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8 Abstract: To improve hydrogen production performance of self-heating methanol 

9 steam reforming (MSR) microreactor, a novel nickel foam with multiple 

10 microchannels was proposed as combustion reaction support. A wall temperature 

11 comparison of the methanol combustion microreactors with nickel foam catalyst 

12 support and particles catalyst support in the combustion reaction process was 

13 performed. According to the numerical simulation results of combustion reaction of 

14 nickel foam, the shape and size of multiple microchannels of nickel foam were 

15 determined. The laser processing was then used to fabricate the multiple 

16 microchannels of nickel foam. The experimental results show that the methanol 

17 combustion microreactor with nickel foam loaded with Pt catalyst exhibits similar 

18 wall temperature distribution with the methanol combustion microreactor with 

19 2O3 particles reaction support. Compared with the nickel foam without 

20 microchannel, the Tmax (maximum temperature difference) and the maximum in the 

21 temperature distribution of nickel foam with multiple microchannels decreased 

22 respectively by 57.8% and 33.8  when 1.1 mL/min methanol flow rate was used. 

23 Hydrogen production performance of self-heating MSR microreactor using the nickel 

24 foam with multiple microchannels increased by about 21% when 430  reforming 

25 temperature and 4 mL/h methanol-water mixture flow rate were performed.

26 Keywords: Methanol steam reforming; Methanol combustion; Nickel foam; Multiple 

27 microchannels 
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31

Nomenclature

Variables

K  Kelvin environmental temperature of methanol steam reforming, K

m  volume fraction of CO in reaction product, %

n  volume fraction of CO2 in reaction product, %

VH2  flow rate of H2, mol/h

Vinjection  flow rate of the methanol-water mixture, mL/h

Vreactant  flow rate of reactant, mL/min

XCH3OH  methanol conversion, %

z  volume fraction of H2 in reaction product, %

Abbreviations

EDS  energy dispersive spectrometer

MC  methanol combustion

MSR  methanol steam reforming 

PPI  pores per inch

SEM  scanning electron microscopy

Tmax  maximum temperature difference
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37 1. Introduction 

38 Methanol steam reforming (MSR) microreactor is used as one of the main 

39 technology for hydrogen production because of its high ratio of hydrogen to 

40 carbon[1-5], easy storage and transportation[6], low reforming temperature[6]. The MSR 

41 microreactor using fuel as its heat-supply mode has a wide application in fuel cell[7-11] 

42 owing to little electrical power consumption, it has been paid much attentions from 

43 scholars.

44 The MSR microreactor using fuel as its heat-supply mode has been widely 

45 studied, including some researches such as heat-supply mode, catalyst for combustion, 

46 catalyst support for combustion. In the heat-supply mode, the fuels of butane, propane 

47 and methanol have been studied to realize the heat-supply of MSR microreactor[12-15]. 

48 As for the combustion catalyst, the effects of catalyst composition, catalyst 

49 preparation process, and catalyst reaction condition on the catalytic performance of 

50 catalyst have been investigated. The catalysts with different activities have been 

51 obtained, such as Pd/ZrO2, Pt/Al2O3 and Mn/Cu catalysts[16-18].

52 In terms of catalyst support for combustion, the spherical particles and metal 

53 plate with microchannels were investigated[13,19]. For example, Chein et al. used 

54 Pt/Al2O3 particles as combustion reaction support for the heat-supply of MSR reaction. 

55 The 97% conversion of the reforming methanol can be obtained[13]. Reuse et al. used 

56 FeCrAlloy metal plate with microchannels as catalyst support, which was loaded with 

57 highly active cobalt oxide catalyst, for the heat-supply of MSR reaction. It was found 

58 that more than 99% reforming methanol conversion can be obtained at the reforming 
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59 temperature higher than 250 [19]. The wall temperature and combustion methanol 

60 conversion of the self-heating MSR microreactor with combustion catalyst support 

61 were investigated in the above studies. However, the temperature distribution of the 

62 combustion catalyst support has not been studied in detail. A few research works on 

