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Abstract
Debate continues over the adequacy of existing field plots to sufficiently capture Amazon
forest dynamics to estimate regional forest carbon balance. Tree mortality dynamics are
particularly uncertain due to the difficulty of observing large, infrequent disturbances.
A recent paper (Chambers et al 2013 Proc. Natl Acad. Sci. 110 3949–54) reported that Central
Amazon plots missed 9–17% of tree mortality, and here we address ‘why’ by elucidating two
distinct mortality components: (1) variation in annual landscape-scale average mortality and
(2) the frequency distribution of the size of clustered mortality events. Using a
stochastic-empirical tree growth model we show that a power law distribution of event size
(based on merged plot and satellite data) is required to generate spatial clustering of mortality
that is consistent with forest gap observations. We conclude that existing plots do not
sufficiently capture losses because their placement, size, and longevity assume spatially
random mortality, while mortality is actually distributed among differently sized events
(clusters of dead trees) that determine the spatial structure of forest canopies.

Keywords: Amazon, biomass, forest, mortality, power law

1. Introduction

The world’s forests have been identified as the primary
terrestrial carbon sink, with tropical forests assimilating about
half of the total forest carbon uptake (Pan et al 2011).
However, these and similar estimates (Lewis et al 2009) of
forest carbon balance have high levels of uncertainty, partially
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due to undercharacterized mortality regimes (Körner 2003,
Fisher et al 2008). Tropical forest mortality regimes are
commonly described by an average annual mortality rate, and
less frequently include the distribution of disturbance size
(Chambers et al 2004, Lloyd et al 2009, Chambers et al
2013). The mortality rate represents a bulk loss of trees or
biomass while the disturbance size distribution represents
a spatial clustering of this loss. The annual mortality rate
has received more attention (Chambers et al 2004, Gloor
et al 2009) than its spatial pattern due to infrequency of
large disturbances (Chambers et al 2013), relatively short
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duration of measurement (Gloor et al 2009), limited spatial
extent of measurement (Nelson et al 1994, Espı́rito-Santo
et al 2010), and relatively small plot size (Fisher et al
2008). While advances in remote sensing have increased
scientific understanding of mortality regimes (Kellner et al
2011, Chambers et al 2013), questions remain regarding
statistical distributions of disturbance size and their effects on
spatial patterns of forest dynamics. Answering such questions
is critical for understanding how the relationship between
annual mortality and disturbance size distribution influences
estimates of forest carbon balance.

Until recently, understanding of tropical forest mortality
regimes has been based primarily on plot data, with a few
exceptions that utilize large-area satellite and aircraft data,
leaving a large knowledge gap for disturbances between∼0.07
and 35 ha in size (Nelson et al 1994, Espı́rito-Santo et al
2010, Kellner et al 2011, Morton et al 2011, Negrón-Juárez
et al 2011, Chambers et al 2013). Fortunately, new remote
sensing approaches fill this gap and allow more comprehensive
analyses of spatial and temporal effects of disturbance on forest
dynamics. Two key features have emerged from combining
plot and remotely sensed data in the Central Amazon: (1) plot-
based average annual mortality rates underestimate landscape-
scale rates, and (2) plot-based frequency distributions of
disturbance size generally miss succession-inducing gaps due
to small size and limited census interval (Chambers et al
2013). Furthermore, several studies indicate that this frequency
distribution follows a power law (Fisher et al 2008, Chambers
et al 2009b, Lloyd et al 2009, Negrón-Juárez et al 2010,
Kellner et al 2011, Chambers et al 2013), but the shape of
this distribution has not been rigorously tested.

While advances have been made in mortality regime
research, debate continues regarding the adequacy of existing
field plot networks in the Amazon basin for estimating carbon
balance (Fisher et al 2008, Chambers et al 2009b, Gloor
et al 2009, Lloyd et al 2009, Chambers et al 2013). This
debate bears directly on recent estimates of a tropical forest
carbon sink based on field plot data (Lewis et al 2009, Pan
et al 2011) and is highly contingent upon estimates of both
annual mortality rate and disturbance size distribution because
biomass accumulation is estimated as the difference between
gains (from tree growth and ingrowth) and mortality losses.
Furthermore, due to the relatively short period of time since
plot establishment (e.g. ∼11 years on average in the Amazon
basin) and the low density of current field plots across vast
domains (e.g. the Amazon basin) (Gloor et al 2009), forest
growth simulations are critical for determining whether field
measurements have adequate spatial and temporal coverage
to capture long-term, regional trends that are characterized by
slow gains and fast losses of biomass (Körner 2003).

