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ABSTRACT

Establishing reliable and computationally efficient methodologies in stochastic dynamic
analysis is a continuing effort in academic research. The first part of this thesis is
emphasizing on developing a methodology that provides an alternative way of analyzing
stochastic dynamic systems. More specifically, the concept of Variability Response Functions
(VRFs) is extended initially to linear and then to general finite element stochastic systems
leading to closed form integral expressions for their dynamic mean and variability response.
An integral form for the variance of the dynamic response of stochastic systems is
considered, involving a Dynamic VRF (DVRF) and the spectral density function of the
stochastic field modeling the uncertain system properties. A finite element method-based fast
Monte Carlo simulation procedure is used for the accurate and efficient numerical evaluation
of these functions. As in the case of linear stochastic systems under static loads, the
independence of the DVRF to the spectral density and the marginal probability density
function of the stochastic field modeling the uncertain parameters is assumed. This
assumption is here validated with brute-force Monte Carlo simulations. As a further
validation of the assumption of independence of the variability response function to the
stochastic parameters of the problem, the concept of the generalized variability response
function was applied and compared to the steady state dynamic variability response function.
The uncertain system property considered is the inverse of the elastic modulus (flexibility).
The dynamic mean and variability response functions, once established, can be used to
perform sensitivity/parametric analyses with respect to various probabilistic characteristics
involved in the problem (i.e., correlation distance, standard deviation) and to establish
realizable upper bounds on the dynamic mean and variance of the response, at practically no
additional computational cost. They also provide an insight into the mechanisms controlling
the dynamic mean and variability system response.

The second part of this thesis focuses on proposing an alternative approach on Robust Design
Optimization (RDO) implementing the concept of Variability Response Function (VRF). The
basic idea is to exploit the VRF independence of the stochastic system parameters, in order to
obtain safer optima that depend only on the deterministic parameters of the problem. This
way, optimal structural designs are achieved which are optimally insensitive to the worst
possible uncertainties, that is to say they are free of the spectral-distribution characteristics of
the stochastic fields modeling the uncertainties. This is achieved by setting in addition to the
total material cost, the maximum VRF value as an objective function. The advantages of
using the proposed methodology over traditional Robust Design Optimization are illustrated
through an application to a frame-type structure where it is demonstrated that the designs
achieved through classical RDO for a given stochastic field description are not optimal for a
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variation on the spectral properties of the random field modeling the system uncertainty,
while optimal designs obtained with the VRF-based RDO are optimum for the worst case
scenario stochastic fields.
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2YNTOMH TMEPIAHWH XTA EAAHNIKA

H ka0tépwon alldmotwv Kat VTTIOAOYIOTIKA ATOTEAETUATIKWV HeO0dOAOY LWV
OTI] OTOXAOTIKY] OUVAULKY] AVAALOT] KATAOKeLWV aToteAel pax ovvextlLopevn
TEOOTIAD X 0TOVG KUKAOLG TG akadnuaikrc épevvac. Katd tig dvo teAevtaleg
dexaetleg apket) €pevva €XEL €OTIACEL OTI) OTOXAOTIKN] QVAALOT OOMLKWV
OULOTNHATWY TOL EVOWHATWVOLY aPBERALEG TTAQAETQOVG O OXEOT HE TO VALKO
N/katr T yewuetolx pe TavTOXEOVN) XONON  HEOODOAOYWOV  OTOXAOCTUIKWV
TETEQAOUEVWV OTOLY ElWV Vit TNV aQLOUNTIKT) €TALOT) TWV HEQIKWY dxpOQIKWV
e£lOWOEWV TIOL TEQLYQAPOLY T €V A0yw mEoPANHata. Le OAec avTég TIC
TEQLITWOELS TIROVTIOTIOETAL YVWOT TNG OLVAQRTNONG CLOXETIONG KAL TNG 0QLAXKNG
OLVAQTNOTG TLKVOTNTASC TG mThavoTNTac Twv OTOXAOTIKWV Tediwv  Tov
TEQLYQAPOLV TIS aPePALOTNTEG TOV CLOTIUATOS Yt TNV akEBN exTipunon g
aTOKQOLONG. X1 ovvnon TeQIMTWon AVEMAQKWY TERAUATIKWV dedOUEVWY Ol
U1 XAVIKOL LTTOXQEEOVVTAL V& KATAPUYOLV 08 KOOTOB0REeC avaAvoelg evatocOnoiag.
Le avt TNV TEQIMTwon OpwS, Ta MEOBANHATA TIOL £YelpovTaL eival aUTA TOV
aLENUEVOL VTTOAOYLOTIKOV KOOTOVG, TNG €AenPng emMOTTElAC €T TWV HIXAVIOUWV
7oL eAEYXOLV T1) dAKVUAVOT) TG ATIOKQLONG TOV CLOTHHATOS KAL TNG aAdLVAMIAG
TIQOOOLOQLOHOV 0Qlwv 0t dakLpavon G amdkeons. Eva oxetkd pukQo
KAAOUQX QUTOV TV  EQEVVNTIKWV TQEOOTIADEWV €XOUV  AVTIUETWTIOEL TN
duvapkr] d&kdoon ALTWV TWV AREPALOTITWY, Ol TEQLOOOTEQES TWV OTOIWV
LTOPBIPACOVV TIGC OTOXAOTIKEG DUVAHLKEG HEQIKES DPOQIKES eElOWOELS T8 €va
YOO TOOPANH TUXA LWV WIOTLHWV. AV KAt OAEG oL peBodoL avtov Tov eidovg
£€XOUV TAEOLOLATEL AELOAOYT aKOPBelx KAl HIKQO VTTOAOYLOTIKO KOOTOG LTIAQXEL
évag  peyaAog  aplOpoc  MEOPANUATWV 0T OTOXAOTIKT]  HIXAVIKY]  TTOU
TeQUAQUPBAVOLY  OCLVOLAOHOUG  EVIOVWYV  UN-YOAHHUIKOTHTWY KL HEYAAWY
AKVUAVOEWV TWV WIOTNTWYV TOL CLOTNHUATOG OTIWG emiong Kat pn I'kaovowavég
OLOTNTES TOV CLOTIUATOS TIOL UTTOEOVV VA ETUAVOOVV HE IKAVOTIOMTUKT] akQ(Petx

HOVO U TNV LTIOAOYLOTIKA KooTOoBOa EB0dO Monte Carlo.

Y& auTO TO MAALOLO KAL Yot TNV AVTLETWTION TWV AVWTEQW OeUdTwV, ota TEAN
¢ dekaetiag Tov 80" mEoTAONKE 1 évvolx TNG OLVAQETNONG JAXKVHUAVOTG TNG
arokplong (ZAA). Avt) n Wéa avatvXOnke XONOLHOTIOWWVTAS Ml dXTUTWOT)
Paowopévn ot Bewpla g eAaotikoTnTac. Asixtnke otL 1) ZAA e€aptatal amnd

TNV TUTUKY] ATIOKALOT] TOU  OTOXAOTIKOU Tedlov aAAd dalvetar va  etvat



aveEAQTNTN ATO T OLVAQETNON TS PATUATIKIG TLUKVOTITAG TOL AVTLOTOOPOL

TOUL HETOOV EAROTIKOTITAG.

H mapovoa diatoffr]) eotidlel otnv avamtuén piag pefodoAoyiag mov mpoodEpet
Mt eVARAAQKTIKI)  OTNV  avAaALOT]  OTOXAOTIKWV  OUVAUIKWYV  CLUOTNHUATWV
Baolopévn oty mapanavw Wwea twv LAA. ITio ovykekouéva, 0To TEWTO HEQOG
N évvolx Twv Xuvvapmoewv Awxkvpavong tng Amokolong (ZAA) emextelvetal
AOXIKA O€ YOAUMIKA KAL LETA O& YEVIKEVHEVA OTOXAOTIKA DUVAULIKA CLOTIHATA
TLETLEQATHEVWV OTOLXELWV 0ONYWVTAG 08 OAOKATQWTIKEG OXETELS YL TO DUVOULKT)
HEon Tur) kot dxkVpavor g amokpwons. H oAdokAnpwtwkr) oxéon yux 1
dlakbUAVON TNG OLVVAUIKTG ATOKQLONG OLVETIWS TeQAapuBdver T AvVapK)
exdoxn e XAA (ALAA) xat T OLVAQTNOT PACUATIKIG TIUKVOTITAG TOL
OTOXAOTIKOU Tedlov Tov Tteprypadet Tig afpéPateg MAQAUETQOVS TOL CLOTHUATOG.
AxoAoVOwg  xonowomoteitar  px  yEr)yoon mooopolwon Movte  KapAo
BaowWlopevn ot pEOOdO TWV TEMEQATHUEVWY OTOLXEIWV Yt TOV akQLpr] ko
UTMOAOYLOTIKA — ATMOTEAEOUATIKO  aQOUNTIKO  VMOAOYIOHO — avTtwV TV
ovvagmoewv. Omwg kat otV TeQIMTWON TWV  YOXUHUIKWV  OTOXAOTIKWOV
OLOTNHUATWV LTO OTATIKTY) POETION, N aveEapTnoia g ALAA amod T ovuvaQTnon
QACUATIKY] TIUKVOTNTAS KAL A0 TNV 0QLAKI] OLVAQTNOT TIUKVOTTAS TNG
TOAVOTITAG TOL OTOXAOTIKOV TtedIOL OV TTEQLYQADEL TIC APEPALEG TAQAETOOVG
noémel va eruPePoaiwOel péow OUYKQELONG TWV ATOTEAITUATWV HE TNV YEVIKN
HnéBodo mpooopolwong Gooéwv Movte KdapAo. Q¢ mepattéow emiPePaiwon tng
LTOOEONC Y TNV AVEEXQTNOIX TWV CLVARTHTEWV dDAKVUAVONG TNG ATIOKOLOTG
ATIO TIC OTOXAOTIKEG TTAQAUETOOVS TOL TIROPANIUATOC, XONOoLHoTow|OnKe 1) évvolx
TWV YEVIKEVUEVWVY OoLVAQTNOewV dakvpavong e anokpone (I'’ZAA) katr ta
amoteAéopata ovYkELONKAV He aLTA TS TEOTEVOUEVNC nebBodoAoyiag pe ALAA
ywx v mepinmtwon Pevdootatiknc Ppoptions. Qg aféfal) MAQAUETOOS TOL
ovotuatog OewEnOnKe To avTiotEoPo Tov HETEOL eAaoTikOTnTAs. Ot duvapikég
ovvVaQETNOES  MEONG TG  Kal  OKVMAVONG  TNG  amoKQLoNg,  €pOcOV
vToAOYLOTOVY, dvvavTal va XENotpHoTomOovv yia T dlefaywyr) TMHQAUETOUKWV
avaAVLoewv kal avaAvoewv evalodnolag oe oxéon pe dxpooa TlavoTuek
XAQAKTNOLOTIKA 7OV oxeTiCovtal He Tto TEOPANUA (T.X. ATIOOTAOT CLOXETLONG,
TUTUKY] ATIOKALOT)) KAL Yot TOV VTTOAOYLOUO TIOAYLATOTIOUOHWY AV 00lwV NG
OUVAHIKTG HEOTG TIUTG KAl OLAKVUAVOTG TNG ATIOKOLONG UE TOAKTIKA ApEATTEO

MEO00eTO LTTIOAOYLOTIKO KOOTOC. TTpooPEQovV eTioNG UL dLOPATIKY ELKOVA YLX



TOUG HNXAVIOHOUG TIOU €AEYXOUV T OUVAULKT] HEOT] TLUN KAl OLAKVHAVOT) TNG

ATOKQLOTG TOV CLOTIUATOG.

To devtepo pépog avtc g datELPBNG EoTelvel Ui dLAPOQETLKT] TEOOEYYLOT) OTO
EvVpwoto BéAtioto Lxeduaopo (EBY) yonowomowwvtag tnv évvowx e XAA. H
Paowr) wéa elvatr va yivel expetadevon g avefagtoiag g LAA amo Tig
OTOXAOTIKEG TAQAUETOOVUS TOU CLOTNHATOG, Ywx va emutevXbovv o acpaAir)
PéAtiota T ool e€aQTvTal HOVO ATIO TIG VIETEQUIVIOTIKEG TTAQAUETQOVS TOU
nooBANuatos. Me avtov  tov 10O, PéATiotol  doupwkol  oxediaopotl
ETUTUYXAVOVTAL OL OTIOlOL MAQOLOLALOLV TN HIKEOTEQN daKVHAVOT] Yt TO
XELQOTEQO dLVATO OEVAQLO AP éPatwv TaRapéTowy, dNA. elval aveEdotnToL and ta
XXQAKTNOLOTIKA NG PACHATIKI] TIUKVOTNTAS KAL TNG O0QLAKNG OULVAQTNOTS
TokvOTNTAS TOAVOTNTAG TOLU OTOXAOTIKOV Tediov Twv afePaottwv. AvTto
kaOlotatal duvatd edv 0QLOTEL €KTOS TOU TLUVOALIKOV KOOTOUG TG KATAOKELNG,
Kat N péyotn g e LAA wg avtkeleviky ovvaotnot). Ta mAgovektipata
TG XONONG NG TQEOTEWVOUEVNS MeBOdOAOYIAG €vavTl TV TAQEAdOCLAKWV
dratvnwoewv EvVpwotov BéAtiotov Lyxedixopov magovotdlovial HECW MG
ePAQUOYTG O€ X TAKLOIWTI) KATAOKELT) OTIOL TDEKVUETAL OTL OL ETUAEYOUEVOL
oxedaopol péow tov kAaowkov EBL yia éva ovykekQuuévo otoxaotikod medio dev
elvat BEATIOTOL Yo par OlxpoQOTOoNoT TV PACHATIKWV DIOTITWV TOL TuXAlov
miedlov mMov TeQLypddel TV afefaldTnTa TOL CLOTHHUATOS, &V Ol PBEATIOTOL
oxedxopol mov mEokvmTovy amo Tov EBX mov PaciCetar otig TAA elval

BEATIOTOL YL TO XE1QOTEQO DUVATO TEVAQLO OTOXAOTTIKOV Ttediov.
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EKTENHZ [IEPIAHYH

‘2TOXAXTIKH AYNAMIKH AIIOKPIZTH KAI BEATIZTOIIOIHZH
KATAZKEYQN ME IIEIIEPAZMENA XTOIXEIA’

1 EIZATQTrH

1.1 XKOIIOX THX AIATPIBHX
Axépo kol ot ovyxpovn €moyy, Ot dludkacieg HEAETNG KOl GYESIOOUOD KATOOKELDYV,

elfoton vo ayvoovv v gyyevn affefatdtnta TV QUOIKOV GLTNUATOV oL oyeTileTan e m.y.
TO VAIKO, TN YEOUETPIO TNG KATACKELNG, TN QOPTIoN K.T.A. G€ Hia tpoondOeia va amhomoin el
1 VTOAOYIGTIKT] OVOALGT OAAA Kol AOY® NG EAAELYNG OTOTEAECUOTIKMY LOVTEAWDV OVAALGNG
nov Ba propovoav vo v AdPovy vdyy toug. Tétolov idovg dtadKacies, YEVIKA LIADVTOG,
OoVOUALOVTOL VIETEPUIVIOTIKEG. X€ EVOAMUKTIKEG, O PEAMOTIKEG HEBOSOVE avdAvLoNC, OTTOV
ot afefardotntec Aapfavoviar vEoyty, oAV cvlnmon Aaupdvel ydpo o€ oxéon uHe
LOVTEAOTTOINGT OMAOTONTIKAOV TOPAS0YMDY OV EIGAYOVTIOL KOl OWTEPMOG GE GYECT LE TO
TG AVTEG Ol TAPad0YES EmNPealovy To TeMKd amotédeoua. Edikdtepa oty mepintmon g
SLVOUIKNG povtelomoinong kot avdivong m ovlnmon eivor mo Coviavh eEottiog Tov
aLENUEVOL  VTTOAOYIGTIKOD  KOOTOUG KoL T®MV KATA QUOIKO emakoOAovfo o  adpdv
ATAOTOMTIK®OV  TTapadoy®v. Dawvopeva devtépag TAEEWS, TOL glval ovoykaio Yoo TOV
TPOGOIOPICUO UNOVICUDV 0oToyiog omdavia yivovion ovtikeipevo epedbvng. EmmpocsOétmg,
OPKETA GUYVE, TO OMOTEAEGLATO TEPLOPILOVTOL OTIG OIOTNTEG POTTAV OEVTEPAS TASEMG NG
amdKpLoNg KANGTAOVTAG TNV VAALCT U TPAKTIKT Yio Tov peretnty). Kdvovrog pua ohykpion
OVOUESH OTIS TOAVTAOKEG HOVTIEAOTOMGELS VIETEPUIVIOTIKOV OVOADCE®V KOl OTO
OTAOTOMNUEVE, LOVTELDL TTOV YPNCLLOTOIOVVTIOL OTIS TEPICCOTEPEG GTOYOUCTIKES OVOUAVCELG
UTopel Kavelg Vo SOMICTOCEL TOVS AOYOLS Y10 TOVG OTOIOVG Ol OlOOIKAGIEG GTOYOGTIKNG
avéivong dev amoAapupdavoov TV emMOLUOVUEVN OVOYVOPLICT OO TNV KOWOTNTO TOV
unyovikov. Hoapdiavta, 1 kOplo 1W€o To® and TIG 6TOXUOTIKEG HEBOOOVG Kl aVAAVCELG
elval oV ovoia oVt oG EVOALIKTIKNAG AVTIANYNG KOl aVATOPACTAONSG TG TANPOPOPIoG.
Me amld AOYla, ot oToYooTIKEG neBOdOAOYiEG EMAEYOLY TNV AVIIUETOTION TPOPANUAT®V
UNYOVIKOD LE HOL TTO ‘OMOTIKT) TPOGEYYIoN, TEPLYPAPOVTAS TV OTOKPIGT] TOV GLTNUOTOG LE
TOAVOTIKES KATAVOUES, GE avTIOEST [LE MO VIETEPLUVIOTIKEG TPOGEYYIGES TOV TEIVOLV V.
AopBavoov voyy Tovg HOVO Eva KAGOUO, TOV (QULGIKOD KOGUOL Kol ToV moavov
EVOEYOUEVMV.

Koatd t1g dvo tehevtaieg dekaetiec, onUavTikOg OYKOG EPELVAS EYEL ECTIOCEL GTI GTOYOOTIKN
avVAAVON SOUKMOV CLGTNUATOV TOL £VEYOLV APBEPAIES TOPAUETPOVS OC TPOG TO LAIKO 1| TN
YEOUETPlOL HE TN YXPNON OTOYOoTIKOV HeBodoroYidV memepacuévav otoyeiov (MEIIZ,
SFEM) yio v aplBuntikny emilvon TtV UEPIKMOV GTOYUCTIKOV OOPOPIKAOV EEICOCEDV
(MZAE) mov meprypdopovv ta avtiotorya mpoPAnuota. Ot mo dwdedopéveg XMIIE
BaoiCovtar otn péBodo tng dwotapayng (Liu, Belytschko and Mani 1986a), (Liu, Belytschko
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and Mani 1986b) ko1 ot ®acpatiky pébodo EMIIE T'kodépkiy (PMEIITE, SSFEM)
(Ghanem and Spanos 1991) 11 oe koctoPopec puebddovg Movie Kapro (Grigoriu 1995),
(Matthies, et al. 1997), (Stefanou 2009). Xe pepikég mepumtdoelg avtég ot péBodot Exovv
enektodel 6T GTOYOOTIKY duVaUKT availvon pe dueco tporo (Zhao and Chen 2000), (Liu,
Besterfield and Belytschko 1988) epopuolovtag teyvikéc mov Peltidvovv  Tnv
QMOTEAEGLOTIKOTN T TOVG TOG0 ¢ pog TNV akpifeia (Ghanem and Spanos 1990), (Jensen
and lwan 1992), (Li 1996), (Li and Liao 2001) 660 ka1 ™G TPOg THV VITOAOYIGTIKY dVVauN
(Yamazaki, Shinozuka and Dashgupta 1988), (Papadrakakis and Papadopoulos 1996),
(Papadrakakis and Kotsopoulos 1999). Mia upébodog e&éMEng tg mukvoTTag NG
mBavotntog npodtadnke emiong (Li and Chen 2006), (Li and Chen 2004) npoorabmvrag va
TPOGEYYIGEL TNV YPOVIKA HETABAALOUEVT cLVAPTNON TLKVOTNTOS TOOVOTNTOS (GTT) TG
OTOKPIONG GTOYOOTIKMY GUGTNUAT®V YPNOUYOTOIOVING TNV apyn TNng OoTNpnons g
mOOVOTNTOC. XE QVTEG TIG YPOUUES, KATOLEG GAAEG EPELVNTIKEG TPOGTADEIES YPNGUYLOTOLOVV
TPOGEYYIOTIKG OAOKANPOTIKG oyfuata ‘opopwmv Wiener’ (Kougioumtzoglou and Spanos
2012). Evtovtoig owtég ot epyaoieg kKupimg epapudlovial 6€ povoBaduiong taAavtotéc 1| 6€
WIKPE  emeENyNUOTIKG GLOTAUATO  oKaONUOikoD gvdlapépovtocegartiog Tov  avénuévov
VTOAOYLIGTIKOD KOGTOVG. X& OAES TIC TAPUTAVED TEPUTTOCELS, 1) EK TMOV TPOTEPMV YVAGT] TOV
WOTNTOV GLGYETIONG KO TNG OPLOKNG G TOV TUYNLATIK®OV TEdI®V TTov yapaktnpilovv Tig
afefordOTNTEG TOL GLGTHUATOS Elvol amapaitTnTn Y. TNV OKPPN eKTipNoM TOV amokpiceEwV
TOV GUGTNUATOG. XT1 GLVIH O TEPITTWOT AVETOPKDOV TEWPAUUATIKOV dESOUEVOV, Ol PUNYaVIKOl
avaykalovior vo Kata@Oyouv og ovoAvcels gvaicOnciog mov eivar Opmg  daitepa
KootoPopeg vmoroyiotikd. EmmAéov, tétoteg avaAdoelg O0ev mapEyovv Kavevos €idovg
TANPOPOPIN OVOPOPIKE LLE TOVG UNYOVIGHOVS TOL ENXNPEALOVY TN SOKVUAVOT TNG ATOKPIoNG,
N ta 6pua ¢ anoxkpione. [épav twv mpoavapepbeéviwv tpoceyyicewv, Evag oxeTikd Kpog
aplOuog peretav €xovv acyoAnBei pe ™ Suvapikny owddoon twv afafolotnTOv TOL
OLOTNHOTOG, Ol TEPLGGOTEPES TV omoiwv vroPaduilovv Tic otoyaotikég dvvakés MAE og
éva ypappkd mTpoPAnua toyxaiov oty (Ghosh D 2005), (G. I. Schueller 2011). Eve
avtod Tov €ldovg ot péBodor amodeuvoovior eSoupeTikd akpPeic Kol VITOAOYIGTIKA
OMOTEAECLOTIKEG Y10 L1 TOIKIALO TTPOPANUAT®V, LITAPYEL Eva EVPD PACHO TPOPANUATOV GTN
OTOYOOTIKY] UNYOVIKY] TOV TEPIAAUPAVOLV GLVOLOGHLOVS IGYVPMOV UN-YPOUIKOTATOV KoM
UEYAA®V SIOKVILAVGEMY TOV TOPAUETPOV TOL GLGTNUATOS OTMG emiong kot pun-I'kaovolavav
TOPAUETPMV TOVS GUOGTHLOTOS TO. OTTOl0L UTOPOVV va, EMAVOOVV LE KOVOTOMTIKY aKpifeta
UOVO HECH LTOAOYIOTIKA KOGTOPROP®V TMpoceyyicemv pe T mpocopoiowon Movte Kdapro
(Liu, Belytschko and Mani 1986a), (Grigoriu 2006), (Matthies, et al. 1997), (Stefanou
2009).

Y& Oheg TIG TPOOVOPEPDEIGES TEPIMTMOGELS, TA YOPAKTNPIOTIKA TNG CLVAPTNONG PAUCUOTIKNG
TUKVOTNTAG (1] CLVAPTNONG GLYETIONG) KO TG OPLOKNG CLVAPTNONG TUKVOTNTAG TOAVOTNTOG
(oTm) TV OTOYUCTIKAOV TESIMY TOL TEPLYPAPOVV TIS 0PERAES TAPAUETPOVS TOV GLGTIATOS
amoutoHVTOL Yl TNV EKTIUNOT TNG SLOKVUAVOTNG TS ATOKPIONG VO GTOYACTIKOD GTUTIKOV N
dvvaptkoy cvotnuatoc. Kabog opwmg eibiotan vo vdpyet EAAEYN TEPOLATIKOV OEGOUEVOV
YL TNV TOGOTIKOTOINGN TéTolwv ThovoTIK®V peyeddv, cuvnBmg TopoyloTomotleitol pio
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avdAvon evoicOnciog 6e oYEoN HE TIG JUPOPES GTOYAUOTIKEG TOPAUETPOVS. XE OLTHV TNV
TePITTOON, OUW®S, TO TPOPANUOTO TOL AVAKVTTOVV £ivol TO ALENUEVO VTOAOYIGTIKO KOGTOG,
N éAAewyn emomteiog €mi TOL TPOMOL LE TOV OMOI0 OVTEG Ol TOPAUETPOL EAEYXOLV TN
JSlKOUAVOT, NG OmOKPIoNG TOL GULOTHUOTOC Kot 1 advvopio. kabopiopod opiov ot
LKV UAVOT| TNG ATOKPIOTG.

Ye ovtO TO TAQICIO KOl YL TNV OVIWETOTION TOV Topondve Oepdtov, n évvolo TG
ovvdaptnong dakvpavong g amdkpiong (ZAA, VRF) mpotdOnke ota TéAN ¢ deK0ETIOG TOV
80’ (M. Shinozuka 1987) kot peTémeltal MOPOVOIACTNKE GE OLUPOPETIKEG UOPPES KO
epapuoyés (Wall and Deodatis 1994), (Graham and Deodatis 1998). Mia e€éMEn avtig g
TPOGEYYIONG TOPOVGLACTNKE O€ [o 6l and dnuootevoelg (Papadopoulos, Deodatis and
Papadrakakis 2005), (Papadopoulos and Deodatis 2006) kot (Papadopoulos, Papadrakakis
and Deodatis 2006) 6mov amodeiytnke 1 VIOPEN KAEIGTOV OAOKANPOTIKOV EKPPAUGEDV Y10, TN

SKOHLOVOT) TNG ATOKPIONG TNG LETATOTIONG TNG LOPPNG
Var[u] = j“’ VRF (x,0¢)S (K)dx 1)

Y0 YPOUUIKE GTOYOGTIKG GUGTNUATO VIO GTATIKA POPTIC YPNOULOTOLDOVTAG ol OLLTUTMOO)
Baowyévn ot Oswpion elooTikdOTNTOC. AVT 1 SATOIOGN 0dNYEl GE WO OAOKANPMTIKY
ékppaon oty E& (11.69) ywpic v ypNoYomoincn TPOCEYYICTIKOV VIOAOYIGU®OV N
Tapadoy®v. Amodeiytnke Ot  LAA eEaptdTon amd TV TUTIKY OTOKMOT 0AAL EMOEKVVEL
ave€aptnoio g TPOg TN GLVOPTNGLOKT LOPOY| TNG PACHATIKNIG TUKVOTNTOS TOL TEPLYPAPEL
TO0 OVTIGTPOPO TOL WPETPOL gAaoTiKOTNTOC. EMpene Ouwmg va yivel swacio yioo tnv vmoapén
OLTNG TNG OAOKANPOTIKNG EKQOPOONG Y10 OTATIKA adp1oTa 0TS EMIGNG KO Y10 YEVIKELUEVQL
OTOYOOTIKG ocvoTiuote memepacpévav ototyeiov. Tlepartépo Epsvveg (Miranda 2008)
emPePaincav o mTpoavapepévta amoteAéopata aAld £0eiEav 0Tt N XAA €yel (o pkpn
eEdptnomn amd TNV 0PLOKN GIT TOL GTOYUGTIKOV TEHIOV TOV PLOVTELOTOLEL TV VKO ic. XNV
gpyacio. tov (Papadopoulos, Papadrakakis and Deodatis 2006) moapovcidotnKay
OTOTEAECLOTO Y10 GTOYOOTIKE YOPKE TAOICLY, KEALQPMOTEG KOTAOKEVEG KOl KOTOOKEVEG
emimedng £vraomg vd otatikd eoptio. Mo akdpa onuavtikny e€EMEN oty évvola g ZAA
Bynke amd v gpyacio tov (Arwade and Deodatis 2011) ywo tov kabopioud 16050VaU®Y
UNYOVIKOV 1010THTOV DAMKOV G€ TPOPANLOTA OLOYEVOTOINOTG.

Ymv épegvva mov mopovcialeTol otV WOPOVcO STPPn, M TOPOUTAVEO TPOGEYYION
EMEKTEIVETOL G€ OTOYOOTIKA ovoTHuate Lo OSvvokés dwrtapacels. Qg mpoto Prua
Oeopnbnke n mepintwon evog povoPfadiov toAavtot. AkOUN KL ov 1 OTOTOON UG
OVOADTIKNG EKOPOONG YO TN GLVAPTNON OOKVUAVONG TNG OmOKPIoNS €VOC SUVAUIKOD
ovtnuotog (AXAA, DVRF) givon e§oupetikd d0oKOAN, Evag apltOuntikdc VITOAOYIGHOG UTopEel
mo €OKolo vo. mpaypotorondel kot petd vo ypnotpwomomndei oty EE. (11.69) ya va
TOPAGYEL ATOTEAEGLLOLTA Y10, T XPOVOICTOPIN TNG SLUKVLLOVOTG TNG OTOKPIGNS TOV SUVOAUIKO
ovotuatos. Onwg oe mponyodueveg epyaciec (Papadopoulos, Deodatis and Papadrakakis
2005), (Papadopoulos and Deodatis 2006), (Papadopoulos, Papadrakakis and Deodatis 2006)
énpene va yivel ewoocio yioo v Ydmopén e AXAA. Avti n ewaocio emPePoidveron
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apluntikd ocvykpivovtag ta anteréopata omo v EE. (11.69) pe mpocopoumoelg and ™
vevikn péBodo Movte Képho. Aetyvetar 6t 1 AXAA €yxel évtovn e€dptnon amd TV TLTIKY
OTOKAIOT] TOV OVTIGTPOPOL TOV HETPOV EANCTIKOTNTOG OAAG @oaiveton vo gival oyedov
ave&apTNIN TG GLVAPTNONG PUGHOTIKY TVKVOTNTAG, OTMC EMIONG KOl TNG OPLOKNG ONT TOV
oTOXaoTIKOV Ttediov g evkapyiog. EmumAéov, pia oAOKANPOTIKY £KQOPOCT TOPOUOL0 LE
avt oty E&. (11.69) mpoteivetan ywo tn ypovoictopic. TG HEONG TWUNAG TG amdOKPIoNG
neptEyovtag v Avvapikr, Xvvaptnon Méong Ty g Amoxpiong (AXMA, DMRF), n
omoia elvar po cuvaptnon mapopota pe t AXAA.

Kot ot 800 0oAOKANPOTIKEG HOPEPES Yoo TN HEOM TN Kot TN SOKOUOVON UTOpPOVV v
YPNOLOTOMNOOVV OTMOTEAEGLATIKA Y10 TOV VITOAOYIGUO TOV GTATICTIKOV POTMOV TPAOTNG KO
JeVTéPOG TAEEMG OLVOUIKADV GULOTNUATOV UE KAvomomTikn okpifela, pall pe 1
xpovoictopio dvm opiwv yior TV amdKPLoT aveopTNT®MS TG PAGUATIKNG KoTavouns. Eniong
TOPEXOVY U0 ETOTTEID TOV UNYOVICUOV oL ennpedlovv ) dadoon g afefardtrag e
oxéon e 1060 TO YMPO OGO KOl TO ¥POVO Kot WwiTePa G€ GYEoM LE TIG XpovoicTopieg TG
LLEGNG TLUNG KOl TNG OLOKVLLLOVGNS TG ATOKPLOTG TOV GTOYAGTIKOD SUVAUKOD GUGTILOTOG.

21 GuvéRE aVTNG TG OATPPNS, OAOKANPOTIKEG EKPPAGEIS KAEIGTNG HLOPPNG OO GTNV
EE. (11.69) mpoteivovtol yioo T péon TN Kot ™ SKOUAVET THG OLVOUIKNG OTOKPLOTG
OTOTIKO 0OPIGTAOV POPEMV GTOLYEIDMV OOKOV KoL TLO YEVIKEVUEVMOV GTOYACTIKOV GUOTNUAT®OV
(m.x. mpoPAuota emimedng €vroong) vmd OLVOUIKY] EOPTIGN. XE OLTH TNV TEPIMTMOON
dtvucpatikés AXAA kot AXMA dnpiovpyobdvtan and Tig avtiototyeg AXAA kot AAMA Yo
Kk6Oe Pobuod erevbepiag ToL cvoTHUATOG TEMEPUCSUEVOV oTorkelwyv. Mia yevikevpévn
emovopalopevn  Avvopikn ypnyopn mpocopoioon Movie Kapro pe m MIIX (AMIIZ-
I'MKII) mapovoidletat yio v akpiPn Kot omotelecpotikn ektipnon tov AXAA kot AXMA
v otoyaotikd cvotiuota IIZ. IMoapovoidlovta emiong apBuntikd amoteAécpota, TOL
delyvouv Ot1, OTMOS GTNV TEPITTMOT TOV KAGIK®OV ZAA, Omwg €MioNg Kol GTNV TEPIMTOOT TOV
AZAA kot AZMA vy povofaduovg otoyactikodg todavimtég (Papadopoulos kot Kokkinos
2012), to untpoa AXAA kot AXMA gupeavifovv aveEaptnoio. ®g mpog T cLVAPTHON
PAGHOTIKAG TUKVOTNTOG Sy (k) Kot eivar oplokd eEapTdUEVE OO TN GAT TOV TEFIOV TOV
neprypdoel v aféPoun mopdpetpo tov cvotiuotog. YrevOvuiletor 60tL  vapEn e TAA
&xel amodeyBel pOVO Yo TNV TEPIMTOON GTOTIKA OPIGUEVOV POPE®V VIO GTATIKY POPTION
(M. Shinozuka 1987), (Papadopoulos and Deodatis 2006). & 0Aeg TIG GALEC TEPUTTMOOELG M
omapén avt énpene va vmotebel kol M emPefaimon avtg g vedBeong Eywve pécm
OLYKPICEMG TOV OMOTEAECUATOV TTOV eENYONGOV amd TV Tpotevdpuevn pebodoroyia e ovTd
mov eENyOnoav and v yevikn péBodo Movie Kapro. H eykvpomnta avtig g ekaciog
OepeMaveTon To otépen o€ avT TN HEAETN cvyKkpivovtag T AXAA omd po YeLdOoTUTIKY
@option pe v avtiotoyn [evikeopévn TAA (Miranda and Deodatis 2012) yia éva otatikd
aodpioto mAactwtd eopéa. H TEAA (GVRF) nepihappdverl tov vroloyiopd dtopopmv ZAA
Y10 TOVG OVAAOYOUG GUVOVACHOVS SOPOPOV OPLOKMY G KOl POCUOTIKOV TUKVOTNTOV Kol
avartoyOnke yio va eAéyéel mepotépw Vv aveaptnoia e XAA amd TIC GTOYUOTIKEG
TAPAUETPOVG TOoV TTpoPAnuatos. Oesidel va avepepbel edmd O6TL N Evvola g ZAA mpocpatTa
enektabn omv epyacio tov (Teferra and Deodatis 2012) ce mpoPfAUaTO LE UN-YPOUUIKEG
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1010TNTEG VAKOD OOV Uidt KAEIGTNG HOPPNG AVOALTIKY £KQpoon TG XAA amokdAvye
EexdBapn e€ApTNon NG SLOKVUAVOTG TG OTOKPLONG OO TV TUTIKY amOKAMoN Onwg Eniong
Kot omd aveTépas TAEems PAcUATO TNG SOLVAUE®MS TOV GTOYOOTIKOL Tediov. TELOG ekTiudVTOL
TOPOYUOTOTOMGIHO v Oplar NG HEONG TWNG Kol TNG OOKOLUOVONG TNG OLVOUIKNG
OmOKPLIONG TOV GLGTNATOC.

To enduevo pépog avtg g dtoTpPng eotialel oe BEpata oToYaoTIKNG PEATIOTOTOIMONG e
™V TpOBEST) APk VoL KAVEL L0 KPLTIKY] OITOTIUNON TOV KAUGIK®V O100IKOCIMDV GTOYUOTIKNG
BeAtioTomoinomg kol TOV TEPOPIGUOV TOVG Kol €V ovvexelo va ekpetorevdel v
kabiepopévn €vvola g XAA KOl TOV YOPOKTNPIOTIKOV NG KOl VO TPOTEIVEL Lua
EVOALOKTIKY] OlTUTIMON OOIKAGIOG OTOXOOTIKNG PEATIGTONMOINGNG OV TPOGPEPEL GTOV
LLEAETNTT] TLO YPTOLULO OTTOTEAEGLLOLTAL.

2m Piproypagic Tov mpocedtmv etdv, N évvoln tov Evpwotov Bértictov Zyediacpon
(EBX) (@ otoyaotikng BeAtwstomoinong n Evpwotov Xyediwuopod) eswonydn yw va
avTileTonicel gyyevelc afePatdmtec TOV  QULOIKOV cvotnudtov mov  odnyodv
CUUTEPLUPOPE TOL GULGTNUOTOS GTO VO OMOKAIVEL OO TNV VIETEPUIVIGTIKO OVOLEVOLEVT|
CLUTEPLPOPE GE amdOOCT KATMOTEPT NG PEATIOTNG, OVGLAGTIKA EEOVOETEPOVOVTAG TNV 1010
™ dwdkacio g Pertiotomoinong. Xtov EBX o pekemmtig Aopfdver vrdywv tov TIg
OTOYAOTIKES WOLOTNTES TMV TOPAUETPOV/UETAPANTAOV TOV GLGTIUATOG 1)/KOL TOV TEPLOPIGUAOV
TOV GLGTNUATOG Kol EMOKOAOLOA OTAVEL GE éval AGPOAESTEPO PBEATIOTO GYEdOCUO O Omiog
opeidel va etvar Mydtepo evaicOntog otig Ttuyaieg HeTafOAEG TV TOPAUETPOV TOL
ocvotuatog. Katd kapotg €govv mpotabel didpopeg pebodoroyieg mov apopovv otov EBE
KO GTIG EPAPLOYES TOV G€ O1dpopa mpofAnpata. v kKAaoik| dwutdnwon EBE o 6tdyog g
EAAYLOTOTOINONG TNG OVTIKEUEVIKNG SLVAPTNoNG (-emVv) emtuyydveton Bewpdvtog T HEo
T N/Kol TV TOTIKN  OmOKAIoT €vOg pey€éBovg amdkplong kot mpoomafdviag va
TPOGOOPIGTOVY Ol GYedlcHol MOV  EANYIGTOTOOVV  TIG Tpoavapepbeices mocdTNTEG
AopPévovtag VTOYIY VIETEPUIVIOTIKOVG 1 otoyaotikovg meplopiopovg (Park, Lee, et al.
2006), (Beyer and Sendhoff 2007). Xtov EBX mov Pacileton otnv aviivon aélomiotiog
(Missoum, Ramu and Haftka 2007), (Lagaros and Papadopoulos 2006), (Allen and Maute
2005), cuvbmg otoy0c eivar vo eEakplPwbel n emppon TV TOAVOTIKOV TEPLOPIGUDV ©G
éva 6plo oty mBavotta actoyiog oto miaicto tov EBX katackevdv. O EBX movu
Baciletar oy évvola ¢ TpmtdTTOS TV KOTAoKEL®V £lvar pia e101kn mepintwon EBX pe
avédivon oaflomotiog Omov EVOIIUESES OPLOKES KATOOTACELS 7OV TPOoceYYilovv TOovg
TOAVOTIKOVG TEPLOPIGUOVG AaPEvovTat ETioNG VIOYIV TPOGPEPOVTAS £TGL THAVDG KPIGLLES
TANPOPOPIES GYETIKA e TN SOLIKT] GLUUTEPLPOPA Kot TN Aettovpykotnta (Papadopoulos and
Lagaros 2009).

Oleg ot mapandve datvnwcels EBE mpémel va die&oyBodv oe éva mAaiclo avdivong pe m
LéEB0d0 TV GTOYOCTIKOV TEMEPASUEVOV otoryeiov (MEIIY) étor dote va extiumBovv ot
OTTOLTOVUEVEG TOGOTNTEG OV GyeTilovTal e TG HeTafoAég TOL GVOTHNOTOC. AVt 1| Bedpnon
NG TLYOOTNTOS TOV GLGTIHUOTOS OUMGC, Yo va eivon a&ldmotn, amortel po akpipr yvoon
TOV THOVOTIKOV YOPOKTNPICTIKOV TOV GLUGTHLATOS (OPLOKT) OTT Kot SOUES GUGYETIONG) TOV
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AVTIGTOLY®V TUYNUATIKOV TESIMV TOV LOVTEAOTOOVV TIC TOPUUETPOVS TOV GUGTHHOTOS TOV
OTOKTOOVTOL LOVO HECH OVAAOY®V TEPAUOTIKMOV AVIADGE®V 1 OAMODS TPETEL VoL VTTOTEOOVV
/emleyBodv mpooceytikd. EmumAéov ovtd molAamiacidlel TO LRTOAOYIOTIKO KOGTOG TNg
avdAvong kaBdc Kabe vIToYNElog oXeSOGUOC AmOLTEL (ot TANPT GTOYACTIKY OVOAVGCT Y1
TNV OTOTIOTIKY] EKTIUNGT TOV JaPOpmV HeEYEODY TG amdKkpiong. Xt cLvnOn mepinTmon
OOV TETOLEC GLVONKEG OeV EVOOKIHOVV, OvOAOYES avaADoELS gvatctnciog ektelovvTal o€
oXE0MN UE TIC TOPUTAVED TOPAUETPOVS LE OMOTEAEGLO VO, AVEAVETOL CTLLOVTIKA TO GUVOALKO
VTOAOYIOTIKO KOGTOG,.

