-

View metadata, citation and similar papers at core.ac.uk brought to you byj‘: CORE

provided by DSpace at NTUA

X EXNE]

/)
) %

-
HE

7
o'

/)
X
-,

I o
W

eT508
> rﬁ i
M}a
POMHOEVS . g

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

COMPUTER SCIENCE DIVISION
IMAGE, VIDEO AND MULTIMEDIA SYSTEMS LABORATORY

Automatic Detection of Opinion Polarity
from Twitter

DIPLOMA THESIS
of

ELENI MANDILARA

Supervisor: Stefanos Kollias
Professor NTUA

Athens, September 2015

https://core.ac.uk/display/38467523?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TANE|

39

N

1

€T508.
@9':9 rE 35O
A

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ey

&

e

L) §

HOEVS .

nVPPOPO

COMPUTER SCIENCE DIVISION
IMAGE, VIDEO AND MULTIMEDIA SYSTEMS LABORATORY

W pom
2L

N

Automatic Detection of Opinion Polarity
from Twitter

DIPLOMA THESIS
of

ELENI MANDILARA

Supervisor: Stefanos Kollias
Professor NTUA

Approved by the three-member committee on the 18" of September 2015.

Giorgos Stamou

Kostas Karpouzis

Stefanos Kollias
Research Director of ICCS of

Professor NTUA
NTUA

Athens, September 2015

Assistant Professor NTUA

Eleni E. Mandilara
Graduate Electrical and Computer Engineer of NTUA

Copyright © Eleni E. Mandilara, 2015.
All rights reserved.

The present work may not be reproduced, stored nor distributed in whole or in part for
commercial purposes. Permission is hereby granted to reproduce, store and distribute
this work for non-profit, educational and research purposes, provided that the source
is acknowledged and the present copyright message is retained. Enquiries regarding
use for profit should be directed to the author.

The views and conclusions contained in this document are those of the author and
should not be interpreted as representing the official policies, either expressed or
implied, of the National Technical University of Athens.

Llepinyn

AvTikeipevo g mapovoas SA®UATIKNG epyaciag efval n avtdpaTn aviyvevon g ToAKoTnTag — 1,
aAMDG, M cvvoloONUATIK avAALGT — TNG YVOUNG IOV eKQPALeTal Omd XPNOTEG 0 OUSIKTLOKEG TINYEG.
AwdIKTLOKY] YN TOV evOEEPOVTOG Mag amotélece to Twitter, To omoio eivor po online vanpecio
KOW®VIKNG OIKTUMGTC TOL TPOGPEPEL TN dVVATOTNTA GE YPNOTEC VO ONLLOGIELOVY Kot Vo dtafdlovy civTopa
unvopata yvootd g tweets. Xtdyog g cvvalctnpatikig avéivong eivat) ta&vopunon Serypdtov Keévou
pe Baomn ™ cuVoMKN TOMKOTNTO TNG YVAOUNG oV eKEPAlovv (BeTIKY, apvnTIKY, OVIETEPT).

Me otdyo, Aowmdv, 1 ovvoicOnuatiky avdivon tov tweets, viomombnke £€va cvoTNUA
emPrenopevng online pabnong, Pacicpévo ota TexvNTd vevpwvikd diktva, 10 omoio amoteAsital amd dVo
KOPLOL LEPT: TO TMPAOTO OCYOAEITAL WPE TNV TPO-EMeEEPyOsio TV tweets, evd To Og0TEPO VLAOTOLEL TN
dwdwosio padnone pésm Tov vevpmvikoL OikTvov. To TpmdTo PEPOG £xel G oTOXO TOV eEpaiond Kal
kaBapiopd tov tweets and B6pvPo M mepttT TANPOEOpPin, KAOMG Kol TN UETOPOPE TOLC GE [0 LOPON
KOTOVONTH 0omd £€va. DTOAOYIGTIKO GUOTNUA. AVTO ERMITUYYAVETOL HEC® NG €EUYWYNG OLYKEKPIUEVQOV
YOPOKTNPIOTIKOV KOl TNG KOTOOKELVNG TOV aviiotoy®v Oavuopdtov. To dgbtepo HEPOC, OVTO TOL
VELPOVIKOD SIKTVOV, VAOTOLEITOL amd €va TOAVETIMEdO perceptron, TO OTWOI0 EKMOIOEVETAL HECH TOV
alyopiBuov omicbiag diddoong cedApaToc, Kol omoPAénel otnv opfn tavounon twv tweets e 600 N TPELC
SLOKPITEG KAAGELG, Ol OTOIEG AVTIOTOLYOVV GTIV TOAIKOTNTO, TNG YVAOUNG TOL EKQEPETAL avh tweet (OeTikm,

