (Trebitz et al. 2007; DeCatanzaro et al. 2009). 130 

However, even aquatic turtles should depend on the matrix composition of landscapes. 131 

Nesting sites may be more easily accessed in regions with high forest cover (Quesnelle 132 

et al. 2013), because the density of vegetation may be important in determinate the 133 

distance that turtle moves in land to nest. Forest loss can also affect the water 134 

temperature and reduce the microhabitats produced by fallen logs in wetland forests 135 

(Sterrett et al. 2011), depth heterogeneity and amount of sediments (Walser & Bart 136 

1999).  137 

The creation of Conservation Units may be the best option to conserve viable 138 

populations of species in their natural environments (Rodrigues et al. 2004; Loucks et 139 

al. 2008) and it is usually one of the strategies implemented to restrain deforestation and 140 

biodiversity loss in Amazon region (Ferreira et al. 2005; Nepstad et al. 2006). Protected 141 

areas are an effective way to break agricultural expansion (Gaston et al. 2008; Soares-142 

Filho et al. 2010). However, gap analysis reveal that areas converted to biodiversity 143 
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conservation are inadequate in many parts of America (Scott et al. 2001; Ochoa -Ochoa 144 

et al. 2007). Some notable gaps in protection of Amazon freshwater turtles were 145 

identified, where Integral Protection Areas (IPA) network alone is inefficient in 146 

conserving suitable areas for group distribution. The insertion of Sustainable Use Areas 147 

(SUA) and Indigenous Territories (ITA) Areas was crucial to attain the conservation 148 

targets to the most of chelonian species that occur in Brazilian Amazon (Fagundes et al. 149 

unpubl. data). However, hunting may be unsustainable in SUA and ITA and those 150 

protected areas may not be effective in protecting some turtle species (Peres & Lake 151 

2003). Many populations of game species have been eradicated in extractive reserves 152 

(Peres & Palacios 2007). 153 

The choice of priority areas for conservation should prioritize complementary 154 

locals in order to represent the overall biodiversity, since high richness regions may 155 

have similar species composition among different sites (Margules & Pressey 2000; 156 

Bonn & Gaston 2005). Some studies have already analyzed the effect of habitat 157 

degradation in freshwater turtle populations (Lindeman 1996; Marchand & Litvaitis 158 

2004; Browne & Hecnar 2007). Nevertheless, no study has yet measured the spatial 159 

vulnerability on turtle species and explored the relationships between species richness 160 

and human disturbances in a broad-scale. Turtles are good organisms to evaluate the 161 

impacts of habitat loss because they require both wetlands and terrestrial environments 162 

in their life cycle (Congdon & Gibbons 1996; Klemens 2000). Thus, the objective of 163 

this study was to evaluate the exposition of the freshwater turtles in relation to 164 

deforestation and evaluate biological traits that are more vulnerable to habitat loss. We 165 

also identified priority areas to the group conservation. The selection of those areas was 166 
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based on the habitat requirements of the species and considering or not the current 167 

network of protected areas in the biome.  168 

 169 

Methods 170 

 171 

Species Distribution Modelling (SDM) 172 

 173 

We reviewed the occurrence registers for 16 freshwater turtles that occur in 174 

Brazilian Amazon. The database was composed by literature information, Brazilian 175 

scientific collections and museums, unpublished data from our research group and from 176 

government and by distribution maps depicted in EMYSystem Global Turtle Database 177 

(Iverson et al. 2003). Only one occurrence point in each cell of our spatial resolution 178 

was considered (unique points). We used 42 environmental variables to characterize the 179 

occurrence areas of the species (Supplementary material 1). We performed a principal 180 

components analysis (PCA) among environmental predictors to decrease their 181 

collinearity and used the PCA scores as environmental layers in the SDM procedures. 182 

Considering the Kaiser-Guttman criterion (Peres-Neto et al. 2005), we selected 12 183 

principal components which were responsible for more than 95% of the variation on the 184 

environmental variables data. All layers were converted into a grid resolution of 185 

approximately 4 km2. Thus, the Amazon freshwater turtle occurrence points were 186 

correlated to the principal components to project their distribution into a geographical 187 

space that encompass similar environments from known occurrences (Guisan & Truiller 188 

2005; Peterson et al. 2011). 189 
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Maximum Entropy was the method chosen to build the models and the software 190 

MaxEnt was used to run the algorithm (Phillips et al. 2006; Phillips & Dudik 2008; 191 

Elith et al. 2010). The freshwater turtle species that had more than 15 spatially unique 192 

points were divided into 80-20% training-test subsets. The training subsets were used to 193 

produce the turtle SDMs and the test subsets were used to evaluate the predictions. We 194 

used 10.000 background values. For the species that had less than 15 spatially unique 195 

points we accomplished the same methodology but we used only one dataset. 196 

The conversion of the SDMs into a binary prediction of a species distribution 197 

requires the choice of a threshold (Elith et al. 2006; Peterson 2006). The threshold that 198 

we chose is derived from the ROC curve, that is a balance between omission and 199 

commission errors (hereafter Balance threshold) (Pearce & Ferrier 2000; Jiménez-200 

Valverde & Lobo 2007). The models were evaluated using a threshold-independent 201 

method, the area under the ROC curve (AUC - Fielding & Bell 1997), and a threshold-202 

dependent method, the True Skilled Statistics (TSS - Allouche et al. 2006; Liu et al. 203 

2011).  204 

 205 

Deforestation model 206 

 207 

We used the Amazonian deforestation model created by Souza & De Marco Jr. 208 

(2014), where they used deforestation data from automatic classification analysis of 209 

LANDSAT- 5/TM images of the Deforestation Monitoring Program - PRODES (INPE, 210 

2010). The models were built with Maximum Entropy algorithm in MaxEnt Software 211 

and had higher predictive power than other existing models for the Amazon (Souza & 212 

De Marco Jr. 2014). The center point of each deforestation polygon was used as 213 
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deforestation occurrence and features as density of deforestation until 2007, roads, 214 

agriculture, livestock, urban areas, IBAMA offices, embargo, indigenous land, protected 215 

areas and settlements of land reform were used as functional variables. They ran 216 

MaxEnt varying the layers of predictors and using different settings of MaxEnt software 217 

to each deforestation area. The models were trained with data from 2008 and tested with 218 

data from 2010 and the authors compared predicted deforestation from distinct models 219 

with the real observed deforestation in 2010. In our study, we used the model that had 220 

the higher predictive power and obtained it to all Brazilian Amazon. This model used 221 

the distance from previous deforestation (PRODES) as a functional variable and the 222 

automatic features of MaxEnt software. The predicted deforestation did not forecast 223 

some areas where the deforestation has already occurred. Thus, we corrected those 224 

omission errors including all the current deforested areas in the model of predicted 225 

deforestation. 226 

 227 

Vulnerability to deforestation 228 

 229 

The only component of vulnerability that we analyzed was exposure, which in 230 

our study is the extent of deforestation likely to be experienced by a species (Dawson et 231 

al. 2011). We used the Souza & De Marco Jr. (2014) deforestation model to evaluate the 232 

exposure of freshwater turtle species and their richness to deforestation in Brazilian 233 

Amazon. We calculated the SDMs portion of each species that was found inside the 234 

current deforestation area and the predicted deforestation area, assuming that chelonians 235 

are eradicated in those regions. Thus, we evaluated the areas of SDMs lost by 236 
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deforestation and identified the most vulnerable regions to turtle richness in relation to 237 

this threat.  238 

 239 

Priority areas for conservation 240 

 241 

We used the spatial prioritization software Zonation (Moilanen 2005) to identify 242 

priority areas that attempt to determined conservation aims for chelonian conservation 243 

in Brazilian Amazon. The management units were defined in 4 km2 cells. The input 244 

species layers were the SDMs (environmental suitability) previously produced. The 245 

species geographic ranges were overlaid to extract data on species richness for each grid 246 

cell. Zonation algorithm is based on the complementarity principle, which measures the 247 

frequency that a determined management unit is selected to a set of conservation goals 248 

(Pressey 1994). Initially, all the area is considered to be protected and then, the 249 

algorithm removes the cells that incur the smallest marginal loss in conservation value 250 

(Moilanen & Kujala 2008). The algorithm results in a conservation priority-ranked map 251 

that maximizes the frequency of environmental suitable area of species occurrence 252 

divided by the cost associated to each cell (Moilanen et al. 2009). We used the additive 253 

benefit function removal rule that prioritizes the sites with higher species richness 254 

(Moilanen 2007 for details).  255 

Zonation allows to attribute priority weights and to insert the existing protected 256 

areas (Moilanen et al. 2005; Moilanen & Kujala 2008). We assigned higher 257 

conservation weight to semi-aquatic turtles (Table 1) and a negative weight to the 258 

deforestation, forcing the exclusion of sites with little conservation value in 259 

deforestation areas (Fahrig 2001). We run the analysis with and without the network of 260 
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State and Federal Conservation Units in Amazon to verify if the priority areas to 261 

chelonian conservation overlap the current protected areas. The protected areas in Brazil 262 

can be classified in two groups: Integral Protection Areas (IPA), which is free of any 263 

human interference and Sustainable Use Areas (SUA), where the sustainable extraction 264 

of natural resources is allowed based on management strategies. The country also has a 265 

large percentage of Indigenous Territories Areas (ITA). Thus, we tested different 266 

scenarios to verify the influence of deforestation and the categories of protected areas in 267 

conservation planning: (1) deforestation + protected areas; (2) deforestation + not 268 

considering protected areas; (3) not considering deforestation +  protected areas and (4) 269 

not considering deforestation + not considering protected areas. The scenarios with the 270 

current protected areas were run (a) using only the Integral Protected Areas (IPA) as a 271 

mask, (b) using IPA and Sustainable Use Areas (SUA) as a mask and (c) using IPA, 272 

SUA and Indigenous Territories Areas (ITA) as a mask. For practical purposes our 273 

conservation goals are based on the top 17% and 50% sites of landscape in all scenarios. 274 

According to the Aichi Biodiversity Targets to 2020, the aim of conservation for 275 

terrestrial environments is 17% (Convention on Biological Diversity 2010). This value 276 

may not be appropriate for aquatic organisms, since they show a linear dispersion along 277 

areas. The properties in the Amazon region had to maintain 50% of the legal reserve 278 

until 2001, when was signed the law that increased those areas to 80% (IPAM 2011). 279 

Thus, we considered that at least the top 50% of sites is required by chelonian species.  280 

 281 

Results 282 

Species Distribution Modelling (SDM) 283 

 284 
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Species distribution models had good predictive accuracies with TSS > 0.5 to 14 285 

species and AUC > 0.7 to all species (from 0.73 to 0.99) (Supplementary material 2). 286 

The environmental suitability areas (Supplementary material 3) showing higher 287 

chelonian richness is concentrated in northeast and central-northern Brazilian Amazon 288 

in lowlands of Amazon River basin. Some tributaries of Amazon River that have high 289 

chelonian richness are Madeira River, Negro River, Purus River, Xingu River, Tapajós 290 

River, Trombetas River, Uatumã River and Nhamundá River. 291 

 292 

Vulnerability to deforestation 293 

 294 

The impact of deforestation is more pronounced in the east and south part of the 295 

environmentally suitability areas for turtle species occurrence (Fig. 1). The species that 296 

had the highest potential distribution area lost by the current deforestation was 297 

Kinosternon scorpioides, followed by Mesoclemmys gibba and M. raniceps (Table 1). 298 

The same species will be more affected by predicted deforestation. However, when we 299 

consider the percentage of total area lost (current and future deforestation) in relation to 300 

the species suitable areas, Phrynops geoffroanus, K. scorpioides and Rhynoclemmys 301 

punctularia were the species with higher exposition to deforestation. Regarding the 302 

Brazilian Amazon, the only species that could be threatened in this biome according to 303 

the decrease of extension of occurrence (criterion B of IUCN) is M. nasuta. That 304 

criterion takes into account the restricted distribution and decline or fluctuation of 305 

species populations by (1) extension of occurrence or (2) occupation area.  306 
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The current and predicted deforestation areas that affect the highest richness of 307 

freshwater turtle are located on northeast Amazon and in central Amazon region (Fig. 308 

2). 309 

 310 

Priority areas for conservation 311 

  312 

Excluding the protected areas, the conservation priorities for turtles are located 313 

in extensive continuous sites in northern Amazon and in smaller areas in southern 314 

Amazon and those areas usually do not overlap areas with high forest loss (Fig. 3). The 315 

scenarios considering deforestation removed priority sites to chelonian conservation 316 

only in northeastern Amazon, where deforestation is currently progressing. In other 317 

regions, the use of deforestation to select sites with high conservation value results in 318 

small differences in relation to the results without forest loss, with decreasing effect 319 

when we include other protected areas such as SUA and ITA (Fig. 3).  320 

The extent of priority areas in northern Amazon reduced when we forced the 321 

inclusion of protected areas (Fig. 3D, F, H). IPA + SUA + ITA scenarios encompass 322 

large amount of areas required by chelonian conservation in our conservation goals but 323 

they are not located in sites with higher turtle richness. Thus, the insertion of all 324 

categories of protected areas was still not enough to attain the goal of protect the top 325 

50% priority sites (Fig. 3H). IPA category alone was not sufficient to achieve the 326 

imposed preservation targets even when our conservation goal decreases to the top 17% 327 

sites. Thus, the result allows us to conclude that many areas of high conservation value 328 

are not protected by IPA in central-northern Amazon (Fig. 3C). The inclusion of SUA 329 

and ITA makes that the top 17% priority sites be inside protected areas only, showing 330 
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that the current reserve networks in not efficient in protect freshwater turtle richness 331 