2V mapovoa dwtpiPn) , Tpoteivetan pia evarlaktikn dadikacio EBE mov ypnowonotel tig
Yvvaptioelg Atokopavong e Andkpiong (ZAA) oe po mpoondbeio va mapooyedel pa
amAvVINGCT OT0 AVOTEP® YVOGoTH GAvte Oépata ot PeAtioTomoinom, oG TOANIGLOTNG
KOTOGKELNG TTOL TEPIAAUPAVEL £V GTOYXAOTIKO TTESI0 Y10l TO HETPO EAAGTIKOTNTAG TOL VAIKOV,
®G TPOG TO GLVOAIKO BAPOG Kot TNV EVPWOTIO TN AmOKPIoNG TG peTatodmons. Kpdrwvrog
VIOYLV OTL TNV OAOKANPOTIKY ékepaot ¢ EE. (11.69) n ZAA Oswpeitar VIETEPLIVIGTIKN
avTd OV givarl WNTEPOS MPEAO VIO ATy TN Bedpnon ivar 1 duvatdtnTa va KaboploTovy
dveo Oplo aveEAPTNTA TOV PAGUATOS KOL TNG O UE Evav GUECO TPOTO TOL POIVETOL GTNV
nopakdte eEicmon onmg eényeitar oty epyacia and tovg (Papadopoulos, Deodatis and
Papadrakakis 2005):

Var(u) <VRF (k™ , o )os 2)

omov  VRF (zcma",o-ff ) glvar m péyom tun g XAA oL TPOKVAMTEL Yol KATOLXL TIUY TOL

kopatapOpod «™ . TV avtd, Bétovtag ™ péytotn T ™G ZAA OC OVTIKEWEVIKN
GLVAPTNOT YL TOV EAEYYO TNG ELPMOTIONG TNG ATOKPIONG TOV GLGTNHOTOC, TAEOV TOV OAMKOV
Bapovg g KATAGKELNG, TO VST AECPAAILETAL OTL EMOEIKVVEL, Y1 Lo, OEdOUEVT 6TAOUN
oAKoU Bapovg, T YoUNAGTEPT dLVOTY] SIUKVHOVOTTNG OTOKPIoNG KAT® amd GuVONKES OV
emPairovior amd To XEPOTEPO dLVATO GTOYXACTIKO TEdi0. To YePOTEPO dLVAUTO GTOYACTIKO
7edio Y10 £VO. GLYKEKPLUEVO VIOYN Lo oyedlacpd kabopiletor péow g EE. (11.70) onA.
elval éva oTOYOoTIKO TESIO HE U0 HOVOYPOUATIKY) GLUVAPTNOT QUGHOTIKNG TUKVOTNTOG
(Z®IT) ovykevipouévn oto x> (Papadopoulos, Deodatis and Papadrakakis 2005). O
BEATIOTOG GYEACUOG Y10 TN GUKEKPIUEVT] 6TABUN Bdpoug etvar avTdg Tov glayioTomolEl TNV
avticToryn TN VRF(K"“",O-ff ) . Eravoiappavovrag ovtn m dradukacio yio OAeG Tig mhavEg

otabueg Papovg pmopel kaveic va dnpiovpynocel €va ddtdototo pétono Pareto yu 6vo
OVTIKEYEVIKEG GUVOPTNOEIS: TO OMKO PApog Kot T OKVUOVGEN NG OTOKPIGNG TOL
oLTHHOTOG IOV TTpokvTTEL 0o TNV EE. (11.70).

Ymv Kook dwtumworn EBX, n Pektictomoinom emiteheiton yioo évo mPOEmIAEYUEVO
oTOXaOoTIKO Tedlo. Xe peaMoTIKEG €QPAPUOYES OU®G M dopn GLoyETIong TG af€Pong
TOPOUETPOL TOL GLOTHUATOS EIvVOL OTAVIO YVOOTH KOOGTOVTAG £TG1 ol TEToo dtodikaciol
BeAtioTomoinomg ovoEeAn. ZUVER®G O HeEAETNTNG VLROoYpeovTal va JeEdysl TOALUTALG
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BEATIOTOTOMCEL QLTHG TNG LOPPNS Y10 VO, BOPOKIGEL TO GYEIUCUEVO GUGTNUA OC TPOS OAM
T TOaVA evOEXOUEVA. XPNOULOTOIOVTOG TV TPOTEWVOUEV HeBodoroyia avtd To TpdPAN
Eemepvatat Yol KaOe VoYM P0G oxedaGHOC a&loloyeitat e BAon Tn GLUTEPIPOPA TOV LTTO
TIG YEPOTEPES OLVATEG GLVOTKEG TOV TTPOGdoPiLovTal Yio TO GLYKEKPIUEVO oyedlacpd. Katd
ocuvéneln o pedetntig €aceoiilel 6Tt 10 ovomue B &gl TV KoAOTEPT duvarh AmOd00T)
VIO TIG YEPOTEPEG DLVATEG GLUVONKEG.

Ta mheovekTuoTo NG YPNOWomoinong ¢ mpotewouevng pebodoroyiog €vavtt Tov
napadociakod Evpwotov Bértiotov Zyediacpod moapovstdlovrol HEGm HaG EQUPUOYNG OF
L0 TAOUGLMTH KOTOGKELY] OOV OOJEIKVVETAL OTL Ol GYESUGHOL TTOV EMTVYYXAVOVTOL LECH
evoc Khoowkov EBZ yia évo dedopévo otoyootikd medio dev elvar PBéATioTol yuoo pia
SlPOPOTOINGT TOV PACUOTIK®OV 1WOOTHTOV TOL TuYaiov 7ediov 7Tov povtelomolel TV
afefardmra Tov GVOTNUATOS. ATO TV GAAN 01 BEATIOTOL GYESIAGLOL TOV EMAEYOVTOL LE TOV
EBZ mov Bacileton otig XAA eivon BEATIGTOL Yo TO XEPOTEPO dLVATO GTOYAGTIKO TEdio. [Ma
vo Oglytel 0VTO, U0 SL-OVTIKEEVIKT GLUVAPTNON Hoppomoteital Aapufdvovtag vrdywy
afefardmreg TOV 1010THTOV TOV VAIKOD 7OV  HOVIEAOTOOUVTOL MG Tuyoio 7mediaL.
Epappolovrar emiong vietepuviotikol meplopiopol  pEYIOTNG  €vtaong Kol UEYIOTNG
petatomone. Apyikd Kotaokevaletar éva pétono Pareto péoo piog KAaoikng Satdnmong
EBZ kot evdg moAv-avtikepuevikod T'evetikod AAyopiBpov yioo v €0peon tov PBEATIOTOVL
HETMTOV OVALECO OTIG OVO OVTILOXOUEVES OVTIKEIUEVIKEG GLVOPTNGELS. METa, 01 HEYIOTEG
dVVaTEG SOKLUAVGELS TV eMAEXDEVTIOV oYedlacudV voAoyilovionl amd TIG OVTIOTOUYES
uéyoteg tipég (PA. EE. (11.70)) tov avtiotoiyov Zvvapticemv Alokduavens thg ATokpiong
mov yopoaktnpiCovv tovg &v Ady® oyxedopovs. To mpokdmTov péT®mo GvyKpiveTal
enakoAoV0wg pe éva vEO HETOTO GTO OO0 M SEVTEPY OVTIKEEVIKT] GLVAPTNON £ivor M
péylomn dvvarn SlKOLUAVOT TO. OMpEio TG omoiog UTOPOVY GUEGH VO, TPOGIIOPIGTOLY OV
ehoyrotomomBel n péylom T g Xvvaptnong Awakovpavong g Andxkpione. To mpdto
péTmmo mov aviiotolyovce otov kAaowod EBX ogaiveton vo eivar, Omwg avapevotav,
VIOPEATIOTO TOV OgVTEPOL oL Tposkvye amd Tov EBY mov Paciletar otig ZAA ooV to
deVTEPO givan €€ optopov aveEdpTNTO TG KOTAVOUNG TNG TOOVOTNTOS Kol TNG POGHOTIKNG
TUKVOTNTOG TTOV YPNGLULOTOIOVVTOL Y10l VO TEPTYPAyovY TNV ofefotdTnTa. TOL GLGTILOTOG.
Tovileton o€ avtd 10 oNEEIO OTL TO TOAPAYOUEVO HETOTO KO Ol OVTIGTOLYOl TPOTEVOUEVOL
OYEOOCHOT OVaPEPOVTOL GE £VOL GUVOAO OLUPOPETIKADV GTOYOOTIKOV TEdi®MV o€ avtifeon pe
tov Khoowd EBZ. Tivetar emiong cagéc 011 o1 mpotevopevol oyedlaocpol oev givorl
aropoitro Bértiotor edv eetachBovv vwO TNV OKOMA €VOG HOVO TPOKOOOPIGUEVOL
OTOYOOTIKOV Tediov. Ztnv mepintmon 6mov (o PEATIOTONOINGN TPAYUATOTOIEITOL Y10l Lo
OLYKEKPILEVN OOUT] CLUGYETIONG 1 TPOKLATOVGO EMAOYT oYedacUOV Ba eivor VITOREATIOTN
Yo TV TEPITTOON KATOL0G AAANG SOUNG GLOYETIONG,.

2 XYNAPTHXEIX YTATIKHX MEXHX TIMHX KAI

AIAKYMANXHY THY AIIOKPIXHX
2.1 XTATIKA OPITMENOI ®OPEIX
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Mo Adyovg emidelEng €otm o otatikd opiouévog mpoforog unkovg L tov Zy. 1, pe
KOTOvEUNUEVO QopTio Q, Ko cuYKEVTIpOUEVN pory M emBaiidpevn 6to glevBepo dicpo Tov.

“x) 1 O My

alllllllllj
L

-

Tympo 1 Z1otikd optopévn 0oKo¢
To avtiotpo@o T0L HETPOL €laoTiKOTNTOGC Bewpeitar OTL peTafdiietol Tuyoio KT PUNKOG

NG O0KOU GUUP®VA LE TNV TOPKAT® EKPPACT):

1
B R+ f(X) ©)

omov 1o E givar 1o pétpo ehaoctikotnrag, Fyetvar n péon tiun tov avtiotpdeov tov E, kot
f(x) elval €vo OpOYEVEC OTOYOOTIKO eSO UNOEVIKNG HEOMG TIUNG 7OV TEPLYPAPEL TN

uetaforr Tov 1/ E mepi tov F,. H andkpion g petorodmiong g doxkov U (X) dtvetar amod v

TOPAKATO EKPPOCT
() = =2 [/ (- M@+ F(E)dE =2 [ OM@A+ TNde (4)

oMoV h(x,/.f) elvar ) ovvaptnon Green g dokoV, | givar n porn adpdavelog kot M (X) etvau m

Kopmtikn pomn. H péon tyun g petatdmiong diveton amd v EKepaon)

E[u(x)]z_% [Inex oM (£)E[(1+ 1 (&) Jae (5)

EVO 1 SloKO VO

2
2 K

Var[u(x)]=E[u* (x) |- E[u(x)] =2 [ {"n(n&)n( &M (6)M (&)Ry (6 - )dzde, (6)

omov 10 Ry (& —&,)eivan 1 GLUVAPTNON AVTOGVGYETIONG TOV GTOYUGTIKOV MESiov f(x). Mg

eQapUOYN otV Tapandve e&icwon tov petacynuatiopov Wiener-Khintchine npoxvatet 61t
Var[u(x):|=J‘OOVRF(X,K)Sff (x)dx (7)
omov n ZAA (VRF) diveton amnd ) oyéon

VRF (x,x) = %onh(x,g)M (&)e"dé (8)

2.2 XTATIKA AOPIZTOI ®OPEIX
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‘Ecto 0 ototikd adpiotog opéag tov Xy. 2 unkovg L, pe £vo opotOpOpOO KOTOVEUUEVO
eoptio Q, . To avtictpopo tOL pPETPOL €hacTikKOTNTOG KaoAoLOeL TG TpoavapepOeioeg
TOPAdOYES KATA TNV TaPaypopo 2.2.
u(x) '
Oy

i i X
. L

Zympa 2 Xtotikd adptotn d0KOG

XPNOWOTOI®VTOS Mo STHTmoN HEc®m G ueBOdov TV duvApE®mY, 1 AmOKPIoN TNG
LETATOTIONG UTOPEL VO EKPPOCTEL G

u(x)=Uy(x)—Ruy(x) 9)
Omov UO(X) glvol M HETATOMION TNG AVTIOTOYNG OTOTIKA OPIGUEVIC OO0KOV WE OUOIOMOPPO
KOTaveUnpEVo @optio Q, mov vroroyiletatl aalp®vTag TV KOALOT Tov 0eE100 GKPOUL, ul(x)
elval  petotomion g id1og 00koH AOY® HOVASLOHOS CUYKEVTIPOUEVIG (OPTIoNG oTn Bom

x=L, xou Relvor n kaOBetn avtidopaon g ompiéng oto 0e&i dkpo. Metd and mpaselg
TPOKVTTEL OTL

E[u(x)]:jox gl(x,f)d§+ongz(x,§)E[R(1+ £(£) e (10)

OTov

0,069 (- gL and gy (x )=~ (o) (L-) D)

Opoimg yio TNV SoKOLOVOT) TPOKVTTEL

Var[u(x)] zjoxjox{gl(xvél)gl(x’§2)Rf‘f (51 _§2)+ 9, (X'§1)gz (X’§2)Rpp (511682)

(12)
120, (%, &) 95 (% & )Ry, (&.5)} dEAE,

omov Ry (&.&) eivar n ovtoovoyétion tov mediov p(x) omwg oto (Papadopoulos,

Papadrakakis kot Deodatis 2006). TeAikd oty mapomdve epyocio Topovstdloviol KAEIoTAS
Hopeg akpiPeic olokAnpmtikéc ekppdoelc g popeng g EE. (3.8) tdéco yio ) dakduaven
0G0 Kol Yo T HECT TIUN TNG LETOTOTIONG ONA.

&[u(x ]\/ Var[u ]\/ MRF (X504 )S () dx+ufy (x)  (13)

1N 16000vaLLL

el u(x ]:g[ } ~Var[u(x)]= j MRF (X, k.07 )¢ (1)di+Ui (x), (14)

XXI



omov n MRF (XMA) opiletar o¢

MRF (x,x,0 ) =VRF, (X,x, 0 ) ~VRF (x,x, 07 )=jox{gl(x,§1)gl(x,§2)A2(fz,zc)cos[ic(fz -&)]

+290(Xa‘§1)g1(x’§2)82 (glvébza’f)}dfldfz
(15)

OTOV Ol GLVOPTNGELS AZ(X,K) Ko Bz(Xl,XZ,K) glvio. KAEIWGTNG HOPONG Kol Umopohv va
TPOKOYoLuV amd pio Sladikacioo TopOUolo e OLTH OV akoAoVOElTOl oV gpyacia TV
(Papadopoulos and Deodatis 2006). Téco 1n VRF 6co0 kot 1 MRF efaptdvtal omo
VIETEPUIVIGTIKES TOPAUETPOVS TOV TPOPANUATOS OTWG 1 YEWUETPIO, Ol GLVOPLUKES GLVONKEG,
Ol HEGEG W0TNTEG TOL VAIKOD KOt 1) GOPTICT TOL QOPEN OTMG EMIONG KOL GO TNV TUTIKN

AmTOKAMON O ¢ TOV GTOYACTIKOV TESIOL.

2.3 ANQ OPIA STHN ANIOKPIZH

Amd tic EE. (3.36) ko (11.69) pmopodv va Tpocdioptotovy dvm Optol yio T S1okOUOVGT) Kot
TN HEOM TIUN TS ATOKPIONG O AKOAOVOMS

elu(x)]= \/IZ MRF (X,K, oy )Sff ()dx+ug, (X) < \/J-:) MRF (x,;c,o-ff )off +Ug (X) (16)

Var[u(x)]= [ VRF(x,0)S ()dx <VRF (™0 )of  (17)

omov k™ gival 0 Kopatikog apBpdg 6mov ot MRF kot VRF yivovton péyioteg, Befaimg ovtd
d€ onpaivel 6Tt aTdHG 0 KLHOTIKOG aplBIdS eivat KOvOg Yo TIG VO GLVOPTNGCELS. ZNUELOTEOV
OtL T Oplar aVTA gtvor aveEapTnNTo TG PAGUOTIKNG TUKVOTNTOS KOl TNG OPLUKNG OGN TOV
nediov.

2.4 T'PHTOPH ITIPOXOMOIQXZH MONTE KAPAO
Avoivtikd ot ovvaptioelg VRF kou MRF egivor dtaitepa KOTOOTIKO KOl Yo TOAAG

TpoPARLaTe adVVATO VO LTOAOYIGTOVV. AplOUNTIKA Op®G, 0vTo KabicTatot oAV o e0KOAO
péow g ypnyopns mpocsopoiwong Movie Kapro (FMCS) o6mwg mpoteiveton amd tovg
(Papadopoulos, Deodatis and Papadrakakis 2005), (Papadopoulos and Deodatis 2006). Ta
Bacwa Prpata avtig g pebddov Exovv o¢ akoAoHOmG:

1. Téveon N OelyHaTOCLVAPTACEMV UIOG TUXOIOG NUITOVOEDO0VS GUVOPTNGEMS TUTIKNG
AmOKAIONG Oy KOl Kouuatikov oplfuod ik Tov otoyootikoy mediov f (x) OV
TEPLYPAPEL TO OVTIGTPOPO TOV HETPOV EAACTIKOTNTOG:

f,(x) =20 cos(z?x+¢j); j=12,...,N, (18)
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omov ¢; &ivar po Toyaic yovio opodpopea katavepnpévy oto dotnua [0,27].
Eivar dvvatdv ybpwv ££0tkovouncems vIooroyoTikoD KOGTOUG Ol YOVieg @) va

EMAEYOVV 070 U€co N {6mV SIGTNUAT®V GTO d100TN ua[O, 27r] .

2. Xpnowomowwvtog ovutég T N derylotoovvoptnoels vrmoAoyilovpe AQuUEcH  TIG

avtiotoeg N amokpicelg kot akolovdmg ) HEoN TUn g[u(x)]’? Kot TN 00KV LOVeN
T0UG Var[u(x)]_yio Tov Kopatikd aplipd & .

3. H twyn mg MRF yta tov kopatikd optfpd k Kot Tumikn anokAlon oy o etvat

{g[u ()] }2 —U ()

MRF (x,%,07 ) = g (19)
Ot
4. Avrioctoya g VRF
VRF (%, )=M (20)
Ot

5. Ta Pruoata 1-4 emovoropPdavovtar yio Tic OGQOPES TIUEG TOL K . XVVETMG Ol
MRF (X, x,0 ) Kot VRF(X,x,04) yie 6lovg Tovg Kvpatikovg  apibpodg mov
evolapépovv. H OAn dwdwacio pmopel emavoinedel yio S10QopeTikés oy Kot
SLPopeTKEG BECELG x KATA UNKOS TG 00K0D (av avTd KpOel avaydpoyKaio).

2.5 ENEKTAZH THZ MEOOAOY ZE AIAIAXTATA IPOBAHMATA
H mpotewvopevn pebodoroyio umopel va enextabel oe diodidotata tpofAnuata kotd tpdmo

anAd. To avtioTpo@o tov pETpov EAACTIKOTNTOG TMPO LIToTiBeTaL OTL TOwKiAEL TVYOHO GE Eval
dwidotato mepLoyn cHHP®V e TNV akodAovOn e&icwon (cvykpivete pe v eicwon (2).):

1

m =F, (1+ f(x, y)) (21)

O6mov E givar 10 PETPO ghaoTiKOTNTOG, F, €ivor m péon T tov avticTpoov tov E, Kot
f (x,y)tdpa etvon éva Siodibototo, pe undevikn péon Tiun opoyevég medio mov mepLypapeL
TN GTOYAOTIKT HeTaPOAN Tov 1/ E yOpw amd T péon Tun tov F.

Kotd cvvénelo, ot 0OAOKANPOTIKES EKQPACELS YloL TNV HECT] TETPOYOVIKT T Kot TN Héom
TN TG ATOKPIONG TNG LETATOMIONG YivovToL:

g[uz(x, y)] = ZI:I:VRFl(x,KX, Y.Ky,01 ) S (0, ) dio iy +uly (x,y) (22)

Kot

lu(xy)] =\/ZI:I: MRF (X, 5, Y, &,, 0 ) S (16,056, i dic, + U (X, Y), (23)
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omov MRF (x, K Yi Ky Oy )Kou VRF]_(X,K'X, Y, Ky, O )sivou o1 o1tdotateg ekdoyé twv MRF ko

VRF1, avtictotya, mov £xovv Tig axdlovbeg cuppetpieg:

MRF (k. %, ) = MRF (-x,,—x, ), y
VRF, (k. %, ) =VRF, (x5, ), =

S (K'X,Ky) gfvan n ovvlpTnon QacHATIKNG TUKVOTNTAS TOL Tediov f(x,y) mov drubétel Tig

i01eg ovppetpieg 6mwg ot MRF ko VRF1, evdd 1 VRF1 vrohoyileton amd
VRF, (%, ) = MRF (%, ) +VRF (., ). (25)

H dwdikacio FEM-FMCS mov meptypdonke Tponyovpévag yior TpofANUATo LoVOStioToTNG
dokov pmopet va ypnotporombel yio 2D mpoPAquata emiong mpokeévon va ektiun0el n
MRF xat1 1 VRFE. H 1D tuyaio nuitovogidng cuvaptnon oty EE. (3.45) yivetan tdpa 2D e
™V akoAovOn popen:

f(x, y):«ﬁaff cos(r?xx+r?yy+¢j); j=12,..,N. (26)

Avo Opla yuu T pECT TN Kol OOKVUOVOT TG OmOKPIoNG NG UETOTOMIONG Himopel va
TPOGO0PIGTOVV Yo TNV Ttepintmon 2D wg e€ng:

g[u(x, y)] < \/MRF (x, Y, K K o )aff +ule (% Y), (27)

Var[u(x, y):'SVRF(X,y,K)TaX,K;naX,Gﬁ )O'?f, (28)

énov(/c;“ax,rc;“ax)aivm 10 (evyoc Kopatikadv apdumv oto onoio 1 MRF 11 1 VRF Aappdvovv
™ PEYIoT T TOuG (Yol po SES0UEVT TN TOV o Ko piol ddopévn Béom (x,y)), Kot o

etvar 1 dwkdUOVeN TOV GTOYOCTIKOD TESIOV TOL TEPLYPAPEL TO AVTIGTPOPO TOV UETPOV

max _max
, K,

ehaotikdTTaG. O mpémel va toviotel Ot T0 (K v

v MRF «at ™ VRF.

2.6 TENIKOTHTA THX NIPOTEINOMENHX MEOOAOAOTIAX
Ola T mopoamdve cvpmepdopato Poacilovtar oty vndbeon Ot 1 VRF(x,x,o-ﬁ) elvan

) dgv glvar ovayKoosTtikd To idto yio

ave&EAPTNTN OO TNV PACUATIKY TUKVOTNTO Sk (k) TOL oTOYAGTIKOD Tediov f(x). Tepontépem
épevveg (Miranda 2008) emiBefainocav to mpoavapepfévia amoteréopato, oAAG E6e1&av OTL
N VRF &yet pa pukpn| dptnon amd v oplokn G TOV GTOYACTIKOV TESIOL TEPLYpAPEL TNV
evkopyio. Mo onpavtiky enéktacn g évvolag e VRF éxel ouvtaydel amd tovg (Arwade
and Deodatis 2011) 6mov péom avtng kabopilovy Tig 160dHVapES 1O10TNTES TOV VAIKOV GE
npoPAnuata  opoyevomoinong. Ot (Papadopoulos, Papadrakakis and Deodatis 2006)
TOPOVGIOCAY OTOTEAECUATO, Y10 YEVIKA YPOUUKE GTOYOOTIKG GUOTNUOTO TETEPAUCUEVOV
oToYElOV cuuUTEPIAAUPOVOUEVOVY GTOLKEIV O0KOV, YOPIKOV TAIGIOV, oTolElwV eTinedng
£VTOOTG KOl KOTOGKELOV e GTOLYEID KEADPOVS VIO GTATIKA POPTiaL.

2.7 AIATYNIQXH THX GVRF TIA THN MNEPINTQXH XTATIKHZ
®OPTIXHX
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Onwg avagépbnke mponyovpuévaog, ot MRF kot VRF evvoworoyikd Paciloviar oty
Topadoy] OTL eVl VIETEPUIVIOTIKES, ONAadY| eivar aveEApTNTEG TOV TOTOL TNG POCUATIKNG
TUKVOTNTOG, KAOMS Kot TNG OPLOKNG G TOV PN GLLOTOLEITOL Y10, VoL TEPLYPAYEL TNV oo
TopApETpo 0L TPoPAnatog. H oydg avthg ¢ ekaciog amodetkvieTol aptlOunTiKd oTig
aplOUNTIKES €QUPUOYES OO GUEGES GLYKPICELS TNG YPOVOICTOPIOG TNG OOKOUAVONG TNG
AmOKPIONG TOL GULGTHUOTOS, 7OV VTOAOYILETOL HE TNV TPOTEWOUEVI TPOCEYYION TOL
Baciletar ot VRF, pe v avtictoyn ypovoictopio tng S10kOUOVONG TNG OTOKPIGNG TOL
vroAoyiCeton pe ™ puébodo dpeong mpocsopoimong Monte Carlo. Q¢ mepattépw Prina ovtng
mg emkvpmong, N évvola g evikevpuévng Xvvaptnong Awaxvpavonsg mmg AmOKplong
(GVRF) éyet eicoybel and tovg (Miranda and Deodatis 2012). Ou (Teferra and Deodatis
2012) v ypnoonoincay yio. Vo ETKVPOCOVY THV EIKOGIN TOVG Y10 S0KOVG IE UN-YPOLUKO
KOTOGTATIKO VOUO LDAIKOV, 0AAG pe kamoleg tpomomonoels. [lapakdtom ypnowonoteitatl yio
NV EMKOPOON TNG EIKAGING G€ SUVAUIKE TpOPA AT,

2.7.1 ME®OAOAOTIA EKTIMHEHE THE GVRF
Mo pa ypoppks vrepotatikny Kotaokevn pe aféfaieg 1010tTeg TV LVAK®V, 1 S0KOLOVOT)

NG ATOKPIOTG TOV GLOTHLOTOG UIOPEL VoL VTTOAOYIGTEL e Tov akdAovbo tomo (M. Shinozuka
1987)

Var[u(x)] = f;vm:(x,x)sff (x)dx (29)

Omov 1 Var[u(x)] umopel va vroloyilotel e0KoAa pe pio Gpeon mpocopoinon Monte Carlo.

H E&. (3.58) umopei va Eavaypagtei pe v akdAovdn dtokprromomuévn Lopen

VRF (X, &,)

VRF (X, )

Varlu()l=2 [S; (k) Si(k;) - Si(xy)] x Ax (30)

VRF (X, k)

‘Exovtog kaver v vmofeon 6t 1 VRF eivar avegaptntn amd v mokvotnto QacHOTIKNG
1GYVOG KOl TOV OPlokNG om, eivarl puokd vo vroBécovpe 0Tt ot ideg Tipég VRE pmopet va
ypnowonomBel vy TNV eKT{UMON NG OWKVUAVONG TOL GUOGTHUOTOS Yo OLUQOPES
GUVOPTNOELS PAGLOTIKNG TUKVOTNTAS. £2G €K TOVTOL, 1| akOAoLON oyéon Oa mpémet eniong va
etvar aAnOng, poévo mov tdpa 1 VRF ovopdaletar I'eviceopévn Zovapnon Atoakdpovens g
Amoxprong (GVRF).

Var[u(x),] St (k1) Si(ry) -+ Sy (ky) GVRF(x, ;)
Var[u(x),] _ sz(Kl) sz(’fz) e Spplry) y GVRF (X, x;,) Ax (31)
Var[u(x)y] Si () Si (1) -+ Sy (ky) GVRF (X, xy)

To duvvopo ™G applotepns TAELPAS Elval TO SLAVUGUA TOV SLLPOPETIKMOV OLUKVUAVCEDV
TOV GLOTNLATOG, TTOV LITOAOYILOVTOL OO TIG AVTIGTOlYEG AUETES Tposouolncels Monte Carlo,
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KOL TO UNTP®O ot deE18 TAELPE Elval TO UINTPDOO TOV TIUDV TOV GUVOPTNCEDY PAGHATIKMOV
TUKVOTHTOV Y10 S16QOopovg  TOTOVG  PACHOTIKOV — mokvotNtov S (x), i=12,..,N

Ovowotikd, n EE (3.60) meprypaper éva ovomuo N ypoppkdv eélodoeov pe N
AYVOGTOVGS, TOPEXOVTAG £TGL tia LovVadikn Avor yia to dtdvucpa GVRF.

3 XYNAPTHXH MEXHX TIMHX KAI AIAKYMANXHZ THX

AITOKPIXHX YIIO AYNAMIKH ®OPTIXH

3.1 MONOBAOMIOI XTOXAXTIKOI TAAANTQTEX
3.1.1 AYNAMIKH ANAAYZH ENOX MONOBA®OMIOY TAAANTQTH
"o to povoPadio 16ootatikd 6ToXaoTIKO TodavT®T) piKkovg L kot palag M, oto Xy. 3(a),

oV POPTILETOL HE €VOL QUVOIKO VIETEPUIVIOTIKO (OPTIO P(t), TO OVTIGTPOPO TOL UETPOL
ehooTiKOTNTOG Bempeitarl moikidel Tuyaio KaTd UNKOg TG dO0KOU GOUP®VA e TNV aKOAoLON
EKppoon:

1
% = FO (1+ f (X)) (32)

omov E(x) eivar 0 pétpo graotikotntog, Fy eivor n péon tyun tov avtiotpopov tov E(X),
kot f (X) glval éva UINoEVIKNG HEGMG TYNG OLOYEVEG TTEDI0 TOV TTEPTYPAPEL TN UETAPOAT TOV
1/E yopw amd ™ péon twn tov. H ypovoictopio g HETATOTIONG u(t)rov TOAOVTOTY
pmopet va mpokOyetl and to odokAnpopo Duhamel:

u(t) = wi [{P(e)e 0 sin(ap (t - )z (33)

omov ¢ etvorl 0 cVVTELEGTNG OMOGPREONC KOl @y = w4 fl—gz HE @ TNV KUKMKN GLYVOTNTO TOL

GLOTNOTOG

3
« O
L Ust

(o) B)

Yympo 3. MovoBdadog taraviomg: (o) leopetpio kKot option (P) Ltotikn) HeTaTdmIoN Yo
povadtaio poptio

A
v

Adyo ¢ afefordtrag tov cvotiuatog oty EE. (32), 1 kukhkn cuyvotnta w sival pio
Toyoio pETaPANTH oL diveTan Omd TV TOPAKAT® GYESN:
w=JkIM, (34)

omov k eivor M axopyic Tov TOAOVTOT 1 Omoio Umopel va TPoEpPyETAL Omd TN GTOTIKY
AOKPIOT) TNG UETATOMIONG TOV TOANVTOTY] Yol £VaL LOVOSLOH0 GTOTIKO VIETEPUIVIOTIKO POPTIO
070 dKpo TG dokov (Xy. 3P) wg e&Ne:
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k=t = [—5 IOL(X—a)M (@)1+ f(a))da] (35)

st I

omov | gtvon 1 pom| adpdvelag g dokol kot M (a) gtvon m pomn otn Béon a . T yeVIKN
TePINTOON OOV TO EOPTIO €ivorl aWOOIPETO KO TO GUOTNUO Elval OPYIKA GE KOTACTOON

NPEUING, N VIETEPUIVIOTIKY] LETATOTION OTO OeEL AKPO NG O0KOV WITOPEL VO TPOEPYETAL OO
aplOunTIKn eniAvor tov olokAnpopotog Duhamel.

3.1.2 AIAKYMANZH KAI MEZH TIMH THE AYNAMIKHEZ ATIOKPIZHE
AxolovBdvtag poe  Oldkacion TOPOUOl. L€ OLT 7OV  TOPOVLGLALETOL OO  TOLG

(Papadopoulos, Deodatis kot Papadrakakis 2005) yio ypoppikd 6ToX00TIKG GUGTAOTO VIO
OTOTIKY] POPTION, €ivar duvatd vo eKEPACTElL 1 SOKOUAVOT] TNG GTOYUCTIKNG OLVOUIKNG
OTOKPIONG TOV GUGTNUATOS LLE TV TOPAKAT® OAOKANPOTIKN EKQPOoT:

Var[u(t)] = j: DVRF (t,x, 04 )S (x)dx (36)

omov DVRF givar n dvvopukn exdoyn e VRF, yuo v omola yivetar n vtdbeon ot eivan
GLVAPTNOT TNG VIETEPUIVICTIKMOV TOPAUETPOV TOV TPOPANUOTOC GE GYECT HE TN YEMUETPIa,
o optio Kol TIG (LEGEC) O10TNTES TOV VAIKOV KOL TNV TLMIKH OTOKAGT] TOV GTOYOGTIKOV
ediov oL TEPLYPAPOLY TNV ELKOUYIN TOL GLOTHHOTOS. Mo TOPOUOL OAOKANPMTIKN
EKQPOOT UTOPEL VO OMGEL O EKTIUNOT Yo TN HESM TN TNG OLVOUIKNG OTOKPIGNG TOV
OLOTNMOTOG e TN Y¥pNon ™S Avvopkng Xvvapmong ™ Méong Tuymg g Amdkpiong
(DMRF) (Papadopoulos, Papadrakakis kot Deodatis 2006):

lu(t)] = j: DMRF(t, x, 074 )S (x)dx (37)

INveton 1 voBeon 6t 1 DMRF givan pa suvéptnon mapopowa pe m DVRF pe v évvolwa
OTL €£0PTATOL EMIONG OO VIETEPLUVIOTIKEG TOPAUETPOVS TOV TPOPANLATOC, KaOMG Kol amd T
o . Etvon e€apetikd d0okoro, wotdco, va amodeydel 61t 1 DVRF (1o {010 koaw 1 DMRF)

etvor aveEdpm (1 €ot® Kot Kotd TPOGEyylon aveEdptntn) TG OPLOKNG ONT KOl TNG
GUVOPTNGIKNG HLOPPNG TNG TUKVOTNTAG QUCUATIKNG 10X00G TOL GTOXAGTIKOV Tedion. Onwg
Ko oty mepintoon tov (Papadopoulos, Deodatis kot Papadrakakis 2005), (Papadopoulos
kot Deodatis 2006), (Papadopoulos, Papadrakakis xoi Deodatis 2006) ot mpoavapepBeiceg
Tapadoyés Bempobivtar 0Tl amotehovV €iKacie mov emPePordvovtor aplOunTikd €d® e
obvyKkplon TV arotelecpdtov and Tic EE. (4.14) ko (4.15) pe v dpeon pébodo MCS.

H napoyoyn pog avaivtikng ékepaong v v DVRF kot DMRF, av sival dvvatov kdtt
této10, eivol o eEoupetikd moAvmAokn Swdwkacio. Me aplOuntikods VITOAOYIGLOVG,
001660, pnopel vo emtevydel e0koha, OMWOC TEPIYPAPETAL GTNV EMOUEVN EVOTNTO KOl GTY|
ovvéyela tpogodoteiton otic EE. (4.14) wan (4.15) yuo va mapéyel TIG EKTIUNOELS TG HEGTG
TIUNG KO TG SHKOUOVOTG TNG OLUVOULKNG OTOKPLoNG TOV GLGTHLOTOG.

3.1.2.1 APIOMHTIKH EKTIMHIH THX DVRF KAI THX DMRF
XPHIIMOIOIQNTAX TH TPHTOPH NPoxoMOIQxXH MONTE CARLO
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H opOuntiky extipnon tov DMRF kot DVRF mepilopfaver pior opryopn mpocopoimon
Monte Carlo (FMCS) tg omoiog 1 Pacikn 10éa givarl va e&gtdoel o Toyaio medio oG Eva
toyaio nutovoewés (Papadopoulos, Deodatis kot Papadrakakis 2005), (Papadopoulos kot
Deodatis 2006) kot vo ypNGUYLOTOINGEL TO HOVOYPMUOTIKO QAGHa 16Y00¢ Tov otig EE. (4.14)
and (4.15), mpokewévov vo. VTOAOYIGTEL M avTioToyn MEOM TIUN KOl SIOKVUOVOT TNG
amoKplong yw dtdeopa pnkn kopatog. Ta Pruata g mpooéyyiong FMCS eivan ta
axoAlovOa:

1. Téveon N JSelyHOTOCLVOPTAGEDV HIOG TUYALOG MHLTOVOEWDOVS GUVOPTIGENDS TUTIKNG
OmOKAIONG O KOl KuuaTikoy oplfpod ik TOL GTOYOoTIKOD mEdiov f(x) OV
TEPLYPAPEL TO OVTIGTPOPO TOV HETPOV EAACTIKOTNTOG:

f,(x) =20 cos(z?x+¢j); j=12,...,N, (38)

Omov ¢; eivol pio Toyaion Yovie OHOLOHOPPO KOTAVEUHEV GTO SLACTNHOL [0, 27r] .
Eivar dvvatdv yapv €COIKOVOUNGEMG VITOOAOYIGTIKOD KOGTOLG Ol YOVieg ¢ va

EMAEYOVV 0T0 H€co N {6mV SIGTNUAT®V GTO J100TN pa[O, 27r] :

2. Xpnowomowwvtag ovtég T N dstypotocuvaptioels vroloyilovpe AQueca  Tig

avtiotoryeg N amoxpioelg kot akoAoVOS T HECT TIUN g[u(x)]E Kot TN 00KV LOVGN
Toug Var[ u(x)]_yio Tov Kopatiko aplipd & .
3. Htyn g MRF yia tov kopotikd apBpo k Kot Tumikt| anokion oy Oa eivan

{g[u ()] }2 —U3 (X)

2
O

MRF (X, 0 ) = (39)

4. Avriotoyoa g VRF

Var[u(x)]l?

VRF (x,%,0 ) =
Ot

(40)

Ot DMRF ka1 DVRF vrohoyilovtor og cuvaptnon tov ¥pdvou t Kot Tov kupatikod aptpov
kK emoavolopupdvovtag to mponyodueva Prpate yuo Stdpopo UNKN KOUOTOG Kot Oldpopo
ypovikd Prpata. H 6An dwodikacio pmopet vo emavolapPavetar yio S1popeTIKES TILES TG
TUTIKNG OMOKAIGNG TOV TLYOIOV NUITOVOELSOVG,.

3.1.2.2 OPIA MEXHE TIMHX KAI AIAKYMANZIHY THX AYNAMIKHXE AIIOKPIZHX

Ave Opo yuoo T péon T Kot StoKOUAVOY] TNG SLVOIKNG OOKPIGNG TOV GUGTHLOTOG
umopet va, kabopiotovv aueca amod tig EE. (4.14) ko (4.15), og e&nc:

elu@®)]= I: DMRF (t, x,0 4 )S (x)dx < DMRF (t, x™ (t), 0 )05 (42)
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Var[u(t)] = I_Z DVRF(t,x,04)S« (k)dx < DVRF (t, ™ (t), 0 Yo% (42)

omov ™ (t) eivan 0 Kvpatikdg apduds otov omoio 1 DMRF 9 1 DVREF, yia o dedopévn
XPOVIKN oTiypn t kou T g oy , @OGvel oy péyot Tipm . Mo mepiBaiiovca

GLVOAPTNOEL TOV YPOVOL HE Gve Oplo TG MEONG TIUNG Kot TNG OOKVUAVONS TNG OLVOLIKNG
amdKpiong Tov ovothuatoc umopel vo. e€aydel amd tig EE. (4.19) and (4.20). Onwg kot otnyv
TEPIMTMON TOV YPOUUIKOV OTOXUCTIKOV cvotnudtov vrd otatikd eoptio (Papadopoulos,
Deodatis and Papadrakakis 2005), (Papadopoulos and Deodatis 2006) ka1 (Papadopoulos,
Papadrakakis and Deodatis 2006) ovt 1 mepipdliovco  omotereitor amd  QLOIKA
TPOLYLOTOTOM G Ve OploL 0poD 1| LOPPT] TOV GTOYXAGTIKOV eSOV OV Ta TOPAyEL ival TO

toyoio nutovoetdés me EE. (38) ne k£ =x"(t).

3.1.3 APIOMHTIKH E®APMOTH
INo tov mpoPforo mov @aivetar oto Xy. 3 pe pikog L=4m, to avtictpopo tov pETpov
eAOOTIKOTNTOG LITOTIOETO OTL TOKIAEL TVYOi0 KOTA TO PNKOG ToVv ovupwva. pe v EE. (3.2)

e R =(1.25><108 KN /m)_1 kot 1=01m* . M cvykevipopévn péle M, =3.715x10% Kg
Oswpeitar 610 deEl dkpo g dokoV. O cuvieleotng amdcPeong Aappaveral icoc pe & =5%

Kot 1 péon wromepiodog tovg povoPdduov taravimt vroroyiletor oe T, =0.5 sec.

Ot tpelg mepumtdoelg eoptiong mov Bewpovvrar givar: n LC1 mov oamotereitor and éva

otafepd goptio P(t)=100 KN , 1 LC2 mov amoteleitar amd pio GUYKEVIPOUEVT] SUVOLIKY
mePlodik  eopTion  P(t)=100sin(@t) kor M LC3 mov amoteheitan amd o @option
P(t)=-MU,(t) 6mov U, (t) eivar o ypovoictopia g emrdyvvong tov ceiopod oto El
Centro to 1940.

