EONIKO METXOBIO [TOAYTTEXNEIO
YXOAH HAEKTPOAOI'QON MHXANIKQN KAI MHXANIKOQN YTIOAOTISTON

TOMEAY TEXNOAOI'TAY. TIAHPO®OPIKHY. KAI TIIOAOTTETON
EPTAXTHPIO MIKPOYIIOAOTIETON KAI WHPIAKON X TESTHMATON

Optimizing ECG Signal Analysis by building FPGA-based
accelerators using High Level Synthesis

AIITAQMATIKH EPTAYTA

TT]Q

Kwvotavzivac 1.
Kohoyewpyn

EnBArénwv: Anunteioc I. Yolvtene
Avaminpwthc Kadnyntic

Adrva, Tavoudprog 2016

EGNIKO METXOBIO IIOAYTEXNEIO
Y XOAH HAEKTPOAOI'QN MHXANIKQN
KAI MHXANIKON TIIOAOTTETOQN
TOMEAY TEXNOAOTI'TAY ITAHPO®OPIKHY
KAI TTIOAOTTETOQN
EPTAXTHPIO MIKPOYIIOAOT'TETON

KAI YHPTAKON YTYTHMATOQN

Optimizing ECG Signal Analysis by building FPGA-based
accelerators using High Level Synthesis

AITAQMATIKH EPTAYTA

TT]Q

Kowvotavzivac 1.
Koloyewpyn

EnBrénwv: Anurteioc I Yolvteng
Avaminpwthc Kadnyntic

Evyxpidnxe and tnv totuehs| emtpont| v 22" Tavouapiou 2016.

Anurteroc 1. Yodvtpne Kuopdh Z. TexpeotlA Tdpyoc Owovoudxog
Avarminpwtic Kadnynthic Kadnyntic Enixoupoc Kadnynthc

AdAva, Tavoudprloc 2016.

Kwvotavtiva I. Kokoyewpyn
Amhouatovyoc Poltrtela
Edvixo) Metodfiou Ilohuteyvelou

Copyright© Kwvotavtiva I. Kohwoyeweyn, 2016

Me empOhain mavtog dixonwpatog.All rights reserved.

AnayopedeTon 1) ovTiypoupy), amodixeuon xau Slovour Tng mopoloag epyastag, €€ ONOXAHEOL 1) TUAUATOS
QUTAS, YL EUTIOPIXG oxomo. Emtpéneton 1 avatinwor, anodixeucT) xot Slavour] Yol OXOTO U1 XEEOO0-
OXOTUXO, EXTUBEVTIXAC 1) EQELVITTIXAC PUONC, UTO TNV TeolTOUEST Var AVaPERETOL 1) TNYY| TROEAELOTC
xa va Statneeiton To Topdy uhvupe. EpntAuata mou apopoly T xenoT TNG EpYACLug VLo XEPBOOXOTOXO

ox0md TEETEL Vo ameLYOVOVTOL TIEOG TNV CUYYRUPEA.

O andielg xou To GUUTEREOUATO TOU TEPLEYOVTAL OE AUTO TO €YYRUPO EXPEALOLY TNV CUYYEOPEN XAl OEV

npénel va epunveviel 6Tt avtinpoowneouy Ti¢ enionueg Véoelg Tou Edvixol Metodfiou IToAuteyvelou.

Contents

YOvToun mepIANd . . . L e e e e e e e vi
Abstract e vii
Extetopévn Ilepidndn o 0 0 0 0 0o o e viii
Acknowledgements L e e e e e e e e e e e e e xxviii
List of Figures 0 0 i i i i et e xxix
List of Tables o 0 0 i e e e e e e e e e e e e e xxxii
1 Introduction @ @ i i i i i e e e e e e e 1
2 Problem Overview o i i i i i it it e e e e e 3
2.1 ECG Analysis Flow 3
2.2 Related Work e 7

3 Theoritical Background i it e e e e 9
3.1 Background Information on SVM classifier 9
3.2 High Level Synthesis 11
3.3 Zynq Evaluation and Development Board Specifications 16

4 Code Restructuring for HLS oo 18
4.1 Advancing Coarse Level Parallelism in HLS 18
4.1.1 Parallelization Technique 18

4.1.2 Results e 22

4.2 Advancing Instruction Level Parallelism through arithmetic operation reshaping . 25
4.2.1 Parallelization Technique 25

4.2.2 Results 28

v

5 Exploration of HLS Directives i 0 i i i v it v v v

5.1 Selection of Optimization Directives,
5.2 Application on Original Code
5.2.1 Impact of each directiveo oo

5.3 Comparison of Implementations L.
5.4 Optimal Configurations

6 Implementation on Zedboard e e e e e
6.1 Implementation Description L o
6.2 Results. e e e

7 Conclusion i v i i i i i i et e
7.1 Summary e e e e e
7.2 Future Work e
References v v i i i i i i e

30

30

32

33

44

47

50

50

55

57

o7

58

59

>0vtoun Iepiindmn

To nhextpoxopdoypdpnuo (HKI') Aéyw tne otevic ouvdgetds tou ye) guotohoyia tne xopdLdes ebvor
am6 To faoxd PLOCHUNTA TOU YENOHOTOLOUVTAL Yol TNV ToEoX0AoDUNcT TN XATdoTaoNS TG LYEldS
eVOg oavUp®TOU. LUVETMS, 1) AVAALGY, TOU xoL 1) epunVveia Tou €xouv xadicpwiel w¢ Evag oNUAVTINGS
XAADOC OTN GUYYEOVN LUTEIXT Xol aUTO EYEL OONYNOEL OTNY EXTOVNOT, TOMAWY UEAETOV OYETIXOV UE
N Pngrone| emelepyaoio Tou. Adyw Tng mohumhoxotnTog TN onutovpyiog povtéiwy axplBeloc yio Ty
a&loAdynon xaw Ty TeoBAed Tng xatdotacne T xoedlde, ot Teyvixée Mnyovixrc Exuddnone éyouv
emxpathoel otov touéa e Avélvong touv HKT'. Ov Mnyavéc Awavuopdtov YTrootipiEne (Support
Vector Machines- SVM) cuyxexpiuévoa elvon 8lontépwe Sodedouéves Aoym tng axplBoic mpdBiedng xou
NS EVOLPEEOLCAC LTOAOYICTIXTG Boung Toug. Emnpdoieta 1 avdyxn ocuveyoic tapaxorovinong tne
XATEAC TUONE TNG HAUEOLEC XOU SO TA OE TRAYHATIXG YEOVO €YO0UV AUENCEL TIC OMOUTACELS Yol EMLTAYUV-
on e Yneloe avdivong tou HKT' xan npaypoatononorc e oe cUOTNUO YOUNANC XATAVEAWONS
EVEQYELOC. XTOYO0G QUTAC TNG BIMAwUTIXC epyaciog etvor 1 altontoinon twy duvatothtwy tou HLS
vt T Onuovpyio amodotixwy SVM w¢ emtayuvtéc o LA, Meletdton 0 eviomouog appuiuiey 6To
HKT' yenowonowwvtag wg Bdor dedouévwy wa Bdon dedouévev yio HKI mou €yer avantuydel péow
xowrc ouvepyaotag Twv Tavemiotpioy MIT xou BIH. ¥e mpdto eninedo o apyixdc xohoxag avodoye-
(Ton PE XEUTAPLO TNV EMTAYUVOT OOTE Vo dntovpy el amodoTindg emtayuvTAc. e 0sUTEPO eninedo
elepeuvovtal ol TeEyVxéC PehtioTonoimong tou epyaieiou HLS o omnoleg eqopudlovian otov apyixd
X0l OTOV TPOTOTOLNUEVO XWOLXAL Yio TEPATERW PEATIION TOU WG TPOG PETEWES ETBOONE Ko YENOUO-
nolnong mépwv. O cuvduaoude twv 800 emmédwy empépel xépdog éwe xau 98% ot ypdvo extéheong
o€ oUYXELOM UE TO YEOVO EXTEAECTIC TOU dpyIX00 XMBOXO EVE) TUPEYOVTOL GTO OYESLCTH To BEATIO T
onuela xotd Pareto pe Bdon to onola ymopet vo emhéZel yior LhoToINGT AvdAOYA UE TI ATUTACELS TNG

EXUOTOTE EQPAUPUOYNC OF TayOTNTA EXTEAECTC XAl YENOWOTOINCT TORWY.

Aéeic Khedwd: Eyedioouoe Tatpudv Evowyatouéveoy Yuotnudtoyv, Avdiuvon Hiextpoxopdioypo-
pruaroc, Teyvinéc Mnyavixic Mddnone, Mnyavéc Awavuoudtwy Troothelne, HW/SW oyedaopde,
Avantu€iony) IMhoxéta Zynq Evaluation and Development Board, Epyoheia X0vieone Tdnhot Em-
nédou (HLS)

vi

Abstract

One of the most fundamental and crucial biological signals for monitoring and assessing the health
condition of a person is the Electrocardiogram (ECG) due to its inherent relation to heart physi-
ology. Consequently, its analysis and interpretation has been established as an important field in
modern medicine and this in turn has spawned various inter-disciplinary studies including digital
processing analysis of the signal. Given the complexity of deriving exact models for assessing and
predicting the heart’s condition, machine learning techniques have recently dominated the field
of ECG analysis. Support Vector Machines based classifiers especially, have grown very popular
as the key element of machine learning based ECG analysis due to their capability of accurate
prediction and their interesting computational structure. Last but not least, constant monitoring
and real-time heart condition assessment have imposed new requirements for acceleration and low
power execution of a digital ECG analysis flow system. Taking all these into consideration, in this
work we focus on utilizing High Level Synthesis capabilities to produce efficient SVM hardware
accelerators. Our case study is arrhythmia detection using MIT-BIH ECG signal medical database.
We show that as a first step, the original code under acceleration can be re-structured in order
to create instances which are efficiently transformed into a HW accelerator. As a second step,
an exploration is performed on the transformed code in order to determine which HLS directives
produce the best outcome in terms of various performance and resources utilization metrics. Our
combined analysis shows that we can achieve results of up to 99% execution latency gain compared
to the original SVM code and the designer is given a set of Pareto Optimal design points in order

to decide the best trade-off between gains in latency and increase in utilized FPGA HW resources.

Keywords: Medical embedded system design, ECG analysis, machine learning, Support Vector
Machines, HW /SW codesign, Zynq Evaluation and Development Board, High Level Synthesis

Vil

Pon Avdiuvong tou HKT

H popgr touv HKI' xou 0 xapdiaxde puduog mou e&dyeton and to HKI eivon dniwtind tne xatdotoong
e xopdde. Ltny ovato to HKIN arotunvel dlaboyixoie xapdtaxois xixhous. O xapdloxds xUxhog
(8100 TOAY, GLGTONT, Mpepia) cuvTovileTon omd NAEXTEIXG CHUATA TOU TAEEYOVTOL Otd XATHARNIAL XEVTEN
otéyepong g xapdldc. Trdpyouy teia Bacixd nhextpixd orpata tou epgaviCovton oto HKI': 1o énapua
P, to clumieyua QRS mou anoteheiton amd tic xopupéc Q,R,S xou to énopua T. Autd tor orjuota etvon
OTNY TEAYUATIXOTNTO HETUBOAEC TOU NAEXTEIXOU BUVOHIXOU BLpORWY TEQLOYWOY TNG XUEOLAS XaL dpa
o HKT' anewxovilel v nhextpwr dpactneotnto tne xapdids. To endpyota auTd xou ol anocTdoElS
UETAE) TOUC €Y0UV CUYXEXPWEVT YpovixY| Bidpxeta xou wop@ohoyia. Omnoladnnote mapéxxhiorn and T
puctohoywt| poppoloyia Toug meémel vo uehetniel xodig unopetl va etvon detypo tadoroyixnic BAAENC.
H xapdioxn appuduio etvon 1 mo cuvnhouévn xopdoxy| BAEBN xou ebvar 1 Statopoy) Tou xoedloaxol
evduol. H appuduio umopel va eivon omd acupmtwpatind péyet xplown yio v avdeomvn {of. Do
auTté T0 AOYO xpiveton amapaltntn 1 werétn tou HKIT, w¢ péoo didyvwong appuduidy. O appuduieg
elvol UEPOVOUEVA TEPLOTATIXG TTOU EXDNAWVOVTAL GE Tuyaleg Ypovixés otiypés. Enouévee etvan avaryxaio
N uerétn tou HKI' peydhwv ypovixov draotnudtonv. O ueydhog 6yxog 0edoUEVeY Tpog UEAETT xoioTd
amoEalTNT TN YEeNoN TEYVIXWY Unyavixnc udinone yio tnyv eneiepyacto tou. Talvountéc Basilovta
O€ TEYVXES UNYavixig Uddnong Yo TNV EXTALBEUCT] TOUG UE AUTO TO UEYHAO GUVOAO BEBOUEVLV (OTE
TEMXG VO UTIOPOUY VL BLotY VIOOLY GWoTd TNV UToedn 1 un apeudulac o éva vEo GUVOAO BEBOUEVKY
HKT'. ¥tn ouyxexpwévn epyacio yenowonoteiton 1 Bdorn dedopévev appuduioc MIT-BIH Arrhythmia
Database, n onolo mepthaufdver moApoUg yio Toug omoloug €yel YIvel BLdyvwoT amd XapSloAOYOUC.
H Swdicaoto enelepyastac xar avdiuong tou HKI' yio tny eCoywyn twv emuéeous Tohumy xat twv
YUEAXTNELOTIXDY TOUS WOTE TEAXA VL YIVEL 1) BLEYVWGCT] YENOHLOTOLOVTOG HOVTENX TEYVIXAC UNY VXIS

udinone mapouctdleton oxohoLUwe xou aneixovieton oto Xy.1.

e AnoYopuBonoinon: To ofua tou HKI' guktpdpetan yioo v amoudxeuvon Yoplou mou

TEOEEYETAL XUPlWE amd TNV TEOPOBOGla XAl TG XIVHOELS TOU aoVevH.

e Evtoniondg xopup®y : e autd To oTddo aviyvelovTow ol mohuol mou amaptilouv To
puhtpoptopévo mia ofjpe. H aviyveuon twv modudv emtuyydveton Y€ow TNG aviyVeEuong Twv

x0pLPKOY R e) ypenomn eldwdy cuVIpTACE®Y.

o ESaywyn YopaxTnelo Tix®y: Y auTto To 6TAd0 YiveTon 1) e€aywyr| YopoxTNRLo TiXwy xdie
TaAdo0, Bdoet v onolwy Yo yivel oe endPEVO GTABLO 1) BL&YVWOT). TN CUYXEXPWEVT OLTAWUO-
T o Metaoynuatiouéc Kugotdiov (Wavelet Transform - WT) eqopudleton oe xdide nahud
OoTE TO oNa Vo PEAETNUEL 0To TESlo TNG LY VOTNTAC Xl TOL YEOVOU TauToyeova. Ou cuvte-

AeGTEC TTOL TEOXVTTOUY OO TO PETUCY NUATIOUO aUTS Yiol xdde ToAud oymuotiCouv To Sidvuoua

viil

TWV YORUXTNPLO TIXWY XGVE TOAUOU.

o TaZwvounon-Awdyvwon: Xe autd To GTEBLO TO BIAVUCHA TWYV YORUXTNELC TIXMY TOU ONULOUe-
YHUNXE GTO TEONYOUUEVO GTABLO Yol TOV TEEYOVTA TAAUO yenotuonoleton ws elcodog ot Evay
TagvounTh yio v tparyportonondel 1 Sidyveon. O todvountic meonyoupévee el exmtoudeuTel
YENOWOTOLOVTAC EVOL UEYEAO GUVOLO BLAVUCUATOY YORUXTNEIC TIXDY OUOLWY UE OUTE TOU TEOT-
yolpevou otadiov. e auth T Simhowuoatixy o Ta&vountic Bactleton oe Minyavég Aovuoudtwmy

Trootheine.

Band pass Discrete Heart beat Diagnosis —
g R peak . .
Filtering . Wavelet diagnosis Normal /
detection g
process Transform classifier Abnormal

Yyfuo 1: Pory Avéduone HKT

Oeswpntind YT roladeo

Ocewpla Mnyavov Altavuoudtwy TrootrelEng

O Mnyavéc Awvuopdtov YTrootipiEne (Support Vector Machines -SVM) efvor povtéha emBhe-
TOUEVNS pddnong mou exmandedovian Ue €vo UEYAAO GUVORO BEBOUEVKY Xou Efval XUTIAANAT Yo TNV
TaEWVOUNOT TOV VEWY EI060wY o 800 uTtoHgLeg *AdoEC CUUTANPEOUATIXES UeTal) Toug. To clvoro
EXTAUOEVONG AMOTEAE(TOL UG BLOVOOUOTA UE CUYXEXPWEVA YARUXTNEWO TIXA xordéva amd Tar omoio dlat-
Véton pLor ETIXETA ONAWTIXNAC NS xhdong otnv omoia avixet. ‘Evo cdvoho and dAla diaviopato Ue To

(Bt yopaX TNELO TS Xol YVWO TEG TIg ETIXETES Ypnotuonoteitan yia vo ehey Vel 1 oxpifBetor Tng mpdPBAednc.

To SVM egapuélouv apyixd Uior GUVERTNOT TUEHVA TOU avaYEL To BLyOoUITH OE €Vl (PO TEPLOCOTE-
PWYV SLIC TACEWY, 6TOL Efval TO EUXOAOS O BLoY WPELOUOS TOUC. 2T YWeo autd Beloxouy éva unepeninedo
70 onolo amoTeAelToL OO TOL BLVIGUATO TTOV ATEYOUY PEYLOTA Amd TA SLVUCUOTA TOU OVAXOLY GE xdie
xhdon. Kdde véo didvuoua avdyeton oe autdyv o Ywpeo, unoloyiletol 1 andcTao TOU ON6 TO U-
mepeninedo xou dpa pe Bdon TN Véomn Tou oe oyéon ue autod Tadvoueltan oty avtioTtolyn xAdon. H
cLVAETNOT TUETVA Elvor xadoELG T YLt TNV oxE{BeLol xou TNV TOAUTAOXOTNTA TOU HOVTEROU. AdYw TwV
UN YOOUUXOV OYECEMY UETAE)D TV YoRUXTNRLOTIXGY Tou dlaviopatog xdide TaAuol yenollonotolue

U1 YROUUIXY CUVERTNOT TURTHVAL X0t GUYXEXEWEVA eEXVETIXC PUOTC.

Axohoudel 1 podnuatxr) e€iowon mou TEPLYPAQPEL TOV UTOAOYIOTIXO TUPNVOL TOU TOEVOUNTYH XoL O

avtioToryog xowxag C mou tnv vAonotel:

N _sv

Class = sgn(Z (yi * a; * exp(—~||x — sup_vector;||*)) — b) (1)
i=1

omou K elvon 1 ouvdptnon muprva, X elvon To Bidvucuo Tou ToAgod mpog Tavoéuncr, sup-vector,
elvor T0 i-00T6 BLdvVUCUN UTOGTARLENG XOll ¥4, @; €Vl TWES BLapopeTéS Yiar xdde BLdvuopa UTOGTHELENS
xan mpoéxuay xatd v exnatdevor. H yetoBAnth b elvon yior petoBAntr olyxpeione, anotéAeoud Tne

exnaideuong xou otodepy| yior Ghat Tor SlaviopoTa UTOGTHEENS.

Listing 1: Apydc x@oixac tovount.

const float sv_coef[N_sv];

const float sup_vectors[D_sv][N_sv];
void SVM predict (int xy,float test_vector[D.sv]) {
loop_i:for (i=0; i<N_sv; i++){

loop_j:for (j=0; j<D_sv; j++){
diff=test_vector[j]—sup_-vectors[j][i];

norma = norma + diffxdiff;
}
sum = sum + exp(—gammasknorma)*sv_coef[i];
norma=0;
}
sum = sum — b;
if (sum<O0)
xy = —1;
else
¥y = 1

Ytov Kodwa 1 1 petoBints sv_coe f 1coduvayel e to yivouevo y_i xan ot tne e€iowong 1. O opriuog
TV dlovuopdteny utoothplEne N_sv xou o aptdudc TV YoeaxTneloTixwvD_sv Otwe xaL 1 ETAOYY
CLYVHETNONG TUETVAL EYOLY UEYSAN ETOPAUOT OTNV TOAUTAOXOTNTA. LTV €PELVA QUTH, 1) EXTALOELUOT)

xatéinie oc N_sv (oo ye 1274 xou D_sv (oo pe 18.

High Level Synthesis

To HLS etvon éva oedlac Tixd epyaleio mou dnuovpyel povdadeg hardware eidixo) oxonold Aoufdvovtag
w¢ €loodo TNV meplypapt| TS AsttoupyixdNTds Toug o C. Ioapéyel €tol Tn BuvatéHTTA GTOUC TIPO-
YOUUUATIOTES VoL ETLTAY OVOLY T UTOAOYLO TIXH OTOUTTTIXG. XOUMATIOL TV EQUQUOY KDY TOUG UAOTIOLOVTOG
o ¢ Eeywplotéc povidee oe Field Programmable Gate Array (FPGA). "Etol o eqappoyy| propet
VoL EXTEAELTAL OTOV EMEEERYUOTH TOU UG TAUNTOS O VoL Xohel TOV emToyLVTH Tou €xel Lhomondel oe

hardware yio T0 TO amATNTING HOYPATL TNC.

