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Abstract

Cryptococcosis is considered endemic in Amazonas state, occurring more frequently in indi-

viduals with AIDS, who are predominantly infected by Cryptococcus neoformans molecular

type VNI. Infections by Cryptococcus gattii VGII predominate in immunocompetent hosts

from the American continent and are associated with outbreaks in North America, particu-

larly the subtypes VGIIa and VGIIb, which are also present in the Brazilian Amazon region.

Despite few environmental studies, several aspects of the molecular epidemiology of this

disease in Amazonas remain unclear, including the limited use of multilocus sequence typ-

ing (MLST) to evaluate the genetic population structure of clinical isolates, mainly C. neofor-

mans. Therefore, we used MLST to identify the sequence types of 38 clinical isolates of C.

neoformans VNI and C. gattii VGII and used phylogenetic analysis to evaluate their genetic

relationship to global isolates. Records of 30 patients were analyzed to describe the current

scenario of cryptococcosis in the region and their associations with the different subtypes.

Broth microdilution was also performed to determine the susceptibility profile to the antifun-

gals amphotericin B, fluconazole and itraconazole. MLST identified that patients with HIV (n

= 26) were exclusively affected by VNI strains with ST93, and among the VGII strains (n =

4), three STs (ST5, ST172 and the new ST445) were identified. An in-hospital lethality of

54% was observed in the HIV group, and there were no significant differences in the clinical

aspects of the disease between the HIV and non-HIV groups of patients. In addition, all iso-

lates were susceptible to the antifungals tested. Therefore, in Amazonas state, VNI isolates

are a genetically monotypic group, with ST93 being highly important in HIV individuals.
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Introduction

Cryptococcosis is a systemic, cosmopolitan and primary opportunistic infection associated

with human immunodeficiency virus (HIV), representing an important public health problem

[1–4]. Both the pathogens Cryptococcus neoformans and Cryptococcus gattii constitute species

complexes widely distributed in the environment, mainly associated with bird feces and wood

debris [5–9]. The disease is acquired by inhalation of infectious propagules from the environ-

ment (desiccated yeasts cells or basidiospores) and its most frequent clinical manifestation is

meningoencephalitis [10–13].

C. neoformans is the most frequently isolated species in individuals with HIV, causing an esti-

mated annual occurrence of 223,100 cases of cryptococcal meningitis worldwide, resulting in

approximately 181,100 deaths [14]. Cryptococcosis is a non-reportable disease in Brazil and correct

estimates on the epidemiology of this infection are scarce. However, data from the literature and

the Brazilian Ministry of Health revealed that approximately 7,000 cases of cryptococcal meningo-

encephalitis are diagnosed annually, mainly in the southeast region, of which 90% occur in patients

with AIDS, whose death rate associated with cryptococcosis is approximately 35–40% [15,16].

By comparison, C. gattii is more commonly found in Australia, the Pacific Northwest of

North America and Northern parts of South America, and it is considered a primary infection

agent, although there is evidence that intrinsic deficiencies in specific defense mechanisms

may predispose certain individuals to C. gattii [17,18].

The genotypic variability of cryptococcosis agents has been investigated worldwide to detect

polymorphisms in DNA using several PCR techniques that initially allowed the identification

of the following main molecular types: VNI/AFLP1, VNII/AFLP1A, VNB/AFLP1B, VNIII/

AFLP3, and VNIV/AFLP2 for C. neoformans; and VGI/AFLP4, VGII/AFLP6, VGIII/AFLP5,

and VGIV/AFLP7 for C. gattii [19,20]. To globally standardize the genotyping of the C. neofor-
mans/C. gattii species complex, a MLST scheme was established by the International Society

for Human and Animal Mycology (ISHAM) working group “Genotyping C. neoformans and

C. gattii” based on variable regions within the capsular associated protein gene (CAP59), glyc-

eraldehyde-3-phosphate dehydrogenase gene (GPD1), laccase (LAC1), phospholipase (PLB1),

Cu, Zn superoxide dismutase (SOD1), orotidine monophosphate pyrophosphorylase (URA5)

gene and the intergenic spacer region (IGS1), for their high discriminatory power and good

reproducibility between different laboratories. The subtypes are defined via an online database

(http://mlst.mycologylab.org) and are called sequence types (STs) [21].