H ovvdpmon oacpotikrc mokvomtog (SDF) tov Zy. 4 ypnowomombnke vy v
LLOVTEAOTOINGT TOV OVTIGTPOPOL TOV GTOYACTIKOD LETPOL EAAGTIKOTNTAG TOV diveTon amo:

S, (1) =%02b3xze_bl’(l (43)

omov b =10¢ivar n TapaueTpog ToV PHHKOVS GLOYETIONC.
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Sifxe)

04 A
03 - ge=0.2
02 -

01 4

D T 1 1
0 03 1 13

x(radm)

Tyfqua 4. PocpOTIK GLVAPTNOT TVKVOTNTAG 16YVOG TOV 6TOYAeTIKOD Tediov f(X) yio Tumiky
amokiion og=0.2

[No v anddeién mv eykvpdTTag TG TPOTEWVOUEVNS HeBodoroyiag, ypnoilonoleital po
otpoyyvievpuévn ['kaovsovn kot g AoyoptOuiky] 6nm yio TV HovteAomoinon Tov f(X).
INa to okomd awtod, £va vrokeipevo I'kaovolavd otoyacTikd Tedio mov cupPorileton g (X)

TOPAyETOL YPNOUOTOLOVTAS TN WEDB0dO Qacpatikng ovamopdotoong (Shinozuka and
Deodatis 1991) kot 0 @doua oyvoc g EE. (4.21). To otoyyvievpuévo I'kaovolavd medio

frs (X) AapPavetor pe omhn otpoyyviomoinon tov g(X) pe Tov akdrovbo TPOHTO:
—0.9<g(x)<0.9, ev®d 10 hoyapuwo f_(x) Aappdavetar amd Tov akdAov00 PETAGYNHATIGHO

¢ nedio petaoynpotiopov (Grigoriu 1995):
fL(x)= FL’l{G[g(x)]} (44)

H SDF tov vrokeipevov I'kaovoiavod nediov otnyv EE. (4.21) kot ot avticToteg acpoTiKEg
TUKVOTNTEG TOL GTPOYYLAELLEVOL ['KaovslovoD Kot AoyapiBkov mediov mov cupfoiilovral
og Syt () xou Sy ¢ (x) , avtictoya, Oa eivan drapopetucés. Avtég vroloyiloviar and Tov

akoérovbo OO

2

i=TG, L (45)

LX .
j f.(x)e~"**dx
0

1
Sfifi(’f)=27r—|—
X

omov L, eivar to prkog g derypatocuvaptmong tov un-I'kaovoiovod mediov mov neptypdest
mv evkapyia. KabBdg ot derypatocvuvaptioelg tov un-I'kaovclovov mediov dev elval
ePYOdIKEC, M ektiunon tov eooudtov wybog oty EE. (4.23) ekteleitanr vroloyilovtag to
uéco 6po tov abpoicpatog Tov Tiwmdv ™ EE. (4.23) amd tuyoiec mpoyuaTtomomoes tmv
nediwv. (Grigoriu 1995).

3.1.3.1 LC1: XTAGEPO ®OPTIO £TO AKPO TOY IPOBOAOY
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Avto 1O GEVAPLO POPTIONG £XEL EMAEYEL Yo VO AOdEIEEL TEPALTEP® TNV EYKLPOTNTO TNG
pebodoroylog Kot vo OMUOVPYNOEL [0 AOYIKY] GUVEXELDL LE TPOTYOVUUEVEG UEAETEC TOL
oyetiCoviat pe v Tp€yovoa epyocio. LTV TEPITT®ON 0T 1 ADON KATOTITTEL GTN GTATIKY|
Aoom kaBadg o ypovog teivel oto dmepo. Katd cvvéneia, 1 DVRF Ba mpénet va cuykiivel
npog Vv avtictoyn otatikn VRF evog mpoforov mov poptiletor pe cuykevipmopévo poptio
010 GKpo oV, mov diveton and tmv EE. (4.24) (Papadopoulos, Deodatis and Papadrakakis
2005).

2
VRF (X, ) = % joxh(x, M (E)e"de (46)

omov h (X, & ) etvar | ocvvaptnon Green tng dokol mov divetar amd T oyéon
h(x,&)=x—¢& 47)

Kot M (x)&lvar n cuvapTNON KOUTTIKAG POTtNG oL diveTtar ard

M(S) =-R(L-2) (48)

To Zy. 5 mapovodlet pia 3D avorapdotaon g DVRF pe po apykr| petafatikn don kon
OTN GLVEYELD TN PACT), OOV TO CLOTNUA Elval oYeddV GE KatdoTaon Npepiag, evad 1o Zy. 6
napovotalel v ocovuntwon VRF kot AVRF mov Aoufdavovtor and v EE. (4.24) xou v
FMCS , avtictoyo, 6tov To GUGTNUO E€YEL TPOOCEYYIGEL TNV KOTAGTOCN OKLVNGlOG OTN
XPOVIKN oTryun t =10sec Ko Yo o =0.2.
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DVRF(K, t) -

Yyfqua 5. 3D avomapdotacn g DVRF, cuvaptoet g cuyvomrog « (rad/m) xon tov ypdvov t(sec)
vy v wepintmon LC3 kat o¢=0.2
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3.50E-08 +

3,00E-08 4 0s=0.2
2.50E-08 '-“ t=10sec
2 00E-08
1,50E-08 —#—VRF from Egq.(42)
1,00E-08 4 % ——DVRF from FMCS
5.00E-09

0.00E+00 .
a 2 4 & 8 10 12

K(radm)

Yyfqna 6. Tipég g VRF yia ototikd goptio Py kot g DVRF yuootabepd goptio P(t)=Py 6tav

t=10sec.
7.0E-07 -
DMRF(ax) ~— t=1sec
6.0E-07 - 05
a=().
5.0E-07 - =
4.0E-07 -
3.0E-07 -
2.0E-07 —
a—0.4
1.0E07 +————
gr—0.6
0.0E+00 - . : :
0 2 4 f & 10
K
(o)
t=3sec
0.0E+00 - : . . K
1oE0g 1 —2—4 6 8 012‘:'
T — JF :
-Z.QE-'JE 1 G_Fg“f
-3.0E-08
-4 0E-08
-5.0E-08
-6.0E-08 - ~—
DMRE@:%) 5 o _og or=0.6
B)
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t=3sec K
0.0E+00 - e
0 2 4 6 8 10
-5.0E-08 - 0r=0.2
t?_;r=ﬂ.4
-1.0E-07 -
“1SE-07 -
2.0E-07 -
DMRF(z,x) =
-2.5E-07 - ar=0.6

)

Yympoe 7.H DMRF cuvaptioet Tov ok yio (8) t=1sec, (b) t=3sec kau (c) t=5sec

DVRF(6,x)>-VE-08 - t=lsec
5.0E-08

4.0E08 -
3.0E-08 -
2.0E-D8 -
1.OE-D8 -
0.0E+0D -

(o)

DVRF(a:x 0E-09 1 t=3sec
3.5E-09 -

3.0E-09 -
2.5E-09 -
2.0E-09 -
1.5E-09 -
1.OE-09 -
5.0E-10 -
0.0E+00

®)
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L.OE-DB -

DVRF{Gmx) t=35sec

B.0E-09
6.0E-09 -
4.0E09 -

2.0E-09 -

0.0E+00D

)

Yympo 8. H DVRF cuvaptioet Tov oy yia (2) t=1sec, (b) t=3sec ko (C) t=5sec

3.1.3.2 LC2: [IEPIOAIKO AYNAMIKO ®OPTIO XTO AKPO TOY NPOBOAOY

DMRF(f) 1-0E-06 - k=2rad/sec

T.OE-0T -
4.0E-07 -
1.OE-07
-2.0E-07
-5.0E-07 -
-3.0E-07
-1.1E-06

12

t(sec)

(o)

DVRE(Y) 9.0E-09 w=2rad/sec
6.0E-08
3.0E-09 -

0.0E+00

] 2 4 6 8 w12
t(sec)

(B)
Zypa 9. DMRF (o) xor DVRF (B) wg cuvéptnon tov t yo k=2 rad/sec kot o = 0.2
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Ta Xy. 7 ko 8 mapovsialovv 1ig¢ DMRF kou DVRF, avtictowya, agpod £xovv vmoloyiotel e
FMCS yia meptodikny @Option pe cuyvomta @ =2 Kot TPELS SOPOPETIKES TILES TNG TUTIKNG
anokhong o4 =02, o4 =04 xauu o4 =06 . Ta Zy. 9 (a) xar () mapovcidlovv
avamopactdoelg e DMRF kot g DVRF ovvapticet tov t yio éva otabepd aptBuod

Kopotog K =2kol o, =0.2.

2. 5E-09
Var{u(r)] 2.0E-09 gegg=0.2
[u(®] 1.3E-09 =
L /\/\ —
G VAR

mz’{sec}u
@
6.0E-09
Var[u(f)] = 4.0E-00 Ogg=
2,0E-09 ——MCS
0_,0E,+m , —Eq.(3)
t[sec:l
B)
1.0E-08
I ] s. =04
oISy =
4.0E-09 ——MCS
GOE00 | | | | , . —Eq.(32)
0 2 4 6 8 10 4 (seci2

)
Yympe 10. Xpovoictopio Tng StaKOUOVONG TNG amdOKPIoNG TNG LETOTOTIONG Y10, £VO. GTOYYVAEUEVO
I'kaovoiavo medio pe () oy, = 0.2, (B) gy = 0.4, kot (¥) 7y = 0.6. ZOyKpLon 10V 0m0TELECHATOV HE

MCS.
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e[u(n] 200E-04

: =0.2
S AN NA A
-L0E-04 f' \{/ \j ‘é\./ 3 {sec]}z —FaGd

-2.00E-04

(o)

e[u(n] O00E-04

S ANANYA / SR
_1__01}E_|}4fr \{/ \/a/ M 10 12 ——Eq.(33)

-2 E-04

(B)

elu(z)] 200E-04

S AN A N A
—IIII'E-IMf' \{./ \j E\/ 10 z'(sec:}}z Rl

-2 00E-04

)

20E04
L ANANYA N
-LOE-04 } \_/ \_/ k/r (sec)

-2 0E-04

(®)

Figure 9. Xpovoictopieg: (o) TG HEONG TG TG OOKPIoNG Yo £va 6TpoyyvAEUéEVO T'Kaovolavo
nedio pe oy = 0.2, (B) oy = 0.4, (v) ogg = 0.6 k01 (8) TNV VIETEPUIVIGTIKY HETOTOTION. ZOYKPLON TMV

arotelecpdtov pe t MCS.

Amo ta mopamdve Xy. (7, 8 ko 9), eaivetar 6tt oo DMRF ka1t DVRF €yovv onpovtikn
SLOKOLLOVOT KOTO UNKOG TOV AEOVO, TV KLUATIK®V aplfumv K Kot tov aovo tov ypdvou t.
Kot o1 dvo cvvaptioelg kot wwaitepa 1 DVRF &yovv o apyikn| petafatikn @don Kot 6t
ovvéyewn gaiveton va eivon meplodikés. YrevOopuileton €0 61t 1 DVRF kot 1 DMRF eivan
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oLVOPTNOELS NG emPardpevnc SuVOUKNG @Optiong. Avtd eényel to yeyovdg OtL dev
wpoceyyilovv 10 undév otav to t avéavetar, 0edopéVoL OTL TO €QPAPLOLOUEVO SLVOUIKO
QopTio elval TEPLOOIKO e 0TAOEPO LETPO TTOV OEV OMOUEUDVETOL.

2 5E-09
Var[u(f)] 10% MN\A ggr=0.2
1.0E-09
poats /\/\/ R,

10 i {sec}u

(o)

elu(z)] 200E-04

: a2
wea N N N T
e d %/ AN\ J A /0, n —me

-2.00E-04

)

Typa 11. Svyxpriikd omoteréopata omd tig BE. (4.14), (4.15) kar amd MCS yio éva hoyoptOpko
nedio pe oy =0.2 yio (o) T Sraxvdpavon koi (B) ™ péon T g xpovoictopiog g AmdKPIoNg TNG

LETATOMIONG.

Ta Xy. 10(a), (B) kot (y) mapovctdlovy GUYKPITIKA TO. OTOTEAEGLOTO TOV VITOAOYILOUEV®V
YPOVOICTOPLOY NG OWIKLUAVONG TNG OMOKPIoNG  YPNOUYLOTOIOVTIONS TNV TPOTEWVOUEVN
oAoKANpTIKY ékepaocn ™¢ EE. (4.14) kot to amotedéopato ond dueorn npocopoioon MC,
Y0 TPELG OLPOPETIKEG TLMIKEG AMOKAICELS €VOC GTpOYyvAELHEVOL ['kaovslavoy mediov. To
vrokeipevo 'kaovolovd medio avamapictatol ¥pNGILOTOIMVTAG TH (UCUOTIKY TUKVOTNTO
woyvoc ¢ EE. (4.21) xar tpeig dapopetikég Tomikég amokAioelg. Ot avtiotoleg TumiKég
OmOKAICELS TOV GTPOYYLAELUEVOL ['Kaovsiovoy mediov f(X) vroAoyiCovtar ©g o, =0.2,
04 =0.3912 ko 0, =0.5286 . Ta Zy. 11 (o), (B) xou (y), maepovcialovv to idw

amoteAéopaTo PE TO Y. 8, 0AAG Yo TV péom amdkpion tov tadavtotr. H vretepuiviotiknm
ypovoictopia TG petotdmiong eniong eaivetal 6to Xy. 11 (d) Y Adyovg cvykpiong. Amo ta
oynpoto avtd umopel vo mopatnpnbel 6t or ypovictopieg TG HEONG TIUNG KOU TNG
SlakOIOVONG NG amdKplonNs mov Aaupdvovior He TIC OAOKANPOTIKES ekppdoelg Tov EE.
(4.14) and (4.15) eivor oe cvppoVvio pe TIG OVIIOTOUEC EKTIUNOCES amd TNV OGueon
npocopoiwon pe MC. Xg 6Aheg TIC TEPMTMOGES OV €EETAGTNKOV TO UEYIGTO GOAALO TOV
wapatnPNONKe OTIC TIHEG TNG SLOKVUAVONG GTNY KOPLPT TOV YPAPIKOV TOPACTACEMY VoL
piKpotepo omd 25%, eved e O To AAAO XpOoViKd Prinota avTd T0 CEAAUN Eival LKPOTEPO
and 3-4%. v mepintoon g péong twng ot mpoPréyelc g EE. (4.15) eivon oyeddv
TOVTOONIEG HE 0VTEG oL Aaufavovior pe MCS, pe éva cpdipo pkpdtepo amd 3% oe dheg
TIG TepmT®oelS. Ao ta Xy. 11 (0-9), pmopei va mopatnpnOel 0Tt 6€ OAEG TIC TEPUTTAOGELS, M
HECT T TNG YPOVOIGTOPING TNG OTOKPIONG Y10 OAES TIG TEPIMTMOGELS TOL e&eTdoTnKay givat
OYEOOV TOVTOCTUN UE TNV VIETEPLUVIOTIKT).
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Ta Zy. 12 (o) ko (B) emavorappdvovy Tig 101€g cuykpicels pe ta Tponyovpueve Xy. 10 kon 11,
oAAG Yoo TV Tepintwon evog Aoyoplduikod mediov oL XPNOUOTOlEiTAL Yo TN

povtehomoinon g evkapyiog pe o = 0.2 ko kbt opo |, =—0.8. Ta coprepdopoto mov

e&Nybnoav mponyovuévmg yio v mEPInT®OON T0L GTPOoYYLAELUEVOL ['kaovoiavoy mediov
1GYVOVV KoL €00.

3.1.3.3 LC3: XEIZMOX EL CENTRO

Ta Zy. 13 wou 14 mapovcialovv 115 ypagikéc mopactdoeg tov DMRF kot DVRF,
avTioTOor(O, YO TNV TEPINTMON POPTIONG TOL akolovbel T ypovoicTopia TG emTéLVONG
tov ceopd tov 1940 o1o El Centro tov Melwd. Omwg kot oty mponyovuevn mepintmon
oevapiov EOPTIONG, TPELS SLUPOPETIKES TLEG TNG TVLTIKNG AMOKAIONG ¥pNnolpnonomOnkav. Amd
avtd ta oynuate propet kot o va mopatnpndel 6t n DVRF dev axorovbel kdmoro potifo

og oyéon pe avénon 1M pelwon me oy
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TOE07 1
DMRF(55x) S — t=lsec
6.0E-07 A 0.2
o=0.
5.0E07 A
4 0E07 A
J.0E07 A
20E07
o—0.4
1.0E-07 +——— =06
L,
0.0E+H00 T T T T |
0 2 4 1 3 10
8
(o)
t=3sec I{
0.0EHID T T T T 1
(L 2 4 1] 8 10
-1 0E-08 {7 ge=0.4
20E-08 - om0.6
3.0E-08 - )
4 0E-08 -
-5 0E-08 A
6.O0E-08 | ag=0.2
DMRF(a.x)
-TOE-08 -
B)
t=3sec
0.0E+00 T T T r K.
J} 2 4 8 8 10
-5.0E-08 - 0r=0.6
g=0.4
-1.0E07 A
-1.3E07 A
20E07 - o=0.2
DMRF(a.x) —
-2.3E07 -

()

Yyfqua 12. H DMRF og cuvaptnon tov off yia (a) t=1sec, (B) t=3sec kat (y) t=5sec
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DVRF(g,x) $9E-0% 7 =1sec
5.0E-08

40E-08
J0E-08
20E-08

1.0E-08

0.0E+00

4.0E-09 - =3sec
3. 5E-09
3.0E-09
2. 5E-09
2.0E-09
1.5E-09
1.0E-09
5.0E-10
0.0E+00

DVRF(a.x)

(B)

i 1.0E08
DVRF(0:X)g 4p oo -
8 0E-09
7.0E-09
6.0E-09
5.0E09
10E09
10E09
2. 0E-00
1.0E-09
0.0E+00

t=3sec

0 2 4 & 8 10

)
Iypna 13. H DVRF og cuvaptnon tov off yia (o) t=1sec, (B) t=3sec xat (y) t=5sec

xli



Ta Zy. 14 (o) o (B) mapovsialovv 3D anecwcovicelg tng DMRF kot g DVRF cuvaptioet
NG GLYVOTNTOS Kol TOV YpOVvov. Ao ovTd To. oyYNpate, kabmg kot and to Zy. 12 won 13,
umopet va mwapatnpnOel 6tL ko oAt 1 DMRF kot DVRF €yovv onpavtikn dtakdpoven toco
Kot Tov aova K 660 Kot kotd tov t, yopic va elval meplodikés, oe avtibeon pe 6, T £xel
napatnpnOel v nepintoon LC2. EmumAiéov, toco n DMRF 6co ka1 1 DVRF npoceyyilovv
T0 UNoév kabmg o ypovog av&dvetar AOy® TOv YEYOVOTOG OTL Ol £00MIKEG EMTAYVVOELS
@Btvouv kot e€apavifovrol petd amd KAmolo ypovikd d1doTnuo.

DMRF (x, 7)

DVRF (x, 7) el » | :’

0,025 — : ior = - v’

B

Yyqpo 14. 3D avamapdotoon e (o) DMRF kot (B) tg DVRF, w¢ cuvdptnon g cuyvotntog K
(rad/m) ko Tov gpdvov t(sec) yio v mepintmon LC3 ko 61f=0.2

Ta Zy. 15(a) kor (B) mwopovostalovv pior cOYKpIon TNG SIKLUAVONG TNG OmOKPIoNG OV
vroloyiletaw pe v EE (4.14) ko ™ MCS, oty mepintmon &vog GTPOYYLAELUEVOL
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['kaovoiavoy ediov mov meprypdpet v gvkapyio pe oy =0.4ku oy, =06, evo ta Xy.

16(0) kot (B) mapovoidlovv ta 0o amoteAéopaTo Yio T UECT OLVOUIKY OmTOKPIGT) TOL
ToAovTOT poll pe TV avtiotolyn VIETEpUIVIOTIKY] petatomion (Zy. 16 (v)). Ta Xy. 17 (o) ko
(B) emavaioappdvouv Tic 101G GLYKPIGEIS Yio TNV TEPimTOON £vOG AoyaplduKod mediov mTov

XPNOoTOEiTOL Yo TV poviehomoinon g evkapyiog pe o = 0.3 kat kdto opo |, =-0.8.

1.5E-03 _
Var[u(f)] L0E03 oee=0.4
5.0E-04 —MCS
0.0E+00 + . . : — . Eq.(32)
0 2 4 6 10 1
t(zec)
(o)
15E03
Var[u(h)] 1_' 0E.03 gee=0.6
5.0E-04 MCS
0,0E+00 - . ; : e fiflrin, . —Eq.(3)
0 2 4 6 g 10 4 5oy

®

Yympae 15. Xpovoictopieg e dStokdpuaveng tng amdKpiong yo €vo otpoyyvAievpévo ['kaovoiavo
nedio Yo (o) oy, = 0.4 xar (B) oy = 0.6. Zbyxpion anotereoudrov ue MCS.

6.00E.02
@] 1o0E-02

2.00E-02 .

0.00E+00 LA A 2o ein

2 00E-02

L00E02

_6.00E-02

¢ {sec}z — Ea ()
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6.00E-02
e[u@®]  400E-02
2 00E-02
0.00E+00
-2.00E-02 ¢
-4.00E-02
~6.00E-02

6.00E-02
u(f) 4.00E-02

2.00E-02

0.00E+00

ﬁ'%ﬁ% 4 10 12

-6.00E-02 t(zec)

™

Yympa 16. Xpovoictopieg g dStokdpavong tng amdKpiong yuo £vo oTpoyyvievpévo ['kaovoiavd
1edio Y10 (@) oy = 0.4, (B) o7y = 0.6 KO (¥) TNG VIETEPLIVIGTIKNG 0mOKPLONG. Z0YKpLon

amotelecpdtov pe MCS.

3, 00E-02
£[u . ar=0.3
[u(2)] 2 S0E02 .
0,00E+H00 fus -
-2,50E-02 10 » :}z —_Eq.(33)
-5,00E-02 aec
(@)
1.3E-03
Far[u(f)] 1_' OE.03 ay=0.3
] it —
0,0E+00 . : : VY- . —Eq.(32)
0 2 4 6 B 10 P (sec}u

(b)
Yyqpo 17. XZuykpirikd oamoteAéopoto ToV OAOKANpOTIKGOV eflchoemv kot g MCS yia éva

LoyoapOukd medio pe o, =0.3 ya (o) T Srakvpaven kot (B) yio T péon T TG AMOKPIONG NG

LLETOTOTIONG GLUVOPTHGEL TOV YPOVOUL.

Ao T Topamdve oynuato propet va mwapatnpndel 6t o6mmg kot oty LC2, n péong tiun
Kol 1 OlKVUOOVI] TNG OmOKPIGNG GLVOPTNGEL TOL  XPOVOL Tov AouPdvetor pe TIg
oAOKANpOTIKEG expphoelc tov EE. (4.14) and (4.15) eivon 6€ cvopeovia LE TI AvVTIOTOLYEG
extiunoeig MCS, og Oheg TIC TEPIMTOGELS.

3.1.3.4 ANQ OPIA ETH MEXH TIMH KAI *TH AIAKYMANXIH THE ANOKPIZHE T'IA
THN NEPINTQXH LC3

Y& quTV TNV EVOTNTA TAPAYOVTOL AVED QPAYUOTO AVEEAPTNTO TNG POCUOTIKNG KOTAVOUNG Kot

NG OPLOKNG GTTT Y10, TNV LEGN TN KO TN SOKOLLAVOT) TNG aOKPIoNG Tov AopPdvoviot HEGm

tov EE (4.19) ko (4.20), avtictorya. To oamoteréouata OLTOL TOL  VTOAOYIGHOD

xliv



napovotaloviot ota Xy. 18 (a) kot (B), ota onoio To Gve OpLo GLVAPTHGEL TOV YPOVOD Y1d. T
HEOM TN KOl OKVUOVOYN TNG OMOKPIoNG NG HETOTOMIONG GLVOPTNOEL TOL YPOHVOL

OVOTTOPIGTMVTOL Y10, 1o, TUTKY| amoOkAlon o =0.4.

6.0E-02 - max_e[u(r)]
4.0E-02
20E-02
00E+DD
-20E-02
-4 0E-02
-4.0E-02 -

(o)

14E03 - mex_Var ()

1IEQ3 4
LOEQ3 4
B0E04
BIEO4 4
40E04 4
20E04 4
QUE+OD

a 2 4 6 8 14 12
time t (sec)

®
Yympe 18. Ave opro g (o) péong tipng kat (B) g Stakdoveng TG omOKPIoNg Yo TV TEPIMTMOO)
LC3 044=0.4
3.1.3.5 ANAAYZIH EYAIZOHEIAZ I'IA THN NEPINTQEXH LC3 XPHXIIMONOIQNTAZX

TIZ OAOKAHPQTIKEEZ EK®PAXEIZ (4.14) KAI (4.15)
Téhog, mpaypatomoteitan o aviilvon evotcOnciog ypnowomowwvrag T EE. (4.14) ko
(4.15) pe ehdyloT0 VTOAOYIGTIKO KOOTOG, GE OYECN HE TPES OLLPOPETIKEG TIUEG TNG

TOPAUETPOV UKOLS cvoyétiong tov SDF oty EE. (4.21) kaw o =0.2,

TOE03
Varlu® ¢ o o
0.0E+00 -
SOE-04 2 —m
t(sec) b=10

xlv



sfu(p]  LOOE-OL =02 __,_,
5.00E-02 A A
0.00E+00 | ——=otS "rfl,fkm-’y At : —— =2
-5.00E-02 2V 4 "V 4 ] 10 e 12 -
LOGE-01 I'_I-EI:}

(b)

Xympe 19. (a) Méon T kot (B) dtakdUOVGT GLVEPTIAGEL TOL YPOVOL TNG ATOKPLONG TNG LETATOTIONG
vrohoyllopevn omo tig EE. (4.14) ko (4.15), avtictouya yio TpELg SLOPOPETIKES TIUES TNG TOPOUETPOL
TOL unKovg cvoyétiong b tov SDF in Eq. (4.21).

3.2 AYNAMIKH ANAAYZIH XITOXAXTIKQN IYEITHMATQN TMENEPAIMENQN
XTOIXEIQN

a Pltl
—>

I

=40

f=40

&
L

Yympa 20. leopetpio Kot poption TAoiciov dwukprrorotpévou pe 60 ototyeio dokov.

3.2.1 ANAAYZIH MEZHZ TIMHZ KAI AITAKYMANZHE THZ ANTOKPIZHZ XPHEIMOIOIQNTAZ
Tiz DMRF KAl DVRF
AxorovBdvtag pio dadikacio TapdpHole pe TV TEPITTOGT TOV GTOYUCTIKOV HOVOPAOmy

YPOUUK®OV  TOAVTIOTOV VIO SLUVOUIKY] QOPTIoT, &ivar duvatdv vo eKQPACOVLUE TNV
dlkdpavon G OSLVOUIKNG OmOKPIoNG €VOC GTOYOGTIKOV GUGTNUOTOS TETEPAGUEVOV
oTolElMV e TNV akOAoLON Ekppacn Hovo mov og avtv TV mepintwon 1 DVRF Aappdver
SLOVUGLOTIKY) LOPON:

Var[u(t)] = j " DVRF(t,x,04)S 4 (€)dx (49)

Avrtiotoyo dttvm®veTal pio 6YECN Kot Yo TV EKTIUNON TG HEOTC TIUNG TNG OLUKVUOVOTNG
™G AmOKPIoTC.
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Au®]= | DMRF(tk,04)S ; (k) (50)

H apBuntikn ektipmon tov DMRF, DVRF yiveton katd ta yvootd pécwm g dadkaciog
FMCS mov avartoydnke Kol o€ Tponyovueveg evotnteg povo mov topo ovopdaletor DFEM-
FMCS Adym tov 01t avagépetal o duvapkn ovdivon ue nenepacuéva otoryeio (DFEM).
Eniong dvo Opla pmopodv vo TpokLYOoLV YPNGLUOTOLOVTOS TIC OVTIGTOLXEG GYEGELS Yo TN
untpoikn popen tov DMRF kot DVRF .

[u(®)] = IZ DMRF(t, , 04 )S (x)dx < DMRF(t, ™ (1), o )2 (51)

Var[u(t)] = j°° DVRF(t, k, 0 )Sy (x)dx < DVRF(t, ™ (t), o )2 (52)

3.2.2 AIATYNQZH THE MEGOAOY XE AYO AIAXTAZEIZ
e mepintmon TPoPANUOTOS, OTOV TO AVTIGTPOPO TOL UETPOL EANCTIKOTNTAG Oempeitor OTL
petoaBdidetor Toyaio Tave og Eva d1d1doTaTo Ympio, 1 akoAovdn eElowon viobeteitar:

1
E(X, y) = I:0 (1+ f (X! y))! (53)

omov E eivon 1o pétpo ghaotikotnrag, Fyeivor n péon tipn tov avtiotpdeov tov E, kon
f (X, y) TOpa etvar éva S10146TATO, L UNOEVIKT] LECT] TIUN OLOYEVEG GTOYXOGTIKO eSO TOV

neprypdpel ™ petoforn tov 1/E yopo omd ) péon mu tov. Kotd ocvvémewn, ot
OAMOKANPOTIKEG  EKQPAGEIS Yo TN OWKLUOVOT Kot T HEOT TN TNG OmOKPIoNG TNG
petotdmiong yivovrat:

Var[u(t)] = ji ji DVRF(t, i, &, )S s (i &, )d i A, (54)

AuOl=| [ DMRF(t, 5, k.07 )S s (5, K, )drc (55)

To povodidotato tuyaio murtovosdés oty EE (38) yiveron tdpo dididotato pe v
aKOAoVON popen Tov eivan 1010 yror OAa Ta TOAVA GTOYOCTIKE TESTN:

f,(x) =20y cos(Ex + &,y +9,); j=12,..,N. (56)

Avo 6ptla ylo T péon T Kot T SKOUOVOT) TNG UETATOMIONG Yol [ior SEOOUEVN YPOVIKT
ottyun t pumopet va Tpokdyovv yia v mepintoon 2D og e€ng:

Var[u(t)]< DVRF(t, 5™, k)™ o )oq (57)

e[ut)] < DMRF(t, i, 5™ o7y Yok (58)
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omov (K;”ax St

) etvar 1o Cevyog xopatikov apumv oto omoio 1 DMRF 1 1 DVRF
AopBévouv T péylotn Ty Tovg (yio o dedopévn Tiun Tov o kot 0éom), K ok sivon m

S10KOUOVET TOL GTOYACTIKOD mediov. Ao TPEMEL Vo TOVIoTEL OTL TO (K;"ax,/c;“ax) dev eivan

avayKooTtikd to 1010 yio tnv DMRF kot v DVRF.

3.2.3 APIOMHTIKEX E®APMOTEX
Hopaoderyuo. 1. T to TAaiclo mov @aivetar oto Xy. 20 pe unKog Kot Vyog ico pe 4m, to

avTioTPOPO TOL UETPOV €AACTIKOTNTOG Bempeitar OTL TOKIAEL TVYOi0 KOTA TO PUNKOG TV
otoysiov dokol cvpemva pe v EE (32) pe Ry =(@.35x10°kN/m)™, 1 =0.1m* kot Adyo
amocPeong £=5%. o v avdivon ¢ TAAICIOTIS KATAGKEVNG Ypnotpomotovvtor 60
otoyeio dokov, 20 yio kabe vrooTHAwpo Koty T d0Kd, iGov unKovg, pe amotéleopo 177
B.e. H ocvvolikn pala tng dokod Oempeitan ion pe my, =6000kg, KoTaAvEUNUEVT) OROLOLOPOOL

GTOVG KOUPOVG TOV TEMEPAGUEVOV GTOLYEI®V TOL LOVTEAOL.
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0.06
Selrc)

0.03

0.04

0.03 ay=0.1

0.02 A m—b=1

0.01

x(radm)

Tympe 21. ZovapTicES QUCHATIKAG TUKVOTNTOG Y10, TO 6ToXaoTiko Ttedio f(X) pe Tomikn amdriion
6¢=0.2 Y10 TPELG SPOPETIKES TLUES TNG TOPAUETPOV TOV UNKOVG GUGYETIONG

Avo meputtooelg goptiov OBswpodvtar: m LC1 mov ocvvictatoar 6€ €vo GUYKEVIPOUEVO
duvapkd mePLodtkd eoptio otV mhve de€1d yovia Tov mhaisiov (PAéme Xy. 20) ko n LC2

mov owictatol 6g £va duvapkd eoptio p,(t)=-mU,(t) mov evepyel oe kabe kouPo NtV

otoygimv 60k0d omov M, eivol N avtictoyn pale mov Katavéuetor otov kOpBo kot U,y (t) n

YPOVOITOPio. TNG EMTAYLVOTG TOV £5GPOVE 610 oelpd tov 1940 oto El Centro tov Me&iko.
To otoyaotikd medio Oewpeiton Ot1 perofdirieror ko’ OAo 10 PNKOC TV  OVO
VITOGTNAMUATOV Kot TNG 00K0D TOL TANIGIOL EEKIVOVTOS LE GLVOEYOUEVO TPOTO Omd TNV
aptotepn ompiEn mpog t de€id. H ovuvaptnon eacpotikng mokvotntog (SDF) tov Xy. 21
YPNOUOTOMONKE YloL TNV HOVIEAOTOINGT TOV AVTIGTPOPOV TOL UETPOL EANCTIKOTNTOG TOV
dtveton amo:

S, () =%a§ bxc2e (59)

v b=12,10.
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DMRF(uA)

0.74~

0.49
k(rad/m)

()

DVRF(uA)

k(rad/m) 049

)
Yympe 22. 3D avanapaotaoelg g (o) DMRF and (B) DVRF g opildvtiog petatdmiong Ua, GUVOPTAGEL TNG

ocuyvotntag x (rad/m) xat tov ypdvovu t(sec) yua v nepintwon LC1 xar o4=0.2



4 00E-05 a=0.2
3.00E-05
2 OB max{z[u{t]]}
LOOE-05 £[u{t)]
0.00E+00 - - - . : . | = min{=[w{t]]}
a 0z 04 0.6 0.8 1 12 t
(o)
6.00E-11
4.00E-11 gp=0.2 — max{var(t]
200E-11 ——varfult)]
0.00E=00 T T 1 minfvar[uf)]
a 02 0.4 0.6 0.8 1 12 P
B)

Zympa 23. Avo kot kdto opo g (o) péong tiung kot (B) g dtoukdpaveng tng amdKpiong yo v
nepintwon LC1 kot 6¢=0.2

To Zy. 22 napovsialet 3D avanapactioelg tov DMRF (u A) kot DVRF (u A)’Yl(l mv oplovtia
petatomon u, tov onuetov Atov mAaciov ®G GLVAPTNON TOL YPOVOL KOl TNG CLYVOTNTOG
v oy =0.2. Ze avtd 10 oyNua, propel vo nopoatnpndet 61t n DMRF (u A) TOPOUEVEL GYEOOV
otabepn| oe oyéon Le 10 K, eV peTafdAleTor £viova cav cuvdptnon tov t. Aviifétwmg 1

DVRF (u A)Saixvat L0 GNUOVTIKY HETAPANTOTNTO 6E oYéom He 10 K Kot to . Qg ek TovTOV,

oe avtibeon pe v DMRF(u,), 1 DVRF (u,)euvoei ) Suvarotnta onpaviikig petaBoAng
NG OLOKVUAVOTG TNG ATOKPIONG Y10 OLOPOPETIKES CTATICTIKES TOPAUETPOVS TOV GTOYOUGTIKOV
nediov. Avto gaiveton mo Eekdbapa 6to Xy. 23 oto omoio amewkovilovtal To Ave Kot KAT®
opll TG OLVOMIKNG MEONG TUNG Ko SlaKOHOVONG NG omdKplong o€ cUYKPLoN UE TNV
EKTIUOUEVN HECT] TN Kot OLOKVUAVOT] TNG OOKPIoNS Y10l TV TEPIMTOON VOGS VITOKEILEVOL
I'kaovolavoy mediov pe to eaopa g EE. (4.49) kot yio o =0.2. Ta npoavapephévta opia
npoépyovral amevdeiog and tig EE. (4.39) kot (4.40) apol £xovv TponyoupéVeS VTOAOYIGTEL
ot DMRF (u A) Kol DVRF(u A) pe v vmoloyotikd amodotiky DFEM-FMCS, evd oty
nepintoon tov I'kaovoiavoy mediov pe oy =0.2, n péon tipn Kot dakdpaven eAnedncov
ue ¢ ekppaoec tov EE. (4.34) ko (4.35). Amd ovtd 10 oynua pmopel va. @avel OtL M
avOTEPTN SLVATN HEST SLVOAUIKY] ATOKPIoT Kol QLT oL eKTIdTon Yo 1o ['kaovsiavo medio,
elval oyeddv {oeg, evd T dve OplLoL SOPEPOLY CNUOVTIKA GTNV TEPIMTOGT TNG OLUKVUAVONG
™m¢ amoKpione, eoavovtag po péyiotn dtpopd peyaAidtepn amd 70% 1 ypovikny otiypn
t=0.8sec.



4.00E-03 E{Hﬁ)j

3.00E-05 ae=0.2, =]
2.00E-05 =—bimes
LOOE-05 ——Eq.9.
0.00E=00 + : . . . . I
0.0 0.2 04 0.6 0.8 10 12
()
8.00E-12 varfu(t)]
£.00E-12 a=0.2. b=1
4.00E-12 —tbimes
2.00E-12 — Eq. 10
0.00E=00 + . 3 . . : g
0 02 0.4 0.6 0.8 1 12
B)
4.00E-05 sfuft)]
3.00E-05 op=0.2, b=2
2.00E-05 —
LOOE-05 ——FEq. &
0.00E=00 + . . . . ; g
0.0 02 0.4 0.6 0.8 L0 12
(v)
L50E-11 varfu(t)]
LO0E-11 gr=0.2, b=2
5.00E-12 Eq 10
I:IIIIE—ﬂﬂ T _-lf_H-_ T T T T 1 f
0 02 04 0.6 0.8 1 12
(6)
4.00E-05 sfuft)]
3.00E-05 gs=0.2, b=10
2.00E-05 —
LOOE-05 —Eq &
[IIIIE—CICI T T T T T T 1 f
0.0 02 04 0.6 0.8 10 12

(¢)




3.00E-11 var[u(t)]
200E-11 gr=0.2, b=10
—bfm_
1.00E-11 Eg. 10
0.00E=00 + : . . . . ¢
0 02 04 06 0.8 1 12

(o7’)

Xympa 24. Xpovoiotopieg g (a), (y), (€) péong tung xat (B), (3), (ot’) dtukdpaveng g amdkpiong
displacement puoag TAoiciotg Kotackevns Yo I'kaovoiavod medio pe o4 = 0.2 yio v mepintmon

LC1 xout yia tpio dStopopetikd punkn ocvoyétiong b=1,2 and 10. Z0ykpion Tov omoTEAEGUATOV TNG
wpotewvopevng pebodoroyiag pe tm MCS.

Mo vo amodeytel  eykupdTNTOL TG TPOTEWVOUEVNG TPOGEYYIONG, TO OMOTEAEGLOTO TTOV
npoékvoyay amd ™ owdikocic DFEM-FMCS kot EE. (4.34),(4.35) cvykpibnkav pe v
Gueon mpocopoimon Monte Carlo. Zta Zy. 24 a, B, v, 8, € KOl 6T’ [E TO ATOTEAEGLATO TG
GUYKPLONG VTG TALPOLGLALOVTOL Y10 T SVVOULIKTY LEGT TLUT| KOl OLOKDUOVGT TNG OmOKPLoNG
0V U, (Zy. 20) xon yio v mepintmon LC1, ypnowonoidvrag éva I'kaovstavd medio ko yo
TPELG JPOPETIKEG TIHEG TNG TOPAUETPOV TOL UNKOLSG GLOYETIoNG. Me autdv tov TpdMo
katadewvoetal eniong n aveEapmoio twv DMRF kot DVRF and t cuvéptnon gacpatikig
TokvOTTOG. XTO Y. 25 Ko 26 mapovsidletar 1 0o cOyKpion, oAAE Yo pid GTPOYYVAEUEVO
I'kaovolavd medio pe oy =0.3912 kou 0.5286 avtictorya, eved 1o Xy, 27 efetalel o

nepintwon AoyapOpkoy mediov pe o =0.399. Téhog, to Xy. 28 mapovoidlel v idwa

oLYKPLON, 0ALG Yo TNV TtepinTwon eoptiov cvpewva pe tov oelopd oto El Centro (LC2) ko
éva I'kaovoovo medio pe oy =0.2. And 6Aa avtd ta oyfuata propel va mapatnpndet 0t ta

aroteléopato g DFEM-FMCS Bpickovtal oe cuopeovia pe to avticToryo amoTte oot
g MCS. H mpopreyn g péong tiung eivar oyedodv tovtoonun yu tig 000 pedddovg oe
Oleg TIG mepummtOGE OV e£eTAlOvVTOL, EVA TO WEYIGTO GOOAUN OTN OLOKLUAVOT OEV
vrepPaivel to 20% kot amodideton o o pikpn e&aptnon g DVRF ot onn tov
OTOYOOTIKOV Tediov. AvTO TO GOAAUN YIVETOL AUEANTEO OTNV TMEPIMTOON WKPAOV TUTIKOV
anokAMoemv ¢ TaENS tov 20%.



Yympae 25. Xpovoiotopieg g (o) péong tipng kot (B) g dtkhpavong g amoKpiong TG TAOGIOTNG

KOTOOKELNG Yo 6Tpoyyvievpévo I'kaovoiavd nedio pe oy =0.391238 yuo v mepintwon LCL.

4. 00E-05 g{yﬁ)j
3.00E-05 gp=0.3071238
2 00E-05 —bimez
LOOE-05 —Eq 8
0.00E=00 + . . . . ; 4
0.0 02 04 0.6 0.8 L0 12
()
varfuit)]
L0O0E-10 - ar=0. 328649
e s
5.00E-11 - Eq. 10
0.00E=00 . ; . . ; f
0 02 04 0.6 0.8 1 12
B

ZHykpion anotedeopdtov and Tig EE. (4.34),(4.35) ue MCS.