63 temperature distribution optimization of hydrogen production microreactor have been 

64 done by some research groups[20-21]. For example, Hsueh et al. used numerical 

65 simulations to investigate mass-transfer and heat-transfer performances of self-heating 

66 MSR microreactor. It was found that the countercurrent configuration of MSR gas 

67 and methanol combustion (MC) gas can increase reaction performance of the 

68 microreactor[20]. Herdem et al. used numerical simulation to investigate temperature 

69 distribution of MSR microreactor. It was found that temperature distribution of MSR 

70 microreactor was an important influential factor in improving the reaction 

71 performance of the reactor[21].

72 Although some research works on heat-supply method, catalyst and catalyst 

73 support for combustion have been performed, the temperature distribution 

74 optimization of the self-heating MSR microreactor using metal foam as combustion 

75 reaction support has not been studied in detail. In fact, compared with the traditional 

76 packed bed system, the metal foam used as reaction support in the microreactor has 

77 the advantages of lower pressure drop and less cold spots[22]. Moreover, the catalyst 

78 support of metal foam was easy to be secondary processed by laser, thus it can easily 

79 achieve the fabrication of the optimized structure of reaction support, so as to perform 

80 the difference decrease in the temperature distribution of the catalyst support. In 
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81 addition, the metal foam has strong catalytic reaction ability because of its large 

82 specific surface area. Therefore, the nickel foam was chosen as a research object of 

83 the MC catalyst support. The wall temperature distribution of methanol combustion 

84 microreactor with the nickel foam loaded with Pt catalyst was studied. A numerical 

85 simulation model of combustion reaction of the nickel foam was established. A 

86 structural optimization of the nickel foam reaction support was carried out to decrease 

87 difference in the temperature distribution of the nickel foam based on the numerical 

88 simulation model. The wall temperature distributions of methanol combustion 

89 microreactors with the nickel foams before and after structural optimization were 

90 investigated in detail. In addition, the reforming methanol conversion and H2 flow rate 

91 of self-heating MSR microreactors with the nickel foams were studied.

92 2. Experimental and numerical setup

93 2.1. Nickel foam as combustion reaction support

94 It is difficult to locate the 2O3 particles in a chamber plate and change the 

95 distribution of these particles to optimize the temperature distribution, however the 

96 temperature distribution optimization of chamber plate needs change the particles 

97 distribution of 2O3 particles. Thus a metal foam was proposed to be used as 

98 catalyst support for combustion because of its advantages of rapid assembling ability, 

99 easy secondary processing ability which can achieve the temperature distribution 

100 optimization of chamber plate. In addition, the metal foam has the advantages of low 

101 pressure drop and large specific surface area. The copper foam becomes brittle at high 

102 temperature because its easy oxidation at high temperature and therefore is not 
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103 suitable for being used as catalyst support for combustion. Ni-based foam and 

104 Fe-based foam have been used as combustion reaction supports by some scholars 

105 because of their good oxidation resistance and corrosion resistance[23-27]. For example, 

106 Cimino et al. investigated the methanol combustion reaction of Fecralloy foam loaded 

107 with Pt catalyst by cathodic electrodeposition[23]. The results showed that the initial 

108 temperature of methanol combustion reaction can be lower than 80 , and the 

109 conversion of the methanol can reach 100% when the Pt content is 13 mg/cm-3. Jin et 

110 al. studied the H2 combustion reaction of nickel foam loaded with Pt catalyst[24]. It 

111 was found that the H2 conversion of the nickel foam reaction support was higher than 

112 99%. Yang et al. investigated the methane combustion reactions of the copper foam 

113 and the nickel foam loaded with Pt catalyst[25]. The result showed that the nickel foam 

114 had better catalyst adhesion and more heat release amount than copper foam in the 

115 combustion reaction. In this way, 110 PPI nickel foam with 0.2mm average pore size, 

116 0.06mm average strut size and 98% porosity (purchased from Jia Yi Sheng Company, 