apvNTIKN 1 OETIKN, apvnTIKY, OVOETEPN).

A&Ea1g — KAEWWA: cuvolsOnuaTiky avdAvon, unyavikn padnon, emprenouevn uaonon,
TEYVNTA VELP®VIKG dikTva, ToAvERiTEdO perceptron, alydpiOpog onichiag 616606MG GOAALNTOC,

Twitter, e£6pv&n dedopévav.

Exterauévy Hepiinyn

H mopodoa dSumhopatikn epyacia &gl wg OEpa TV avTOHOT QViYVELGT TG TOAMKOTNTOS TG YVOUNG
oto Twitter, 1] aAAdG T cvvarsOnpotikn avaivon (sentiment analysis) oto Twitter. Xto tp®dTto ke@diaio Ha
dollE (o el00y®yn Yoo TV avaivon ocvvaisOfuotog oto Twitters otn cvvéyeia (dgdtepo Kepdiaio) Oa
UANGOLLLE Y10 TO TEYVNTA VELP®VIKA OlKTvo TAve oto omoia Paciotnke To HOVTEAO TOL LAOTOONKE.
Katémv, 610 tpito kepdhroo Bo acyoinBolpe avoAvTikd [E TO CUYKEKPIUEVO HOVTEAO, KOl GTO TETOPTO
KeEPAAOLO doVpE TO TEPALOTO OV deEdyOnkay Kot To amoTEAEGHOTE TOVG. Ba WA cOLE Emiong Yo T

GUUTEPACLLOTO TTOV TPOKVTTOVY amd avTd Kot o dMGoLLE KATOES 10€€G Yia TN PEATiOON TOL LOVTEAOL.

"Eva cvompa avéivons cuvarsbnuatog oto Twitter ovolaotikd Aapfaver e.cddovg and to Twitter
Kot Topdyel oG ££080 TNV TOMKITNTA TG KABE £16000V, TOL OTNV MEPIMTMGT L0 UTOPEl Vo aviKeL og pia
a6 3 KAAoels: BeTiKY|, apvnTIKY], OLIETEPT).

To Twitter eivar pia online vaNPecio KOWMVIKNAG SIKTOMGONG OV SIVEL TN SLVOTOTNTA GE YPNOTES VO
otédvouy Kot va dafalovv chviopo pnvopata yvaotd og tweets. H avdivon cvvaicOipotog oto Twitter
€Yl ¢ OVTIKEILEVO TNV aviyvevon g didbeong mov gival mapovca og Eva. tweet Tov £xel dnuooctevdel amd
Kkamowov ypnotn tov Twitter. H d140eom ovth pmopel vo glvar pio yvoun 1 kpitikn, 1 cuvolcOnuoatiky
KOTAGTOON TOV GLYYPAPEN 1| 1| GLVOICONUOTIKY EMIOPOCT] OV GTOYEVEL O GLYYPAPENS TOL VO, EYEL OTOV
avayvaoT.