Yympe 26. Xpovoiotopieg g (o) péong tiung kot (B) g Stakdpoveng e amdKpiong g

TALCIOTNG KOTAGKELHS Yo 6TpoyyvAevpévo ['kaovoiavo nedio pe oy = 0.528649 yio v

3.00E-05 £ fmrf ) j
2 EOS a—=0. 328649
LO0E-05 — FE4.9
QO0EH00 —+ T T T T T 1
0 02 04 0.6 0B 1 12
(a)
varfuit)]
L.O0OE-10 gr=0. 5286490
—himes
5.00E-11 Eq. 10
‘}.‘]}E_.m T T T T T T 1 I
Q 02 04 08 0B 1 12
(b)

nepintwon LC1. Toykpion amoterespudrov and tig EE. (4.34),(4.35) ue MCS.
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4.00E-05
3.00E-05 E{uﬁ)j
200E-05 gr=0.30030§ — bfmes
LOOE-05 —Ea %
0.00E+00 + T T T T T 1 f

0 02 04 0.6 (131 1 12

()
1.00E-10
3
ay—=0. 300308 Eq. 10

0.00E+00 - . T T T T 1 f

00 02 04 0.6 0.8 1.0 12

(B)

Yympo 27. Xpovoiotopieg T (o) péong tiung kat (B) g dtakdpaveng tng amodKpiong tng
TAOIGIOTAG KOTAGKEVTG Y10 6TpoyyVAELpéVO Tkaovotavo medio e oz = 0.399398 yio v

nepintoon LC1. Zoykpion amotedeopdtov and tig BE. (4.34),(4.35) ue MCS.

6.00E-05 g{uﬁ)j

3.00E-05 =02

C.00E~00 = ‘.‘ A {  =bfmcs
3 o0E05 0 : . . . 12 Eq. 9
-6.00E05

-9.0EQ5

(o)

LO0E-09
8.00E-10 var[uft)]
6.00E-10 ar—0.2 =bimcs

4.00E-10
2.00E-10
OO0E=00

—Eg 10

)

Yympo 28. Xpovoictopieg e (o) péong tiung kat (B) e dtakdpaveng thg amdKpLong tng
TALOIOTNG KOTAGKELHG Yo 6TPOoyyLAevpéVo ['kaovoiavo nedio pe ox = 0.2 yo v nepintoon
LC2. ZHykpion anotereopdtov ond Tig EE. (4.34),(4.35) ne MCS.

3.2.3.1 IIEPAITEPQ ENAAHOEYXH AMIOTEAEEZMATQN MEXQ THE GVRF
210 Xy. 29 @aiverar n ocdykion g DVRF(u,) o€ katdotaon npepiog yo WeLS0oTATIKN

eoption pe v GVRF(u,) mOv TOPAyETOL Yylo. TNV OVTIGTOYN OTOTIK) AVGT Yo €vol

otpoyyvAevpévo I'kaovsiavo kat éva Aoyaptfuucd medio yuo tomiky ondkion o, =0.1. o

\Y}



™ dwdwaocio avty po owoyévele SDF, S, exfetikng popeng £xet ypnopomombel mov

dtvetar amd TV TapKATO oYéon

Sp(x) =0 exp(-2| ) (60)

1LXEE — GVRF1

S.ME-10 4, oy =0.1 —  GVEED

&.00E-10 —— DVE.F=20s)

3.00E-10 ——WERF

0.00E-00 - - - x(raci-’m_}
{Q L] 1 15 2 23 3 33 4

Yyfqna 29. T'pogikég mopoactdoelg g DVRF(Ua,t=20s) yio otabepd goprtio, tov GVRFL kot GVRF2
v oTopyyvAELUEVO ['Kaovotavd kot Aoyaptduikd medio avtiotoryo kot ¢ ototikng VRF cuvaptioet

g cvyvotnrtog « (rad/m) yue o = 0.1 10 t0 Thaicio oto y. 20.

Ye kabe oepd mg EE. (3.60) avtiotoyet éva dtapopetikd SDF g owoyévelag S, . Metd tov

vroAoyiopd tov avitictoryov SDF yw 1o otpoyyvievpéva 'kaovoavd kot AoyoplOpukd
nedia, 10 i-00t6 SDF oty i-oot| ogpd g EE. (3.60), opileton og e€ng

Sp(k+kK, —iIAk+Ax), 0<kx<(i-DAx

Sp (k —iAK), (61)

SPi (x) ={

IAK <K<K,

Téooepa dragpopetikd SDF g owoyévewng Sy amewoviCovion oto Xy. 30. Avopéveton ek
TOV TPOTEP®V OTL 1 OLVOUIKT OTOKPLIGT] TOL GLGTNUATOS, OTAV TO €PUPUOLOUEVO POPTiO
elvatl otafepod pésa 6to ¥povo, Kot

0.0z ——3DF1
0.01 .' N —SDF20
. \\Ir\\“ ' | - )
' -.MT_:_“HQ:______% | - —— 3DFI120
0.00 4 Bt — . .

0 05 1 15 25 3 33 4 K(radm)

Zymna 30. I'pa@icég TopacTacELS SPOPETIKAOV PACHATIKMOY GUVAPTAGEMY TNG OKOYEVELNS Sp Yol
dwakprromoinon 128 fnudrov 6To y®Po TV GUYVOTHTOV.
HOAG 1o cvotnua eBavel pio Katdotaon npepiog (Bempnrtikd kabmg o ypovog trteivel oto
dmewpo), Bo toupdler pe TNV amOKPIGN TOL GUOTHUOTOS YO TN OTOTIKY TEPITTOON.
Avtiotoyo, 1 DVRF (u,) 6o mpémer emiong va axorovbel v kaumodn GVRF(u,), omog
ovvayetan and v EE. (4.34) kot tovg (Miranda and Deodatis 2012). TTapatmpdviog o Xy.
29, pmopet va gavetl 6t 1660 N kapmOdAn GVRF ywo to I'kaovoiavd 6co ko 1 GVRF, yio

AoyopOukd medio axoiovdeitanr kavomomTikd omd v KoumvAn DVRF (u A) 01O YPOVO

t=20sec. Kou o1 tpeig kapmdreg eniong Toptalovy He TV avtioTolyn GTOTIKY KOUTOAY.
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DVRF

15
k(rad/m)

GDVRF

20"

k(rad/m)

(b)

Yymqpo 31. 3D ypagikéc mapactioelg g (o) DVRF kot () GDVRF ¢ opildvtiag petatdmiong Ua,
uéypt m otyun t=0.2sec mgovvaptoelg g cuyvotntag x (rad/m) kot Tov xpdvov t (Sec) yio v
nepintwon LC1 kot 6¢=0.5 yia to mAaicio tov Zy. 20.

Téhog, n GDVRF vroloyiotnke yio to mhaicto tov Xy. 20 kot ywo thv nepintwon LCI yuo
&va ypovikd mapdvpo [O—O.ZSeC] KOL Y10l oL OYETIKA peydAn Tomiky andkAion og =0.5. Ta

Yy. 31(a) ko (B) mapovoidlovv ypapikéc mopactaoel avting ¢ GDVRF kot g
avtiotoyng DVRF . EnutAéov to Xy. 32 mapovoialet éva otrypdtono g GDVRF ko g
DVRF o6tav t=0.2sec .
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— GIWEF(0.2:)
ﬂ:ﬂ' =05

—— DVERD.2s)
LOOE-10 /,\
0.00E00 4 = —_— e

- - ™ : k(radm)

Yyqpa 32. Tpagkéc mapactaoels g GDVRF(Ua,t=0.25) yia v mepintoon LC1 ko 1 DVRF og

ovvaptnon g ovyvotnrog « (rad/m) yu og = 0.5 yia 1o mhaiclo tov Xy. 20.

Topaderyuo 2. Oewpodpe Tdpo 10 ToElo 610 Xy, 33 pe pnkog kou Vyog ico pe L=4m,

VIOOETOVTOS OTL TO OVTIOCTPOPO TOL HETPOVL EANCTIKOTNTAG HeTABAAAETOL TLYOioL GTNV

emdvelo Tov cOpEova pe v EE. (4.41) pe Fy =(L.35x10°kN /m)™*,v=0.2 , t=1.0 ka1 L6yo

anocPeonc & =5%.H ocvovolikn palo tg 6okod vrotiBeton 6t givor my, =4000kg kot 0Tt

KOTOVEUETOL OLOIOHOPPA LUETOED TOV KOUPOV TOV TETEPUAGUEVOV GTOYEI®V TOV HOVTEAOL.

To toyeio dakprromoteitan pe Eva cuvoro 100 crotyeiwv enimedng évraonc, 121 képPfovg ko

242 Babpotg erevbepioc. Xe avtd to mapddetypa, 1 2D dwrtvmmon g dwdwkacsiog DFEM-
FMCS éyet epapuootei, ypnowwonoiovrog 1 EE. (4.42) ko (4.43) yio v extipnon g
SLVOUIKNG HECT] TIUNG KO SLOKDILAVOTG TNG OTOKPLIoTG.

=
"o
=

40 ———————iﬁl

. L

Fr

«— 1) ———p

Yympa 33. Feopetpio, @OPTION KOl SLOKPLTOTOINGT TETEPUCUEVOV GTOLYEIDV TOL TOLXEIOV.

Bewpovvral ot id1eg dVO TEPIMTAOGELS POPTIONG OTMG KOl GTO Tponyovevo apddetypo. To

CLYKEVTIPOUEVO QopTio epapuoletol Omwe eaivetor 6to Xy. 33. Xe avtd T0 TOPAdELYUa, TO

axorovbo 2D pdopa £xet ypnoyoromet:

O 1o 2 22
Sfofo () Zbeby eXp[—Z(bXKy +byr<y )}

omov b, =2.0, b, =4.0
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DMRF(uA,t=0.5sec)

7.1

7.05~

24 sl

187 T~ s BERT g

ky(rad/m) T //,/2 “o06 ©
- s

DVRF(uAt=0.5sec)

x 10

wo = N W s oo
T /

S

=

1.8
24 ky(rad/m)

)
Yympe 34. 3D ypagicéc mapaotacelg g (o) DMRF kot (B) DVRF g opilovtiog petatomiong Ua, )

xpovikn otrypn t=0.5sec cvvopticel g cuyvottog ky (rad/m) ko x, (rad/m) yw v mepintoon
LC1 «xat 0¢=0.2.

To =y. 34 mapovoialel 3D amekoviceg g DMRF (U, ) kat tng DVRF (u,) yio v opilovia
HETOTOTION U, TOV OMUEIOL 4 TOV TOYEIOL OG GLVAPTNON TNG CLYVOTNTAG K, KoL Ky Yo
oy =0.2 xatd tov kabopiopévo ypovo t=05sec. Tlapatnpeiton 6Tt T660 1 DMRF (U,) dc0
kot 11 DVRF (u A)nouci?»kovv ONUOVTIKA GE OYECT LE TIG OVO deVBVVOELS Kot ™G GLVHB®G Ot
péyloteg Tég Ppiokovrar mAnciov tov (0,0). Této1eg YPAPIKEG TOAPAGTACELS UTOPOVV VO,
e€ayxBobv yoo Oha TOL YPOVIKA GTASLN TNG OVAALONG Yo TN GLYKEKPIEVN petatdmon. Eav
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EVOLUPEPETOL KOVEIS VO CLUVAYEL TPOAYUOTOTOMGIHO Ve Kol KOTO Opla ylo. ovT TNV
nepintwon, to dkpo ywoe mv DMRF(u,) ( DVRF(u,) ) oe kéBe ypovikd Pripa, mov
TPOKVTTOVV amd T KoTdAANAo (gvyn (KX,K'Y), Bo mpémel vor TPOGAOPIGTOVV KoL, PETH TN

ypnon EE. (4.47) kou (4.48), ta Oplo pmopei va vToAoyloTovy €0KOAM. Ml €QOpHOYT TNG
npoavapepbeicog drudikaciog tapovoraletat oto Xy. 35 o o =0.1.

1.00E-03
3 00E-06 mae(efu(t)])
6 00E-06 =01
4 ME-08
2 ME-08
0 QOE+O0 T T T T T 1 f
a0 a2 04 05 08 10 12

()

1.0E-12
§.0E-13
6.0E-13 max(var{uft)])
40E-13 ay=0.1
20E-13
'} '}E'H:"} T T T T T T 1 f
0 02 04 06 0.8 1 12

®
Yympa 35. Xpovoioctopieg Tov ave opiwv (o) ™g péong tiung kot (B) g dtakbpaveng g amoKpiong

70V ToYyElov Yo éva T'kaovoiovd nedio pe o = 0.1 yio v mepintwon LCL.

Yto akorovBo Zy. (36-40), ta amoteAéopaTo NG HEONG TIUNG KoL TNG OLOKVUOVONG TNG
amoKplong mov mapovstdlovior mpoépyovtal omd ™ dwadikacioo DFEM-FMCS kot tig EE.
(4.42) xou (4.43) oe oVYKPLON HE TO OMOTEAEGUOTO 7OV AouPAvovtal amd TNV Gpeon
npocopoiwon Monte Carlo. Zto Zy. 36, ta dwaypdupato anetkoviCovv ) cOykKpion yio N
OLVOUIKY] péEoN TN Kot TN SKOLUOVOT TG OmOKPIoNS TOL TOLXEloL Yo TV oploviia
petatdmion oto onueio 4 kot yio v nepinton LC1 yu éva I'kaovoslavd otoyaotikd medio
ue oy =0.1. Xto Xy. 37, t0 avtictoyo amoteAéopata mapovctdlovrar ya £va [caovoavo

otoyaotkd medio pe of =0.2. Zto Zy. 38, 39 1o amoteAéoporo efvar ovtictoya yuo

oTpoyyvAgvpévo I'kaovoiovd medio pe o

s =04 ko oy, =0.6 avtictoyo. Ov mpofréyers
tov EE. (4.42) ko1 (4.43) og avTég TIC TEPIMTOOELS EIVOL TOAD IKOVOTOINTIKES LLE TO GOAALOTOL
va Kopoivovtal and 5 €og 8%. Télog, oto Zy. 40 amoteléopota TG HEONG TUNG KoLl TNG
SLKOLLOVOTG TG amdKpLong Yol To Towyeio Kou yia v mepintwon LC2 mapovsidlovion yia

éva AoyapBpkd medio pe oy =0.2.
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0.00E=00 + . . . . . V¢
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()
10E-13
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2(E-14 Eq 18
Q0E+00 I §
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B

Yympa 36. Xpovietopieg g (o) péong Tiung kot (B) g Stakdpoveng g amdKpIong Tov TOLElo yio
éva T'kaovowvo medio pe o = 0.1 yia v nepintoon LC1. THykpion tov anotedespdtov pe MCS.

6.00E-06
efuft)]

=02

4.00E-08

——

2.00E-08 —  FEq.17

0.00E+00 - T T T T T ¢
0.0 0.2 04 0.6 0.8 10 12

(o)

4.0E-13
3.0E-13
20E-13
LOE-13

QOEL00 + T T T T T 1 i
0 0.2 04 0.6 0.8 1 12

var[u(t)]
ar=0.2 =——bfmes

——FEq. 18

B

Yympo 37. Xpovoiotopieg g (o) péong tiung (B) g dtokduaveng tng amodKpiong ToV TOyEIoD yia

éva T'kaovowo medio pe o = 0.2 yuo v mepintwon LC1. Zoykpion tov anoteleopdtov pe MCS.
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Yympa 38. Xpovictopieg g (o) péong Ty kot (B) g dtekdpaveng tng amdKpiong Tov Totyelov yo
éva vroketpevo I'kaovovd medio pe ogq = 0.4 y10. tnv nepintwon LC1. Toykpion towv

amotelecudtov pe MCS.

. e [u(t)]
S.00E-06 g—=0.35195 b
3.00E-06 Eq. 17
0.00E00 . . . . i
0 02 04 0.8 08 1 12
()
15E-11
var{uft)]
e //ﬁ ar=0.38195 w— s
5.0E-12
—Eq. 183
0.0E=00 : ; ; : . -
02 04 0.5 0.8 1 12
_5.0E-12
B

Yympa 39. Xpovietopieg g (o) pnéong Tiung kot (B) g dtekvdpoveng g amdKpIong Tov ToLElov yio
¢va vroketpevo I'kaovowd medio pe ogq = 0.6 1o v mepintwon LCIL. Loykpion twv anotedeopdtov

ue MCS.
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Yympo 40. Xpovictopieg e (o) péomng tiung Kot (B) g dtakdpaveng tng amrodKplong Tov Tolyeiov Yo

éva. hoyapBuo medio pe ox = 0.2 yioo mv mepintwon LC2. Thykpion TV omOTEAECUATOV HE
MCS.

4 EYPQXTOX BEATIXTOX XXEAIAXMOX ME XYNAPTHXEIX
ATAKYMANZXZHX TIX ANOKPIXHX: MIA ENAAAAKTIKH
[TPOXEITIZH

Ymv Khoown dwtdnworn Evpwotov Béitiotov Xyedwacpov (RDO), n PBeitictomoinon
yivetal ylo éva a priori EmMAEYHEVO GTOXACTIKO TESTI0. L€ TPAYLATIKEG EQAPLOYEC MGTOCO, 1M
doun ocvoyétions e aféPoing TapaUETPOL TOL GLGTHUATOS £Vl GTAVIOL YVOOTYH, ®G €K
TOUTOV KaO1oTA o TéTota dladtkacia feAtiotomoinong avoroteleopatikn. Kotd cuvéneia, o
oYEOOTNG lval VToYpe®UEVOG va. O1edyel TOAOTALG TETO1EG Olad1Kacieg PeATioTOTOINONG
YL VO TPOCTOTEVGEL TO GYEOCUEVO GLOTNUO amd OAEG TIG MBavEG TepumTOoeElc. Me )
xpNom TG mpotevopevng pebodoroyiag avtd to TPOPANUE vIEpkePAlETUL, 0POD O KAOE
VIOYN P0G oYedGHOC a&lodoyeitan pe PBdon TG emOOGES TOL KAT® Amd TO YEPOTEPO
duvaTd cevAplo oL TPOGOIOPILETOL Y10 TO GUYKEKPIUEVO GYESUGHO. ZVVETMG O GYESUGTNG
eCaocpaiiletar O6TL To ocvomua Ba €xel MV KoAOTEPN OdvvaTt) OTOO0GT| OTIS YEPOTEPES
duvatég cLVOTKEC.
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4.1 ANAAYZIH THX AIAKYMANXIHX THE AINOKPIXHE XPHXIMOIIOIQNTAX TH
VRF

Xopic BraPeg yevikomtog e€etaletal 10 YPOUUKO GTOYOOTIKO GUGTNUO TEMEPAUCUEVOV

otoyyelov tov Xy. 41, t0 omoio &ivol pio TAOC®T KOTOOKELT pe ototyeio dokov. To

YWOLEVO TOV aVTIGTPOPOL TOV UETPOV EANGTIKOTNTOG Kot TG pOTNG adpaveing Bempeitat 6Tt

petaBdAdetaor Toyaio Katd UKog tov dEova X cOUPmVe Le TNV akOAovOn EKppaon:

1

m =F,L+ f(x)) (63)

omov E eivan to pétpo ghactikomrag, | etvon n por adpdvetac, F, eivor n péon tipn tov
avtiotpopov tov El , ko f (x) elvar éva undevikng Héong opoyevEG Tedio TOv TEPLYPAPEL TN

uetaffoAr] Tov yopw amd ) péon T tov 1/ El .

Y ¥ Y Y ¥ ¥ 1 1r1r1rk

Ayl Ay 1

Ayl Ayl Ayl

Ay, I, Apl, Ap I,

TITRITIT000007 T 7000007 TR0

Yympa 41. Teopetpia kot @oOpTIon ToL TAAGIOL OV dtakprtomoteital pe 60 otoryeio 00K0D.
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AxolovBovtag pio Swodikacio mopdpole pe  ekeiviy mov  mopovcsldletor  amd  TOLG
(IToradomovrog, IMamadpakdkng and Deodatis, 2006), eivar dvvatdv vo EKPPAGOVUE TNV
dtakdpavo”n TG omdKplong eVOG GTOYOCTIKOD GLGTNUATOG TEMEPAUCUEVOV CTOLXEIMV LE TNV
oAOKANp@TIKY £k@poaot g EE. (11.69).

4.2 EYPQITOX BEATIZTOZX XXEAIAZMOZX XPHXIMOIIOIQNTAX TIX

2XYNAPTHXZEIZ AIAKYMANXZHYE THX AIOKPIZHX
O EbYpwotog Béltiotog Xyedwocpog (RDO) ypnowomowwvrag tig VRF (VRF-RDO)

YPNOOTOLEL [io SOVTIKEWEVIKT GUVAPTNON ToL TteptAapPavetl T péytotn Tiun s VRF ko
T0 GLVOMKO KATOOKEVAGTIKO Bdpog. Ot meplopicpol avtig ¢ Asttovpyiog pmopel va glvan
elte TdoemV glte TAPAROPPOCENV ite Kol TV dV0 Tawtdypova. H VRF givan pia cuvdptnon
OV AVAAVEL TN OIKVUAVOT) TNG OTOKPIONG TOV GUGTNUATOG, AveSApTNTO Ao TNV GLVAPTNON
™G QOOUOTIKNG TUKVOTNTOG TOV GTOYOOGTIKOD TESIOL OV TMEPLYPAPEL TO OVTIGTPOPO TOV
pétpov eraotikdtrog. ‘Etol, M ghoylotomoinon g HEYIGTNG TWNG TNG TPOKPIvEL Evav
VTOYNPL0 GYEWIUCUO OV £XEL TN PEATIOTN ATOO0CT GE GYEDT LE TO YEPAOTEPO GEVAPLO.

Mua yevikr| dwatdnwon s VRF-RDO pmopet va yiver og akorovBwg:

min._. f =[C(s,X), VRF(x™,c4)]" (64)

VO TOVG VIETEPUIVIGTIKOVG TEPLOPLGLOVG:

9;(X)<0 j=1..k (65)

o6mov f glvan 1 dravtikeeviky cuvaptnon mov oyetiletan pe o k66Tog ToL VAKOL C Kat o
SLAVLO O TTOL TTEPIEXEL TIG UEYIOTES TILEG TMV GUVAPTICENMV SIOKVLOVONG TG ATOKPIONG TG
emieypévng moootntog . g VRF(x™, 0 ) . To k06TOG TV DAKGOV Eivol [0 TpoQPavig
EMAOYN OC AVTIKEWLEVIKY] GLUVAPTNOT G TOAAG TTpoPAnpota dopkng avdivong. H péyiom
i g VRF | emidéyeton g Og0TEPT OGVTIKEWEVIKT] GLVAPTNGT TPOG EAOYLOTOTOING,
QVTITPOCOTEVOVTOS T OLKVLOVOT] GTNV OOKPIGT) TOV GLUGTHHOTOS KOt TV OTOTEAEGILOTIKT
OVTILETOMICT TOV VOIGTAUEVOV afefatotnTov o va mBavoTKd oYedaoTIKO TePBEALOV.
To dovvopa s copPorilet tic petafintéc oyedacpov kot X givar to ddvucpa 0éong. F
glvar N eQKT mEPLoyN] OOV OAEG Ol VIETEPUIVIOTIKEG GUVOPTNHGELS TOV TEPIOPICUMV J;

wavormoovvtat. H VRF(x™ o) éxel emdeyel ¢ AVTIKEWEVIKT GLVAPTNOT, S10TL TapEYEL

eyyeveig mAnpoeopieg mov elval yOPAKTNPIGTIKEG TOV GUOTHUOTOS Kot aveSdptntee amd
d0UT CLOYETIONG TOL GTOYUOTIKOV Tediov. ¢ ek TOVTOV, GOUPMOVA e TN Oatumtmwon VRE-
RDO o vmoynelog oyxedloopoc TOv EMAEYETAL, EMTLUYYXAVEL TN YOUNAOTEPT OvVOTH
OLKOULOVOT] TNG OmOKPIoNG VIO TIC YEWPOTEPEG OLVATEG cLVONKeg, amd TV Amoyn NG
(OGLLOTIKNG TUKVOTNTAG TOV GTOYOCTIKOV TESIOL.
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4.3 TIOAY-ANTIKEIMENIKH BEATIZTOIOIHZH ME [ENETIKOYX

AATOPIOMOYZE
H Aom evog mohv-avtikepuevikod tpoPfAnpatog Bertiotonoinong divetar pe m popen evog

Aeyouevov petomov Pareto oe avtifeon pe éva povo-oavtikelpevikd TpofAnua 6mov n Adon
etvar povadikn. Apketég pébodot £xovv mpotabel yio TV TOAL-OVTIKELEVIKY PeATIoTONTONON
omwg M pébodoc tov otabuicpévov abpoicpotoc (Zadeh 1963), tov TPOYPOUUATIGHOV
otoyobeciog (Charnes and Cooper 1977), Tov @uoikol mpoypappaticpod (Messac, Puemi-
Sukam and Melachrinoudis 2001), Tov cvoppifactikod tpoypaupaticpod (Chen, Wiecek and
Zhang 1999), 6nwg eniong kot o1 TPocPAT®E dtoTvITpEVOL EEEMKTIKOL aAydp1Ouol, OTmg o
Avvorog Pareto E&eliktikog AlyopiBuog 2 (SPEA-2) (Zitzler, Laumanns and Thiele 2001),
npocopotwpévn  ovommon (Suman and Kumar 2006), n Pektictomoinon ounqvovg
copotdiov (Parsopoulos and Vrahatis 2002) (Coello Coello and Salazar Lechuga 2002) ot
0 un-kuplapyoduevng Atadoyng I'evetikdg AlyopiBuog I (NSGA-II) (Deb et al. 2002). Xtnv
TapoVGO EPYOCIn 1| TOAL-OVTIKENEVIKT] PeATioTomoinon yivetan pe epappoyn tov NSGA-IL,
nov €xel kabepwbel ¢ TPocEyyon Yoo TOV EVIOTMIGHO TOL «pet®mov Pareto». Ot molv-
avtikelevikol e€elktikol adyopiBuor mpotodvtar £vavilt T®V  KOAGGIKOV peBddmv
BeAtiotomoinomg kupimg Ady®m NG wavoTNTaS TOVG Vo Bpovv ToAAAmAES BEATIOTEG ADGELS
Pareto pe éva povo tpé&yro. Qotoco, €xovv emikpdel Kupiog yo Bépata dmwg 1 VYNAN
VTOAOYIGTIKT] TOAVTAOKOTNTA KO 1] UWN-EATIGTIKN TPOGEYYIoT).

Ady ™G eVONG TOL TPOPANUATOC, OL GTOYOL Kol 01 TEPLOPIGHOTL BE®POVVTOL MG U1 YPOUKES
ovvaptnoels. To péyebog tov mAnBvcpov tifeton ico pe 50 yu kébe yeved. Ta KAdopota
TOV J0dIKACIOV THG petavaotevong (Mmigration) kot ¢ petdPacng (Crossover) wwovtot pe
0.5. O méyiotog apBuog yevemv opiotnke icog pe 150.

4.4 APIOMHTIKH E®APMOTH
To tpidpopo mhaiclo mov @aiveror oto Xy. 41 emdéyetor mPokeWEVOL Vo avodeiEel Tig

duvatodtteg ¢ pebddov. IMa v kotackevn avt, 10 avtictpopo tov El Bewpeitar 6t
TOKIAAEL TUYOi0 KaTG PAKOG TV oTotyeimv TG Katackeung coueova pe v EE. (5.42) e

F, = (1.35x10°KNm®)™ . EmmAéov, kO O6popog éxet 3m vyog kor 4m pikoc. T v
avédAvon g doung tov mAaiciov ypnoipomorovvtor 220 otoygeio dokov, 15 yuo kébe

vrootAopa kot 20 yio Kae d0Kd mov GuVETAyETAL OTL 1] KOTOOKELY £YEl CLVOAKE 654
Babpovg erevbepiog.

M cuykevipouévn porn epopudletar otn péon tov kdbe opdeov ion pe M =70KNm kot
éva. Katavepunpévo @optio q=3.2 KN/m xoatd punkoc 6Awv tov dokmv (PAéme Xy. 41).

Ynobétovtag mAnpn otatiotiky €EAPTNON, TO OTOYOOTIKO TESIO f(x) Bewpeitar Ot

petoPdAdetal o OAO TO UNKOG TMV LITOCTNAMUATOV KOl TOV OOKOV TOL TAUGI0V ®¢ €ENG: TO
X vrotifeTon 0Tl OLEAVEL TPOTA KATA UNKOS TOV VTOCTNA®UATOV ond 0ploTtepd TPOG To
de&1l Kot ammd KAT® TPOG T TAVE® GTOV TPMTO OPOPO, KATOTY KOTE L KOS TV OOKMV TOL
TPAOTOV 0POPOL ATO APLETEPA TPOCS T, dEEIE. AKorovBmdVTOg TO 1810 pHOoTiO Y10 TOLG OPOPOLE
2 ko 3 oynuotileton éva ovveyég medio. To SDF tov mediov vrotiBetan 6t elvan exBeTikd kot
dtvetol o¢ €NgG:
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Si (k)= %aﬁ b3 e o (66)

AVO S10QPOPETIKES TYEG TNG TAPOUETPOV TOL UNKOVG GLOYETIONG eEeTdotnkay, b=10 kot

b=70 pe o tomkn anokiion og =0.1. Ado yp. mapactdoelg tov SDF ce oyéon pe m

GUYVOTNTA K(rad / m) YO TIG EMAEYUEVES TIUES TOV b paivoviot 6to Xy. 42.

a1
Sl 0.0% -
0.0% -
007 4
0.08
0.0%
0.04
0.03
002
o.01
a

—h=70
—bel0

] 0.5 1 1.5
xradn)

Tynpa 42. TovopToELS QACUOTIKAG TUKVOTNTOG Y10 TO 6ToY0oTIKS edio f (X) UE TUTIKY amOKAoN

o« =0.1y1a 300 SrapopeTikég TIHEG TNG TAPAUETPOV TOV UNKOVG GLCYETIONG.

Ol yeoUETPIKEG 1010TNTES TOV VTOCTNAOUATOV KOl TOV d0KAOV 6€ KAOE 0popo ToL TANIGIOL
Bewpodvial m¢ ot TEGoePLS dOKPLTES petaPfintég oyxedlacpob yuo ) dautdvnwon VRF-RDO
(BA. Zy. 41). H emAoyn TV YEOUETPIKOV 1010THTOV TOV VTOGTNAOUATOV KOl TOV OOKOV TOL
niaiciov yel oprotel oto mhaico Tov Evpoxkddika-8 pe dwtopés HEB and HEBLOO €wmg
HEB1000 . H diatvmmon tov wpoPinuatog pe VRF-RDO éyet wg e&nc:

min,_ f =[VOL(s),VRF («™,c)]"

s:[Xl,XZ,XS,X4]T (67)
Xi =[A, 1]
VLo TOVS TEPLOPITUOVG
X, eQ
L (68)

max(c) <o, /1.10, o, =235Mpa

omov VRF(x™,04) eivan m péylotn tf mg VRF mov avtiotoyel oty katokdpoen
petotomion U oto Xy. 41, Q elval 10 GHVOAO SOKPITOV TILAOV TOV TEPLEYEL TIG YEMUETPIKEG
1816 Tec TV dtatopdv tov EC-8 amdé HEBL00 éwc HEBI000 , F Q' sivar 1 it
mePLoyN Yo tn HETAPANTY] oXEOOGHOD S OOV OAOL Ol TEPLOPIGHOL tKovoToovvTal, A, |
etvat o1 péoec TYES TG STOUNG KOl TNG POTNG AOPAVELNS, AVTIGTOLYO, TOV OOUKAOV UEADV,
max(O') elvar n pPEYIOTN VIETEPUIVIOTIKY TAOM Yo KAOE oyxedlacUd mov epeavileTol 6To
HOVTEAO KoL Oy gival N Taom S1appot|g TOL VAKOD. Avagépetar €60 0Tt ot N uebodoroyia

elval TANpoC emektdolun kot o€ 0éom va AdPel vIOYY TOAALOTAEC UETOTOMIGES NG
KOTOOKELNG, YOPIG TEPUTEP® GVVETELIES KOl TPOGHETO KOGTOC e AUESO TPOTO.
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Apywcd pa kKAaoowkn RDO 61e&nydn ywo v tepintmon evog d€00UEVOL GTOYOGTIKOD TEGIOV
ue éva SDF pe b=10 va meprypagertto El omv EE. (5.42).

1.2 -
1 .
B
s 1
* s 08
o Wy '
R =
o " 06|
[ ] < .
¢ ,m " 2 * RD[var(b=10)_vs_weight]
u 2
$+ % 0.4 4 = maxvar(b=10)_vs_weight
0.2 -
1.00E-07 1.00E-06 1.00E-05 1.00E-04
variance

Yympo 43. Métono Pareto yua pia khooowkny RDO yuo dedopévo medio pe b=10 kot 1o cuvorkd
Bapog kat tn HEYIGTN SLUVOTH SKVUOVGT O OVTIKEIUEVIKES GuvapTRoels. O d&ovag g Stakduaveng
6€ AoyoptOKy KAMpoKa.

To Xyx. 43 mapovcidler T0 vmoloyiohév pétmmo Pareto, 6mov, OTWC NTAV AVOUEVOUEVO, OL
Baputepor oyxedtacpol epeaviCovy Ty vVIEPTEPN 0mdO0cN dNANON TN UKPATEPT OLKVLOVON
g amdkpiong. Opoiwg, eAa@pOTEPOL GYEIOGHOTL AVIOALAGOUY TO UEIOUEVO TOLG KOGTOG,
amd TNV AIToyn TOL GLVOAIKOV GYKOL TOV VAIKOV, LE aLENUEVT OlaKDUaVeT. TV {01 1KoV
epneavileTot Kot v HETOTO TO OTOi0 TOPAYETOL OO TOV VITOAOYIGHO TOV Gve opiov Yo TN
dwaxvpavon g andkpiong péom ¢ EE. (11.70) ywo kabe éva amd tove oYedGHODS TOV
TPONYOLUEVMG VTTOAOYIG0EvTOoC petdmov Pareto and v khoowkn dwdwacsio RDO. Onwg
eaivetal oto Xy. 43 avtd to pétomo petotomileTol cap®g TPOg To OeSld TPAYUO TOL
onpaivel 6Tt TovAdylotov €va medio pmopel vo Ppebel, my. €va Tuyoio MUTOVOEWES e
K=K, 00T0 ¢ VRF xdBe vmoyneiov oyedioopov, yoo 1o omoio n dwaxvpoveon eivor

ONUOVTIKA DYNAGTEPN OO €KEIVI TOV VTOAOYIGTNKE Y10 TO OEGOUEVO GTOYACTIKO TTEHIO LE
b=10.

3.0E-04
2= ——s1(Ai) =[1.90E-02 1.90E-02 1.90E-02 3.00E-02] ,
2.0E-04 w1=1.056 m3

1.5E-04 =

1.0E-04 ——s2(Ai) =[1.00E-02 2.00E-02 1.00E-02 2.00E-02],
5.0E-05 m w2=0.73m3
0.0E+00 -+ ' ' ' ' T ' ' 1 ——s3(Ai) =[2.00E-02 1.00E-02 1.00E-02 2.00E-02],

0.0 0.5 1.0 15 2.0 25 3.0 3.5 4.0 S
x (rad/m)

(o)
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3.0E-04
2.5E-04
2.0E-04
1 5E-04 ~——51(Ai) =[1.00E-02 1.00E-02 1.00E-02 2.00E-02] ,
10E-04 w1=0.64 m3
5.0E-05 ——s2(Ai) =[1.00E-02 2.00E-02 1.00E-02 2.00E-02],
0.0E+00 T T T T T u T il w2=0.73 m3
0.0 05 1.0 15 20 25 3.0 35 40
K (rad/m)
1.4E-03
1.2E-03
1.0E-03
8.0E-04 ——s1(Ai) =[1.00E-02 5.00E-03 1.00E-02 2.00E-02],
6.0E-04 w1=0.595 m3
4.0E-04
2.0E-04 _/—/\__\_/\ ——s2(Ai) =[5.00E-03 1.00E-02 1.00E-02 2.00E-02],
0.0E+00 - T T T T — r T ] w2=0.595m3
0 0.5 1 15 2 25 3 35 4
K (rad/m)
()
2.5E-04
2.0E-04 ~——s1(Ai) =[1.50E-02 1.50E-02 1.50E-02 1.50E-02],
1.5E-04 w1=0.66 m3
1.0E-04 ——s2(Ai) =[3.50E-02 1.50E-02 1.50E-02 1.00E-02],
5.0E-05 w2=0.74m3
0.0E+00 ' T 1 ——s3(Ai) =[1.50E-02 3.50E-02 1.50E-02 1.00E-02],
0 0.5 1 15 2 2.5 3 3.5 4 43-074m3
K (rad/m)
6.0E-05
5.0E-05
4.0E-05
3.0E-05 ——s1(Ai) =[1.90E-02 1.90E-02 1.90E-02 3.00E-02] ,
2 0E.05 w1=1.056 m3
1.0E-05 B ——s2(Ai) =[2.00E-02 1.00E-02 1.00E-02 2.00E-02],
0.0E+00 - . . ; . " - . ] w2=0.73 m3
0.0 0.5 1.0 15 20 25 3.0 3.5 40
x (rad/m)
(e)

Yympa 44. Ip. tapactdoeic e VRF yia dtopopetikd BApog Kol KOTOUTKEVAGTIKES OLUTOMES TOV
TEPIAAUPAVOVTOL GTO S1AVUGLO GYOUGHOD S .

[Tpoxeyévovr vo mpocdloplotel T0 Gved OPlO Yo TN OKVUOVOT TG OmOKPIoNG TOV
ovoTNUOTog Yoo Kabe oyedtaopnd vmohoyilovron ot avtiotoyyeg VRFE. Zto Zy. 44
ancwoviCovtar pepkés yapoakmmprotikés VRFE yio tovg avtiotoryovg oyedlacpovg tov
oLOTNHOTOG OV TOV. ATO avTd To Ypagpnpata Tov VRF kabictaton cagpéc 6t vmdpyet opketd
neplldplo yioo Pertioronoinon oe oxéon pe v péyrot T Mg VRE mov e€aptdror amd
mOaveée aAloyéG o010  OAVLGHO  OGYESOIGHOL OKOUN Kol Yyl TNV 7mepintwon icmv
KOTOOKELAOTIKOV Pap®dv. AmO autd To ypapnuota givol emiong mpo@avég OTL o1 TEPLOYES
TOV KOHOTIKOV oplOudv mov cvvelspépovv meplocotepo ot VRFE kou ocvvenmg ot
SLOKOLLOVOT] TNG AOKPIoNG EMOEIKVOOLV GNUOVTIKN UETOPANTOTNTO KO EEQPTMOVTOL £VIOVQ
Omd TIG VIETEPUVIOTIKES TOPOUETPOVS TOV TpoPAnuatoc. Erakoiovba, £dv o KAACGOIKY
RDO odnyel oe BéATIOT dokOOVOT TNG AMOKPIONG TOL GLGTHUATOS Yo Eva, dedopévo SDF
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avtd dev onpaivel amoapaitnTo OTL VTOG 0 GYEdCUOG eival eniong BEATIOTOG o GYéon pe
éva daupopetikd SDF.

Ly |
1
+m 08 o
1 g
B 0.6 - E
* . ) ';" + RD{var(b=70) vs_weight]
*fa .
‘. m o0t d s maxvar(b=7T0)_vs_weight
. [
* L]
. "
L] | | 0.2
; - , . o—
1,00E-07 1, 00E-06 1.00E-05 1,00E-(4 1,00E-03

variance

Yympa 45. Métomo Pareto ywo o kKhacowkn RDO yuo dedopévo medio pe b =70 kot to cuvorikd
Bapog kot tn pEYIGTN SLVOTH SIKVUOVGT] O OVTIKELEVIKES cuvapTioels. O dEovag g dtakdpaveng
6€ AoyoptOKy KAMpoKa.

To 1010 ovumépacpa umopei va cuvaybet amd 1o pétomo Pareto g Klaowkng RDO oto Zy.
45, A6 Yoo po TopapeTpo uikovg cvoyétiong b=70. Ano ta Xy. 43 ko 45 pmopei va
napatnpndel 6t omv mepintwon tov b=10, o péoog Opog ™G «UETETOMONG» TOL
TOPAYMOYOV UETOTOV MG TTPOS TN dtakvuavon eivol icog pe 74% wopovopevog and 44%
uéxpt 140% evd oty mepintwon tov b =70710 avtictoyo mocootd eivar 86%, 42% Ko
226%. Xt0 Zy. 46 mopovcidlovtal To dLO TPONYOVUEVO ATOTEAEGUATO GE GUYKPLOT UE TO
pétomno Pareto mov mapdyston and 1 dwtdnwon VRF-RDO. Avtd mov givor onpovtikd va
éyoope Katd vov katd tn owdwocioo VRF-RDO eivar 611 o1 Bértiotor oyedacpol 6to
pétono Pareto tov Xy. 46 moapovoidlovv v Pértiotn amddoon ywo didpopa mhavd
oToXaoTIKE media Tov aféfoiwv TOV TOPAUETPOV TOL GUOTHUOTOS. XVYKEKPUEVA,
ocvykpivovtag 1o pétomo Pareto and ™ VRF-RDO pe to péromo g péylotmg Suvotig
dakduavong yoo v mepintoon tov b =10 nopatnpodue o611 Yoo évo Topodpolo Papoc,
Onradn 1o terevtaio onueio tov ke petdmov (Bapog onueiov petdnov VRF-RDO ico pe
0,181m* xon Papoc omueiov petdmov yioo v mepintoon b=10 ico pe 0.197m*) £yt
emrevyOel peiwon g dtokdpavons. Xe pa GAAN tepintmon, yo v Taén Papovg yopw omd
10 0.27m* n peimon eivon oyeddv 60% . Kot ) cvykpion tov petdmov Pareto pe VRF-RDO
ue to pétono g uéylotng dvvarng dtokvpaveng yi b=70, n peiwon g dwuxduavong
etvat akoun mo évtovn eOBdvovtag émg o 80% .
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1.2 4
»
* 1 4
% 0.8 4 %‘ #VRF_RINmaxvar vs_weight)
= .
x | s0% — Foos 06 - 2 KRR sbI0, ve_weighd
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variance

Yympa 46. Métono Pareto yuo v khacowkr] RDO pe tn Staxdpovon g amdkpiong yio évo tedio [e
b=10,70 kot 10 cVVOAIKO BAPOC WC AVTIKEWEVIKEG GUVOPTNOELS KO TIC AVTIGTOLES HEYIOTES

SLOKVUAVGELC Y10, TOVG EMIAEYOUEVOVG GYEOLOGUOVC.
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CHAPTER 1

1 INTRODUCTION

1.1 MOTIVATION AND SCOPE

Even in modern-day design procedures of engineering structures, inherent uncertainty of
physical systems related to i.e. material, geometry, loading etc, is casually neglected in an
effort to simplify computational analysis as well as cover lack of efficient models thereof.
Such procedures are characterized, broadly speaking, as deterministic procedures. In
alternative more realistic methodologies, where uncertainties are taken under consideration, a
lot of discussion is taking place with respect to modeling simplifications being introduced
and in particular how these simplifications affect the final outcome. Especially in the case of
dynamic modeling and analysis this discussion is more vivid due to the increased
computational intensity and the consequent cruder simplifications. Second order phenomena,
necessary to determine failure mechanisms are seldom addressed. Furthermore, quite often,
results are limited to second moment properties of the response rendering the analysis
unpractical for the analyst or designer. Drawing a comparison between the sophisticated
system models of deterministic designs and the rough models incorporated in most stochastic
analyses one can also identify a valid argument for the lack of recognition of the stochastic
analysis procedures from the engineering community. However, the whole idea behind
stochastic procedures and analysis essentially is that of an alternative perception and different
information representation. In simple terms stochastic methodologies choose to tackle
engineering problems in a more ‘holistic’ approach i.e. attributing probability distributions to
system response, as opposed to deterministic ones that tend to account only for a fraction of
reality and possible outcomes.