117 Jiangsu, China) is used as a research object of combustion reaction support. 

118 2.2. Pressure drop test 

119 Fig.1 shows the testing system of pressure drop of reaction support. This testing 

120 system mainly consists of inlet chamber plate, testing chamber plate, reaction support, 

121 outlet chamber plate, digital pressure gauge with 0.4% measurement precision 

122 (YB-100A, Suzhou Xuansheng Technology Company, China). The pressure drop of 

123 reaction support was investigated by comparing the pressure in the front of reaction 

124 support with the pressure in the back under different flow rates of air.
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126 Fig.1. Testing system of pressure drop of reaction support

127 2.3. Catalyst loading process and adhesion test

128 5g commercial 2O3 (1 wt% Pt) catalyst particles with 2 mm diameter 

129 (purchased from Kaida Chemical Engineering Company, Shanxi, China) were ground 

130 for one hour in planetary ball mill instrument to obtain the Pt catalyst powder. The 

131 ground Pt catalyst powder was mixed with Al(NO3)3 2O, CH3OH, H2O at a mass 

132 ratio of Pt catalyst powder : Al(NO3)3 2O : CH3OH : H2O = 2 : 1 : 5 : 5 to prepare 

133 catalyst precursor slurry. In order to uniformly disperse the Pt catalyst powder in the 

134 precursor slurry, the precursor slurry was continuously stirred in a magnetic stirrer at 

135 room temperature. 

136 The Pt catalyst was loaded on nickel foam by impregnation-dry method. The 

137 nickel foam was sufficiently impregnated in the catalyst precursor slurry and was then 

138 dried at 100  for 15 mins in an oven. The above operations were repeated until the 

139 slurry was consumed. The component of Pt catalyst on the nickel foam was analyzed 

140 by scanning electron microscopy (SEM). The adhesion of Pt catalyst on the nickel 

141 foam was investigated using ultrasonic cleaning machine at ultrasonic frequency of 40 
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142 kHz[9]. 

143 2.4. Numerical simulation model of combustion reaction 

144 2.4.1. Physical model

145
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146 Fig.2. Computational domain composition of the numerical simulation model of combustion 
147 reaction

148 According to the composition of MC microreactor, the computational domain of 

149 simulation model for combustion reaction was divided into six parts: inlet, inlet 

150 diffusion zone, reaction zone, heat conduction plate, outlet diffusion zone and outlet, 

151 as shown in Fig.2. The flow velocity of methanol-air mixture which flowed through 

152 the reaction support was more than 0.1 m/s, therefore the Reynolds number of the 

153 fluid was more than 4000. In this way, the methanol-air mixture was regarded as the 

154 turbulent gas in numerical simulation of combustion reaction. The fluid flow in the 

155 nickel foam reaction support was simulated by a Darcy 's law (Eq.(1)). The flow 

156 behavior of the fluid can be described by Navier-Stokes equation (Eq.(2)) and 

157 Continuity equation (Eq.(3))[28]. The pre-exponential factor of methanol oxidation was 

158 set to 4e+06. The activation energy of methanol oxidation was set to 3.5e+07 

159 J·kmol-1.   
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163 2.4.2. Boundary condition

164 The boundary conditions of inlet and outlet were set to constant velocity and 

165 pressure-outlet, respectively. No slip was set as the boundary conditions of all walls 

166 and interfaces in the computational domain. The thermal conditions of all wall 

167 surfaces were set to mixed conditions with the 15 W·(m2·k)-1 heat-transfer coefficient, 

168 300 k free stream temperature, 1 external emissivity and 573 k external radiation 

169 temperature. The reaction zone was set to the porous reaction zone with 98% porosity. 

170 The viscosity resistances of porous zone in X, Y and Z directions were set to 

171 2.158e+09 m-2. The inertial resistances of porous zone in X, Y and Z directions were 

172 set to 40928 m-1.