To npwto Brjua yenowwonoinong tou HLS eivon 1 avdmtuin tng egopuoyhc o€ YAOCTO TROYROUUATIONOY

C, xahotovtag €Tol o €0x0A0 1OV EAEYYO TNG 0pUOTNTAG Amd O,TL UVAOTIOLOVTOG TNV EQUOUOYT| OE

Y AOooo meptypaghc LAxoU. Axoloudel 1 dladixacio Tng obvldeone, oto Téhog Tng onolag TapdyeTol
1 TEptypapr TS Aettoupyixétntog oe eminedo xotoywentr (Register Transfer Level - RTL). Kotd
™ obvieon to HLS ypovodpopohoyel Tic evioAéc-hettovpyleg ToU %O Xl SECUEVEL TOUC OVOLYXO-
foug mopoug yior TV LAomoinoY) Toug. Awrdétel Texvnéc PehtioTomoinong Tic omolec eqopudlel eite
QUTOUATOC €lTe UETA amd eVTOAT Tou Yenotn. Anuovpyel €Tol UAOTOOELS Ue UPNAES emBOOELC X
amodoTXn yenoulonoinon twv didéouwy Topwy. OL ThAnpogoplec aUTEC UTEEYOUY GTNY avVapoEd Tou
TapdryeTon xatd T Odexeta T odvieong. Me Bdorn autéc o yphoTng UTOpEl Vo BIEPELVHCEL TIG TTORE-
YOUEVES TEYVIXEC YOl VO XATAOXEVAOEL Lo LOVABL TTOU VOL LXAVOTIOLEL TIC TTROOLOYPAPES OE AMOBOTIXOTNTA
TayTNTOC Mot TopwY. O UETEIXEC TIOL YENOLWOTOUVTAL YLt TNV 0LOAGYNOT) TOU OMOTEAEGUATOS O-
popoLy tov epPodov (area: LUTS, registers, block-RAM, DSPs, flip flops), to ypévo andxpeiong tou
emtayuvty (latency) xaw 1o ypdvo mou meénet va mapéhiel péyptl 1 povéda va uropel vo eneepyaoTel
véa dedopéva. Ou Teyvinéc BeATioTonolNoNe QUTOY TV YETEIXWY EQupudlovTol o BLdpopa UéeT Tou
OO, OTWG OE CLUVUPTAHCELS, BpdyouC, TVaXES XaL TEPLOYES TTOL TERLAAUPBAVOLY XATOLaL 1| OAXL T TR0
Tave péen. ‘Otav ohoxinewiel n Swadixacio emitdyuvong tne povadog, eEdyeton 6 XUTIAANAO QOPUAT

yior Vo cUUTERLANQIEL OTNV AEYLTEXTOVIXT] GAAWDY CYEDLAC TIXWY ERYUAELWY.

Avtd o yapoxtnelotixd Tou HLS 1o xahotodv 6avixn emhoyy yio 0 dnutovpylo Tou Tagvounty »c
emtoyuvth oto FPGA xouudtt tou Zedboard. Xenowonowdvtog tov xmhdxa Tou tadivountr Yo eqop-
UOCOUUE OF AUTOV Bouxég ahharyEg xan TIC TeYVIXES PedTioTonolnong mou mapéyel To HLS npoxeiuévou
VoL EMITOYOUUE TIC AMOUTACEIS O YEovo extéheong tng aviyveuong apputulag. Ta mpwta otddior Yo

extehOUVTOL OTOV ENMEEEQYUO TN TN TAAXETAS Xou 1) TaEWVOUNoN-Otdy Vo otov emtayuvth oto FPGA.

Zedboard

To Zedboard etvan par avomtu&lons) mhoxétor yauniol xo6ctoug. Eivow éva cbotnuo vAomoinuévo oe
ohoxhnpwpévo xoua (SoC) mouv avixer otny oxoyévelr Zyng-7000 tne Xilinx. 3uvbudler v
Umapgn Troloyotxod Lucthuatog pe dvo encéepyaotéc ARM ye tnv Unopén Enavanpoypouupati-
Louevne Aoywhc. YTmootneiler v vionoinorn Linux, Android, Windows, OS/RTOS egapuoyv.

To xOplar yopoxTNEIo TXd Tou elvou:
o MvAun: Suvou (DDR3) xou otatnr pviun (SPI Flash,SD Card Interface)
e USB: USB-to-UART oc0voeon, Aertovpyixdtnta JTAG, npoctacia xuxioudtwy USB

e O96vn xouw 'Hyoc:HDMI Transmitter, Analog Device Audio Codec, OLED Display

e Clock Sources: 33.3333 MHz pohdt vy 1o Troloyiotind YNootnua eved T0 TohoyloTxno

Yootnua Topdyel €wg 4 pohdyla yia To Enavanpoypouuatilouevo u€pog tne ThaxéTag

e Reset Sources: e&ntepol Slaxdmteg yiot emovexxivnoT TNg TAUXETOC Xl ETOVATROY QUUUOTI-
ou6 tou FPGA

e User I/O: 7 user GPIO push button, 8 user dip switches, 8 LEDs.
e 10/100/1000 Ethernet PHY: Ethernet 00pa yio 6Uvdeom oto dadixtuo

e PS xow PL I/O enextdosig

Y16)0¢ TNE BOVAELIC aUTTE Elvor 1) ETLTEYLVOT) TOoL hoylopxoL yTilovtog évay emtoyuvtr otny Enova-
npoypappatlopevn Aoy (PL). O emtoyuvtic Yo mpénet axdpo va emxovwvel ue 1o Trohoylotixd
Y0oTNU, Yot dUTO TO EVOLUPEROY HOC ETUXEVIPWVETAUL OTOUC TOPOUS TNG EMOVITROYROUUATILOUEVNG
AOYIXAC XOU OTOL YAEAXTNELO TIXE TO TROTOU BLHCOVEESTC TWV BUO UERHDV TNG TAUXETAS. DUYXEXPUIEVA
70 Zedboard Swrdétel évay dlavio emixovwviog Pe To UTOAOYIOTIXG TUXUA, 0 ontolog e€aopoilel emi-
xowovia xApox@pevne andédoone xo unhéy emddoewy (High bandwidth AMBA interconnect). Ot

olodéotuot mopol Tou FPGA avagépovton otov Iivoxa 1.

ivoxac 1: Awndéoipor népot tou Zedboard.

II6por |BRAM_18K|DSP48E| FF |LUT
Awdéotuot 280 220]106400(53200

Avoaoounon Koowa yio to HLS

Avdantuin IloaparAnAicuol os Eninedo Mniox

Apywd embiodxoupe Ty e€aywyy| Tapahhniiopol oe eninedo cuvdptnong. I'a vo to emtiyouue autod
EXUETOAAEVOUAGTE TOV EYYEVY TopoAAnhioud tou ahyopiduou. To Bidvuoua €0650U TOU TEEYOVTOC
TaAdo) vAoToteitan wg évag mivoxag-yeopuuy| e 18 otoyelo-yapoxtnetotind. To Swvbouata uTooTHpL-
&nc ulomoloLVToL w¢ Evag OB TUTOC TVOXAG UE TOOEC OTAAEC 600 TO TAHDOC TWV BLIVUCUATWY
LT TARIENG €V X&le OTAAN €yel TOoU GToLyEld 60 Vol TAL YUEAXTNELO TIXE TOU UEAETAOVTAL. 2UU-
PoVA UE TOV WO 1 Yo xdie dldvuoua El6680L TEog TagVOUNGT|, UTOAOYILEToL 1) EUXAEBLO OO TAOT
Tou and xdde Sidvuoua UTOGTARLENS Xat LPWVETOL OTO TETEAYWVO. X TN GUVEYEL EQupUOlETaL O AUTY
TN TW 7 CLYVAETNOY TUENVAL Xak 1) VEX TYY| TOU TROXUTTEL TOAATAACLELETOL UE TOV avTioTOLYO To-
edryovta xdde Staviouatog unooThpEne. O TS Tou TEOXUTTOUV amd TOUC UTOAOYLOUOUS UE Qe
odvuoua utooTheEng adpollovtal xou To TEAXO OMOTEAECUO GUYXEIVETOL UE TN TY BLog Yl TNV To-
Ewvounorn o po and Tig dVo xAdoec. O mpdéelc mou amontolvTal YETAED TOU BLVOCHATOS ELGOO0U
xan xdde Blaviopatog uTooTHEENS elvon aveldptnteg PeTall Touc. Mmopolv Aotméy va extehobvTo
ToEdAANAa. X auth) TV Euputn tapahhniio Bactleton 1 mpotevouevy TeVixY. O mivoxog Twv dtavu-
OUATWY UTOCTHRIENG UTopEL VoL EMUEPLO TEL OE XEOTEROUS THVOXES, XaIEVAC amtd TOUC OTOlOUC TEPLEYEL
Ayotepa dravoopoto unootheEng. Ou mpdéelc Yyl Tov LTOAOYLOUG Tou pepol adpolouatog Pe To
omolo GUVEIGPEREL TO XAVE XOPUdTL Tivoxa 0To TeEAXO dlpoloua ExTEAOUVTOL TopdAAN . Emityaue
OOV TNV EXTEAEDT) TOU (B1OU UTOAOYIG TIXOU TURHVOL TOMAES PORES TOREAAN AL LOVO Ttou xdde pla omd

auTéC Spal oE WxEoTERo alvolo dedouévev. H teyvinn anewoviletan oto Xy .2.

H vhomnoinom tng napandve 16€og amartel ohhayég oTov xmOxa o€ dopxd eminedo oAAd xou Tn Yenomn
TV TEYVIXWY BeATiotomolnong mou tpoc@épel To HLS. Yuyxexpyléva o umoAoyio oS TUpvag Tou
TagvounTy) VAoToteltal w¢ ouvdeTNnon 1 omolo xaheltan and TNV xVpLol GUVAETNOT) TOGES PORES OGES (PO-
e€c €xet empeptotel o mivaxog. O mivaxog Twv SlovuoudTemy UTOC THELENS %ok O TVOXAC TWY TUEAYOVTWY
Toug emipepilovTal ETloNG OF UTOTIVOXES UE YPNOT TWV XUATIAANAWY QUTOUATWY TEYVIXGOY TOU TUREYEL
10 epyahelo. Xe SlpopeTiny] TepInTwor o SNULOVEYOUVTOY AVTITUTIO TWV TVAXMY Yiot Var efvat EQIXTY
1 Tpoofaon e v and 800 cTolyelor Tou xde Tvoxa TN QOPd, TEPLOPLOUOS TOL ETBAAAETOL AOYW
TNe vAomoinong Twv mvixwy v BRAM ye 800 Bipec avdyvomone. Kdde otrymdtuno tne ouvdptnong
€yl mpocPoon oTo oTolyEld WOVO EVOC UEEOUC TOL ETUUERLOUEVOL Tivoxa. O TPOTOTOUNUEVOS HWBOLXAS

napatiVeton otov Kddwa 2.

Auth 1 16€a LAoToUUNXE Yo empeploud Tou Tivaxa o 2,3,4,8 xou 16 péen. H Beitiwon tou latency
ATAY 1) AVOUEVOUEVY), ONAADT| O YPOVOC EXTEAEGTC DlonpElnxe oYEBOY xaTd évay TopdyovTa 2,3,4,8 xou 16.

H ypnowonoinon oe DSP noA\amhacldotnxe xotd autodv ToV TopdyovTo EVe UTHEYE oTadlaxt adinom

X1v

Support vectors in memory Support vectors in memory
before partitioning after partitioning

HEEEEE HEEEEEEN
N ||
H EEEEEEEEEEEEN H HEN ENEREEN Ew
ﬂ N_sv Oﬂ N,sv/aﬂ N_sv/2 ﬂ 3N7$v/4ﬂ N_sv
4-port BRAM memory controller
l

a aggregation (su
Classification result, Classification resull

MEMORY

[|
|
|
|
L
0

Single port BRAM memory controller

4
=]

Instantiated
HW ACCs

Yyfuo 2: Hopodknhioude oe Eninedo Mriox

xan otn yenowonoinon LUT xau Flip Flop. H yvAun mopéueve otodepr) extog and tnv teieutaia
nepintwon onou onuetwinxe por andtoun adinon. Aoxpdloviac vo YwelCoUUE Toug TVUXEC UE TO
Yépt, dnhdvovtog toug eZopyc YWELOTY, TETOYOUE axdua UEYOADTERY EMTAYUVOT) (aXbUd THO XOVTY
otov Wavixd mopdyovia 2,3,4,8,16 avtiotolywe) xou eZokelpdnxe 1o TedPAnua ue TV amdToun adinon

oe BRAM. Ta anoteréopota aneixoviCovtoar 6to Xy.3.

Latency Gain and Area Resources for Increasing Partition Factor
Manual Partition

350 T T T T T
I -rtition factor 2

300} I partition factor 3|
&2 [partition factor 4
5 501 [partition factor 8 ||
E I = riition factor 16
S 200}]
_
—
]
5 150+ i
=
o
=
S 100}]
L]
o

S0F i

Latency gain ERAM DSk FF LLIT
metric

Yyfuo 3: Anédoon xou Xenoornoinon Hopwv yio au€avouevo aprdud dopepioewy (un
autdpoTn)

Listing 2: Tpomonomnuevog xMOXAS YL TOV UTAOX TURUAANMOUO.

#include <math.h>
#include ”"svm.h”
#include <stdio.h>
#define gamma 8

void foo(int width,int offset ,float *sum, float test_vector [D_sv],
float sv_coef[N_sv],float sup_vectors|[D_sv][N_sv]){

int i,j;
float diff;

float norma=0;

*sum=0;

loop_i:for (i=0; i<width; i++){
loop_j:for (j=0; j<D_sv; j++){

diff=test_vector[j]—sup_vectors|[]j]|[it+offset |;
norma = norma + diffxdiff;

}

xsum = ssum + exp(—gammasknorma)*sv_coef[i+offset];
norma=0;

void classify (int * y){

const

const

const

float
float

float sv_coef[N_sv]={
#include ”sv_coef.dat”

}s

float test_vector [D_sv]={
#include " test_vector.dat”

}s

float support_vectors[D_sv][N_sv]={
#include ”support_vectors.dat”
}s

diff;

suml ,sum?2 ,sum;

foo(N_sv/2,0,&suml, test_vector ,sv_coef ,support_vectors);

foo(N_sv /2 ,N_sv/2,&sum2, test_vector ,sv_coef ,support_vectors);

sum =

suml + sum2 — b;

if (sum<0) xy = —1;

else xy = 1;

Avdantuin llagarAniicpod o Eninedo Evtoldy péow

METACY NUATICUOL ASLIUTTIXWDY UTOAOYLOUMV

Ye autd 1o xoppdtt Yo e€etdoouye TNV Tapakknhonolnoy o eninedo eVIOA®Y. Xuyxexpluéva Yo o-
oyohndolue ue tnv mopalknhomoinot Tou ecwtepo Pedyou tou Tadvountr. Autdc o Bedyog clvan
uTELYLYOC Yol TOV UTOAOYLOUO TNE EUXAEIBELNS AMOG TAGTC TOU OLotVOOUATOS A6 €VAL BLAVUGUO UTOC ThpL-
&nc vdouévne oto teTpdywvo. Xe xdlde enoavdindn unohoyileton 1 Slopopd Yetald TwV avticTolywy
YUEOXTNPIO TIXWY TWY 800 SLAVUCHUATWY Xt LPOVETUL GT0 TETEdYWVO. Avtl vor utohoyiletan xdie popd
ula wévo Srapopd Yo umopovoay vo utoroyilovton teplocdtepeg o Vo odpoilovTon oTadloxd oe uLo
ueToBANTA 1 omolo 6To TENOC Tou Bpdyou Va mepIEyEl TNV TETpAYwVIOUEVT Vopua. H ddpoion oume
TOMOV optIUOY xYNTAS UTOBLIG TOAC CUVETAYETHL PEYAAO XEloo JOVOTATL ETELDY| Ol TPOCVETELC
yivovton oelptaxd av xan dev untdpyet e€dptnom Yetadh twv mpoovetéwy. H npdodeor umopel va vio-
roinvel anodotxd av yenowomoundel pla devdpiny| popen. O cowtepindc Ppdyog extulicoeTton TdoEC
popéc 6oeC Blaopéc Va UTohoYIG TOUY TawToyeova. Ot dlapopéc utoroyllovTtar topdhinia petadl Toug
OTWE X 0L VPAOCELS TWV Blapop®y GTO TETEAYWVO. TN CLVEYEL oL Sloléoies TiwéS TpooTivevtal
ové U0 XalL TOL AMOTEAECUATA XPUTWVTOL OE TROCWELWVES PETOBANTEC. AuTéc Tpoo TidevTton xa TdAL oV
0V0 %.0.x. PEYPEL TOV UTOAOYLOMO TNG OAXTC VOpUoc oto TeTpdywvo. H 8evdpuxy| dout| xou 1 ypovo-
dpopohoynor Tou epyoleiou anewxovilovion 6To Xy.4 v ol ahhayéc otny vhomoinorn otov Kdodixa 3

oTNY TEPIMTWOT ToU 0 Bpody0¢ eXTUAMOGETIL XaTd Evay Topdyovta (5o e 6.

er0s0900 000
Ty
L S

S

+
‘/ norma

test_vector(i)

[1HII

+

Yyfua 4: Aevdpixric SoUR UTOAOYIGUOL X0 YPOVOOROUOAGYNOM).

Listing 3: Kdwoag ye extOMEn Tou ecwtepinol Ppdyou xal Sevdplxr] LAOTOINGCT TwY
UTOAOYLOUWMY.

#define gamma 8
const float sv_coef[N_sv];
const float sup_vectors[D_sv][N_sv];

void SVM_predict (int x*y,float test_vector[D_sv]){
loop_i:for (i=0; i<N_sv; i++) {

loop_j:for (j=0; j<D.sv; j=j+6) {
dl=test_vector [j]—sup_vectors[j]|[i];

[
d2=test_vector [j+1]—sup_vectors [j+1][i];
d3=test_vector [j+2]—sup_vectors [j+2][i];
dd=test_vector [j+3]—sup_vectors [j+3][i];
db=test_vector [j+4]—sup_vectors[j+4][i];
d6=test_vector [j+5]—sup_vectors [j+5][i];

sq_prodl=d1xdl;
sq_prod2=d2xd2;
sq_prod3=d3x*d3;
sq_prod4=d4xd4;
sq_prodb=d5x*d5;
sq_-prod6=d6xd6;

tmp_suml=sq_prodl+sq_prod2;
tmp_sum2=sq_prod3+sq_prod4;
tmp_sum3=sq_prodb+sq_prod6 ;

tmp_sumd=tmp_suml+tmp_sum?2 ;
norma = norma -+ tmp_sum3;

norma = norma -+ tmp_sumd;
sum = sum + exp(—gammasxnorma)*sv_coef[i];
norma=0;

sum = sum — b;

if (sum<0)

xy = —1;
else

xy = 1;

H rapamdve wéa vhomotinxe yia extOAEN Tou ecwTtepnol Bedyou 3,6 xau 18 popéc Tou avticTolyel oe
e extOMEN. To anotedéopata cuyxevipwvovtow otov Ilivaxa 2, énou npaypatonoteitar oOyxpLon
uetad extOAENC Tou Bpdyou pe To Yépt, YeNoULoToLdvTaS BevOpLxr dour xow exTOMENS Tou Bedyou Ue

TIC QUTOUATES TEYVIXES TOU ERYUAEIOL.

Hivoncag 2: X0yxeion YETEOY UETOED QUTOUATNEC XL TEOTEWOUEVNS eXTUMENS Bpdyou

exdoy | (Tlopdyovrag Autépon ITpotewvouevn
eXTOMENC EXTOMEN EXTOMEN
latency | BRAM|DSP| FF |[LUT |latency [BRAM|DSP| FF |[LUT (%)
(cycles)| (%) | (%) |(%0)] (%) |(cycles)| (%) | (%) |(%0)] (%)
initial - 412783 24 | 20 | 3 | 11 |412783| 24 | 20 | 3 11
unrolled 3 252259 | 24 | 21 | 3 | 11 |214039| 47 | 26 | 4 14
unrolled 6 206395 24 | 23 | 3 | 11 |149065| 70 | 34 | 5 18
unrolled 18 173271 27 | 20 | 3 | 11 | 90461 | 27 | 50 | 8 29

Hopoatneetton onuavtixy Beitiwon oto latency dtoav n extOMEN yiveTon ue T0 Y€pL xou UGALCOTA 1) Slapo-

P8 UEYAUADVEL OGO UEYORWYVEL XaL 0 Tapdyovtag tTne extuléne. H yenowonoinon twv DSP, LUTSs xa

Flip Flop au&dveton xadde 1 avtiypapr) Tou o@patog Tou ecntepxol Bpdyou odnyel otnv déopcuon

TEPLOCOTEPWY TOPWY TPOXEWEVOL Ol TEALES Vo dpoporoynoly Tautdypova. ‘Eva un avouyevouevo

amoTéAeopa efvan oL BlaXLUAVOELS oTN Yenotwononon tne uviung. Ogellovton wotdco ot dnuiovpyio

AVTLYRAPWY TV TVdxwy ard To HLS yia va ebvan duvatéc moAlég mpooPdoeic otov (dto mivaxa tau-

4 ’7 4 e 7 4 e 7 7
TOypova. XNy TeEkeuTala TepinTwoT 6ev undpyet avinom enetdr) To HLS ondel avtouota Tov mivaxo Tev

BLOVUOUATOV UTOG THRLENG XoTal UiXog TwV Yeouu®y. To medBAnuo emAdetal e GTECHIO TOU Tivaxo

0E OAEC TIE MEQINTOOEL GTNY XATUAANAT SLECTUOY Kol UE TOV XATIAAANAO TEOTO UE TIC XATIAANAES

TeyVég Tou mpoogépel To HLS oto yerot.

ElepeOvnon HLS directives

Enhoyy| directives

Or teyvixég mou topouctdotnxay e€ac@dhioay €va TeKTo eninedo nopaiiniiouol. H anédoon unopel va
BehtiwVel TEpaUTEP® AMO TO GUVBVAGHO TWYV TEOTYOVUUEVKY TEYVIXOV UE TI EVOOUATWHUEVES AUTOUITES

TeYVég BehtioTonoinong mou mopéyel to HLS xan ovoudlovtan directives.

H emhoy?h avtodv e€optdton and v eyyevh mapodiniia tou alyoplduou xou Tov TpoTo Ye Tov onoio
ot unopel vo aglomotniel. YToV CUYKEXPIIEVO TOEVOUNTH Ol TEYVIXEC TOU ETUAEYOVTAL GTOYELOUV
oTny mapaAknhomoinot Tou ecwTepxol Beoyou. ‘Omwe €yel avapepdel Tor TeTEdYWVA TN Blapopdc
TWV OTOYEIDY TOV BLAVUCUATWY EIGOBOU Xt UTOOTARIENG CLUVIETOLY TNV EUXAEBL VOPUO Xol UTOoROVY
Vo utohoYtoToOy mapdhinia. Autd mpolmodétel v EeTOMEN Tou Bpdyou xan odnyel oTny avdyxn
VY VOO TEpLocOTEpwY and dUo oToyelwv xdlde nivaxa T @opd. Amauteiton €tol M ahhayr NG
OOUNG TWV TVAX®Y Yia Vo xataoTel autd Suvatd. Me to (Blo oxentind unopolue vo EeTUAEouUE TOV
eZnTepd Bpoy0 %ol VoL TPOTOTO|COUUE TOUC TIVAXES TOU TPOOTEAGLOVTAL GE AUTO Ylal Vol ALEHOOUUE

v mapahAnAla. Axolouvdolyv ta directives xou o Adyog yia Tov omoio emAEyUnXay.

