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The massive forests of central Amazonia are often considered
relatively resilient against climatic variation, but this view is
challenged by the wildfires invoked by recent droughts. The
impact of such fires that spread from pervasive sources of ignition
may reveal where forests are less likely to persist in a drier future.
Here we combine field observations with remotely sensed informa-
tion for the whole Amazon to show that the annually inundated
lowland forests that run through the heart of the system may be
trapped relatively easily into a fire-dominated savanna state. This
lower forest resilience on floodplains is suggested by patterns of
tree cover distribution across the basin, and supported by our field
and remote sensing studies showing that floodplain fires have a
stronger and longer-lasting impact on forest structure as well as soil
fertility. Although floodplains cover only 14% of the Amazon basin,
their fires can have substantial cascading effects because forests and
peatlands may release large amounts of carbon, and wildfires can
spread to adjacent uplands. Floodplains are thus an Achilles’ heel of
the Amazon systemwhen it comes to the risk of large-scale climate-
driven transitions.
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The sensitivity of the Amazon rainforest to climate change is a
central issue in global change research (1, 2). In particular,

there are concerns that a drier climate may promote a shift from
forest to savanna (3, 4). All studies so far suggest that this is most
likely at the southern and eastern peripheral regions where
precipitation is relatively low and seasonal (2–5) and the risk of
wildfires is higher (4, 6–11). Although rainfall is a dominant
factor explaining forest resilience, other environmental factors
obviously play a role (12–14). Arguably, the most striking vari-
ation in the nature of forests in the wet Amazonian system is
related to seasonal inundations. Approximately one-seventh of
the Amazon is inundated a substantial part of the year (15),
causing these ecosystems to differ in many ways from the dom-
inant upland terra firme forests (SI Brief Ecology of Floodplain
and Upland Ecosystems). Here we ask whether these differences
related to seasonal inundation affect forest resilience and the
risk of shifting into a fire-dominated savanna state. We used two
approaches to contrast the resilience of floodplain and upland
forests across the Amazon (Fig. 1 A and B). First, we estimated
the long-term relative resilience of forest and savanna in both
ecosystems from the density distributions of tree cover (3, 16)
using MODIS vegetation continuous field (VCF) data at 250 m
resolution (SI Methods). Second, we studied postfire recovery of
both forest types using field and remote sensing data (Fig. S1).
Using annual MODIS VCF data, we measured the recovery of
over 250 sites that burned during the severe droughts of 1997 and
2005 (Fig. S1; Table S1; and Dataset S1). Using field data on tree
basal area and soil variables from multiple burned forests in the
central Amazon region, we validated the basin-wide analyses of
postfire recovery (Fig. S1 and SI Methods).

The rationale behind studying the density distributions of tree
cover is that under homogeneous environmental conditions (14),
density distributions may reveal alternative attractors in the
vegetation and their relative resiliencies (3, 16, 17). Compar-
ative studies across the global tropics (3, 4) reveal that tree
cover tends to be either high or low, with intermediate (∼50%)
cover being remarkably rare. The interpretation is that closed
forest and savanna are attractors, and the intermediate state is
an intrinsically unstable repellor. In fact, one may reconstruct
the well-known potential (ball-in-cup) landscapes directly from
the data. The mathematical underpinning is somewhat tech-
nical (17), but the idea is intuitively straightforward. Thinking
of long time-spans, one can imagine that stochastic events
occasionally push the system over the boundary between the
basins of attraction of alternative attractors. Sampling such a
system long enough, one thus expects it to be sometimes close
to one of the attractors (e.g., forest), sometimes close to the
alternative attractor (e.g., savanna), and more rarely some-
where in between (16). Importantly, in places where forest is
relatively more resilient, the system will spend more time in
the state with high tree cover, whereas in places where savanna
is relatively more resilient, the system will spend more time in
the state with low tree cover. Thus, the ratio of the number of
observations in the forested state vs. the number of observa-
tions in the savanna state tells us something about the relative
resiliencies of the two alternative states. We do not have
long time-series, but if information for sufficient sites of
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comparable conditions is available, one may interpret snapshots
of the states on all sites in the same way as one would interpret
samples from a single, long time-series. Such a space-for-time

substitution has been used before to show how resilience of
tropical forest and savanna varies with mean annual precipitation
(3). We now use the same approach to infer how resilience of

Fig. 1. Distribution of tree cover across the Amazon basin. (A) Floodplains and (B) uplands separated by the wetlands’ mask (15). Deforested areas were
excluded (SI Methods). Density distributions of tree cover for (C) floodplains and (D) uplands. A cutoff at 60% tree cover (dashed lines) separates forest from
savanna (3), and percentage values are the proportion in each state. Relation between mean annual rainfall and tree cover for (E) floodplains and (F) uplands.
Markham seasonality index values >36 (black circles) and <36 (gray circles) are shown. Red lines are fitted locally weighted scatterplot smoothing (LOWESS).
Circles are 15,000 data points randomly sampled for each case.
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forest and savanna varies between floodplains and uplands of
the Amazon.