173 2.4.3. Numerical solution condition

174 FLUENT 17.0 was used as numerical solution software. The QUICK scheme 

175 with SIMPLE algorithm was used for pressure-velocity coupling. The convergence 

176 criteria of pressure-based solver were set to  and the under-relaxation factors of 

177 pressure, density and momentum were set to 0.35, 1, 0.5, respectively.

178 2.4.4. Grid independence analysis

179 ICEM CFD 17.0 was used to establish unstructured grids for discretization of the 

180 computational domain. The grid independence was investigated by comparing the 

181 simulation results of the simulation models with the grids of 630409, 877589, 
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182 1511424 and 2466095, respectively. According to the simulation calculation results, 

183 the average temperatures of the simulation models with grid numbers of 630409, 

184 877589, 1511424 and 2466095 were 407.9 , 393.1 , 391.2  and 389.9 , 

185 respectively. The average temperature difference between the grid numbers of 877589, 

186 1511424 and 2466095 was less than 3%. Considering the calculation time and 

187 accuracy, the grid number of 1511424 was used. Moreover, according to the grid 

188 quality evaluation of ICEM CFD, the grid quality of the model with the grid number 

189 of 1511424 was greater than 0.3, so it met calculation accuracy requirement.

190 2.4.5. Reliability validation of numerical simulation model

191 The reliability of the numerical simulation model was verified by investigating 

192 the difference between simulation temperature and experimental temperature of nine 

193 points on combustion chamber plate of MC microreactor under methanol flow rates of 

194 0.8, 0.9, 1.0 and 1.1 mL/min, respectively.

195 2.5 Structural optimization of nickle foam

196 In the reaction process of methanol combustion, the reaction occurs when 

197 reaction gas comes into contact with catalyst. A large amount of reaction gas is 

198 reacted with catalyst in the front of nickel foam loaded with catalyst because of the 

199 nickel foam’s porous structure with small pore size and dense hole distribution. 

200 Therefore, the violent methanol combustion reaction in the front of the nickel foam is 

201 obtained. In this way, the temperature on the front of chamber plate with the nickel 

202 foam combustion reaction support was high, however that on the back was low. In 

203 order to optimize the temperature distribution of the chamber plate, it is necessary to 
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204 control reaction zone of the reaction support. In fact, the distribution of reaction gas 

205 and catalyst in the reaction support can be adjusted by designing multiple 

206 microchannels on the reaction support. Therefore, the shape and size of multiple 

207 microchannels of the nickel foam were designed based on numerical simulation 

208 results of combustion reaction of nickel foam.

209 2.6. Combustion performance test 

210 Fig.3 shows a methanol combustion microreactor and Fig.4 shows a testing 

211 system of methanol combustion microreactor[24]. The methanol for combustion was 

212 evaporated in the inlet evaporation chamber plate and combustion evaporation 

213 chamber plate, then was mixed with the air in the mixing chamber plate. Subsequently, 

214 the mixed gas was reacted with the combustion reaction support in the outlet chamber 

215 plate. The combustion reaction support in the microreactor had 70mm length, 40mm 

216 width, and 2mm thickness. The temperature inspection instrument with 0.1  

217 measurement accuracy (AT4516, Applent Instruments Company, China) was used to 

218 investigate the temperatures of the different points on combustion chamber plate of 

219 the microreactor. The maximum difference and the maximum in the temperature 

220 distribution of the nine points were used for determining combustion performance of 

221 the microreactor[28]. The low maximum difference and the low maximum in the 

222 temperature distribution indicated the better combustion performance. Eq. (4) shows 

223 the MC reaction process[13,22]. 

224 (4) KJ/molHO   2HCO1.5O+OHCH 2223 2.192

225 In this study, particles reaction support was the 5g 2O3 catalyst particles 
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226 with 2 mm diameter. The same 5g 2O3 catalyst particles were ground to 

227 prepare catalyst precursor slurry and the Pt catalyst precursor slurry was then loaded 

228 on the nickel foam to obtain the nickel foam reaction support. The wall temperature of 

229 methanol combustion microreactor with nickel foam reaction support was compared 

230 with that of methanol combustion microreactor with particles reaction support under 

231 0.8 mL/min flow rate of methanol, namely 3.93 L/min flow rate of methanol-air 

232 mixture gas (the mole ratio of gaseous methanol to air was 1:7.14). The wall 

233 temperature of methanol combustion microreactor with the nickel foam in the 

234 combustion reaction process under different flow rates of methanol was investigated. 