Pipeline: Auth n teyvin| egapudleton oe dhoug toug Pedyous. O mpdlelc Twv emavoliPewy exTe-

hoUVTOL TOEAAANAGL XL O)L GELELXE. YENOHLOTOLOVTAS OAOUS TOUG TOROUS XAVE YEOVIXTH CTIYUY.

ExtOMEN Bpodyou: Egopudletan oe dhoug Toug Bedyouc. Anuioupyolvial avTiypopo ToU GOUATOS

ToU oY 0L EVG UELOVETOL O 0PLIUOS EXTEAECEWY.

Avaipeom ITivaxo: Egapudletar otoug mivaxeg sup_vector xou sv_coef arrays. Atoupel Toug mivoxeg
oe mivaxeg uxpdtepou Ueyédoug xu dpa auidveton o apLiudg Tev Yupwy avdyvwone. Etol 6tav Eetu-
Ayetow 0 eowtepodg Bedyog etvon duvaty| 1 TpdcBacy o TepLoaoTERR amd BUO GTOLYEl TOU Tivoxa
xau dpar unopel vor mapolknhonotniel o uToloyloude TN ELXAEBLIC aMOCTACTC TwY Blavuoudtwy. H
Sradpeon yiveton xuxhixd (avd xdmoto mopdyovta Tot oTouyela avixouv oty (Blor utodiadpeot mivoxa)
OoTE vau elvon SuvaTh 1) TawTdY POV TEOcBact ot Bladoyxd GTolyeld Tou apy oL Tivaxo UE TN OElpd

ToL oUTd yeewdlovTal xar oTo Bedyo. Xto Ny.5 aneixovileton 1) Balpeor) Tou Tivaxo.

XX

Accessed at
15t jteration,
\

\

\ BRAMs BRAMs
\ before after
loop unroll \ partitioning partitioning
factor 4 \
\
m [| | I—é' == } partition 1
1*iteration { 2 . array cyclic partition
% == yeyclicp l—éi == } partition 2
3 G- .
ond jteration { 3 == factor 4 7 [} partition 3
8 .t. I%' == } partition 4
suppor
vectors

Yyhuor 5: Eymuotiery Avarmapdotao tne Awdpeong Iivaxo

Mopgonoinon ITivaxo: Egupuéleton otoug (Bloug TVaxeg e TNV TEONYOUUEVY TEYVIXT XL Yol
Tov (B0 oxond. H Slopopd etvar 611 oL uixpdtepol mivaxeg evidyvovTon XL TAL o€ €vay Tivaxo (oTE Eva
oTolyelov Tou VEou Tivoxa var amoTeheltan amd OAal ToL AVTOTOLY O OTOLYE(TWV UIXPOTEPWY TILVAXWV.
‘Etot peidvetar o opdudc twv BRAM eved mopdddnio ye wor tpdofBacn €youue otr diddect| yog

7 7 /7 7
neplocotepa otovyelo. H teyvud aneixoviCeton oo Xy.6

Accessed at
15t iteration,

BRAMs
before
loop unroll hapi
factor 4 resnaping

|i| .. Lél == } partition 1
Istiteration { 12l ||] step 1:
% == arrayc;;clic partition 2 == } partition 2
s HN 13
3 BE .
ond jteration { g == factor 4 7 | } partition 3
8 .. %I .. } partition 4
supgmrort ..
veceators
step 2:
Laaf sl E—— array verticalmap
5678 I
BRAMs
after
reshaping

Yyfua 6: Eynuater|) Avarapdotact tng Mopgonoinong Hivosa

‘Eyouv diepeuvniei 6ol oL GUVBLAGUOL TWV ETAEYUEVKDY TEYVIXDY TOU €Y0LY VOTUA Xt auTol ToU dEV
amoxAelovton Adyw Bixwv poc mapadoywy. Enlone xdde teyviny e€etdletar xou wg mpog Ty aAlaym

TWV THOV TV THpauétewy . Ot tTedxol cuvBuAoUol ToU TEOXUTTOUV EQUPUOCTNXAY OE TECOEPLC

Gain and Utilization (%)

100

90

80

70

60

50

40

30

20

ex00yEC TOU ahyopllou: TNV dpyIXT| XL TEELS EXBOYEC OTIC OTolES EYEL EXTUALYVEL 0 EcWTEPOS Bpdy0C

UE ToV TE6TO Tou TeoTddnxe oto Kegpdhowo xoutd 3, 6 xou 18 gopéc avtioTorya.

Anoreke’:cptcx‘coc

Yo Xy.7-9 ovomoploTevTal To ATOTEAECUATO TV BaCIXOTERMY TEYVIXWY TOU YENCHLOTOLUNXay.

Original Code
Pipeline directive to loop i

Comparison between configurations with and without the directive

lat gain-on lat gain-off

BRAM-on BRAM-off

Dy o 7

DSP-on DSP-off FF-on FF-off LUT-on

Pipeline ewtepuol Bpdyou

LUT-off

Gain and Utilization (%)

Gain and Utilization (%)

100

90

80

70

60

50

40

30

20

100

90

80

70

60

50

40

30

20

Original Code
Unroll directive to loop |
Comparison for different directives parameters
I I I I l I l I I l I I l I I I l I l l I I l I I l I I I l

-

560

0
CI
1)
LT
|
G
[
M
-
]
I
i J------
1]

I
H]-
-

Lo 8: ExtOMEn eowtepinol Bpdyou xotd Slopopetind mapdyovTta. LTHAES 0ploTERd TEOC
T 6e€Ldinépdoc ypdvou extéreonc, BRAM,DSP,FF,LUT.

Original Code
Array cyclic partition directive to support vectors
Comparison for different directives parameters

i - - I = - 1
L L
I _Enokd
- - T
—= B B2 B = [
| |
2 3 4 6 9 18 2 3 4 6 9 18 2 3 4 6 9 18 2 3 4 8 9 18 2 3 4 6 9 18

Yyfuo 9: Awabpeon mivaxa support vector. YtrAec apiotepd Teog Tar 0e€Ldinépdog ypdvou
extéheone, BRAM,DSP,FF LUT

4 Z e 7 4 7. 7 4
H Swupopd ot anoteléopato avd Sopopetins] vhomoinot galveton oto Xy.10, énou aneixovileton o

Latency in Cycles

2.5

15

0.5

Latency Comparison

10 between different implementations

| 3 -

original auto unroll 3 auto unroll 6 auto unroll 18 manual unroll 3 manual unroll 6 manual unroll 18

Eyfua 10: Ldyxplon emitdyuvong PETHED OAWY TV VAOTO|OEWY

Xpovog extéheong oe xUxhoug avd vhomoinan. H mpdtn ulonoinon eivon 1 apyixn. Axohouvdolv Tpelg
ex00YEC QUTAC TOL €youv dnuovpY el €yovTag eXTUAEEL TOV ECWTERPXO BROYO UE TOV QUTOUTO TEOTO
Tou mapéyeTon amd To epyakeio. Ou Tpelc eMdUEVES aVTIOTOLYOUY 0TI eXTUMEELS Tou Bpdyou Ue Tov
TPOTELVOUEVO TEOTO TOU GLUVBLALEL TNY EXTOAET UE BEVOPLXY| VAOTOINGT] TV aELIUNTIXOV UTOAOYIGUMY.
Etvor mpogavég 6t 1 extOMEN Tou eowtepxol Bpdyou €yel xodoplotind aviixtuno ot pelwon tou
xpovou extéheons. ‘Oco uyeyalitepog elvar o mapdyovtag extOAMENC T60O0 To €vTovn elvan 1) enidpao
tou. Ta boxplot yio yeyalbTepOUC TaPAYOVTES ElVol UETATOTIOUEVO OE YAUNAGTEQOUS YPOVOUS, EYOLVY
UXEOTERO ELPOC EVWM 0 UEcog Exel piivouoa mopeia. Elvon axoua mpogoaveég 6TL 0 TROTEWVOUEVOS TPOTOS
exTONENG elvan o amodoTnds. Emituyydver oxdua yixpdtepo ebpog boxplot, Tyéc mou xupaivovton oe
YUUNAOTEPOUC YPOVOUC Xal UXeOTEROUS Uécoug. Elvou yopoxtnplotixd OtL 1) mpoTeoueV vAoTolnon

yior eXTOMEN %aTd 3 €xel XOADTERA UMOTEAEGUATA UMO TNV AUTOUOTY) XoTd TopdyovTa 6.

[Swaitepar onpoavTind elvon To 6TL TAPEYETOL OTO GYEDIAOTY| Uit HEYSAN TOLAALXL OEYITEXTOVIXWY ETMLAO-
YOV, and TiC onoleg Unopel vor BlahéZel avdAoYa UE TIC ATMAUTACELS Xl TOUS TMEQLOPIOUOUE TNG EXACTOTE
epopuoyNc. 2to Xy.11 nopoucidletar 0 ywpog e€epelivnong Yiot OREC TIC EXBOYEC UAOTIOINCEWY TOU
yenowonoljoaue. Xtov dova X UeTEdTAL 1) Yenolonolinon tdpwy and xdde TeoTUTOTOMOT EVE GTOV
dEova T 1 anddoon we mpog 10 yedvo extéieonc. H xdlde mpotutomoinom €xel SlapopeTind yopoxtrn-
ptotwd. I mapdderypo To BEATioTar onueior Teog Tor aploTeEd eCacpalilovy EAGYLOTH Yenoulonoinon
TOPWY XAl LXAVOTOLNTIXY) ETLTAYLVOT. AUTE TEOXUTTOLY XUElWE AT TOV aEYLXO XWBLXA oL BeV Elval
e&loou Behtiotomoinuévog e toug dAloug. O ypdvog extéheong elvor uxpdTEROS ahhd Aoy w amhig 5o-

ung amouteiton meptoplouévog aptiudg topwy. To avtideto cupfaivel ue ToUC TPOTOTONUEVOUS XOBIXES,

TOL ETUTUYYAVOLY LPNAS eTtineda EMTAYLVONC UE Wit ETPBAEUVOT OUMC O YENOULOTOINoT TOPMV.

5e+6
—@— Pareto line
*’:‘ » Original SVM code
% ¢ Unrolled 3 times with tree-structured calc.

4e+6 - " *+ Unrolled 6 times with tree-structured calc.
= ot ¢ Unrolled 18 times (fully) with tree-structured calc.
c X
>
2 3e+6
9
©
—
c
.0
= 2e+6
0
(0]
x
L

1e+6

0

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

Average HW resource utilization

Yyfuo 11: Koumohn Pareto

YAomolnon TNV TAAXETH

Axohouel 1 meprypagy| TnE LVAOTOINGNE TNG EPUPUOYHC OTNY TAAXETA XAl ToL anoTeEAéopata auThc. Ta

BruaTo Tou oxohoLUHcaUE xou Ta epyoeio Tou yenoulonodnxay oe xdie oyfua eivon Tor e€X¢:

e High Level Synthesis: e autd to otddo yivetan 1 xotaoxeur tou emtayuvt]. Xenowlo-
noteiton to gpyakeio Vivado High Level Synthesis 2014.4 tng Xilinx. To epyahelo Aopfdver wg
eloodo xddxa C, TeonoToINUEVO TE®TA ad TO GYEBAOTH 1) O)L, TEPLOPLOKOUS TOU YENOTY Xol
directives. H éZ0d0¢ eivou o emitayuvtic o Yhwooo teptypapnc LAxol. Metd and e€epeivnon
0 GYEBIUOTAC XATUATYEL OTNV TEOTUTOTOMGT) TOU TANEOL TIC ATALTHOELS XAk TIC TROOLOY QUPES TNG
epapupoyrc tou. Extog and ta directives mou €youy oxond tny Beltiotomolnom Tou emiTayuvTy),
eopuolovton xou directives ylo Ty €vtodn xou ETXOWVOVIO TOU EMUTUYUVTY UE EVa EUPUTERO Op-
YLTEXTOVIXO GUGTNUO ot TO UTOAOYLOTiXG clotnua. EZdyetar Aowndv we €£060¢ 0 EMTUYLVTHG
xaL 6 xATdAANAO Qopudt Kote va unopel va yenowornotniel o xatdAAnho tepi3dAlov yio T

ONuULovEYLol TNG CUVOMXAC OEYLTEXTOVIXNC.

o Kataoxeuy TANPOLE Ae)LTEXTOVIXNAG: € oUTO TO OTAOL0 XUTAOXELALEToL 1) TAeNng
OEYLTEXTOVIXY) TOU CLUCTAUATOS, ToL anoTeheltan and To ToloyioTind XOoTNUA, TOV ETLTOUYLVTY
otnv Hpoypauuotiotxr Aoyxn xou 1o dlawho emxowvemviog autody uetoll Toug. Xenoylomoeiton
7o Xilinx Vivado Design Suite 2014.4. X0 téhog tng ddixaciog nopdyetor To hw description
file.

o Anutoveyia Asttoveyixod Yuotipatog: To emduevo Brua etvar 1) dnuiovpyia Aettoup-
yixoU cuoThpatog linux mou va exoavel oty mAaxéta. Xenotworoleitow to Petalinux 2014.4. I
70 yTlowo Tou elvon amopaltnTES TANPOYOplES Yior TNV apyLTexTovixY) Tou Zedboard xat 6,71 UAo-
rodnxe amd 1o yerotn oto FPGA, enopévnc yeetdleton to hw description file mou naprydnxe
am6 to Vivado. O nuphvag tov linux propel va tpotutonomdel avaldyws Ye TIC AmaTOES TOU
CUCTARATOS. XT0 TENOC auToL Tou Bruatog TopdyeTtal To image Tou Tuphva xar To BOOT.BIN

opyeio omoTe umopel vo exxiviceL To AELToLEY WO 0TV TAaxéTa xat vo tpotunomondel o FPGA.

o Avantuin epaproyns: Autd elvon to teleutaio Pua xatd To omolo avamticoeTow N €-
popuoyt). Ta yapoxtneloTind xdie TaAlo) GTEAVOVTOL GTOV ETUTOYUVTY| XU AUTOS EMLC TREPEL TO
amotéheopa. O emtayuvtig eAéyyetan xou yetplleton amd to TTohoyioTind LUCTNUA WS CUCKELT

Tou yivetalr map ot Yweo BIELVUVCENY TOU YEHoTN Xl avolYEL w¢ apyelo.

XXV1

Axohovdovtag Tor ToEamdve BAUATO VAOTOLOUUE GTNY TAOXETO TNV oYX xou T BEATIOTN U-

homolnom eve extelolUe xou Tov aAyoprduo puovo oto Troroyiotind Xuotnua. H Bértio

ulormolnon elvon To YE1yopen xou amd Tov opyxh xou and auThv mou Teéyel uwovo oc sw. Ta

amoteAéouaTa eivon XOVTE GToL VEWENTIXG AVOUEVOUEVAL.

Hivoxag 3: Metprioeig ypdvou Yl TI¢ UAOTIOLOELS

SW HW gy HW Béitiot
Xpobvoc Xpodvoc Xpobvoc Xpdvoc Xpobvoc Xpodvoc
Emxowvwviag | Trnoroyiopol | Emxowwviac | Trohoyopol | Emxowvovioe | Trokoylouol
(Beutepdienta) | (Beutepdienta) | (Beutepdhenta)| (Seutepdhenta) | (Seutepdhenta) | (Seutepdhemtar)
avd Ao - 0.002223635 |0.00000449943| 0.004047181 | 0.0000110643 | 0.0000521259
GLVOAMXS, - 116.2761016 0.2352798 211.6311248 0.5785634 2.7257132
Computational time per beat
w10 Comparison
I -
4t C_THW ariginal SyvM -
B accelerated Syhd
3a8F 1
3 - -
& 251 :
£
= 2t i
15} =
“I - -
0aF -

implementations

Yyfua 12: Xoodvog unoroyiopmy yioo SW xaw HW uvhomoiroeic.

Acknowledgments

The current thesis is the result of my work in collaboration with the Microprocessors and
Digital Systems Laboratory (MicroLab) of NTUA. I would like to thank my supervisor, Prof.
Dimitrios Soudris for the trust he showed in me and for his guidance and encouragement
throughout the conduction of the thesis. The educational opportunities that he offered me
undoubtedly helped me evolve both on a professional and personal level. I would also like
to sincerely thank Postdoctoral Researcher Sotiris Xydis for his contribution and precious
guidance. His insightful comments and constructive criticism were determinative for the
completion of my work. I am also grateful to Doctoral Student Vasileios Tsoutsouras for
his invaluable contribution. His guidance and advice as well as his constant support and
encouragement helped me cope with the challenges that occurred. Both their work has been
a true inspiration for me. I would also like to thank all the members of the laboratory with
whom I have interacted during the course of my thesis conduction. Their friendliness and
sincere will to help have made these last months one of the fondest memories I have from
my studies in NTUA.

I would also like to thank my fellow students and especially my closest friends for being an
integral part of my life during these last five years. Finally I would like to wholeheartedly
thank my family for their love and support throughout all the challenges of my life.

XxXViil

List of Figures

10
11
12

2.1
2.2
2.3
2.4
2.5

3.1
3.2
3.3
3.4

4.1
4.2
4.3

PoA Avddwone HKI'00 oo ix
oparinhopog oe Eninedo Mmhox XV
Anédoon xou Xenowonoinon Hopwv yio augavouevo aprdud diopepioenmy (un ou-

TOUATN) © v ot e e e XV
Aevopxnic BoUAC UTONOYIOHOL X0 YEOVOOROUOROYNOT. . . . o o o o o o o o oo xvii
Yymuatixr) Avanopdotaon tng Awidpeone ivoar o Lo 0oL xxi
Eymuatier) Avanopdotaon tng Mopgonoinone Ilvencor o 0oL xxi
Pipeline e€wtepixol Bpdyouvo Lo xxii

ExtOMén ecmtepinol Ppdyou xatd SlapopeTind mapdyovia. XTHAES oploTEQRH

Teog T 8e€Ldnépdog ypovou extéleone, BRAM,DSP.FF . LUT. xxiii
Awofpeon mivoxa support vector. Lthleg aplotepd mpog tor 8e€Ld:x€pdog Y poVou
extéheonc, BRAM,DSP,FF.LUT xxiii
LOyxplon emtdyuvong UETHED OAWY TWV UAOTIONCEWY xxiv
KournOhn Pareto oo XXV
Xpovoc unohoyiouwy yoo SW xaw HW vhonovoei.o oL xxvii
Heart Physiology [1] 4
ECG Waveform Typical Morphology [2] 5
ECG analysis flow L 6
Classification energy scales with Nsv [3]. 7
Classification energy scales with D_sv [3]. 7
SVM based classificationo o000 12
Algorithmic C to Co-Processing Accelerator Integration [4] 13
Vivado HLS Tiered Verification Flow [4] 14
HLS Proposed Work Flow 15
Parallelism in Computations L o 19
Coarse Level Parallelism 20
Performance and utilization for increasing number of partitions (automatic) . 22

XX1X

4.4 Performance and utilization for increasing number of partitions (manual) . . 23

4.5 Speedup gain comparison (automatic vs manual) L. 24
4.6 Tree based computations for manual unrolling and HLS scheduling 26
4.7 Scheduling Comparison between manual and automatic unrolling 26
4.8 Latency in Cycles for Automatic vs Manual Unroll. 29
4.9 Latency Gain for Automatic vs Manual Unroll. 29
4.10 BRAM Utilization for Automatic vs Manual Unroll 29
4.11 DSP Utilization for Automatic vs Manual Unroll 29
4.12 Flip Flop Utilization for Automatic vs Manual Unroll 29
4.13 LUT Utilization for Automatic vs Manual Unroll 29
5.1 Array partition schematically L. 31
5.2 Array reshape schematically L. 32

5.3 Pipelining loop_i. Columns from left to right:Latency gain and BRAM,DSP,FF,LUT

utilization with and without the directive. 33

5.4 Unrolling loop_i. Columns from left to right:Latency gain and BRAM,DSP,.FF,LUT

utilization with and without the directive. 34

5.5 Changing unroll factor on loop_i. Columns from left to right:Latency gain and
BRAM,DSP,FF,LUT utilization. 35

5.6 Pipelining loop_j. Columns from left to right:Latency gain and BRAM,DSP.FF,LUT

utilization with and without the directive. 35

5.7 Unrolling loop_j. Columns from left to right:Latency gain and BRAM,DSP FF,LUT

utilization with and without the directive. 36

5.8 Changing unroll factor on loop_j. Columns from left to right:Latency gain and
BRAM,DSP,FF.LUT utilization. 36

5.9 Partitioning sv_coef. Columns from left to right:Latency gain and BRAM,DSP FF LUT

utilization with and without the directive. 37

5.10 Changing partition factor on sv_coef. Columns from left to right:Latency gain
and BRAM,DSP,FF,LUT utilization. 38

5.11 Reshaping sv_coef. Columns from left to right:Latency gain and BRAM,DSP,FF LUT

utilization with and without the directive. 38

5.12 Changing reshape factor on sv_coef. Columns from left to right:Latency gain

and BRAM,DSP,FF,.LUT utilization. 39

5.13 Partitioning sup_vector. Columns from left to right:Latency gain and BRAM,DSP,FF LUT

utilization with and without the directive. 40

5.14 Changing partition factor on sup_vector. Columns from left to right:Latency
gain and BRAM,DSP FF LUT utilization. 40

5.15 Reshaping sup_vector. Columns from left to right:Latency gain and BRAM,DSP,FF,LUT

utilization with and without the directive. 41

5.16 Changing reshape factor on sup_vector. Columns from left to right:Latency
gain and BRAM,DSP FF LUT utilization. 41

5.17 Partitioning test_vector. Columns from left to right:Latency gain and BRAM,DSP,FF,LUT

utilization with and without the directive. 42

5.18 Changing partition factor on test_vector. Columns from left to right:Latency
gain and BRAM,DSP FF LUT utilization. 42

5.19 Reshaping test_vector. Columns from left to right:Latency gain and BRAM,DSP,FF,LUT

utilization with and without the directive. 43

5.20 Changing reshape factor on test_vector. Columns from left to right:Latency

gain and BRAM,DSP,FF,LUT utilization. 43
5.21 Latency comparison between all implementations 44
5.22 BRAM Utilization comparison between all implementations 45
5.23 DSP Utilization comparison between all implementations 46
5.24 FF Utilization comparison between all implementations 46
5.25 LUT Utilization comparison between all implementations 47
5.26 Optimal Configurations vs the original implementations 48
5.27 Pareto Curve 49
6.1 Implementation Flow oo 51
6.2 System Architecture Build in Vivado Design Suite 53
6.3 Customized IP in Vivado Lo 53
6.4 Computation time for HW and SW implementations. 55

6.5 Gain comparison between simulation and implementation 56

List of Tables

3.1
3.2

4.1

5.1

6.1
6.2

Awdéowol moépol tou Zedboard.o xiii
LOyxplon YeTEIX@V PETOED OUTOUATNG Xl TROTEWVOUEVNC eXTUMENG Pedyou . . . Xix
MeTprioeig ¥pOVoU Yot TIC VAOTOLAGELS .+« « . o o o o o o xxvii
HLS directives [5] L 15
Zedboard Available Resources Lo 17
Evaluated metrics for automatic vs manual unrolling 28
Applied directives and their parameters 32
Time measurements for different implementations. 55
Simulation vs Implementation Results 56

xxx1i

CHAPTER 1

Introduction

One of the most fundamental and crucial biological signals for monitoring and assessing
the health condition of a person is the Electrocardiogram (ECG) [6]. ECG has an inher-
ent relation to heart physiology. Consequently, its analysis and interpretation has been
established as an important field in modern medicine and this in turn has spawned various
inter-disciplinary studies including digital processing analysis of the signal. Given the com-
plexity of deriving exact models for assessing and predicting the heart’s condition, machine
learning techniques have recently dominated the field of ECG analysis. Support Vector Ma-
chine [7] based classifiers specifically have grown to be the key element of machine learning
based ECG analysis due to their capability of accurate prediction. In addition, constant
monitoring and real-time heart condition assessment have imposed new requirements for ac-
celeration and low power execution of a digital ECG analysis flow. In this work, we focus on
Arrhythmia [8] detection in a real-time operating ECG analysis flow, using Support Vector
Machines for beat classification and design tools for building efficient hardware accelerators
for the classification module.