Over the past two decades a lot of research has been dedicated to the stochastic analysis of
structural systems involving uncertain parameters in terms of material or geometry with the
implementation of stochastic finite element methodologies (SFEM) to numerically solve the
stochastic partial differential equations (PDE’s) governing the respective problems. The most
commonly used SFEM methods are expansion/perturbation-based (Liu, Belytschko and Mani
1986a), (Liu, Belytschko and Mani 1986) and Galerkin-based Spectral SFEM (SSFEM)
approaches (Ghanem and Spanos 1991) or costly Monte Carlo methods (Grigoriu 1995),
(Matthies, et al. 1997), (Stefanou 2009). In some cases these methods have been extended to
dynamic stochastic analysis in a straightforward manner (Zhao and Chen 2000), (Liu,
Besterfield and Belytschko 1988) along with procedures to improve their efficiency both in
terms of accuracy (Ghanem and Spanos 1990), (Jensen and Iwan 1992), (Li 1996), (Li and
Liao 2001) as well as computational performance (Yamazaki, Shinozuka and Dashgupta
1988), (Papadrakakis and Papadopoulos 1996), (Papadrakakis and Kotsopoulos 1999). A
probability density evolution method was proposed in (Li and Chen 2006), (Li and Chen
2004) in an effort to approximate the time varying probability distribution function (pdf) of



the response of stochastic systems using the principle of preservation of probability. Along
these lines, some other approaches implement approximate Wiener path integral solution
schemes (Kougioumtzoglou and Spanos 2012). However these approaches have been mainly
implemented in single degree of freedom oscillators or small illustrative academic systems
due to increased computational cost. In all above cases, prior knowledge of the correlation
properties and the marginal pdf of the random fields characterizing system uncertainties is
essential for accurate estimates of the system’s response. In the frequent case of insufficient
experimental data, analysts are forced to resort to sensitivity/parametric yet cost inefficient
analyses. Furthermore, such analyses do not provide any information on the mechanisms that
affect response variability, or bounds of the response. In addition to the aforementioned
approaches, a relatively small number of studies have dealt with the dynamic propagation of
system uncertainties, most of them reducing the stochastic dynamic PDE’s to a linear random
eigenvalue problem (Ghosh D 2005), (G. I. Schueller 2011). Although such methods have
proven to be highly accurate and computationally efficient for a variety of problems, there is
still a wide range of problems in stochastic mechanics involving combinations of strong non-
linearities and/or large variations of system properties as well as non-Gaussian system
properties that can be solved with reasonable accuracy only through a computationally
expensive Monte Carlo simulation approach (Liu, Belytschko and Mani 1986), (Grigoriu
2006), (Matthies, et al. 1997), (Stefanou 2009).

In all aforementioned cases, the spectral/correlation characteristics and the marginal
probability distribution function (pdf) of the stochastic fields describing the uncertain system
parameters are required in order to estimate the response variability of a stochastic static or
dynamic system. As there is usually a lack of experimental data for the quantification of such
probabilistic quantities, a sensitivity analysis with respect to various stochastic parameters is
often implemented. In this case, however, the problems that arise are the increased
computational effort, the lack of insight on how these parameters control the response
variability of the system and the inability to determine bounds of the response variability.

In this framework and to tackle the aforementioned issues, the concept of the variability
response function (VRF) has been proposed in the late 1980s (Shinozuka 1987), along with
different aspects and applications of the VRF (Wall and Deodatis 1994), (Graham and
Deodatis 1998). A development of this approach was presented in a series of papers
(Papadopoulos, Deodatis and Papadrakakis 2005), (Papadopoulos and Deodatis 2006) and
(Papadopoulos, Papadrakakis and Deodatis 2006) where the existence of closed-form integral
expressions for the variance of the response displacement of the form

Var[u] = I:VRF(K, 6¢)Sy (K)dx (11.69)

was demonstrated for linear stochastic systems under static loads using a flexibility-based
formulation. This formulation leads to the derivation of the integral expression in Eq.(11.69)
without any approximations involved. It was shown that the VRF depends on standard
deviation but appears to be independent of the functional form of the spectral density function



modeling the inverse of the elastic modulus. The existence however of this integral
expression had once again to be conjectured for statically indeterminate as well as for general
stochastic finite element systems. Further investigations (Miranda 2008) verified the
aforementioned results but showed that VRF has a slight dependence on the marginal pdf of
the stochastic field modeling the flexibility. In (Papadopoulos, Papadrakakis and Deodatis
2006) results were presented for stochastic space frames, plane stress and shell-type
structures under static loads. Another important extension of the concept of VRF has been
drawn in (Arwade and Deodatis 2011) to determine effective material properties in
homogenization problems.

In the research presented in this dissertation, aforementioned approach is extended to
stochastic systems under dynamic excitations. As a first step a single d.o.f. stochastic
oscillator was considered. Although the derivation of an analytic expression for the
variability response function of the dynamic system (DVRF) is extremely cumbersome, a
numerical computation can be easily achieved and then fed into Eq.(11.69) to provide results
for the variance time history of the dynamic system response. As in previous works
(Papadopoulos, Deodatis and Papadrakakis 2005), (Papadopoulos and Deodatis 2006),
(Papadopoulos, Papadrakakis and Deodatis 2006) the existence of the DVRF has to be
assumed. This assumption is numerically validated by comparing the results from Eq. (11.69)
with brute force Monte Carlo simulations. It is demonstrated that the DVRF is highly
dependent on the standard deviation of the inverse of the elastic modulus but appears to be
almost independent of the functional form of the spectral density function, as well as of the
marginal pdf of the flexibility. In addition, an integral expression similar to that of Eq.
(11.69) is proposed for the mean time history response involving a Dynamic Mean Response
Function (DMRF), which is a function similar to the DVRF.

Both integral forms for the mean and variance can be used to efficiently compute the first and
second order statistics of the transient system response with reasonable accuracy, together
with time dependent spectral-distribution-free upper bounds. They also provide an insight
into the mechanisms controlling the uncertainty propagation with respect to both space and
time and in particular the mean and variability time histories of the stochastic system
dynamic response.

In the continuation of this research, closed form integral expressions in the form of
Eq.(11.69) are proposed for the mean and variance of the dynamic response of statically
indeterminate beam/frame structures and then extended to more general stochastic finite
element systems (i.e. plane stress problems) under dynamic excitations. In this case DVRF
and DMRF vectors are constructed of corresponding DMRF and DVRF for each degree of
freedom of the FE system. A general so-called Dynamic FEM fast Monte Carlo simulation
(DFEM-FMCYS) is provided for the accurate and efficient evaluation of DVRF and DMRF
for stochastic FE systems. Numerical results are presented, demonstrating that, as in the case
of classical VRFs, as well as in the case of DMRF and DVRF for single degree of freedom
stochastic oscillators (Papadopoulos kot Kokkinos 2012), the DVRF and DMRF matrices



appear to be independent of the functional form of the power spectral density function Sy (x)

and appear to be marginally dependent on the pdf of the field modeling the uncertain system
parameter. It is reminded that the existence of VRF has been proven only in the case of
statically determinate structures under static loading (Shinozuka 1987), (Papadopoulos and
Deodatis 2006). In all other cases this existence had to be conjectured and the validity of this
conjecture was demonstrated through comparisons of the results obtained from the proposed
methodology and brute force MCS. The validity of this conjecture is further boosted in this
work by comparing steady state DVRF with respective Generalized VRF (Miranda and
Deodatis 2012) for a statically indeterminate frame structure. GVRF involves the
computation of different VRFs for corresponding combinations of different marginal pdfs
and power spectra and was developed in order to further test the independence of VRF from
the stochastic parameters of the problem. It should be mentioned here that the VRF concept
was recently extended in (Teferra and Deodatis 2012) for structures with non-linear material
properties where a closed form analytic expression of VRF revealed the clear dependence of
the integral form of Eq.(11.69) on the standard deviation as well as higher order Power

spectra of f (x). Finally, realizable upper bounds of the mean and variability dynamic system
response are evaluated.

The next part of this dissertation is focusing on stochastic optimization issues with the intent
to firstly draw a critical review on classical stochastic optimization procedures and their
limitations and secondly take advantage of the established concept of VRF and its features
and propose an alternative stochastic optimization formulation which provides the design
engineer with more meaningful results.

In recent years, the concept of Robust Design Optimization (RDO) (or Stochastic
Optimization or Robust Design) has been introduced in order to deal with intrinsic
uncertainties in physical systems that drive the system performance to deviate from the
deterministically expected performance into sub-optimal designs, thus neutralizing the effort
of the optimization procedure itself. In RDO the analyst is taking into account the stochastic
properties of the system variables/parameters and/or system constraints and effectively
reaches a safer optimum design which should be less sensitive to random system parameter
variations. Various methodologies have been proposed in recent years regarding RDO and its
applications to various problems. In classical RDO formulation the goal of minimizing
objective function(s) is achieved by considering the mean and/or the standard deviation of a
response quantity and trying to establish the designs that minimize the aforementioned
quantities considering deterministic or reliability constraints (Park, Lee, et al. 2006), (Beyer
and Sendhoff 2007). In Reliability-based Robust Design Optimization (RRDO) (Missoum,
Ramu and Haftka 2007), (Lagaros and Papadopoulos 2006), (Allen and Maute 2005) usually
care is taken to address the influence of probabilistic constraints as a limit on the probability
of failure in the context of RDO of structures. Vulnerability-based Robust Design
Optimization (VRDO) is a special case of RRDO where intermediate limit states approaching
the probabilistic constraints are also taken into account thus providing possibly crucial



information regarding structural behavior and operational integrity (Papadopoulos and
Lagaros 2009).

All previously mentioned RDO formulations are to be carried out in a stochastic finite
element method (SFEM) framework so as to efficiently estimate the required quantities
associated with system variations. This consideration of system randomness however, for it to
be reliable, requires a precise knowledge of probabilistic characteristics (marginal pdf’s and
correlation structures) of the respective random fields modeling system parameters acquired
only through corresponding experimental surveys or otherwise careful assumption/selection
of the various statistical properties describing the system variables/parameters uncertainty is
necessary. Furthermore it increases substantially the analysis computational cost as any
candidate design requires full stochastic analysis for the statistical estimation of various
response quantities. In the frequent case that such conditions are not met, similar analyses are
implemented based on sensitivity analyses with respect to the aforementioned parameters
resulting in a significant further increase of the overall computational cost.

In the current research, an alternative RDO procedure is proposed utilizing Variability
Response Functions (VRF) concept in an effort to provide an answer in aforementioned
known issues while optimizing a frame structure involving stochastic field material properties
with respect to its total weight and robustness of its displacement response. Keeping in mind
that in the integral expression of EQ.(11.69) the VRF is assumed to be deterministic what is
really beneficial under this assumption is the ability to establish spectral- and pdf-free upper
bounds in a straightforward manner described in the following equation as it has been
explained in (Papadopoulos, Deodatis and Papadrakakis 2005):

Var(u) <VRF (™, o )o& (11.70)

where VRF (™o )is the maximum value of the VRF attained at some wave number ™.

Therefore, setting maximum VRF value as an objective function accounting for system
response robustness, in addition to the total weight, the system is ensured to exhibit, for a
given weight class, the lowest possible variance response under conditions imposed by the
worst possible stochastic field. The worst possible stochastic field for a particular design
candidate is determined by means of Eq. (11.70) i.e. it is a stochastic field with a
monochromatic spectral density function (SDF) concentrated at ™ (Papadopoulos,
Deodatis and Papadrakakis 2005). The optimum design candidate for this particular weight

class is the one that minimizes the respective VRF(K"‘&"‘,(;ff )value. Repeating this process

for all possible weight classes one can create a two dimensional Pareto front for two objective
functions: the weight and the system variance response accruing from Eq. (11.70).

In classical RDO formulation, optimization is performed for an a priori selected stochastic
field. In real life applications however correlation structure of the uncertain system parameter
is rarely known thus rendering such an optimization procedure redundant. Consequently the
designer is obliged to conduct multiple such optimization procedures to shield the designed



system from all contingencies. By using the proposed methodology this problem is overcome
because each design candidate is evaluated based on its performance under the worst case
scenario determined for the specific design. Effectively the designer is ensured that the
system will have the best possible performance at the worst possible conditions.

The advantages of using the proposed methodology over traditional Robust Design
Optimization are illustrated through an application to a frame-type structure where it is
demonstrated that the designs achieved through classical RDO for a given stochastic field
description are not optimal if a variation on the spectral properties of the random field
modeling the system uncertainty occurs. On the other hand optimal designs obtained with the
VRF-based RDO remain optimum for the worst case scenario stochastic fields. In order to
demonstrate this, a bi-objective function is formulated taking into account uncertainties in the
material properties modeled as random fields. Deterministic constraints of maximum stress
and displacement response are applied. A Pareto front is initially constructed through a
classical RDO formulation and multi-objective Genetic Algorithm solver for the two
conflicting objective functions, namely the total structural weight and the system response
variability, for a given stochastic field with a classical Robust Design Optimization
formulation. Then, maximum possible variances of the selected designs are computed from
the respective maximum values (see Eq. (11.70)) of the corresponding Variability Response
Functions characteristic to these designs. The resulting front is then compared to a new
Pareto front in which the second objective function is the maximum possible system variance
which can be readily obtained by minimizing the maximum value of the Variability Response

Function minVRF(K”“’X,aff ) The former classical RDO front proves to be, as expected, sub-

optimal to the VRF-based one since the latter is by definition independent of the probability
distribution and the spectral density used to model system’s uncertainty. It is mentioned that
the generated front and the respective proposed designs are referring to a variety of stochastic
fields in contrast to the classical RDO. It is also clarified that the proposed designs are not
necessarily optimal when examined under the scope of only one predesignated stochastic
field. In the case that an optimization is carried out for a specific correlation structure the
resulting design selection will be suboptimal with respect to any other correlation structure.

1.2 OUTLINE
This thesis is organized in seven chapters organized as follows:

Chapter 2 offers the reader elements of random variables and stochastic processes theory.
Basic principles of probability theory are mentioned and most commonly used distribution
and density functions as well as the meaning of statistical properties and their definition.
Further on, stochastic fields are introduced together with important properties such as
correlation structure, ergodicity, homogeneity and a distinction is made in Gaussian and non-
Gaussian fields. Also a paragraph is dedicated to discrete random fields particularly useful in
computational applications.



Chapter 3 is presenting the concept of the Mean and Variability Response Functions as
developed in the past for statically determinate and indeterminate structures. A numerical
example with results at the end of this chapter showcases the potential of this methodology as
established in previous research and highlights the core conceptual and computational steps
utilized and extended in the original research presented in the following chapters of this
thesis.

Chapter 4 deals with the extension of the VRF and MRF concept at first to single d.o.f.
oscillators. After an introduction and the description of the procedure of a stochastic single
dof oscillator dynamic analysis with brute force Monte Carlo simulation, the numerical
methodology of Fast Monte Carlo Simulation is presented to calculate DVRF and DMRF for
efficient estimation of systems responses and bounds. In the following, a numerical
demonstration is presented for three different load cases exhibiting the method’s advantages
and accuracy by comparing its results to respective Monte Carlo simulation runs.

In the continuation of the chapter, the application of previously proposed methodology is
presented to multiple dof beam and plain stress Finite Element systems. Apart from
establishing the accuracy of the results with brute force Monte Carlo Simulation runs as
benchmark, further validation of the independence of the VRF from the system’s correlation
structure is given utilizing the GVRF methodology.

Chapter 5 is making a concise recap of most usually applied in practice and academic
research Robust Design Optimization procedures while at the same time exploring
fundamental concepts and strategies in this field.

Chapter 6 is addressing an integration of the VRF concept with Robust Design leading to an
original alternative proposition for performing optimization in a stochastic context. Classical
Robust Design Optimization and estimation of system response using VRF are briefly
explained. Then the formulation of the Robust Design Optimization using VRF is presented
and the description of the Genetic Algorithm implemented. Finally, a numerical example
showcasing the potential of the new formulation is presented.

The last chapter, chapter 7, is discussing the conclusions drawn from the research presented
in previous chapters and summarizing the innovative contributions of this PhD thesis.






CHAPTER 2

2 RANDOM VARIABLES AND STOCHASTIC PROCESSES

2.1 PROBABILITY THEORY

The purpose of the probability theory is to effectively describe and analyze random
phenomena by attributing to them certain averages that remain unchanged and tend to
approach a constant value as the number of observations increases. The probability theory
was born of the need to deal with problems related to gambling and games of chance in the
middle of the 17" century by Pierre de Fermat (1601-1665), Blaise Pascal (1623-1662), and
Christian Huygens (1629-1695). Later Jacob Bernoulli (1654-1705), Abraham De Moivre
(1667-1754), Thomas Bayes (1702-1761), Pierre Simon Laplace (1749-1827), Johann
Friedrich Carl Gauss (1777-1855), Simeon Denis Poisson (1781-1840) contributed in setting
the early foundations of probability theory and the representatives of the Russian school P.L.
Chebyshev (1821-1894), A. Markov (1856-1922) and A.M. Lyapunov (1857-1918) helped in
developing the theory with important works dealing with the law of large numbers. Andrei
Nikolaevich Kolmogorov along with Paul Levy in the 1930s established the connection of
probability theory and the mathematical theory of sets and functions en route of founding the
deductive theory by means of the axiomatic definition of probability. In this manuscript this
definition of probability is adopted.

Deductive probability theory implements notions and axioms of the set theory. The set theory
introduces certain properties such as the following:

Transitivity If b B and B< A then bc A
Equality A=B ifand only if AcB and Bc A

Unions and intersections The union of two sets is a set containing all the elements of these
two sets. This set is written

A+Bor AUB (2.1)

The intersection of two sets is the set containing only the elements that are common for the
two sets. It is written as follows

AB or AnB (2.2)
Mutually exclusive sets are two sets if they have no common elements

AB ={@) (2.3)

Complement set A of a set A is the set containing all the elements of the probability space
that are not contained in set A. That is
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(2.4)

De Morgan’s law
A+B=AB AB=A+B (2.5)

The axiomatic definition of probability is based on the following three postulations: Every
event A has a probability P(A) assigned to it for which the following is true:

P(A)>0 (2.6)
If Q is the probability space of all possible events then:
P(Q)=1 (2.7)
For any given mutually exclusive events A,B the following is true:
P(A+B)=P(A)+P(B) (2.8)
All following properties are derived by the previous three axioms of probability theory.

I.  The probability of the impossible event is 0:

P{Z}=0 (2.9)
ii. ForanyA,
P(A) =1-P(A)<1 (2.10)
iii.  Forany A and B,
P(A+B)=P(A)+P(B)-P(AB) < P(A)+P(B) (2.11)

2.1.1 CONDITIONAL PROBABILITY & BAYES’ THEOREM
Conditional probability of an event A assuming M , denoted by P(A|M) , is by definition the

ratio
P(AM)
P(AIM) = 2.12
(AIM) P(M) (2.12)
where we assume that P(M) is not 0. It is straightforward that:
If M < A then P(A|M)=1 (2.13)
because AM =M . Also
i P(A)
if AcM then P(A|M)=——"">P(A 2.14
< (AIM) P(M) (A) (2.14)
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Total Probability Theorem: If U =[A,.., A ] is a partition of £ and B is an arbitrary event
then

P(B)=P(B|A)P(A)+..+ P(B| A)P(A) (2.15)

Bayes’ Theorem: If U =[A,...,A,] is a partition of Q and B is an arbitrary event then

P(B|A)P(A) (2.16)

P(A|B)= P(B|A)P(A)+..+P(B|A)P(A)

Independence: Two events A and B are called independent if
P(AB)=P(A)P(B) (2.17)

According to the law of large numbers (owed to Bernoulli) for an event A with probability
of occurrence equal to p, if the number of times A occurs in n trials is k then

s
n

2.1.2 RANDOM NUMBERS GENERATION
Answering to the question of when a sequence of numbers is called random we will give two
definitions; a conceptual one and an empirical one.

<8}—)1 as n—o (2.18)

CONCEPTUAL DEFINITION

A sequence of numbers x; is called random if it equals the samples x =x;(¢)of a sequence
x; of i.i.d. random variables x; defined in the space of repeated trials

EMPIRICAL DEFINITION

A sequence of numbers x,is called random if tis statistical properties are the same as the
properties of random data obtained from a random experiment.

Random numbers used in Monte Carlo calculations are generated mainly by computer
programs; however, they can also be generated as observations of random data obtained from
real experiments.

The most general algorithm for generating a random number sequence z is an equation of the
form

z,=f(z,4n2,,) modm (2.19)

s en—r

where f(z,4.....z,)is a function depending on the r most recent past values of z,. In this
notation, z,is the remainder of the division of the number f(z,4,...z, )by m. This is a
nonlinear recursion expressing z, in terms of the constant m, the function f , and the initial
conditions z,...,z,,. The quality o the generator depends on the form of the function f . It

11



might appear that good random number sequences result if this function is complicated.
Experience has shown, however, that this is not the case. Most algorithms in use are linear
recursions of order 1.

2.2 RANDOM VARIABLES

A random variable X is the process that pairs events ¢ from a set of events 3 to certain
numbers X (&) from a set Qe®R in a random manner. Every event ¢ from the set 3 is
matched with a probability P(X) which is a non-negative number.

2.2.1 DISTRIBUTION AND DENSITY FUNCTION
The distribution function of X is defined as

Fy (X)=P(X £X) , xe R U{~o0,+o0} (2.20)

The distribution function possesses the following properties:

i. F(+00) =1, F(~00)=0 (2.21)
ii. If x, <x, then F(x)<F(x,) (2.22)
iii. If F(x)=0 then F(x)=0 forevery x<x, (2.23)
iV, P{X > x}=1—F(x) (2.24)
V. P{x, < X <%,}=F(%,)-F(x) (2.25)

The density function of X is defined as the derivative of F(x)

dF (x)

f(x)=—2 (2.26)
dx
The following properties apply for the derivative function f(x)
i f(x)=0 (2.27)
i, F(x):jx f(&)de (2.28)
i, j‘” f(x)dx =1 (2.29)
iv. PG < X <3} = £ (x)dx (2.30)

A random variable is called normal or Gaussian if its density function has the following form

1 (x-n 1 —(x=p)? 120
f(x)=g| —L |=——e V7 2.31
(02 X1)-— 1 (2:31)
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Another very commonly used density function is the uniform distribution density function
whose formula is written below, whereas random variables following this distribution are
called uniform

1
<X<X
F=dx—x 1T (2.32)
0 elsewhere

If zis N(0,1)and x=e*"*, then xhas a lognormal distribution:

1 _(Inx—a)2
bx\/ﬂeXp{ T } (2.33)

A random variable xis said to have beta distribution with nonnegative parameters « and g if

f.(x)=

1
fX(X)z B(a,ﬂ)

x*1(1-x)"" 0<x<b

2.34
otherwise ( )

0
where the beta function B(«, 8) is defined as
B(a,)= [ x**(1-x)" " dx=2[ " (sin6)*" *(cos0)" *do  (2.35)

Below are showcased some typical distribution functions and their respective density
functions.

"

Figure 2.1 Distribution function of a Gaussian random variable
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Figure 2.2 Density function of a Gaussian random variable
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Figure 2.3 Distribution function of a random variable following Beta distribution with parameters

a=0.7, f=0.2

Figure 2.4 Density function of a random variable following Beta distribution with parameters a=0.7,

$=0.2

2.2.2 PDF TRANSFORM
Consider a random variable X and its distribution function F, (x) . We wish to find a function

g(X)such that the distribution of the random variable Y =g (X )equals a specified function

R(Y)-

From F, (x)to a uniform distribution. Given a random variable X with distribution
Fy (x), we wish to find a function g(x)such that the random variable U =g(X)is

uniformly distributed in the interval (0,1). We maintain that g(x)=Fy (x), that is, if

U=F(X) then R, (u)=u for0<u<1 (2.36)

The random variable U can be considered as the output of a nonlinear system with
input X and transfer characteristic Fy (x). Therefore if we use U as the input to

another system with transfer characteristic the inverse F{™(u) of the function

u=Fy (x), the resulting output will equal X :

If X =F{Y(U) then P{X <x}=F, (x) (2.37)

From uniform to F, (y). Given a random variable U with uniform distribution in the
interval (0,1), we wish to find a function g(u)such that the distribution of the random
variable Y =g(U)is a specified function F, (y). We maintain that g(u)is the inverse

of the function u=F, (y):

14



If y=R () then P{Y <y}=F(y) (2.38)

lll.  From F(x)to R (y). To solve this problem, we form the random variable

U =F(X)as in (2.37) and the random variable Y = F (U) as in (2.37). Combining
the two we conclude that

If v =R (Fy (X)) then P{Y <y}=F(y) (2.39)

2.2.3 RANDOM NUMBERS WITH ARBITRARY DISTRIBUTION
In the following we will present a method to produce random numbers with a desired
distribution. If x; are the samples of the random variable X, then y; = g(x; )are the samples of

the random variable Y =g(X). For example, if x is a random number sequence with
distribution F,(x) , then y,=a+bx is a random number sequence with distribution
Fe[(y-a)/b]if b>0, and 1-F, [(y—-a)/b]ifb<0. From this it follows, for example, that

v; =1-u; is a random number sequence uniform in the interval (0,1).

Percentile transformation method. Consider a random variable X with distribution Fy (x).

Thus, to find a random number sequence x with distribution a given function Fy (x), it

suffices to determine the inverse of F, (x)and to compute F>((‘1) (u;). Note that the numbers x,

are the u; percentiles of Fy (x).

2.2.4 MEAN, VARIANCE AND HIGHER MOMENTS
The expected value or mean of a random variable with a known distribution is defined as the
integral of the product of its density function times the variable itself

E[X]= j“; xf (x)dx (2.40)

The variance of a random variable X is defined as the integral of the product of the square
distance of the variable itself from its mean and its density function

o2 =j°° (x— p2)? £ (x)dx (2.41)
where #=E[X] and & is a positive number called the standard deviation of the random
variable. The variance &2 can also be expressed in the following sense
o’ =E[X?]-E[X] (2.42)

The mean x of a random variable is also called the first moment of the random variable.

Also the variance o2 is called the second central moment of the random variable. In general a
random variable can be characterized by various moments
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Moments

m, =E[X"]= jix"f (x)dx (2.43)
Central moments
= E[(x—y)"} :J:(x—n)” f (x)dx (2.44)
Absolute moments
EIX"| E[x-u] (2.45)
Generalized moments
E[(x-a)"| E[jx-a] (2.46)

A comprehensive knowledge of the moments of a random variable can provide us with
additional information of the form its probability density function possesses, even determine
it uniquely under certain conditions if m, is known for every n.

2.2.5 SEQUENCES OF RANDOM VARIABLES

It is often useful to describe phenomena or natural processes by means of a series of random
variables with common or diverse attributes. In this case we define a random vector to be a
vector

X =[Xgsees X, ] (2.47)
whose components x; are random variables.

The x's are mutually independent if the events {X, <x},..{X, <x,} are independent. Hence

F (X %) = F () F(X,)

(2.48)
f (X, %) = F(x)...T(X,)

‘The covariance C or C,, of two random variables X and Y is by definition equal to

C=E[(X — 2 )(Y — 1y))] (2.49)

The correlation coefficient r orr,, of X andY is defined as

r=_C (2.50)
Ox Oy
Noted be that
Ir|<1 |C|<oyoy (2.51)

For two random variables the joint distribution is denoted as
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F(xy)=P(X<xY<y) (2.52)

Consequently the joint density of the two random variables will be

O*F(x,Y)
f LA SR 7 2.53
(%) P (2.53)
After that it readily follows that
F(x,y)=j_ijy f(er,)dedp (2.54)

Also we maintain that the marginal distribution and the marginal density of X ,Y are given
by

Fy (X) = F(x,0) F (y)=F(,Y)
fy (X):I: f(xy)dy f, (y)zfzo f(x,y)dx

Consequently for multiple random variables the above relations are transformed adequately
as follows

(2.55)

Fu (%) =Fyx, (X% ) = P(Xy <00 X <%, )
O"Fy oy (X X,
fy (X) f... Xn(xl,...xn)z xv@:?..(axn ) (2.56)

The Central Limit Theorem

Let X =X;+..+X, be a random variable comprised of a sum of n independent
identically distributed random variables X;. The central limit theorem states that as n —

F(X)>N(u07) (2.57)

where p=g4+...+ 4, IS the mean of X, g being the mean of the respective X; , and

o’=0f +..+02 , o the variances of the respective random variables. This important

theorem establishes the significance of the Gaussian distribution in the study of random
procedures or phenomena.

2.3 STOCHASTIC PROCESSES, STOCHASTIC FIELDS
Following a definition similar to the one adopted in the case of a random variable we define
a random process or a stochastic process as a way to match outcomes ¢ of a set of events 3

to certain functions X (t,¢)from a set Q. Usually notation t refers to a process evolving in

the time domain. In the case when t refers to an evolution in spatial domain the term random
field or stochastic field is reserved.
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2.3.1 STATISTICAL PROPERTIES OF STOCHASTIC PROCESSES
For a given t, the stochastic process X(t) is a random variable for which the distribution

function is
F(xt) =P{X(t)<x] (2.58)
Similarly to the previous, it also holds that its density function is

oF (x,t)

f(x,t) = (2.59)

F(x,t) is called the first-order distribution of X(t) while f(x.t) first-order density. Its
second-order distribution and density respectively are joint distributions and densities

FX, % t,t) = P{X (L) <%, X(t)< Xz}
PF (3551 (260

X0,
In many cases instead of having knowledge of the full extent of the statistical properties of a
stochastic process only certain quantities are used such as the expected value of X(t) and
X2 (t) .

f (X1'X2;t1’t2)=

Mean

u(t) = E[X ()] = j:xf (x,t)dx (2.61)

Autocorrelation
R(t,t,)=E[ X (t) X (t,)] =.[:J‘:x1x2 f (% X3t t, ) dx,dx, (2.62)
When t, =t, the autocorrelation is called the average power of X (t) .
The cross-correlation of two processes X (t)and Y (t)is the function
Ry (1) = E{X (t,)Y" (t, )} = Rix (1.1, (2.63)
Then the cross-covariance is defined as follows

Cxv (tiatz)szv (tl,tz)_ﬂx (t1)77;(t2) (2-64)

Two processes X (t)and Y (t)are called orthogonal if
Ry (t.t,)=0forevery t, and t, (2.65)

and uncorrelated if
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Cyy (t.t,)=0for every t and t, (2.66)

In general, the values X (t,)and X (t,)of a stochastic process X (t)are statistically dependent
fort, =t,. However, in most cases this dependence decreases as |t, —t, |—>oo. This leads to the
following concept: A stochastic process is called a-dependent if all its values X (t)for t<t,
and for t >t, +aare mutually independent. Then

C(t,.t,)=0for |t,—t,|>a (2.67)

A process w(t)white noise if its values w(t;)and w(t;)are uncorrelated for every t =t;. If

w(t)and w(t;)are also independent then w(t)will be called strictly white noise.

2.3.2 HOMOGENEOUS RANDOM FIELDS
A random field X (t) is strictly homogeneous if its statistical properties remain unchanged

with respect to a shift in their origin. In other words random fields X (t) and X (t+c) must
have identical statistical properties.

f (X Xty ) = F (X Xty + €yt ) (2.68)

for any ¢ . From the above relation it follows that the mean and the variance of such a field
are invariant of t , hence constant, while the autocorrelation function is only dependent upon

T=t,-1 .

Another class of homogeneity are the weakly homogeneous fields. Their mean has a constant
value

E{X(t)}=x (2.69)
and their autocorrelation function depends solely on = .
E[ X (t+2)X"(t)]=R(z) (2.70)

2.3.3 THE POWER SPECTRUM
In the context of Fourier Analysis the power spectrum is considered to involve transforms of
averages. Formally, for a weakly homogeneous random field X (t) it is defined as the Fourier

transform § () of its autocorrelation R(z)=E[ X (t+7)X"(t)]:

s(a))zj“’ R(r)e " dr (2.71)
S(w)is a real function of . The inverse Fourier transform is also valid. Thus

R(r)=— [ s(w)e dw (2.72)

27 -0
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In the case that X (t)is a real random field

S(a)) =£:R(T)C05a)rdr = ZI:R(T)COSa)rdT

1 e 1 e (2.73)
R(r)zg _wS(w)COSwrdw=;I0 S(a))COSa)rda)
In particular if X (t) is white noise with average power q, then
Rux (7)=05(7) Sux (@) =1 (2.74)

Noted be that the power spectrum function or else the power spectral density is a positive
function.

2.3.4 ERGODICITY
Let (%, u)be a probability space, and T:Q—Q be a measure-preserving transformation

(Keane 1991). We say that T is ergodic with respect to if one of the following equivalent
statements is true (Walters 1982):

o forevery Eezwith T™(E)=Eeither u(E)=00ru(E)=1

o for every Eezwith u(T™(E)sE)=0we have u(E)=00r u(E)=1(where s denotes

the symmetric difference)

e forevery E eXwith positive measure we have y(UT‘”E] =1

n=1

e for every two sets E and H of positive measure, there exists an n>0 such that
,u((T‘”E)mH)>O
e every measurable function f:Q—Rwith f°T = f is almost surely constant

A homogeneous random field is ergodic if its second-order moment can be estimated readily
by a single realization of the fields. I.e.

y:E[x(t)}T@% T x(t)de (2.75)
R()=E[ X (t+)X (1)]= lim % T x(teo)x(t)de (2.76)

Knowing a priori that an examined field is ergodic provides the option to easily estimate the
statistics of a random field by a single record in space or time domain. While an ergodic field
is surely homogeneous the reverse doesn’t necessarily hold.
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2.3.5 GAUSSIAN AND NON GAUSSIAN RANDOM FIELDS

If a random field X (t)is Gaussian then random variables {X (t,),X(t,),... X (t,)} are jointly
Gaussian for any {n,tt,,...t,} . The mean function x(t)and the autocorrelation function
R(t,,t,) suffice to fully determine a Gaussian field. The statistics of a Gaussian field can also
be defined given its standard deviation function o(t)and its autocorrelation coefficient

function r(t,,t,). The marginal pdf of a Gaussian random field is

fx(t)(x,t)_mexp[%] 2.77)

Since it is practically impossible to obtain the joint pdf for general non-Gaussian random
fields, it is possible to define intermediately some non-Gaussian fields with known second
order statistics and marginal distribution by a nonlinear transformation of an underlying
Gaussian random field g(t) as follows

X (t)=Fyiy-@[9(t)] (2.78)

where @ is the standard Gaussian cumulative distribution function and F is the non-Gaussian
marginal cumulative distribution function of X(t). The autocorrelation function of the

translation field is defined as follows

Rx ('f):I: :Fil[cb(gl)]lzil[q)(gz)]'9[91192;Rg (§)Jdgldgz (2.79)

where, g, =g(t), g, =g(t+£) and £ g,,0,:R, (&) ]is the joint density of [g,,g,]. The result

of this definition of the autocorrelation function of the translation field is that the marginal
distribution of X (t)and its autocorrelation function or its power spectral density S, (w)have

to compatible. Otherwise the translation field has to match the target marginal distribution
using alternative techniques such as (B. Puig 2002) (M. T. K. Gurley 1997).

2.4 DISCRETE RANDOM FIELDS
A discrete random field is a series of random variables X, .Similarly to the previous its
autocorrelation and autocovariance are given by

R[n.n,]= E[an,xrfz] C[n.n,]=R[n,n,]— u[n ] [n;] (2.80)

A random field X, is strictly homogeneous if its statistical properties are invariant to a shift of
the origin. It is weakly homogeneous if its mean is constant and

R[n+m.n]=E[ X,.... X, |=R[m] (2.81)

n+m?
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A discrete random field is called white noise if it is a sequence of independent identically
distributed (i.i.d.) random variables. The autocorrelation of a white-noise is given by

R[n,n,]=0°5[n —n,] Whereé[n]z{é 2;8} (2.82)

2.4.1 SPECTRAL REPRESENTATION METHOD

Spectral representation method (Shinozuka and Deodatis 1991), in the context of Monte
Carlo simulation methodology, is one of the most reliable ways, to solve a large number of
stochastic problems involving nonlinearity, system stochasticity, stochastic stability,
parametric excitations, etc.

For demonstration purposes assume a one-dimensional univariate (1D-1V) zero mean
homogeneous stochastic field f,(t)with autocorrelation function R ; (r)and a symmetrical
pwer spectral density function S; (w). Also consider f(t)to be fy(t)’s simulation.
According to the spectral representation method f,(t)can be simulated by f,(t)using the

following Fourier seriesas N — o0

f(t) =\/§NZ_1A1 cos(a t+D,) (2.83)
ho

where
A =(25,1, (@)A0) ", n=012,...N-1 (2.84)
@, =nAw, n=012,..N-1 (2.85)
Ao=a,IN (2.86)

and

S1, (@ =0)=0 (2.87)

The , value is chosen appropriately so that the power spectral density function S, (w)has

faded to zero. A usual criterion for the «, estimation derives from the following relation:

[“544 (@)do=(1-2)[s,, (0)do (2.88)

for e<<1(i.e. £=0.01,0.0001). The @,’s in Eq.(2.83) are independent random variables
distributed randomly in the range [0,2z]. The simulated function f(t)is periodic with period
Ty:

To=27/Aw (2.89)
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It is also worth noting that f (t) is asymptotically Gaussian as N — oo due to the central limit

theorem.

For different sequences of the @, s different realizations f'(t)of the simulated function f (t)
can be generated. The condition set in Eq.(2.86) is necessary to ensure ergodicity of the
overall procedure for any sample function f'(t). Also, to avoid aliasing Atstep has to be

limited by the following rule

At<27 /2w,

(2.90)

Below spectral density functions SDF1 and SDF2 are plotted for three different values of
correlation length parameter band for stochastic field standard deviation o4 =0.2 and in the

next figure a sample function using spectral representation.
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1 2
SDF1: S, (x) zzia’ff Jrbe +
T

002
i1 45
o104/l
el
| b=20 01054
nogdl | — k=10
|I B2 0.044
0061 o
Z lf 5 003
ooad [ ]! -
=7 L i
|| | \ 0.2
ih L
0024 \ 0014
e —
0.004—=""5 . . ——— 0.00
E] o051 15 2 15 3 (b 0.0

05 10 15 20
K

1?5

30

(2.91)

(2.92)

Figure 2.5 Spectral density functions plotted for three different values of correlation length parameter

b.
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Figure 2.6 Sample function realization with spectral representation using SDF1 for 4=0.1.

2.4.2 KARHUNEN-LOEVE EXPANSION

The Karhunen-Loeve (KL) expansion (Grigoriu 2006), (Huang, Quek and Phoon 2001), (M.
Loeve 1977) is an alternative procedure of random fields realization. According to KL
expansion a one-dimensional random field X (t)is written as

n iﬁ 2(0)1, () (2.93)

wheregis the random event, m(t)the function of the mean value of the random field and A
and f;(t) are the eigenvalues and eigenfunctions respectively of its covariance function
C(t,t,). C(t,.t,) is bounded, symmetric and positive definite. It has the following eigen-
decomposition

C(t,t,) ZM (2.94)

4 ’s and f;(t)’s are calculated by solving the homogeneous Fredholm integral equation of

the second kind

felt) fit)=4%(t) (2.95)

D

where Dis the domain of the random field X (t). &(8)’s are a set of uncorrelated Gaussian
random variables given as

()= = DX (o) -m)] 0 (2:56)
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for which mean and covariance are

E[&(0)]=0
E[&(0)&(0)]=5,

In practical application KL expansion is approximated by M expansion terms as

(2.97)

M
X(t)= m(t)+z\j/1_1§i (6)f(t) (2.98)
i=1
The variance of the approximation error can be estimated by the following expression

Var[ X (1) X ()] =0 (1)~ 244 (1) (2.99)

25



26



CHAPTER 3

3 STATIC MEAN AND VARIABILITY RESPONSE FUNCTIONS

3.1 INTRODUCTION

Over the past two decades a lot of research has been dedicated to the stochastic analysis of
structural systems involving uncertain parameters in terms of material or geometry with the
implementation of stochastic finite element methodologies (SFEM) to numerically solve the
stochastic partial differential equations (PDE’s) governing the respective problems. The most
commonly used SFEM methods are expansion/perturbation-based (Liu, Belytschko and Mani
1986), (Liu, Belytschko and Mani 1986) and Galerkin-based Spectral SFEM (SSFEM)
approaches (Ghanem and Spanos 1991). Although such methods have proven to be highly
accurate and computationally efficient for a variety of problems, there is still a wide range of
problems in stochastic mechanics involving combinations of strong non-linearities and/or
large variations of system properties as well as non-Gaussian system properties that can be
solved with reasonable accuracy only through a computationally expensive Monte Carlo
simulation approach (Grigoriu 2006), (Matthies, et al. 1997), (Stefanou 2009) limited works
are dealing with the dynamic propagation of system uncertainties, most of them reducing the
stochastic dynamic PDE’s to a linear random eigenvalue problem (Ghosh D 2005), (G. I.
Schueller 2011).