235 The long-time combustion stability of the nickel foam in condition of 1 mL/min flow 

236 rate of methanol was studied. In addition, a combustion performance comparison of 

237 nickel foams without microchannel and with multiple microchannels at different flow 

238 rates of methanol was performed .
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240 Fig.3. Methanol combustion microreactor
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242 Fig.4. Testing system of methanol combustion microreactor

243 2.7. Hydrogen production performance test 

244 Fig.5 shows a self-heating methanol steam reforming microreactor and Fig.6 

245 shows a testing system of self-heating methanol steam reforming microreactor[29]. The 

246 combustion methanol was evaporated in the inlet evaporation chamber plate and 

247 combustion evaporation chamber plate, then was mixed with air in the mixing 

248 chamber plate. The combustion reaction of methanol-air mixture occurred in the 

249 combustion reaction chamber plate. The methanol-water mixture was evaporated in 

250 the reforming evaporation chamber plate, then performed methanol steam reforming 

251 reaction in the reforming reaction chamber plate. The methanol combustion and 

252 methanol steam reforming reaction supports in the microreactor had 70mm length, 

253 40mm width, and 2mm thickness. 2O3 catalyst particles in combustion 

254 chamber plate of the microreactor were used to supply heat to the reforming chamber 

255 plate[30-33]. The reforming temperature of the microreactor was measured using B-type 

256 thermocouple with 0.5  measurement accuracy (M6-K, Jing Lan Electric Heating 

257 Instrument Company, China) which was on the chamber plate for reforming. The 

258 MSR reactant was reacted with the PdZn catalyst which was on the copper foam in 
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259 reforming chamber plate of the microreactor[34]. The soap bubble flowmeter with ±1% 

260 measurement deviation (JCL-2010(S)-A, Qingdao Juchuang Environmental Company, 

261 China) was used to investigate the flow rate of total reaction product, the gas 

262 chromatograph with 50 ppm measurement accuracy (GC2014C, Shimadzu Company, 

263 Japan) was used to determine the volume fractions of different reaction products 
[28]. 

264 Eqs.(5)-(7) show the main reaction process of MSR reaction[35-37]. The methanol 

265 conversion and H2 flow rate were used as the main indices for determining hydrogen 

266 production performance of the microreactor, which were calculated using Eqs.(8) and 

267 (9)[7,9,29,38]. 

268                             (5)KJ/molHCO+3HOH+OHCH 2223 4.49

269                              (6)KJ/molH2H+COOHCH 23 0.92

270                              (7)KJ/molHH+COOH+CO 222 1.41

271                                        (8)
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KnmV
X

3

272                                                     (9)  
1344000

z*V
V reactant

H 2
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276 Fig.6. Testing system of self-heating methanol steam reforming microreactor

277 110 PPI copper foam which loaded 0.5 g PdZn catalyst was used as methanol 

278 steam reforming reaction support of self-heating MSR microreactor[34]. The nickel 

279 foams without microchannel and with multiple microchannels used as combustion 

280 reaction supports were respectively installed into the self-heating microreactors. The 

281 hydrogen production performances of the microreactors with different combustion 

282 reaction supports at different reforming temperatures and 4 mL/h flow rate of 

283 methanol-water mixture were investigated. Moreover, the hydrogen production 

284 performances of the microreactors under different flow rates of methanol-water 

285 mixture and 415  reforming temperature were also studied. 

286 3. Results and discussion

287 3.1 Pressure drop of nickel foam

288 Fig.7 shows the pressure drop of different reaction supports under different flow 

289 rates of air. From Fig.7, it is found that the pressure drop of reaction supports 

290 becomes high with the increase of flow rate of air. Moreover, compared with particles 

291 reaction support, the nickel foam reaction support has the lower pressure drop. 