Results and Discussion
In Amazonian uplands, the density distribution of tree cover has
a single mode around 84%, reflecting dense forest, with sparse
tree cover being rare (Fig. 1D and Fig. S2B). In contrast, flood-
plains have an additional mode around 34% tree cover, reflecting
the presence of a savanna state (Fig. 1C and Fig. S2A). As
explained previously, assuming our density distributions (Fig. 1 C
and D) reflect long-term dynamics of a stochastically perturbed
system, the ratio of the number of observations falling in the two
modes reflects their relative resiliencies (3, 16). Forest/savanna
ratios we found suggest that forests are much less resilient in
floodplains than in uplands (ratios of 66/34 vs. 93/7; Fig. 1 C and
D and Table S2). The difference is especially pronounced in parts
of the Amazon where rainfall is relatively lower, more seasonal,
and interannually variable (Fig. 1 E and F and Fig. S3). From the
relation between tree cover and rainfall, we computed potential
landscapes (Fig. S4 and SI Methods), which revealed that a sa-
vanna basin of attraction appears around 1,500 mm of mean
annual rainfall in floodplains. In uplands, a hint of the savanna
basin of attraction only becomes apparent around 1,000 mm of
annual rainfall.
Thinking of our tree cover density distributions as the long-

term balance between shifts from forest to savanna and vice
versa, the forest/savanna ratio should approximately reflect the
average time that the system spends in each state (16). Long-
term tree cover time-series are lacking, making it difficult to
check this inference systematically. An alternative is to analyze
the response of the system to stochastic perturbations. Wildfires
have been the dominant historical mechanism driving shifts from
forest to savanna in times when climate was drier and seasonal
(4, 18). The megadroughts of 1997 and 2005 invoked a large

number of wildfires in Amazonian upland and floodplain forests
(6–9), allowing us to compare their resilience. Our remotely
sensed information from over 250 burned forest sites reveals that
fires had a strong and long-lasting impact on tree cover in the
floodplains, whereas in the uplands, effects of fire were typically
small and ephemeral (Fig. 2 A and B and Fig. S5). This broad-
scale pattern was confirmed by field measurements in burned
forests of the central Amazon region, showing a systematically
lower recovery rate of tree basal area in the floodplains (Fig. 2 C
and D). We also found a marked decrease in soil nutrients and
fine clay particles in floodplain forests upon fire that was absent
in the uplands (Fig. 3).
In summary, the observed difference in density distributions of

tree cover indicates that floodplain forests are relatively less
resilient and therefore less likely to persist in the long run, which
does not imply that upland forests are resilient, but rather that
their resilience depends on overall environmental conditions. In
fact, our results suggest that at ∼1,000 mm of mean annual
rainfall, upland forests reach a tipping point in which they may
collapse into a savanna state (Fig. S4). As climatic conditions
change, however, such tipping points will likely be reached first
by forests on seasonally inundated areas. Our detailed field and
remote sensing measurements of the response to fire confirm
this pattern and suggest an explanation. Both the slow forest
regrowth and the quick loss of soil fertility plausibly make these
floodable forests more likely to be trapped by repeated fires in
an open vegetation state. Indeed, studies in other forest systems
reveal that canopy openness upon the first fire enhances the risk
of subsequent fires (19) and the spread of herbaceous vegetation
(7, 10, 11). The loss of tree cover to fire allows the intensification
of hydrological processes that lead to soil erosion and nutrient
leaching (20), creating limiting conditions for forest regrowth
that may instead favor savanna-adapted plant species (21). An-
other reason that makes floodplain forests more vulnerable is their

Fig. 2. Compared sensitivity of floodplain and upland forests to fire. Time
series of annual tree cover (median ± SE) showing changes after a fire in
(A) floodplains and (B) uplands. After fire (time = 0), tree cover median persists
below 50% in floodplains, yet recovers in uplands. Field data on tree basal area
recovery after the last fire in (C) floodplains and (D) uplands of the central
Amazon. For all plots, green shaded area is SE intervals for unburned forests. In
D, unburned reference was obtained from ref. 40 (see SI Methods for details).