Sequence types of C. gattii VGII were previously identified in the Amazonas, most of them

from the environment [22,23]; however, there is no published data about the molecular popu-

lation structure of C. neoformans VNI from the region. Clinical isolates with resistance to flu-

conazole were previously detected in the Amazonas state; therefore, surveillance studies of

subtypes and antifungal susceptibility are crucially important [24]. Thus, the current study

used MLST to identify the sequence types of 38 clinical isolates of C. neoformans VNI and C.

gattii VGII from Amazonas state and to evaluate their genetic relationship with global isolates.

Additionally, we determined the susceptibility profile to the antifungal agents amphotericin B

(AMB), fluconazole (FLZ) and itraconazole (ITZ) and described the clinical and epidemiologi-

cal characteristics of patients to evaluate the current scenario of cryptococcosis in the region.

Materials and methods

Clinical isolates

A total of 38 clinical isolates of Cryptococcus, including 34 C. neoformans and four C. gattii,
were recovered from cerebrospinal fluid (CSF) samples (n = 30) and blood cultures (n = 8)
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obtained from 30 patients hospitalized between February 2014 to May 2016 at the Tropical

Medicine Foundation Dr. Heitor Vieira Dourado [Fundação de Medicina Tropical Dr. Heitor

Vieira Dourado (FMT-HVD)] in Manaus, Amazonas state (AM), Brazil. All isolates were

maintained in Sabouraud dextrose agar tubes and stored at 4˚C at the Medical Mycology Labo-

ratory at FMT-HVD. The strains were purified twice on niger seed plates, and then only one

isolated colony was randomly selected for further analysis. Eight serial isolates were recovered

from the CSF samples of two patients, and isolates from CSF and blood were recovered from

two patients (S1 Table).

Collection of epidemiological and laboratory data

Clinical, epidemiological and laboratory records of all patients were accessed from the online

database of FMT-HVD. The data collected for analysis included age, gender, geographic loca-

tion, initial symptoms and developed sequelae, HIV infection status, CD4+ T cell count (at the

time of diagnosis), clinical outcome (death or survival), need for surgical intervention and hos-

pitalization in the intensive care unit (ICU) due to complications, clinical forms, time and

number of hospitalizations and the amount of positive cultures recovered in the initial diagno-

sis and during treatment. This study was approved by the FMT-HVD Human Research Ethical

Committee (CAAE 53952416.1.0000.0005). Patients enrolled in the study provided their writ-

ten informed consent, and data were analyzed anonymously.

Molecular typing by URA5-RFLP

DNA extraction was performed using the phenol:chloroform:isoamyl-alcohol method [25].

The major molecular types were first determined by URA5-RFLP analysis with Sau96I and

HhaI (Thermo Scientific, Waltham, USA) enzymes as described by Meyer et al. (2003) [20].

The genotypes were assigned by comparison with the respective reference strains: WM 148

(serotype A, VNI), WM 626 (serotype A, VNII), WM 628 (serotype AD, VNIII), WM 629

(serotype D, VNIV), WM 179 (serotype B, VGI), WM 178 (serotype B, VGII), WM 161 (sero-

type B, VGIII) and WM 779 (serotype C, VGIV).

MLST and phylogenetic analysis

MLST analysis was performed by the individual amplification of the six housekeeping genes

CAP59,GPD1, LAC1, PLB1, SOD1, and URA5 along with the IGS1 region according to the

conditions published previously by the ISHAM [21]. The PCR products were purified with a

modified method using polyethylene-glycol/NaCl [26] and were bidirectionally sequenced on

an ABI3130 DNA Analyzer with BigDye Terminators v3.1 (Applied Biosystems, Foster City,

California, USA) at the Laboratory of Functional Genomic and Bioinformatics (Fiocruz, Rio

de Janeiro, Brazil). The sequences were manually edited using the software Sequencher 5.3

(Gene Codes Corporation, Ann Arbor, MI, USA), and the contigs were aligned using the Mus-

cle algorithm linked to the program MEGA v6.06 [27]. All sequences were analyzed in the

MLST for C. neoformans and C. gattii species complex database (http://mlst.mycologylab.org)

to determine the allele number and respective ST. The sequences were deposited in GenBank

and the accession numbers can be found in the S1 Table.