Recent studies using individual-based forest growth
models incorporating both annual mortality and disturbance
size distributions have shown some limitations of field plots.
Fisher et al (2008) simulated equilibrium landscape biomass
to demonstrate that increasing the proportion of large-area
disturbances can bias plot-based estimates toward biomass
gains. A remotely sensed estimate of Central Amazon average
annual mortality rate increased plot-only estimates by 9–17%

because the largest recorded plot disturbances affected only 8
trees, while mortality events detected by satellite ranged from
8 to more than 7000 trees (Chambers et al 2013). While model
estimates of forest biomass dynamics are highly sensitive to
annual mortality rate, the increased mortality rate estimated
by Chambers et al (2013) is well within the standard deviation
of the plot-based annual mortality rate distribution (Chambers
et al 2004). However, the impacts of different disturbance
size distributions on spatial patterns of simulated biomass and
stand age are relatively unknown. Nonetheless, such spatial
patterns determine what information can be obtained from a
sample of field plots.

In contrast to detailed research on mortality regimes,
other studies have argued that plot-based estimates of annual
mortality rate are sufficient for estimating Amazon forest
carbon balance (Gloor et al 2009, Lloyd et al 2009). One
such study, however, (Lloyd et al 2009) simply challenged
a technical matter in Fisher et al (2008) that had no affect
on carbon balance results because their methods were inter-
nally consistent (see Chambers et al 2013). Another study
(Gloor et al 2009) conflated the annual mortality rate dis-
tribution with the frequency distribution of disturbance size.
More specifically, Gloor et al (2009) accounted for only
annual mortality rate, which requires the assumption that
mortality is randomly distributed in space, and not the spatial
clustering of mortality into individual, contiguous events.
Furthermore, they did not effectively incorporate extra-plot
mortality, and thus they found that their plot observations
accurately detect biomass gains at the plot level. The dis-
pute, however, is not whether the estimates show gains, but
whether the measurements sufficiently capture landscape-level
losses.

Clearly, the relationship between annual mortality rate
and disturbance size distribution needs to be examined to
develop appropriate landscape sampling designs for robust
estimation of forest dynamics and carbon balance. Here
we rigorously determine that the frequency distribution of
disturbance size in the Central Amazon follows a power
law, and use it to evaluate impacts of mortality regimes
on spatial patterns of simulated biomass and stand age.
We evaluate mortality regimes estimated from plot-only and
merged plot and Landsat data. The higher, merged estimate of
mortality significantly decreases the simulated live biomass,
and including Landsat-detected disturbance events larger than
eight trees shifts the landscape structure from a random
pattern to a significantly clustered mosaic of stand age and
biomass. We argue that the spatial clustering associated with
the additional mortality due to large events further explains
why existing plots do not adequately capture disturbance
losses, leading to potential overestimates of Central Amazon
forest carbon uptake.

2. Materials and methods

2.1. Study location and data

This study covers the Central Amazon region surrounding
Manaus, Amazonas State, Brazil (3.11◦S, 60.03◦W). Plot data
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Figure 1. Mortality event distributions on log10 – log10 axes. MLE = maximum likelihood estimator. OLS = ordinary least squares on
normalized-log-binned data in log10 – log10 space. (a) Merged data (original and normalized-log-binned) with the top two power law fits
and a sample of synthetic Landsat data drawn from the MLE Landsat fit (power law exponent α = 3.5). (b) Plot data (original and
normalized-log-binned) with the top two power law fits. (a) Merged data. (b) Plot data.

Table 1. Mortality event distributions for the tropical tree ecosystem and community simulator (TRECOS).