Support Vector Machines are widely used as classifiers in many systems and there is much
work in their incorporation in ECG arrhythmia detection flow [9]. The popularity behind
these classifiers is twofold. On the one hand they ensure very high classification accuracy even
in problems that manifest complex non-linear distribution in the extracted features space.
On the other hand their structure, based on stencil computation operations, forms a perfect
candidate for applying acceleration techniques. This has been shown in [3] where it has been
proven that when the classification problem becomes very complex and the computational
requirements of SVM classifier are multiplied, HW acceleration can be the key for meeting
both time and power constraints of the ECG signal analysis flow. Towards this direction,
they propose a custom HW architecture with which the algorithm is efficiently accelerated.

Hardware acceleration is a fundamental technique for creating systems which execute com-
plex algorithms efficiently with reduced power budget constraints. However, designing a HW
accelerator in HDL can be a time consuming and difficult to debug task. An approach on
mitigating these issues is High Level Synthesis [10] where the functional description of an
algorithm in the form of a C function is automatically translated into a hardware description.
A HW accelerator in the majority of the cases is more efficient compared to an HLS defined
one, however HLS enables very quick HW implementation and exploration of a variety of
architectural characteristics which is extremely difficult to achieve in HDL in a small amount
of time. This is why HLS is ever increasingly utilized as HW design mechanism either for
architectural exploration or fast prototype.

In this diploma thesis we focus on the last stage of the ECG analysis flow, the diagnosis
classification. It has already been stressed that for monitoring chronic patients in respect
to their heart’s condition, a real-time ECG acquisition system has to be developed, usu-
ally implemented on wearable or implantable devices. This leads to inevitable timing, en-
ergy and resources constraints. Working towards meeting these specifications, we propose
a coprocessor-based architecture in which the most time consuming and energy demanding
part in the flow is implemented as a hardware coprocessor or accelerator. The ECG analysis

flow is implemented in software except for the Support Vector Machine classifier which is im-
plemented as a hardware accelerator targeting FPGAs. This accelerator is built using High
Level Synthesis design tool. HLS receives the functional description of the SVM classifier as
input and translates it into RTL design. Moreover it provides standard techniques, called
directives, that optimize the hardware description in terms of time, energy and area utiliza-
tion efficiency. What is important to state is that available tools utilized in creating an HLS
originated HW accelerator are not always capable of producing the best possible solution due
to limitations in their analysis of the structure of the code. We have identified this problem
and as a part of this work, we propose two strategies of manually restructuring the original
code under acceleration to assist the HLS flow to fully utilize the inherent parallelization
capabilities of the algorithms. These strategies have proven to be capable of producing very
high gains in latency by only a small sacrifice in hardware resources. To further optimize
the generated hardware description, we apply directives which are the HLS infrastructure
to explore different architectural options and we examine how these directives affect the
produced accelerator. The described architecture is implemented on the Zynq Evaluation
and Development Board. The first stages of the flow are executed on the Processing Sys-
tem of the board and the executable communicates when necessary with the classifier that
is implemented as an FPGA-accelerator by configurating the Programmable Logic of the
board.

In Chapter 2, a brief overview of the ECG Analysis Flow is presented. The stages of the flow
are explained to inform the reader of the steps required for successful arrhythmia detection
and of the challenges emerging. Related work progress on the field is also included, to
highlight the contribution of our suggested approach. In Chapter 3, the thesis presents the
theoritical background of the Support Vector Machine classifier and the design tools and
platforms used for its acceleration. The Support Vector Machine theory is described in a
way that thoroughly explains its functionality and complexity and stresses the need for its
efficient acceleration. High Level Synthesis design tool and its capabilities is also presented
along with the specifications of the chosen development board. In Chapter 4 the developed
strategies for code restructuring are demonstrated. The techniques followed in each strategy
are explained in detail and measurements of the metrics of interest are provided. In Chapter
5 an exploration of HLS built-in optimization techniques is carried out using the initial code
as well as the restructured ones as baseline. The selection of the optimizations applied is
justified at length and the impact of their application is analysed. The chapter concludes
with a comparative study of the results of all optimized implementations and of the optimal
configurations that derived from the directives exploration. In the next chapter, Chapter
6, the implementation of the accelerator on the Zynq Evaluation and Development Board
is presented and the measurements acquired are presented. In the final chapter, Chapter 7,
important conclusions valuable to the reader are discussed, as well as ideas for improving
and extending the existing work in the future.

CHAPTER 2

Problem Overview

2.1 ECG Analysis Flow

Electrocardiography is an important tool in diagnosing the condition of the heart. The elec-
trocardiogram (ECG) is the record of variation of bioelectric voltage with respect to time
as the human heart beats. The state of cardiac health is generally reflected in the shape of
ECG waveform and heart rate.

The heart is a four-chambered organ consisting of right and left halves. The upper two
chambers, the left and right atria, are entry-points into the heart, while the lower two
chambers, the left and right ventricles, are responsible for contractions that send the blood
through the circulation. The role of the right ventricle is to pump deoxygenated blood to the
lungs through the pulmonary trunk and pulmonary arteries. The role of the left ventricle is
to pump newly oxygenated blood to the body through the aorta. The physiology of the heart
is depicted in Fig.2.1. The cardiac cycle refers to a complete heartbeat from its generation to
the beginning of the next beat, and so includes the repetition of some stages. The first stage,
” diastole,” is when the semilunar valves (the pulmonary valve and the aortic valve) close,
the atrioventricular (AV) valves (the mitral valve and the tricuspid valve) open, and the
whole heart is relaxed. The second stage, ”atrial systole,” is when the atrium contracts, and
blood flows from atrium to the ventricle. The third stage, ”isovolumic contraction” is when
the ventricles begin to contract, the AV and semilunar valves close, and there is no change in
volume. The fourth stage, ”ventricular ejection,” is when the ventricles are contracting and
emptying, and the semilunar valves are open. During the fifth stage, ”isovolumic relaxation
time”, pressure decreases, no blood enters the ventricles, the ventricles stop contracting and
begin to relax, and the semilunar valves close due to the pressure of blood in the aorta [11].

The cardiac cycle described above is coordinated by a series of electrical impulses that are
produced by specialised pacemaker cells. A typical ECG tracing is a repeating cycle of three
electrical entities: a P wave, a QRS complex that consists of the Q,R and S peaks and a T
wave [12]. These waves are created by voltage fluctuations that depict the electrical activity
of the heart and thus represent the cardiac cycle. Electrical systole of the atria begins
with the onset of the P wave on the ECG. The wave of bipolarization (or depolarization)
stimulates the cardiac muscle of the heart chambers to make them contract. This is soon
followed by mechanical systole, which is the mechanical contraction of the heart. During
atrial systole, the contraction of the atrial syncytium of cardiac muscle cells of the left and
right atria forces additional blood into the ventricles. The electrical wave eventually reaches
the atrioventricular node, leading to the emergence of the QRS complex. The electrical
systole of the ventricles begins at the onset of the QRS complex. This electrical systole leads
in turn to a mechanical systole, and thus the verticles contract in order to eject blood into
circulation. Following their contraction, the ventricles recover and relax in preparation for
refilling with circulating blood. The T wave represents the repolarization (or recovery) of
the ventricles [13].

F‘ulrnol'la-'}r

anary

Blocd o
the lumgs

Hiriral valee

Trigrsiprd vabe PR
e vl

Figure 2.1: Heart Physiology [1]

All of the waves on the ECG and the intervals between them have a predictable time duration,
a range of acceptable amplitudes (voltages), and a typical morphology. This morphology is
depicted in Fig.2.2. Any deviation from the normal tracing is potentially pathological and
therefore of clinical significance. Arrhythmia is considered as one of the most commonly
encountered heart malfunctions. Cardiac arrhythmia, also known as cardiac dysrhythmia or
irregular heartbeat, is a group of conditions in which the heartbeat is irregular, too fast, or
too slow. Some arrhythmias do not cause symptoms, and are not associated with increased
mortality. However, some asymptomatic arrhythmias are associated with adverse events.
Examples include a higher risk of blood clotting within the heart and a higher risk of insuffi-
cient blood being transported to the heart because of weak heartbeat. Other increased risks
are of embolisation and stroke, heart failure and sudden cardiac death. Medical assessment
of the abnormality using an electrocardiogram is one way to diagnose and assess the risk of
any given arrhythmia [14].

Taking into account the critical condition of a person suffering from arrhythmia episodes,
the field of detecting signs of arrhythmia in an ECG signal has been highly investigated.
Since the ECG is a non stationary signal, arrhythmia incidences may occur at random in
the time scale. Thus, the disease symptoms may not show up all the time, but manifest
at certain irregular intervals during the day. Therefore, for effective diagnosis, the study of
ECG pattern and heart rate variability signal may have to be carried out over several hours.
This means that an enormous data set needs to be processed in order for a diagnosis to
be reached. As a result machine learning techniques [15] are ideal for solving the diagnosis
problem. The data set is used as the training set required by machine learning solutions,
that can deliver a diagnosis after their training is completed.

There is a number of open databases of ECG signals to choose from in order to form the
training set. A well-known and rather frequently used database as such is the MIT-BIH
Arrhythmia Database [16] — a combined effort of MIT and Beth Israel Deaconess Medical
Center. This database is composed of 48 half-hour two-lead ECG signals with the collabora-

A < PP interval
< RR interval
s
E
wu
ab
2
g
T
A ‘ /T>
complex Y complex:
Q S i
ST ; Time [sec]
PQ QRS « > i
i _—
| segment
« —>— 8
interval complex
QT interval

Idealized cardiac cycle _

Figure 2.2: ECG Waveform Typical Morphology [2]

tion of patients of different medical files and physiology characteristics. Additionally, all the
signals of this database have been fully annotated by medical experts. The heart beats of
the half-hour ECG signal were initially detected by a simple beat detector and then verified
by cardiologists working independently. The abnormal beats were identified and the type
of the arrhythmia diagnosed was used to annotate the beats after the cardiologists reached
consensus. As a result this database forms an ideal starting point for creating a training
data set for the detection problem. A classifier based on machine learning techniques can be
trained using this data set and can then be used to detect arrhythmia in individual beats,
ideally in a real time system.

The process of acquiring and processing an ECG signal in order to extract these individual
beats and their corresponding features is composed of various stages with distinct charac-
teristics and requirements. It consists of three main stages: a preprocessing stage(noise
removal),a processing stage(R peak detection,feature extraction), and a classification stage.
A simplified overview of this processing flow is depicted in Fig. 2.3 where the following key
features are included:

— Noise removal: In this stage the signal is filtered for noise removal, usually using a
band-pass filter. The artifact signals that are removed include baseline wander, power
line interference and high-frequence noise. Artifacts resulting from patient breathing
and movement also have to be removed. The filtered ECG signals are used in all
subsequent processing.

— R peak detection:In this stage the ultimate goal is to detect the heart beats that
compose an ECG signal of a longer duration. In order to do that usually peaks of
the QRS complex have to be identified and possibly P wave, T wave and QRS onsets
and offsets [17]. The heart beat exact location and duration can be deducted from
this information. MIT-BIH Arrhythmia Database [16] provides the user with function
implementations that locate these fiducial points . These functions can be applied to
the ECG signals available and the results can be verified with the help of the doctors’
annotation files. That way we manage to isolate beats and thus construct the beats
which will be included in the training data set. In a real-time ECG acquisition system,

the heart beat is not known a priori and points of interest such as the R peak have
to be defined relying solely on the QRS detectors available in order for a new heart
beat to be identified. Smaller fractions of the ECG signal are now processed for beat
segmentation and as a result fewer beats are detected each time.

— Feature extraction process: Having determined a new heart beat, a feature extrac-

tion process is imposed on it in order to extract its characteristics. These characteristics
refer to specific signal parameters that are indicative of the physiological state of in-
terest. For arrhythmia detection there is a variety of types of characteristics that can
be used, each of them introducing various clinical trade-offs .
The most complete way to display the information included in the ECG signal is to
perform spectral analysis. The wavelet transform (WT), an extension of the classic
Fourier transform, can be applied to extract the wavelet coefficients of discrete time
signals, such as the ECG. The WT works on both time and frequency domain and
allows the decomposition of a signal into a number of scales, each scale representing a
particular coarseness of the signal under study. WT also has the ability to compute
and manipulate data in compressed parameters which are called features. Thus using
the WT transform, the ECG signal, consisting of many data points, can be compressed
into a few parameters that characterize its behaviour and are not apparent from the
original time domain signal. The heart beats detected at the previous stage, are de-
composed into time—frequency representations using discrete wavelet transform (DWT)
and wavelet coefficients are calculated to represent the signals [9]. The outputs derived
at this stage form the feature vectors that are used for classification.

— Diagnosis classification: The final stage of the analysis flow is actually detecting
whether the heart beat exhibits arrhythmia signs or not. This is performed using a
classification algorithm, which detects the pattern of problematic beat. The classifier
has been trained on the data set that includes the feature vectors of the isolated beats.
Given a new feature vector the classifier can decide on whether the corresponding beat
displays signs of arrhythmia.

Support Vector Machines [7] are the machine-learning based classifiers that are used
in this study. SVMs are popular machine-learning classifiers for data-driven modeling
and classification and can be efficiently trained offline. Their training process results
in a set of vectors, called support vectors (SVs), which are used to model the data by
representing a decision boundary. This decision boundary is then used to classify a new
instance, the feature vector of an unclassified beat. The number of support vectors and
the feature-vector dimensionality can have a major impact on classifier complexity [3].

Band pass Discrete Heart beat Diagnosis —
. R peak . .
Filtering) Wavelet diagnosis Normal /
detection oge
process Transform classifier Abnormal

Figure 2.3: ECG analysis flow

—
o
~

—v— Poly2 Kernel
—o— Poly3 Kernel

=¥ Poly2 Kernel # SUPPORT

(2]

2 2
Pid ~ —o—Poly3 Kernel \EcTORS -
S 10°F ——Poly4 Kernel S 10"} —4—Poly4 Kernel e 100(_) .23
= —=— RBF Kernel = —=— RBF Kernel a0
(] 5 (4] Legrlle =
210 Wavelet o 222l
= Features = -
(2} . [}
0 4 Morphological
© 10 pFeatﬂres C_(G
O 5 (@)
g 10 2
> of o Morphological Wavelet
210 Fl > Features, D =26 Features, Dy =256
© Fo¥ FEATURE EXTRACTION @
T 10" + PRE-PROCESSING ENERG T 10"
1 2 3
10° 10° 10* 10° 10 10° 10
Number of Support Vectors (Ng,) Support Vector Dimension (DSV)
Figure 2.4: Classification energy Figure 2.5: Classification energy
scales with N_sv [3]. scales with D_sv [3].

2.2 Related Work

Most biomedical devices used for monitoring chronic patients and detection of abnormalities
in biomedical signals aim to provide accurate results in real time. To achieve that they need
to process an enormous amount of signal data with extremely complex correlations. On this
ground in [3], the writers address these issues by proposing an algorithm-driven architectural
design space exploration of domain-specific medical-sensor processors. According to them,
data-driven modeling techniques are emerging as a powerful approach for overcoming the
mentioned challenges [18] since there has been significant development of machine-learning
techniques that are capable of exploiting large amounts of data to model specific correlations
and then use the models within a decision function [19]. The biodemical devices though are
mainly wearable, thus they require very low power levels. To that direction the writers
propose to employ application-specific architectures for low energy [20], [21]. As a case
study they use arrhythmia detection and the ECG analysis flow explained in section 2.1.
They also use Support Vector Machine based classifiers in the classification stage and RBF
(exponential) kernel function in the classification core since linear kernels are not suitable
for the degree of complexity of the correlation of medical signals. The kernel function along
with the number of support vectors and feature vector dimensionality can have a major
impact on classifier complexity. This was proven by implementing the entire arrhythmia
detection algorithm on an embedded low-power base processor using high-order detection
models for accurate signal classification and performing energy analysis. Figures 2.4 and
2.5 show the energy of classification versus number of support vectors and feature vector
dimensionality, respectively. It can be seen that, because of energy scaling, classification
energy rapidly dominates that of feature extraction. It is found that classification poses the
energy bottleneck due to the complexity of the models required.

Thus, in their study they aim to optimize the classification stage in terms of throughput
and energy efficieny. To achieve that they explore the development of a co-processor based
architecture suitable for the analysis flow of various biomedical signals that require classifica-
tion. A general-purpose processor is employed for feature computation, while an optimized
co-processor is employed for kernel-based SVM classification. The specifications for the plat-
form are meeting the constraints for real-time detection, energy efficiency and flexibility so
that it supports various biomedical applications. The architecture has three main blocks:
buffers for the support and test vectors, MAC units and a programmable polynomial kernel
core. The support vectors are loaded to the buffers after the offline training is finished and
the test vectors are dynamically loaded to their respective buffers. Each MAC unit is re-

sponsible for the dot product computations of the SVM classifier between a test vector and
the support vectors in one support vector buffer. Once multiplication over all the support
vectors is complete, the dot products are multiplexed to the programmable polynomial ker-
nel core, where a second-, third-, or fourth-order polynomial transformation is computed as
well as the kernel of the SVM classifier selected (such as RBF,sigmoid, etc). The results are
scaled and summed by a final accumulator whose output sign determines the classification
result. The computations are performed on integer values. The real-time constraints are
met by parallelizing the dot product computations with the use of multiple MAC units and
energy efficiency is achieved through voltage scaling in the MAC units.

The approach in our thesis is similar to the above in respect of developing a hardware FPGA
co-processor for the classification stage. However there are some distinct differences in the
suggested approach. Our co-processor is built using High Level Synthesis Design tools and is
intended for the arrhythmia detection study case. It is thus optimized for this case only. For
that reason the architecture is fixed concerning the implementation of the kernel function
and the data related to the SVM model (such as support vectors and their coefficients)
are hardcoded into the bitstream instead of being loaded. Furthermore, operations are
performed on floating point values, not integer. Most importantly, the focus of our work
lies in optimizing the IP in terms of performance and an energy analysis is not performed.
Performance optimization is achieved by exploiting the inherent parallelism of the algorithm.
However instead of building separate hardware IPs that execute in parallel, we build one IP
that is parallelized on its inside. To achieve parallelization we both modify the structure
of the code to derive coarse level parallelism and increase instruction level parallelism, but
also utilize the optimization directives of the tool. The coarse level parallelism of our work
is based on the same principle as the one described above. This principle is the lack of data
dependencies between the computations related to each support vector. The instruction
level parallelism though is not exploited in cite and is based on the parallelism within these
computations.

CHAPTER 3

Theoritical Background

3.1 Background Information on SVM classifier

Support Vector Machines (SVMs) in machine learning are supervised learning models that
are used for data-driven modeling and classification. They are suitable only for binary
classification problems. The classification process requires that the data is separated into
training and testing test. The instances in the training set have the form of a feature vector
consisting of the attributes that are being observed and a label indicating the class each
instance belongs to. The instances in the testing set consist only of the attributes. The goal
of the SVM classification technique is to train a model that can predict the label (class) of
an instance of the testing set given only the attributes of the corresponding instance [22].

This goal is met thanks to the ability of the SVM to find a hyperplane that divides samples
into two classes with the widest margin between them. A mapping function is used to project
each feature vector of the training set to a feature space of higher dimension where the data
will be easier to classify. The SVM is used to find the optimal hyperplane for classifying
the data according to their attributes. This optimal hyperplane maximizes the distance
between the hyperplane and the feature vectors that belong to each class and are closest
to the hyperplane. These feature vectors closest to the hyperplane represent the decision
boundary between the classes and are called support vectors. The distance between support
vectors and a feature vector from the testing set is used to classify the new feature vector.
The function that is used for computing the distance between this unclassified feature vector
and the support vectors by firstly projecting them to a higher dimensional feature space is
called kernel function [19]. The hyperplane decision function for classifying feature vector x
is of the following form:

N_sv
Class = sgn(Z (yi * a; * K(x,sup_vector,)) — b) (3.1)
i=1

where K is the kernel function, x is the feature vector, sup_vector; is the i-th support vector
and y;, a; are values related to it and result from the classifier training process. Coeflicient
b is a bias value, also a result of the training process and is constant for all support vectors.