Using the software MEGA v6.06, the concatenated DNA sequences of seven MLST loci

from clinical isolates were aligned by Muscle along with the sequences of VNI (n = 173) and

VGII (n = 167) STs available in the Fungal MLST Database. To verify the genetic and evolu-

tionary relationship among these STs, a phylogenetic tree was constructed based on the neigh-

bor-joining (NJ) model with a bootstrap analysis using 1,000 replicates. The evolutionary

distances were computed using the p-distance and all gaps were eliminated. Due to the large
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number of STs present in the database, a second phylogenetic tree was constructed using the

same methods described above with only subsets of genetically closely related STs, retaining

mainly the STs previously identified in Amazonas to analyze their genetic association [22,23].

Antifungal susceptibility test

The antifungal susceptibility test was performed using the microdilution method in RPMI

broth according to the M27-A3 guideline of the Clinical and Laboratory Standards Institute

(CLSI) [28]. The microdilution of drugs tested was performed in duplicate and in the following

ranges: 0.125–64 μg/ml for FLZ (Iberoquı́mica Magistral, Jundiaı́, Brazil) and 0.03–16 μg/ml

for AMB (Sigma Aldrich, Saint Louis, USA) and ITZ (Sigma Aldrich, Saint Louis, USA).

Cryptococcus isolates were subcultured onto Sabouraud dextrose agar and incubated for 48

h at 35˚C. The yeast colonies were transferred to 5 ml of sterile saline solution (0.85%) and

adjusted to a density equivalent to 0.5 McFarland standard scale. The inoculum was adjusted

to 2.5 × 103 cells in 10 ml of RPMI medium (Sigma Aldrich, Saint Louis, USA) by counting in

a Neubauer chamber. The 96-well microplates were incubated at 35˚C for 72 h. The MIC of

amphotericin B was determined as the lowest concentration that completely inhibited fungal

growth (100%), and for the azoles, the lowest concentration that generated partial reduction

(50%) compared with the growth-control wells. The interpretation of MIC values was based

on the following genotype-specific epidemiological cut-off values (ECVs): AMB (0.5 μg/ml),

FLZ (8 μg/ml) and ITZ (0.25 μg/ml) for VNI; and AMB (1 μg/ml), FLZ (32 μg/ml) and ITZ

(0.5 μg/ml) for VGII strains [29,30].

Statistical analysis

Statistical data were analyzed with R Software version 3.3.1 (https://www.r-project.org) and

described using the relative frequency, mean and standard deviation. The variables were com-

pared between groups defined according to HIV infection status and the corresponding infect-

ing species.

Results

Clinical and epidemiological data

Clinical, epidemiological and laboratory data were obtained for the 30 patients investigated.

Most were from Manaus (25; 83%) while some were from other municipalities, such as Mana-

capuru (1; 3%) in the metropolitan region, Manicoré (1; 3%) and Jutaı́ city (1; 3%) located,

respectively, in the south and southwest of Amazonas. Two non-autochthonous cases were

also diagnosed at FMT-HVD, one from Boa Vista (Roraima State–North of Brazil) and the

other from Rio de Janeiro (Southeast of Brazil) (Fig 1).

The majority of patients were male (19; 73%), and the mean age was 39.8 ± 12.2 years with

a range of 19–68 years. HIV infection was reported for 26 patients (87%), of which 17 (74%)

presented CD4+ T-cell counts below 50 mm3/ml, and all were affected only by C. neoformans
VNI. Neurocryptococcosis was the most frequent clinical presentation (29; 97%), and of these

cases, 10 (34%) were also associated with blood infection; only one HIV patient had fungemia

alone. The most common initial signs and symptoms were headache (28; 93%), fever (21;

70%), weight loss (17; 57%), disorientation (14; 47%) and visual impairment (11; 37%). Four

(13%) patients also used CSF derivation systems to overcome intracranial hypertension. Neu-

rological sequelae, such as decreased visual acuity (10; 33%), hearing deficit (4; 13%), motor

deficit (3; 10%), hydrocephalus (3; 10%) and hyposmia (2; 7%), were the most frequent. More-

over, in-hospital death was observed for half of the patients (15; 50%), mainly those with HIV
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(14; 54%), during the first 100 days after admission (Table 1). The only four apparently immu-

nocompetent patients were infected with C. gattii VGII.