(Fig. 3 E, G).  332 

The percentage of the species distribution protected with landscape loss is a little 333 

bit higher when we did not use deforestation, mainly between 20% and 40% of Amazon 334 

lost (Fig. 4). The deviations in the performance curves that measure the effectiveness of 335 

spatial conservation plans are related to the forced exclusion of deforestation areas in 336 

sites with high frequency of distribution and to the inclusion of protected areas in sites 337 

with low frequency of distribution (Fig. 4). 338 

 339 

Discussion 340 

 341 

The priority areas to freshwater chelonian conservation in Brazilian Amazon are 342 

located mainly in extensive continuous sites in northern Amazon and they do not 343 

encompass high deforestation areas. However, vulnerability analysis identified higher 344 

threat to turtle richness in relation to deforestation in central-northeastern Amazon, 345 

where the deforestation is currently progressing. Phrynops geoffroanus, K. scorpioides 346 

and R. punctularia are the species most exposed to deforestation, showing higher 347 

percentage of their suitable areas lost due to this threat. Protected areas included large 348 

amount of sites required by chelonian conservation but they are not located in areas with 349 

higher turtle richness. Even considering only the top 17% sites to turtle conservation, 350 

reserve networks were not efficient in protecting freshwater chelonian richness.  351 

Large areas of the Amazon Basin have already been deforested due to 352 

development policies (Soares-Filho et al. 2006; Hansen et al. 2010). Watershed 353 

functions are lost with forest loss because in deforested areas the flooding patterns 354 
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become irregular, reducing rainfall (Fearnside 2005; Coe et al. 2011) and this is the 355 

climatic factor more associated to chelonian diversity in South America (Souza 2005). 356 

Forest cover and the amount of aquatic habitats are important landscape predictors in 357 

turtle decline (Gibbons et al. 2000; Quesnelle et al. 2013), possibly because they require 358 

both wetlands and terrestrial environments to complete their life cycle (Congdon & 359 

Gibbons 1996; Klemens 2000). Semi-aquatic chelonians may be more affected by forest 360 

loss, because they use terrestrial ecosystems in many aspects of their biology and 361 

ecology (Buhlmann & Gibbons 2001; Grgurovic & Sievert 2005; Beaudry et al. 2009). 362 

In Amazon, some aquatic turtles such as Rhinemmys rufipes, Mesoclemmys 363 

vanderhaegei and Acanthochelys macrocepahala are also considered to be threatened 364 

by the habitat destruction (Rhodin et al. 2009; Magnusson & Vogt 2014; Marques et al. 365 

2014). Podocnemis erythrocephala feeds on fruits and seeds and is highly dependent on 366 

the flooded forest to survive (Mittermeier et al. 2015). The same pattern could be 367 

inferred to other species of the Podocnemis genus. 368 

In the current study, K. scorpioides, M. gibba and M. raniceps had the highest 369 

potential distribution area lost by the current and predicted deforestation. Those species 370 

show the higher size of environmentally suitable areas and occur in all Amazon 371 

(Pritchard & Trebbau 1984; Iverson 1992; McCord et al. 2001; Rueda-Almonacid et al. 372 

2007; Vogt 2008). Habitat degradation and alteration of aquatic habits are known to be 373 

factors of strong impact on K. scorpioides populations (Berry & Iverson 2011). 374 

Considering the perceptual of total area lost in relation to the species suitable areas, P. 375 

geoffroanus, K. scorpioides and R punctularia are the most affected species. Phrynops 376 

geoffroanus seems to be a complex of sibling species (Pritchard & Trebbau 1984) and 377 

in Amazon its distribution is concentrated in the “arc of deforestation region”. Despite 378 
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the concern about the impact of deforestation in the distribution areas of K. scorpioides 379 

and R punctularia, they are the only species protected by the Integral Protection Areas 380 

(IPA) in a previous gap analysis (Fagundes et al. unpubl. data). IPAs were not specially 381 

designed to protect turtle species (Fagundes et al. unpubl. data) and its occurrence in 382 

those protected areas could be explained only by consequence of random protection, 383 

since they show large distribution in Amazon. 384 

Despite of deforestation to be a large threat to chelonians, the forest loss in 385 

Amazon is concentrated in a region from southwest to northeastern Amazon called “arc 386 

of deforestation”, which do not overlap areas of higher turtle richness. In recent years, 387 

the deforestation rates in Pará state have increased and a new advancement of 388 

deforestation outside the arc has been registered towards the West in Trans-Amazonian 389 

Highway and Cuiabá-Santarém Highway (Vieira et al. 2008; INPE 2015). Some of 390 

those areas encompass priority areas for chelonian conservation. Another relevant 391 

aspect is that the deforestation model used in this study does not account for the effect 392 

of planned highways, hydroelectric power plants, mining and waterways on predicted 393 

deforestation (Fearnside & Graça 2009; Souza & De Marco Jr. 2014). The government 394 

plan to build 277 hydroelectric power plants in Amazon and establish 15.114 km of 395 

navigable waterways (Castello et al. 2013). Thus, turtles may be threatened in locals 396 

other than the predicted by the deforestation model. The construction of dams prevent 397 

aquatic turtle movements, because they disrupt the longitudinal connectivity of rivers 398 

(Agostinho et al. 2008) and lateral connectivity between rivers channels and floodplains 399 

and riparian zones (Poff & Hart 2002). This characteristic makes difficult the migration 400 

of these organisms to non-deforested and non-impacted areas, reducing the adaptive 401 

capacity of species. Large dams were already constructed in locals that possess large 402 
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turtle richness such as Madeira River, Uatumã River, Xingu River, Tocantins River and 403 

other dams are planned to be built in those areas in rivers such as Tapajós, 404 

Curuapanema, Maicuru, Jari, Cupari, Curuá and so on. 405 

The selection of areas with high conservation values is crucial to conciliate 406 

biological diversity into development plans (Theobald et al. 2000; Pierce et al. 2005). 407 

The lack of integration between socioeconomic interests and conservation planning 408 

makes the last issue less relevant to decision makers (Faith & Walker 2002; Polasky 409 

2008), since frequently important areas for biodiversity overlaps human activities 410 

(Eklund et al. 2011). Thus, the complementarity principle has been used in spatial 411 

prioritization of conservation sites (Possingham et al. 2000) using aspects like land-use 412 

changes (Faleiro et al. 2013). In the current work, the turtle overall distribution included 413 

in sites ranked in the top 50% priority areas decreased when we used deforestation. 414 

Areas showing high conservation value were forced to be excluded in deforested sites. 415 

The goal of conservation that has been used for terrestrial environments is 17% 416 

(Convention on Biological Diversity 2010). The top 17% priority areas for freshwater 417 

turtle conservation had practically the same species distribution with or without 418 

deforestation. At this conservation goal, the inclusion of protected areas makes that the 419 

sites with priority to be fragmented.  420 

The current protected areas in Amazon cover 22.2% of its territory and 421 

Indigenous lands 21.7%, which the majority was created in areas subjacent to high 422 

anthropogenic pressures (Veríssimo et al. 2011). However, the reserve networks seem 423 

to be inefficient in conservation of species that depend of the aquatic ecosystems in a 424 

large scale. Many protected areas are out of the priority sites for chelonian conservation. 425 

Some sites with high conservation value are not contemplated by IPA, even when only 426 
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the top 17% priority sites are required. The addition of Sustainable Use Areas (SUA) 427 

and Indigenous Territories Areas (ITA) in our analyses shows higher cover of the 428 

priority sites for turtle conservation. The reserve networks are sufficient to complete the 429 

established conservation effort in the scenarios considering the top 17% priority sites. 430 

Nevertheless, the amount of sites for turtle conservation is widespread in Amazon and 431 

not contemplates the continuous areas with higher turtle richness in north. Besides, the 432 

effectiveness of SUA has been questioned, because they frequently show high human 433 

population and the resulting high hunting and forest loss rates (Peres & Palacios 2007; 434 

Peres 2011; Veríssimo et al. 2011). 435 

In general, aggregated terrestrial protected areas are assumed to perform better 436 

because they may decrease edge effects and support metapopulation persistence 437 

(Moilanen 2005; Moilanen & Wintle 2006; Nicholson et al. 2006). Freshwater 438 

organisms may demand the conservation of parts of river systems (e.g. headwaters) that 439 

are geographically distant from the biological features of interest (Moilanen et al. 2008). 440 

Turtles migrate from high productivity feeding areas to nesting sites usually next from 441 

headwaters regions (Peres 2005) and use terrestrial environments to accomplish many 442 

activities (Congdon & Gibbons 1996; Klemens 2000). Thus, the conservation of top 443 

17% priority sites may be not adequate to the group and freshwater turtles may require 444 

goals higher than 17%. A better design of protected areas should be based in large areas 445 

with high conservation value in both terrestrial and aquatic habitats (Crawford & 446 

Semlitsch 2007; Gardner et al. 2007). A good option is to select freshwater conservation 447 

areas, maybe entire watersheds, in the high priority turtle conservation sites (Abell 448 

2002; Thieme et al. 2007). This measure can prevent future threats upstream (Peres 449 

2005).  450 
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The choice of priority sites is usually complicated due to the limited knowledge 451 

about aspects of biology and species distribution (Lomolino 2004; Diniz et al. 2010). In 452 

addition, vulnerability to ecological changes driven by anthropic impacts can be 453 

suggested only in general terms for the majority of individual species (Kozlowski 454 

2008). Species distribution modelling can fill the referred gaps of information and has 455 

been used in conservation planning when evaluated together with threats to biodiversity 456 

(Phillips et al. 2006; Cabeza et al. 2010). Those models can overestimate or omit true 457 

species range and do not take into account species interactions and dispersal ability of 458 

species (Soberón & Nakamura 2009). However, SDMs performed better than analysis 459 

using few data from the extent of occurrence of the species (Diniz-Filho et al. 2010). 460 

Detailed occurrence data of freshwater Amazonian turtles is uncommon and the 461 

distribution maps for these species are frequently created based on small numbers of 462 

occurrence data, mainly for Chelidae (Iverson 1992; Rueda-Almonacid 2007). The lack 463 

of information makes that some species are not classified in IUCN list and/or to be 464 

categorized as data deficient in Brazilian Ministry of Environment (MMA) (IUCN 465 

2011; MMA 2014). 466 

Studies that show priority sites to conservation of particular groups within large 467 

areas are very important to decision making and to reduce the budgets in conservation 468 

practices. The results of our study have significant practical implications for 469 

conservation agencies. Studies on priority areas for the conservation of aquatic 470 

organisms are still relatively incipient in comparison with terrestrial organisms 471 

(Moilanen et al. 2008). However, our findings should be interpreted cautiously with 472 

respect to applied conservation. We did not take into account the social importance of 473 

chelonian as a food resource in Amazon. Socioeconomic and cultural forces are largely 474 
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necessary in the process of negotiation with all stakeholders to implement conservation 475 

actions (Margules & Pressey 2000; Ferrier & Wintle 2009). Despite of those limitations, 476 

our study highlights which regions would be more important to invest in conservation of 477 

freshwater turtles in Brazilian Amazon and how the species are exposed to 478 

deforestation. Biodiversity loss seems to be inevitable unless land-use changes be 479 

balanced with land protection. Thus, the assessment of the vulnerability of organism to 480 

anthropic impacts, the efficiency and the expansion of the protected areas considering 481 

current and predicted land-use are crucial to the conservation of species.  482 
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Table 1. Vulnerability of the 16 freshwater turtles to the current and predicted deforestation in Brazilian Amazon and their threat category 

according International Union for Conservation of Nature (IUCN) and Brazilian Ministry of Environment (MMA). 

1 Threat categories of the International Union for Conservation of Nature (IUCN) from the last updating in 1996;  2 Threat categories of Brazilian 

Ministry of Environment (MMA) from the last updating in 2014. 3 The habits were compiled from Rueda-almonacid et al. (2007) and Vogt 

(2008).  

Species 

Potential 

distribution area  

Potential 

distribution with 

total deforestation 

Potential area lost 

in current 

deforestation 

Potential area lost 

in predicted 

deforestation  

Total potential 

area lost 

Total potential 

area lost (%) IUCN1 MMA2 

Aquatic turtles3         

Mesoclemmys nasuta 10.336 10.048 288 0 288 2.79 Not listed Data deficient 

Podocnemis erythrocephala 1.537.360 1.324.144 130.784 82.432 213.216 13.87 Vulnerable A1bd Data deficient 

Peltocephalus dumerilianus 802.768 681.536 72.128 49.104 121.232 15.10 Vulnerable A1acd Data deficient 

Rhinemys rufipes 1.416.640 1.195.648 135.808 85.184 220.992 15.60 Near threatened Least concern 

Podocnemis sextuberculata 2.085.968 1.742.928 214.928 128.112 343.040 16.45 Vulnerable A1acd Near threatened 

Podocnemis unifilis 2.107.616 1.715.936 246.704 144.976 391.680 18.58 Vulnerable A1acd Near threatened 

Podocnemis expansa 2.147.648 1.671.328 311.888 164.432 476.320 22.18 Least concern Near threatened 

Mesoclemmys raniceps 3.489.664 2.685.936 509.840 293.888 803.728 23.03 Not listed Data deficient 

Chelus fimbriata 1.676.768 1.209.904 320.496 146.368 466.864 27.84 Not listed Least concern 

Phrynops geoffroanus 1.799.584 1.207.312 395.104 197.168 592.272 32.91 Not listed Least concern 

Semi-aquatic turtles3         

Platemys platycephala 2.281.552 1.895.296 241.072 145.184 386.256 16.93 Not listed Least concern 

Mesoclemmys vanderhaegei 222.864 179.680 33.696 9.488 43.184 19.38 Near threatened Data deficient 

Acanthochelys macrocephala 91.360 85.456 5.472 432 5.904 6.46 Near threatened Data deficient 

Mesoclemmys gibba 4.111.632 3.229.520 552.736 329.376 882.112 21.45 Not listed Data deficient 

Rhinoclemmys punctularia 1.602.432 1.110.608 323.744 168.080 491.824 30.69 Not listed Least concern 

Kinosternon scorpioides  2.915.552 2.002.016 596.672 316.864 913.536 31.33 Not listed Data deficient 
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Figure legends 

 

Figure 1. Potential distribution areas of 16 freshwater turtles in Brazilian Amazon 

affected by current and predicted deforestation. 