Fig. 3. Changes in soil texture and fertility that initiate with a forest fire.
(Left) Floodplains. (Right) Uplands.
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naturally higher flammability compared with upland forests. In
addition to having a slightly more open structure (22, 23), upon the
annual retreat of the waters, floodplain forests typically have large
masses of exposed root mats (24) that burn easily and may
spread fire effectively in drier years (6, 7) (Fig. S6). The com-
bustion of this organic material by fire may plausibly facilitate
subsequent floods to wash away nutrients and fine sediments,
leaving behind relatively poor sandy soils. Overall, forest re-
covery upon fire in the floodplains may be hindered by a com-
bination of recruitment limitations partly caused by lost soil
fertility (Fig. 3) with seasonal inundation that restricts the time in
which trees can grow (25).
Independent of the precise mechanisms slowing down forest

recovery, patterns we revealed imply strong evidence that Am-
azonian forests on floodable terrains have a lower resilience
when it comes to the risk of transition into a fire-prone vegeta-
tion state. Although these ecosystems cover 14% of the basin,
there are two reasons why their vulnerability may have sub-
stantial cascading effects. First, floodplains in the western and
central Amazon include peatlands that store enormous amounts
of carbon (estimates of ∼3.14 Pg C, available only for western
peatlands) (26, 27), which could potentially be released to the
atmosphere by fire. Second, our results imply that if the climate
becomes drier, fire-prone savannas might expand through
floodable areas toward the core of the Amazon forest and be-
come sources of fires that may spread to large parts of that re-
gion. Indeed, the spread of fires from floodplains to adjacent
uplands has been shown in Africa (28) and central Amazon (22)
with negative impacts on vegetation structure (22) and bio-
diversity (29). In conclusion, our results suggest that seasonally
inundated forests throughout the Amazon represent an Achilles’
heel when it comes to resilience of this massive system. Con-
sidering the projected increase in dryness (30) and expected ef-
fects of climatic variability intensification on tropical vegetation
(31), it follows that maintaining a safe operating space for the
Amazon forest (32) may require special protection not only of
the driest parts of the Amazon forest, but also of the floodable
heart of the system.

Methods
To contrast the resilience of Amazonian floodplain and upland forests, we
first analyzed density distributions of tree cover for the entire basin using
MODIS VCF data at 250 m spatial resolution (SI Methods). We also analyzed
postfire recovery rates as a measure of resilience for over 250 sites in both
forest types using annual tree cover data from MODIS VCF at 250 m (SI
Methods). To identify forest fires, we selected eight Landsat scenes with
extensive areas of floodplain and upland to allow equal probability of

observing forest fires. These scenes are distributed across the Amazon basin
and cover most of the annual rainfall gradient (1,500–3,000 mm; Fig. S1). In
each scene we identified forest sites that were burned during the droughts
of 1997 and 2005 using a systematic visual method (33). This method allows
distinguishing fire from other disturbances because signs from fire typically
have rounded borders and fade away quickly. It has proven to be effective
for floodplain forests (6, 7), and we found it to be even more effective on
uplands where signs of fire disappear within 3 y (Fig. S5). In each scene we
identified multiple sites to accommodate MODIS pixels (250 m), spreading
their locations within the burned and unburned areas, maintaining at least
1 km distance between two pixels and from perennial water bodies (see all
sites in Dataset S1).

To ground-truth our basin-wide remote sensing analysis of tree cover
recovery after wildfires, we analyzed tree basal area and soil data from field
sites at the central Amazon region (Fig. S1). In both floodplain and upland
areas, we selected a series of forest sites with different “times since the last
fire” to produce chronosequences (space-for-time) and measure recovery
rates of tree basal area [>1 cm in diameter at breast height (DBH)]. Using
these same sites, we produced chronosequences of “time since the first fire”
(when mature forests were burned for the first time) to analyze changes
that may have occurred in the superficial soil fertility (0–20 cm depth) while
repeated fires maintained the vegetation vulnerable to soil erosion (20).

In this study we considered forest and savanna as alternative vegetation
states with contrasting structure and plant composition,maintained by positive
feedbacks among plants, fire, and soil (34). Different lines of evidence support
the use of tree cover data from MODIS VCF to assess forest and savanna dis-
tribution and resilience. VCF has been validated in the field with a relationship
of 95% with crown cover (35) and 56%with forest biomass (36); more recently
it was shown to have a good correlation with field tree cover across the whole
tropics (37). Spatial patterns of VCF correlate well with tree canopy height,
distinguishing degraded forests from savannas as well as closed savannas from
forests (38). Because closed canopies are known to suppress fire percolation,
forests that recover faster also recover their capacity to suppress recurrent fires
(39); therefore, VCF also indicates spatial variation in flammability. In addition,
VCF provides us massive data on forest tree cover at global scales.

Most data sets used in this study are openly available and have been used
in other publications. The location of all wildfires studied from remote
sensing can be found in Dataset S1. For access to field data from burned
upland forests, contact C.C.J. for the Tefé area and R.C.G.M. for the Manaus
area. Field data from burned floodplain forests at Barcelos are available
from a previous publication (7).
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