MLST and phylogenetic analysis

URA5-RFLP analysis identified 34 clinical C. neoformans as VNI and four C. gattii as VGII (S1

Table). In addition, MLST analysis divided these 38 strains into five STs. The C. neoformans
VNI isolates were identified as the previously known ST93 (33, 97%), considered the most

prevalent sub-genotype of opportunistic strains that affect immunosuppressed patients in

northern Brazil. Only one strain presented as ST2, and this was recovered from the non-

autochthonous case from Rio de Janeiro (Fig 1). Despite the few C. gattii VGII strains

obtained, MLST identified three different STs as the previously known ST172 (2; 50%) and

ST5 (1; 25%) and newly identified ST445 (1; 25%). No genotypic differences were observed

among the strains recovered from serial isolates, as well as among the strains isolated from dif-

ferent clinical specimens, excluding the possibility of mixed infections (S1 Table). For the VNI

isolates, the phylogenetic analysis demonstrated that ST91, ST92, ST177, and ST195 cluster

tightly together with ST93 (Fig 2A), whereas ST133 of the VGII molecular type was the most

closely genetically related to the new ST445 (Fig 2B).

Fig 1. Map of Brazil showing the origin of the 30 patients studied and the corresponding infecting molecular types. C. neoformans VNI and C. gattii
VGII were indicated by circle and triangle shapes and sequence types by different colors. QGIS v.2.16.1 software was used to construct the map.

https://doi.org/10.1371/journal.pone.0197841.g001
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Table 1. Comparison of clinical, epidemiological and laboratory features of patients with cryptococcosis in Amazonas according to the HIV infection status.

Variables HIV positive

C. neoformans VNI

N = 26 (%)

Non-HIV

C. gattii VGII

N = 4 (%)

Demographics

Male sex 19 (73) 1 (25)

Age in years (Mean ± SD) 39.2 ± 12.3 44.5 ± 12.1

Age (Range) 19–68 30–55

Clinical presentation at baseline

Headache 24 (92) 4 (100)

Nausea/Vomiting 18 (73) 4 (100)

Fever 18 (69) 3 (75)

Weight loss 14 (54) 3 (75)

Disorientation 12 (46) 2 (50)

Visual deficit 7 (27) 4 (100)

Cough 7 (27) 2 (50)

Seizure 6 (23) 1 (25)

Dizziness 6 (23) 1 (25)

Dyspnea 4 (15) 1 (25)

Photophobia 4 (15) 1 (25)

Meningeal signals 3 (11.5) 1 (25)

Papilledema 1 (4) 1 (25)

CD4+ T cells/mm3 23 (88.5) -

> 50 cells/mm3 6 (26) -

< 50 cells/mm3 17 (74) -

Clinical forms

Neurocryptococcosis 15 (58) 4 (100)

Neurocryptococcosis and fungemia 10 (38) -

Fungemia 1 (4) -

Positive cultures (Mean ± SD) 2 (1–3.8) 1.5 (1–2.2)

Hospitalizations (Mean ± SD) 1 (1–3) 1 (1–1.2)

Hospitalization Time Days (Mean) 57 (36.2–84) 57(48.8–67.5)

Need of CSF shunt 3 (11.5) 1 (25)

Outcome

Death 14 (54) 1 (25)

Hospital discharge 12 (46) 3 (75)

Admission to death (time in days)

< 100 7 (50) 1 (100)

101–200 1 (7) -

>200 6 (43) -

Sequels

Decreased visual acuity 10 (38) 1 (25)

Decreased hearing acuity 4 (15) -

Motor deficit 3 (11.5) -

Hydrocephalus 3 (11.5) -

Hyposmia 2 (8) -

SD: standard deviation.

https://doi.org/10.1371/journal.pone.0197841.t001
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MIC results

The antifungal susceptibility test was performed with one strain per patient (n = 30). The anti-

fungals AMB, FLZ and ITZ used to treat the patients showed satisfactory inhibition activity

against all C. neoformans VNI and C. gattii VGII strains, which were considered wild-type

(susceptible) isolates according to ECVs, although the VGII isolates showed a geometric mean

(GM) four times higher than those of VNI. The highest MIC (32 μg/ml) for FLZ was observed

in both ST172 strains of C. gattii VGII, although the number of samples per ST is very limited,

precluding any conclusions. The MIC range and geometric mean of each drug tested are pre-

sented in Table 2.