Merged observations Merged power law fit Plot power law fit

Event size class
(# of trees)

Binned probability
distribution
function

Event size class
(# of trees)

Binned probability
distribution
function

Event size class
(# of trees)

Binned probability
distribution
function

1 7.826 453× 10−1 1 7.900 711 3816× 10−1 1 8.181 1782× 10−1

2 1.304 409× 10−1 2 1.190 842 0575× 10−1 2 1.126 8600× 10−1

3 5.910 607× 10−2 4 6.707 607 3240× 10−2 3 3.533 8580× 10−2

7 2.374 431× 10−2 8 1.710 109 0830× 10−2 4 1.552 1160× 10−2

18 2.826 444× 10−3 15 4.577 444 2200× 10−3 5 8.199 0100× 10−3

35 1.083 556× 10−3 33 1.664 984 0800× 10−3 6 4.867 4700× 10−3

84 1.197 948× 10−4 82 3.382 997 2000× 10−4 7 3.132 1000× 10−3

207 2.414 290× 10−5 206 6.912 440 0000× 10−5 8 2.137 8600× 10−3

589 8.047 633× 10−6 606 1.644 700 0000× 10−5

3128 1.494 560× 10−6 2763 1.192 600 0000× 10−6

have been collected in old-growth forest at permanent sites
in a 50 km × 40 km area centered (2.5◦S, 60◦W) about
60 km north of Manaus (Chambers et al 2004). Standing dead
trees accounted for 13.2% of total average annual plot-level
tree mortality (1.02% of stems) while single and clustered
wind-thrown trees comprised 50.6% and 36.2%, respectively
(table 1 and figure 1). All estimates are based on trees having
a diameter at breast height ≥ 10 cm. The largest mortality
cluster in the observed plots contained eight trees.

Nine Landsat 5 Thematic Mapper scenes (Path 231,
Row 062; ∼3.4× 104 km2 each; 30 m × 30 m resolution)
were processed as five paired repeat observations of forest
disturbance to obtain counts of wind-thrown tree clusters
by size (1985–1986, 1987–1988, 1996–1997, 1997–1998,
2004–2005). These scenes were converted to reflectance
values and masked to isolate 21 800 km2 of old-growth forest

area for analysis (aggregated across the five image pairs).
Spectral mixture analysis was employed to calculate the
fraction of shade-normalized non-photosynthetic vegetation
(NPV) per pixel. Annual NPV change (1NPV) images
were calculated and disturbed pixels were identified by
1NPV≥ 0.16 and then clustered into individual wind-throw
events (e.g. Negrón-Juárez et al 2011). Aggregating the counts
of wind-throw events across the five1NPV images generated
a frequency distribution for mortality event sizes ranging from
8 to 7355 trees (Chambers et al 2013).

The plot and Landsat frequency distributions of wind
mortality event size (as number of trees felled) were merged by
extrapolating the plot data to the aggregate Landsat old-growth
forest area and averaging the counts for the 8-tree event size
(figure 1(a)). An evaluation of different merging methods on
power law fits found that this method approximated the average
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of all methods and that the spread in power law exponents
had little effect on landscape dynamics and biomass. The
merged frequency distribution spanned integer mortality event
sizes, or classes, ranging from 1 to 7355 trees, and increased
the estimate of total average annual tree mortality to 1.20%
(Chambers et al 2013).

2.2. Mortality event distribution modeling

The three data sets (plot, Landsat, merged) were pre-processed
to generate three data permutations for facilitating three
different fit methods. (1) The original (unprocessed) data
permutation was used by all methods. (2) The normalized-
log-binned permutation summed counts in equal-sized log10
(class) bins and then divided these sums by the number of event
class integers within each bin. (3) The normalized-binned
permutation summed counts in equal-sized class bins and then
divided these sums by the number of class integers within each
bin. The binned data permutations reduce noise and generally
eliminate zero-count classes (White et al 2008, Milojević
2010).

We fit power law (y = c · x−α) and exponential (y =
c · exp(−λ · x)) functions to the plot, Landsat, and merged
data sets, compared the fits using a likelihood ratio test, and
tested the significance of a subset of fits using a bootstrap
method. We used (1) a linear ordinary least squares (OLS)
method on log10 – log10 transformed values (White et al
2008, Milojević 2010) and (2) a discrete maximum likelihood
estimator (MLE) method (Clauset et al 2009) to fit power
law functions to the original and normalized-log-binned data
permutations. We applied the MLE method using the observed
minimum size class to ensure that all data were included in
the fits. The exponential function was fit to the original and
normalized-binned data permutations using (3) a linear OLS
method on linear-loge transformed values. We present analyses
of the six most relevant fits for each method (tables 2 and 3).