 

Figure 2. Richness of freshwater turtles affected by deforestation in Amazon. A) 

Current deforestation, B) Current deforestation + Predicted deforestation. 

 

Figure 3. Top 17% and 50% priority areas for freshwater turtle conservation in Brazilian 

Amazon considering different scenarios. The orange areas represent the priority sites for 

models with or without deforestation and yellow areas represent sites that only show 

conservation value for one that those models. (A - B) depicture the scenarios without 

Protected Areas (-PA); (C - D) depicture the scenarios using Integral Protected Areas 

(+IPA); (E – F) depicture the scenarios using Integral Protected Areas and Sustainable 

Use Areas (IPA + SUA); (G – H) depicture the scenarios using Integral Protected Areas, 

Sustainable Use Areas and Indigenous Territories Areas (IPA + SUA + ITA). The 

location of the current protected areas is shown in the black circle sites. 

 

Figure 4. Performance curves to different conservation scenarios for freshwater turtles 

in Brazilian Amazon. (A - D) Graphs show the proportion of the landscape lost and 

their correspondent proportion of species distribution remaining. The full line represents 

scenarios considering the deforestation and the dot-dash line represents scenarios not 

considering deforestation. Models without Protected Areas (-PA); scenario using 

Integral Protected Areas (+IPA); scenarios using Integral Protected Areas and 
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Sustainable Use Areas (IPA + SUA); and scenarios using Integral Protected Areas, 

Sustainable Use Areas and Indigenous Territories Areas (IPA + SUA + ITA)
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Figure S1 

Variables (units) Code Description 

Annual Mean Temperature (°C) 1 Bio 01 Calculated  from the minimum and maximum temperatures 

Mean Diurnal Range (°C) 1 Bio 02 Calculated  from the minimum and maximum temperatures: (Mean of monthly (max temp - min temp)) 

Isothermality 1 Bio 03 Calculated  from the minimum and maximum temperatures: (Bio02/Bio07) 

Temperature Seasonality (CV) 1 Bio 04 Calculated  from the minimum and maximum temperatures: (standard deviation *100) 

Max Temperature of Warmest Month (°C) 1 Bio 05 The maximum temperature of warmest month 

Min Temperature of Coldest Month  (°C) 1 Bio 06 The minimum temperature of clodest month 

Temperature Annual Range (°C)1 Bio 07 Calculated  from the minimum and maximum temperatures: (Bio5-Bio6) 

Mean Temperature of Wettest Quarter  (°C) 1 Bio 08 Calculated  from the minimum, maximum temperatures and rainfall (mm month-1) 

Mean Temperature of Driest Quarter  (°C) 1 Bio 09 Calculated  from the minimum, maximum temperatures and rainfall (mm month-1) 

Mean Temperature of Warmest Quarter  (°C) 1 Bio 10 Calculated  from the minimum and maximum temperatures 

Mean Temperature of Coldest Quarter  (°C) 1 Bio 11 Calculated  from the minimum and maximum temperatures 

Annual Precipitation (mm) 1 Bio 12 Calculated  from the rainfall (mm month-1) 

Precipitation of Wettest Month (mm) 1 Bio 13 Calculated  from the rainfall (mm month-1) 

Precipitation of Driest Month (mm) 1 Bio 14 Calculated  from the rainfall (mm month-1) 

Precipitation Seasonality (mm) 1 Bio 15 Calculated  from the rainfall (mm month-1) 

Precipitation of Wettest Quarter (mm) 1 Bio 16 Calculated  from the rainfall (mm month-1) 

Precipitation of Driest Quarter (mm) 1 Bio 17 Calculated  from the rainfall (mm month-1) 

Precipitation of Warmest Quarter (mm) 1 Bio 18 Calculated  from the minimum, maximum temperatures and rainfall (mm month-1) 

Precipitation of Coldest Quarter (mm) 1 Bio 19 Calculated  from the minimum, maximum temperatures and rainfall (mm month-1) 

Annual mean radiation (W m-2) 2 Bio 20 Calculated  from the radiation (W m-2d-1) 

Highest weekly radiation (W m-2) 2 Bio 21 Calculated  from the radiation (W m-2d-1) 

Lowest weekly radiation (W m-2) 2 Bio 22 Calculated  from the radiation (W m-2d-1) 

Radiation seasonality (CV) 2 Bio 23 Calculated  from the radiation (W m-2d-1) 
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The layers references and website for download: 1 Hutchinson et al. (2009), available on http://www.worldclim.org/download; 2 Hutchinson et al. 

(2009), available on https://www.climond.org/Download.aspx; 3 Lehner et al. (2006), available on http://hydrosheds.cr.usgs.gov/index.php; 4 Farr 

et al. (2007), available on  https://lta.cr.usgs.gov/SRTM2; 5 Moore et al (1991), available on https://lta.cr.usgs.gov/HYDRO1K; 6 Ahn & Tateishi 

(1994), available on http://edit.csic.es/Climate.html. 

Radiation of wettest quarter (W m-2) 2 Bio 24 Calculated  from the rainfall (mm month-1) and radiation (W m-2d-1) 

Radiation of driest quarter (W m-2) 2 Bio 25 Calculated  from the rainfall (mm month-1) and radiation (W m-2d-1) 

Radiation of warmest quarter (W m-2) 2 Bio 26 Calculated  from the minimum, maximum temperatures and radiation  (W m-2d-1) 

Radiation of coldest quarter (W m-2) 2 Bio 27 Calculated  from the minimum, maximum temperatures and radiation  (W m-2d-1) 

Annual mean moisture index2 Bio 28 Calculated  from the rainfall (mm month-1) and pan evaporation (mm d-1) 

Highest weekly moisture index2 Bio 29 Calculated  from the rainfall (mm month-1) and pan evaporation (mm d-1) 

Lowest weekly moisture index2 Bio 30 Calculated  from the rainfall (mm month-1) and pan evaporation (mm d-1) 

Moisture index seasonality (CV) 2 Bio 31 Calculated  from the rainfall (mm month-1) and pan evaporation (mm d-1) 

Mean moisture index of wettest quarter 2 Bio 32 Calculated  from the rainfall (mm month-1) and pan evaporation (mm d-1) 

Mean moisture index of driest quarter 2 Bio 33 Calculated  from the rainfall (mm month-1) and pan evaporation (mm d-1) 

Mean moisture index of warmest quarter 2 Bio 34 Calculated  from the minimum, maximum temperatures, rainfall (mm month-1) and pan evaporation (mm d-1) 

Mean moisture index of coldest quarter 2 Bio 35 Calculated  from the minimum, maximum temperatures, rainfall (mm month-1) and pan evaporation (mm d-1) 

Flow accumulation (number of cells) 3 FACC Defines the amount of upstream area draining into each cell 

Flow direction (number of cells) 3 FDIR Defines the direction of flow from each cell in the conditioned DEM to its steepest down-slope neighbor 

Shuttle Radar Topography Mission (m) 4 SRTM Digital elevation data 

Slope (°) 5 SLP The maximum rate of elevation between each cell and its eight neighbors 

Compound Topographic Index 5 CTI Reflects a function of the upstream contributing area and the slope of the landscape 

Annual Actual Evapotranspiration (mm) 6 AAE 
Effective quantity of water that is removed from the soil due to evaporation and transpiration processes, 

alternative indicator of energy availability 

Annual Water Balance (mm) 6 AWB Defines the fraction of Water Content available for evapotranspiration processes 

http://www.worldclim.org/download
https://www.climond.org/Download.aspx
http://hydrosheds.cr.usgs.gov/index.php
http://earthexplorer.usgs.gov/
http://earthexplorer.usgs.gov/
https://lta.cr.usgs.gov/SRTM2
https://lta.cr.usgs.gov/HYDRO1K
http://edit.csic.es/Climate.html
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Figure S2 

 

Species AUC TSS 

Podocnemis expansa 0.87 0.59 

Podocnemis erythrocephala 0.95 0.78 

Podocnemis unifilis 0.86 0.62 

Podocnemis sextuberculata 0.91 0.71 

Peltocephalus dumerilianus 0.94 0.76 

Mesoclemmys gibba 0.73 0.38 

Rhinemys rufipes 0.97 0.85 

Mesoclemmys raniceps 0.82 0.50 

Acanthochelys macrocephala 0.99 0.99 

Platemys platycephala 0.87 0.63 

Phrynops geoffroanus 0.78 0.56 

Chelus fimbriatus 0.87 0.59 

Kinosternon scorpioides 0.88 0.64 

Mesoclemmys vanderhaegei 0.96 0.80 

Rhinoclemmys punctularia 0.94 0.75 

Mesoclemmys nasuta 0.99 0.98 
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Figure S3 
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Abstract: Ecological Niche Models (ENM) are usually evaluated and applied within the 

region in which they were fitted. However, transfer ENMs to other parts of a species’ 

geographical range is recommended to the proper evaluation of the models and for 

management actions. Given the conservation concern regarding the turtle Podocnemis 

expansa, we tested the transferability of the ENMs to this species in Amazon. We divided the 

occurrence points in six pairs of datasets. The occurrence points from one region of each pair 

were used to calibrate the model, whereas the occurrences from the other region of each pair 

were used to evaluate the model and vice-versa. The background points were chosen only in 

the training data area. We modeled using raw environmental variables and principal 

components as environmental predictors. The process resulted in 24 regional Amazon models. 

We modeled the distribution of the species with Maximum Entropy and they were evaluated 

using the area under the ROC curve (AUC), and the True Skilled Statistics (TSS). The 

similarity between the suitable areas for P. expansa occurrence to both regions of a dataset is 

low no matter which predictor selection we use. However, the use of raw variables as 

environmental predictors produced models that predict suitable areas far from the known 

distribution of the species. All TSS values were low, indicating that the models cannot be 

transferred from one Amazon area to another. On the other hand, AUC showed excellent and 

good values. The predicted area in number of pixels showed strong relationship with the TSS 
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and AUC values using both predictor selections. The use of distinct datasets and principal 

components did not change the transferability to TSS and AUC values. Our study 

demonstrates the importance of capture relevant drivers of change in the requirements of the 

species in each region, especially widespread species like P. expansa. However, care should 

be taken when a modeled distribution of a species is projected into geographic regions with 

heterogeneous areas, such as the Amazon. Given the lack of transferability, the sum of the 

suitable areas predicted to both regions of the dataset which produced the more accurate 

model may be used to represent species distribution.  

 

Keywords: Ecological Niche Models; Maximum Entropy; transferability; prevalence; 

Podocnemis expansa 
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1. Introduction 

 

The knowledge of species distribution is the basic unit information used in both 

macroecology and conservation (Cayuela et al., 2009; Guisan and Thuiller, 2005; Nóbrega 

and De Marco Junior, 2011). The information regarding the distribution of organisms allows 

the evaluation of diversity patterns and their ecological and evolutionary process (Diniz-Filho 

et al., 2010). The lack of the species’ proper distribution data, the so-called “Wallacean 

shortfall”, hampers the evaluation of the biogeographical patterns. Such scenario is more 

evidenced in tropical regions (Brooks et al., 2001; Myers et al., 2000) and on freshwater 

species, which usually have poorer distribution database in comparison with terrestrial groups 

(Peres, 2005; Peres and Terborgh, 1995; Thieme et al., 2007). Detailed occurrence data of 

freshwater Amazonian turtles is uncommon and the distribution maps for these species are 

frequently created based on their known occurrence extent (Iverson, 1992b; Rueda-

Almonacid, 2007). However, range maps may overestimate the distribution areas of the 

species (Rondinini et al., 2006), and the inclusion of unoccupied areas may inflate the species 

richness, producing a false biodiversity pattern (Bombi et al., 2011).  

Ecological Niche Models (ENM) can be an important tool to fill the gaps about 

distribution data (Costa et al., 2010; Raxworthy et al., 2003). Those models estimate the 

environmental suitability to a given species from the association of abiotic variables and the 

known occurrence records in order to generate a projection of their distribution in 

geographical space (Guisan and Zimmermann, 2000; Peterson, 2001). Other terms have been 

used to refer those predictive models, but we used ENM in the current study because 

transferability issue requires hypotheses related to niche (Peterson and Soberón, 2012). The 

usage of ENMs allows the discovery of new species and new populations (Guisan et al., 2005; 

Raxworthy et al., 2003), to study introduction of alien species and extinctions (Broennimann 

et al., 2007; Ervin and Holly, 2011; Wang and Jackson, 2014), to assess the impact of 

accelerated land use and climate change (Araújo et al., 2005b; Araújo and Rahbek, 2006; 

Randin et al., 2006) and to answer several conservation problems (Loiselle et al., 2003; 

Marini et al., 2010; Martinez et al., 2006; Nóbrega and De Marco Junior, 2011). However, 

ENMs are usually evaluated and applied within the region in which they were fitted (Randin 

et al., 2006).  

Despite the importance of the habitat relationships within individual landscapes, a 

desirable feature of ENMs is that the results can be transferred to other parts of a species’ 
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geographical range (Fielding and Haworth, 1995; Kleyer, 2002; McAlpine et al., 2008; 

Schröder and Richter, 1999; Thomas and Bovee, 1993) and across time (Araújo et al., 2005b; 

Schröder and Richter, 1999). Geographical or temporal transference of models is defined as 

generality (Fielding and Haworth, 1995) or transferability (Glozier et al., 1997; Kleyer, 2002; 

Schröder and Richter, 1999; Thomas and Bovee, 1993). A model with good generality should 

have good performance in different dataset in a similar spatial scale of what it was firstly 

developed (Barbosa et al. 2009; Pearce and Ferrier, 2000; Wenger and Olden, 2012). 

Transferability is recommended for a proper evaluation of the model (Fielding and Bell, 1997; 

Guisan and Zimmermann, 2000) and it is particularly relevant for models which purpose is 

conservation planning (Peterson, 2006; Soberón and Peterson, 2004; Vanreusel et al., 2007).  