The kernel function is very important to the accurate prediction of testing data. Depending
on the characteristics of the dataset, different kernel functions are able to provide the desired
classification accuracy.

The most popular kernels are the following four:

T

— linear: K(x,sup-_vector;) =x' *sup_vector;

T

— polynomial: K (x,sup_vector;) = (v * x” % sup_vector; +)¢

radial basis function (RBF): K(x,sup_vector;) = exp(—v||x — sup_vector,||?)

sigmoid: K (x,sup_vector;) = tanh(~ % x x sup_vector; +)

If the feature vectors of our data set were linearly separable, a linear kernel function could
be used for classification. The test vector x could then be pulled out of the summation
in 3.1, allowing the summation to be precomputed over all of the support vectors into a
single decision vector. As a result, even if the number of support vectors N _sv scaled, the
classification energy would remain constant. However, biomedical applications have shown
to perform poorly when linear decision functions are used with medical datasets [3]. Non
linear functions, such as high-order polynomials, RBFs, or sigmoidal kernels, are thus needed
for acceptable classifier accuracies.

In this work, we turn our attention to RBF kernel function since the complex correlations
between the attributes of our feature vector and the physiological states of interest typically
require the flexibility afforded by non linear kernel functions. The advantage of the RBF
kernel over the other non linear kernels is that RBF has fewer parameters and fewer numerical
difficulties [22]. The RBF kernel for test vector z and the i-th support vector sup_vector;
is defined as:

K (x,sup_vector;) = exp(—v||x — sup_vector,||?) (3.2)

The combination of equations 3.1 and 3.2 provide us the final decision function 3.3 which
will be the target of our HW acceleration process:

N _sv
Class = sgn() _ (yi * a; x exp(—7|[x — sup_vector,||*)) — b) (3.3)

=1

Listing 3.1, provides the actual implementation of equation (3.3) in a C-language based form
that will be used as the base for the construction of the HLS based HW accelerator. The
code is also schematically depicted in Fig.3.1.

Listing 3.1: SVM original prediction code

const float sv_coef[N_sv];
const float sup_vectors[D_sv]|[N_sv];

void SVM predict (int xy,float test_vector[D.sv]) {

loop_i:for (i=0; i<N_sv; i++){
loop_j:for (j=0; j<D_sv; j++){
diff=test_vector|[j]—sup_vectors[j][i];
norma = norma + diffxdiff;

}

sum = sum + exp(—gammaxnorma)*sv_coef[i];
norma=0;
¥
sum = sum — b;
if (sum<0)
xy = —1;
else
¥y = 13

In Listing 3.1 sv_coef stands for the product of y_i and a_i of equation 3.1. The reader
should observe that the number of the support vectors N_sv and the length of the feature
vector D_sv along with the kernel selected have a great impact on classifier complexity. In
the presented case study, the training phase resulted in N_sv equal to 1274 and D _sv equal
to 18. The training phase was conducted using the Matlab [23] interface of LIBSVM library
for Support Vector Machines [24].

3.2 High Level Synthesis

High Level Synthesis (HLS) [10] is a design tool for generating application-specific IP from
algorithmic C specification and thus allowing the designer to work at a higher level of ab-
straction, while creating high-performance hardware. It provides software developers with
an easy way to accelerate the computationally intensive parts of their algorithms on a new
compilation target, a Field Programmable Gate Array (FPGA). The FPGA provides a mas-
sively paralleled architecture with benefits in performance, cost and power over traditional
processors. The main part of the application thus, is executed on the system’s processor
while a part of it is transformed into a Register Transfer Level (RTL) implementation that
synthesizes into a FPGA. This approach is depicted in Fig.3.2.

The flow of using HLS is briefly descripted in Fig.3.3. The first step is to develop an algorithm
at C-level. HLS then provides the ability of verification at C-level, which allows designers
to validate the functional correctness of the algorithm faster than doing so in traditional
hardware description languages. The next step is the synthesis of the C implementation into
an RTL design. HLS offers the ability to control the C synthesis process through optimization
directives allowing the creation of specific high-performance hardware implementations. It
performs some optimizations by default and also allows the user to impose directives and
constraints of his own choice. The primary output from Vivado HLS is generated at the

synthesis step and it is the implementation in RTL format. The RTL can be synthesized into
a gate-level implementation and an FPGA bitstream file by logic synthesis. The RTL output
from Vivado HLS is provided in the industry standard Hardware Description Language
(HDL) formats of Verilog and VHDL. A version of the RTL implementation is also provided
in SystemC. After synthesis, verification of the RTL implementation is possible, to ensure
that the same results with the software implementation are being generated. At the last
step, the RTL implementation is packaged into one of the available IP formats, so that it
can be integrated into the hardware system [4], [5].

HLS always begins with the compilation of the functional specification. This step transforms
the input description into a formal model that exhibits the data and control dependencies
through a Control and Data Flow Graph (CDFG). Allocation, scheduling and binding are
the steps that follow and are the processes at the heart of High-Level Synthesis. Allocation
defines the type and the number of hardware resources needed. Components can be added

—

test_vector sv_coef;

<]

%

—
support
vector, IIo ”2 @ exp(°)
—
test_vector sv_coef,
o #
support
vector, Il 12 (X) exp(°)
. > sgn()| cuss |
test_vector sv_coef;
" D
support
vector; Il 12 e exp(°)
—
test_vector sv_coef N_sv
H L
support
vector s Il 11 @ exp(°)

Figure 3.1:

SVM based classification

Requirements

SW Spec HW Spec
A.f’// \\\A
herate ™ Verify lterate . Veriy
7 N

o v
e
o
[ty
]
L s

Figure 3.2: Algorithmic C to Co-Processing Accelerator Integration [4]

during the scheduling or the binding phase. During the scheduling process it is determined
which operations will occur in which operation cycles. These operations can take place
within one or several clock cycles, they can be chained or they can execute in parallel. The
scheduling phase takes into account design, timing and user defined constraints. Binding
is the process used that determines which hardware resource implements each scheduled
operation. The decisions taken in the binding and allocation process influence the scheduling
of the operations, thus resulting in these steps to be intertwined rather than happening in a
serial fashion [25].

The main advantage of the HLS tools is that they can compile the C code into an implementa-
tion of high performance while maintaining an efficient resource usage. This is accomplished
by adding HLS-defined pragma (directives) that are taken into account during the schedul-
ing and binding process and result in an optimized IP block. High-Level Synthesis creates
the most optimum implementation based on its own default behavior, the constraints, and
the directives that the users specify. These optimization directives are selected so that the
architecture created satisfies the desired performance and area goals.

When synthesis completes, a synthesis report is generated by High Level Synthesis. This
report contains details on the performance metrics. After analyzing the report, optimization
directives can be used to refine the implementation towards the desired outcome. In order to
do that effectively, it is important to understand the metrics used to measure performance
in a design created by HLS [5]. The main ones are area, latency and initiation interval.

— Area: Area is a measure of how many hardware resources are required to implement
the design. Area is measured by the resources available in the FPGA: LUTs, Registers,
block-RAM and DSPs. Their utilization is included in the synthesis report.

— Latency: The latency of a function is the number of clock cycles required for the
function to compute all output values.

— Initiation Interval: The function Initiation Interval (II) is the number of clock cycles
before the function can accept new input data, thus before the function can initiate a
new set of input reads and start to process the next set of input data.

Validate C

Conatraints)
Directives

RTL Export
IP-XACT Svs Gen PCore

Figure 3.3: Vivado HLS Tiered Verification Flow [4]

The directives available from HLS aim at performance and area optimization. They can be
applied on functions, loops, arrays and regions containing one or more of the above [4].

— Functions: Directives applied to functions mainly aim at enabling two or more func-
tions to execute concurrently. They can also remove function hierarchy in order to
reduce function call overhead and examine logic optimization.

— Loops: Directives applied to loops can reduce the cost of transition cycles between dif-
ferent loops and between iterations of the same loop, improve latency, reduce resources
and allow the parallel execution of multiple loops within a function.

— Arrays: Arrays are the basic construct to express memory in HLS and are imple-
mented using block-RAMS. A block-RAM can be at most dual-port, which means that
maximum 2 elements of the same array can be accessed at the same time. This in-
troduces a bottleneck and prevents effective parallelization. The directives that are
applied to arrays mainly address this issue. They change array layout by reshaping
or partitioning to remove bottlenecks without requiring changes to the original code.
There are also directives that map arrays together in order to reduce area.

In Table 3.1 some of the basic HLS directives are briefly descripted.

Table 3.1: HLS directives [5]

Directive Description
PIPELINE Reduces the initiation interval by allowing the concurrent
execution of operations within a loop or function.
DATAFLOW Enables task level pipelining, allowing functions and
loops to execute concurrently. Used to minimize interval.
INLINE Inlines a function, removing all function hierarchy. Used

to enable logic optimization across function boundaries
and improve latency /interval by reducing function call
overhead.
UNROLL Unroll for-loops to create multiple independent
operations rather than a single collection of operations.
ARRAY _PARTITION |Partitions large arrays into multiple smaller arrays or into
individual registers, to improve access to data and
remove block-RAM bottlenecks.
ARRAY_MAP Combines multiple smaller arrays into a single large array
to help reduce block-RAM resources.
ARRAY_RESHAPE | Reshape an array from one with many elements to one
with greater word-width. Useful for improving
block-RAM accesses without using more block-RAM.

These attributes of HLS make it an ideal choice for creating an efficient co-processor of the
classification stage of the ECG analysis flow. Using the code in Listing 3.1 as baseline, we
are going to apply some structural changes to it to bring up the inherent parallelism of the
algorithm and then further improve our design by exploiting the capabilities provided by
HLS. The flow of work that we are going to follow is schematically described in Fig.3.4.

Original
©
Source Code

A

Code

Restructured «“)
Codes Restructuring

; Design Space

Exploration

Constraints
P using HLS «“ Directives
Verilog -Il))
SystemC Directives

; EXpOI't RTL as II‘ IP Xact

format

Figure 3.4: HLS Proposed Work Flow

3.3 Zynq Evaluation and Development Board Spec-
ifications

The ZedBoard [26] is a low-cost evaluation and development board based on the Xilinx Zynq
-7000 All Programmable SoC (AP SoC). Combining a dual Corex-A9 Processing System (PS)
with 85,000 Series-7 Programmable Logic (PL) cells, the Zyng-7000 AP SoC can be targeted
for broad use in many applications. This board contains everything necessary to create a
Linux, Android, Windows or other OS/RTOS-based design. Additionally, several expansion
connectors expose the processing system and programmable logic I/Os for easy user access.
The features [27] provided by the ZedBoard consist of:

— Memory: Zynq contains a hardened PS memory interface unit. The memory inter-
face unit includes a dynamic memory controller (DDR3) and static memory interface
modules (SPI Flash, SD Card Interface).

— USB: ZedBoard implements one of the two available PS USB OTG interfaces and a
USB-to-UART bridge connected to a PS UART peripheral, and provides JTAG func-
tionality and USB circuit protection.

— Display and Audio: An Analog Devices ADV7511 HDMI Transmitter provides a
digital video interface to the ZedBoard. The ZedBoard also allows 12-bit color video
output through a through-hole VGA connector. An Analog Devices ADAU1761 Au-
dio Codec provides integrated digital audio processing. An Inteltronic/Wisechip UG-
2832HSWEGO04 OLED Display is used on the ZedBoard.

— Clock Sources: The Zyng-7000 AP SoC’s PS subsystem uses a dedicated 33.3333
MHz clock source, IC18, Fox 767-33.333333-12, with series termination. The PS infras-
tructure can generate up to four PLL- based clocks for the PL system. An on-board
100 MHz oscillator, IC17, Fox 767-100-136, supplies the PL subsystem clock input.

— Reset Sources: The Zynq PS supports external power-on reset signals. The power-on
reset is the master reset of the entire chip. A Program Push Button Switch initiates
reconfiguring the PL-subsection by the processor. Power-on reset erases all debug
configurations.

— User I/0: The ZedBoard provides 7 user GPIO push buttons to the Zyng-7000 AP
SoC; five on the PL-side and two on the PS-side. It has eight user dip switches providing
user input and eight user LEDs.

— 10/100/1000 Ethernet PHY: The ZedBoard implements a 10/100/1000 Ethernet
port for network connection using a Marvell 88E1518 PHY.

— PS and PL I/O expansion: A single low-pin count (LPC) FMC slot is provided
on the ZedBoard to support a large ecosystem of plug-in modules. The ZedBoard has
five Digilent PmodTM compatible headers (2x6). The XADC header provides analog
connectivity for analog reference designs, including AMS daughter cards.

— Configuration Modes: Zyng-7000 AP SoC devices use a multi-stage boot process
that supports both non-secure and secure boot. The PS is the master of the boot and
configuration process. Upon reset, the device mode pins are read to determine the
primary boot device to be used: NOR,NAND, Quad-SPI, SD Card or JTAG.

The Zedboard can be used for several target applications such as video processing, motor
control, software acceleration, linux/Android/RTOS development, embedded ARM process-
ing, general Zyng-7000 All Programmable SoC prototyping. The goal of this work is software
acceleration by building an IP on the PL side. The acceleator will have to communicate with

the PS, thus the interest lies in the features of the PS, the PL and their interconnect. Zed-
board has a complete ARM-based Processing System with Dual ARM CortexTM-A9 MP-
CoreTM fully autonomous to a state-of-the-art Programmable Logic. The Programmable
Logic is used to extend the Processing System and is tightly integrated. High performance
ARM AXT interfaces (High bandwidth AMBA interconnect) are provided for scalable and
effective communication. The available resources of the PL side are also very important
and critical for applications that need to process large data sets [4]. Table 3.2 contains this
information for the Zedboard.

Table 3.2: Zedboard Available Resources

Name |[BRAM_18K|DSP48E| FF |LUT
Available 280 220 1106400(53200

CHAPTER 4
Code Restructuring for HLS

4.1 Advancing Coarse Level Parallelism in HLS

4.1.1 Parallelization Technique

At first we try to increase the parallelism of the classification algorithm on function level.
To do that successfully, an in depth understanding of the algorithm is required. In that
direction, we provide the reader with a detailed explanation of the SVM based classifier.

In the code in Listing 3.1, test_vector represents the feature vector of the pulse to be classified
and has been created at the previous stage of the ECG analysis flow, feature extraction. It
is implemented as an array of D_sv elements, as many as the attributes of interest are. The
classification and differentiation of beats into normal and abnormal is based on these chosen
features of the pulse. Array sup_vectors contains the support vectors of the hyperplane that
divides the space into two classes. It has N_sv columns, one for each support vector, and
each column-support vector has D_sv elements-attributes. Array sv_coef holds the values
of the coefficients of the support vectors, and thus has N_sv elements, one for each support
vector. Constant b is also a parameter of the derived SVM classifier and represents the bias
to which the final result is compared, so as to decide the class to which the current beat
belongs.

According to the decision function given in Chapter 3, the squared euclidean distance between
the test vector and each support vector is computed and then the RBF kernel function is
applied on it. This value is then multiplied by a weighting factor equal to the coefficient
of the current support vector. The resulting value is finally added to the total sum, which
is compared to the bias in order for the class to be deducted. The contribution of each
support vector to the total sum is irrelevant to the contribution of the other support vectors.
This means that there are no data dependencies regarding the computations performed
between the test vector and each column of the support vector’s array. As a result, these
computations can be performed simultaneously. This is illustrated in Fig.4.1 where the use
of different colours indicates that the computations performed between each coloured column
and the test vector can happen in parallel with the computations of the other columns.

This is the main idea of this parallelization technique. Array sup_vectors can be partitioned
into smaller arrays, each one containing fewer support vectors. These arrays will have the
same number of rows, since the number of attributes does not change, but fewer columns.
Each array will contribute a partial sum to the total sum used for classification. The calcu-
lations required for the partial sums to be computed can be performed in parallel. We have
thus managed to divide the initial large problem into smaller ones, which are then solved at
the same time. Each smaller problem is not a subtask of the initial task but the same task
performed on a smaller dataset. All the smaller-scale problems are processed independently
and simultaneously and their results are combined for the final computations. Thus, we have
accomplished to extract coarse level parallelism from the initial problem. The coarse level
parallelism is presented schematically in Fig.4.2.

18

test vector

- I I i | | ~
- ~
- ~
- ~

4

support
vectors

/
/
/
/

e

©

&KKKKKK

/E ——exp(-y*sum)*coef

sum

Figure 4.1: Parallelism in Computations

The above idea is going to be implemented by both modifying the structure of the code in
Listing3.1 and applying the necessary HLS directives. Firstly, we are presenting the changes
made to the code and then the HLS directives that are required to implement the parallelism.
The main part of the code that is responsible for computing the total sum is going to be
implemented as a separate function called by the main function as many times as many
array partitions exist. Each instance of this function is assigned a different partition of
the sup_vectors ans sv_coef arrays and computes the partial sum that its assigned partition
contributes to the total sum. The main function gathers the partial sums of all partitions
and makes the classification decision. The modified code is presented in Listing 4.1 for the
case that the support vector array is partitioned into two smaller ones.

On this modified code, we are going to apply the HLS directives. The first directive needed
is the one responsible for the automatic array partitioning. An array in HLS is implemented
using block RAMs which can at most have two read ports. This means that the simultaneous
computation among all the array partitions wouldn’t be possible since all functions would
require access to the same array at the same time. HLS would address this problem by
creating a replicate for each function instance, thus leading to memory burst.

Support vectors in memory Support vectors in memory
after partitioning

before partitioning

MEMORY

I I Nsv/4ﬂ N_sv/2 I I 3N_sv/4 I I N_sv

4-port BRAM memory controller

0 N_sv

Single port BRAM memory controller

g
=]

Instantiated
HW ACCs

Classification result, Classification resul

Figure 4.2: Coarse Level Parallelism

By using the array partition directive instead, we solve since different read ports for each
partition are created and the parallelization is possible the problem without any adverse
effects. In order to use this directive we have to specify on which array it is applied, which
dimension of the array is going to be partitioned, how many partitions are needed and
which elements each partition contain. We are going to partition arrays sup-vectors and
sv_coef. Array sv_coef is one-dimensional, thus it is partitioned across its elements and
each partition contains consecutive elements (block partitioning). We are going to partition
array sup_vectors across its column dimension into a varying number of partitions and each
partition will contain consecutive columns (block partitioning). In the main function we call
the computational function once for each array partition. Its arguments include the pointers
to the arrays, a value indicating the size of each partition in columns, an offset to identify
the exact location of the partition in the initial array and a pointer to the address that
holds the partial sum to be computed. Then the dataflow directive is applied on the main
function and allows functions within the main’s function scope to operate in parallel. HLS
automatically detects that the function calls can be executed simultaneously and completes
the allocation of resources and synthesis accordingly.

Listing 4.1: Partitioned version of the original code
#include <math.h>
#include ”"svm.h”

#include <stdio.h>
#define gamma 8

void foo(int width,int offset ,float *sum, float test_vector [D_sv],
float sv_coef[N_sv],float sup_vectors[D_sv][N_sv]){

int i,j;

float diff;

float norma=0;

xsum=0;

loop_i:for (i=0; i<width; i++){
loop_j:for (j=0; j<D_sv; j++){
diff=test_vector[j]—sup_vectors|[]j][it+offset |;
norma = norma + diffxdiff;

}

xsum = xsum + exp(—gammasknorma)*sv_coef[itoffset];
norma=0;

void classify (int * y){

const float sv_coef[N_sv]={
#include ”sv_coef.dat”

}s

const float test_vector [D_sv]={
#include "test_vector.dat”

b

const float support_vectors|[D_sv]|[N_sv]={
#include ”support_vectors.dat”

}s
float diff;
float suml,sum2,sum;
foo(N_sv/2,0,&suml, test_vector ,sv_coef ,support_vectors);
foo(N_sv /2 ,N_sv/2,&sum2, test_vector ,sv_coef ,support_vectors);

sum = suml 4 sum2 — b;

if (sum<0) xy = —1;
else xy = 1;

4.1.2 Results

We have implemented this idea for array partitioning by a factor of 2,3,4,8 and 16. The
results for latency and resources are depicted in Fig.4.3.

Latency zain and Area Resources for Increasing Partition Factor
Automatic Partition

400
B (- =tition factor 2

350} I partition factor 3 |
= [Ipartition factor 4
S 300} [partition factor 8 H
E B - ortition factor 16
2 2501 .
=
=
& 200F]
ab]
L
5 150} .
=
£
= .
il

S0 .
Latency gain BERAM DSF FF LLIT
metric

Figure 4.3: Performance and utilization for increasing number of partitions (automatic)

The latency is assessed in terms of gain, in comparison to the latency of the original code. The
memory and area are measured in utilization percentages over the initial available resources.
As far as the latency is concerned, it can be seen that as the number of partitions becomes
greater, the latency of the design reduces accordingly. In fact, the speedup of execution time
is very close to the ideal speed-up value, which is equal to the number of array partitions
being used. For a partition factor of two, this translates into a speed-up of two and gain
in latency equal to 50%, while a partition factor of sixteen results in a speed-up close to
sixteen and thus a gain in latency close to 93.75%. There is however a trade-off between
the gain in latency and the increasing area resources. In order for the function instances
to run in parallel the logic used for the function body is replicated once for each instance.
This explains the increase in DSP, flip flop and LUT utilization. For example, the loop
body requires 45 DSP units for all the operations to be scheduled the way they are in the
original code. This number remains the same for each independent instance but the total
number multiplies by a factor equal to the number of instances or partitions used. Given the
fact that there are 220 DSP units available in the specific development board, the utilization

Ferformance and utilization %

percentages are formed as in Fig.4.3, exceeding availability for a partition factor greater than
4. The same principle also applies for the utilization of flip flops and LUTs. An interesting
parameter is the utilization of BRAM for array implementation. By using the partitioning
directive we have managed to avoid the replication of the arrays for each instance. Each
function requires as many BRAMSs, as many are needed to implement its partition of the
array. This leads to the total number of BRAMs used remaining almost the same in all cases
except for the one of partition factor of value 16. In that case replicates of the arrays are
created, resulting in a burst in memory usage.