For each data set (plot, Landsat, merged) we determined
the best fit by comparing all possible pairs of fits using a
likelihood ratio test (Clauset et al 2009). Based on the results
of these comparisons we selected eight fits for which to
calculate p-values signifying the probability that a random
sample from the fitted distribution would have a worse fit to
the original data than the fitted distribution. Each data fit was
compared with 100 sample fits (p-value precision = 0.05)
using the Kolmogorov–Smirnov D-statistic (KSD), which is
the maximum distance between the cumulative distribution
functions (CDF) of the data and the fitted function. If p≤ 0.1
we rejected the null hypothesis that the data follow the
respectively fitted distribution function (Clauset et al 2009).

The random samples from the eight fits required differ-
ent levels of processing to prepare the samples for fitting,
depending on the data set, permutation, and fit method. The
plot samples were used directly, the Landsat samples were
binned to classes representing integer pixel estimates, and the
merged samples were binned across the Landsat range with
the 8-tree size class assigned the average of the binned and un-
binned values. The eight selected fits generated the following
sample fits: the MLE power law method was applied to

original plot, Landsat, and merged samples, the OLS power law
method was applied to normalized-log-binned plot, Landsat,
and merged samples and the OLS exponential method was
applied to original plot samples and normalized-binned plot
samples.

2.3. Forest simulations

We used the tropical ecosystem and community simulator
(TRECOS) (appendix; Chambers et al 2004 and Chambers
et al 2013) to perform four 2000-year simulations of a
Central Amazon forest landscape to evaluate the effects of
two different mortality event distributions (table 1) and two
different average annual mortality rates on landscape structure
and biomass. The two average annual mortality rates were
estimated from plot (1.02% of stems) and merged (1.20%
of stems) data, respectively, and were modeled as normal
distributions in log10 space using the merged estimate of
inter-annual variability as the standard deviation (mean =
0.0086 (plot) and 0.0792 (merged) log10(% stems y−1), SD=
0.073). The two event distributions were (1) the best fitted
power law to the merged data and (2) the best fitted power
law to the plot data. For input to TRECOS, we aggregated the
merged event distribution to 10 bins and assigned each size
class (1–8 trees) of the plot event distribution to its own bin.

We compared time series of mean landscape biomass
and final spatial patterns among the simulations. For the
time series we computed the average equilibrium biomass
across simulation years 500–2000. We calculated a global
clustering statistic (Moran’s I) and empirical and fitted model
semivariograms for each final-year map of biomass and the
time since last succession-inducing disturbance (>8 trees,
td) (R-project packages gstats and spdep; www.r-project.
org/). Moran’s I calculation covered the entire landscape
and used a spatial weighting function (1/(2 · distance)) to
emphasize clusters on the order of one hectare. Semivariogram
calculations extended to half the distance across the landscape
(500 m) to minimize bias due to decreasing sample sizes with
increasing distance. Final-year biomass exhibited a log-normal
distribution in space and td exhibited a fat-tail distribution, so
we performed Monte Carlo significance tests for Moran’s I
(100 simulations each). We also compared histograms and
mean/median statistics of these maps.

3. Results

The OLS power law fits to normalized-log-binned data are
similar to the MLE fits, except for the larger magnitude
MLE exponents for Landsat data sets (tables 2 and 3). The
OLS power law fit to the original plot data is also similar
to the observed value MLE fit. The OLS exponential fits
to the plot data permutations are somewhat plausible, while
the exponential fits to other data sets are not (table 3). All
regressions are significant to the 95% confidence level. It is
apparent that the OLS fits are valid only on appropriately
binned data or ‘full’ plot data sets with values for all integer
classes. Henceforth, references to OLS fits refer to those
performed on binned data unless otherwise noted.
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Table 2. Maximum likelihood estimator (MLE) power law probability distribution function fits (y = c · x−α).