In all aforementioned cases, the spectral/correlation characteristics and the marginal
probability distribution function (pdf) of the stochastic fields describing the uncertain system
parameters are required in order to estimate the response variability of a stochastic static or
dynamic system. As there is usually a lack of experimental data for the quantification of such
probabilistic quantities, a sensitivity analysis with respect to various stochastic parameters is
often implemented. In this case, however, the problems that arise are the increased
computational effort, the lack of insight on how these parameters control the response
variability of the system and the inability to determine bounds of the response variability.

In this framework and to tackle the aforementioned issues, the concept of the variability
response function (VRF) has been proposed in the late 1980s (M. Shinozuka 1987) , along
with different aspects and applications of the VRF (Wall and Deodatis 1994), (Graham and
Deodatis 1998). A development of this approach was presented in a series of papers
(Papadopoulos, Deodatis and Papadrakakis 2005), (Papadopoulos and Deodatis 2006) and
(Papadopoulos, Papadrakakis and Deodatis 2006) where the existence of closed-form integral
expressions for the variance of the response displacement of the form

Var[u] = jiVRF(K, o¢)Sq (K)dx (3.1)
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was demonstrated for linear stochastic systems under static loads using a flexibility-based
formulation.

3.2 STATICALLY DETERMINATE BEAMS

For elaboration purposes consider the statically determinate cantilever beam of length L
shown in Fig. 1, with a uniformly distributed load Q, and a concentrated moment M,
imposed at the free end.

“) 1 O My

illlllllllﬁ
L

Figure 3.1 Statically determinate beam

The loads are assumed to be static and deterministic. The inverse of the elastic modulus of
the beam is assumed to vary randomly along its length according to the following expression:

1
00" Fo @+ f (%) (3.2)

where E is the elastic modulus, F,is the mean value of the inverse of E, and f(x)is a zero-

mean homogeneous stochastic field modeling the variation of 1/ E around its mean value F, .
The response displacement of the beam u(x) is given by

a0 =" [l (x-OMEO@+ FE)dE =2 R OM@A+ F@Nde (33)

where h(x,&)is the Green function of the beam, I is the moment of inertia, and M(x)is the
bending moment function given by

M(x)=—%(L—x)2 +M, (3.4)
Using Eq. (3.3), the mean of u(x) is expressed as
F. ex
E[u(x)]z—TOIO h(x, &M (£)E[(1+f (£))]d& (3.5)
and the mean square as
2 X X
E[uz(x)]fT" [ [ h(x&)n(x&)M(5)M(&)Ry (& -&)dadé, (3.6)
The response variance readily accrues as

Var[u(x)]=E[u (x) |-E[u(q)] =$onjoxh(x,§l)h(x,§z)M (E)M(&)Rq (& -&)dédé, (37)
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where Ry (& —¢&,)denotes the autocorrelation function of the stochastic field f(x).Then,

applying the Wiener—Khintchine transform to the autocorrelation function in Eq. (3.7), the
variance of
the response displacement can be written as

Var[u(x)]= [ VRF (x,x)8 (x)dx (3.8)
where the variability response function (VRF) is given by
F x i ?
VRF (x,x) = TOL h(x,E)M (&)e"de (3.9)

The basic difference of this approach with respect to previous work is that by using a
flexibility-based formulation, no approximations were involved in the derivation of the
resulting integral expression in Eq.(3.1).

3.3 STATICALLY INDETERMINATE BEAMS

In the case of a statically indeterminate beam, such as the one depicted in Fig.3.1 It was
shown that the VRF depends on the stochastic field standard deviation but appears to be
independent of the functional form of the spectral density function modeling the inverse of
the elastic modulus. The existence however of this integral expression had to be conjectured
for statically indeterminate as well as for general stochastic finite element systems. A
rigorous proof of such existence is available only for statically determinate systems in which
case VRF is also independent of o (Papadopoulos, Deodatis and Papadrakakis 2005). More

specifically consider the statically indeterminate beam of length Lshown in Fig. 3.2, with a
deterministic uniformly distributed load Q,. The inverse of the elastic modulus is again

assumed to vary randomly along the length of the beam according to Eq.(3.1).
Using a force (flexibility) method formulation, the response displacement of this beam u(x)
can be expressed as

u(x)=uy(x)—Ruy(x) (3.10)

where u, (x)is the deflection of the associated statically determinate beam with uniform load

Q, obtained by removing the simple support at the right end of the beam in Fig. 3.2, ul(x) IS

the deflection of the same associated statically determinate beam due to a unit concentrated
force acting at x=L, andRis the redundant force (vertical reaction at the right end of the
beam in Fig. 3.2).

Eq.(3.10) is then rewritten

a(x) =2 [ (x=£)(L- ) (14 1(£))ds -2 [ (x-£)(L-£)(1+ £(£))ds
= [, 0 (x &)1+ 1 (9)d+ [ g, (R SR+ T (£)é

(3.11)
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where

(6 ) =50 (x-g)(L-¢ ) and g, (x,£) =" (x-£)(L-¢) 3.12)

The redundant force R is a random variable that can be computed from the boundary
condition at x=L as

D [(L-ep (s £(£))oe

u(x=L)=0:>u0(x=L)=Rul(x=L):>R— (3.13)
[, (L-¢) L+ 1(9))ae
Consequently the mean value of u(x) is given by
E[u(x)]=[ a.(x&)de+[ g, (x &)E[R(L+ T (£)) e (3.14)
ulx) '

Oy

M _‘I
, L

Figure. 3.2 Statically indeterminate beam

After some algebra it follows that the response variance is expressed as
2
Var|u(x)]= E{(u(x) = E[u(x)]) }

= [ [Ho:(x &) 0(x& )Ry (5 -&)

+0,(%,&) 9:%.& (%, & ) Rep (£,&,) (3.15)
+0,(%,.4)0, (% &)E[ (&) p(&)]

+0,(%.5) 0, (X &)E[ p(&) f (&) Pd&dé,

where R, (&,&,)is the autocorrelation function of p(x). The quantities E[ f (&)p(&,)]and
E[ (&) f(&)]in Eq.(3.15) are the cross-correlation functions Ry, (&,&,)and Ry (&.&,) of
fields f(x)and p(x).Since Ry (&&)=Rg (&, &)Eq.(3.15) is rewritten as

Var[u(x)]=[" [ {0:(%.8) 8. (x. & )Ry (& - &)+ 02 (%.£) 92 (&) Ry (6.5
+20,(%.&) 0, (%.& )Ry (&.6)} dEdE,

(3.16)

Now, if we take under consideration the Wiener-Khintchine transform after some analytical
derivations we will reach an integral expression for the system response variance Var[u(x)]
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involving the power spectral density Sy (x)of the uncertain system parameter stochastic field

f (x)and another portion called Variability Response Function (VRF) given by

VRF (x,x,0 )=onjox{gl(x,gl)gl(x,zfz)cos[x(fz -&)]
+0, (X&) 9, (%.&)cos[ x(&,-&) ]
+20, (%,4) 0, (x.&)cos[ k(& - &) ]
+29,(%.&) 0, (x.&)sin[ (&, —51)]}d§1d§2

(3.17)

Having established the integral expression for the variance of the response displacement in
Eqg. (3.1), a similar expression can be derived for the mean value by expressing it as a
function of the variance and the mean square:

E[u(x)]z\/E[uz(x)] ~Var[u(x)] (3.18)

Therefore g[u(x)] can be computed in a straightforward manner, provided that an integral

expression similar to the one in Eq. (3.1) also exists for s[ u?(x) | Such an expression will be

derived as follows.
Using Eq.(3.11) , the following expression can be written for u®(x)

(0= [} 90 (0 &) 00 (x.5)(1+ 1(8))(1+ (&) dde,
+joxjoxgl(x,cfl)gl(x,cfz)[R(u f(&))][R(1+f(&))]dedes, (3.19)
w2 [ 90 (x&)m(x&)[R(+ 1(8)) 1+ f (£))dads,

The above expression results in the following expression for the expected value of u?(x)
[ ()]=[[ 00 (% &) 86 (%, &) Ry (4-&)dG0E,
[ ] 0(68) 8 (0 &Ry, (6.6,)d50E, (3.20)
+2J0onxgo(x,§1)gl(x,(:z)Rfl,,l (&.&,)d&de,

In the above equation R, (& -4, ) and R, , (&.¢,) denote the autocorrelation functions of
stochastic fields f,(x) and p,(x), respectively, while R, , (&, )denotes the cross-correlation
function between f,(x)and p,(x). The two stochastic fields are defined as

f(x)=1+f(x) (3.21)

p.(x) =Rf,(X) (3.22)
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f,(x)is a homogeneous stochastic field, while p,(x)is a non-homogeneous field which is
related to the non-homogeneous field p(x)used in (Papadopoulos and Deodatis 2006) for the
derivation of Eq. (3.1) through

pu(X) -2 Py (%) ]=p(x) (3.23)

Inspection of Eq. (3.23) indicates that stochastic fields p(x) and p,(x) have similar
characteristics. Assuming therefore that p, (x)is oscillatory (Priestley 1988)—as was the case

for p(x)—the following expression can be written for p, (x):
pl(x)zj‘iﬁ(x, x)e"*dZ () (3.24)
where A (x,«)is a modulating function and Z(x) is an orthogonal field with

| (62 (x)) | =S, (x) (3.25)

The evolutionary power spectrum of p, (x),S;, (x,x), is then given by
S (XK) = A (x.5)S,, (x) (3.26)

where S, (x) is a standard (homogeneous) power spectral density function. The

evolutionary spectrum of p,(x) can be expressed alternatively as
* 2
S5 () =[ A (k) S,y () =[ A (x5)] 5, () (3:27)

Eq. (3.27) displays two alternative evolutionary power spectral representations of the non-
homogeneous field p,(x). If the modulating function and (homogeneous) power spectral

density function of one of these representations is known, then, assuming the power spectral
density function of the other is given, its modulating function can be easily determined using
Eq.(3.27). From the (infinite) alternative evolutionary power spectral representations of p, (x)

, the one involving S ; (x)

(shown in Eq. (3.27)) is selected for the following reason: inspection of Eq. (3.22) indicates
that stochastic fields f,(x)and p, (x)have similar frequency contents.

The non-homogeneous autocorrelation function of p, (x)can then be expressed as follows:
Rop, (X1, %;) = .LO A (%) A (Xz,ic)ei'(()(fxl)sflfl (x)dx (3.28)

while the cross-correlation function between the homogeneous field f,(x)and the non-

homogeneous field p,(x)is given by

Rip (%.%)= j:Bl(Xl,XZ,K)Sflfl(K)dK (3.29)
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where B,(x,%,,x) is an even function of « that can be determined using the same procedure
as the one followed in (Papadopoulos and Deodatis 2006) for the derivation of function
B, (%, %, ) (note that A’ (x,x) is also an even function of the wave number « ). Substituting

Egs. (3.28) and (3.29) into Eqg. (3.20), the following expression for the mean square of the
response displacement
can be established:

f:[uz(x)]=leVI:\’Fl(X,K,O'ff )Sflfl(/c)dlc (3.30)
where

VR, (xx,0¢ ) = onjox{go (&) 80 (x.&)cos[ k(& -&)]
+g1(x,§l)gl(x,gz)A{(gl,zc)ﬁ(gz,zc)cos[x(fz —51)] (3.31)
205 (X&) 01 (% &) By (&.&.0) ] dEdE,

According to the definition of stochastic field f,(x) in Eq. (3.21), the following expression
can be written for the homogeneous spectral density S ; (x):
Si.1, (k) =S¢ (k) +275(x). (3.32)

Substituting then Eg. (3.32) into Eg. (3.30), the mean square value of the response
displacement can be expressed as

o[u (9] [ YRR (xry )y ()
+27[ VR (x k.04 )5(x)dx (3.33)
= [" VRF, (x .0 ) S ()dx

+27VRF, (x,x=0,0 )

It is straightforward to show that the term 2zVRF, (x,x =0, )is equal to the square of the

deterministic response displacement. Eq. (3.33) can therefore be written alternatively as
e[u? () ]= [ VRR (x,x,0 )8 (1) dre+ gy (x), (3.34)

where ug, (x)denotes the deterministic value of the response displacement (obtained when
f (x)=0at every point along the length of the beam).

The following expression can be established for the mean value of the response displacement
by substituting Egs. (3.34) and (3.1) into Eq. (3.18):

e[u(x)] =\/g|:u2(x):| ~Var[u(x)] =\”: MRF (X, 5,0 )Sq (K)dx+ufy (x)  (3.35)
or equivalently

g[u(x)]2 =g[u2 (x)] ~Var[u(x)] =J‘_o:)MRF(x,K,aff )S i (x)di+ud (%), (3.36)
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where the mean response function (MRF) is introduced and defined as
MRF (x,x,0 ) =VRF, (X, x,0 ) ~VRF (x,x,0 )

:on{gl(x’gl)gl(x' 52)A2 (52"()003[’((52 _51)] (3.37)
209 (%.4) 01 (%. &) B, (6.4, %)} d4dS,

where

AZ(X,K')ZA;(X,K')—A*(X,K) (3.38)

and
B, (X, %, ) =B, (%, %, &) = B(X. %, k) (3.39)

are modulating functions for which closed-form expressions can be obtained using the same
procedure as the one followed in (Papadopoulos and Deodatis 2006) for the derivation of

A" (x,x)and B(x,%,,x). Both A, (x,x)and B, (x,x,,x)are even functions of the wave number
x . As was the case for the VRF, the MRF is also a function of the standard deviation o of

stochastic field f(x), and of the (deterministic) geometry, loading and boundary conditions
of the beam.

The integral form for the mean value of the response displacement in Eq. (3.36) is an exact
one as no explicit approximations are involved in its derivation. As can be seen from Eq.
(3.37), the MRF is obtained from two variability response functions (VRF and VRF1) and,
consequently, preserves their general properties. Specifically, the MRF depends also on
deterministic parameters related to the geometry, boundary conditions, (mean) material
properties and loading of the structural system, as well as on the standard deviation o of the

stochastic field modeling the inverse of the elastic modulus.

3.3.1 UPPER BOUNDS ON RESPONSE MEAN AND VARIANCE
Upper bounds on the mean and variance of the response displacement of a statically
indeterminate beam can be established from Eq. (3.36) and (3.1), respectively, as follows:

elu(x)] =\/I: MRF (X, i, 0 ) S () dic + Ul (X) < \/J: MRF (X, .0 ) o +Udy (%) (3.40)

var[u(x)]= I:VRF(K,Gﬁ S (K)dx <VRF (x,6™ 07 ) o (3.41)

where ™ is the wave number at which the MRF or the VRF take their maximum value (for
a given value of o% and a given location x), and &% is the variance of the stochastic field

f (x) modeling the inverse of the elastic modulus. It is noted that ™ is not necessarily the

same for the MRF and the VRF.
It should be emphasized that the upper bounds shown in Egs. (3.40) and (3.41) are physically
realizable since the form of stochastic field f (x)that produces them is known. Specifically,
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the mean and variance of u(x)attain their maximum values when random field f (x)becomes

a random sinusoid with wavelength 2z / «™ :
f(x)=20, COS(KmaXX+¢) (3.42)

where ¢ is a random phase angle uniformly distributed in [0,27] . In this case, the
corresponding spectral density function of f (x)is a delta function at wave number x™

Sk (K)zaifé'(rc—rcmax) (3.43)

while its PDF is a beta probability distribution function given by

1
Pi(S)=—T——=
) 7[,;20% —s?

The aforementioned upper bounds are spectral- and probability-distribution-free, as the only
probabilistic quantity they depend on is the standard deviation of the inverse of the elastic
modulus.

defined in the interval: —\2o; <s <20 (3.44)

3.3.2 FAST MONTE CARLO SIMULATION

The mean and variability response functions can be computed from the closed-form analytic
expressions shown in Egs. (3.17) and (3.37), respectively. Alternatively, they can be
estimated numerically using a fast Monte Carlo simulation (FMCS) approach whose basic
idea of considering stochastic field f(x) as a random sinusoid is described in some detail in
(Papadopoulos, Deodatis and Papadrakakis 2005), (Papadopoulos and Deodatis 2006). The
numerical estimation of the MRF and the VRF through FMCS is extremely important as the
closed-form analytic expressions shown in Egs. (7) and (26) involve modulating functions
that are very difficult to establish even in the simplest cases of statically indeterminate beams.
For this reason, FMCS is used exclusively to determine the MRF and the VRF. The basic
steps of the FMCS approach are described in the following.

6. Generate N sample functions of a random sinusoid with standard deviation o and

wave number & modeling stochastic field f(x) that describes the inverse of the
elastic modulus:

f,(x) =20y cos(z?x+¢j); j=12,...N, (3.45)

where ¢, are random phase angles uniformly distributed in the range[0,27]. Rather
than picking up the ¢;’s randomly in[0,27], they can be selected at N equal intervals
in [0,2] for significant computational savings.

7. Using these N generated sample functions of f;(x), it is straightforward to compute

the corresponding N displacement responses either analytically or numerically. Then,
the mean value of the response ¢[u(x)]_and its variance var[u(x)]_can be easily
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determined for the specific value of k¥ considered by ensemble averaging the N
computed responses.

8. The value of the mean response function (MRF) of the statically indeterminate beam
at wave number i and for standard deviation o is computed from

{g[u (x)l?}2 —U3 ()

MRF (x,i, 0 ) = o2

(3.46)

9. The value of the variability response function (VRF) of the statically indeterminate
beam at wave number i and for standard deviation o is computed from
Var| u(x
VRF (x,%,0 )=M (3.47)
Ot
10. The value of the variability response function for the mean square response is then
calculated from Eg. (3.37)as follows:

VRF, (X, K,0 )= MRF (x,&, 0 ) +VRF (X, i, 0 ) (3.48)

11. Steps 1-5 are repeated for different values of the wave number & of the random
sinusoid. Consequently, MRF(x,x,o )and VRF, (x,x,o )are computed over a wide

range of wave numbers, wave number by wave number. The entire procedure can be
eventually repeated for different values of the standard deviation o and for different

locations xalong the length of the beam (if necessary).

Egs. (3.46) and (3.47) are direct consequences of Egs. (3.36) and (3.1), respectively,
considering that stochastic field f(x) modeling the inverse of the elastic modulus becomes a
random sinusoid.

It should be pointed out that the fast Monte Carlo simulation procedure can be implemented
into the framework of a deterministic finite element code making this approach very general.
Specifically, the N displacement responses in the second step of the aforementioned
procedure can be computed numerically using any general purpose finite element code. To do
this, every generated sample function modeling the inverse of the elastic modulus is
transformed into a corresponding sample function modeling the elastic modulus for direct use
as input in a FEM code. This FEM-based approach to compute the MRF, the VRF and the
VRF; is referred to as FEM-FMCS.

3.3.3 COEFFICIENT OF VARIATION OF RESPONSE DISPLACEMENT
The coefficient of variation of the response displacement at a prescribed location x along the
length of the beam can be calculated numerically using:

12

cov[u(x]- Jarfu()] | [ VRF(xxoq )y (x)dx | 529

QU] |7 MRE (x,rc,0y ) S () + 2 ()
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3.4 EXTENSION TO TWO-DIMENSIONAL PROBLEMS

The proposed methodology can be extended to two-dimensional problems in a
straightforward manner. The inverse of the elastic modulus is now assumed to vary randomly
over a 2D domain according to the following equation (compare to Eq. (3.2)):

1

mz R (1+ f(x.y)), (3.50)

where E is the elastic modulus, F,is the mean value of the inverse of E, and f(x,y)is now a

two-dimensional, zero-mean homogeneous stochastic field modeling the variation of 1/E
around its mean value F, .

Accordingly, the integral expressions for the mean square and the mean of the response
displacement u(x, y) become:

g[uz(x, y)] = ZIOwI:VRFl(x,KX, Y. K, O )Sff (KX,Ky)dKXde +Ug (X,Y) (3.51)

and

g[u(x, y):| = \/ZI:I: MRF (x, KoY.Ky Oy )Sff (K‘X,K’y )dzcxd/cy +UZ (X, Y), (3.52)

where MRF(x, K Yy Ky O )and VRFl(x,zcx,y,zcy,aff )are the two-dimensional versions of the

MRF and the VRF;, respectively, possessing the following bi-quadrant symmetries:
MRF (k. %, ) = MRF (&, ),

(3.53)
VRF, (&, k, ) =VRF, (.« ),

S« (K'X,Ky) is the spectral density function of stochastic field f(x,y) possessing the same

symmetries as MRF and VRF1, while VRF1 is computed from
VRF, (%, ) = MRF (%, ) +VRF (., ). (3.54)

The FEM-FMCS procedure described earlier for 1D beam problems can be used for 2D
problems too in order to estimate the MRF and the VRF. The 1D random sinusoid in Eq.
(3.45)now becomes a 2D one with the following form:

f(xy)=v20y cos(Ex+&,y+¢); i=12,..N. (3.55)

Upper bounds on the mean and variance of the response displacement can be established for
the 2D case as follows:

e[u(xy)]=< \/MRF (x, Y K K oy )aff +uie (% Y), (3.56)

Var[u(x, y)]SVRF(x, Y K K o )o-ﬁ, (3.57)
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where (K;nax,ic;,“ax) Is the wave number pair at which the MRF or the VRF take their maximum

value (for a given value of o and a given location(x,y)), and o is the variance of the
stochastic field f(x,y)modeling the inverse of the elastic modulus. It should be emphasized

that (K;“ax,x;‘a")are not necessarily the same for the MRF and the VRF.

3.5 GENERALITY OF THE PROPOSED METHODOLOGY
All the above derivations are based on the assumption that the VRF(X, K,Og ) is independent

of the spectral density S (x)of the stochastic field f(x). Further investigations (Miranda

2008) verified the aforementioned results but showed that VRF has a slight dependence on
the marginal pdf of the stochastic field modeling the flexibility. An important extension of
the concept of VRF has been drawn in (Arwade and Deodatis 2011) to determine effective
material properties in homogenization problems. In (Papadopoulos, Papadrakakis and
Deodatis 2006) results were presented for general linear stochastic Finite Element systems
including beams, space frames, plane stress and shell-type structures under static loads.

More specifically, for the fixed-simply supported beam of length L=10mshown in Fig. 3.2,
loaded with a uniformly distributed load Q, =1000N /m the inverse of the elastic modulus of

the beam is assumed to vary randomly along its length according to Eq. (3.2) with
F,=8x10°m?/N and 1=01m* . Fig. 3.3 displays plots of MRF(x=L/2x,cy ) and

VRF(X=L/2,K,O'ﬁ)f0r LC1 and various values of the standard deviation oy , calculated

using the FMCS approach described earlier. Fig. 3.4 presents results of such a verification
process for the statically indeterminate beam of Fig. 3.2 in comparison to results obtained
from a brute force MCS procedure as shown in (Papadopoulos, Papadrakakis and Deodatis
2006), where a very close agreement is achieved. Similarly Fig. 3.5(a) presents the evolution
of the relative error between brute force Monte Carlo simulations and Eq. (3.35) for

g[u(x= L/2)] as a function of the number of samples ( Nsamp), while Fig. 3.5(b) presents
similar results for g[u*(x=L/2)]. Figs. 3.7, 3.8 demonstrate 2D MRFs and VRFs

respectively for a general shell type structure shown in Fig. 3.6 while Fig. 3.9 shows again a
very good agreement of responses from the FMCS procedure and the standard brute force
MCS.
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Figure 3.3. Mean and variability response function calculated using FMCS for the bean in Fig. 3.2
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Figure 3.5. Relative error in &[u(x=L/2)](a)and g[uz(x= le)] (b) for b=2and o, =0.675
(LC1)
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Figure 3.6. Geometry, loading, finite element mesh and material properties of the cylindrical panel.
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Figure 3.7. Mean Response Function calculated using the 2D FEM-FMCS approach for the
cylindrical panel shown in Fig.6 and o =0.4
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Figure 3.8. Variability Response Function calculated using the 2D FEM-FMCS approach for the
cylindrical panel shown in Fig.3.6 and o4 =0.4.
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Figure 3.9. mean (a) and mean square (b) value of response displacement, as a function of standard
deviation o comparison of results using Egs. (3.34) and (3.35) and from brute force MCS.

3.6 GVRF FORMULATION FOR STATIC LOADING CASE

As mentioned previously, MRF and VRF conceptually are based on the assumption that they
are deterministic, i.e. they are independent of the power spectral density type as well as of the
marginal pdf used to describe the uncertain parameter of the problem. The validity of this
conjecture is numerically demonstrated in the numerical examples by direct comparisons of
the variance time history of the system response, computed with the proposed VRF-based
approach, with corresponding brute-force Monte Carlo simulations. As a further step of this
validation, the concept of Generalized Variability Response Function (GVRF) has been
introduced by (Miranda and Deodatis 2012). In (Teferra and Deodatis 2012) it has been used
to validate the conjecture for beams with non-linear constitutive laws but with some
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modifications. As will be demonstrated in chapter 5, it has also been used for validation in
dynamic problems.

3.6.1 GVRF ESTIMATION METHODOLOGY
For a certain linear statically indeterminate structure with uncertain material properties,
system variance response can be estimated by the following formula (M. Shinozuka 1987)

Var[u(x)] = .[:VRF(X,K)Sff (x)dx (3.58)

where Var[u(x)] can be readily computed by a brute-force Monte Carlo simulation. Eq.

(3.58) can be rewritten in the following discretized form

VRF (X, x;)

VRF (X, %)

Varfu()l=2 [ S, (k) S,(k;) - S;(ky)] x Ax (3.59)

VRF (X, 1y )

Having assumed that VRF is independent of the power spectral density and the marginal pdf,
it is natural to assume that the same VRF values can be used to estimate system variance for
various SDFs. Therefore the following relation should also be true, only now that VRF is
named Generalized Variability Response Function (GVRF).

Var[u(x),] Si (k) Sry) - Si(xy) GVRF (x, ;)
Var[u:(x)z] _ SfZ:(K1) szflcz) SfZEKN) y GVRF:(X,K‘Z) (3.60)
Var[u(x)y] Si (k) Sq (k) -+ Sy (xy) GVRF (x, &)

The left hand side vector is the vector of different system variances, calculated by respective
brute-force Monte Carlo simulations, and the matrix on the right hand side is the matrix of
SDF values for various corresponding spectral density types S; («), i=12,..,N . Effectively,

Eqg. (3.60) describes a system of N linear equations with N unknowns, thus providing a
unique solution for the GVRF vector.
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CHAPTER 4

4 MEAN AND VARIABILITY RESPONSE FUNCTIONS UNDER
DYNAMIC EXCITATION

4.1 INTRODUCTION

In recent years, multiple methodologies based on perturbation/expansion (Liu, Belytschko
and Mani 1986), (Liu, Belytschko and Mani 1986), spectral Galerkin approximations
(Ghanem and Spanos 1991) or costly Monte Carlo methods (Liu, Belytschko and Mani
1986), (Grigoriu 1995), (Matthies, et al. 1997), (Stefanou 2009) have been developed to deal
with random/uncertain phenomena in steady state stochastic structural analysis and extended
to dynamic stochastic analysis in a straightforward manner (Zhao and Chen 2000), (Liu,
Besterfield and Belytschko 1988), along with procedures to improve their efficiency both in
terms of accuracy (Ghanem and Spanos 1990), (Jensen and Iwan 1992), (Li 1996), (Li and
Liao 2001) as well as computational performance (Yamazaki, Shinozuka and Dashgupta
1988), (Papadrakakis and Papadopoulos 1996), (Papadrakakis and Kotsopoulos 1999). A
probability density evolution method was proposed in (Li and Chen 2006), (Li and Chen
2004) in an effort to approximate the time varying probability distribution function (pdf) of
the response of stochastic systems using the principle of preservation of probability. Along
these lines, some other approaches implement approximate Wiener path integral solution
schemes (Kougioumtzoglou and Spanos 2012). However these approaches have been mainly
implemented in single degree of freedom oscillators or small illustrative academic systems
due to increased computational cost. In all above cases, prior knowledge of the correlation
properties and the marginal pdf of the random fields characterizing system uncertainties is
essential for accurate estimates of the system’s response. In the frequent case of insufficient
experimental data, analysts are forced to resort to sensitivity/parametric yet cost inefficient
analyses. Furthermore, such analyses do not provide any information on the mechanisms that
affect response variability, or bounds of the response. In addition to the aforementioned
approaches, a relatively small number of studies have dealt with the dynamic propagation of
system uncertainties, most of them reducing the stochastic dynamic PDE’s to a linear random
eigenvalue problem (Ghosh D 2005), (G. I. Schueller 2011).

In order to effectively resolve aforementioned issues, a proposition has been made through
the concept of Dynamic Variability Response Function (DVRF) in (Papadopoulos and
Kokkinos 2012), which was a straightforward generalization of the currently classical VRF
proposed in the late 1980s (M. Shinozuka 1987) along with different aspects and extensions
(Wall and Deodatis, Variability response functions of stochastic plane stress/strain problems
1994), (Graham and Deodatis, Weighted integral method and variability response functions
for stochastic plate bending problems 1998) . DVRF involves information regarding
deterministic variables of the problem and the standard deviation of the field modeling the
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random system parameters. In that work, closed form integral expressions involving DVRF
and the spectral density function of the stochastic field, were suggested for the computation
of the dynamic variance of the response displacement as follows:

Var[u@®)] = ji DVRF(t,x,0¢ )S4 ()dx (4.1)

An additional expression involving a Dynamic Mean Response Function (DMRF) for the
system dynamic mean response was also proposed in that work. This approach was
formulated for linear statically determinate single degree of freedom stochastic oscillators
under dynamic excitations where it was demonstrated that the integral form expressions for
the dynamic mean and variance can be used to effectively compute the first and second order
statistics of the transient system response with reasonable accuracy, together with time
dependent spectral-distribution-free upper bounds. They also provide an insight into the
mechanisms controlling the uncertainty propagation with respect to both space and time and
in particular the mean and variability time histories of the stochastic system dynamic
response. Furthermore, once the DMRF and DVRF are established, sensitivity analyses with
respect to various probabilistic parameters such as correlation distances and standard
deviation were performed at a very small additional computational cost.

Based on the aforementioned recent development, closed form integral expressions, in the
form of Eq.(4.1), were proposed in (Papadopoulos and Kokkinos 2015) for the mean and
variance of the dynamic response of statically indeterminate beam/frame structures and then
extended to more general stochastic finite element systems (i.e. plane stress problems) under
dynamic excitations. In this case DVRF and DMRF are vectors comprised of a DMRF and
DVREF for each degree of freedom of the FE system. A general so-called Dynamic FEM fast
Monte Carlo simulation (DFEM-FMCS) is provided for the accurate and efficient evaluation
of DVRF and DMRF for stochastic FE systems. Numerical results are presented,
demonstrating that, as in the case of classical VRFs, as well as in the case of DMRF and
DVRF for single degree of freedom stochastic oscillators (Papadopoulos and Kokkinos
2012), the DVRF and DMRF matrices appear to be independent of the functional form of the

power spectral density function S (x)and appear to be marginally dependent on the pdf of

the field modeling the uncertain system parameter. It is reminded that the existence of VRF
has been proven only in the case of statically determinate structures under static loading (M.
Shinozuka 1987), (Papadopoulos and Deodatis 2006). In all other cases this existence had to
be conjectured and the validity of this conjecture was demonstrated through comparisons of
the results obtained from Eq.(4.1) with brute force MCS. The validity of this conjecture is
further boosted in this work by comparing steady state DVRF with respective Generalized
VRF (Miranda and Deodatis 2012) for a statically indeterminate frame structure. GVRF
involves the computation of different VRFs for corresponding combinations of different
marginal pdfs and power spectra and was developed in order to further test the validity of the
existence of a VRF which is almost independent of the stochastic parameters of the problem.
It should be mentioned here that the VRF concept was recently extended in (Papadopoulos,
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Deodatis and Papadrakakis 2005) for structures with non-linear material properties where a
closed form analytic expression of VRF revealed the clear dependence of the integral form of

Eq.(4.1) on the standard deviation as well as higher order Power spectra of f (x). Finally,
realizable upper bounds of the mean and dynamic system response are evaluated.

4.2 SINGLE DEGREE OF FREEDOM STOCHASTIC OSCILLATORS

4.2.1 DYNAMIC ANALYSIS OF A STOCHASTIC SINGLE DEGREE OF FREEDOM
OSCILLATOR

For the single degree of freedom statically determinate stochastic oscillator of length L and

mass M in Fig. 4.1a, loaded with a dynamic deterministic load P(t), the inverse of the elastic

modulus is considered to vary randomly along the length of the beam according to the
following expression:

1
% =F, 1+ (X)) (4.2)

where E(x)is the elastic modulus, F,is the mean value of the inverse of E(x), and f(x)is a
zero-mean homogeneous stochastic field modeling the variation of 1/ E(x) around its mean
value F, . The displacement time history u(t) of the oscillator can be derived from the solution

of Duhamel’s integral:

u(t) = wi j; P(r)e 0 sin(ey (t - 7))d 7 (4.3)
D

where ¢&is the damping ratio and e =a>«/1—§2 with @ being the circular frequency of the
system.

A

(@) (b)

Figure 4.1. One degree of freedom oscillator: (a) Geometry and loading (b) Static displacement for unit load

Due to the system uncertainty in Eq. (2), the circular frequency wis a random variable given

by the following relation:
o=KIM, (4.4)

where k is the stiffness of the oscillator which can be derived from the static displacement of
the oscillator for a unit static deterministic load at the end of the beam (Fig. 4.1b) as follows:
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k =i={_% IOL(x—a)M (@)(L+ f(a))da}_ (4.5)

st
where | is the moment of inertia of the beam and M (a) is the moment at positiona. In the

general case where the load is arbitrary and the system is initially at rest, the deterministic
displacement at the right end of the beam can be derived by numerically solving the
Duhamel’s integral. In the special case of a sinusoidal P(t)=P,sin(at) the solution of Eq.

(4.3) leads to the following expression foru(t) :

u(t) =uy (t) +u, (t) (4.6)
where
Uy (t) = e~ (Asin apt + B cos apt) 47
u, (t) = C,sin wt + C, cos ot (4.7)
2 _m_p2

A Fox : 21 2*2,35 -5 (4.8)

K @1-59)" +(28p) 1- &2
B=_tox 2 (4.9)

K @-87) +(258)
B 1 1- g 4.10
ke (@10
P« 1

K @y ey ) -
p=dlw (4.12)

In the trivial case in which a static load P(t)=P, is suddenly applied, the response
displacement is given by

u(t) —%ll—ﬂcos%uisin th]e§“] (4.13)

N

4.2.2 VARIANCE AND MEAN VALUE OF THE DYNAMIC RESPONSE

Following a procedure similar to the one presented in (Papadopoulos, Deodatis a1
Papadrakakis 2005) for linear stochastic systems under static loading, it is possible to express
the variance of the dynamic response of the stochastic system in the following integral form
expression:

Varfu(t)] = j: DVRF (t, k', 04 )S (x)dx (4.14)

where DVREF is the dynamic version of a VRF, assumed to be a function of deterministic
parameters of the problem related to geometry, loads and (mean) material properties and the

46



standard deviation of the stochastic field o, that models the system flexibility. A similar

integral expression can provide an estimate for the mean value of the dynamic response of the
system using the Dynamic Mean Response Function (DMRF) (Papadopoulos, Papadrakakis
kot Deodatis 2006):

fu(t)] = j: DMRF(t, x, 04 )S (x)dx (4.15)

DMREF is assumed to be a function similar to the DVRF in the sense that it also depends on
deterministic parameters of the problem as well as o . It is extremely difficult however, to

prove that the DVRF (same counts for DMRF) is independent (or even approximately
independent) of the marginal pdf and the functional form of the power spectral density of the
stochastic field f (x). As in (Papadopoulos, Deodatis ko1 Papadrakakis 2005), (Papadopoulos

kaw Deodatis 2006), (Papadopoulos, Papadrakakis kou Deodatis 2006) the aforementioned
assumptions are considered to form a conjecture which is numerically validated here by
comparing the results from Eqs (4.14) and (4.15) with brute force MCS.

The derivation of an analytic expression for the DVRF and DMRF, if possible at all, is an
extremely cumbersome task. A numerical computation, however can be easily achieved, as
described in the following section and then fed into the Eqs (4.14) and (4.15) to provide
estimates of the mean and variance of the dynamic system response.

4.2.2.1 NUMERICAL ESTIMATION OF THE DVRF AND THE DMRF USING FAST
MONTE CARLO SIMULATION

The numerical estimation of DVRF and DMRF involves a fast Monte Carlo simulation
(FMCS) whose basic idea is to consider the random field f(x)as a random sinusoid

(Papadopoulos, Deodatis ko Papadrakakis 2005), (Papadopoulos kot Deodatis 2006) and
plug its monochromatic power spectrum into Eqs (4.14) and (4.15), in order to compute the
respective mean and variance response at various wave numbers. The steps of the FMCS
approach are the following:

(i) Generate N (10-20) sample functions of the below random sinusoid with standard
deviation o, and wave number k¥ modeling the variation of the inverse of the elastic

modulus 1/ E around its mean F, :
f,(x) =20 cos(icx+¢;) (4.16)

where j=12,..,Nand ¢ varies randomly under uniform distribution in the range
[0,27].

(i1) Using these N generated sample functions it is straightforward to compute their
respective dynamic mean and response variance, E[u(t)] and Var[u(t)]
respectively for a given time step t.

(ii1) The value of the DMRF at wave number & can then be computed as follows
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E [u (t)l?

DMRF (t, 5,0 ) =—— (4.17)
O g
and likewise the value of the DVRF at wave number i
Var|u(t)|_
DVRF (t,i,0 ) = M (4.18)
O

Both previous equations are direct consequences of the integral expressions in Egs.
(4.14) and (4.15) in the case that the stochastic field becomes a random sinusoid.
(iv)Get DMRF and DVREF as a function of both time t and wave number « by repeating
previous steps for various wave numbers and different time steps. The entire
procedure can be repeated for different values of the standard deviation &, of the

random sinusoid.

4.2.2.2 BOUNDS OF THE MEAN AND VARIANCE OF THE DYNAMIC RESPONSE

Upper bounds on the mean and variance of the dynamic response of the stochastic system can
be established directly from Eqs (4.14) and (4.15), as follows:

elu@®)]= J: DMRF (t, x,04)S (x)dx < DMRF (t, k™ (t),04 )05 (4.19)

Var[u(t)] = r; DVRF(t, &, 04 )S ¢ (x)d&x < DVRF (t, «™(t), 0 )% (4.20)

where ™ (t) is the wave number at which DMRF and DVRF, corresponding to a given time
step t and value of o, reach their maximum value. An envelope of time evolving upper

bounds on the mean and variance of the dynamic system response can be extracted from
Egs.(4.19) and (4.20). As in the case of linear stochastic systems under static loads
(Papadopoulos, Deodatis and Papadrakakis 2005), (Papadopoulos and Deodatis 2006) and
(Papadopoulos, Papadrakakis and Deodatis 2006) this envelope is physically realizable since
the form of the stochastic field that produces it is the random sinusoid of Eq.(4.16) with

K=r"(t).

4.2.3 NUMERICAL EXAMPLE
For the cantilever beam shown in Fig. 4.1 with length L=4m, the inverse of the modulus of
elasticity is assumed to vary randomly along its length according to Eq. (3.2) with

-1 .
Fo =(1.25x10°KN /m) " and 1=0.1m* . A concentrated mass M, =3.715x10° Kg is assumed

at the right end of the beam. The damping ratio is taken equal to &=5% and the mean
eigenperiod of this one d.o.f oscillator is calculated atT, =0.5 sec.

Three load cases are considered: LC1 consisting of a constant load P(t)=100 KN , LC2
consisting of a concentrated dynamic periodic load P(t)=100sin(at)and LC3 consisting of
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P(t)=-M,(t) where U (t) is the acceleration time history of the 1940 EI Centro

earthquake.

The spectral density function (SDF) of Fig. 4.2 was used for the modeling of the inverse of
the elastic modulus stochastic field, given by:

SM@=%&wﬁfW (4.21)

with b =10being a correlation length parameter.

St 0]
0.3
04
03 a=02
02 -

01 4

D T I 1
0 0.5 1 1.3

x(radm)

Figure 4.2. Spectral density function for stochastic field f(x) standard deviation c4=0.2

In order to demonstrate the validity of the proposed methodology, a truncated Gaussian and a
lognormal pdf were used to model f (x). For this purpose, an underlying Gaussian stochastic

field denoted by g(x)is generated using the spectral representation method (Shinozuka and
Deodatis 1991) and the power spectrum of Eq.(4.21). The truncated Gaussian field f,; (x)is
obtained by simply truncating g(x) in the following way: -0.9<g(x)<0.9, while the
lognormal f, (x)is obtained from the following transformation as a translation field (Grigoriu
1995)

fL(x)= F,_‘l{G[g(x)}} (4.22)

The SDF of the underlying Gaussian field in Eq.(4.21) and the corresponding spectral
densities of the truncated Gaussian and the Lognormal fields denoted S, , (x) and S; ( ()

, respectively, will be different. These are computed from the following formula

2

i=TG, L (4.23)

LX -
If(@e“%x
0

1
Sfifi(’f)=2ﬂ—|_
X
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where L, is the length of the sample functions of the non-Gaussian fields modeling

flexibility. As the sample functions of the non-Gaussian fields are non-ergodic, the estimation
of power spectra in Eq.(4.23) is performed in an ensemble average sense (Grigoriu 1995).