In our efforts to prevent this burst from happening, we tried to apply the same idea only
this time doing it manually. The only thing that differs from the previous implementation is
the way the support vector and coefficient arrays are partitioned. Instead of declaring one
large array and then partitioning it into smaller ones using the array partitioning directive,
we allocate several smaller arrays from the start. Now in each function call, a different array
pointer is passed pointing to one of the array partitions. This means that we must manually
split the array containing the support vectors and the array of their coefficients into smaller
arrays containing fewer support vectors. The results are shown in Fig.4.4.

Latency ain and Area Resources for Increasing Partition Factor
Manual Partition

350 ;

B - tition factor 2
300 I partition factor 3 |

[partition factor 4

350 I partition factor 8
| I = rtition factor 16 ||
2001 i
150 F i
100 F i
S0F i

Latency gain ERAM DSF FF LLIT
metric

Figure 4.4: Performance and utilization for increasing number of partitions (manual)

The gradual increase in area resources (DSPs,flip flops and LUTSs) remains the same. The
burst in number of BRAMs when partitioning for a factor of 16 is now remedied and BRAM
utilization remains practically the same regardless of the number of partitions used. We also
noted that the gain in latency is even greater now, giving a speed-up practically equal to the
ideal one. This is depticted in Fig.4.5.

Speedup for Increasing Partition Factor
Automatic vs Manual Partition

16
B -utomatic
14+ | ERE T
12 F .
101 .
[
-
@ 8t -
L]
[l
[ip}

[~
T

| II II |
° 2 3 4 & 16

number of partitions

Figure 4.5: Speedup gain comparison (automatic vs manual)

4.2 Advancing Instruction Level Parallelism through
arithmetic operation reshaping

4.2.1 Parallelization Technique

So far we have examined how to parallelize the SVM classifier on coarse level by performing
the computations related to different support vectors simultaneously. Now we are going to
examine increasing parallelism within the computations required for calculating the contri-
bution of one support vector only. This is achieved by increasing instruction level parallelism.

We are going to parallelize the inner loop (loop_j) of the code, which is responsible for the
computation of the euclidean distance. Each time this loop is executed it computes the
euclidean distance between a different support vector and the test vector to be classified. It
iterates over the attributes-elements of the two vectors and in each iteration the difference
between the two attributes-elemelnnts is computed. Then this difference raised to the square
is added to variable "norma”, which holds the value of the euclidean distance at the end
of loop execution. Instead of computing one squared difference in each iteration we could
compute several of them at the same time. This can be achieved by unrolling the loop,
storing each squared difference in a temporary variable and ultimately adding all of them to
the variable "norma” holding the final distance.

Adding many floating point values in HLS increases dramatically the critical path because
the additions are scheduled in a serial manner even though there is no true data dependency
between the added values. However a more efficient implementation of the addition is feasible
by changing the structure of the addition and transforming it into a tree-based computation
of the final result. That way HLS can schedule the independent calculations to be executed
in parallel allocating if needed more hardware resources.

Several changes have to be made to the code in Listing 3.1. Firstly, the inner loop is manually
unrolled and as a result the number of iterations lessens. In each iteration more differences
are computed (as many as the unroll factor is) and saved to temporary variables. Each one
of the computed differences is raised to the power of two. Then we begin to add the squared
differences following a tree-based structure, adding them in pairs to produce new temporary
values. Accordingly, these values have to be added again in pairs and this continues in the
same fashion until all the squared differences have been added to the variable containing
the euclidean distance upon loop completion. By arranging the partial additions in this
structure, we implicitly force HLS to allocate more resources so that these operations can
execute in parallel.

In this work the best classifier for the arrhythmia detection was determined after performing
design space exploration. This exploration resulted in a feature vector of 18 attributes.
This is also the number of iterations of the inner loop. We have applied the above idea by
manually unrolling the inner loop by a factor of 3,6 and 18 and arranging the computations
in a tree structure. The modifications to the code are presented in Listing 4.2 for an unroll
factor of 6. In Fig.4.6 the tree based structure of the calculations for an unroll factor of 6
is demonstrated. In the same figure the way HLS schedules these operations is shown. The
difference between the default scheduling of HLS for automatic unrolling and our proposed
implementation can be seen by comparing Fig.4.7, both of which assume an unroll factor of
6.

test_vector(i)

operations

load
elements

subtract

square

add {
{
{

add
add

sup_vector; (i)

o

._.\
@
@

cycles

Figure 4.6: Tree based computations for manual unrolling and HLS scheduling

operations

automatic
unroll

manual
unroll
with i
tree-based
structure

operations cycles

load 2
fadd/sub 5
fmul 4

= End of
B R operations
square

add latency gain (cycles)

- add !

End of
cyc]es operations

Figure 4.7: Scheduling Comparison between manual and automatic unrolling

Listing 4.2: Unrolled version of the original code

#define gamma 8
const float sv_coef[N_sv];
const float sup_vectors[D_sv][N_sv];

void SVM predict (int xy,float test_vector[D_sv]){

loop_i:for (i=0; i<N_sv; i++) {
loop_j:for (j=0; j<D.sv; j=j+6) {
dl=test_vector [j]—sup-vectors[]

I

J[i
d2=test_vector [j+1]—sup_vectors[j+1][i]
d3=test_vector [j+2]—sup_vectors [j+2][i];
dd4=test_vector [j+3]—sup_vectors[j+3][i];
db=test_vector [j+4]—sup_vectors [j+4][i];
d6=test_vector [j+5]—sup_vectors[j+5][i]

sq_prod1=d1xdl;
sq_prod2=d2x*d2;
sq-prod3=d3x*d3;
sq_prod4=d4xd4;
sq-prodb=d5x*d5;
sq_prod6=d6x*d6 ;

tmp_suml=sq_prodl+sq_prod2;
tmp_sum2=sq_prod3+sq_prod4;
tmp_sum3=sq_prodb+sq_prod6 ;

tmp_sumd=tmp_suml+tmp_sum?2;
norma = norma -+ tmp_sum3;

norma = norma -+ tmp_sumd;

sum = sum + exp(—gammaxnorma)*sv_coef[i];
norma=0;

sum = sum — b;
if (sum<O0)

xy = —1;
else

xy = 1;

4.2.2 Results

In Table 4.1 we can see the difference in performance and resources utilization between
applying the unroll directives on the inner loop and manually unrolling it while using a
tree-based expression balancing structure for the computations.

Table 4.1: Evaluated metrics for automatic vs manual unrolling

Version |Unroll Automatic Unroll Manual Unroll using
factor using directives tree structure

latency [BRAM|DSP| FF [LUT [latency [BRAM|DSP|FF [LUT (%)
(cycles)] (%) | (%) |(%)] (%) |(cycles)| (%) | (%) |(%)] (%)

initial - 412783 24 20 | 3 | 11 412783 | 24 20 | 3 11
unrolled| 3 [252259| 24 21 | 3 | 11 |214039| 47 26 | 4 14
unrolled| 6 206395 | 24 23 | 3 | 11 |149065| 70 34|15 18
unrolled| 18 [173271| 27 20 | 3 | 11 | 90461 27 50 | 8 29

The same results are illustrated in Figures 4.8 to 4.13, each of which highlights the changes
in a different metric for automatic versus manual unrolling of the inner loop.

There is a significant improvement in latency gain when applying manual instead of auto-
matic unrolling and the difference becomes greater the larger the unrolling factor is. The
reason is the tree based structure of the computations that allows data independent opera-
tions to execute in parallel, significantly reducing the inner loop latency and as a result the
total design latency as well.

Manual loop unrolling appears to cause however an increase in BRAM utilization for some
unroll factors. When unrolling for a factor of 3, three accesses at array support vectors are
required at the same time but the array has at most two read ports. To achieve the reading
of three elements, HLS creates a copy of the array and implements both copies using dual
port RAMs since three elements can indeed be read from four ports. As a result, there is a
gain in parallelism and latency but the BRAM utilization doubles. This can be crosschecked
from the reports, where the implementation of the sup_vector array requires 128 BRAMs
whereas in the original version exactly 64. In the case of unrolling for a factor of 6, three
copies of the same array are needed to be implemented with dual port rams in order for
parallelism to be achieved. Thus BRAM utilization triples and the array is implemented
using 192 BRAMs in particular. For fully unrolling the loop we would expect nine copies of
the array to be created in order for 18 elements of the same array to be read concurrently.
When fully unrolling the loop however, HLS automatically partitions the array in 18 rows,
each one being implemented as dual port, and as a result parallelism is possible without
memory increase. The memory increase problem for the cases of using an unroll factor of 3
and 6 can be avoided altogether by applying array partition directives, as discussed in the
next chapter 5.

An increase in the area resources utilization is also observed. The implicit declaration of par-
allel subtractions and multiplications as well as of the parallel additions of the tree structure
result in an increase in the number of computational instances required to achieve instruc-
tion level parallelism. HLS allocates more multipliers and floating point adders to achieve
parallelism while at the same time tries to limit their number by maximizing sharing during
the scheduling and binding process. The result is an increase in instances which translates
into an increase in DSPs, flip flops, LUTs,multiplexers and registers.

Latency in Cycles for Increasing Unroll Factor
w10t Automatic ve Manual Unrall

I utomatic unmoll
I anual unoll |+

)

Clock cycles

no unroll 3 B 18
unroll factor

Figure 4.8: Latency in Cycles for
Automatic vs Manual Unroll.

BRAM Utilization for Increasing Unrall Factor
Autoratic ws Manual Unrall

I - toratic unrall

anual unrall

Utilization %

3 B 18
unroll factor

Figure 4.10: BRAM Utilization for

Automatic vs Manual Unroll

FF Utilization for Increasing Unroll Factor
Automatic ws Manual Unroll

I -tomatic unroll

Ltilization %

3 5 18
unroll factor

Figure 4.12: Flip Flop Utilization
for Automatic vs Manual Unroll

Clock cycles

Utilization %

Latency in Cycles for Increasing Unroll Factor
wio® Automatic ve Manual Unroll

omatic unroll

I anual uneoll (H

)

no unrall 3 B 18
unroll factor

Figure 4.9: Latency Gain for

Automatic vs Manual Unroll.

DSP Utilization for Increasing Unroll Factor
Autoratic s Manual Unrall

utomatic unroll
I anual unroll

)
i

3 B 18
unroll factar

Figure 4.11: DSP Utilization for

Figure 4.13:

Utilization %

Automatic vs Manual Unroll

LUT Utilizatian for Increasing Unroll Factor
Automatic vs Manual Unrall

30

I - tornatic unrall
25 I anual unrll i

)
=]

o

3 G 18
unroll factor

LUT Utilization for
Automatic vs Manual Unroll

CHAPTER 5

Exploration of HLS Directives

5.1 Selection of Optimization Directives

In the previous sections we examined ways to create effective RTL based on structural
modifications of the C code. These modifications offer a first level of optimization. The
performance though can be further improved by combining these structural modifications
with the HLS directives. In this section we are going to explore the impact the chosen
directives can have on the efficiency of the accelerator.

The directives chosen for optimization differ from one application to another and depend on
the nature of the algorithm under study. For the SVM classifier the selection of directives
applied is based on the instruction level parallelism that can be accomplished. Most of
the directives used, aim at optimizing the inner loop that computes the euclidean distance
between the test and support vector. As mentioned before, the squared differences that
compose the euclidean distance can be computed in parallel, which means that the inner
loop should be unrolled. For an unrolling factor greater than two this leads to more than
two simultaneous reads to the same array, which exceeds the maximum number of read
ports of each BRAM. As a result we have to change the array structure by partitioning or
reshaping so as to have more read ports and so that the accesses to the required elements
can happen in parallel. In the same manner we can unroll the outer loop and partition or
reshape the arrays accessed in each iteration of the outer loop to gain parallel access to their
elements.

All the directives applied on the classifier and the intent of their application are explained
below:

Loop pipeline: This directive can be applied on all loops. Without pipeline all loop
iterations execute sequentially instead of being scheduled when the required resources are
available. Thus loop pipelining allows the use of all resources at the same time.

Loop unroll: This directive can also be applied on all loops. It reduces the number of
iterations and increases logic since it creates copies of the loop body.

Array partition: This directive is applied on the sup_vector and the sv_coef arrays. It
partitions arrays into smaller ones providing more data ports. For array sup_vector, when
combined with the unrolling of the inner loop it allows access to multiple elements of the
same column in parallel. The partitioning must be performed in a cyclic way so that the
consecutive elements that need to be accessed during the same iteration belong to a different
partition. In Fig.5.1 the partitioning of the sup_vector array is illustrated. The array is
partitioned across the row dimension, which contains the attributes. In the figure an unroll
factor of 4 is assumed, meaning that the initial array is partitioned into 4 smaller arrays of
the same number of columns but less rows. The rows with the same colour belong to the
same array partition and the tuples of four that are highlighted are accessed at the same
time. The same principle applies to the partition of the array sv_coef, with the only difference
being that this array is one-dimensional. Its partition looks like the partition of only one
column of array sup_vectors.

30

BRAMs BRAMs
before after
partitioning partitioning

loop unroll
factor 4

|_1.| .. %l == — partition 1
1stiteration |_2.| .. . o i
|_3_| .. array cyclic partition QJ .. N
|_4_| .. 6 .. — partition 2
z Bl I— -
2ndjteration 6 .. factor 4 L§| == — partition 3
7 [| | J
’ .t. %‘l == — partition 4
suppor P
vectors

Figure 5.1: Array partition schematically

Array reshape: This optimization performs a similar task to array partitioning however
instead of creating more arrays it re-combines the elements created by partitioning into a
single block-RAM with wider data ports. Thus it reduces the number of block-RAM while
still allowing parallel access to the data. It is applied on the sv_coef and the sup_vectors
arrays. The difference from array partition is that the elements of these arrays that get
accessed at the same iteration instead of belonging to different partitions, are merged into
one element of wider word-width. The reshaping of array sup_vectors is demonstrated in Fig.
5.2. Again we assume an unroll factor of 4. The elements that are highlighted are merged
into one element in the new array of less rows that is created.

These directives can be applied to any of the implementations mentioned at the previous
sections since all of them maintain the same computational kernel regardless of any expression
balancing or how large the dataset they operate on is.

We have implemented four basic versions of the SVM classifier. The initial given in Listing 3.1
and three versions which had the inner loop manually unrolled by a factor of 3,6 and 18 (fully
unrolled) respectively as described in Chapter 4. These implementations were synthesized for
all valid combinations of the directives above for various values of their parameters. In Table
5.1 all directives used and all the values of their parameters are included. Some combinations
of directives were excluded due to directives incompatibility (for example pipeline unrolls all
loops down its hierarchy so there is no point in combining these two directives) and others
due to user defined constraints. For the initial implementation the main constraint applied
was that there is no reason to partition an array without unrolling the loop in which it is
accessed since in each iteration there’s only one access needed. When the corresponding loop
is unrolled by some factor then the array is partitioned or reshaped by that same factor. Also
when a computation requires the elements of two arrays and one of them is partitioned or
reshaped the other must be too. In the implementations where the inner loop is already
unrolled we loosen the first constraint. The arrays in the inner loop can be partitioned or
reshaped when the inner loop is not further unrolled but by a factor equal to the factor the
loop is already manually unrolled by. When the loop is further unrolled the array is also
further partitioned or reshaped by that same factor.

Accessed at
15 iteration,

BRAMs
before
loop unroll haoi
factor 4 x\res aping
M .. % == } partition 1
1stiteration { Q' .. step 1:
M .. array cyclic partition Ql .. } partition 2
M
3 -
2nd jteration { ? == factor 4 g == } partition 3
° .. %I .. } partition 4
supporort ..
veeeorsrs
step 2:
1] 24 3141 I array vertical map
Slel7e I
BRAMs
after
reshaping

Figure 5.2: Array reshape schematically

5.2 Application on Original Code

The original SVM code was synthesized using the directives in Table 5.1 and their combina-
tions allowed by the constraints described in the previous section. The same configurations
were synthesized under different clock periods for a more thorough design space exploration.
The clock periods used were those of 10, 20, 30 and 40 ns. The results were gathered and
used by the boxplots of the following sections. Only the configurations that achieved critical

path less than the clock period were used for the diagrams.

Table 5.1: Applied directives and their parameters

directive | variable |mode| factor |dimension
pipeline loop_i - - -
loop_j - - -
loop unroll| loop.i - 2,7 -
loop_j - 12,3,4,6,9,18 -

partition |sup_vectors|cyclic |2,3,4,6,9,18|rows (dim 1)
test_vector | cyclic |2,3,4,6,9,18 -
sv_coef |cyclic 2,7 -

reshape |sup_vectors| cyclic [2,3,4,6,9,18|rows (dim 1)
test_vector | cyclic 2,3,4,6,9,18 -
sv_coef | cyclic 2,7 -

Gain and Utilization (%)

100

90

80

70

60

50

40

30

20

Original Code
Pipeline directive to loop i
Comparison between configurations with and without the directive

; = = =

lat gain-on lat gain-off BRAM-on BRAM-off DSP-on DSP-off FF-on FF-off LUT-on LUT-off

Figure 5.3: Pipelining loop_i. Columns from left to right:Latency gain and
BRAM,DSP,FF,LUT utilization with and without the directive.

5.2.1 Impact of each directive

In this section, the impact of each directive on the various metrics is examined. Each of
Figures 5.3 to 5.20 depict how all configurations score in metrics with one specific directive
enabled or disabled.

In Fig.5.3 the pipeline directive in the outer loop loop.i is examined. The results show its
definitive impact on latency. When it is applied latency gain reaches the value of 99%.
When it is not applied latency gain can practically hold any value from 0 to 100% and all
the quartiles appear to have the same distance one from another. It does lead however to
a large critical path that often exceeds the time constraints. In terms of BRAM utilization,
when the directive is applied there is a slightly wider range of utilization values as opposed
to not being applied. However this range doesn’t exceed the width of 5%. In fact, in both
cases the utilization remains very close to that of the original synthesis with no directives
applied at all. Upon its application, DSP, Flip Flop and LUT utilization change significantly.
The range of taken values is much narrower and the median of greater value. Especially for
DSPs and LUTSs the utilizations have a fixed value in contrast to the 5% range within which
they fluctuate when the directive is not applied. The higher values of the utilization of area
resources can be explained by the fact that when pipeline is applied on a loop, it unrolls all
loops inside of it. This leads to an unavoidable increase in area. Pipelining the outer loop
loop_i unrolls the inner loop loop_j, thus the main loop body logic is replicated leading to an
increase in resources.

Fig.5.4 depicts the results of unrolling the outer loop (loop-i). Unrolling the outer loop does
not seem to be crucial in the improvement of the design in terms of latency since the range
of values extends from 0 to 90%. When this loop is not unrolled latency receives values from
a much narrower range but the value does not exceed the gain of 65%. When this directive is

Gain and Utilization (%)

100

90

80

70

60

50

40

30

20

Original Code
Unroll directive to loop i
Comparison between configurations with and without the directive

Figure 5.4: Unrolling loop_i. Columns from left to right:Latency gain and
BRAM,DSP,FF,LUT utilization with and without the directive.

applied the BRAM utilization is not greatly affected. The median value is the same in both
cases and equal to the original one. As far as DSPs, FFs and LUTs utilization is concerned
their value range is slightly wider and the median value is greater when the directive is
applied. This is again anticipated, since unrolling a loop in HLS creates duplicates of the
loop body and thus the area is increased. In Fig.5.5 the impact of the directive is exhibited
for two different values of the unroll factor. The first value is two and the second is seven.
It is evident that a greater unroll factor leads to a stronger manifestation of the directive’s
impact. Thus we can see that BRAM, DSP, flip flop and LUT utilization receive values from
a wider range and these values are greater for unroll factor equal to 7 as opposed to unroll
factor equal to 2. The latency range and median value remain the same.

When utilizing the pipeline directive in the inner loop (loop_j) latency gain has a narrower
range that extends from 50 to 90% and has a median value of 75% as shown in Fig.5.6.
When the loop is not pipelined the range is much wider and the median value is lower.
When pipelining the inner loop all the area resources utilization are of the same or slightly
greater range but are characterized by the same median values, close to the ones of the
original version of the SVM code. This happens because pipeline increases parallelism by
using all resources at all times and not by replicating hardware. The operations are scheduled
when the required resources and data are available and not necessarily sequentially. This
increases instruction level parallelism and reduces the initiation interval by allowing the
concurrent execution of operations within the loop. Thus the major improvement in latency
gain is anticipated.

Unrolling the inner loop has a positive impact on latency as it limits the range of values taken
by latency gain. It is illustrated in Fig.5.7 that when the inner loop is not unrolled the range
of values of latency gain extends from 0 to 100% with a median of 50% while the majority of
configurations have a gain less than 60% since that is approximately the value of the third

T T : T T T I
I
|
|
|
|
|
|
T
|
! | —
| _— |
| —— I:I T
i I Qf [E— _
| |
! %l _
|
! _
L - e
| \ 5 \ \ \ \ \ | \ \
lat gain-on lat gain-off BRAM-on BRAM-off DSP-on DSP-off FF-on FF-off LUT-on LUT-off

Gain and Utilization (%)

Gain and Utilization (%)

100

90

80

70

60

50

40

30

20

100

90

80

70

60

50

40

30

20

Original Code
Unroll directive to loop i
Comparison for different directives parameters

- : I : I I I]
— _
|
L —_ _
|
L | _
|
|
- T | .
I \ : . == : . T
I | ; = -
o e S —
L 1 _ : = - |
| : | | -
! ; 5 —_ ==
| \ . \ \ 3 \ \ \ | \ \
lat gain-2 lat gain-7 bram-2 bram-7 dsp-2 dsp-7 ff-2 ff-7 lut-2 Jut-7

Figure 5.5: Changing unroll factor on loop_i. Columns from left to right:Latency gain and
BRAM,DSP,FF,LUT utilization.

Original Code
Pipeline directive to loop |
Comparison between configurations with and without the directive

— : I I I I I T]
‘ _
|
|

L | _
|
|
|

— | —
|

I |
|
o |

L ; L |
! ! —
|] — — i

B | = = I
| |

i 3 = =

| \ 3 \ \ : \ \ \ | \ \
lat gain-on lat gain-off BRAM-on BRAM-off DSP-on DSP-off FF-on FF-off LUT-on LUT-off

Figure 5.6: Pipelining loop_j. Columns from left to right:Latency gain and
BRAM,DSP,FF,LUT utilization with and without the directive.