Fig 2. Unrooted neighbor-joining (NJ) trees constructed with the concatenated data set of seven MLST loci (CAP59, GPD1, IGS1, LAC1, PLB1, SOD1 and

URA5), showing the genetic relatedness of 34 VNI and 4 VGII STs of clinical isolates with those obtained from the Fungal MLST Database (http://mlst.

mycologylab.org) and known geographic origin (only the closely genetically related STs were retained in the final tree). A) Phylogenetic analysis comparing

the 34 VNI STs identified with 10 additional STS maintained in MLST Database. B) Tree representing the genetic association between three VGII STs defined in

the present work with other Brazilian STs, including ST5, ST7, ST20, ST264, ST265, ST266, ST267, ST268, ST274 and ST288 found previously in Amazonas). The

bootstrap values (1,000 replicates) are shown above the branches. Green circles and the patient code (S1 Table) were used to highlight the STs found in this study

and red circles to indicate the STs retrieved from the MLST Database. A review of the literature was performed to check the geographical origin of VNI [31–37]

and VGII [22,23,38,39] STs, described in the right side of the STs identification. The following abbreviations represent the Brazilian states: AM (Amazonas), BA

(Bahia), MG (Minas Gerais), PA (Pará), PI (Piauı́), RJ (Rio de Janeiro), RR (Roraima) and SP (São Paulo).

https://doi.org/10.1371/journal.pone.0197841.g002
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Discussion

C. neoformans VNI and C. gattii VGII are the most common and clinically important agents of

cryptococcosis in the state of Amazonas [24,40]. In the current study, some regional aspects of

the molecular epidemiology of cryptococcosis were elucidated by applying the MLST. The

results indicate that immunosuppressed patients from northern Brazil are affected by a clonal

group of VNI strains represented by ST93 and ST2, which are globally isolated and genetically

close to the African and Asian STs [32,35–37]. These are new findings for the Amazon region

and demonstrate the low intragenotypic diversity of C. neoformans VNI. Although there were

a limited number of C. gattii VGII strains analyzed, MLST revealed 3 subtypes in 4 strains,

including a new subtype (ST445), indicating a higher genetic diversification of Brazilian VGII

strains, as demonstrated previously [23]. We also report the antifungal susceptibility profile of

STs from the Amazon region; however, it was not possible to establish correlations because of

the small number of isolates analyzed.

Few studies on the epidemiology of cryptococcosis in Amazonas state (north of Brazil) have

been performed, and the scarce data has shown the endemicity of cryptococcal meningitis

caused by C. neoformans VNI in our region [3,24,40]. According to data obtained from records

of the Mycology laboratory of the FMT-HVD in Manaus, cryptococcosis was the most fre-

quent systemic mycosis diagnosed during the last 3 years, with an average annual occurrence

of 33 cases, being more prevalent in HIV patients (82%). Comparing this information with

previously published data from 2006 to 2008 [24], an increase of approximately 24% in the fre-

quency of the disease was detected, but no significant differences in the epidemiological char-

acteristics of the disease were observed. Meningoencephalitis caused by C. neoformans VNI

remains the most important fungal infection in HIV male patients aged between 20–45 years

(mean of 39 years old), as previously reported by regional surveys [3,24,40]. These same pro-

files were observed in the AIDS-associated cryptococcal meningoencephalitis cases reported in

African and Asian cohorts, as well as in other Brazilian studies [1,4,32,41,42]. An epidemic of

AIDS cases has occurred in the last few years in the Amazonas state and can explain the emer-

gence of new cryptococcosis cases [4].

We also verified that 65% of HIV patients showed severe immunosuppression (CD4+ count

<50 cells/mm3) at baseline, and all presented late diagnosis, with signs and symptoms of dis-

seminated infection and neurological impairment, which may have contributed to the high

lethality (54%) observed in the first hundred days after admission. The low adherence to anti-

retroviral therapy (HAART), and even the absence of early detection strategies for HIV and

related opportunistic agents such as cryptococcosis, are factors that contribute to the occur-

rence of such injuries [4]. The use of an immunoassay for the detection of cryptococcal antigen

(CrAg) incorporated into HIV testing would overcome this situation by screening asymptom-

atic patients with CD4 <200 cells/μl, allowing the initiation of pre-emptive treatment and

Table 2. MIC ranges of the five STs identified and differences in the geometric means of the VNI and VGII strains.