Data configuration
Minimum size
class (MSC)

Power law
exponent (α)

Normalization
factor (c)

Goodness of fit
(R2)

Sample size
(n)

Plot dataa 1 2.86 8.114 722× 10−1 0.9987 8580 429
Landsat dataa,b 8 3.50 3.875 981× 102 0.9935 217 944
Merged dataa 1 2.73 7.900 710× 10−1 0.9994 8698 210
Plot data (NLBc) 1 3.01 8.332 725× 10−1 0.9970 8416 444
Landsat data (NLB) 8 3.50 3.875 981× 102 0.9998 48 703
Merged data (NLB) 1 2.97 8.277 390× 10−1 0.9981 8440 758

a The ratio tests rank the MLE fits on original data above all others.
b Null hypothesis of power law distribution rejected (p< 0.1). P-value tests were not performed for any of the NLB fits.
c NLB = Normalized-log-binned. The plot and merged results are for a start bin center of 3 and are nearly identical to those for a start
bin center of 4. The Landsat data have a start bin center of 8.

Table 3. Ordinary least squares (OLS) power law (y = c · x−α) and exponential (y = c · exp(−λ · x)) probability distribution function fitsa.

Data and function
configuration Slope (−α or −λ) Intercept

Normalization
factor (c)

Coefficient of
determination for
linear fit (R2)

Sample size
(n)

Plot data
Power law −2.76 6.81 7.947 239× 10−1 0.9505 8
Exponentialb −0.75 15.39 1.106 441× 100 0.8410 8
Landsat data
Power law −1.79 5.53 3.859 451× 100 0.7917 71
Exponential −0.001 2.49 1.007 528× 10−3 0.1347 71
Merged data
Power law −2.00 6.11 6.072 334× 10−1 0.9108 78
Exponential −0.001 3.74 1.000 500× 10−3 0.1515 78
Plot data (Binnedc)
Power law (s.b.= 3) −2.76 6.85 7.950 641× 10−1 0.9932 5
Exponentialb (s.b.= 3) −0.87 16.32 1.386 911× 100 0.9813 4
Landsat data (Binned)
Power lawb (s.b.= 8) −2.71 6.67 5.408 683× 101 0.99 15
Exponential (s.b.= 8) −0.001 −0.51 1.007 528× 10−3 0.1103 68
Merged data (Binned)
Power law (s.b.= 4) −2.76 6.73 7.945 536× 10−1 0.9940 20
Exponential −0.001 −0.42 1.007 528× 10−3 0.1062 68

a OLS was performed on log10 – log10 transformed data for power law fits, and on linear-loge transformed data for exponential fits.
b Null hypothesis of power law or exponential distribution rejected (p < 0.1). For the exponential distribution, P-value tests were performed only for plot
data fits (binned and non-binned). For the power law distribution, P-value tests were performed only for the binned data.
c The data are normalized-log-binned for the power law fits and normalized-binned for the exponential fits. The plot and merged results are for a start bin
(s.b.) center of 3 unless otherwise noted, and in general are nearly identical to those for a start bin center of 4. The Landsat data have a start bin center
of 8. The binned data are transformed as noted.

The likelihood ratio tests rank the MLE power law fits to
original data above all other fits, with plot and merged data
having the best fits (table 2, figure 1). The highest ranked OLS
power law fits to the plot and merged datasets are effectively
identical to the MLE fits. All OLS exponential fits are ranked
below all power law fits. The p-values indicate that only plot
and merged data are likely to follow their respectively fitted
power law distributions (tables 2 and 3). Thus, we reject the
hypotheses that plot data follow an exponential distribution
and that the given Landsat data follow a power law or an
exponential distribution.

The mortality event distribution (table 1) and the average
annual mortality rate each affect the simulated landscape