Projecting the species response to environmental conditions different from the studied 

range is not trivial (Elith et al., 2010; Zurell et al., 2012) and some obstacles to model 

transferability has been identified. For instance, sets of abiotic predictors which support the 

establishment and the survival of species may show spatial differences (Austin, 2002). 

However, even when environment is constant, historical influences, dispersal capacity and 

biotic pressure can generate local niche variation in a species range (Murphy and Lovett-

Doust, 2007; Pulliam, 2000). Dispersal has significant influence on local adaptation of the 

species through both demographic and genetic rescue effects and can change the species 

distribution (Holt, 2003). On the other hand, it can prevent divergences in niche evolution, 

mainly at marginal populations (Hendry et al., 2001). Although some species occupy 

specialized habitats and show lower niche breadth next to the limit of their distributional 

ranges (Brown et al., 1995), other species can occupy similar niche positions in different 

regions (Hill et al., 2000; Prinzing et al., 2002; Thompson et al., 1993).  

Studies involving different modelling techniques have been developed to address 

transferability (Araújo et al., 2006; Bakkenes et al., 2002; Guisan and Zimmermann, 2000; 

Peterson et al., 2002; Thuiller et al., 2005; Verbruggen et al., 2013). It is still not completely 

clear how and under what conditions distribution models can be transferred (Araújo et al. 

2005a, 2005b; Graf et al., 2006; McAlpine et al., 2008; Pearson et al. 2006; Randin et al., 

2006; Vernier et al., 2008), although some considerations may be discussed. Non-systematic 

sampling negatively influences ENMs and their transferability because the available species 

localities may not represent all the environmental conditions in which species occurs. Samples 

are often collected near from accessible locals (Hortal et al., 2008; Kadmon et al., 2004; 

Reddy and Davalos, 2003). Thus, ENMs may reflect survey effort rather than species 
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distribution. Spatial sampling bias can generate unrealistic models and it is particularly 

serious in models based on presence-only databases (Phillips et al., 2009). Some authors 

postulate that models incorporating spatial or temporal autocorrelation are difficult to transfer 

from one region to another (Araújo et al., 2005a; Guisan and Thuiller, 2005; Hampe, 2004). 

Conversely, model generality is markedly improved by the choice of appropriate predictor 

variables, and in lower proportion by the distribution of the occurrence points in the 

geographic space, model complexity and background choice (Verbruggen et al., 2013). 

Indirect variables may fail to express the true habitat requirements of the species in distinct 

geographical areas (Guisan and Zimmermann, 2000; Randin et al., 2006). 

Effective management actions require an understanding of the ecological factors 

determining habitat suitability in each local (Rushton et al., 2004). The distribution of 

Brazilian Amazonian freshwater turtles is poor, except for some species from the 

Podocnemididae family. Podocnemis expansa shows a large extent of occurrence in Amazon, 

which is desired property to test local responses of the species to different conditions. The 

species faces high hunting pressure by both adults and eggs (Rebêlo & Pezzuti, 2000; 

Schneider et al., 2011; Vogt, 2008). In this context, transferring models of P. expansa to areas 

where data are incomplete or lacking may help to solve conservation problems over its entire 

range and compensate low budgets in research (Whittingham et al., 2007). Hence, given the 

conservation concern regarding this species and the need for applicable models across the 

species distribution area, we tested the models transferability of the ENMs for P. expansa in 

Amazon. The performance was based on selection of predictors to control autocorrelation and 

background choice. We also discuss the applicability and limitations of the transferability 

approach for conservation. 

2. Materials and methods 

 

2.1. Species occurrence data  

 

The occurrence database for P. expansa is composed of an extensive literature review, 

unpublished data obtained by our research group, data from a governmental project for turtle 

conservation (“Quelônios da Amazônia”) and data from Brazilian scientific collections and 

museums provided on CRIA’s Species Link (http://splink.cria.org.br/). Besides, we used 

species records data published on The EMYSystem Global Turtle Database (Iverson et al., 
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2003), which depict the maps yielded by Iverson (1992a, 1992b, 1992c). Extremes or obvious 

errors were eliminated as a protocol to control the data quality. Datasets frequently exhibit a 

spatial bias (Dennis and Thomas, 2000; Kadmon et al., 2004). In order to decrease the effect 

of sampling bias in the quality of model and transferability (Verbruggen et al., 2013), we 

consider only one occurrence point in each cell of our spatial resolution, which is designated 

unique points. This process resulted in 306 occurrences for P. expansa in all Amazonian area. 

The software MaxEnt used in modelling already discards redundant records that occur in a 

single cell, but does not correct the lack of data in some areas. 

 

2.2. Environmental predictors 

 

Despite the difficulty to obtain local variables that influence aquatic organisms (Mendonça et 

al., 2005), some studies reveal that macroscale variables are good predictors to be used in 

distribution models of aquatic species, including in Amazon area (Frederico et al., 2014; 

Porter et al., 2000; Watson and Hillman,1997). Following this reasoning, we used 42 

variables: 37 climatic predictors, three variables that reflect terrain shifts and two predictors 

that characterize the aquatic environment (Fagundes et al., unpubl. data) to create the ENMs. 

Predictor variables usually show high collinearity and interfere in the interpretation of the 

models and its transferability (Dormann et al., 2012; Graham, 2003; Verbruggen et al., 2013). 

Thus, in order to reduce the parameters overfitting, we performed a principal components 

analysis (PCA) of those environmental variables to create new axes that summarized their 

variation (Dormann et al., 2012; Jiménez-Valverde et al., 2011). It was selected 12 principal 

components considering the Kaiser-Guttman criterion (Peres-Neto et al. 2005), which 

together explained more than 95% of the overall rate in predictors (Table 1). The 42 raw 

variables and the 12 principal components (PCA scores) were used separately in the 

modelling procedures to analyze which predictor selection improves transferability and the 

ability to predict species distribution. All layers were converted into a grid resolution of 

approximately 4km2.  

2.3. Analytical design 

 

We built a global model using all the occurrence points of P. expansa using principal 

components as environmental variables. The median latitude and median longitude of the 

unique occurrence points were then used to divide the dataset into two parts in relation to the 
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longitudinal and latitudinal Amazonian areas. Besides, the same process was used to divide 

the entire Amazon area in four quadrants. We obtained six pairs of datasets: two pairs in both 

latitude and longitude direction, two pairs in diagonals and two pairs in southern and northern 

Amazon areas (Fig. 1). To evaluate the transferability of ENMs under different locals, each 

pair of dataset was used separately. Thus, the occurrence data from one region of a pair of 

dataset were used to calibrate the model (training data/ partition A) and the occurrence data 

from the correspondent region of the same pair of dataset were used to evaluate the model 

(validation data/ partition B) and vice-versa. The background points in each model were 

chosen only in the training data area. Calibration data and evaluation data should use different 

environmental data as background to the model to be transferable (Phillips, 2008). We used 

10.000 background points. 

 

 

 

Fig. 1. Partition of Podocnemis expansa occurrence points in six pairs of datasets in 

Amazonian area in order to test transferability. A – Dataset partitioned by longitude; B – 

Dataset partitioned by latitude; C- Datasets partitioned by both diagonals (Q1Q4, Q2Q3) and 
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D –Datasets partitioned by southern and northern Amazon regions (Q1Q2, Q3Q4). Q1= 

quadrant 1, Q2= quadrant 2, Q3= quadrant 3, Q4= quadrant 4. 

 

We have two conditions to test ENM performance in transferability: (a) datasets of 

occurrence points + raw environmental variables, (b) datasets of occurrence points + principal 

components. Thus, the process resulted in 24 regional Amazon models to test transferability, 

12 models to each condition previously reported. 

 

2.4. Modelling procedures and evaluation statistics 

 

Maximum Entropy was the ‘presence/background’ algorithm chosen to build the models 

(Elith et al., 2010; Phillips and Dudik, 2008; Phillips et al., 2006). It is considered one of the 

most efficient methods, especially when the algorithm is used with few or biased occurrence 

data (Elith et al., 2006; Pearson et al., 2007; Siqueira et al., 2009). We used the software 

MaxEnt to run Maximum Entropy (Phillips et al., 2006) and the models were fitted by linear 

and quadratic features in order to decrease underparametrization. Verbruggen et al. (2013) 

verified that this condition allows a higher predictive power in the models. 

The conversion of the modeled environmental suitability into a binary prediction of a 

species distribution requires the choice of a threshold (Elith et al., 2006; Peterson, 2006). The 

threshold that we chose is derived from the ROC curve (Th ROC) and balances both omission 

and commission errors, reducing the risk of selecting sites with low suitability for species 

(Jiménez-Valverde & Lobo, 2007; Pearce and Ferrier, 2000). The models were evaluated 

using a threshold-independent method, the area under the ROC curve (AUC - Fielding and 

Bell, 1997), and a threshold-dependent method , the True Skilled Statistics (TSS - Allouche et 

al., 2006; Liu et al., 2011). We followed the criteria of Araújo et al. (2005a) adapted from 

Swets (1988) to classify the models into excellent (AUC > 0.90), good (0.80 > AUC < 0.90), 

fair (0.70 > AUC < 0.80), poor (0.60 > AUC < 0.70), and fail (0.50 > AUC < 0.60) as 

indicators of transferability. In relation to the TSS evaluation, acceptable values show at least 

the value of 0.5 (Fielding and Bell, 1997). 

We compared the similarity of the suitable areas predicted for P. expansa occurrence 

to both regions of a pair of dataset using the Sorensen similarity index. This index was also 

used to calculate the similarity between the predicted area to each dataset and the 
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environmentally suitable areas predicted to the global model. The overlap comparison was 

made only to the models built with principal components.  

The equation of Sorensen similarity index is Ss =
2a

(2a+b+c)
, where a is the number of 

pixels containing predicted area to P. expansa occurrence to both zones used in the 

comparison, b is the number of pixels with predicted area to the zone 1 and c is the number of 

pixels with predicted area to the zone 2. 

We use pairwise t-tests to compare the similarity of the predicted areas to both regions 

of a dataset using raw or principal components as environmental data. We also compared the 

effect of the dataset and predictor selection on transferability to both AUC and TSS 

evaluation methods using main effect ANOVA. The relationship between the number of 

pixels predicted to be suitable to P. expansa occurrence and TSS/AUC values using both set 

of environmental predictors were evaluated by simple linear regression. All statistical tests 

were conducted using Statistica 8.0 (Statsoft Inc, Tulsa, USA). 

3. Results 

 

The maps of the environmentally suitable areas to P. expansa occurrence show large changes 

in predicted area according to each dataset and predictor variables used to generate the 

potential distribution for the species (Fig. 2 and Fig. 3). The common predicted area to both 

regions (partition A and partition B) of a dataset was low in all models (Fig. 2 and Fig. 3). 

The higher similarity was found to the latitude model built with principal components (43%). 

When we use the raw variables as environmental predictors Q1Q4 and Q3Q4 models predict 

suitable areas far from the species distribution in Andean region. However, predictor selection 

have no significant difference in similarity of the predicted areas to both regions of a dataset 

(t= -0.33; P=0.75) (Table 1).  
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Fig. 2. Maps of the environmentally suitable areas for Podocnemis expansa occurrence in 

Amazon to each region of dataset. The models were built considering raw variables as 

environmental predictors. The red areas show the overlap of suitable areas predicted by a pair 

of dataset, indicating transferability.  
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Fig. 3. Maps of the environmentally suitable areas for Podocnemis expansa occurrence in 

Amazon to each region of a dataset. The models were built considering principal components 

as environmental predictors. The red areas show the overlap of suitable areas predicted by a 

pair of dataset, indicating transferability.  
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Table 1. Similarity values of suitable areas predicted for Podocnemis expansa occurrence in 

Amazon between each region of a dataset. We considered principal components and raw 

variables as environmental predictors. The table also show the number of occurrence points 

used to run the models.  

 

The suitable areas predicted to each dataset (partition A + partition B) show high 

similarity to the global model built with principal components (Fig. 4). Thus, the sum of the 

suitable areas predicted to both regions of a dataset may be used to represent species 

distribution when models show lack of transferability. Latitude and longitude models showed 

higher overlap of predicted areas in relation to the global model (Table 2). 

 

  Raw variables Principal components Occurrence points 

Latitude 0.22 0.43 153 

Longitude 0.24 0.32 153 

Q1Q2 0.23 0.22 75 

Q1Q4 0.02 0.04 78 

Q2Q3 0.28 0.08 75 

Q3Q4 0.03 0.10 78 
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Fig. 4. Maps of the environmentally suitable areas for Podocnemis expansa occurrence in 

Amazon to each dataset and global model. The models were built considering principal 

components as environmental predictors. The red areas show the overlap of suitable areas 

predicted by a dataset and global model, indicating transferability. 
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Table 2. Similarity values of suitable areas predicted for Podocnemis expansa occurrence in 

Amazon between each dataset and global model. We considered only principal components as 

environmental predictors. 

 

 

 

 

 

None of the models had acceptable value when TSS was used as evaluation method to 

assess the transferability of the models (values ≤ 0.50). The conditions present in training 

regions were not verified in testing data and vice-versa. Thus, the models developed in this 

study for P. expansa cannot be transferred from one Amazon area to another. On the other 

hand, almost all models had excellent and good AUC values (values ≥ 0.80) (Table 3).  

 

Table 3. Transferability values of the Ecological Niche Models developed for Podocnemis 

expansa in Amazon to each region of a dataset and with different predictor selection. The 

models were evaluated using the Area under the ROC curve (AUC) and True Skilled 

Statistics (TSS) methods. A and B is related to the region of the datasets used to train the 

models. 