Gain and Utilization (%)

Gain and Utilization (%)

100

90

80

70

60

50

40

30

20

100

90

80

70

60

50

40

30

20

Original Code
Unroll directive to loop |
Comparison between configurations with and without the directive

| : \ \ : \ \ \ |
[T - N
' |
|
— I ! —
1 |
| |
1 |
[1 ! _
| |
| |
|
|
L ! |
|
|
|
L ! |
i
— 1 —_]
_ |
_ = = - i
L ——1 =
= =
| | : | | : | | | | | |
lat gain-on lat gain-off BRAM-on BRAM-off DSP-on DSP-off FF-on FF-off LUT-on LUT-off
Figure 5.7: Unrolling loop_j. Columns from left to right:Latency gain and
BRAM,DSP,FF,LUT utilization with and without the directive.
Original Code
Unroll directive to loop |
Comparison for different directives parameters
I I I I l I l I I l I I l I I I l I l l I I l I I l I I I l
L - |
|
|
|
L ! |
|
|
|
L | |
— |
— |
=|Eg :
- I |
L T ~]
T Q _ i
= TEE T
B =07] Do o PO T
L N g
L = 2T T
= = = = é
| |
2 3 4 6 9 18 2 3 4 6 9 18 2 3 4 9 18 2 3 6 9 18 2 3 4 6 9 18

Figure 5.8: Changing unroll factor on loop_j. Columns from left to right:Latency gain and

BRAM,DSP,FF,LUT utilization.

Gain and Utilization (%)

Original Code
Array cyclic partition directive to sv coef
Comparison between configurations with and without the directive

I I I I I I I
100 —

90—

80—

70—

60—

20—

|
|
|
|
|
|
| : : —_ |
|
|
|
|
|
|
|

0 L L

lat gain-on lat gain-off BRAM-on BRAM-off DSP-on DSP-off FF-on FF-off LUT-on LUT-off

Figure 5.9: Partitioning sv_coef. Columns from left to right:Latency gain and
BRAM,DSP,FF,LUT utilization with and without the directive.

quartile. On the other hand applying the unroll directive to the loop significantly limits the
range of values taken. All configurations that include the unroll directive have a gain of at
least 30% and some of them even reach a gain near 100%. The median value is close to 50%
as well. Fig.5.8 presents the change in latency for an increasing value of unroll factor. It can
be seen that for greater unroll factors the range of values for latency gain moves to higher
regions and the median value keeps ascending. The only exception takes place for unroll
factor 4, which is the only value that does not divide the total number of iterations perfectly.
Especially when fully unrolling the inner loop half the configurations provide latency gain
from 75 to 95% and the median value is equal to 85%. The BRAM utilization seems to be
exactly the same regardless of unrolling the inner loop and it is equal to the initial utilization
with none of the directives applied. In Fig.5.8 we can see a small differentiation in BRAM
utilization for some factors. These increases however can be attributed to the configurations
that included unrolling of the inner loop without partitioning the arrays accessed in the loop
body, as explained in Chapter 4. In Fig.5.7 it can be seen that when the inner loop is unrolled
DSP,FF and LUT utilization range is slightly wider and in a higher region. This is again due
to the fact that unrolling a loop leads to replicating the loop body and thus to more logic
and area. As the value of unroll factor becomes greater so does the area utilization and the
median value increases in strictly increasing order.

Fig.5.9 depicts the impact of partitioning the coefficient array sv_coef that is accessed in each
iteration of the outer loop. It appears that its application does not define the performance
since the range of latency gain extends from 0 to 100% and the median is equal to 50%
whether the directive is applied or not. BRAM utilization practically remains the same and
equal to the initial one and is thus irrelevant to sv_coef array partitioning. DSP, flip flop
and LUT utilization range is slightly wider and shifted to higher regions when the directive
is applied, and the median value is greater. In Fig.5.10 we can see that when the partition

Gain and Utilization (%)

Gain and Utilization (%)

Original Code
Array cyclic partition directive to sv coef
Comparison for different directives parameters

100 : I : I I I
T
|
80— —
|
|
70—
60 —
S0 . ? N
: : !
|
40+ !
30— | | . ;
| | . — = -
0~ | i E _ - i ‘
o f =, =
10~ | 1 : : - o
! | : -
! ‘ : —_ =
| A i :
| \ : \ \ 3 \ \ \ | \ \
lat gain-2 lat gain-7 bram-2 bram-7 dsp-2 dsp-7 ff-2 ff-7 lut-2 Jut-7
Figure 5.10: Changing partition factor on sv_coef. Columns from left to right:Latency gain
and BRAM,DSP,FF,LUT utilization.
Original Code
Array cyclic reshape directive to sv coef
Comparison between configurations with and without the directive
T : T T : T T T T
100 — —_
|
o~ T
| |
| |
S |
' 1
70 !
|
|
60—
50—
40
/- } - -
| | |
! ! —_— =
ol | | (S— . — I
| | : H | |
| | H H
10— : } T E
! ‘ T i
ol e 1 — =4
| \ 5 \ \ 5 \ \ \ | \ \
lat gain-on lat gain-off BRAM-on BRAM-off DSP-on DSP-off FF-on FF-off LUT-on LUT-off

Figure 5.11: Reshaping sv_coef. Columns from left to right:Latency gain and
BRAM,DSP,FF,LUT utilization with and without the directive.

Gain and Utilization (%)

100

90

80

70

60

50

10

30

20

10

Original Code
Array cyclic reshape directive to sv coef
Comparison for different directives parameters

| |
| |
1 1 ‘
! ! = T R
o B —
i i = - _
1 1 -
! ! —_ ==
| | | | | | | | | |
lat gain-2 lat gain-7 bram-2 bram-7 dsp-2 dsp-7 ff-2 -7 lut-2 lut-7

Figure 5.12: Changing reshape factor on sv_coef. Columns from left to right:Latency gain

and BRAM,DSP,FF,LUT utilization.

factor is greater, this range becomes even wider and the median value greater. The values
though remain considerably close to the ones of the initial design. The relative increase in
the area, however small it might be, is due to the fact that the array partitioning is applied
only when the outer loop is unrolled as well and the unroll and partition factors hold the
same value. This happens because more than two accesses in an array is required for the
partition directive to help increase parallelism. The unrolling of the outer loop leads to
replication of the inside of the loop and thus to the increase in area illustrated in Fig.5.9.
Applying the reshape directive instead for thw partition one inflict the same results as it can
be seen from Fig.5.11 and Fig.5.12.

Fig.5.13 depicts the performance and resource metrics that result when applying the partition
directive to the arrays accessed in the inner loop. The directive is applied only when the
inner loop is unrolled and thus multiple accesses to the same array are necessary and more
read ports are required. The arrays are partitioned by a factor equal to the unroll factor. The
results of the configurations that do not include this directive do not provide us with useful
information, since they include all possible latency gain values and the boxplot is perfectly
symmetrical. The application of the directive though guarantees that the latency gain does
not drop below 30% and three quarters of the configurations achieve a gain up to 70%. These
results do not differentiate between various partition factors. In Fig.5.14 it shows that the
greatest the partition factor is, the greatest the gain in latency is. For fully partitioning the
sup_vectors array across the row dimension a gain in the range of 75 up to 95% is achieved
for at least half the configurations. Having however examined all the directives, we reach
the conclusion that the unrolling of the loop is actually the definitive factor in improving the
latency but partitioning the arrays prevents memory burst and thus allows the configurations
to be implementable. BRAM utilization has a wider range when the partition directive is
on but it doesn’t exceed a width of 5% and the median value remains the same and close
to the initial one of the design. DSP, flip flop and LUT manifest a slightly wider range
of utilization but half the configurations remain inside a narrow width of 5% at most. In
Fig.5.14 where the results for different factors are depicted there are small differentiations

Gain and Utilization (%)

Gain and Utilization (%)

100

90

80

70

60

50

40

30

20

100

90

80

70

60

50

40

30

20

Original Code
Array cyclic partition directive to support vectors
Comparison between configurations with and without the directive

T 1
i 1
L | |
| |
| |
| |
L | | _
| |
| |
|
— | —
|
|
|
- | T -
1 | : — : — |
_ | H = = = -
| — |
|
; 3 | | = = |
i i ; : == == |
| | : | | : | | | | | |
lat gain-on lat gain-off BRAM-on BRAM-off DSP-on DSP-off FF-on FF-off LUT-on LUT-off
Figure 5.13: Partitioning sup_vector. Columns from left to right:Latency gain and
BRAM,DSP,FF,LUT utilization with and without the directive.
Original Code
Array cyclic partition directive to support vectors
Comparison for different directives parameters
I I I I T I T I I T I I T I I I T I T T I I T I I T I I I T
L - |
|
|
|
L ! |
|
|
|
L | |
— |
- |
SR -
=
o ﬂ -
. - = = = 1
i _essald
_ _ ™ —_
| — B B B9 = [B
| |
2 3 4 868 9 18 2 3 4 86 9 18 2 3 4 868 9 18 2 3 4 6 9 18 2 3 4 6 9 18
Figure 5.14: Changing partition factor on sup_vector. Columns from left to right:Latency

gain and BRAM,DSP.FF.LUT utilization.

Gain and Utilization (%)

Gain and Utilization (%)

100

90

80

70

60

50

40

30

20

100

90

80

70

60

50

40

30

20

Original Code
Array cyclic reshape directive to support vectors
Comparison between configurations with and without the directive

| \ ; \ \ ; \ \ \ |
S _ |
| |
I | |
i i
| |
i [
L | | _
| |
| |
|
— | —
|
|
|
- _ |
. | | -
|
- ! : o
» 1 5 — : m— Q e -
| |
| |
i | | | = = _
B S e = = |
| | : | | : | | | | | |
lat gain-on lat gain-off BRAM-on BRAM-off DSP-on DSP-off FF-on FF-off LUT-on LUT-off
Figure 5.15: Reshaping sup_vector. Columns from left to right:Latency gain and
BRAM,DSP,FF,LUT utilization with and without the directive.
Original Code
Array cyclic reshape directive to support vectors
Comparison for different directives parameters
I I I I T I T I I T I I T I I I T I T T I I T I I T I I I T
L - |
|
|
|
L ! |
|
|
|
L | |
— |
- |
=|Ep -
1=
= B
_ = |
N - = = 1
- T + T
i . easgldd
|
| = a s e |
| |

Figure 5.16: Changing reshape factor on sup_vector. Columns from left to right:Latency
gain and BRAM,DSP.FF.LUT utilization.

Gain and Utilization (%)

Gain and Utilization (%)

100

90

80

70

60

50

40

30

20

100

90

80

70

60

50

40

30

20

Original Code
Array cyclic partition directive to test vector
Comparison between configurations with and without the directive
I I : I I : I I I I

- I
i 1
L | |
i i
| |
i [
L | | _
| |
| |
|
— | —
|
|
|
- | T -
1 | : — : — |
i |] = = = -
| — |
| |
; 3 | | = = |
I : : — -
1 : : s ==
| | : | | : | | | | | |
lat gain-on lat gain-off BRAM-on BRAM-off DSP-on DSP-off FF-on FF-off LUT-on LUT-off
Figure 5.17: Partitioning test_vector. Columns from left to right:Latency gain and
BRAM,DSP,FF,LUT utilization with and without the directive.
Original Code
Array cyclic partition directive to test vector
Comparison for different directives parameters
I I I I T I T I I T I I T I I I T I T T I I T I I T I I I T
L - |
|
|
|
L ! |
|
|
|
L | |
— |
- |
=k :
=
o B 1 |
. - = = = 1
e T i
I _eaod]
_ _ ™ —_
= ==
| |
2 3 4 868 9 18 2 3 4 86 9 18 2 3 4 868 9 18 2 3 4 6 9 18 2 3 4 6 9 18

Figure 5.18: Changing partition factor on test_vector. Columns from left to right:Latency
gain and BRAM,DSP.FF.LUT utilization.

Gain and Utilization (%)

Gain and Utilization (%)

100

90

80

70

60

50

40

30

20

100

90

80

70

60

50

40

30

20

Original Code
Array cyclic reshape directive to test vector
Comparison between configurations with and without the directive

- I
| |
L | |
i i
| |
i [
L | | _
| |
| |
|
— | —
|
|
|
- _ |
. | | -
|
- ! : — | m— H
» 1 5 — : m— Q ! -
| |
| |
; 3 | | = =]
I : : - [
1 : : _ =
| | : | | : | | | | | |
lat gain-on lat gain-off BRAM-on BRAM-off DSP-on DSP-off FF-on FF-off LUT-on LUT-off
Figure 5.19: Reshaping test_vector. Columns from left to right:Latency gain and
BRAM,DSP,FF,LUT utilization with and without the directive.
Original Code
Array cyclic reshape directive to test vector
Comparison for different directives parameters
I I I I T I T I I T I I T I I I T I T T I I T I I T I I I T
L - |
|
|
|
L ! |
|
|
|
L | |
— |
- |
== g :
1=
= B
_ = |
N - = = 1
- T + T
i . easgldd
|
= a s e
| |
2 3 5 9 18 2 3 4 86 9 18 2 3 4 868 9 18 2 3 4 6 9 18 2 3 4 6 9 18

Figure 5.20: Changing reshape factor on test_vector. Columns from left to right:Latency
gain and BRAM,DSP.FF.LUT utilization.

Latency in Cycles

2.5

15

0.5

Latency Comparison
between different implementations

| | =

orig

inal auto unroll 3 auto unroll 6 auto unroll 18 manual unroll 3 manual unroll 6 manual unroll 18

Figure 5.21: Latency comparison between all implementations

but they can be explained by the unrolling of the loop and the replication of logic that lead
to an area increase. The same conclusions are drawn when the reshape directive is applied
instead of the partition one.

5.3 Comparison of Implementations

The focus of this section is a comparison between the performance and area resources re-
sulting from applying the directives described to different implementations. There are four
basic versions of the classifier code: the original one and three versions with unrolled the
inner loop by a factor of 3, 6 and 18 respectively. The conclusions are drawn from boxplots.
Each boxplot represents a different implementation and contains all the configurations re-
sulting from applying the directives to the corresponding version. In order to highlight the
difference between the automatic and the proposed manual unrolling, there are also boxplots
that include a subset of the configurations of the original version. In particular, each one
contains only the configurations that include automatic unrolling by a factor of 3, 6 and 18
respectively.

In Fig.5.21 the results for latency measured in cycles are presented. The definitive effect
of unrolling the inner loop is apparent. The greater the unroll factor is, the narrower is
the range of latency values, the boxplot is shifted to smaller values and the median values
follow a strictly decreasing path. The advantage of choosing the proposed manual over the
automatic unrolling in regards to performance is also highlighted. Manual unrolling achieves
even narrower boxplot width, smaller values and a lower median. It is worth mentioning that
applying manual unrolling of factor 3 has better effects than automatic unrolling of factor 6.

Fig.5.22 illustrates the comparison for BRAM utilization. For automatic loop unrolling the
median remains the same, the values fluctuate at the same levels and the width presents small

BRAM Utilization %

160

140

120

100

80

60

40

20

BRAM Utilization Comparison
between different implementations

-] 4 o
|

original auto unroll 3 auto unroll 6 auto unroll 18 manual unroll 3 manual unroll 6 manual unroll 18

Figure 5.22: BRAM Utilization comparison between all implementations

changes. Manual unrolling though causes an increase in the width of each range, an increase
in the values of utilization and in the median. These increases become more prominent the
greater the unroll factor gets. They could be attributed to the configurations that include
unrolling of the inner loop and not array partitioning or reshaping, leading to a replication
of the arrays to achieve parallelism. It has to be stressed though that for fully unrolling the
inner loop the median is equal to the initial BRAM utilization which means that 50% of the
configurations exhibit BRAM utilization equal or less that that.

In Figures 5.23 to 5.25 the area resources of the different implementations are compared.
In Fig.5.23 we can see that DSP utilization holds the same median value for automatic
unrolling. For manual unrolling though there is a gradual increase of the values, the median
and the width of the range of values. This is due to the replication of the loop body that
introduces a trade-off between increase in parallelism and increase in area. For FF and LUT
in case of automatic unrolling the median is of the same value and the range of values does
not change significantly. However in case for manual unrolling there is an increase in the
width of values, the absolute values taken and the median. In fact the greater the unroll
factor is, the greater this increase is exhibited. This is again attributed to the replication of
the loop body and the allocation of more resources from HLS to achieve the desired increase
in parallelism.

DSP Utilization %

Flip Flop Utilization %

DSP Utilization Comparison
between different implementations

I I I
80—
N
70— !
| JR—
| |
| i
60— | i
1
|
1
S0~ !
|
|
40 — —
30~ - —
|
|
] — ‘]
20 — —_— —_
10 | | | | | | |
original auto unroll 3 auto unroll 6 auto unroll 18 manual unroll 3 manual unroll 6 manual unroll 18
Figure 5.23: DSP Utilization comparison between all implementations
Flip Flop Utilization Comparison
between different implementations
I I I
20
15
h :
10 } 1
|
|
- _ T } I
I | | |
I —_ | I —
5 } J— I | |
| | — = ,
— — . -
0
-5
| | | | | | |
original auto unroll 3 auto unroll 6 auto unroll 18 manual unroll 3 manual unroll 6 manual unroll 18

Figure 5.24: FF Utilization comparison between all implementations

LUT Utilization %

LUT Utilization Comparison
between different implementations

40—

20—

[=]

original auto unroll 3 auto unroll 6 auto unroll 18 manual unroll 3 manual unroll 6 manual unroll 18

Figure 5.25: LUT Utilization comparison between all implementations

5.4 Optimal Configurations

Fig.5.26 displays the performance and area utilization comparison between the initial versions
of the classifier and the optimal ones. The first four configurations correspond to the original
classifier and the three versions with the unrolled loop. The following configuration is the
optimal one of those applied to the original code, and the last one is the optimal of those
applied to the restructured versions. For the three restructured implementations we observe
a gradual increase in latency gain as the unroll factor becomes greater. This comes with
fluctuations in BRAM utilization and an increase in area resources, both of which have been
explained in detail in 4.2.2. The optimal solution of the original code depicted in this figure
derives from several configuration. All of these configurations include fully unrolling the
inner loop and then unrolling the inner loop by a factor of 2 combined with pipeling the
inner loop and partitioning or reshaping the accessed arrays in various combinations. There
is a further improvement in latency and a small increase in DSP utiliation. The latency
gain reaches 80%. Finally the last case corresponds to the optimal synthesis among all the
manual versions. It is based on manually and fully unrolling the inner loop, applying the
pipeline directive to the outer loop and the array reshape directive to array sup_vectors. It
achieves the best latency gain of all, equal to 98%, and it is accompanied with a significant
increase in DSP and LUT utilization.

Performance and percentage %

100

a0

g0

70

60

a0

40

30

20

Criginal and Optimal Configurations

N bram
[dsp
[«
-Iut

I -tency gain ||

Original Manually unralled 3 Manually unrolled B Manually unrolled 18 Optimal Original OptimaI_ManuaI
implernentation

Figure 5.26: Optimal Configurations vs the original implementations

What is important apart from the exploration per directive is to understand and focus on
the different architectural choices provided to the system designer in an effort of meeting
different constraints and requirements. Towards this goal, in Fig.5.27 we present the design
space created by the different versions of manually restructured code which emphasized
on unrolling loop_j and utilize tree-structured performance of calculations. All manually
created versions of the code are explored with all aforementioned HLS directives for each
one of them. The figure includes only designs which managed to achieve their clock target
since we distinguish the opposite case as infeasible. The X axis is a combined and weighted
value of the utilization in all available metrics (BRAMs, DSPs, FFs and LUTs) while the Y
axis is the estimated execution latency of the accelerator in ns derived from multiplying the
required cycles for its execution with its operating clock period.

We can see that as indicated by the Pareto curvein Fig.5.27, there are many different non-
dominated design choices which exhibit different characteristics. For example, optimum
points in the left side of the design space exhibit the least HW resources utilization and fare
relatively high on execution latency. As expected, such design points result from the original
SVM code which is the least optimized and thus its execution is slow but its structure is
simple thus requiring less resources. On the opposite side, the restructured versions of the
code are on the right side of the figure meaning that the exhibit low execution latency and
increased requirements in HW resources. This derives from their more complex structure and
replicated functional units which enables parallel execution of calculations while imposing a
toll on resources utilization.

Execution Latency (ns)

5e+6

4e+6

3e+6 -

2e+6 -

1e+6 -

—@— Pareto line

Original SVM code

Unrolled 3 times with tree-structured calc.
Unrolled 6 times with tree-structured calc.

* + & X

Unrolled 18 times (fully) with tree-structured calc.

0.10

0.15

0.20 0.25 0.30 0.35 0.40
Average HW resource utilization

Figure 5.27: Pareto Curve

0.45

CHAPTER 6

Implementation on Zedboard

This Chapter presents the implementation of the accelerator on the Zedboard. The goal
is to configure the Programmable Logic of the Zedboard with the IP that was created and
communicate with it through a linux application that executes on the Processing Unit of the
board. The linux on the board will boot from an SD card and the application will execute
through a remote connection. The design tools that were used are mentioned in the following
section and an elaborate description of their use is provided. The flow followed to build this
infrastructure is given in Fig.6.1.

6.1 Implementation Description

The first stage includes the manufacturing of the accelerator using High Level Synthesis
design tools. In this work the Vivado High Level Synthesis 2015.2 was used for the exploration
of the design space formed by the different combinations of the chosen directives. When the
exploration is conducted, a configuration of directives is decided to be applied to the original
or the modified code. After the synthesis is completed, the RTL implementation is packaged
into the chosen IP format. The packaged IP is intended to be synthesized using logic synthesis
into the bitstream used to program an FPGA and includes the Verilog and VHDL design
files. The arguments of the top-level function to be synthesized are implemented as I/O
(input-and-output) ports in the final RTL design. Optimization directives allow these I/O
ports to be implemented with a selection of I/O protocols. The I/O protocol should be
selected to ensure the final design can be connected to other hardware blocks with the same
I/0 protocol. The SVM classifier IP in this work has two arguments: an input array that
includes the features of the current beat used for classification and a pointer to an integer
value where the IP writes the classification result at the end of the computation. Vivado
HLS creates three types of ports on the RTL design:

— Clock and Reset ports: These ports are used as inputs to signals ap_clk and ap_rst
which are the clock signal and the reset signal respectively.

— Block-Level interface protocol: By default, a block-level interface protocol is added
to the design. The signals that this protocol includes control the block. They control
when the block can start processing data (ap_start), indicate when it is ready to accept
new inputs (ap_ready) and indicate if the design is idle (ap_idle) or has completed
operation (ap_done). In this work, the default block level protocol is applied to the
function.