4.2.3.1 LC1: CONSTANT LOAD AT THE END OF THE BEAM

This load case scenario has been selected in order to further demonstrate the validity of the
methodology and establish a logical continuation with previous studies related to the current
work. In the case when the excitation is constant P(t)=pR,, and the load P, is suddenly
applied, the response displacement is given by Eq.(4.13). From this equation it can be seen
that the solution degenerates to the static solution u(t)=PR,/k as time t tends to infinity.
Accordingly the DVRF should converge to the respective static VRF of a cantilever beam

loaded with a concentrated load at its end, given by Eq.(4.24) (Papadopoulos, Deodatis and
Papadrakakis 2005).

VRF (X, k) = % j:h(x,g)lvl (&)ede (4.24)

where h(x,&) is the Green function of the beam given by
h(x,&)=x—¢& (4.25)

and M (x)is the bending moment function given by

M(S) =—-R(L-2) (4.26)

Validating the aforementioned expectations, Fig. 4.3 presents a 3D plot of the DVRF with an
initial transient phase and afterwards the phase where the system is almost at rest, while Fig.
4.4 presents the coinciding VRF and DVRF obtained from Eqg. (4.24) and FMCS,
respectively, when the system has approached the stationary condition at t=10sec and
oy =0.2.
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Figure 4.3. 3D plot of DVRF, as a function of frequency x (rad/m) and time t(sec) for LC3 and ¢#=0.2
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Figure 4.4. Values of VRF for static load PO and DVRF for constant load P(t)=P0 at t=10sec.
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Figure 4.5. DMRF as a function of oy for (a) t=1sec, (b) t=3sec and (c) t=5sec
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4.2.3.2 LC2: DYNAMIC PERIODIC LOAD AT THE END OF THE BEAM
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6.0E-09 -
3.0E-09 -

0.0E+00

1.2
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(b)
Figure 4.7. DMRF (a) and DVRF (b) as a function of t for =2 rad/sec and & = 0.2

Figs. 4.5 and 4.6 present DMRF and DVRF, respectively, computed with FMCS for a
periodic load with frequency @=2 and three different values of the standard deviation
oy =0.2, o4 =0.4and o, =0.6. From these figures it can be observed that DVRF do not
follow any particular pattern with respect to any increase or decrease of o in contrast to
DMRF and to what has been observed in (Papadopoulos and Deodatis 2006) for the
corresponding static problem, albeit the mean and variability response increases as o

increases, as shown below (Fig. 4.8). Figs. 4.7(a) and (b) present plots of DMRF and DVRF
as a function of t for a fixed wave number x=2ando, =0.2.
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Figure 4.8. Time histories of the variance of the response displacement for a truncated Gaussian field
with () o,,=0.2, (b) o, = 0.4, and () o, = 0.6. Comparison of results obtained from eq.(4.32) and

MCS
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Figure 4.9. Time histories of: (a) mean response displacement for a truncated Gaussian field with

=02, (b) o,y =04, (¢) o4, = 0.6 and (d) the deterministic displacement. Comparison of results
obtained from Egs. (4.33) and MCS.

From the above Figs. (4.5, 4.6 and 4.7) it appears that DMRF and DVRF have a significant
variation along the wave number « axis and the time axist. Both functions and especially
DVRF have an initial transient phase and then appear to be periodic. It is reminded here that
DVRF and DMREF are functions of the imposed dynamic loading. This explains the fact that
they do not approach zero with t increasing, since the applied dynamic load is periodic with

constant amplitude which does not decay.
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Figure 4.10. Comparative results from Eq. (4.32) and MCS for a lognormal field with &, =0.2 for (a)

the variance and (b) the mean of the response displacement time history

Figs. 4.8(a), (b) and (c) present comparatively the results of the computed response variance
time histories using the integral expression of Eq.(4.14) and MCS, for three different standard
deviations of a truncated Gaussian stochastic field used for the modeling of flexibility. The
underlying Gaussian field is modeled with the power spectral density of Eq.(4.21) and three
different standard deviationss,, =0.2,0,, =04 and o, =0.6. The corresponding standard

deviations of the truncated Gaussian field f(x)are computed as o =0.2, o4 =0.3912 and
o =0.5286, respectively. Figs. 4.9(a), (b) and (c), present the same results with Fig. 4.6 but

for the mean response of the oscillator. The deterministic displacement time history is also
plotted in Fig. 4.9(d) for comparison purposes. From these figures it can be observed that the
mean and variability response time histories obtained with the integral expressions of Eqs
(4.14) and (4.15) are in close agreement with the corresponding MCS estimates. In all cases

examined the maximum error in the computedVar[u(t)], observed at the peak values of the
variance, is less than 25%, while in all other time steps this error is less than 3-4%. In the
case ofE[u(t)], the predictions of Eq. (4.15) are almost identical to the ones obtained with
MCS, with an error of less than 3% in all cases. From Figs. 4.9(a-d), it can be observed that
in all cases, the mean response time history for all cases examined is almost identical to the

deterministic one, with the exception of the first cycle where slight differences in the peak
values are observed.
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Figs. 4.10(a) and (b) repeat the same comparisons with the previous Figs. 4.8 and 4.9 but for
the case of a lognormal stochastic field used for the modeling of flexibility with &, =0.2
and lower bound 1,=-0.8. The conclusions extracted previously for the case of truncated
Gaussian fields also apply here.

4.2.3.3 LC3: EL CENTRO EARTHQUAKE

Figs. 4.11 and 4.12 present plots of DMRF and DVRF, respectively, for the load case of the
acceleration time history of the 1940 El Centro Earthquake. As in previous load case
scenario, three different values of the standard deviation were used, o, =0.2, 0, =0.4 and

o4 =0.6. From these figures it can again be observed that DVRF does not follow any pattern
with respect to an increase or decrease of &, , while in this case this is also observed for the

DMREF at Fig. 4.11(c) fort =5sec.
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Figure 4.11. DMREF as a function of the off for (a) t=1sec, (b) t=3sec and (c) t=5sec
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Figure 4.12. DVRF as a function of the off for (a) t=1sec, (b) t=3sec and (c) t=5sec




Figs. 4.13(a) and (b) present 3D plots of the DMRF and DVRF as a function of frequency «
and time t(sec) foro, =0.2. From these figures, as well as from Figs. 4.11 and 4.12, it can be

observed that again DMRF and DVRF have a significant variation in both ~and t axis,
without being periodic in contrast to what has been observed in LC2. In addition, both
DMRF and DVRF approach a zero value with time increasing due to the fact that ground
accelerations decay and vanish after some time.

DMRF (x, 7)

DVRF (x, 1)

0,025 - P e i ,' ; ’

0,02 -

(b)

Figure 4.13. 3D plots of (a) DMRF and (b) DVREF, as a function of frequency « (rad/m) and time
t(sec) for LC3 and off=0.2
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Figs. 4.14(a), and 4.14(b) present a comparison of the response variance computed with
Eq.(4.14) and MCS, in the case of a truncated Gaussian stochastic field modeling flexibility
with o, =0.4and 0.6, while Figs. 4.15(a) and (b) present the same results for the mean

dynamic response of the stochastic oscillator along with the corresponding deterministic
displacement time history (Fig. 4.15(c)). Figs. 4.16(a) and (b) repeat the same comparisons
for the case of a lognormal stochastic field used for the modeling of flexibility and &, =0.3

and lower bound I, =-0.8.
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Figure 4.14. Time histories of the variance of the response displacement for a truncated Gaussian
field for (a) o, = 0.4 and (b) o, = 0.6. Comparison of results obtained from Eq. (4.32) and MCS.
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Figure 4.15. Time histories of the mean response displacement for a truncated Gaussian field with (a)
o4 = 0.4, (b) oy, = 0.6 and (c) of the deterministic response displacement. Comparison of results

obtained from Eq. (4.33) and MCS.
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Figure 4.16. Comparative results from Egs. (4.32), (4.33) and MCS for a lognormal field with o,
=0.3 for (a) the variance and (b) the mean of the response displacement time history
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From the above figures it can be observed that, as in LC2, the mean and variability response
time histories obtained with the integral expressions of Eqgs. (4.14) and (4.15) are in close
agreement with the corresponding MCS estimates, in all cases. Again, the maximum error in

the computed Var[u(t)] was observed at the peak values of the variance and is less than 25%,

while in all other time steps this error is less than 3-4%. In the case of E[u(t)], the

predictions of Eq. 8(b) are very close to the ones obtained with MCS, with an error of less
than 3% in all cases. From Figs. 4.15(a-c), it can be observed that, in contrast to what was
observed in LC2, the mean response time history differs significantly from the corresponding
deterministic one, in terms of both frequencies and amplitudes.

4.2.3.4 UPPER BOUNDS ON THE MEAN AND VARIANCE OF THE RESPONSE OF LC3

Spectral-distribution-free upper bounds on both the mean and variance of the response are
obtained via Egs. (4.19) and (4.20), respectively. Results of this calculation are presented in
Figs. 4.17(a) and (b), in which the time dependent upper bounds on the mean and variance of
the response displacement are plotted against time for a standard deviation &, =0.4
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Figure 4.17. Upper bounds on the (a) mean and (b) variance of the response displacement for LC3
and 04,=0.4
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4.2.3.5 SENSITIVITY ANALYSIS FOR LC3 USING THE INTEGRAL EXPRESSIONS IN
EQs (4.14) AND (4.15)

Finally, a sensitivity analysis is performed using Egs. (4.14) and (4.15) at minimum
computational cost, with respect to three different values of the correlation length parameter
of the SDF in Eq. (4.21) and o =0.2.
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Figure 4.18. (a) Mean and (b) variance time histories of the response displacement computed from
Egs. (4.14) and (4.15), respectively for three different values of the correlation length parameter b of
the SDF in Eq. (4.21)

4.3 TIME-HISTORY ANALYSIS OF STOCHASTIC FINITE ELEMENT SYSTEMS
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Figure 4.19. Geometry and loading of the fixed—fixed frame discretized with 60 beam elements.
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Without loss of generality consider the linear stochastic FE system of Fig. 4.19 which is a
fixed-fixed beam/frame structure. The inverse of the elastic modulus is assumed to vary
randomly along its length according to the following expression:

s (4.27)

E(x)
where E is the elastic modulus, E,is the mean value of the inverse of E, and f (x)is a zero-
mean homogeneous stochastic field modeling the variation of 1/ E around its mean value.

For the derivation of the deterministic system dynamic response the trivial second-order
differential equation for the discretized FE dynamic system equilibrium is as follows:

Mu(t) + Cu(t) + Ku(t) = P(t) (4.28)

where M is the mass matrix of the discretized FE system, C is its damping matrix, K is its
stiffness matrix and P(t) is its loading vector. At last, u(t) is the time-history of the
displacement vector of the system, providing information about the response of each node of
the FE mesh, u(t) is the first order time-derivative and ti(t) is the second order time-

derivative ofu(t).

Direct integration of EQ.(4.28) can be performed using i.e. a Newmark scheme of the
following form:

HMR="MR4M(a,'U+a,'U+a,'U)+C(a 'U+a,'U+a,'U) (4.29)

1 1
=——;a=—-a,=—-La, =At(l-9);a; =NAt;a, =At(l-);a, =At . After
aOaAtzaiaAtazzal’4 1-9);as a; =At(1-9);a,

choosing a time step At parameters o and & are selected under the limitations §>0.50and
a>0.25(0.5+)°. After initialization of °U,°U,and °U, the displacements at time t+ At are

calculated solving the following linear system of equations

where

KAty = 4R (4.30)
where K is the effective stiffness matrix given by
K=K+aM+aC (4.31)
Finally accelerations and velocities at time t+ At accrue from the following equations:
B =g (MU - 'U) -3, U2, 'U (432)
At a0 a, T (4.33)

Matrices Rand K in Egs.(4.30) and (4.31) and consequently vectors U,Uand U are random
due to the variation of E(x) in EQ.(4.27). Thus, the solution of EQ.(4.30) requires the
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implementation of some stochastic methodology in order to invert the stochastic operator K
in at each time step and predict the stochastic dynamic response of the FE system.

4.3.1 ANALYSIS OF MEAN AND VARIANCE OF DYNAMIC SYSTEM RESPONSE
USING DMRF AND DVRF

Following a procedure similar to the one presented in (Papadopoulos and Kokkinos 2012) for

linear stochastic oscillators under dynamic loading, it is possible to express the variance of

the dynamic response of a stochastic finite element system in the following integral form

expression:

Var[u(t)] = j: DVRF(t,x,04 )S (x)dx (4.34)

where DVREF is the vectorized dynamic version of DVRF, assumed to be a function of
deterministic parameters of the problem related to geometry, loading, (mean) material
properties and the standard deviation oy of the stochastic field modeling the system’s

flexibility. A similar integral expression can provide an estimate for the mean value of the
dynamic response of the system (Papadopoulos, Papadrakakis and Deodatis 2006):

u)] = j:DMRF(t,K,aﬁ )S (x)dx (4.35)

where again DMRF is the vectorized dynamic version of DMRF of dimension equal to the
dof’s of the problem, which is a function similar to the DVRF in the sense that it also
depends on deterministic parameters of the problem as well as o .

It is reminded here that the existence of Eqs.(4.34) and (4.35) has only been proved for
statically determinate beams in which the resulting displacement field is a linear
transformation of the stochastic field of the compliance 1/E(x) (Papadopoulos and Deodatis
2006). In all other cases this transformation is nonlinear. As demonstrated in (Teferra and
Deodatis 2012), for such nonlinear transformations the integral expressions for the variance
involve higher order spectra. Thus the nature of the approximation induced in Egs. (4.34) and
(4.35) is the omittance of these higher order spectra.

4.3.1.1 NUMERICAL ESTIMATION OF THE DVRF AND THE DMRF USING FAST
MONTE CARLO SIMULATION

The numerical estimation of DVRF and DMRF involves a dynamic FEM-based fast Monte
Carlo simulation (DFEM-FMCS) whose idea is to consider the random field f (x) in Eq.(4.27)

as a random sinusoid (Papadopoulos, Papadrakakis kot Deodatis 2006), (Papadopoulos,
Deodatis kou Papadrakakis 2005) and plug its monochromatic power spectrum into EQs.
(4.34) and (4.35), in order to compute the respective mean and variance response at various
wave numbers as a function of time t. The steps of the FEM-FMCS approach are the
following:
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(i) Generate N(5-10)sample functions of the below random sinusoid with standard
deviation o and wave number x modeling the variation of the inverse of the elastic

modulus 1/ E around its mean :

f;(x) =20, CoS(KX + ;) (4.36)

where j=12,..,Nand varies randomly under uniform distribution in the range [0,27]

. These samples are generated by dividing the range [0,27]at 5-10equally spaced
distances and selecting the centres of these distances as values of random phase
anglesg;'s.

(if) Using these N generated sample functions it is straightforward to compute their
respective dynamic mean and response variance, s[ u(t)]_and var[u(t)]_,by solving

the corresponding FEM system under the applied dynamic loading using Egs.(4.30),
(4.32) and (4.33). Random matrix K is constructed by assigning a different value of
E at each FE, using i.e. the mid-point method.

(iii) The value of the DMRF at wave number & can then be computed as follows:

DMRF(t, 7,0 ) = L0k (4.37)

Ot

and likewise the value of the DVRF at wave number x
Var[u(®)];
2

O

DVRF(t, 5,0 ) =

Both previous equations are direct consequences of the integral expressions in Egs.
(4.34) and (4.35) in the case that the stochastic field becomes a random sinusoid.
(iv)Get DMRF and DVRF as a function of both time t and wave number x by repeating
previous steps for various wave numbers and different time steps. The entire
procedure can be repeated for different values of the standard deviation o of the

random sinusoid.

4.3.1.2 BOUNDS OF THE MEAN AND VARIANCE OF THE DYNAMIC RESPONSE

Upper bounds on the mean and variance of the dynamic response of the stochastic system can
be established directly from Eqgs. (4.34) and (4.35), as follows:

e[u®] = DMRF(t .o )S s (x)dx < DMRF(t,£™ (1), o) (4.39)
Var[u(t)] = I: DVRF(t,x,04)S« (x)dx < DVRF(t, k™ (t),0¢ )& (4.40)

where k™ (t) is the wave number at which DMRF and DVRF, corresponding to a given

time step tand value of oy, reach their maximum value. For the minimum, ™ (t) is
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substituted with ™" (t) and inequality signs switch direction. An envelope of time evolving
upper and lower bounds on the mean and variance of the dynamic system response can be
extracted from Eqgs. (4.39) and (4.40). As in the case of linear stochastic systems under static
loads (Teferra and Deodatis 2012), (Papadopoulos, Papadrakakis and Deodatis 2006),
(Papadopoulos, Deodatis and Papadrakakis 2005) this envelope is physically realizable since
the form of the stochastic field that produces it is the random sinusoid of EQ.(4.36) with

K=K (t) :

4.3.2 2D FORMULATION
In the case of a problem where the inverse elastic modulus is considered to vary randomly
over a 2D domain, the following equation is adopted:

1
E(x,y)

=F, @+ f(X,Y)), (4.41)

where E is the elastic modulus, F, is the mean value of the inverse of E, and f(x,y)is now

a two-dimensional, zero-mean homogeneous stochastic field modeling the variation of 1/ E
around its mean value F,. Accordingly, the integral expressions for the variance and mean

response displacement u(t)become:
Var[u(t)] = j°° j“’ DVRF(t, i, &, )S s (i &, )d i A, (4.42)

u)] = j N j " DMRF(t,x,, K, 0 )S ¢ (i, K, )k A, (4.43)
where DVRF(t,KX,Ky,O'ﬁ) and DMRF(t,KX,K'y,O'ﬁ) are in this case two-dimensional,
possessing the following bi-quadrant symmetries:

DMRF(x,, k,) = DMRF(-x,,~«,) (4.44)
DVRF(x,,x,) = DVRF(-x,,—«,) (4.45)

S (xx,x ) is the spectral density function of the stochastic field f (x,y)possessing the same

y
symmetries as DMRF and DVRF . The 1D random sinusoid in Eq. (4.36)now becomes a 2D
one with the following form that is the same for all possible stochastic fields:

f,(x) =20y cos(Bx + &,y +9,); j=12,..,N. (4.46)

Upper bounds on the mean and variance of the response displacement for a given time
instance t can be established for the 2D case as follows:

Var[u(t)] < DVRF(t, 5™, k)™ o )oq (4.47)
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g[ut)]< DMRF(t, 5, , k™, 07 Yoi (4.48)

where (zcmax,zc;"a") is the wave number pair at which the DMRF or the DVRF take their

X

maximum value (for a given value of o; and a given location(x,y)), and &% is the variance
of the stochastic field f(x,y)modeling the inverse of the elastic modulus. Again, for the

minimum, % (t) is substituted with V' (t) and inequality signs switch direction. It should

be emphasized that (zc;“ax,x;“ax) are not necessarily the same for the DMRF and the DVRF.

4.3.3 NUMERICAL EXAMPLES

Example 1. For the fixed-fixed frame shown in Fig. 4.19 with length and height equal to
L =4m, the inverse of the modulus of elasticity is assumed to vary randomly along its length
according to Eq. (4.27) with F, =(1.35x10°%kN/m)™ , 1 =0.1m* and damping ratio &=5%.
The total mass of the beam is assumed to be m,, =6000kg, distributed evenly among the finite

element nodes of the model. For the analysis of the frame structure we used 60 beam
elements, 20 for each column and the plateau, of equal length, resulting in 177 d.o.f.’s.

0.06

Selrc)

0.03

0.04

0.03 ay=0.1

0.02 A m—b=1

0.01

0

x(radm)

Figure 4.20. Spectral density functions for stochastic field f(x) standard deviation c4=0.2 for three
different values of the correlation length parameter

Two load cases are considered: LC1 consisting of a concentrated dynamic periodic load
P(t) =100sin(2t) at the right top corner of the frame (see Fig. 4.19) and LC2 consisting of a

dynamic load pn(t)=—ang(t) acting on each node n of the beam with m, being the
corresponding nodal mass and Ug(t) the acceleration time history of the 1940 El Centro

earthquake. The stochastic field f(x) in Eq.(4.27) is considered to vary across the length of
the two columns and the plateau of the frame running continuously from the left fixed edge to
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the right. The spectral density function (SDF) of Fig. 4.20 was used for the modeling of the
inverse of the elastic modulus stochastic field, given by:

S, (1) =%a§f bxc2e (4.49)

with b=1,2,10being three different values of the correlation length parameter examined.

DMRF(uA)

0=
1.22

0.74" :
0.49°
k(rad/m)

(a)

DVRF(uA)

K(rad/m) 049

(b)

Figure 4.21. 3D plots of (a) DMRF and (b) DVRF of the horizontal displacement u,, as a function of
frequency x (rad/m) and time t(sec) for LC1 and ¢%=0.2

For standard deviations o of the stochastic field f(x)higher than 0.2 a truncated Gaussian
and a lognormal pdf is used to model f(x). For this purpose, an underlying Gaussian

stochastic field denoted by g(x) IS generated using the spectral representation method
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(Shinozuka and Deodatis 1991) and the power spectrum of Eq.(4.49). The truncated Gaussian
field fig(x)is obtained by simply truncating g(x) in the following way: -0.9<g(x)<0.9
while the lognormal f_ (x)is obtained from the following transformation as a translation field
(Grigoriu 1995):

f () =F " {Glg(x)]} (4.50)

The SDF of the underlying Gaussian field in Eq.(4.50) and the corresponding spectral
densities of the truncated Gaussian and the Lognormal fields denoted S; ; (x) andS; ¢ (x)

, respectively, are different from the one in Eq.(4.49) and are computed from the following
formula

2

LX
St 1, (k) =ﬁ J f.(x)e"™*dx| ;i=TG, L (4.51)
X110

where L, is the length of the sample functions of the non-Gaussian fields modeling

flexibility. As the sample functions of the non-Gaussian fields are non-ergodic, the estimation
of power spectra in Eq.(4.51) is performed in an ensemble average sense (Grigoriu 1995).

4 00E-05 a=0.2
I0E03
2.00E-05 — max{=[u{t]])
LOOE-05 £[u(t)]
0.00E=00 + : : : . . . — min{=[o{t}]}
0 02 04 0.6 08 1 12 P
(@)
6.00E-11
400E-11 g=0.2 — max(varfu()]
20E-11 —var[u(t)]
0.00E<00 . : | minfarsd])
Q 02 04 0.6 0.5 1 12 ¢
(b)

Figure 4.22. Upper and lower bounds on the (a) mean and (b) variance of the response displacement
for LC1 and 04=0.2
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Fig. 4.21 presents 3D plots of DMRF(u,) and DVRF (u,)for the horizontal displacement u,,
of point A of the frame as a function of time t and frequency x foro =0.2. In this figure it
can be observed that DMRF (u,) remains almost constant with respect to «x, while evolving
substantially as a function of t. On the contrary DVRF(u,) demonstrates a substantial

volatility with respect to both & and t. Therefore, in contrast to DMRF(u,), DVRF(u,)

accommodates the possibility of considerable variation of the variability response for
different statistical parameters of the stochastic field. This is further demonstrated in Fig. 4.22
in which the upper and lower bounds of the dynamic mean and variability response are
depicted containing minima and maxima respectively, in comparison to the estimated mean
and variability responses for the case of an underlying Gaussian stochastic field with the
power spectrum of Eq.(4.49) and o =0.2.The aforementioned bounds are derived directly

from Eqs.(4.39) and (4.40) having previously computed DMRF (u,)and DVRF (u,)with the

computationally efficient DFEM-FMCS in Egs.(4.37), (4.38) while in the case of the
Gaussian field with o4 =0.2, the mean and variance were obtained with the integral

expressions in EQqs.(4.34) and (4.35). From this figure it can be seen that the upper mean
dynamic response and the one estimated for the Gaussian field, are almost identical, while
they differ significantly in the case of the response variability, reaching a maximum
difference of more than 70% att=0.8sec. It should be pointed out here that bounds of each
response do not necessarily need to coincide in the frequency number that they occur.

4.00E-03 Efﬂﬁ,}j
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2.00E-05 =bfmes

LOOE-0S —Eq.(433)

ﬂmE‘ﬂﬂ T T T T T T 1 f
0.0 0.2 0.4 0.6 0.8 10 12

(@)

B.O0E-12 var{uft)]
S00E-12 o=0.2, b=1

4.00E-12 m——tbimes
200E-12 —Eq.(4.34]

0.00E+00 : . : : : g
0 02 04 0.6 0.8 1 12

(b)
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Figure 4.23. Time histories of the (a), (c), () mean and (b), (d), (f) variance response displacement
of the frame structure for a Gaussian field with o = 0.2 for LC1 and for three different correlation

length parameter values b=1,2 and 10.. Comparison of results obtained from Eqg. (4.34) and (4.35) and

MCS.

In order to demonstrate the validity of the proposed approach, the results obtained from the
DFEM-FMCS procedure and Egs.(4.34),(4.35) were compared with Brute Force Monte Carlo
Simulation. In Figs. 4.23a, b, c, d, e and f the results of this comparison are presented for the
dynamic mean and response variability of u, (Fig 4.20) and LC1, using a Gaussian
stochastic field ando, =0.2 for three different values of correlation length parameter b. In

this manner the independence of DMRF and DVRF from the spectral density function is also
showcased. Figs. 4.24 and 4.25 present the same comparison but for a truncated Gaussian
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field with o =0.3912 and 0.5286 respectively, while Fig 4.26 examines a lognormal field
case witho, =0.399. Finally, Fig 4.27 presents the same comparison but for the El Centro
earthquake load case (LC2) and a Gaussian field witho, =0.2. From all these figures it can

be observed that the results of the DFEM-FMCS are in close agreement with the
corresponding results of MCS. The prediction of the mean value is almost identical for the
two methods in all cases considered, while the maximum error in the variance does not
exceed 20% and is attributed to a slight dependence of the DVRF on the pdf of the random

field modeling1/ E(x). This error becomes negligible in the case of small standard deviations

of the order of o4 =0.2.

4. 00E-05 ,_z_'{uf[jj
3.00E-05 — ge=0.3971238
200E-05 —bfmes
LO0E-05 — Eq.(4.33)
0.00E=00 ; ; - - . g
00 02 04 0.6 0.8 10 12
(@)
var[uft)]
1.00E-10 gr=0.528649
/x/_\ -~
JO0E-1L —Eq(4.34)
0.00E=00 : : : : : ot
0 02 0.4 0.6 08 1 12
(b)

Figure 4.24. Time histories of the (a) mean and (b) variance response displacement of the frame
structure for a truncated Gaussian field with o4 =0.391238 for LC1. Comparison of results obtained

from Eq. (4.34) and (4.35) and MCS.
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Figure 4.25. Time histories of the (a) mean and (b) variance response displacement of the frame
structure for a truncated Gaussian field with o = 0.528649 for LC1. Comparison of results obtained

from Eq. (4.34) and (4.35) and MCS.
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Figure 4.26. Time histories of the (a) mean and (b) variance response displacement of the frame
structure for a lognormal field with o = 0.399398 for LC1. Comparison of results obtained from

Eq. (4.34) and (4.35) and MCS.
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Figure 4.27. Time histories of the (a) mean and (b) variance response displacement of the frame
structure for a Gaussian field with o = 0.2 for LC2. Comparison of results obtained from Eq.
(4.34) and (4.35) and MCS.

4.3.3.1 FURTHER VALIDATION USING GVRF

In Fig 4.28 we demonstrate the convergence of the steady state DVRF(u,)of the fixed-fixed
frame to the GVRF(u,) derived for the respective static solution for a truncated Gaussian and
a Log-normal field of standard deviationo, =0.1. For this procedure a parent SDF S, of

exponential form has been used given by

Sp (k) =0 exp(-2| x|) (4.52)
1.20E-09 — __GVREF
9.00E-10 1. 2
6.00E-10 —— DVRF=20s)
3.00E-10 —__VFF
0.00E00 x(rad/m)
0 05 1 15 2 23 3 35 4

Figure 4.28. Plots of DVRF(ua,t=20s) for a constant load, GVRF1 and GVRF2 for truncated
Gaussian and Log-normal stochastic fields respectively and static VRF as a function of frequency «
(rad/m) for o4 = 0.1 for the fixed-fixed frame in Fig. 4.19.

In each row of Eq.(3.60) corresponds a different SDF of the SP family. After computing
respective SDFs for the truncated Gaussian and Log-normal fields as in previous from
Eq.(4.51) the i-th SDF in the i-th row of Eq.(3.60) is defined as follows
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Sp(k+ K, —IAk+Ax), 0<k<(i-1DAx

. - (4.53)
Sp(k—iAK), 1Axk<Kk<k,

SP, (x) ={

Four different SDFs of the S, family are depicted in Fig. 4.29. It is expected a priori that the

dynamic response displacement of the system, when the applied load is constant through
time, P(t)=PRy, and

0.02 ——3DF1
0.01 : N ——SDFX0

., I\ [ ,

\ — SDF80
0.01 ~. S | N

=T_:“_“~$T::::__H__ ! ~—_ | - —SDFIN
0.00 4 e —  — ' |

0 05 1 15 2 25 3 33 4 K(radm)

Figure 4.29. Plots of different spectral density functions of the S, family for a discretization of 128
steps in the frequency domain.

as soon as the system reaches a stationary state (theoretically as time t tends to infinity), will
match the response of the system for the static case u(t)=F,/k . Respectively, DVRF (u,)

should also follow the GVRF (u,)curve as it is deduced by Eq. (4.34) and (Miranda and
Deodatis 2012). Observing Fig 4.28, it can be seen that the trend of both GVRF for the
Gaussian and GVRF, for the Log-normal field is captured efficiently from the DVRF(u,)
curve at timet=20sec. All three curves also match the respective static VRF(u,) curve.

Noted be thatVRF , as well as DVRF curves, are essentially computed following the same
methodology as in GVRF where S, is the delta function with concentrated power equal to

o% at each wavenumber x and the u—betafunction being the respective marginal pdf. Also

the Gaussian and Log-normal GVRF curves are, as expected, practically identical.
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Figure 4.30. 3D plots of (a) DVRF and (b)GDVRF of the horizontal displacement u, ,until t=0.2sec as
a function of frequency « (rad/m) and time t (sec) for LC1 and o#=0.5 for the fixed-fixed frame in Fig.
4.19.

Finally, the GDVRF was computed for the fixed-fixed frame of Fig. 4.19 and LC1 for a time
window [O—O.Zsec] and a relatively large coefficient of variationo, =0.5. Figs. 4.30a and

30b present plots of this GDVRF and the corresponding DVRF computed with Eq.(4.34). In
addition Fig. 4.31 presents a snapshot of GDVRF and DVRF att=0.2sec . From all figures it
can be observed that GDVRF and DVRF almost coincide.
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Figure 4.31. Plots of GDVRF(u,,t=0.2s) for LCland DVRF as a function of frequency « (rad/m) for

oy = 0.5 for the fixed-fixed frame in Fig. 4.19.

Example 2. Consider now the shear wall in Fig. 4.32 with length and height equal to L =4m,
the inverse of the modulus of elasticity assumed to vary randomly within its surface
according to Eq. (4.41) with F,=(.35x10°kN/m)™ , v=0.2 , t=1.0 and damping ratio
£=5%.The total mass of the beam is assumed to be m,, =4000kg , distributed evenly among
the finite element nodes of the model. The wall is discretized into a total of 100 plain stress
elements, 121 nodes and 242 d.o.f.’s. In this example the 2D version DFEM-FMCS

procedure has been implemented, using Eqgs. (4.42) and (4.43) for the estimation of the
dynamic mean and variability.

=
"o
S

<« =40 —hl

—
4— [-40

—>

Figure 4.32. Geometry, loading and finite element mesh of the shear wall.
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where b, =2.0, b, =4.0
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The same two load cases as in previous example are considered. The concentrated load is

applied as shown in Fig. 4.32. In this example the following 2D spectrum has been
implemented:

(4.54)
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Figure 4.33. 3D plots of (a) DMRF and (b) DVRF of the horizontal displacement uj, at time instance
t=0.5sec as a function of frequency x, (rad/m) and frequency x, (rad/m) for LC1 and 0%=0.2

Fig. 4.33 presents 3D plots of the DMRF(u,) and DVRF(u,) for the horizontal u,
displacement of point Aof the shear wall as a function of frequency«, and «,for o =0.2
at the fixed time of t=05sec .It is observed that both DMRF(u,) and DVRF(u,) vary
substantially with respect to both directions and as usual maximum values are located at the
vicinity of(0,0). Such plots can be drawn for all time steps of the analysis for the specific

response displacement. Would one care to deduce realizable upper and lower bounds for this
case, the extremes for DMRF(u,) ( DVRF(u,) ) at each time step, accruing from the

appropriate (K'X,Ky) pairs, should be selected and, after using Eqs. (4.47) and (4.48), the

bounds could be readily calculated. An application of the aforementioned procedure is shown

in Fig. 4.34 foroy =0.1.

81



1.00E-035

e et

RS op=0.1

4 0QE-06 =

2 0QE-06

0 Q0E+O0 T T T T T 1 f
0.0 02 04 05 08 10 12

(a)

1.0E-12
§.0E-13
6.0E-13 max(var{uft)])
4 0E-13 ay=0.1
2.0E-13
0 '}E+‘:"} T T T T T T 1 f
0 02 04 0% 08 1 12

(b)

Figure 4.34. Time histories of the (a) mean and (b) variance response displacement upper bounds of
the shear wall for a Gaussian field with oz = 0.1 for LC1. Results obtained from Eq.(4.47 and 4.48).

In following Figs. (4.35-4.39), results of mean and variability response are presented obtained
from the DFEM-FMCS procedure and Egs. (4.42) and (4.43) in comparison with results
obtained from Brute Force Monte Carlo Simulation. In Fig. 4.35, charts depict the
comparison for the dynamic mean and variability response of the shear wall horizontal
displacement at point A and LC1 for a Gaussian stochastic field witho =0.1. In Fig. 4.36

respective results are presented for a Gaussian stochastic field of o4 =0.2. In Figs. 4.37, 38
the results are respectively for a truncated Gaussian field with o, =0.4and o, =0.6

respectively. The predictions of Egs. (4.42) and (4.43) in these cases are very satisfactory
with errors ranging up t05-8%. At last, in Fig. 4.39 results of the mean and variability
response for the shear wall and for LC2 are displayed for a lognormal stochastic field with
ox =0.2. Again, the trend of the response is very well captured by Egs. (4.42) and (4.43)

with errors ranging up to 15—20% in comparison to MCS.
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Figure 4.35. Time histories of the (a) mean and (b) variance response displacement of the shear wall
for a Gaussian field with o = 0.1 for LC1. Comparison of results obtained from Eq.(4.42 and 4.43)
and MCS.
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Figure 4.36. Time histories of the (a) mean and (b) variance response displacement of the shear wall
for a Gaussian field with o = 0.2 for LC1. Comparison of results obtained from Eq.(4.42 and 4.43)

and MCS.
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Figure 4.37. Time histories of the (a) mean and (b) variance response displacement of the shear wall

(b)

for an underlying Gaussian field with o = 0.4 for LC1. Comparison of results obtained from

Eq.(4.42 and 4.43) and MCS.

Figure 4.38. Time histories of the (a) mean and (b) variance response displacement of the shear wall
for an underlying Gaussian field with oy, = 0.6 for LC1. Comparison of results obtained from
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Eq.(4.42 and 4.43) and MCS.

84



4.00E-03
200E-03

i
12 —Eq.(4.43)

0.00E+00
-200EQS

-40EQS

(a)

1m0s var[u(t)]

=02
LOE09

S0E-10 —Fq.(4.42)

0.0E+00 adlAE . . . . , i
0 02 04 0 0 1 12

(b)

Figure 4.39. Time histories of the (a) mean and (b) variance response displacement of the shear wall
for a lognormal field with o = 0.2 for LC2. Comparison of results obtained from Eq.(4.42 and

4.43) and MCS.
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CHAPTER 5

5 ROBUST DESIGN OPTIMIZATION

5.1 INTRODUCTION

In order to design high performance systems or manufacture high quality products at a
minimum cost, techniques are utilized to determine those designs which meet the
requirements usually specified by objectives (goal functions) at the beginning of the design
process. Provided that the general system design is designated a priori (i.e., the type of
structure and its desired basic properties are given), it is the engineer’s task to choose the
design parameters xaccording to one (or more) objective function(s) f (x). These objective

functions may be given by verbal descriptions, mathematical models, simulation models, or
physical models. The process of finding the right design parameters is usually referred to as
optimization. Typically, the optimization has also to account for design constraints imposed
on the design parameters x. Such constraints can be modeled by inequalities and/or equalities
restricting the design space (search space). A general formulation of an optimization problem
can be stated as

(b) (5.1)

where (1b) represents the set of inequality constraints and (1c) the set of equality
constraints. Different adversities can deter us from reaching the optimum for f (x)in

Eqg. (5.1). Moreover, there is also the question of whether other alternative
formulations to the one presented Eq. (5.1) in achieving higher standards of
effectiveness can be proposed. An important concern is the issue of isolated design
points:

(i) Wasting useful resources, possibly more crucial for following stages of the
optimization, on model functions in Eq.(5.1) that might not trustfully replicate the real
world might be unnecessary. Consequently, achieving high levels of precision by
utilizing inherently imprecise models can be counter-productive.

(i) Often determining the true optimum can be useless in the sense that it is possible that
such a design might not be realizable, due to a potentially very complicated
manufacturing process or due to environmental conditions, or that this design can be
substantially costly to achieve. Thus, at times it might be preferable to choose an
alternative sub-optimal design if taking into account the economical trade-off between
cost and performance.

(iii)By definition description of Eq. (5.1) assumes a static environment whereas real life
applications are meant to perform in a dynamic environment. Therefore any design
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answering the question Eq.(5.1) is posing is meant to be right only for a small fraction
of time.

(iv)Life cycle costs have to be taken into account for many engineering designs. Life
cycle engineering focuses on the whole life span of a design, e.g., easier maintenance
(system design to enable a cheap disassembly and assembly process, e.g., for gas
turbines), longer maintenance intervals, effect of attrition during operation, or
environmentally friendly disposal, e.g., recycling capability.

From the above one can deduce that classical optimization procedures do not take into
account the sensitivity a proposed design might have to small changes. It is clear, as argued
above, that such changes are plausible and can result from different kind of sources. It would
be fair to say that what is missing from classical optimization is the robustness of the design.
As a consequence, it is assessed worthwhile to make a compromise between the notion of
optimality and the notion of robustness to achieve tangible returns. Procedures that aim to
realize such principles are described as Robust Design Optimization and their goal is to
estimate and propose realizable designs that are optimal but at the same time are as
insensitive as possible to potential changes, external or systemic, that might affect the
proposed solution.

Different versions of the robustness principle in conjunction with robust design optimization
have accounted for various independent researchers’ efforts primarily in the fields of
operations research (OR) and engineering design.

A seminal paper that drew attention in the field of OR with respect to robust design
optimization was that of (Mulvey, Vanderbei and Zenios 1995). The original groundbreaking
work though that paved the way for future developments in the field of robust design
optimization has its roots in engineering design and specifically in a publication by Taguchi
in the mid 80’s (Taguchi 1984). Taguchi’s method will be briefly presented in the next
section of this chapter. Since then a lot of research has focused on robust design optimization
and the advances in computer science and in particular the ever increasing power of computer
processors have played a crucial role in this. This string of research from the early Taguchi
method to recent works in robust design optimization is summarized and reviewed in (Park,
Lee, et al., Robust design: an overview. 2006), (Beyer and Sendhoff 2007), (Bertsimas,
Brown and Caramanis 2011), (Gabrel, Murat and Thiele 2014).

5.2 TAGUCHI’S METHOD
Taguchi or “the father of robust design” as he is alternatively known for pioneering the

research in robust design proposed a methodology comprised of three basic stages (Taguchi
1984):

(i) Systems design: Initially all the parameters affecting system’s performance must be
accounted for and defined.

(if) Parameter design: Solves the optimization problem proposing an optimum design to
achieve desired quality. This stage takes place during design time of the system.
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(iii)Tolerance design: Adjusts design parameters to obtain maximum optimality and
minimal sensitivity. This stage mainly takes place during operation time.

The distinction between stages (ii) and (iii) is subtle from a mathematical point of view so we
want elaborate further into it and we will focus only on stage (ii).

By reviewing Taguchi’s methodology one can notice a substantial difference with respect to
the classical optimization procedure; apart from taking under consideration system
parameters x that control the overall performance of the system, Taguchi introduces a new
variable & aiming to represent additional factors that may influence system performance (i.e.

environmental conditions, material uncertainties, geometrical uncertainties etc.) that cannot
be controlled by the designer.

Along these lines Taguchi proposed three different Mean Square Deviation (MSD) measures
where y, = y(x;,& )is the performance function:

K

MSD, ==Y (y(x.4) -9 (52)

i=1

~

with y being the desired optimum. When y=0

MSD, =4 Y y(x. ) (5.3)

and if the objective is to maximize y

MSD, == 3 y(x.5) (5.4)

Then the “signal to noise ration” was defined as follows
SNR =-10log,, (MSD) (5.5)

that has to be maximized under the proposed methodology.

The deduction of the optimum SNR according to this methodology is not based on any kind
of an automated optimization procedure but rather on the design of experiments (DOE)
procedure (Koehler and Owen 1996), (Sacks, et al. 1989) . Consequently, speaking from a
computational efficiency point of view, the Taguchi method lacks fundamental robustness,
inevitably requiring a cumbersome amount of computational operations to reach an optimum.
This weakness of the Taguchi approach among others is discussed in (Nair, et al. 1992).

5.3 GENERAL ROBUSTNESS CONCEPTS AND MEASURES

5.3.1 UNCERTAINTIES IN DESIGN
Consider a typical scenario of a system that generates a certain (desired) output f relevant to
input quantities « dependent on the environment the system operates. Also consider a set of
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design variables x that the designer uses to control, to his ability, the way the system
performs described by the following relation

f=f(xa) (5.6)

The design parameters x meant to be determined in such a way that the designer achieves
optimal system performance. However, in reality the designer is facing a situation partly
beyond his total control related to types of uncertainty such as:

a) Changing environmental and operating conditions. These uncertainties are factored in
the system via the a parameter.

b) Tolerances and imprecision in the production process. Uncertainties of this kind can
affect the design variables x as a perturbation ¢ of the intended value. Then the
function in Eq.(5.6) is modified

f=f(x+5,a) (5.7)

c) Discrepancies in estimated and true system output. This kind of uncertainty is
intrinsic to implemented system models and introduced by our approach to the

problem. Then the recorded output f is a (random) function of the true output f
f=f[f(x+s.a)] (5.8)

d) Feasibility uncertainties. This type of uncertainty has to do with failure of the design
variables to comply with the constraints set and the quality requirements.