 

The predicted area in number of pixels showed strong negative relationship with the 

TSS and AUC values and this pattern did not change when we used different sets of 

environmental predictors (Fig. 5). The use of principal components did not improve the TSS 

  Global Model 

Latitude 0.81 

Longitude 0.82 

Q1Q2 0.65 

Q1Q4 0.58 

Q2Q3 0.74 

Q3Q4 0.57 

Method 

Predictor 

selection Latitude Longitude Q3Q4 Q2Q3 Q1Q4 Q1Q2 

  

A B A B A B A B A B A B 

TSS PCA 0.082 0.081 0.075 0.095 0.050 0.061 0.045 0.128 0.059 0.049 0.041 0.139 

 

 

TSS 

Raw 

variables 0.100 0.136 0.110 0.154 0.076 0.024 0.070 0.047 0.027 0.090 0.077 0.033 

 

AUC PCA  0.909 0.927 0.910 0.957 0.954 0.958 0.943 0.973 0.954 0.948 0.938 0.980 

 

 

AUC 

Raw 

variables 0.929 0.960 0.955 0.961 0.959 0.790 0.954 0.879 0.811 0.972 0.967 0.834 
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evaluation values (F= 1.26; P= 0.38) and the AUC values (F= 1.25; P= 0.38). The use of 

distinct datasets do not change the transferability measure to both TSS (F= 1.23; P= 0.39) and 

AUC (F= 0.39; P= 0.92) methods.  

 

 

Fig. 5. Regression analyses between the size of predicted area for Podocnemis expansa 

occurrence in Amazon (in number of pixels) and True Skilled Statistics (TSS) and under the 

ROC curve (AUC) values. The regressions were calculated using raw variables and principal 

components as environmental predictors. 

4. Discussion 

 

A good evaluation of the models requires testing them with an independent dataset. The 

similarity between the suitable areas for P. expansa occurrence to both regions of a dataset is 

low no matter which predictor selection we use. However, when we used the raw variables, 

the models predict areas largely out of the extent of occurrence known for P. expansa. The 

use of AUC to measure model transferability indicated good performance in all partitions 

considered, but such result may be false (Wenger and Olden, 2012). The AUC and TSS 

values had strong relationship with the predicted area in number of pixels and this pattern did 

not change when we used different sets of environmental predictors. We did not identify 

differences in transferability of predictive species distribution when we used modelling 

techniques such as distinct selection of predictor variables and data partition. However, 
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variation in transferability of ENMs using different occurrence datasets and modelling 

procedures have been observed in other studies (Randin et al., 2006; Verbruggen et al., 2013).  

The representation of the niche of the species require that training data is in all suitable 

environments to the species occurrence, otherwise when we transfer the model to a different 

area (test area), a portion of the its niche that was not sampled before may not be recognized 

by the models (Fitzpatrick et al., 2007; Rödders et al., 2009). Thus, lack of transferability of 

ENMs is mainly related to the differences in environmental conditions between areas and 

does not mean niche shift or if those changes are situated at the fundamental or realized niche. 

The variable being modeled is the environmental suitability not site occupation. 

Transferability issue only supports assumptions about differences of realized niche between 

areas, since correlative models estimate that niche part (Verbruggen et al., 2013). Amazon 

shows an east-west gradient in climate, soils and elevation (Albert and Reis, 2011; Marengo, 

2004). The northwest area encompasses the rainy regions while southern and eastern Amazon 

shows a more wet/dry climate (Davidson et al., 2012). McPherson et al. (2004) found that 

differences in altitudinal range between areas may reduce transferability. It can be particularly 

important in chelonians because in general the altitude is a limiting factor to their distribution. 

Besides, turtle richness is largely determined by precipitation (Iverson, 1992a, 1992c; Souza, 

2005). 

Species can show different environmental requirements in diverse sites according to 

the contrast of each geographic area (Randin et al, 2006; Walter and Breckle, 1985). 

However, other features can influence the distribution of the species between regions. 

Transferability of ENMs may be affected by the biotic interactions in a regional species pool, 

mainly in broader scales (Hill et al., 2000; Odland and Birks, 1999; Prinzing et al., 2002; 

Thompson et al., 1993; Zobel, 1997). Unequal abundance of a species in its extent of 

occurrence also can cause niche restriction or dispersal limitations and decrease transferability 

(Dirnböck and Dullinger, 2004; Groom, 1998; Pulliam, 2000). Another factor that influences 

the model generality is the existence of different ecotypes between regions (Joshi et al., 2001; 

Walter and Breckle, 1985). Amazon shows a mosaic of vegetation types related to different 

freshwater ecosystems (Sioli, 1985; Davidson et al., 2012). The flooded forest várzea in 

western part of Amazon is composed by 85–90% of low-várzea type, which has more 

prolonged inundations (Wittmann et al., 2002; Wittmann et al., 2006). Pritchard and Trebbau 

(1984) commented that flooded and non-flooded areas from Amazonia drive the geographical 

distribution of large river turtles as Podocnemididae. Adult males and females of P. expansa 
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migrate from flooded forests areas to the nesting beaches in the reproductive period and return 

to flooding areas after the birth of the hatchlings (Alho and Pádua, 1982; Ferrara et al., 2012; 

Vogt, 2008). 

Failure to correct for geographical sampling bias can result in unrealistic models 

(Phillips et al., 2009). In some situations, we can expect significant deviations from predicted 

omission rates (Peterson et al., 2007) or commission rates, mainly on presence-only models 

(Phillips et al., 2009). Models with dramatic errors can be generated and influence 

conservation actions in a negative way. Thus, dividing the occurrence data to smaller dataset 

can help to decrease the sample bias effect and we can more precisely account for suitable 

sites to the species occurrences. This is particularly true for species with large geographical 

and/or environmental range as P. expansa (Osborne and Suárez-Seoane, 2002). Many studies 

show that predictive models can be transferred to new areas and reduce budgets in 

conservation actions (Vanreusel et al., 2007; Verbruggen et al., 2013). However, some 

authors conclude that transferability of models is hardly possible (Graf et al., 2006; Guay et 

al., 2003; Mallet et al., 2000; Randin et al., 2006). The capacity for transferability is highly 

species specific (Randin et al., 2006) and depends on ecological traits, such as mobility, 

specialization and prevalence (Angert et al., 2011; Pöyry et al., 2009).  

Larger areas are most likely to encompass larger variation of environmental variables 

than more-restrictive training geography (Graf et al., 2006; Phillips, 2008). Some studies 

show that the model accuracy depends more precisely on the relationship between the 

environmental range of the occurrence data and background points (Stokland et al., 2011). 

Thus, the reduction of the background selection to narrow areas in the design to evaluate 

transferability may affect the model performance (Thuiller et al., 2004; Vanderwal et al., 

2009). It is particularly important in widely distributed species (Barve et al., 2011), which are 

inherently difficult to model (Eskildsen et al., 2013). According to the above assumptions, our 

study found that models trained in largest areas (latitude/longitude models) showed higher 

transferability values and higher similarity values between the environmentally suitable areas 

predicted to both regions of those datasets. However, distinct datasets did not show a 

significant change on transferability to both TSS and AUC methods.  

The AUC may provide misleading results, suggesting that all models had good or 

excellent performance. Transferability is frequently verified in studies that use AUC measure 

(Eskildsen et al., 2013; Verbruggen et al., 2013). The AUC method appears to be sensitive to 

background choice. Larger backgrounds increase the AUC values because it includes points 
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with different environmental characteristics, but it does not mean a significant higher 

predictive power (Jiménez-Valverde, 2012; Lobo et al., 2008). Conversely, this method is 

also dependent of the proportion of presences relative to the number of sites (prevalence), and 

small areas may have higher prevalence and higher AUC values. Some studies highlight that 

high AUC values can be obtained even for models with strong biases and may poorly reflect 

model accuracy (Fourcade et al., 2014; Jimenez-Valverde et al., 2012; Lobo et al., 2008). The 

maps produced in this study reveal that although AUC values were very high, the predicted 

areas to the species occurrence to both regions of a datasets had low overlap. In this respect, 

TSS appears to be more sensitive to low transferability and may be a better measure to 

evaluate the models, and according to the results obtained here, all the models were not 

transferable according to this method. Allouche et al. (2006) conclude that TSS is a good 

measure of the model accuracy because it is not affected by prevalence and by the size of the 

validation set. However, in the current study both AUC and TSS measures had a strong 

relationship with the predicted area in number of pixels. The dependency of prevalence makes 

difficult to estimate the performance of the models (Lantz and Nebenzahl, 1996). 

The choice of the predictors may have also a drastic effect on the transferability 

(Peterson and Nakazawa, 2008; Rödder and Lötters, 2010; Rödde et al., 2009; Tuanmu et al., 

2011; Vanreusel et al., 2007), but we could not find this effect on P. expansa models. Usually 

environmental predictors show high autocorrelation (Phillips, et al., 2006). Multicollinearity 

changes model structure and the relationship between species occurrence and environment 

suitability, affecting the significance of the tests (Graham, 2003; Mac Nally, 2000). Principal 

components are commonly used to reduce correlated variables (Graham, 2003; Verbruggen et 

al., 2013) and are useful in ENMs that predict environmental conditions within the same area 

and during the same time of a train model (Viña et al., 2010). On the other hand, in some 

occasions the use of indirect environmental variables and intermediate predictors such as 

principal components on the niche similarity may not increase the transferability of the 

models (Austin, 2002; Graf et al., 2006; Phillips, 2008). In the current study, PCA did not 

improve the transferability values and the similarity of the predicted areas to both regions of a 

dataset. Peterson et al. (2007) postulate that indirect variables can overpredict the distribution 

area (Peterson et al., 2007). However, the use of principal components does not change the 

relation verified in this study, where higher AUC and TSS values were found to the lower 

predicted areas. Although we did not find significant differences in results using PCA, some 
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models built with raw variables produced exaggerated predictions to areas such as Andean 

mountains and should reflect less the species distribution. 

Transferring models to new sites represent a new approach to consider species-specific 

requirements into a reserve network and conservation actions (Vanreusel et al., 2007). Local 

and regional managements depend on a detailed knowledge of the variation in response 

shown by a species across its range. In this context, our study demonstrates the importance of 

considering transferability to evaluate the models and increase their accuracy. Model 

validation has showed good predictive accuracy when the non-independent data are from the 

same time (Araújo et al., 2005a; Eskildsen et al., 2013). However, we showed that care should 

be taken when ENMs are projected to different geographic regions, especially in 

heterogeneous areas such as Amazon. Assessment of performance should focus on the ability 

of models to capture relevant drivers of change (Rapacciuolo et al., 2012), since that local 

adaptations of the species may overestimated species distribution (Stockwell and Peterson, 

2002). Podocnemis expansa shows high dispersal capacity (Valenzuela, 2001) and the 

differences in environmental conditions across Amazon seem to drive the requirements of the 

species in each region. The nesting beaches could limit P. expansa occurrence in different 

parts of its range. Those sites appear to be more abundant in western Amazon (Cantarelli and 

Herde, 1989). In case of lack of transferability, the sum of the suitable areas predicted to both 

regions of the dataset which produced the more accurate model may be used to represent 

species distribution. The results presented here are specific to the current spatial scale. Other 

resolution could generate different patterns because the importance of the variables is 

dependent on the scale (Luoto, 2007; Pearson et al., 2004). 
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ABSTRACT: Some species show temperature-dependent sex determination (TSD), where the 25 

offspring sex ratio is determined by the incubation temperature of the embryo. Climate is 26 

under dramatic modifications and TSD species may be particularly threatened. Podocnemis 27 

unifilis is classified as vulnerable by IUCN and conservation actions do not contemplate 28 

hatchling sex ratio estimates. Thus, we used a more general method to determine sex ratio 29 

based on the dependency of the embryo growth rate on temperature from a time series of 30 

incubation temperatures of natural nests. The study was developed in a seasonally flooded 31 

whitewater forest (Várzea) area and in a sand beach area in central Amazonia. A linear mixed 32 

model (lme) was run to evaluate the correlation between daily mean nest temperatures and 33 

fixed effects (air temperature, nest distance to vegetation, nesting distance to water, area and 34 

female track width), and between thermal variance and daily mean nest temperature and area 35 

in order to determine the factors that influence the nest temperature. Our study is the first one 36 

to show that temperature influences the embryo developmental rate and sex determination in a 37 

different way. Daily mean nest temperature was related to distance to vegetation, air 38 

temperature and area. Daily thermal variance is related to daily mean nest temperature and 39 

both are responsible to sex determination. The sand beach shows high feminization pattern, 40 

but the flooding site is still an important source of male production and it seems to be crucial 41 

to the maintenance of the population viability. 42 
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Introduction  48 

Temperature has a strong influence on all biological taxes in ectothermic animals (Angilletta 49 

et al. 2002; Gillooly et al. 2002). Particularly in chelonians, characteristics related to 50 

reproduction like incubation period, hatchling success, embryonic growth and hatching 51 

morphology are strongly depend on incubation temperature (Mrosovsky and Provancha 1989; 52 

Du and Ji 2003; Limpus 2006). Some species show temperature-dependent sex determination 53 

(TSD), where the offspring sex ratio is determined by the incubation temperature of the 54 

embryo (Bull and Vogt 1979; Pieau 1996). In the TSD pattern present in most turtles, high 55 

temperatures produced females and low temperatures produced males (Ewert et al. 1994; 56 

Viets et al. 1994). More precisely, the sex in TSD turtle species depends on the cumulative 57 

effect of temperature during the second third of the embryonic development, designed as 58 

thermosensitive period (TSP) (Bull and Vogt 1979; Yntema 1979; Bull and Vogt 1981; Vogt 59 

and Bull 1982; Yntema and Mrosovsky 1982). Besides, the cumulative effect of temperature 60 

varies with the amplitude of its fluctuation (Georges 1989).  61 

Incubation temperature is the basic element of the sexual determination, because it 62 

regulates the oestrogen production (Georges et al. 1994; Wibbels et al. 1994). The hormone 63 

has a feminizing role in gonadal differentiation (Wibbels et al. 1994; Dorizzi et al. 1996; 64 

Pieau and Dorizzi 2004) and is related to the aromatase activity in TSP (Jeyasuria and Place 65 