Page 16 of 29 

292
3 4 5 6 7

0.1

1

10

100

Flow rate (L/min)

Particles reaction support

 Nickel foam  reaction support

293 Fig.7. Pressure drop of different reaction supports under different flow rates of air

294 3.2. Catalyst adhesion of nickel foam

295 Fig.8 shows the catalyst adhesion of nickel foam. The Pt catalyst is loaded on 

296 nickel foam, as shown in Fig.8(a). According to Fig.8(b), it is known that some loss of 

297 catalyst occurs at the early stage of ultrasonic vibration process under five replicated 

298 experiments. The mass of catalyst remains basically unchanged at the later stage. In 

299 this way, the good catalyst adhesion of nickel foam can be concluded. This is mainly 

300 due to the presence of Al(NO3)3 binder in the catalyst precursor slurry, and the large 

301 specific surface area of the nickel foam, resulting in a large interfacial area of 

302 adhesion. Therefore, the catalyst had a high bonding strength with nickel foam. The 

303 good catalyst adhesion of nickel foam can be obtained.
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305 Fig.8. Catalyst adhesion of nickel foam: (a) SEM and energy dispersive spectrometer (EDS), 

306 (b) adhesion
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307 3.3. Wall temperature of the methanol combustion microreactors with nickel 

308 foam

309 Fig.9 shows the wall temperatures of the methanol combustion microreactors 

310 with different catalyst supports. Compared with catalyst support of particles with 2 

311 mm diameter, the higher temperature distribution is existed in the front (1-4 

312 temperature measurement points) of the nickel foam catalyst support and the similar 

313 temperature distribution is existed in the back, which can be seen in Fig.9. It may be 

314 attribute to the fact that 110 PPI nickel foam has larger specific surface area because 

315 of its porous structure with small pore size and dense hole distribution[39-40]. Therefore, 

316 the violent combustion reaction was existed in the nickel foam loaded with Pt catalyst, 

317 especially in the front of the nickel foam.
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322 Fig.10. Wall temperature of the methanol combustion microreactor with nickel foam: (a) wall 

323 temperature under different flow rates of methanol (b) long-term wall temperature
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324 Fig.10 shows the wall temperature of the methanol combustion microreactor 

325 with nickel foam. From Fig.10(a), it can be seen that with the increase of methanol 

326 flow rate, the temperatures of different measurement points increase, suggesting that 

327 the exothermic amount of the MC microreactor can be controlled by adjusting the 

328 flow rate of methanol. The temperatures of the nine points on combustion reaction 

329 chamber with the nickel foam remain basically unchanged within 24 hours 

330 combustion reaction, as shown in Fig.10(b), indicating that the nickel foam has good 

331 long-time combustion stability.

332 3.4. Reliability of numerical simulation model

333 Fig.11 shows the simulation and experimental temperatures of nine points on 

334 combustion chamber plate. The changing trend of the simulation temperatures of the 

335 nine points on combustion chamber plate under different flow rates of methanol is in 

336 agreement with the experimental temperatures, as shown in Fig.11. The deviations 

337 between simulation and experimental results of the minimum, maximum and average 

338 temperatures are 0.08%, 7.84%, 3.56%, respectively. Thus, the certain reliability of 

339 numerical simulation model is obtained.
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341 Fig.11. Simulation and experimental temperatures of nine points on combustion chamber plate

342 3.5. Numerical simulation of combustion reaction of nickel foam 
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343 Fig.12 shows the numerical simulation results of combustion reaction of nickel 

344 foam. From Fig.12, it can be seen that the high methanol concentration and 

345 temperature are existed in the front of nickel foam, however the low methanol 

346 concentration and temperature are existed in the back. A large amount of reactant 

347 reacts with catalyst in the front of nickel foam because of the nickel foam’s porous 

348 structure with small pore size and dense hole distribution. The violent MC reaction in 