To kivnTpa Y10 T GUYKEKPUEVT] €pYOsio Y0V VO KAVOLV OpyLKA LLE TO YEYOVOS OTL O TOLENS TNG
avaALONG cLVAICONUOTOS £xel TOAAEG 1O10iTEPA EVILOPEPOVGEG KOL YPNOULES EQUPLOYEC OTMG TNV
TaEvOUN oM CLVOLGONLOTOG, TV AVAKTNOY Kol GOVOYT YVOUNG, TV OvVAYVAPLoT] TOV KATOYOL UING YVAOUNG,
NV TapakoAovdnon Tov Bépatog/cuvalctnpatog, TV aviyvevon spam yvaung, Ty tpofieyn avlporivov
GUUTEPIPOPDY, OYOPUCTIKOV TACEMV, OTOTEAEGUATOV ekhoyov KA. EmumAéov, 1o Twitter cuvykevipdvel
OPICUEVO YOPOKTNPIOTIKA oL TO Kobiotovv efaipetikny @y yuwoo avaivorn cuvailcsHnuatog amd pkpd
keipeva (microtexts): éyel avatoto opto 140 yapoxtipov, cvvnbiletor n ypnorn hashtags mov cvyva
opadomolovy ta tweets avd Oépo/cuvaicOnua, n tpocPfacn oto Twitter givar 1Wdoitepo €VKOAN KOl HECH
TOADV PECOV (TNG 1OTOCEAIDAG, TNG EPUPHOYNG YO KIVNTEG CLOKEVEG, 1| SMS), Kol ekotoppdpla tweets
popaovtor Kabnuepwva oe mpaypoatikd ypovo. To Twitter pmopel vo amotedel po agenpio, oAAL 1M
AVOyVOPLoT] TOV GUVAIGHNHOTOC 0o Ypamt TANpogopia YeVIKOTEPE, amd pio punyovn eivon éva Priua Tpog
TNV oVATTLEN TG TEXYNTIG VO LOGUVNG.

M[Mopd ta Tapomdve YopakTnPloTikd Tov kabiotody to Twitter TOAD Kok ANyN Yo TNV €QApUOYN
NG CLVOICONUATIKNAG AVAAVOTG, OPIGUEVE YOPUKTNPIOTIKA TOV tweets KAVOuV Tn cLYKEKPEYN epyaciol pio
TOAD TOADTAOKT Kot OUGKOAN 7TpoKAnon. Avtd eivan to €€ng: (0) TO KPO MAKOG OgV EMTPEMEL
YAOGGOAOYIKN ovdAvomn, (B) cuyva ypnoomolovvtan pun kavovikés AéEeic 1 AEEelg oe U Guven ypamt
popen, (y) yiverar ypnon wWwwpatiopdv kanuepvig yAmooag (slang), (3) ovyvé yivovtor opBoypapikd

AGO1, (€) ypnoomolobvtal TOTIKEG AEEELG 1| EKPPAGELS, (OT) YPNOULOTOOVVTAL emoticons, oKPMVOULOL Kot
hashtags.

Yrdpyovv S184popeg TEYVIKEG Y10 T SLVOICONUATIKN avdAvoT, ortmg o adyopdpog Naive Bayes, o
ta&wountig Maximum Entropy, ot unyavég S10vuoudtov vmrostnpiEng, To TEXVITE VEVP®VIKE diKTua K.J.

v mopovoa epyacio To poviéAo wov vioromdnke PacileTol ota TEXVNTA VELPOVIKA diKTLA.

‘Eva vevpovikd diktvo eivor évag TEPAOTIOg, TOPAAANAOG emefepynoTNG, KOTOVEUNLEVNG
OPYITEKTOVIKNG OV amoTeEAEITAL OO OmAEC povadeg emesepyaciog (VELPAOVEG), TOL EYOVV TN duvaTOTNTO, VO
amofnkevoLV EUTEIPIKN YVOOT Kot va T kabdiotovv dwebéoiun yo xprion. H yvoon avt) Aapfdavetor amd
70 TEPIPAALOV TOV SIKTOOV Kol 0TOONKEVETOL UEC® TOV GUVATTIKOV PopdV TOV cuVOEcE®V UETAED TV

VELPOVDV.