— Port Level interface protocol:The final group of signals are the data ports. The
I/0 protocol created depends on the type of C argument and on the default. After the
block-level protocol has been used to start the operation of the block, the port-level 10
protocols are used to sequence data into and out of the block. An AXI4 slave interface
is a port level interface protocol and is typically used to allow the design to be controlled

20

Source Code Constraints

C Directives
l l | Component
Level
HLS
VHDL .
; _ Build,
S‘;Z?elzxgc . Optimize,
-~ Export IP
IP Xact
format II‘
Vivado System
Build B
HW
Description Architecture Level
file]
Petalinux
:) Build kernel image s
image.ul and boot file Linux System
BOOT.BIN -II II‘ Root

!

Linux Boot SDK
PL Configuration Build Application

Execute
Application on
Zedboard

Figure 6.1: Implementation Flow

Operating
System
Level

Application
Level

by some form of CPU or micro-controller. This is the chosen protocol applied to the
arguments of the classifier IP. It is also applied to the function return argument leading
to the creation of an interrupt port. This interrupt is very useful since it is driven from
the block-level protocol ap_done port which indicates when the function has completed
operation. If the function return is also specified as an AXI4-Lite interface (s_axilite)
all the ports in the block-level interface are grouped into the AXI4-Lite interface. This
is a common practice when another device, such as a CPU, is used to configure and
control when this block starts and stops operation. Since the IP in this work was
built as a software accelerator with the intent of communicating with the rest of the
software application running on the PS, this strategy is also followed. Thus all the
ports of the IP including the function return are grouped into the same AXI4 Slave
Lite interface. Another advantage of this protocol is that when it is implemented, a set
of C driver files are automatically created. These C driver files provide a set of APIs
that can be integrated into any software running on a CPU and used to communicate
with the device via the AXI4 Slave Lite interface. The most important file generated
during this process is the hardware header file. This file is used at a later stage to build
the application that runs on the CPU since it provides a complete list of the memory
mapped locations for the ports grouped into the AXI4 Slave Lite interface [5].

The next stage is the implementation of the hardware system that includes both the PS and
PL part of the board. It is completed using the Vivado Design Suite 2014.4 [28]. In Vivado
a new project is created after specifying the Zedboard as the target board. Since the main
part of the application needs to be executed on the PS side we select the Zynq7 Processing
Unit from the available IPs to include in our architecture. A default configuration for the
Zyng All Programmable SoC is applied. This configuration can be modified to meet the
application requirements. In order for a Zynq hardware project to boot Linux one triple
time counter (TTC), an external memory controller (DDR controller), UART for serial
console, non-volatile memory (QSPI Flash,SD for example) and ethernet are the necessary
PS requirements. In this work it is decided that Linux boot from an SD card, so the SD
card peripheral has to be selected with SD card detection and write options enabled. The
clock under which the PL side operates is determined in the Clock Configuration part of the
PS customization process. The interrupts from PL to PS side also have to be enabled [29].

The PS TP added must communicate with the classifier IP on the PL side. This IP is the
one exported from Vivado HLS in a Vivado IP Catalog format. The IP can be imported
into the Vivado IP catalog for use in the Vivado Design Suite by adding the repository that
contains the IP in the IP Catalog. An instance of the HLS created IP can then be added
to the architecture under development. The signal connections between the two IPs are
automatically done by Vivado, except for the connection between the interrupt port of the
Classifier IP and the input interrupt port of the PS which is done manually. The PS now can
communicate with the PL through the AXI, an advanced microcontroller bus architecture
that is a part of AMBA. The AXI Interconnect of the IP with the PS uses AXI4 Memory
Mapped Interfaces that are automatically converted to the AXI4 Lite Protocol which was
added as an interface to the accelerator when it was built in HL.S. One of the GP Master
interfaces of the Zynq are used as ports. The Processing System implements the Master
Interface and the IP the Slave Interface, which is controlled by the Master through the block
level signals mentioned earlier. Fig.6.2 presents the system architecture as it is developed in
Vivado and Fig.6.3 focus on the built IP and the interface of signals that it uses. After the
architecture is built we build an HDL wrapper, run synthesis, implementation and generate
the bitstream. We also export the hardware specification file including the bitstream. This
file is going to be used in subsequent stages [5], [4].

rst_processing_system7_0_24M

lowest_sync_clk

t_reset_in
—aux_reset_in

=—dcm_locked

processing_system?7_0_axi_periph

mb_resetp=
bus_struct_reset[0:0]
peripheral_reset[0:0] m
mb debug sys rst interconnect aresetn[0:0]
peripheral_aresetn[0:0]

{2 S00_AXI
ACLK

ARESETN[O:0] Bl
+———{S00_ACLK D%g MOO_AXI 4 [

S00_ARESETN[0:0] m&

Processor System Reset

M00_ACLK

MOO_ARESETN[0:0]

processing_system7_0

AX| Interconnect

PTP_ETHERNET 0c> |||

M_AXI_GPO ds |} i

M_AXI_GPO_ACLK

IRQ_F2P[0:0]

FCLK_RESETO_Nf—

ZYNQ‘ TTCO_WAVEO_OUTh=

TTCO_WAVE1_OUTR
TTCO_WAVE2_OUTH=

classify_0

s axiio [vwaderHis
p_clk interrupt|
ap_rst_n ‘

Classify (Pre-Production)

DoR: ||

FIXED_1045 |}

FCLK_CLKO

ZYNQ7 Processing System

Figure 6.2: System Architecture Build in Vivado Design Suite

classify 0

":|=s_axi_io

ps_axi_io_ AWADDRI[7:0]
ps_axi_io_ AWVALID
4s_axi_io AWREADY
ps_axi_io_WDATA[31:0]
p-s_axi_io_WSTRB[3:0]
ps_axi_io_WVALID
4s_axi_io_WREADY
4s_axi_io BRESP[1:0]
4s_axi_io_BVALID
»s_axi_io_ BREADY r
bs_axi_io_ARADDR[7:0]
ps_axi_io_ARVALID
4s_axi_io_ARREADY
4s_axi_io_RDATA[31:0]
4s_axi_io_RRESP[1:0]
4s_axi_io_RVALID
Fs_axi_io_RREADY

ap _clk

ap_rst_n

Vivado™ HLS

interrupt =——o

Classify (Pre-Production)

Figure 6.3: Customized IP in Vivado

3

DDR
FIXED_IO

The next step is to create a new Petaliinux software platform, ready for building a Linux
system customized to the new hardware platform. The PetaLinux Tools offer everything
necessary to customize, build and deploy Embedded Linux solutions on Xilinx processing
systems. Tailored to accelerate design productivity, the solution works with the Xilinx hard-
ware design tools to ease the development of Linux systems for Zyng-7000 All Programmable
SoC. In this work Petalinux 2014.4 is used. First we create a new embedded Linux platform
for the Zedboard. Then we customize the software platform template to precisely match the
hardware system built in Vivado at the previous step. This is done by copying and merging
the platform configuration files generated during the hardware build phase into the newly
created software platform. The tool parses the hardware description file to get the hardware
information to update the device tree, PetalLinux u-boot configuration files and the kernel
config files. During configuration we also set the SD card as the boot device and configure
the linux kernel to support built-in userspace I/O device drivers. Now that the device tree is
updated to our hardware specifications we can see that a classifier IP instance is included to
the file that contains the modules of the PL side. We also have to manually include it to a file
with all the userspace 1/O drivers. Finally we modify the file system configuration to sup-
port dropbear SSH and thus allow remote connection to the linux running on the Zedboard.
Once the configuration is complete we build the system image. Having configured to use the
SD card as the primary boot device, we create a boot image file that contains the Zynq All
Programmable SoC FSBL, the BIT file for the programmable logic (PL) configuration from
the Vivado project, u-boot, and the Linux image for the SD card boot. We copy the kernel
image and the boot binary file to the SD card and use it to boot linux on the Zedboard.
The PL is configurated and we connect a terminal to the Zynq Processing system through
Gtkterm, which is a simple terminal used to communicate with a serial port [29].

The last stage includes building the application using Xilinx SDK 2014.4. The hardware
specification file including the bitstream is exported from Vivado and imported to the SDK
working directory. This way SDK has all the information needed for the hardware platform
where the application will execute. At this point we choose to create a new application, select
Linux as the OS platform and insert the Petalinux path for system root. The IP is included
in the file system in directory ”/dev/” as a userspace I/O device "uio0”. ”/dev/uio0” is a
virtual file representing the memory map of the whole system. To access the device from
user space, we can open ”/dev/uio0”, use mmap() to map the device to memory, and then
we can access the device by using the pointer which points to the mapped memory [30]. To
read or write to each separate argument of the IP we add the offsets provided at the HLS
hardware header file to the pointer returned from mmap. To get the classification result for
a beat the following process is followed:

— use memcpy to write the feature vectors to the given address space so that the IP has
access to them

— set the ap_start block level signal to start the IP operation and reset it after a while

— wait until the control signal of the address where the IP writes the result is valid, which
happens when the computation is over

— read the result from the address that holds the value of the result

6.2 Results

Two versions of the SVM classifier were implemented on the Zedboard following the steps

described above.
or optimization directives applied to it.

The first one was the original version with no structural modifications
The second one was the optimal configuration

of the pareto curve. It included manually unrolling the inner loop, applying the pipeline
directive to the outer loop and reshaping the sup_vectors array. A software only version of
the classification was executed on the ARM Processor for comparison.

The testing set included 52291 test vectors, which were read from a file. Measurements were
taken for the computation time per beat and for the time necessary for the test vector of
each beat to be transferred from the PL to PS side. Also the total execution time, total
transfer and total computation time were taken. The execution was repeated 5 times and

the mean values were computed to eliminate mistakes.

The results show that the computation time is significantly reduced in the accelerated version.
It is faster than both the original HW implementation and the SW one on ARM. The exact
results are presented in Table 6.1 and demonstrated in Fig.6.4.

Table 6.1: Time measurements for different implementations.

SW version HW original version HW accelerated version
Communication|Computation| Communication| Computation|Communication | Computation
time(s) time(s) time(s) time(s) time(s) time(s)
per beat - 0.002223635 | 0.00000449943 | 0.004047181 | 0.0000110643 {0.0000521259
total - 116.2761016 0.2352798 211.6311248 0.5785634 2.7257132

Caornputational tirme per beat

w10t Comparison
I R
4t I Hw original Sy &
I HY accelerated Sy
3581 B
3 L .
= 250 .
5]
£
= 2t _
15+ B
1 - -
0aF B
1

implernentations

Figure 6.4: Computation time for HW and SW implementations.

The results confirm the ones anticipated, according to HLS synthesis reports. This is depicted
in Fig.6.5 and the exact numbers are included in Table 6.2.

Table 6.2: Simulation vs Implementation Results

HLS synthesis Zedboard implementation
original (s)|accelerated (s)|gain (s)| original (s) |accelerated (s)|gain (s)
0.00412783| 0.00005172 | 79.81]0.004047181| 0.0000521259 | 77.64

~—

Speedup Comparison
Accelerated =W
HL= Report vs Zedboard Implementation

B L Report ||
-

o
[}
T

oA}
[}
T

Figure 6.5: Gain comparison between simulation and implementation

CHAPTER 7

Conclusion

7.1 Summary

Arrhythmia detection for chronic patients suffering from various cardiovascular problems
requires constant monitoring by recording the ECG signal and thus processing an enormous
data set characterized by complex non-linear distribution among its samples. Given the
complexity of deriving exact models for assessing the ECG signals and predicting the heart’s
condition, machine learning techniques have recently dominated the field of ECG analysis.
Support Vector Machines particularly are widely used as classifiers and are often incorporated
in ECG arrhythmia detection flow. In the detection algorithms, classification is found to pose
the primary energy and performance bottleneck and is thus targeted for optimization.

In this work we have presented a methodology for creating efficient HLS based HW ac-
celerators targeting Support Vector Machine based classifiers. The methodology relies on
two parts. First the original code under acceleration is structurally transformed in order
to assist the HLS tool to maximize the parallelization of the computational parts of the
algorithm. Two code restructuring techniques are proposed, which are possible thanks to
the dual inherent parallelism of the algorithm on a macroscopic and microscopic level. The
first one is based on advancing coarse level parallelism and relies on the idea of executing
multiple instances of the computational kernel at the same time, each instance operating on
a subset of the initial set. The second technique includes implementing modifications to the
code manually, instead of utilizing the provided HLS directives, combined with reshaping
of arithmetic calculations. After these techniques have been applied, different baselines of
the SVM classifier are available, apart from the initial one, each one accelerated to some
extent. To further improve this performance we exploit the application of HLS directives to
these baselines. The selection of these directives is again based on the inherent parallelism
of the algorithm. We perform an exploration by combining all these directives and exclude
configurations due to lack of compatibility or user defined constraints.

Results of applying this methodology achieve up to 99% execution latency gain compared
to the original SVM code. This corresponds to the optimal configuration and comes with a
significant increase in area resources such as DSP, LUTs and flip flops. However there are
configurations that achieve a latency gain up to 80% without an extreme overhead in HW
resources. Depending on the application requirements the configuration with the desired
effect can be implemented. The original and the pareto optimal configuration were actually
implemented on the Zedboard and the measurements were in agreement with those of the
synthesis.

These results prove that HW acceleration and thus SW-HW codesign is in fact a valid solu-
tion when software acceleration techniques meet their limit. Another important conclusion
though, drawn from the methodology described, is that designers should not rely solely on
the available tools to optimize their accelerators. There is a limit to the capabilities of the
tool. A preprocessing of the algorithm to extract a sufficient degree of parallelism could prove
to be a key to the final extent of parallelization achieved. Furthermore it was observed that

o7

HLS does not always implement the alterations required in the most effective way possible.
Manually implementing some modifications annihilates problems that HLS directives cause
on their own, and at the same time allows them to be implemented in a more performance
and area efficient manner.

7.2 Future Work

The current work could be expanded towards various directions:

As far as the design space exploration is concerned, a more thorough study could be con-
ducted. The most interesting choice would be examining the combination of the two restruc-
turing strategies proposed. There are indications to believe that their combination would
be the most effective one although an important overhead in area utilization is anticipated.
Secondarily, an exploration around the optimal points derived from pareto analysis could be
performed, to validate that the user defined constraints in the selection of the directives and
their combinations did not lead to pruning of better solutions.

Another direction would be to assess the derived co-processor in terms of energy require-
ments. An energy analysis could be performed to find out if the proposed architecture meets
the energy requirements in addition to the performance ones.

Apart from the classification application it could be interesting to examine the development
of co-processors for other parts of the ECG analysis flow as well. The feature extraction
stage that is based on Discrete Wavelet Transform would be an ideal candidate. In that
case, except for the optimization of the IP using HLS, exploiting Zedboard capabilities to
achieve communication between the IPs without the intervention of the Processing System
could prove to be both time efficient and energy saving.

Finally the application of the suggested restructuring strategies to other cores with stencil
computations would be an interesting expansion of the current work.

References

1]

[2]

[10]

[11]

[12]

“Heart anatomy.” http://freecoloringpages.co.uk/?g=heart+anatomy. xxixxxix,

4

A. Szczepanski and K. Saeed, “A mobile device system for early warning of ecg anoma-

lies,” Sensors, vol. 14, no. 6, pp. 11031-11044, 2014. xxixxxix, 5

M. Shoaib, N. K. Jha, and N. Verma, “Algorithm-driven architectural design space
exploration of domain-specific medical-sensor processors,” Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, vol. 21, no. 10, pp. 1849-1862, 2013. xxixxxix,

xxixxxix, 1, 6, 7, 10

S. Neuendorffer and F. Martinez-Vallina, “Building zynq®) accelerators with vivado®)

high level synthesis.,” in FPGA, pp. 1-2, 2013. xxixxxix, xxixxxix, 12, 13, 14, 17, 52

Vivado Design Suite, User Guide, High-Level Synthesis. May 2014. xxxiixxxii, 12, 13,

15, 52

R. M. Rangayyan and N. P. Reddy, “Biomedical signal analysis: a case-study approach,”

Annals of Biomedical Engineering, vol. 30, no. 7, pp. 983-983, 2002. 1

C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20, no. 3,

pp. 273-297, 1995. 1, 6

F. I. Marcus, J. N. Ruskin, and B. Surawicz, “Arrhythmias,” Journal of the American

College of Cardiology, vol. 10, no. 2s1, pp. 66A—72A, 1987. 1

E. D. Ubeyli, “Ecg beats classification using multiclass support vector machines with
error correcting output codes,” Digital Signal Processing, vol. 17, no. 3, pp. 675684,

2007. 1, 6

M. C. McFarland, A. C. Parker, and R. Camposano, “The high-level synthesis of digital

systems,” Proceedings of the IEEE, vol. 78, no. 2, pp. 301-318, 1990. 1, 11
“Cardiac cycle.” https://en.wikipedia.org/wiki/Cardiac_cycle. 3

“Electrocardiography.” https://en.wikipedia.org/wiki/Electrocardiography. 3

29

http://freecoloringpages.co.uk/?q=heart+anatomy
https://en.wikipedia.org/wiki/Cardiac_cycle
https://en.wikipedia.org/wiki/Electrocardiography

[13]
[14]

[15]

[16]

[21]

“T wave.” https://en.wikipedia.org/wiki/T_wave. 3
“Cardiac arrhythmia.” https://en.wikipedia.org/wiki/Cardiac_arrhythmia. 4

A. Gacek and W. Pedrycz, ECG signal processing, classification and interpretation: a
comprehensive framework of computational intelligence. Springer Science & Business

Media, 2011. 4

G. B. Moody and R. G. Mark, “The impact of the mit-bih arrhythmia database,”
Engineering in Medicine and Biology Magazine, IEEFE, vol. 20, no. 3, pp. 45-50, 2001.

4,5

J. Pan and W. J. Tompkins, “A real-time qrs detection algorithm,” Biomedical Engi-

neering, IEEE Transactions on, no. 3, pp. 230-236, 1985. 5

D. T.-W. Hau and E. W. Coiera, “Learning qualitative models from physiological sig-
nals,” Master’s thesis, Massachusetts Institute of Technology, Dept. of Electrical Engi-

neering and Computer Science, 1994. 7

G. Meyfroidt, F. Giiiza, J. Ramon, and M. Bruynooghe, “Machine learning techniques
to examine large patient databases,” Best Practice & Research Clinical Anaesthesiology,

vol. 23, no. 1, pp. 127-143, 2009. 7, 9

B. Gyselinckx, R. J. Vullers, C. Van Hoof, J. Ryckaert, R. F. Yazicioglu, P. Fiorini, and
V. Leonov, “Human+-+: Emerging technology for body area networks.,” in VLSI-SoC,
pp. 175-180, 2006. 7

Z. Nie, L. Wang, W. Chen, T. Zhang, and Y. Zhang, “A low power biomedical sig-
nal processor asic based on hardware software codesign,” in Engineering in Medicine
and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE,

pp. 2559-2562, IEEE, 2009. 7

C.-W. Hsu, C.-C. Chang, C.-J. Lin, et al., “A practical guide to support vector classi-
fication,” 2003. 9, 10

M. U. Guide, “The mathworks,” Inc., Natick, MA, vol. 5, p. 333, 1998. 11

C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM
Transactions on Intelligent Systems and Technology, vol. 2, pp. 27:1-27:27, 2011. Soft-

ware available at http://www.csie.ntu.edu.tw/~cjlin/libsvm. 11

https://en.wikipedia.org/wiki/T_wave
https://en.wikipedia.org/wiki/Cardiac_arrhythmia
http://www.csie.ntu.edu.tw/~cjlin/libsvm

[25]

[28]

[29]

P. Coussy, D. D. Gajski, M. Meredith, and A. Takach, “An introduction to high-level

synthesis,” IEEFE Design & Test of Computers, no. 4, pp. 8-17, 2009. 13
F. Digilent’s ZedBoard Zynq, “Dev. board documentation.” 16

“Zedboard hardware user’s guide.” http://zedboard.org/sites/default/files/

ZedBoard_HW_UG_v1_1.pdf. 16
T. Feist, “Vivado design suite,” White Paper, 2012. 52

“Embedded linux on zynq using vivado.” http://www.xilinx.com/support/

university/vivado/vivado-workshops/Vivado-embedded-1linux-zynq.html. 52, 54

“Zynq design from scratch. sven andersson’s blog.” http://svenand.blogdrive.com/

archive/160.html#.VphCXpOlilE. 54

http://zedboard.org/sites/default/files/ZedBoard_HW_UG_v1_1.pdf
http://zedboard.org/sites/default/files/ZedBoard_HW_UG_v1_1.pdf
http://www.xilinx.com/support/university/vivado/vivado-workshops/Vivado-embedded-linux-zynq.html
http://www.xilinx.com/support/university/vivado/vivado-workshops/Vivado-embedded-linux-zynq.html
http://svenand.blogdrive.com/archive/160.html##.VphCXpOli1E
http://svenand.blogdrive.com/archive/160.html##.VphCXpOli1E

	Title
	Table of Contents
	S'untomh per'ilhyh
	S'untomh per'ilhyh

	Abstract
	Abstract

	Ektetam'enh Per'ilhyh
	Ektetam'enh Per'ilhyh

	Acknowledgements
	Acknowledgements

	List of Figures
	List of Figures

	List of Tables
	List of Tables

	1 Introduction
	2 Problem Overview
	2.1 ECG Analysis Flow
	2.2 Related Work

	3 Theoritical Background
	3.1 Background Information on SVM classifier
	3.2 High Level Synthesis
	3.3 Zynq Evaluation and Development Board Specifications

	4 Code Restructuring for HLS
	4.1 Advancing Coarse Level Parallelism in HLS
	4.1.1 Parallelization Technique
	4.1.2 Results

	4.2 Advancing Instruction Level Parallelism through arithmetic operation reshaping
	4.2.1 Parallelization Technique
	4.2.2 Results

	5 Exploration of HLS Directives
	5.1 Selection of Optimization Directives
	5.2 Application on Original Code
	5.2.1 Impact of each directive

	5.3 Comparison of Implementations
	5.4 Optimal Configurations

	6 Implementation on Zedboard
	6.1 Implementation Description
	6.2 Results

	7 Conclusion
	7.1 Summary
	7.2 Future Work

	References