1997). During TSP, the embryogenesis reaches temperature values where both sexes are 66 

produced in equal proportion, the pivotal temperature (P), and temperatures values where both 67 

sexes are yielded in variable proportions, the transitional range of temperatures (TRT) 68 

(Mrosovsky and Pieau 1991). Only a small shift in incubation temperature (~1ºC) (Godfrey et 69 

al. 1999; Broderick et al. 2000; Godley et al. 2001; Schwanz et al. 2010) or an increase in the 70 

temperature fluctuations at low and high mean temperatures is sufficient to alter de embryo 71 

sex ratio (Neuwald and Valenzuela 2011). Different parameters were already used to find a 72 
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non-invasive method to predict correctly hatchling sex ratio: mean nest temperature (Bull 73 

1980; Schwarzkopf and Brooks 1987; Valenzuela 2001), incubation period (Marcovaldi et al. 74 

1997), the mean and variance of incubation temperature (Bull 1985; Souza and Vogt 1994) 75 

and the number of hours at or above pivotal temperature during TSP (Bull 1985; Mrosovsky 76 

and Provancha 1992; Souza and Vogt 1994). However, experimental studies showed that 77 

those approaches had poor predictive power (Valenzuela 2001; Georges et al. 2004). Natural 78 

nests experience daily and seasonal temperature fluctuations that influence the embryo 79 

development time and sex ratio (Bull 1985; Georges 1992; Janzen 1994; Shine and Harlow 80 

1996).  81 

Georges (1989) developed a model where the results from constant temperatures are 82 

transformed in predictions about natural conditions. The constant temperature equivalent 83 

method (CTE) converts fluctuating temperature into constant temperature that shows the same 84 

effect on sex ratio (Georges 1989; Georges et al. 1994). However, the model is restricted to 85 

temperatures around a stationary mean that have a linear effect on embryo development 86 

(Georges et al. 2004; Georges et al. 2005). In order to concern about natural nest temperatures 87 

outside the optimal temperature range (OTR), different methods have been developed to 88 

evaluate the cumulative and differential effects of temperature on sex determination (Georges 89 

et al. 2004; Georges et al. 2005; Parrott and Logan 2010; Neuwald and Valenzuela 2011). 90 

Recently, CTE has been improved by accounting for physiological response of the embryo to 91 

temperature (Delmas et al. 2008; Girondot et al. 2010) and for the effect of nesting phenology 92 

on hatchling sex ratio (Telemeco et al. 2013). The mentioned models require large data sets 93 

on embryo growth though. To deal with the lack of data, Girondot and Kaska (2014) provided 94 

a more general method to determine sex ratio based on the dependency of the embryo growth 95 

rate on temperature (reaction norm) from a time series of incubation temperatures in natural 96 
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nests. In the current study, however, we evaluated the difference in the influence of 97 

temperature on embryo growth rates and sex determination (Neuwald and Valenzuela 2011).  98 

Climate is under dramatic modifications (Karl et al. 1996; Magnusson 2001). 99 

Intergovernmental Panel on Climate Change (IPCC) described large changes in climatic 100 

patterns for recent decades (IPCC 2007). Climate changes, especially in higher latitudes affect 101 

annual mean temperatures (Parry et al. 2007) and TSD species are particularly vulnerable 102 

(Deutsch et al. 2008; Kallimanis 2010; Mitchell and Janzen 2010). In those species, global 103 

warming has the potential to increase the proportion of female hatchlings that are produced 104 

(Limpus 2006; Hawkes et al. 2009; Hays et al. 2010; Schwanz 2013) and to alter species 105 

distribution (Brown et al. 1997; Parmesan et al. 1999; Walther et al. 2002) and nest 106 

survivorship (Miller 1985; Broderick et al. 2001; Godley et al. 2001; Hamann et al. 2007; 107 

Hawkes et al. 2007). Turtles have persisted during dramatic period of climate changes 108 

(Hamann et al. 2007; Hawkes et al. 2009), however, the climate projections for the next 109 

hundred years are expected to occur more accelerated than in the past (Brohan et al. 2006; 110 

IPCC 2007). It is uncertain if turtles can adapt their behavior or physiological characteristics 111 

quickly (Hamann et al. 2007). Turtles are long-lived animals with late maturity (Zug et al. 112 

2002) and pivotal temperature is a relatively conservative characteristic among populations 113 

and species (Freedberg and Wade 2001). Despite that Bull et al. (1982b) showed pivotal 114 

temperatures to vary within a climate from northern to southern USA in the same species. 115 

Podocnemis unifilis is a TSD species classified as vulnerable by the International 116 

Union for Conservation of Nature and Natural Resources (IUCN) (Vogt 2008; IUCN 2010). 117 

The knowledge of the relation between climate change and the proportion of females and 118 

males yielded each time period is very important to understand how temperature can affect 119 

the species survival (Hulin et al. 2009; Hamann et al. 2010) and to the development of 120 

conservation policies (Saba et al. 2012). Most of conservation activities for chelonians are 121 
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focused on the protection of the nesting beaches in order to protect adult females and to 122 

increase the number of hatchlings. However, we usually do not have any information about 123 

the natural hatchling sex ratio. Thus, given the conservation concern regarding P. unifilis, the 124 

objectives of this study are (1) to model the “reaction norm” of embryo growth and 125 

sexualization under natural fluctuating temperatures in a sand beach and in a Várzea area 126 

(seasonally flooded whitewater forest) in central Amazonia in order (2) to predict sex ratio; 127 

and (2) to determine the factors that influence the nest temperature.  128 

 129 

Results 130 

 131 

Embryo growth reaction norm and its confidence interval 132 

Nest temperatures varied between 24.35°C and 52.73°C (fig. 2). The incubation period ranged 133 

from 58 to75 days and it decreases at higher mean nest temperatures. The lower incubation 134 

length mean occurred at a temperature mean of 30.06ºC (fig. 3).  135 

The data were fit better with the four parameters Schoolfield et al. (1981) equation 136 

(ΔAIC=0.00, Akaike weight=0.87). The embryo growth rate increases at higher values. 137 

Taking into account the registered nest temperatures, the embryo growth is lower at 24.35ºC, 138 

reaching only 30% of the observed growth rate value at 37°C, which is the temperature of the 139 

maximum embryo growth (fig. 4). After the peak value the embryo growth return to decrease. 140 

The confidence interval for the reaction norm was lower when a range of temperatures was 141 

well represented among nest samples (fig. 4).  142 
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 143 

Figure 2: Distribution of nest temperatures for Podocnemis unifilis in a seasonally flooded 144 

whitewater forest (Várzea) and in a sand beach in Brazilian central Amazonia.  145 

 146 

Figure 3: Relationship between incubation temperature mean and incubation period. The 147 

points represent the 12 studied nests of Podocnemis unifilis in a seasonally flooded 148 

whitewater forest (Várzea) and in a sand beach in Brazilian central Amazonia. 149 

 150 
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 151 

Figure 4: Mean and confidence interval for embryo reaction norm r(T) with nest temperature 152 

data of Podocnemis unifilis from Brazilian central Amazonia. The graphic is based on the 153 

anchored model.  154 

 155 

Predicting time series of nest temperature  156 

The daily mean nest temperatures ranged between 25ºC and 42ºC, and they were higher in 157 

sand beach than flooding area. Using the daily mean local temperatures from data loggers, the 158 

lme model nest showed that the measures of distance to vegetation (t12= 3.22, p < 0.01), air 159 

temperature (t920= 29.51, p < 0.01) and area (t12= -4.32, p < 0.01) were correlated to daily 160 

mean nest temperature. Comparison of the model using all the fixed effects (AIC = 2529.50, n 161 

= 936) to the model using only distance to vegetation, air temperature and area (AIC = 162 

2502.69, n = 936) suggested that the last one is better. However, when we use the daily mean 163 

air temperature from ECMWF, the daily mean nest temperatures are correlated with air 164 

temperature (t920= 13.44, p < 0.01) and area (t13= -5.04, p < 0.01) only. This model had lower 165 
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Akaike (AIC = 2445.74, n = 936) than the model that encompass all independent variables 166 

(AIC = 2477.19, n = 936). 167 

The daily amplitude of nest temperatures was higher in sand beach (1.8 – 11.5 ºC) than 168 

in flooding area (0.5 – 4.3 ºC). According to the lme model the daily amplitude of nest 169 

temperatures is correlated with the daily mean nest temperatures (t = 7.25, p < 0.01) and area 170 

(t = -5.19, p < 0.01) (fig. 5). 171 

 172 

 173 

Figure 5: Relationship between daily mean nest temperature and thermal amplitude of daily 174 

temperature to seasonally flooded whitewater forest (Várzea) area and sand beach area in 175 

Brazilian central Amazonia. 176 

 177 

Reaction norm for sexualization model 178 

The seasonally flooded whitewater forest (Várzea) area show high proportion of males and 179 

the opposite is verified at sand beach where we found high proportion of females. Higher 180 
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incubation period and TSP period produce higher male frequency, while higher incubation 181 

temperatures decrease male frequency (fig. 6, fig. 8).  182 

The curve of thermal reaction norm for sexualization shows a higher peak than we 183 

found for embryo growth. Thus, when the embryo growth starts to become slow, the 184 

sexualization continues to increase its performance. Sexualization has higher extent with 185 

higher frequency of temperatures around from 35ºC to 39ºC in relation to embryo growth (fig. 186 

7). The temperature where the reaction norm for sexualization reaches the maximum of its 187 

activity is 37 ºC. 188 

The temperature which the both sexes were yielded in equal proportion (pivotal 189 

temperature) was 31.43 ± 0.09. The transitional range of temperature l=5% is 6.903 ± 0.335. 190 

The frequency of males decreases above the pivotal temperature. The male proportion from 191 

33ºC is less than 10% to Souza and Vogt (1994) and 0% in the current study. However, in a 192 

34.8°C temperature, one nest showed a male frequency around 30% (fig. 8).  193 

 194 

     195 

  196 

Figure 6: Mean of male frequency of Podocnemis unifilis yielded in different A) incubation 197 

lengths and B) TSP incubation lengths. The blue dots correspond to the data from seasonally 198 
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flooded (Várzea) area and the red dots correspond to the data from sand beach in Central 199 

Amazonia. 200 

 201 

 202 

Figure 7: Thermal reaction norm of embryo growth and sexualization of Podocnemis unifilis 203 

in different nest temperatures (ºC) in Brazilian central Amazonia. 204 

 205 

 206 

Figure 8: Mean of male frequency of Podocnemis unifilis yielded in different temperatures 207 

(ºC) and its confidence interval. The black dots are based on the results showed by Souza and 208 
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Vogt (1994) study. The blue dots correspond to the data from the seasonally flooded (Várzea) 209 

area and the red dots correspond to the data from sand beach in Central Amazonia. 210 

 211 

Discussion 212 

The current study shows for the first time that the temperature influences the embryo 213 

developmental rate and sex determination in a different way and it is a fundamental question 214 

to understand and estimate sex ratio in turtle populations. Daily thermal variance is related to 215 

daily mean nest temperature and both are responsible to sex determination. The sand beach 216 

area had higher temperatures and thermal variance. High nest temperatures are not lethal to 217 

embryo when its frequency is low. The sand beach shows high feminization pattern, but the 218 

flooding site is still an important source of male production and it seems to be crucial to the 219 

maintenance of the population viability. 220 

Eggs of P. unifilis experienced temperatures higher than the temperatures that are 221 

accounted to support high success of eggs hatching (Bustard 1971; Yntema and Mrosovsky 222 

1980; Binckley et al. 1998; Valverde et al. 2010). None eggs hatched at a constant 223 

temperature of 36ºC to C. caretta species (Yntema and Mrosovsky 1980) and at 33ºC to 224 

Dermochelys coriacea (Binckley et al. 1998). However, extreme temperatures occur in 225 

natural nests. Low frequency of the extreme incubation temperatures is not lethal (Valenzuela 226 

2001). The mortality is high only when the thermal variance is high above the optimal 227 

temperature range (OTR) (Neuwals and Valenzuela 2011). Natural nests that exceed 35ºC can 228 

show high hatching success (Hewavisenthi and Parmenter 2002; Read et al. 2013). Natator 229 

depressus has lethal limit to embryo in temperatures above 37ºC in the end of incubation and 230 

some hatching sea turtles survive temperatures exceeding 40ºC (Drake and Spotila 2002).  231 

The incubation period verified in this study is similar to the Solimões River in 232 

Amazon, where the hatchling occurred from 56 to 73 days (Fachín-Teran and von Mülhen 233 
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2003). In Javaés River, the incubation time ranged from 67 to 86 days (Malvasio et al. 2002), 234 

while in Colombian Amazon it was from 67 to 82 days. High mean nest temperatures can 235 

reduce the incubation period (Du et al. 2009). Incubation duration may also be affect by the 236 

mineralogical composition of the sediment and grain size (Souza and Vogt 1994; Milton et al. 237 

1997; Ferreira-Júnior and Castro 2006). In general, the incubation period is lower in sand 238 

beaches (Fachín-Terán 1993; Thorbjarnarson et al. 1993; Soini 1997) and higher when the 239 

nests are deposited in bankss and borders of rivers and lakes, where the vegetation quickly 240 

covers them (Fachín-Terán 1993; Soini and Coppula 1995). Besides the physical 241 

characteristics of the nests and the soil where they are laid, the incubation temperatures result 242 

from the climate in each year (Vogt and Bull 1982; Vogt and Bull 1984; Schwarzkopf and 243 

Brooks 1987). In Amazonas, the nesting activity is related to regional hydrologic cycle. When 244 

the water levels of the rivers begin to lower, turtles migrate to nesting areas (Nascimento 245 

2002; Haller and Rodrigues 2006).  246 

The embryo development depends on the accumulated effect of the nest temperature, 247 

but it is also influenced by the thermal variance (Georges et al. 2005). The dependency of 248 

embryo growth on nest temperatures has been modeled at constant temperature experiments 249 