To perceptron Tov Rosenblatt amoteAel o TpdTO VELPOVIKO dikTvO. Baoiletol o€ évav pun ypopuko
vevpmvo ot Pdon evog un YPOUUIKOD GLVOLOOTH] OKOAOLOOLUEVOL amd &vov OmOTOUO TEPLOPLOTN
(ovvédptnon mpoonuov). To perceptron £xet T SLVATOTNTO VO TOEIVOUEL SELYLOTO GE YPOUUIKA St opioEg
KAdoewg. H e&€MéEN tov, to molveminedo perceptron dwobétel 1 1 mepiocdTepa KPLPE EMIMESD VELPOV®V
HeTa&L €10000v ko €£600v, TANP®S cuvdedepéva petald Tovg, kKo £xel Tn duvatdtnToe Vo TaEvouet
delypata og un ypoppud dwyopioyeg kKidoels. Kabe vevpdvag tov moiveninedov perceptron vroAoyilet 2
ONUOTO: €Ve AELITOVPYIKO OO, KO P EKTIUNGT TOL S1ovOCHOTOG KAIoNG (Tov KMOE®V NG EMPAVELNS
oPAALATOC O oxéon e Ta Bapn Tov givor cuvdedepEVA OTIG E16000VG EVOG VELPDOVAL).

I v exkmaidevon Tov molveninedov perceptron ypnoilponoteitar o alyopdpog omicOiog diddoong
opdipatoc (error back propagation algorithm), o onoiog ympiletar oe d0o Pdoelg. Xtnv TpmMTN Pdon yiveral
TO TEPOGLO. TTPOG TO. EUNMPAC, KOTA TO OTOI0 TO GUVORTIKA PBApr Tapapévouy apetdPAinto oe 6A0 10 diKTLO

Kot VToAoyiovTal Ta AELITOVPYIKA CIUAT OO VELPDOVO GE VEVPAOVA,, MG

OOV @ M GLVAPTNON EvePyOTOiNGNC, yj 1o AEITOVPYIKO ONHOTO GTNV £E000 TOV VELPOVO. j KoL v; 10 TOTKO

€10 TOL VELPOVA. |:

MoAg tepuatiost 1 TPOT PAoT, ONANST UOAMG VTOAOYIGTOVV TO. AELTOVPYIKO GNUOTO G Kol TO EMITESO
€E000V, EKKIVEL 1] 3EVTEPN PAGT], TO TEPAGLE TPOC TO TIC®. XE QLT TN PAGCT], GTEAVOVTOL GTILOTO COAALOTOC
amod 0gfld mPog To aPloTEPE GE OAO. T EMIMESO TOV OIKTVOV, EMIMEDO TPOG €mimedo, vEoAoyilovtag

avadpoKd TV TomiK KAion & Yy kdOe vevpodva, Kol HETOPAAAOVTAG TO. GUVORTIKA Bapn OA®V TV

GUVOEGEMV COUO®VA LLE TOV Kovova AEATa.:

OO ELGODOD TOD VEVPWVOA. |
y,(n)

TOTIKN KAlon

5, ()

o1opbawon fapovg
Aw (n

ropoueTpog pvluod uatnong
n

X X

H péBodog cross-validation ypnoiponoteiton yio Tov EAeyyo Tov HOVTEAOL UE Pdor €va VITOGVUVOAO
dedopEVOV S10POPETIKO OO QLTO TOV YPNGIUOTOONKE Y10 TNV EKTIUNOT TOV TAPAUETP®V TOL dkTHOoV. ['a
T0 AOYo avtd, 1o deiypo ekmaidevong ympiletor e dVo Eva petah TOLg VTOGVLVOAW: £V VITOGVUVOAO
EKTIUMONG Y10 TNV EMAOYN TOV HOVTEAOL KOl £V DVTTOGVUVOLO ETIKVPMGCNG Yo TOV EAgYY0 Tov povtéov. H K-
fold cross-validation eivan pio Ttopaidoyn avtic g nebddov, katd v omoia To Stabécio delypa peyébovg
N Swupeitan og K vrosvvora, pe 1<K<N. I'ia K dokipég, 1o poviého ekmoudeveton pe oA To VTOGHVOLL
€KTOG amd €va, dlopopeTikd KAOBe popd.