Genotypes (total) Amphotericin B Fluconazole Itraconazole

GM MIC (μg/ml) GM MIC range (μg/ml) GM MIC range (μg/ml)

0.03 0.06 0.125 0.25 2 4 8 16 32 0.03 0.06 0.125 0.25 0.5

VNI–ST93 (25) 0.06 10 6 5 4 4.57 2 15 8 - - 0.07 10 3 6 6 -

VNI–ST2 (1) - - 1 - 1 - - - - 1 - - - -

VGII–ST5 (1) 0.06 - 1 - - 19.0 - - - 1 - 0.29 - - 1 - -

VGII–ST172 (2) 1 - 1 - - - - - 2 - - - 1 1

VGII–ST445 (1) - 1 - - - - 1 - - - - - - 1

https://doi.org/10.1371/journal.pone.0197841.t002
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preventing morbidity and mortality [43]. Its applicability in assessing the prevalence of antige-

nemia remains rarely studied in Brazil [44] and in Amazonas, where its use was recently initi-

ated in the FMT-HVD for the investigation of some cases.

Despite the small number of patients evaluated, which is proportional to the annual occur-

rence of cryptococcosis in the region, the frequency of initial symptoms and the lethality that

we describe is similar to larger studies conducted in areas with a high burden of cryptococcal

meningitis, such as South Africa and other regions in Brazil. However, a lower proportion of

deaths (28% after a year) were observed in HIV patients from the United States, which could

be explained by early diagnosis or differences in the virulence of strains [35,41,45,46].

The altered mental status was described as a contributing factor for death in patients with

AIDS-related cryptococcal meningitis, and in the current study, this condition was detected in

46% of cases, consistent with the lethality rate reported [41,45–47].

Visual impairment may occur as a secondary manifestation of cryptococcal meningitis in

20–40% of cases, both in patients with and without HIV, and a similar rate was also observed

in the present study (36.6%) [41,46]. The causes are multifactorial and could be due to neuritis

and compression of the optic nerve, direct parasitism, papilledema and increased intracranial

pressure [48–50]. A low frequency of papilledema was observed, described in only 2 patients,

one with and one without HIV. The use of a CSF shunt reported in 4 cases serves as an indica-

tion of complications due to an increase in intracranial pressure; however, the frequency of the

visual deficit was greater, demonstrating that other etiological mechanisms could be involved,

thus making it necessary to perform a more detailed investigation for a better understanding

of its etiopathogeny.

We report that ST93 is the main sub-genotype of VNI strains that affect immunosuppressed

patients in the north of Brazil. These results are consistent with data recently released by a

unique Brazilian study that analyzed a greater number of isolates from Minas Gerais state and

described a high prevalence of ST93 in individuals with AIDS, as well as in environmental

samples [32]. This ST was also observed in AIDS cases from African and Asian countries,

mainly South Africa and India, as highlighted by the phylogenetic tree (Fig 2A) [35–37]. Our

findings provide indications that regional VNI strains show a low intragenotypic diversity.

Similar results were described by two broad molecular investigations conducted in Asia, and

this limited genetic diversity can be assigned to a lower ability to perform genetic recombina-

tion favoring the occurrence of clonal reproduction and expansion of these lineages [32,37,51].

However, VNI isolates from Africa are the most diversified compared with global isolates due

to their ability to reproduce both clonally or sexually, which can lead to recombination and

mutations in the genome and thus genotypic variability. Phylogenetic and population genetic

analysis indicated that global VNI isolates descend from African strains and that pigeons facili-

tated their global dispersal, which explains the presence of ST93 on different continents,

including the North of Brazil [32,35,51–53]. Whole genome sequencing also demonstrated

that all C. neoformans lineages show multi-continental distribution, indicating the highly dis-

persive nature of this species complex [54].

Only 1 isolate of C. neoformans VNI presented as ST2, but it was not considered a local sub-

type, as it was isolated from a patient from Rio de Janeiro (Southeast region). This is the first

clinical report of ST2 in Brazil because it was only identified in a single environmental sample

in Minas Gerais, demonstrating that this subtype occurs in low frequency in this region [32].

The same ST was previously identified in Africa, Argentina, and the United States and shows a

high prevalence in Germany (Fig 2A) [33–35].