(Bull 1985; Mrosovsky and Provancha 1992; Souza and Vogt 1994). However, the 250 

relationship between fluctuating temperatures and sex determination in nature remains little 251 

known (Georges 1989; Georges et al. 1994; Valenzuela et al. 1997). Few studies take into 252 

account non-constant temperatures, using linear degree-hour model (Georges et al. 2005), 253 

empirical curvilinear model (Georges et al. 2005; Delmas et al. 2008), biophysical model 254 

(Georges et al. 2005; Girondot et al. 2010), and polynomial model (Georges et al. 2005). We 255 

used a sigmoidal model of embryo growth, because morphological characters usually follow 256 

this shape (Girondot and Kaska 2014). This model fitted well in our natural incubation data. 257 

In the current study, the embryo growth was better described by the Schoolfield et al. (1981) 258 
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model using four parameters. The embryonic development increases at higher temperatures 259 

and above 37ºC, it is suggested that embryo growth is injured. Embryo development also was 260 

faster at higher mean temperatures for the congeneric species P. expansa (Valenzuela 2001). 261 

The thermosensitive period in TSD species is determined by the knowledge of the 262 

dependency of embryo growth on thermal regimes (Mrosovsky and Pieau 1991). TSP occurs 263 

at the middle third of embryo development and can be measured as the progression of 264 

embryonic stages (Yntema 1968). However, due to diel and seasonal shifts on temperature 265 

during all incubation period, the middle third of embryo development will not correspond to 266 

the middle third in time. Although the gonad growth happens at the same time as the embryo 267 

growth during TSP, the sexual differentiation is controlled by oestrogen levels through 268 

endogenous aromatase activity. In fact, the sexualization reaction norm follows the same 269 

pattern previously observed to aromatase activity (Desvages et al. 1993) and it continues to 270 

increase its performance after embryo growth attained its maximum value. This result 271 

highlights for the first time that sex determination cannot be understood only using the 272 

embryo growth reaction norm, but sexualization should be modeled separately. Neuwald and 273 

Valenzuela (2011) had already commented that the existent TSD models do not predict the 274 

sex ratio correctly because the temperature influences the embryo developmental rate and sex 275 

determination in a different way.  276 

The temperature that both sexes were produced (pivotal temperature =31.43) is similar 277 

to the values found by Souza and Vogt (1994). Those authors registered that the pivotal 278 

temperature for P.unifilis is between 31ºC and 32°C. The male frequency largely decreases 279 

above the pivotal temperature in turtles (Mrosovsky and Pieau 1991; Souza and Vogt 1994; 280 

Valenzuela 2001). For, P. expansa, a sex ratio of 100% of males was reported at 29.5ºC 281 

(Valenzuela 2001). However, the temperature of 34.8ºCs produced around 30% of males. 282 

High temperatures may yield male offspring, since CTE values initially fall when nest 283 
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temperatures exceed the maximum temperature (Neuwald and Valenzuela 2011). The TSD 284 

model built by Telemeco et al. (2013) predicts this situation under extreme conditions, when 285 

the mean temperature on the first day of TSP and slope of temperature during TSP were not 286 

adjusted. In the warmest years, Schwanz et al. (2010) verified that the sex ratio is not 100% 287 

females. At extreme temperatures behavioral or physiological plasticity may have a promising 288 

compensatory effect (Kearney et al. 2009; Huey et al. 2012). 289 

The mean nest temperature was correlated to area, nest distance to vegetation and air 290 

temperature from data loggers. Air temperature is known to show a linear relationship with 291 

the nest temperatures (Godley et al. 2001; Mitchell et al. 2008).  The daily mean nest 292 

temperatures were lower in flooded area. This site has clay soil, which retains less heat than 293 

sandy soils. In addition, nests closer to vegetation can show cooler temperatures because they 294 

are usually shaded by canopy (Vogt and Bull 1984; Weisrock and Janzen, 1999; Morjan, 295 

2003). Lower incubation temperatures are favorable to male production (Ewert et al. 1994; 296 

Viets et al. 1994). Thus, the study areas were very different in sex ratio production, with 297 

flooding area showing 100% of male frequency and sand beach showing high female sex-298 

bias. Populations with lower TRT values have higher probability of producing unisexual nests 299 

(Hulin et al. 2008). The differences between nesting sites according to sex ratio ensure a 300 

distinct range of thermal profiles to produce male and female hatchlings (Fuentes et al. 2010). 301 

When we use air temperature from ECMWF, however, the nest temperatures are not 302 

correlated with distance to vegetation. This characteristic can be explained because the 303 

ECMWF is a coarser data base and may not account for finer temperature variation at 304 

sampled localities.  305 

The daily amplitude of nest temperatures is correlated with the daily mean nest 306 

temperatures and area. The sex ratio response to mean temperature is mediated by amplitude 307 

of thermal fluctuations and the females production occurs is a more complex way (Georges et 308 
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al. 1994; Du et al. 2009, Les et al. 2007; Neuwald and Valenzuela, 2011). The daily amplitude 309 

of nest temperatures was higher on the sand beach, when we also had higher temperatures. It 310 

is possible to change sex ratios from 100% male to 100% female only altering the daily 311 

amplitude of temperature (Georges et al. 1994). Under limited magnitude of diel temperature, 312 

the increase of mean temperature below OTR enhances the male production and the increase 313 

of mean temperature within OTR enhances the female production (Valenzuela and Lance 314 

2004; Neuwals and Valenzuela 2011). On the other hand, if the thermal variance is high 315 

below the OTR, the embryo development decreases, while high thermal variance within OTR 316 

accelerates embryo development. Both thermal amplitude cases have a feminizing effect, but 317 

the mortality is not affected (Neuwals and Valenzuela 2011).  318 

The sand beach shows a high feminization pattern. Sea turtle populations have already 319 

shown highly female-biased sex ratios (Limpus 2006; Hawkes et al. 2007, Patino-Martinez et 320 

al. 2012). In addition, Telemeco et al. (2013) predicts 100% female sex ratios according to the 321 

changes in mean air temperature over the twenty-first century. The consequences of climate 322 

change can be dramatic in TSD turtle populations if the nests do not experience any 323 

temperatures where the sexual differentiation is achievable. Although hatchling female bias 324 

may be maintained in juvenile and adult turtles (Heithaus et al. 2005; Limpus 2008), primary 325 

sex ratio may not be the same as  the sex ratio of adults (Wibbels et al. 1987, 1991; Delgado 326 

et al. 2010). In warming scenarios, male hatchlings may be produced in nests lower along the 327 

shorelione, in deeper nests, in smaller nests and in the periphery of nests, where the effects of 328 

metabolic heating would be smaller (Patino-Martinez et al. 2012). Sex ratio of one male to 329 

two or three females seems to be sufficient to ensure viable populations (Fuentes et al. 2009) 330 

TSD is an adaptive trait (Charnov and Bull 1977) and may induce a transition on sex 331 

determination mechanism. The transition between TSD and genomic (GSD) over 200 m.y. 332 

appears to coincide with climate change events (Valenzuela and Adams 2011). Turtles have 333 
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already supported dramatic climate changes in the past by shifting their nesting sites 334 

distribution and their migratory routes (Hamman et al. 2007; Limpus 2008). However, at this 335 

time, global warming is much more accelerated due to anthropic impacts (Johannes and 336 

Macfarlane 1991; Harris et al. 2000; Brohan et al. 2006; Moore et al. 2009). We do not know 337 

if turtles can adapt so fast to climate change. It is possible that TSD species can change the P 338 

and/or TRT value through natural selection. TRT could be potentially more adaptive 339 

(Girondot 1999), but P could evolve too slowly in relation to global warming (Freedberg and 340 

Wade 2001; Morjan 2003; Nelson et al. 2004). Shallow nesting TSD species, such as P. 341 

unifilis, may be more affect by climate change, since the thermal variance in the nest can be 342 

higher and expose eggs lethally (Georges et al. 1994). 343 

In a large scale, variation in nesting characteristics in different populations seems to be 344 

the most important factor to decrease sex ratio bias (Bull et al. 1982a; Doody et al. 2006). 345 

Maternal effects such as oestrogen concentrations in eggs (Bowden et al. 2004), nesting time 346 

(Doody et al. 2006) and nest-site selection (Morjan 2003; Ewert et al. 2004) can mediate local 347 

adaptations to climate change. Nesting earlier can increase the male production. Hawkes et al. 348 

(2007) verified that turtles would have to alter the nesting period by up to a week for warming 349 

of 3ºC in a worst scenario. However, the nesting date plasticity alone has small effect on sex 350 

ratio (Schwanz and Janzen 2008). Changes on nest depth also do not compensate for climate 351 

change (Refsnider et al. 2013). The sex ratio seems to be managed better by the control of the 352 

temperatures at beginning of the TSP (Telemeco et al. 2013). Females might reduce the mean 353 

temperature on the first day of TSP nesting in wetter or more shaded areas (Foley et al. 2006; 354 

Kamel and Mrosovsky 2006). Shade cover is a significant predictor of mean daily 355 

temperature and sex ratio (Doody et al. 2006; Refsnider et al. 2013). Thus, this strategy could 356 

offer the most likely adaptive mechanism to climate change.  357 
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Turtles are largely consumed in the Amazon Region and a decline of their populations 358 

can impact traditional people that depend on these animals as a food resource (Kemenes and 359 

Pezzutti 2007; Vogt 2008; Schneider et al. 2011). Thus, management actions are very 360 

important to mitigate the predicted impacts from climate change. Modify the sand temperature 361 

by artificial shading or sprinkling cool water may also be a good strategy to maintain 362 

temperatures within the thermal tolerance and avoid the high female frequency (Naro-Maciel 363 

et al. 1999). This strategy is better than nest translocation, which can decrease survivorship 364 

and show high effect on one-sex production (Chan and Liew 1995). In addition to knowing 365 

the localities that yield a high male frequency it is also important to promote the viability of 366 

the populations (Mrosovsky et al. 1984; Booth and Astill 2001; Hawkes et al. 2007). In this 367 

context, the flooded site evaluated in this study is an important source of male production. 368 

Podocnemis unifilis shows multiple paternity (Fantin et al. 2008) and males may not be a 369 

limitation to reproduction. However, this species has late sexual maturity and the effects of 370 

climate on sex ratio may take some time to become apparent (Patino-Martinez et al. 2012).  371 

 372 

Material and Methods 373 

 374 

Study area  375 

The study was developed in two sites of the Piagaçu-Purus Sustainable Development Reserve 376 

(PP-SDR) in Brazilian central Amazonia. The reserve covers 809.268 ha, of which 50% 377 

consist of Várzea floodplains and it is located between the Purus and Madeira rivers (fig. 1). 378 

Nests of P. unifilis were monitored in a sand beach located near from the Ayapuá Lake 379 

(04º26’030” S 62º17’427” W) and in a flooding area in the municipality of Beruri (4°15’28.1” 380 

S 61°55’52.9” W). The nests in the flooding area occurred in inclined clay soils, which differ 381 

largely from the sandy soil beaches of the margins of Ayapuá Lake. 382 
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 383 

Figure 1: Map showing the seasonally flooded whitewater forest (Várzea) area and the sand 384 

beach area at Ayapuá Lake in Brazilian central Amazonia, where the nest temperatures of 385 

Podocnemis unifilis were recorded. 386 

 387 

Data collection 388 

The sand beach and Várzea areas were checked from the end of August to the beginning of 389 

November (depending on the year) in order to determine the number of nests in the sites. On 390 

the sand beach the monitoring occurred during 2010-2014 nesting seasons and at the flooding 391 

area during 2011-2014. Incubation temperatures of 12 nests of P. unifilis, six in each study 392 

area, were recorded using data loggers (HOBO Pendant Temp/Light Logger, temperature 393 

accuracy of ±0.47°C at 25ºC, Size 58mm x 33mm x 23mm) in the 2013 nesting season. The 394 

data loggers were inserted among the eggs (c.a. 8 cm depth) in the morning following nesting 395 

and were programmed to measure the temperature inside the nests every hour until the 396 

hatching. Hatching was considered when at least one individual hatched inside the nest. The 397 

local air temperatures were also obtained at each hour from a data logger that was placed in 398 

both Várzea and sand beach sites. Air temperatures from the studied period were also 399 

obtained from The European Centre for Medium-Range Weather Forecasts (ECMWF). 400 
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A subset of hatchlings in each nest (from six to 16 hatchlings) was euthanized with 401 

intramuscular anesthetic and sexed via histological analysis of gonads. The straight line 402 

carapace length (SCL) of the hatchlings was measured with digital caliper with 0.1 mm of 403 

accuracy.  404 

 405 

Modelling the embryo growth reaction norm 406 

We used the same methodology applied by Girondot and Kaska (2014). The SCL measure, 407 

like other morphological characters, follows a sigmoidal shape. The SCL growth is slow at 408 

the beginning, gets higher in some part of the incubation period and returns to be slower again 409 

before hatchling emergence (Miller 1982). Thus, sigmoidal equations should be used to 410 

describe embryo development. In this study we used a modified Gompertz model (Laird 411 

1964): 412 

X(t) = Kexp (ln (
X(0)

K
) exp(−r(T)t))                                                                            (1) 413 

The equation uses the embryo size or mass at nesting time X(0), the growth rate at the 414 

beginning of the curve r(T) and the carrying capacity (K) with lim x(t) = K. X(0) cannot be 415 

obtained from observation data. However, the gastrula disk size of Caretta caretta 416 