349 the front of the nickel foam is obtained. However, the less MC reaction occurs in the 

350 back of the nickel foam. In this way, the high temperature difference was emerged on 

351 the nickel foam. In order to decrease the difference in the temperature distribution of 

352 the chamber plate, it is necessary to control reaction zone of the reaction support. In 

353 fact, the distributions of reactant and catalyst in the reaction support can be adjusted 

354 by designing different multiple microchannels on the reaction support. Therefore, the 

355 multiple microchannels with specific shape and size were designed to investigate the 

356 effect of multiple microchannels on the temperature distribution of the nickel foam.
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358 Fig.12. Numerical simulation results of combustion reaction of nickel foam: (a) methanol 
359 concentration, (b) temperature

360 3.6. Structural parameters of nickel foam with multiple microchannels

361 In order to reduce the difference in the temperature distribution of nickel foam, 

362 the amount of reactants which performs MC reaction in the front of the reaction 
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363 support should be reduced, and the amount of reactants which performs MC reaction 

364 in the back of the reaction support should be enhanced. Therefore, the multiple 

365 microchannels with wide microchannel in the front of the nickel foam and narrow 

366 microchannel in the back of the nickel foam were designed on the nickel foam. Fig.13 

367 shows the structural shape of multiple microchannels of nickel foam. The structural 

368 parameter A is the microchannel width which near the outlet of reaction chamber, the 

369 structural parameter B is the height of the microchannel, the structural parameter C is 

370 the distance between the edge of nickel foam and the centerline of the microchannel 

371 and the structural parameter  is the angle between the width direction and the longest 

372 side direction of the microchannel. A set of specific structural parameters of multiple 

373 microchannels of the nickel foam was determined, which is shown in the Tab.1.

374

A

B

21 183Unit: mm

40

70C

375 Fig.13. Structural shape of multiple microchannels of nickel foam

376 Tab.1 Structural parameters of multiple microchannels of nickel foam

377

Microchannel

number

Structural parameter

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A 1 1 1 1 1 0.6 0.6 0.6 0.4 0.4 0.6 0.6 0.6 1 1 1 1 1

B 32 30 28 27 26 25 24 23 23 23 23 24 25 26 27 28 30 32

C 4.5 9 13.75 17.75 21.75 25.175 28.375 31.175 33.5 36.5 38.875 41.625 44.875 48.25 52.25 56.25 61 65.5

88° 88° 88° 88° 88° 88° 88° 88° 88° 88° 88° 88° 88° 88° 88° 88° 88° 88°

378 3.7. Numerical simulation of combustion reaction of nickel foam with multiple 

379 microchannels 
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380 Fig.14 shows the numerical simulation results of combustion reaction of nickel 

381 foam with multiple microchannels. From Figs.12 and 14, it can be seen that compared 

382 with the nickel foam without microchannel, the methanol concentration distribution in 

383 the nickel foam with multiple microchannels has been changed, and the lower 

384 difference in the temperature distribution of the nickel foam under 0.8 mL/min flow 

385 rate of methanol is obtained. It reveals the fact that the design of multiple 

386 microchannels of nickel foam could decrease the difference in the temperature 

387 distribution of nickel foam. Subsequently, a pulsed fiber laser was adopted to 

388 secondary process the nickel foam to obtain the nickel foam with the multiple 

389 microchannels.

390
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320
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8.84e-02

8.16e-02

7.47e-02

6.78e-02

6.09e-02

5.41e-02

(a) Methanol concentration(%) (b)

Flow direction of reactant

Temperature ( )

Flow direction of reactant

391 Fig.14. Numerical simulation results of combustion reaction of nickel foam with multiple 
392 microchannels: (a) methanol concentration, (b) temperature

393 3.8. Reaction performance of nickel foam with multiple microchannels 

394 3.8.1 Combustion performance

395 Fig.15 shows the Tmax in the temperature distribution of different combustion 

396 reaction supports. Compared with the nickel foam without microchannel, the Tmax in 