differently. Increasing average annual mortality decreases
landscape-level biomass (figure 2(a)) but has little effect
on td and spatial pattern. Using the merged mortality event
distribution, which includes large-area events, causes local
spatial autocorrelation of biomass and td (figures 2(b)–(c) and
3) but has little effect on mean (figure 2(a)) and median values
of these variables. The semivariogram results (figure 3) are
supported by significantly positive, although small, Moran’s
I values (figures 2(b) and (c)). In contrast, using the plot-
based mortality event distribution generates relatively flat
semivariograms and insignificant Moran’s I values, indicating
that spatially random outputs are generated when only plot
data are used as input.
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Figure 2. Temporal and spatial results of a forest growth model. (a) Time series of mean above ground biomass for a 100 ha landscape.
Higher annual stem mortality associated with the merged data reduces biomass, regardless of the event size distribution. (b) Biomass map of
2500 forest stand cells (400 m2 each) for year 2000 of the merged distribution (table 1), merged average annual stem mortality (1.20%)
simulation. Only 0.92% of the cells have biomass values >700 Mg ha−1. The corresponding map using plot average annual stem mortality
(1.02%) is also significantly clustered (I = 0.001 559, p-value= 0.009 901). (c) Map of years since last disturbance >8 dead trees for year
2000 of the merged distribution (table 1), merged average annual stem mortality (1.20%) simulation. Significantly positive Moran’s I value
indicates spatial clustering. The corresponding map using plot average annual stem mortality (1.02%) is also significantly clustered
(I = 0.000 831, p-value= 0.0198). (a) Mean above ground live biomass. (b) Above ground live biomass (Mg ha−1). (c) Years since last
event.

4. Discussion

The results overwhelmingly show that Central Amazon mor-
tality events can be robustly modeled by a power law dis-
tribution function, and that an exponential function is not
adequate even for plot data. The merged data set is the most
comprehensive mortality data available for this region and the

power law exponent of its best fit (−2.73) is consistent with
previous estimates of gap area frequency in tropical forests
(Fisher et al 2008, Kellner and Asner 2009, Lloyd et al 2009).
While research consistently shows that mortality events and
gap areas follow a power law distribution, the mechanisms
behind this distribution are still unclear.
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Figure 3. Semivariograms of simulation year 2000 above ground biomass and disturbance interval maps. There are 2500 forest stand cells
(400 m2 each). The model semivariogram range estimates the radius at which 95% of the partial sill has been reached. (a) The merged event
distribution (table 1) with merged average annual stem mortality (1.20%) generates spatial autocorrelation of biomass within one and a half
forest cells (range = 27.74 m2). (b) The merged event distribution with merged average annual stem mortality generates spatial
autocorrelation of disturbance interval within one and a half forest cells (range = 28.82 m2), which corresponds with the respective biomass
autocorrelation (a). (c) The merged event distribution with plot average annual stem mortality (1.02%) generates spatial autocorrelation of
biomass within four and a half forest cells (range = 90.8 m2). The disturbance interval empirical semivariogram corresponding to (c) (not
shown) continually increases for distances >200 m. (a) Biomass: Merged distribution, merged mortality. (b) Event interval: Merged
distribution, merged mortality. (c) Biomass: Merged distribution, plot mortality.

However, insightful comparisons of gap frequency distri-
butions are difficult to make because of different methods and
gap definitions. Most tropical forest mortality distributions are
based on gap area frequency (Fisher et al 2008, Kellner and
Asner 2009, Lloyd et al 2009), but gap area is an indirect
measure of mortality due to spatial and temporal variation in
tree density (Chapman et al 1997), and pixel footprints pose
challenges for remotely measuring gap area because entire
pixels are rarely devoid of trees (Nelson et al 1994). We use
instead the dead tree count to directly characterize mortality
within one year of gap formation, and our Landsat method
generates a good relationship between 1NPV and number of
dead trees within each pixel, enabling repeat measurements
of sub-pixel mortality. It is also very well suited for merging

with plot measurements to create a contiguous mortality event
size distribution ranging from 1 to over 7000 trees, with the
potential to capture events larger than 2000 ha (on the order of
400 000 trees) with additional data (Espı́rito-Santo et al 2010).

High-resolution LiDAR (Light Detection And Ranging)
captures forest structure well (Kellner and Asner 2009),
but its ability to directly measure large disturbance-induced
gaps is limited by high data volume to small areas and
low temporal frequency (Kellner et al 2011). Nonetheless,
one-time measurements of canopy gaps having vegetation
height<1 m are linked to gap formation unless edaphic or other
non-disturbance factors limit these areas to short vegetation.
LiDAR-based analysis of gaps with vegetation height <1 m
in four 1 km2 tropical landscapes estimated power law gap

7



Environ. Res. Lett. 9 (2014) 034010 A V Di Vittorio et al

frequency distributions with exponents ranging from −2.00
to −2.33 (Kellner and Asner 2009). The maximum gap size
was on the order of 10 000 m2 (1 ha) with most gaps≤100 m2

(0.01 ha), which corresponds well with the maximum mortality
event size of our plot data (8 trees where average tree density
is 605 trees ha−1). The best fitted power law exponent for our
plot data (−2.86) is more negative than the (Kellner and Asner
2009) exponents, but these two results are remarkably similar
considering that ours is based on recently fallen trees and the
other is based on contiguous vegetation height.