There are three different approaches as to how to express mathematically the types of
uncertainties mentioned above:

1) Deterministically by defining parameter domains in which uncertainties a,d vary.
2) Probabilistically by assigning probability measures to respective events.
3) The possibilistic approach which assigns fuzzy measures to respective events.

As a result accruing by the above categorization, one can encounter up to 12 different
robustness concepts in real-life analysis problems.

5.3.2 UNCERTAINTY-ROBUSTNESS MEASUREMENT
Consistent with the scope of this thesis we will limit ourselves in referring to deterministic
and probabilistic uncertainties measures only.

5.3.2.1 DETERMINISTIC UNCERTAINTIES: THE ROBUST COUNTERPART APPROACH

Given an objective function f(x)to be minimized the robust counterpart function Fz(x;¢)is
defined as

fg(x6)= sup f(&) (5.9)

EeX(x,e)
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where X(x;¢) is a neighborhood of the design x the size of which depends on the
regularization parameter ¢ and

limFg (x¢)=f(x) (5.10)

-0

This kind of accounting for uncertainties is associated with type b uncertainties and it
considers the maximum f -value within the neighborhood of the design variable x. This

technique is also referred to as robust regularization (Lewis 2002). Robust regularization
may also refer to type a uncertainties

Fa(xe)=sup f(xa) (5.11)

aeh(¢)
where A(¢)is a neighborhood that defines the operating conditions of the system.

The regularization with respect to type d uncertainties has been examined in literature
labeled as “robust counterpart approach”. In the case of linear constrained optimization

mxin{aTx|Ax—b20} (5.12)

a as well as the matrix A and vector b can be sources of uncertainty. In this case the
regularized counterpart of f becomes

Fo ()= . iubr)lep{aTx | Ax~b>0} (5.13)

Eq.(5.12) alternatively can be written as

min{t|¥(,A,b) < p:(t>a"x) A (Ax—b>0)| (5.14)

The inequalities t—a'x>0 and Ax—b>0 must be satisfied for all a,A,begp (worst case

scenario) which is equivalent to demanding min,_,(t—a"x)>0and min,,_,(Ax-b)>0. Thus

agp

min t

st. min(t—-a'x)>0, (5.15)
acp

min (Ax—b) >0,
Abep

a linear objective function with (arbitrarily) difficult constraints due to nonlinearity of the
functions produced by the minimum operator.

5.3.2.2 EXPECTANCY MEASURES OF ROBUSTNESS

Examining the worst case scenario as in robust regularization approach can often result in
rendering the proposed design useless as it is considered in a very conservative setting.
Therefore it is useful sometimes to assume probabilities by means of density functions for the
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uncertainties involved in the design. In this framework robustness measures are formulated
based on probability.

The aggregation approach introduces a utility function U (f)which then is used in a so
called expectancy measure for the robust counterpart of f as the conditional expectation of

U(f)
Ry (X)=E[U(f)Ix] (5.16)

Alternatively dispersion measures can be implemented in applications or in combination with
the expectancy measures:

Ry (x)=[(f (x+8)- T (x))" p(6)ds (5.17)

An alternative to the dispersion measure can be considered if we use the conditional variance
of f

var[f |x]= E[(f ~E[f x|} |x}= E[ 121x]- (R (x))’ (5.18)
when
E[ 21x]=[(f (x+8)) p(5)ds (5.19)

The quest for the optimal robust design, when implementing dispersion or variability
measures of robustness is almost by nature a multi-objective problem. In most cases optimal
performance, i.e. minimum mean value, is a conflicting objective with the objective of
minimizing variance of the measured value. So inevitably we have to enter the field of robust
multi objective optimiazation. In such cases one can aggregate different objectives in a single
function using a weighted sum of the objective functions (Mulvey, Vanderbei and Zenios
1995) or alternatively consider the set of Pareto-optimal solutions. Different techniques are
applied in determining the Pareto front (Das 1997). However there is a growing interest in the
field of evolutionary algorithms for finding solutions to robust design optimization problems
in order to locate the Pareto front (Ray 2002), (Lagaros, Plevris and Papadrakakis 2005),
(Zhang, Wiecek and Chen 2000), (Kang, Suh and Lee 2004).

5.3.2.3 PROBABILISTIC THRESHOLD MEASURES OF ROBUSTNESS

In the probabilistic approach one is considering the distribution of the actual f value to be
optimized. In the case of minimization for a given threshold g, one is seeking the design x
for which a maximum number of samples of f for which f <q. Then the criterion for
robustness minimization is formed as follows

Pr[ f <q|x]— max (5.20)
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Apparently the cumulative distribution function of f is equal to P(q|x)=Pr[f <q|x]
therefore

F, (x)=P(a|x)— max (5.21)
In a similar manner the threshold measure for robust maximization is formed
Pr[f >q|x]— max (5.22)
or
F, (x)=P(q]x)— min (5.23)

since 1-P(g|x)— max.

Probabilistic threshold measures have not been used in literature. This is mainly due to the
analytical and computational complexity of calculating P(f |x)as well as the difficulty of
selecting a g that has a physical meaning for the problem.

5.3.2.4 STATISTICAL FEASIBILITY ROBUSTNESS

When considering type D uncertainties, it is typical to handle nonlinear constraint inequalities
probabilistically

Prlg(x,a)<0]>PR, (5.24)
where P, is the confidence probability and aa random vector with pdf p(a).

Problems expressed likewise are named in literature reliability-based design optimization
(RBDO) (Agarwal 2004), (Tatel, et al. 2005), (Papadrakakis, Lagaros and Plevris 2005),
(Gunawan and Papalambros 2006), (Lagaros and Papadopoulos 2006).

A typical RBDO problem can be formulated in the following form

optimize f(x),
subject to ((x)<0, i=1,..m, (5.25)

where x~ N (yx,of),

f(x) is the objective function, x is the design vector and h; (x) are the constraints that their

probability of violation should be less than an allowable probability p, ;.

Another type of robust design optimization that can be added into this category is the Vulnerability —
based robust design optimization (VRDO) (Papadopoulos and Lagaros 2009).
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In practice such problems are usually dealing with numerical techniques such as First-Order
Reliability Methods (Form) and Second —Order Reliability Methods (SORM) or Monte Carlo
simulations. An overview can be found in (Du and Chen 2000).

5.4 ROBUST OPTIMIZATION IN PRACTICE

So far in this chapter we have explored different strategies and concepts of robust
optimization based on various procedures depending upon the approach they are based on.
However we haven’t discussed how are these methodologies applied in practice. In particular
the task of determining the optimization function f(x)and then optimizing it, can lead to a

different route with respect to which methodology the designer will follow in order to achieve
robustness in the optimization problem.

For the not so frequent case that the objective function can be expressed analytically in a
mathematical form the utilization of standard mathematical programming strategies is
preferred. Otherwise deterministic techniques or advanced randomized simulation techniques
are implemented such as evolutionary algorithms which will be our main focus.

5.4.1 MATHEMATICAL PROGRAMMING

Mathematical programming as means to a robust design problems solution is mainly
applicable in cases of linear optimization problems, quadratically constrained quadratic
optimization problems, conic linear or quadratic optimization problems, and semidefinite
optimization problems.

So far such applications have been primarily in the field of finance and portfolio management
(Takriti and Ahmed 2001), (Lobo 2000), (Lutgens and Sturm 2002) as well as engineering
applications such as (linear) truss topology design, antenna design and robust (linear) control
problems (Ben-Tal and Nemirovski 2002). In (Kanno and Takewaki 2005) a robust design of
truss has been modeled by a nonlinear semidefiite programming problem by successive
linearization.

Even if there is the option to describe a real-life problem with an objective function f (x,a)it
is very likely that the model, in order for it to be realistic enough, will have to include an
increased amount of variables which will eventually increase the computational cost. In most
cases these techniques can be applied if the original problem can be expressed adequately
with linear or quadratic functions thus limiting the range of their applications.

5.4.2 DETERMINISTIC AND RANDOMIZED APPROACHES
Two major categories can be distinguished in robust design optimization approaches

A. Methods which calculate the desired robustness measures F(x) and the related

(robust) constraints explicitly using numerical techniques. Thus, the resulting
optimization problem is an ordinary one, to be solved using local or global
optimization algorithms. This will be referred to as the deterministic approach to
robust optimization.
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B. Treating the (probabilistic) uncertainties directly by optimizing noisy functions and
constraints. This will be referred to as the randomized approach to robust
optimization, sometimes referred to as Monte-Carlo techniques. Since the noisy
information is usually obtained by simulation programs, this kind of optimization is
also referred to as simulation optimization in OR literature (Andradottir 1998).

Methods of class (A) usually have as a prerequisite knowledge of first- or second-order
derivatives of the functions to be optimized. Such methods transform the robust optimization
problem into an ordinary optimization problem, solvable by standard nonlinear programming
techniques. On the contrary class (B) methods, frequently referred to as direct search
methods, do not require any prior information of the objective functions other than their
actual values to calculate the next search point.

5.4.2.1 THE DETERMINISTIC APPROACH TO ROBUST OPTIMIZATION

Methods reviewed in this section use deterministic numerical techniques. Prior knowledge of
the objective function f(x,a), of the constraints and their respective derivatives with respect
to xand a is assumed.

5.4.2.1.1 FEASIBILITY ROBUSTNESS

In (Sundaresan, Ishii and Houser 1993) feasibility constraints are taken into account.
Considering the inequality constraint g;(x,«)<0the effect of uncertainties 5on xand Ac on

a about a design point can be approximated by linear Taylor expansion as
g (x+9,0+Aa)=g, (x,a)+2%5- +Z%Aa- +..<0 (5.26)
Tox; ' Gtoa;

Since the upper bound of these deviations is given by the absolute values of the summands,
one obtains the inequality condition

<0 (5.27)

gi(x,a)+;

By
aaj

In order to apply the above expressions the uncertainties must have bounded support (i.e.
0<|5|<4 and 0<|Aa;|<4;). Incorporating unbounded uncertainties can be done in the

probabilistic framework using expected value considerations applied (Parkinson, Sorensen
and Pourhassan 1993), (Campos, Villar and Jimenez 2006).

5.4.2.1.2 EXPECTED VALUE ROBUSTNESS AND RELATED MEASURES

Many methods use expected value or variance robustness measures. In all but a few cases,
which suffer from the curse of dimensions (Huang and Du 2006), the approximation
techniques implemented are based on Taylor expansions as
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L of . lehsn O°f
[

i=1 0% i=1 j=1
If E[6]=0, which is a logical assumption, then
E[fIx],=f(x) (5.29)

and variance is

i=1 j=1 O O%
) IR (530)
EWER R
Then if the covariance matrix C is
(C), =E[85;] (5.31)
Eq.(5.30) can be rewritten as
Var[ f |x] =V' fCVf (5.32)

In the event that the uncertainties are not correlated Eq.(5.30) can be simplified to

N 2
Var[ f |x], = Z(%} &2 (5.33)

i=1 i

Using the above expressions for expected value and variance of f and under the assumption
that the partial derivatives of f can be computed analytically or numerically we can apply the
so-called sensitivity robustness approach (Darlington, et al. 1995).

Improving the accuracy of this approach one can incorporate in the above equations higher
order approximations. Consequently assuming the trace of a matrix A is given as

Tr[A]=)(A), (5.34)
and H is the Hessian of f at x
o f
H) = 5.35
( )” OX;0X; (.35)
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the expected value of f can be written as
E[11x], = f (x)+3Tr[HC] (5.36)
Also assuming correlated Gaussian noise i.e. § ~N(0,C) variance can be expressed as
Var[ f [x], =Var[ f ], +%Tr[(HC)2} (5.37)

Using the above expressions for expected value and variance we follow the so-called mean-variance
robustness approach (Darlington, et al. 1995).

5.4.2.2 THE RANDOMIZED APPROACH TO ROBUST OPTIMIZATION

The randomized approach includes methods that incorporate a direct approach to robust
optimization using simulation techniques that generate values of the objective function f .

There are three categories:

A. Monte-Carlo (MC) strategies: Simulate the system under optimization for which the
response statistics (mean, variance, etc) are calculated to be implemented as input in a
derivative free (deterministic) numerical optimization algorithm.

B. Meta-model approach: A meta-model is constructed, using carefully selected design
points, which is incorporated in the real robust optimizer.

C. The simulated response values of the objective function are directly fed as input in an
optimization algorithm suited for noisy optimization.

Raw MC approaches estimating the response statistics of a system are considered
computationally ineffective let alone the issue of the degree of accuracy achieved. Specially
tailored MC methods (J. Liu 2001) as an alternative of FORM/SORM approximations, to
treat issues of accuracy, have been proposed in the past. Examples of MC techniques in the
literature can be found in (Sandgren and Cameron 2002), (Lee, Park and Joo 2005), (Martin
and Simpson 2006).

In B methods the designer is using the observed f values of the objective function to create

a meta-model F,, (x) of the robust counterpart f (x,a)that predicts efficiently the f values

efficiently by fine tuning a set of model parameters p. Then the optimal design point X,,

which is readily calculated by the meta-model is substituting the original robust optimum of
f . A review of meta-model techniques can be found in (Simpson, et al. 1997), (Jin 2005).

In robust design optimization the response surface methodology, neural networks, and
Kriging models have been proposed as meta-model techniques. In general these techniques
appear to not be well suited for large-scale problems when the number of design variables N
is too large. More specifically there are two issues:

97



i.  Model complexity: i.e. a fully quadratic response function F, (x,p)comprises of
O(N?)free pparameters. Consequently O(N?)function evaluations of f are needed.

ii. The meta-model has to be repeatedly implemented to converge to the robust
optimum.

For the response surface methodology in particular, there is a third problem due to the data
uncertainties that produce uncertainty for the model parameters g. So finding the model

parameters pcan be robust optimization problem itself.

Methods of the C category can be divided mainly in three types:

I.  gradient estimation techniques or stochastic approximation methods
Il.  pattern search methods
I1l.  techniques based on response surface methodology. Response surfaces created
repetitively lead the design to improved design points eventually leading to the robust
optimum. Under this procedure it is necessary, for computational efficiency purposes,
that as simple as possible response surfaces are used.

These types of robust optimization procedures can be primarily applied to optimize
expectancy robustness measures formulated as follows

optimize: E[U(f)|x], (a)} (5.38)

subject to: XewN, (b)

where X < RN is the space of feasible options.

The idea of stochastic approximation is based on the work of Robbins and Monro (Robbins
and Monro 1951). It uses an iterative recursive formula to calculate the design parameters x
on each step

0 [x(t) B a(t>7(x(t) )} (5.39)

where 77(x“))is an estimate of the gradient 7(x(‘))=VXE[U(f)|x]. It can be shown that the

above expression converges to the minimizer E[U(f)|x]. There are also other more

advanced versions of the algorithm (Ermoliev 1988). Even though these algorithms
guarantee convergence, the convergence rate is slow.

Instead of traditional optimization methods pattern search methods do not approximate the
local gradient or Hessian of the objective function f but rather search design points based on

a pattern and proceed to next improved points with (with respect to f values). The most

popular search method is the simplex strategy (Nelder and Mead 1965). Improvements on
simplex strategies have been proposed in (Humphrey and Wilson 2002), (Anderson and
Ferris 2001).
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Pattern search methods appear to be more computationally efficient compared to i.e.
response surface methodologies because they directly search the design space by inspecting
only “necessary” pattern points, that is pattern search steps are only performed up to the next
improvement. However, so far, their application in robust design optimization has been
limited and has focused only on small scale problems with a low number N of design
variables.

5.4.2.3 EVOLUTIONARY ALGORITHMS IN THE CONTEXT OF ROBUSTNESS

Evolutionary Algorithms (EA) fall into the category of direct search and optimization
algorithms being inspired in a broad sense by the theory of evolution as postulated by
Darwin. An initial “parent” population x, iS used in conjunction with the respective

f., = f (X, ) values to produce an “offspring” population of 2 designs %, through the utilization

of some variation operators. The whole process of altering each individual parentx,, through

the variation operators by means of a specific probability distribution is called mutation while
if more than one parent takes part in the process it is called recombination.

Depending upon the objective of the optimization procedure certain selection operators are
implemented to qualify the fitter offspring for the next generation. The aforementioned
variation and selection operators distinguish in literature different kinds of evolutionary
algorithms i.e. Evolution Strategies (ES) (Beyer and Sendhoff 2007), (Rechenberg 1994)
Evolutionary Programming (EP) (Fogel 1992), Genetic Algorithms (GA) (Goldberg 1989)and
Genetic Programming (Koza 1992). Simulated annealing (Kirkpatrick, Gelatt Jr. and Vecchi
1983), (Aarts and van Laarhoven 1987), (Spall 1999) is another evolutionary algorithm
methodology using one parent, one offspring, a mutation operator and a time dependent
probabilistic selection operator.

Even though EA can be used effectively in deterministic robust counterpart functions of f

we look at them for the point of view of noisy optimization as an alternative for the robust
optimization techniques presented in the previous section that handle f -values from Monte
Carlo simulations. Numerous such applications of EA can be found in literature; (Sebald and
Fogel 1992), (Greiner 1994), (Pictet, et al. 1996), (Mcllhagga, Husbands and lves 1996),
(Wiesmann 1997), (Herrmann 1999), (Kazancioglu, et al. 2003), (Kumar, et al. 2006). Finally
a comprehensive survey can be found in (Baeck, Hammel and Schwefel 1997).

5.4.2.3.1 NON-DOMINATED SORTING GENETIC ALGORITHM II (NSGA-II)

NSGA-II (Deb, et al. 2002) uses an elitist principle and an explicit diversity preserving
mechanism and it emphasizes on non-dominated solutions. A simple flowchart of the
algorithm is shown in Fig. 5.1. At any generation t, utilizing the standard genetic operators
(selection, crossover, mutation), the offspring population Q, is created from the parent

population B. Population R, is formed combining the two populations. The new population
is now of total size2N . Then, the population R, is classified into different non-domination
classes. Thereafter, the new population is filled by points of different non-domination fronts,
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one at a time. The filling starts with the first non-domination front (of class one) and
continues with points of the second non-domination front, and so on. Since the overall
population size of R, is2N, not all fronts can be accommodated in N slots available for the
new population. All fronts which cannot be accommodated are deleted. To deal with
diversity-preservation issues of the estimated Pareto front the NSGA-I1 utilizes the crowding
distance d, . This quantity d, is the perimeter of the cuboid formed by using the nearest
neighbors in the objective space as the vertices and it is a measure of the objective space
around i which is not occupied by any other solution in the population. The optimal Pareto
front points are selected as those individuals of the population that demonstrate the non-
domination property and have the highest possible crowding distanced.; .
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Figure 5.1. Schematic flowchart of the NSGA-I1 as implemented
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CHAPTER 6

6 ROBUST DESIGN WITH VARIABILITY RESPONSE FUNCTIONS; AN
ALTERNATIVE APPROACH

6.1 INTRODUCTION

The concept of Robust Design Optimization (RDO) has been introduced in order to deal with
intrinsic uncertainties in physical systems that drive the system performance to deviate from
the deterministically expected performance into sub-optimal designs, thus neutralizing the
effort of the optimization procedure itself. In RDO the analyst is taking into account the
stochastic properties of the system variables/parameters and/or system constraints and
effectively reaches a safer optimum design which should be less sensitive to random system
parameter variations. Various methodologies have been proposed in recent years regarding
RDO and its applications to various problems. In classical RDO formulation the goal of
minimizing objective function(s) is achieved by considering the mean and/or the standard
deviation of a response quantity and trying to establish the designs that minimize the
aforementioned quantities considering deterministic or reliability constraints (Park, Lee, et
al., Robust design: an overview. 2006), (Beyer and Sendhoff 2007). In Reliability-based
Robust Design Optimization (RRDO) (Missoum, Ramu and Haftka 2007), (Lagaros and
Papadopoulos 2006), (Allen and Maute 2005) usually care is taken to address the influence of
probabilistic constraints as a limit on the probability of failure in the context of RDO of
structures. Vulnerability-based Robust Design Optimization (VRDO) (Papadopoulos and
Lagaros, Vulnerability-based robust design optimization of imperfect shell structures 2009) is
a special case of RRDO where intermediate limit states approaching the probabilistic
constraints are also taken into account thus providing possibly crucial information regarding
structural behavior and operational integrity.

All previously mentioned RDO formulations are to be carried out in a stochastic finite
element method (SFEM) framework so as to efficiently estimate the required quantities
associated with system variations. This consideration of system randomness however, for it to
be reliable, requires a precise knowledge of probabilistic characteristics (marginal pdf’s and
correlation structures) of the respective random fields modeling system parameters acquired
only through corresponding experimental surveys or otherwise careful assumption/selection
of various statistical properties describing the system variables/parameters uncertainty.
Furthermore it increases substantially the analysis computational cost as any candidate design
requires full stochastic analysis for the estimation of various statistical quantities. In the
frequent case that such conditions are not met, similar analyses are implemented based on
sensitivity analyses with respect to the aforementioned parameters resulting in a significant
further increase of the overall computational cost.
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In this chapter an alternative RDO procedure is proposed utilizing Variability Response
Functions (VRF) concept (Shinozuka 1987), (Wall and Deodatis, Variability response
functions of stochastic plane stress/strain problems 1994), (Graham and Deodatis, Weighted
integral method and variability response functions for stochastic plate bending problems
1998), (Teferra and Deodatis 2012), (Papadopoulos, Deodatis and Papadrakakis 2005),
(Papadopoulos, Papadrakakis and Deodatis 2006), (Papadopoulos and Deodatis 2006),
(Papadopoulos and Kokkinos 2012), (Miranda and Deodatis 2012) in an effort to provide an
answer in aforementioned known issues while optimizing a frame structure involving
stochastic field material properties with respect to its total weight and robustness of its
displacement response. It is reminded here that system response variance, as originally
proposed in (Shinozuka 1987) and extended and further developed in (Wall and Deodatis
1994), (Graham and Deodatis, Weighted integral method and variability response functions
for stochastic plate bending problems 1998), (Teferra and Deodatis 2012), (Papadopoulos,
Papadrakakis and Deodatis, Analysis of mean response and response variability of stochastic
finite element systems 2006), (Papadopoulos, Deodatis and Papadrakakis, Flexibility-based
upper bounds on the response variability of simple beams. 2005), (Papadopoulos and
Deodatis, Response variability of stochastic frame structures using evolutionary field theory
2006), (Papadopoulos and Kokkinos, Variability response functions for stochastic systems
under dynamic excitations 2012) can be expressed in the following integral form expression:

Var(u) = I:VRF(K,Gﬁ )S (x)dx (5.40)

In the above expression o is the uncertain system variable standard deviation, S («)is the

stochastic field spectral density and « the spatial frequency (rad/m). VRF’s product and
integration with the spectral density function S (x)of the stochastic field that models the

uncertain system variable(s) amounts to system response variance vectorVar(u) . In the above

expression VRF, which is a vector comprised of a VRF for each degree of freedom of the FE
system, is assumed to be deterministic, an assumption proven rigorously only for statically
determinate beam-type structures. For a number of other applications this assumption has
been demonstrated numerically while further evidence has been provided with the
introduction of the so called Generalized VRF (GVRF) which is a VRF calculated from a
family of spectral density functions and various pdfs. What is really beneficial under this
assumption is the ability to establish spectral- and pdf-free upper bounds in a straightforward
manner described in the following equation as it has been explained in (Papadopoulos,
Deodatis and Papadrakakis, Flexibility-based upper bounds on the response variability of
simple beams. 2005):

Var(u) < VRF(«™ o )o& (5.41)

Where VRF(x™ o ) is the maximum value of the VRF attained at some wave number ™.

Therefore, setting maximum VRF value as an objective function accounting for system
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response robustness, in addition to the total weight, the system is ensured to exhibit, for a
given weight class, the lowest possible variance response under conditions imposed by the
worst possible stochastic field. The worst possible stochastic field for a particular design
candidate is determined by means of Eq. (11.70) i.e. it is a stochastic field with a
monochromatic SDF concentrated at «™ (Papadopoulos, Deodatis and Papadrakakis,
Flexibility-based upper bounds on the response variability of simple beams. 2005). The
optimum design candidate for this particular weight class is the one that minimizes the

respective VRF(;c"‘*”‘,aff )value. Repeating this process for all possible weight classes one

can create a two dimensional Pareto front is created for two objective functions: the weight
and the system variance response accruing from Eq. (11.70).

In classical RDO formulation, optimization is performed for an a priori selected stochastic
field. In real life applications however correlation structure of the uncertain system parameter
is rarely known thus rendering such an optimization procedure redundant. Consequently the
designer is obliged to conduct multiple such optimization procedures to shield the designed
system from all possibilities. By using the proposed methodology this problem is overcome
because each design candidate is evaluated based on its performance under the worst case
scenario determined for the specific design. Effectively the designer is ensured that the
system will have the best possible performance at the worst possible conditions.

The advantages of using the proposed methodology over traditional Robust Design
Optimization are illustrated through an application to a frame-type structure where it is
demonstrated that the designs achieved through classical RDO for a given stochastic field
description are not optimal if a variation on the spectral properties of the random field
modeling the system uncertainty occurs. On the other hand optimal designs obtained with the
VRF-based RDO remain optimum for the worst case scenario stochastic fields. In order to
demonstrate this, a bi-objective function is formulated taking into account uncertainties in the
material properties modeled as random fields. Deterministic constraints of maximum stress
and displacement response are applied. A Pareto front is initially constructed through a
classical RDO formulation and multi-objective Genetic Algorithm solver for the two
conflicting objective functions, namely the total structural weight and the system response
variability, for a given stochastic field with a classical Robust Design Optimization
formulation. Then, maximum possible variances of the selected designs are computed from
the respective maximum values (see Eq. (11.70)) of the corresponding Variability Response
Functions characteristic to these designs. The resulting front is then compared to a new
Pareto front in which the second objective function is the maximum possible system variance
which can be readily obtained by minimizing the maximum value of the Variability Response

Function minVRF(K”“’X,aff ) The former classical RDO front proves to be, as expected, sub-
optimal to the VRF-based one since the latter is by definition independent of the probability
distribution and the spectral density used to model system’s uncertainty. It is mentioned that

the generated front and the respective proposed designs are referring to a variety of stochastic
fields in contrast to the classical RDO. It is also clarified that the proposed designs are not
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necessarily optimal when examined under the scope of only one predesignated stochastic
field. In the case that an optimization is carried out for a specific correlation structure the
resulting design selection will be suboptimal with respect to any other correlation structure.

6.2 ANALYSIS OF RESPONSE VARIABILITY USING VRFS

Without loss of generality consider the linear stochastic FE system of Fig. 6.1 which is a
fixed-fixed beam/frame structure. The product of the inverse of the elastic modulus and of the
moment of inertia is assumed to vary randomly along the xaxis according to the following
expression:

L R+t

{E(X)I} (542)

where E is the elastic modulus, 1 is the moment of inertia, F,is the mean value of the inverse
of El, and f(x) is a zero-mean homogeneous stochastic field modeling the variation of

1/ El around its mean value.
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Figure 6.1. Geometry and loading of the fixed—fixed frame discretized with 60 beam elements.
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Following a procedure similar to the one presented in (Papadopoulos, Papadrakakis and
Deodatis, Analysis of mean response and response variability of stochastic finite element
systems 2006), it is possible to express the variance of the response variability of a stochastic
finite element system in the integral form expression of Eq. (5.40). The numerical estimation
of VRF in Eqg. (5.40) involves a FEM-based fast Monte Carlo simulation (FEM-FMCS)
whose idea is to consider the random field in Eq. (5.42) as a random sinusoid
(Papadopoulos, Deodatis and Papadrakakis, Flexibility-based upper bounds on the response
variability of simple beams. 2005), (Papadopoulos and Deodatis, Response variability of
stochastic frame structures using evolutionary field theory 2006) and plug its monochromatic
power spectrum into Eq. (5.40), in order to compute the respective mean and variance
response at various wave numbers as a function of time t.

6.2.1 NUMERICAL VALIDATION OF THE VRF wiTH GVRF

In the context of this work and in order to validate our findings we have utilized the recently
established concept of GVRF (Miranda and Deodatis, Generalized variability response
functions for beam structures with stochastic parameters. 2012) in order to further evidence
the assumption of independence of the VRF of the stochastic parameters of the problem. For
this purpose a GVRF was calculated for a family of moving SDFs and then compared to the
VRF computed via FEM-FMCS as described in chapter 3.

6.3 RDO USING VARIABILITY RESPONSE FUNCTIONS

RDO using VRFs (VRF-RDO) implements a bi-objective function involving maximum VRF
value and total structural weight. The constraints of this function can be either stress- and/or
displacement-related. VRF is a function characterizing variability response of the system
regardless of the spectral density function of the stochastic field modeling the inverse of the
elastic modulus. Thus, minimizing its maximum value selects a design candidate for the
system that has the optimal performance with respect to the worst case scenario.

A general formulation of the VRF-RDO can be stated as follows:
min,_ f =[C(s,X), VRF(x™, )] (5.43)

subjected to deterministic constraints:

9;(X)<0 j=1..k (5.44)

where f is the bi-objective function related to the material cost C and the vector that contains
the maximum values of selected variability response function quantities VRF(x™ o) .

Material cost C is an obvious selection as an objective function in most structural design
problems. Maximum attained VRF value VRF(x™,c) , is chosen as the second objective
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function to minimize, accounting for system variability and effectively dealing with existing
uncertainty in a structural probabilistic environment. Vector s represents the design variable
vectors and X is the position vector. F is the feasible region where all the deterministic

constraint functions g; are satisfied. The VRF(x™,o4) is qualified as an objective

function because it provides with more general system inherent information independent of
the stochastic field correlation structure. Therefore under the VRF-RDO formulation the
design candidate is selected so that it attains the lowest possible variability response when the
worst case scenario, in terms of stochastic field spectral density, is applied.

6.4 MULTI-OBJECTIVE OPTIMIZATION USING GENETIC
ALGORITHMS

The solution of a multi-objective optimization problem is given in the form of a so-called
Pareto front as opposed to a single-objective problem where the solution is singular. Several
methods have been proposed for multi-objective optimization such as the weighted sum
method (Zadeh 1963), goal programming (Charnes and Cooper 1977), physical programming
(Messac, Puemi-Sukam and Melachrinoudis 2001), compromise programming (Chen,
Wiecek and Zhang 1999), as well as recently developed evolutionary algorithms such as
Strength Pareto Evolutionary Algorithm 2 (SPEA-2) (Zitzler, Laumanns and Thiele 2001),
simulated annealing (Suman and Kumar 2006), particle swarm optimization (Parsopoulos and
Vrahatis 2002), (Coello Coello and Salazar Lechuga 2002) and Non-dominated Sorting
Genetic Algorithm 11 (NSGA-II) (Deb, et al. 2002). In the current work the multi-objective
optimization is conducted implementing the NSGA-II which is established as a standard
approach in identifying the ‘Pareto front’. Multi-objective evolutionary algorithms are
preferred to classical optimization methods primarily due to their ability to find multiple
Pareto-optimal solutions in one single run. However, they have been mainly criticized for
issues like high computational complexity and non-elitistic approach.

By means of the nature of this particular problem, objectives and constraints are regarded as
non-linear functions. The population size is set equal to 50 for each generation. Migration and
crossover fractions are set equal to 0.5. Maximum number of generations was set equal to
150.

6.5 NUMERICAL EXAMPLE

The three-story frame shown in Fig.2 is selected in order to showcase the potential of the
VRF-RDO formulation. For this structure, the inverse of (El) is assumed to vary randomly
along its length according to Eq. (5.42) with F, =(1.35x108KNm®)™.  Additionally, each

story is 4m long and 3m high. For the analysis of the frame structure we used 220 beam
elements, 15for each column and 20 for each beam resulting in 654 d.o.f.’s.
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A concentrated moment is applied at the middle of each storey equal to M =70KNmand a
distributed load g=3.2 KN/m along all beams (see Fig. 6.1). Assuming full statistical

dependence, the stochastic field f(x) in Eq. (5.40) is considered to vary across the length of

the columns and the beams of the frame as follows: x is assumed to run first along the
columns from left to right and from bottom to top in the first story; then along the beams of
the first floor from left to right. Following the same pattern for stories 2 and 3 a continuous
field is formed. The SDF of the field is assumed to be exponential and given as:

Sy () =%a§f bk 2e (5.45)

Two different values of the correlation length parameter were examined, b=10and b=70
with a standard deviation o =0.1. Plots of the SDF with respect to the frequency x(rad /m)

for the selected values of b can be seen in Fig. 6.3.
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Figure 6.2. Spectral density functions for stochastic field f (x) standard deviation o =0.1for two

different values of the correlation length parameter

The geometric properties of the columns and the beams at each storey of the frame are
considered to be the four distinct design variables for the VRF-RDO formulation (see Fig.
6.1). The selection of the geometric properties of the columns and the beams of the frame has
been defined within the set of the Eurocode-8 HEB sections from HEB100 to HEB1000. The
formulation of the VRF-RDO problem is as follows:

min,_ f =[VOL(s),VRF (™ ,c)]"

s =[X;, X;, X3, X, 1" (5.46)
X =[A. 1]
subject to
X, eQ
c (5.47)

max(o) <o, /1.10, o, =235Mpa

where VRF (™, o ) is the maximum VRF value corresponding to vertical displacement uin

Fig. 6.1, Qis the discrete set containing the geometric properties of the EC-8 sections from
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HEB100 to HEB1000 , F c Q" is the feasible region for the design variable s where all
constraints are satisfied, A, I, are the mean values of cross-section and moment of inertia
respectively of the structural members, max (o) is the maximum deterministically derived
effective stress for each design s appearing in the model and o, is the material yield stress. It
is mentioned here that this methodology is fully extendable and able to facilitate multiple

displacements of the structure with no further implications and additional cost in a
straightforward manner.

An initial classical RD procedure was performed for the case that a given stochastic field
with a SDF with b=10in Eq. Error! Reference source not found. describes the modulus of
elasticity in Eq. (5.40).
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Figure 6.3. Pareto front for classical RDO for a given field with b=10 and total weight and maximum
possible variance as objective functions for the selected designs. Variance axis in logarithmic scale.

Fig. 6.3 presents the calculated Pareto front where, as expected, the heaviest designs exhibit
the superior performance i.e. the minimum response variability. Likewise, lighter designs
trade off less cost, in terms of total material volume, with increased variability. The same
figure presents also a derivative plot which was produced by calculating the upper bound on
the response variability by means of Eq. (11.70) for each of the designs of the previously
calculated Pareto front from the classical RD procedure. As shown in Fig. 6.5 the derivative
plot shifts clearly to the right which means that at least one field can be found, namely a
random sinusoid at x =« Of the VRF of each candidate design, in which the variance is

significantly higher than the one computed for the given stochastic field withb=10.
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Figure 6.4. Graphs of VRF for different total weight and structural members’ cross sections included
in design vectors .

In order to determine the upper bound on the variability response for each design we evaluate
their corresponding VRFs. Figs. 6.4 depict some typical VRFs for the respective designs of

111



this system. Specifically, in Fig. 6.4(a) the graphs of three conveniently selected designs are
depicted; while the first design s, is the heaviest one, it demonstrates almost identical
performance, as far as VRF values are concerned, with the last design s,which generates
considerably lower structural weight. On the other hand for the design s, with yet identical
resulting weight as design s,, VRF is substantially augmented thus establishing it as an
inferior design with respect to design s,. In Fig. 6.4(b) two similar VRF graphs are depicted
for two designs of unequal total accruing weight while in Fig. 6.4(c) two designs with equal
total weight produce two disparate VRF graphs. In Fig. 6.4(d) two designs of equal total
weight 0.74m*, namely s, ands,, result in totally different VRFs while s, with lower total
weight exhibits similar performance tos,. Lastly in Fig. 6.4(e) two designs of substantially
different total weights exhibit similar performance making it clear that there is plenty of room
for optimization with respect to VRF maximum value depending on alterations on the design
vector even for equal structural weights. From these VRF graphs it is evident that the wave
number domains that are mostly contributing to the VRF and consequently to the response
variance demonstrate a significant variation and strongly depend on the deterministic
parameters of the problem. Therefore, if a classical RDO results in optimum system response
variability for a given SDF this doesn’t necessarily mean that this design is also optimum
with respect to the response variability for a different SDF.
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Figure 6.5. Pareto front for classical RDO for a given field with b =70 and total weight as objective
functions and maximum possible variance for the selected designs. Variance axis in logarithmic scale.

The same conclusion can be derived from the Pareto front of the classical RDO in Fig. 6.5
but for a correlation length parameterb=70. From Figs. 6.3 and 6.5 it can be observed that in
the case ofb=10, average ‘shift’ in variance is equal to 74% ranging from 44% to 140%
while in the case of b=70 the respective percentages are 86% , 42% and 226% . Fig. 6.6
presents the two previous results in comparison to the Pareto front produced by the VRF-
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RDO formulation. What is important to bear in mind in the VRF-RDO procedure is that
optimal designs in the Pareto front of Fig. 6.6 exhibit the globally optimal performance when
focusing on different possible stochastic fields of the uncertain system parameter.
Specifically, comparing the VRF-RDO Pareto front with the maximum possible variance
front for b =10 case we notice that for a similar weight, i.e. the last point of each front (VRF-

RDO point weight equal to 0,181m*and b=10case point weight equal t00.197m*) there is a

45% reduction in variance achieved. In another case for the weight class around 0.27m?®the
reduction is almost 60% . When comparing VRF-RDO Pareto front with the maximum
possible variance front forb =70, reduction in variance can be even more dramatic reaching
up to 80% (VRF-RDO point weight equal to 0.430m*and b=70case point weight equal to
0.444m*). This can be explained by the following observation; in the specific static model it
seems to be a standard feature of VRF (see Figs. 6.4) to attain maximum value far from the
neighborhood of x=0 rad/m while the SDF that is used in our example, when the

correlation length parameter bis equal to70, concentrates 99% of its power at the proximity
of 0 rad /m wavenumber i.e. for ¥ <0.13 rad / m(see Fig. 6.2). Thus, the integral expression

of Eq. (5.40) produces a deceivingly low variance for the case when b=70not taking into
account the evolution of VRF for higher rad/m where practically SDF is zero and
consequently the classical RDO procedure effectively focuses its selection process on designs
that give low VRF values at low wave-numbers neglecting what the variance might be for an
alternative stochastic field.
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Figure 6.6. Pareto fronts for classical RDO with variability response for a given field with b =10, 70
and total weight as objective functions with respective maximum possible variances for the selected
designs and Pareto front with VRF and total weight as objective functions. Variance axis in
logarithmic scale.

Finally, in Fig. 6.7 a comparison of VRF with the respective GVRF generated with the
methodology described in section 5.3.1 is presented for a randomly selected design of the
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structural model. The agreement of the two curves validates the conjecture of independence
of the VRF from the stochastic parameters of the problem.
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Figure 6.7. Comparison of GVRF and VRF graphs for a specific design vector s with respective
moments of inertia.
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CHAPTER 7/

7 CONCLUSIVE REMARKS

Over the recent years a lot of research has been dedicated to improving existing stochastic
analysis methodologies as well as inventing new ones. This fact, combined with the advances
in computational science and tools, has made stochastic analysis a more tangible and feasible
process for practical engineers. In the original research presented in this particular PhD
thesis, an effort has been made to reduce computational cost related to stochastic dynamic
analysis and stochastic optimization but mainly to explore additional tools and an alternative
perspective of viewing systems’ uncertainty, aiming to provide a norm that characterizes each
individual system that is decoupled of the system uncertainty itself. This has been achieved
by implementing the established concept of Variability Response Function.

More specifically, Dynamic Variability Response Functions and Dynamic Mean Response
Functions were derived initially for a linear stochastic single d.o.f. oscillator with random
material properties under dynamic excitation. The inverse of the modulus of elasticity was
considered as the uncertain system parameter. It was demonstrated that, as in the case of
stochastic systems under static loading, DVRF and DMRF depend on the standard deviation
of the stochastic field modeling the uncertain parameter but appear to be almost independent
of its power spectral density and marginal pdf. The results obtained from the integral
expressions are close to those obtained with MCS reaching a maximum error of the order of
20-25%. Moreover, the DVRF and DMRF provide with an insight of the dynamic system
sensitivity to the stochastic parameters and the mechanisms controlling the response mean
and variability and their evolution in time.

Furthermore, vector type Dynamic Variability Response Functions and Dynamic Mean
Response Functions were obtained for general stochastic FE systems such as a statically
indeterminate frame structure and a plane stress shear wall problem with random material
properties under dynamic excitation. Again, the inverse of the modulus of elasticity was
considered as the uncertain system parameter. The recently established GVRF concept has
been utilized and effectively validated the independence of DVRF of the spectral properties
and the marginal pdf of the uncertain system parameter. Thus an easily implemented
methodology is introduced for computationally efficient sensitivity analysis of general finite
element systems while at the same time providing reliable information about the evolution of
response mean and variability in time.

At last, an alternative Robust Design Optimization is proposed based on the concept of
Variability Response Function. Taking advantage of the VRF’s invariance to the stochastic
field’s correlation structure and probability distribution, an alternative Robust Design
Optimization formulation is achieved that is dependent only upon deterministic parameters of
the problem. The VRF-RDO derived Pareto front provides design candidates, through an
essentially deterministic procedure, that have an optimal performance taking into account the
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worst possible stochastic field for the system response. The advantages of using the proposed
methodology over traditional Robust Design Optimization are illustrated through an
application to a frame-type structure where it is demonstrated that the designs achieved
through classical RDO for a given stochastic field description are not optimal for a variation
on the spectral properties of the random field modeling the system uncertainty, while designs
obtained with the VRF-RDO achieve optimal performance for the worst case scenario
stochastic fields.
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