(approximately 1.7 mm) was used as X(0) (Kaska and Downie 1999) because the 417 

preovipositional development in turtles are similar (Miller 1982). K parameter can be simply 418 

a manner to decrease the growth when the embryo is close to the hatching size. The rate of 419 

decrease can be manipulated with K. Thus, the model was fitted varying K from 45 to 100 420 

adding each time the value of 5. For each K value the model was run again using constant 421 

temperatures from 20ºC to 35°C along with the fitted parameters and the sum of the square of 422 

difference between the 21º and 26° embryonic stages were calculated. Those embryonic 423 

stages designate the limits of the middle third of the development in marine turtles, when the 424 

incubation occurs at constant temperatures (Pieau and Dorizzi 1981; Bull 1987). The K value 425 
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that minimizes this statistic is K=82.33 and it was estimated by interpolation using a fifth 426 

order polynomial equation. The alternative parameterization proposed by those authors and 427 

used in the current study is the rK=2.0933, where K= rK x [Hatchling SCL]. This measure is 428 

independent of the hatchling size of the species. 429 

The model of Schoolfield et al. (1981) with four or six parameters and an incubation 430 

temperature were used to calculate r(T). This model removed the high correlation among the 431 

parameters used on the equations of temperature-dependent models developed by Sharpe and 432 

DeMichelle (1977). r(T) specifically in this equation is the mean development rate at 433 

temperature T (time -1) and T is the temperature in K (298 K=24.85°C). The simplificated 434 

four parameter model is similar to the Johnson and Lewin (1946) equation. For more details 435 

see Girondot and Kaska (2014). 436 

After obtaining values of X(0), K and a time series of r (T) we evaluated the pattern of 437 

changes in the size of embryo using the Runge-Kutta method of order 4. The method 438 

approximates solutions of ordinary differential equations. The estimation of parameters was 439 

performed using maximum likelihood with an identity link and a Gaussian distribution of 440 

SCL (μ= 37.11 mm, SD=3.92 mm). The four and six parameters models were compared by 441 

Akaike information criteria (AICs), using the Akaike weight (Akaike, 1973). 442 

 443 

Confidence interval of embryo growth reaction norm 444 

Maximum likelihood (Hamby 1994) was used to evaluate the sensitivity of the Schoolfield et 445 

al. (1981) model. The local sensitivity analysis successively varies one parameter while the 446 

others are fixed. The parameters used have more influence on the peak of the reaction norm in 447 

relation to the area of higher and lower temperatures. Thus, the confidence interval of the 448 

reaction norm is higher around the peak. A phenocopy of the fitted model was created using 449 

local regression (LOESS method) with seven anchor points spread from 20°C to 35°C to 450 
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ensure that the confidence interval reflects the constraint of the reaction norm. The 451 

Schoolfield et al. (1981) models with four or six parameters were replaced by the anchor point 452 

model that best reproduce them. A method of Markov Chain Monte Carlo (MCMC), 453 

Metropolis-Hastings algorithm (Chib and Greenberg 1995) with 5.000 iterations was used to 454 

estimate the probability distribution of the parameters. For initial values we applied those 455 

ones that maximized likelihood. The posterior distribution was compared with the initial 456 

distribution to verify if the values were chosen properly. The standard error of parameters was 457 

corrected for being calculated from a time series (Plummer et al. 2012). 458 

 459 

Factors that affect the nest temperature  460 

We obtained the daily mean nest temperatures, the daily mean local air temperatures (data 461 

loggers) and the daily mean air temperatures from ECMWF in both sand beach and Várzea 462 

areas during the studied period. Autoregressive Moving Average Models (ARMA) makes a 463 

regression of the values of each unit of measure with its past values. Thus, ARMA(𝑝, 𝑞) was 464 

used to evaluate the relationship between the daily mean nest temperatures with its previous 465 

values. This model describes a weakly stationary stochastic process in terms of two 466 

polynomials, one for the auto-regression AR(𝑝) and the second for the moving average 467 

MA(𝑞). The ARMA model is defined as: 468 

 469 

𝑋𝑡 = 𝑐 +  𝜀𝑡  + ∑ 𝜑𝑖𝑋𝑡−𝑖  
𝑝
𝑖=1 +  ∑ 𝜃𝑖𝜀𝑡−𝑖  

𝑞
𝑖=1                                                                 (2) 470 

 471 

where 𝜃1,…𝜃𝑞 are the parameters of the model; 𝜇 is the expectation of 𝑋𝑡; and the 𝜀𝑡; 𝜀𝑡−1,… are 472 

the white noise terms.  473 
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A linear mixed model (lme), which contains fixed effects and random effects was run 474 

to evaluate multiple correlated measurements on each unit of interest for each air temperatures 475 

database, separately. The lme in matrix form is determined as: 476 

 477 

𝑦𝑖 = 𝑋𝑖𝛽 +  𝑍𝑖𝑏𝑖 +  𝜀𝑖                                                                                                     (3) 478 

 479 

Where 𝑦𝑖  is the 𝑛𝑖×1 response vector for observations in the 𝑖th group; 𝑋𝑖 is the 𝑛𝑖×𝑝 model 480 

matrix for the fixed effects for observations in group 𝑖; 𝛽 is the 𝑝×1 vector of fixed-effect 481 

coefficients; 𝑍𝑖 is the 𝑛𝑖×𝑞 model matrix for the random effects for observations in group 𝑖; 𝑏𝑖 482 

is the 𝑞×1 vector of random-effect coefficients for group 𝑖; 𝜀𝑖 is the 𝑛𝑖×1 vector of errors for 483 

observations in group 𝑖. 484 

ARMA model was used in lme model as a correlation factor. Thus, the daily nest 485 

temperature was a dependent factor of the fixed effects like nest distance to vegetation; 486 

nesting distance to water; nest distance to vegetation x nesting distance to water; air 487 

temperature (from data logger or ECMWF datasets), area, area x nest distance to water; area x 488 

nest distance to vegetation and female track width. The nests corresponded to the random 489 

effects. The parameters where p value was not significant were removed and then the lme was 490 

run again until we reached correlation significance in all parameters.  491 

We also generate the daily amplitude of nest temperatures for the studied period to 492 

sand beach and flooding sites. ARMA model was used to evaluate the relationship between 493 

the daily amplitude nest temperatures with its previous values and lme was used to analyze 494 

the correlation between amplitude , the dependent factor, and the fixed effects mean nest 495 

temperature + area + mean nest temperature X area.  496 
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Modelling sexualization reaction norm and its confidence interval 497 

The reaction norm for sexualization model was developed to the sand beach and Várzea areas 498 

and fitted with the four-parameter parametric model built for embryo growth reaction norm. 499 

We included the information about male proportion and hatchling number from each nest. 500 

Thus, we obtained the male proportion and its confidence interval at each temperature.  501 

We used a confidential interval for binomial probabilities, where the vector with 502 

successes for binomial variates was the male proportion and the vector with the number of 503 

correspondent observations was the hatchling number. The interval method used is the Wilson 504 

interval which is based on score-test (Agresti and Coull 1998). This interval has good 505 

properties even for a small number of trials and/or an extreme probability. 506 

All analyzes were run in R program. The model is implemented as an R package 507 

“embryogrowth” available on Comprehensive R Archive Network (http://cran.r-project.org). 508 
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SÍNTESE 

 

Encontramos algumas lacunas notáveis na proteção de tartarugas de água doce na 

Amazônia. Áreas de Proteção Integral (IPA) sozinhas são ineficientes na conservação das 

áreas ambientalmente adequadas para a ocorrência de quelônios. Somente Rhinoclemmys 

punctularia e Kinosternon scorpioides são protegidos por IPAs. Estas espécies são tartarugas 

semi-aquáticas, e vivem em uma grande variedade de habitats, a maioria em pequenos corpos 

d’água temporárias ou perenes em florestas. Kinosternon scorpioides é uma espécie politípica 

que mostra uma ampla distribuição, do México ao norte da Argentina (Rueda-Almonacid et 

al., 2007; Vogt, 2008). A inserção de Áreas de Uso Sustentável (SUA) e territórios indígenas 

Áreas (ITA) foram fundamentais para a proteção da maioria das tartarugas de água doce que 

ocorrem na Amazônia brasileira. Nossos resultados destacam o fato de que as Unidades de 

Conservação na Amazônia foram estabelecidas para proteger organismos terrestres (Peres & 

Terborgh, 1995; Veríssimo et al., 2011). Quelônios podem ser sobreexplorados em áreas que 

não são protegidas integralmente. Com base no exposto, é necessário mudar o foco 

conservação da Amazônia e reestruturar as áreas protegidas, a fim de contemplar locais de 

captação fluviais na bacia inteira. Neste cenário, não só as tartarugas, mas todas as espécies de 

água doce se beneficiariam (Dudgeon et al., 2006). A abordagem exige uma nova distribuição 

das Unidades de Conservação e uso de grandes porções de terras como áreas protegidas. 

Assim, a maneira mais prática para desenvolver um planejamento de conservação para 

quelônios poderia levar em consideração às áreas de lacunas parciais próximas as áreas 

protegidas já existentes.  

As áreas prioritárias para a conservação dos quelônios de água doce da Amazônia 

Brasileira são localizadas principalmente em extensivas áreas no norte da Amazônia e não 

abrangem áreas com alta taxa de desmatamento. Entretanto, a análise de vulnerabilidade 

identificou maior riqueza de tartarugas ameaças ao desmatamento no centro-nordesre da 

Amaônia, onde o desmatamento está avançando. Phrynops geoffroanus, K. scorpioides and R. 

punctularia são as espécies mais vulneráveis ao desmatamento, mostrando maior 

porcentagem das suas áreas adequadas perdidas por esta ameaça. Apesar da preocupação em 

relação a essas espécies, K. scorpioides and R punctularia são protegidas por IPAs. Essas 

reservas não foram designadas a proteger tartarugas e sua ocorrência nessas áreas é 

consequência da aleatoriedade, uma vez que se trata de espécies amplamente distribuídas na 



169 

 

 

 

Amazônia. As áreas protegidas atuais abrangem grande quantidade de áreas requeridas na 

conservação de quelônios, mas elas não estão localizadas em áreas com maior riqueza de 

tartarugas. Até mesmo quando consideramos somente os melhores 17% para a conservação de 

quelônios, a rese de reserve não foi efeiciente em proteger a riqueza do grupo. Nossos 

resultados tem importante significado prático para agências de conservação, pois evidencia as 

regiões mais importantes para investor na conservação de quelônios de água doce na 

Amazônia e a exposição dessas espécies ao desmatamento. Entretanto, nossos resultados 

devem ser interpretados com precaução, uma vez que nós não consideramos a importância 

social dos quelônios como recurso alimentar. 

Modelos de Nicho Ecológico (ENM) evidenciam áreas ambientalmente adequadas à 

ocorrência de organismos e eles são frequentemente avaliados e aplicados dentro da região na 

qual eles foram ajustados. Entretanto, a transferência de ENMs para outras partes da extensão 

geográfica da espécie estudada é recomendada para uma avaliação adequada desses modelos e 

para o desenvolvimento de ações de manejo. A técnica representa uma nova abordagem para 

considerar requisitos específicos da espécie em cada parte de sua distribuição geográfica 

(Vanreusel et al., 2007). A semelhança entre as áreas adequadas para a ocorrência de 

Podocnemis expansa entre regiões de um conjunto de dados é baixa, não importa qual a 

seleção de preditores. No entanto, quando utilizamos variáveis brutas, os modelos prevêem 

áreas em grande parte fora da extensão de ocorrência conhecida para a espécie. O uso de AUC 

para medir a transferabilidade dos modeloso indicada bom desempenho, enquanto que para o 

TSS os modelos construídos em uma área da Amazônia não podem ser transferidos para 

outra. Os valores de AUC e TSS teve forte relação com a área adequada prevista em número 

de pixels e esse padrão não foi modificado quando usamos diferentes conjuntos de preditores 

ambientais. Nosso estudo demonstra que deve ser tomado cuidado quando ENMs são 

projetados para diferentes regiões geográficas, especialmente em áreas heterogêneas como a 

Amazônia. A avaliação dos modelos deve se concentrar na sua capacidade de capturar fatores 

de mudanças no requerimento da espécie e suas adaptações em cada local (Rapacciuolo et al., 

2012). A soma das áreas adequadas previstas para as duas regiões de um mesmo conjunto de 

dados podem ser mais bem utilizadas para representar a distribuição das espécies. 

O nosso estudo é o primeiro a mostrar que a temperatura influencia a taxa de 

desenvolvimento do embrião e a determinação do sexo de uma maneira diferente. 

Temperatura média diária do ninho foi relacionada com a distância do ninho a vegetação, 

temperatura do ar e da área. Variação térmica diária está relacionada com a temperatura média 
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diária do ninho e ambas são responsáveis na determinação do sexo. A praia de areia apresenta 

alto padrão de feminização, mas a área de Várzea é importante na produção do sexo 

masculino e que parece ser crucial para a manutenção da viabilidade populacional. Além do 

seu valor biológico, tartarugas são amplamente consumidas na região Amazônica e o declínio 

de suas populações pode afetar povos tradicionais que dependem desses animais como um 

recurso alimentar (Vogt, 2008; Schneider et al., 2011). Assim, ações de manejo são muito 

importantes para mitigar os impactos previstos das mudanças climáticas. Modificar a 

temperatura da areia pelo sombreamento artificial ou regar os ninhos com água fria podem ser 

boas estratégias para manter as temperaturas dentro da tolerância térmica e evitar a elevada 

frequência do sexo feminino (Naro-Maciel et al., 1999). Esta estratégia é melhor do que a 

translocação ninho, que pode diminuir a sobrevivência dos filhotes e produzir razão sexual 

desproporcional (Chan & Liew, 1995). Além disso, conhecer as localidades que produzem 

uma elevada frequência do sexo masculino é importante para promover a viabilidade das 

populações (Mrosovsky et al, 1984; Hawkes et al., 2007). Neste contexto, o local inundado 

avaliado neste estudo é uma fonte importante de produção de machos. Podocnemis unifilis 

apresenta paternidade múltipla (Fantin et al., 2008) e os machos podem não ser uma limitação 

para a reprodução. No entanto, esta espécie tem a maturidade sexual tardia e os efeitos do 

clima sobre a razão sexual pode levar algum tempo para se tornar aparente (Patino-Martinez 

et al., 2012). 
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