Other estimates of power law exponents for gap frequency
distributions are more or less comparable to ours even though
methods differ. Some exponents for gaps smaller than 1000 m2

(0.1 ha) have been estimated by OLS for logarithmically
binned data rather than by MLE on the original data to
provide a binned input distribution for an empirical gap
dynamics model (Fisher et al 2008, Negrón-Juárez et al
2010). These OLS estimates ranged from −1.1 to −1.6 and
are mathematically equivalent to the power law exponent
plus one (White et al 2008, Chambers et al 2013). When
transformed to the power law exponent (−2.1 to −2.6) these
estimates are comparable to MLE fits of the same source
data (−1.9 to −2.7; Lloyd et al 2009), and also to our best
fits (table 2) for plot and merged data. However, Lloyd et al
(2009) estimated an exponent of−3.1 for remotely sensed gaps
ranging from 32 to over 1 700 ha (320 000 to 17 000 000 m2;
Nelson et al 1994), which generally are much larger than
our largest mortality event of about 35 ha (350 000 m2).
Even with discrepancies among methods and gap definitions,
the consistency in exponents among these studies strongly
supports our result that tropical forest mortality event size
distributions follow a power law, and that these distributions
extend to large mortality events that have not been adequately
captured by existing field plots. Thus, the spatial and temporal
domains sampled by existing field plots are generally too small
to accurately estimate the mortality biomass flux.

This study demonstrates that both MLE and OLS methods
for fitting power law functions can be reliable if the data are
appropriate to the method used. The MLE algorithm finds
the best power law fit to a complete data set i.e. there are
observations of each discrete event size, as shown by the
ratio and p-values tests (tables 2 and 3). The Landsat data,
however, are inherently binned because each observed event
size is based on an average mortality rate associated with an
integral number of pixels. For example, an isolated mortality
pixel might contain 4–19 dead trees (Negrón-Juárez et al
2011), but it is counted as an 8-tree cluster. This binning
renders the Landsat data inappropriate for the MLE method,
and as a result the MLE fit to the original Landsat data is not
statistically robust based the p-value metrics, although this
lack of significance could be an artifact of the noisy tail.

The OLS normalized-log-binned method, on the other
hand, can estimate good power law fits for the plot and merged
data sets (table 3 and figure 1) and at first glance appears
to be more reliable than the MLE method for the Landsat
data. The binning process helps account for non-sampled event
sizes, smoothens out the noisy tail (figure 1), and redistributes
pre-binned counts such as occur in the Landsat data. The OLS

power law fits to the plot data are good, but MLE is superior
for such a complete sample. The close match of the MLE and
OLS power law estimates for the merged data (1% difference)
indicates that these are both valid, and likely the best, estimates
of mortality event distribution for this region. The OLS Landsat
power law exponents are more similar to the valid merged data
exponents than the MLE Landsat exponents, suggesting that
in this case OLS outperforms MLE. But a binned sample from
the MLE Landsat fitted distribution, which has a much steeper
slope than the OLS fit (tables 2 and 3), more closely matches
the observed data, albeit without the noisy tail (figure 1). And
even though all p-value tests reject the power law hypotheses
for Landsat data, the ratio test ranks the MLE Landsat fit higher
than the OLS fit (tables 2 and 3). Discarding the noisy counts
for event sizes greater than 458 trees (∼2.88 ha or 28 800 m2)
might generate a more reliable fit to the Landsat data, but it
would severely restrict the range of event sizes represented by
the fitted function. Without a larger data set it is difficult to
determine how well the normalized-log-binned data represent
the noisy tail and thus whether the Landsat data is adequately
represented by the merged data fit or should be represented
separately with a steeper slope. However, both MLE and
OLS fits to the merged data do incorporate all observations
consistently (figure 1).