Regarding the VGII isolates, we describe the identification of the new ST445 that presented

a genetic relatedness with the exclusively Brazilian ST133 (Fig 2B), detected previously from a

clinical source in Bahia state (northeast region) and from an environmental sample in
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Roraima, a neighbor state of Amazonas (north region) [23,39]. ST172 was identified in two

cases of meningoencephalitis in patients from rural areas of Amazonas, one from Manaus and

the other from the municipality of Jutaı́ in the southwest of the state. ST172 was previously

identified in a clinical strain from São Paulo (southeastern Brazil) but was identified for the

first time in the Amazon region [23]. ST5 was isolated from an HIV-negative male patient,

who was a user of illicit drugs and died when treated with liposomal amphotericin. This ST

was reported in Australia in a single veterinary isolate and was identified in Brazil only in the

northern region in the states of Pará and Amazonas, where it is one of the most frequent sub-

types, likely because it is better adapted to the local environmental conditions; however, there

are no clinical data or evidence of virulence related to this subtype [23,38].

According to the ECVs, all isolates were considered sensitive to the three antifungal agents

evaluated, although C. gattii VGII presented geometric mean values greater for the azoles than

C. neoformans VNI, mainly to FLZ. ST172 demonstrated the highest MIC (32 μg/ml) for FLZ,

but more strains must be analyzed before drawing any conclusion about the association

between STs and drugs susceptibility. An association of the main genotype VGII with a lower

susceptibility to FLZ has been widely described [55–57]. In Amazonas, a disc-diffusion assay

noted the occurrence of two clinical isolates with FLZ resistance [24]. However, is important

to screen out which VGII STs may be strongly associated with this reduced susceptibility, since

the data are scarce and investigations with a greater number and diversity of STs are still neces-

sary for an accurate correlation. Preliminary data were shown by Iqbal et al. (2010) [58], who

demonstrated that distinct subtypes can present significant differences in MIC, as observed

with the STs from the Pacific Northwest of the United States, with ST6 (VGIIc), ST7 (VGIIb)

and ST20 (VGIIa) considered the least susceptible to azoles. Using a great number of multi-

centric isolates, Espinel-Ingroff et al. (2012) [29] presented additional and correlative data

about the distribution of azoles MICs among VGII isolates, demonstrating that there may be

variability in the intra- and inter-subtypes.

The higher geometric mean of FLZ for VGII isolates, as well as the variability in MIC values

among identical STs, can be attributed to the mechanism of heteroresistance. Subpopulations

of cells of a given isolate, independent of the pathogenic species, innately have the ability to

duplicate chromosomes containing genes for FLZ resistance. Thus, they become able to toler-

ate increasing concentrations of this antifungal, developing a survival mechanism for such

agents against the stress generated by the drug in vitro or in vivo, and evidence showed that

heteroresistance in C. gattii is more pronounced than in C. neoformans [59–61].

The VNI isolates from this study were completely susceptible to the antifungal agents, and

these data are consistent with the literature, including information obtained on VNI strains

from Brazil and with previous data of Amazonas [6,24,55,62]. However, we demonstrated for

the first time that ST93 strains from this state are sensitive to AMB and azoles, and these data

are new for Brazil. Contradictory results were obtained by Khayhan et al (2013) [37] when ana-

lyzing the antifungal susceptibility of 52 Asian ST93 strains. They observed the occurrence of

simultaneous resistance to FLZ and to flucytosine in 5 isolates from Indonesia. In comparison,

it is possible that similar STs may have different susceptibility profiles, likely due to the limita-

tion of the MLST methodology, which analyzes 7 loci in the genome. Moreover, the environ-

mental and climatic differences in different regions may influence the antifungal response

[57].

Conclusion

In conclusion, C. neoformans VNI strains from Amazonas are a genetically monotypic group

that commonly presented as ST93, but further whole genome analysis should be performed to
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confirm this genetic homogeneity. The ST93 showed great clinical and epidemiological

importance due to the frequent morbidity and lethality associated with cryptococcal meningo-

encephalitis in individuals with AIDS in this state and likely in northern Brazil. The establish-

ment and predominance of ST93 in Amazonas may have been favored by isolated events of

genetic recombination in its African ancestors, which later spread to several continents and

maintained a clonal expansion mechanism. The three VGII STs identified showed genetic

association with Brazilian STs; however, they did not cluster with others STs from Amazonas.

Based on the MIC values obtained under in vitro conditions, all isolates were considered sus-

ceptible to the antifungal drugs evaluated, but the use of FLZ deserves attention due to its lim-

ited ability to inhibit the growth of VGII strains, and these data can be predictive of clinical

failure.
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