To povtélo g mapovoag epyaciog vAomoleital and éva cHotnuo emPrenopevng online pabnong,
mov amoteAeitar amd 4 pépn: (1) amdkmon oedouévav, (2) mpo-emetepyacio dedopévav, (3) eaymym
YOPOKTNPIGTIKAOV KOl KOTAGKELT] TOV OVTIGTO®V SIOVOGUAT®V YOPUKTNPICTIKAV, (4) veupovikd 6iKTvo.

To dedopéva, elvarl amapaitnta Yoo TV eKTaidcvon Kol Tn SOKIUN Tov HovtéAov poc. I'a 1o Adyo
avtd, omokTnOnKav dedopéva omd to Twitter, ota omoia mpootédnkav etkéteg (“Oetkd”, “apvmrTiko”,
“ovdéTePO”) ava tweet Kol TEAKG dnutovpyndnkav to cuvoio dedouévov. o v amdKINon oVTOV TOV
dedopévarv, ompovpyndnke o epapuoyn oto Twitter API kot €ywve yprion tov OAuth dote va dobel

£YKPLON G€ 0LTY VO EXKOIVOVEL P To Twitter pécw Tov Aoyaplacpod pag.

To tweets wov avalnmOnkav Kot amobnkevniay eiyav koo Béua to Anpoynoiopa mov EAape
yopa oty EALGSa v 51 Toviiov 2015. 'Eva dnpoyneiope omd tn oo Tov £€XEL TNV TAGT VO TOADVEL TIC
yvoueg Ko Beopndnke efonpetikn gvkoupio yioo gdpeon tweets pe €VTOV) TOAIKOTNTO YVOUNG. ApyKd
cLAAEYONKaY KoTd péco dpo 2,191 tweets avd nuépa, omd v 1n IovAlov émg ko v 7n lovAiov 2015.
AOY® TOV PEYALOL OYKOL OedOUEVMV, TPV AtO TO GTASLO TNE TPOGHNKNG ETIKETAOVY, T tweets vioAnOnkoy
o€ kamolo. Pripato wpo-enelepyociag, mote va eEOAEIPOOVV Ta SITAOTLTO KO 1] TEPLTTH TANPOPOpio. Metd
a0 TO TOPATAV® 6TAd0, Epevay 1,095 tweets avd nuépa, onAad” emtedydnke pio peiowon tov dykov (xapn
otV e&ddetyn g TePTThg TANpoopiog) Kotd 50%.

H mpocOnkn tov eTiket®V oT0 Topamdve oedouéva éytve “yepokivnta”. Ymapyovv TEYVIKEG
AVTOUATNG TPOCONKNG eTiKeTOV pe Pdon hashtags 1 emoticons, woT660 OempnOnNKoV akatdAAnieg e avty
v Tmepintoon kobmg to Oépo TV tweets eivar TOMTIKO, Ko apevog o cvvnBileton 1 évrovn yprion
emoticons, AQETEPOV CLYVE uUmopel vo. cvvdéetar pE elpoviK) O1dfeon. Ady® moAd peydiov dykov
dedopévav, N TpocHnkn eTIKET®V €ytve POVO oe €va pépog Tov dedopévov: oe 500 tweets ava nuépa,
oniadn 5007 = 3,500 tweets ovvohkd. Xvyvd mapotnpnbnke peydin JSvokohia otnv efaymyn
GUUTEPACUATOV GYETIKA e TNV aKpifn yvoun evog xpnotn, kabdc n aAAniovyio tov AéEenv eEéppale

ouyva aoaen 1 dpopoduevn 61dbeon Kot 0 aplBuog TV KAAGEDY TNG TOMKOTNTOS NTav TOAD wiKkpog (3:

OeTikn, apvnTiKn, 0VOETEPT)) DOTE VO Yivel Lo akpiPig tagvouneon g yvoune. H tpocbnkn tov etiketdv

€ywve and Tov 1010 EKTOOELTH Y10 KAOE GUVOAO GUAAEYHEVDV OEGOUEVOV VAL MUEPD, ETOUEVOG TUYOVOESG

mopeKKAicelg Katd Ty tagvouncn toug Bewpovvtal opoloyeveig kot apeintéec. [vetat amdivta capég amod

T TOPOTAVE OTL OOTEAEL TOAD pEYAAN Kot TOAOTAOKT TPOKANGT| Yo VO OVTOLOTO GUGTIHO 1) OviXVeLoN

NG TOAMKOTNTOG TNG YVOUNG, OTOV OKOpMo Kol évag avOpwomog dev pmopel vo e€ayel BéPora kot akpiPn

GLUTEPAGLLOTO, TTAVTOL.