These robust mortality event distributions enable us to
simulate forest landscapes and to show that a more complete
event distribution generates spatial patterns in biomass and
stand age, in contrast to simulations using a plot-estimated dis-
tribution (figures 2 and 3). This spatial difference is augmented
by the expected result that a higher average annual mortality
rate, determined from the merged data set, reduces above
ground biomass in relation to that obtained from the plot-based
rate (figure 2(a)). Using the higher mortality rate in simulations
slightly underestimates landscape biomass averages in relation
to wider area plot observations (∼319 Mg ha−1; Chambers
et al 2004), in contrast to overestimation when using the lower
average mortality rate (figure 2). The higher average mortality
rate also reduces the range of spatial autocorrelation due to the
higher frequency of small events over large events in the power
law distribution (figure 3). It is therefore apparent that annual
rates and event distributions are both key characteristics for
understanding tropical forest dynamics.

When using the merged data estimates for average moral-
ity rate and event distribution, the simulated spatial patterns are
consistent with observations of large gaps, but the forest stand
cell size used in our analyses is too large to adequately capture
all spatial structure of the forest. The estimated range of spatial
autocorrelation for both biomass and td is ∼28 m (figures
3(a)–(b)), which corresponds to a circular area of 616 m2.
As mentioned above, the largest gap with vegetation height
less than 1 m detected by LiDAR in four tropical landscapes
was 10 000 m2 (1 ha), with most gaps ≤ 100 m2 (0.01 ha)
(Kellner and Asner 2009). Thus, the TRECOS simulations
using merged data adequately capture the observed, large-
area spatial coherence in tropical forest. Additionally, Kellner
et al (2011) estimated ranges of spatial autocorrelation for
canopy height (8.3–21.1 m) and changes in canopy height
(2.5–3.7 m) for forests on five different substrate ages in
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Hawaii. Unfortunately these canopy range estimates, and the
majority of gaps, are smaller than what TRECOS can resolve
because the stand cells are 20 m × 20 m. Nonetheless, the
merged disturbance size distribution is required to simulate
observed spatial patterns, demonstrating that mortality is not
randomly distributed across the landscape

5. Conclusion

Our results show that existing plot data alone are not sufficient
for characterizing tropical forest mortality processes and their
impacts on landscape-level biomass density and also on
spatial patterns of succession-inducing disturbance interval
and biomass density. A power law distribution of mortality
event size based on merged plot and satellite data is required
in addition to the corresponding annual mortality rate to
shift simulated forest structure from a random pattern to
a significantly clustered mosaic of stand age and biomass.
Thus, we conclude that the spatial clustering associated with
mortality due to events larger than eight trees further explains
why existing plots do not adequately capture large disturbance
losses that influence succession, canopy structure, growth
rates, and species composition (Chambers et al 2009a) Due to
this underestimation of mortality, current plot-based analyses
have a tendency to overestimate forest carbon uptake. It is
apparent that a more comprehensive sampling scheme that
includes large-area data (e.g., large plots and remote sensing)
and robustly characterizes disturbance size distribution is
required to understand tropical forest dynamics and its impact
on carbon balance.
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Appendix. Stand growth model

The tropical ecosystem and community simulator (TRECOS)
(Chambers et al 2004, 2013) is a stochastic-empirical model
that simulates growth and size distribution of individual trees
grouped into 400 m2 stands. It also simulates dead tree decom-
position, tree size distribution (i.e. stem diameter), mortality,
and recruitment. It has been developed and parameterized
using field data from the plots used in this study, and it
requires distributions of wind mortality event size (number of
trees per event), overall annual stem mortality rate, diameter
growth rate (mean = −0.976 log10(cm y−1), SD = 0.431),
stem density (mean= 24.22 stems/400 m2, SD= 5.11), and
wood density (mean= 0.55 (early succession) and 0.7 g cm−3,
SD= 0.15) as inputs. The standing dead stem mortality rate is
applied randomly in space before the wind mortality event
size distribution is used to allocate the remaining annual
mortality. Biomass is calculated from allometric equations
based on stem diameter. We did not simulate CO2 fertilization

effects in this study. Outputs include time series of live and
dead biomass stocks and reproduction and mortality rates
averaged over a 1 km2 landscape and also for selected sample
plots. TRECOS also outputs stand-resolution maps of the
final biomass state and the time since last succession-inducing
disturbance (>8 trees; td).
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