397 the temperature distribution of the nine points on combustion chamber plate using the 

398 nickel foam with multiple microchannels decreases by 57.8% when 1.1 mL/min 

399 methanol flow rate is used, which can be seen in Fig.15. The maximum temperature 
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400 decreases by 33.8 . It is indicated that the design of multiple microchannels of 

401 nickel foam is of great significance for decreasing the difference and the maximum  

402 in the temperature distribution of the nickel foam. 
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404 Fig.15. Tmax in the temperature distribution of different combustion reaction supports: (a) nickel 

405 foams without microchannel and with multiple microchannels, (b) nickel foam without 

406 microchannel, (c) nickel foam with multiple microchannels  

407 3.8.2 Hydrogen production performance

408 Fig.16 shows the hydrogen production performances of self-heating methanol 

409 steam reforming microreactors using different combustion reaction supports at 

410 different reaction conditions. From Fig.16, it can be seen that compared with the 

411 nickel foam without microchannel, the self-heating MSR microreactor using the 

412 nickel foam with multiple microchannels exhibits better hydrogen production 

413 performance. The reforming methanol conversion increases by 21.3% and the H2 flow 

414 rate increases by 21.5% when 430  reforming temperature and 4 mL/h flow rate of 

415 methanol-water mixture are used. This is mainly due to the fact that compared with 
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416 the nickel foam without microchannel, the lower difference and the lower maximum  

417 in the temperature distribution of combustion chamber plate using the nickel foam 

418 with multiple microchannels are existed. Accordingly, the lower difference and the 

419 lower maximum in the temperature distribution of reforming chamber plate are 

420 obtained. In the process of MSR reaction for hydrogen production, high temperature 

421 can easily make the carbon deposit on the surface of the catalyst, reducing the activity 

422 of the catalyst. The high temperature will agglomerate the catalyst particles, making 

423 the size of catalyst particles be larger and the global catalytic activity area of the 

424 catalyst be less. The global reaction performance of the catalyst will decrease. 

425 Therefore, the lower difference and the lower maximum in the temperature 

426 distribution of reforming chamber plate can prevent the occurrence of the catalyst 

427 deactivation in reforming chamber plate[21,41]. The better global catalytic reaction 

428 performance of the catalyst in reforming chamber plate can be obtained. In this way, 

429 the self-heating microreactor using the nickel foam with multiple microchannels 

430 exhibited better hydrogen production performance.
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432 Fig.16. Hydrogen production performances of self-heating methanol steam reforming 

433 microreactors using different combustion reaction supports at different reaction conditions (a) 

434 different reforming temperatures with 4 mL/h methanol-water mixture flow rate, (b) different 

435 methanol-water flow rates with 430  reforming temperature



Page 24 of 29 

436 4. Conclusions

437 To improve the reaction performance of self-heating methanol steam reforming 

438 (MSR) microreactor, a nickel foam was used as catalyst support for combustion. A 

439 numerical simulation model of combustion reaction of nickel foam was established. 

440 The multiple microchannels of the nickel foam were designed based on the numerical 

441 simulation results, and some related reaction performances were investigated. It is 

442 found that the nickel foam reaction support has a similar temperature distribution with 

443 the particles reaction support. In addition, the nickel foam has good long-time 

444 combustion stability. Thus, the nickel foam can be used as a combustion reaction 

445 support for self-heating MSR microreactor. Compared with the nickel foam without 

446 microchannel, the Tmax and the maximum in the temperature distribution of the nine 

447 points of the combustion chamber plate using the nickel foam with multiple 

448 microchannels decreased by 57.8% and 33.8  respectively, when 1.1 mL/min 

449 methanol flow rate was used. Compared with the nickel foam without microchannel, 

450 the self-heating MSR microreactor using the nickel foam with multiple microchannels 

451 exhibited better hydrogen production performance. The reforming methanol 

452 conversion increased by 21.3% and the H2 flow rate increased by 21.5% when 430  

453 reforming temperature and 4 mL/h flow rate of methanol-water mixture were used.
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