TN v ekmaidgvon Kot T S0k ToL HOVTEAOD YpncipoTotOnikay 2 chvola dedouEveV:

balanced_referendum_ds: amoteieitoan amd 2,100 tweets pe kowvd 0ua T0 Anpoyneicpa g Sng
IovAiov 2015, mov amobniedlnkav Kot oyoMdotnikay mg Beticd, apvnTikd 1| ovdétepa: 700 OeTikd,

700 apvnTikd kot 700 ovdétepa tweets.

various_contents_ds: onoteieiton and 2,000 101 oyolocuéva tweets, S10pOpOV TEPIEXOUEVOV KoL

Bepdrov: 1,000 Betikd ko 1,000 apvnTikd tweets.

AOY® SL0QOPOV YOPOKTINPIOTIKOV TOV avaEPONKaY Tapamavm, ivol eovepd OTL 11 YADGGO TOV

Twitter ypilel Wwaitepng petoyeipiong. Tvvenmg, avortdydnkav Prpato mpo-enelepyaciog Tmv tweets e

okond tov kaBopiopd tovg omd BO6pvPo kol mePLTT TANPOPOPin KAl TN UETAPOPE TOVG GE LU0 LOpON

KOTOVONTN Ao £V0, AVTOUNTO cOGTNHO. AVTd T Prjpota ivar Ta e€Ng:

)
2)

3)
4)
5)

6)
7)
8)
9)

Mertatpont| tovg o€ TeloVg YOPAKTPES
Metatpont| Twv vtepoLVOESL®Y (GVUPOAOGEPOY oV Eekvohv amd “www.”, “http://” ko “https://”)

o Yevikn cupporocelpd “url”
Metatpont| TV avaeopdv o ovopata (“@username’) otr yeVIKY cvpuorocelpd “at user”
AToAOLP TEPIGGOTEPWOV TOV EVOG KEVHDV

Avtikatdotaon tov hashtags (“#hashtag™) pe) AéEn mov mepiéyovv ywpic 10 cOPoro ¢ dieong
“#’7 (“hashtag”)

Amolowpr| onueiowv otiéng
Amolowpn] ovuPorocepav “url”, “at_user”, “rt”
Amolorpr] SumAdTLT®V

Avtikatdotoon emoticons e To cuvaicOnua mov ekepdlovv

10) AVTIKOTAGTOGT OKP®VULUI®V LE TNV TANPT epioT

11) Amohowpn] stop words (cvviBeic AEEELG TG YAMGGOG OV OV TPOGPEPOVY OLGLMON YVMGN GTO

GUOTNLO)

12) Anadowpn evamopsvaviov ASCII yapaktipov (t.y &)

To embuevo oTAO10 TOV HOVTEAOL 7OV VAomombnke €yel va kével pe v eloyoyn ToOV
YOPOKTNPIOTIKOV 7OV Kpifnkov onuovtikd, kol TNV KOTOOKEVLT TOV OVIICTOW®V SlVOGHATOV
YOPOKTNPIOTIKAOV. To Yopaktnplotikd g Kabe AEENG mov evolépepav TNV TOPOVGO LAOTOINGOT €ival: To
Muppa (lemma), to otéleyog (stem) kor o pépog tov Adyov g (part-of-speech, POS) tng xéfe AéEnc. H
dwdkacio e e&oymyNg TOV XOPOKTNPIOTIKOV TOV ALEEmV eEAYEL TO TOPATAVED YOPAKTNPIOTIKG Yo KOOE
AEEN ava tweet, Kal, OTN GULVEXEWD, WLE TOV KOTOAANAO GLVOVLAGUO TOLG KATOOKELALEL TO JLVOGHOTO
YOPOKTNPIOTIKOV, T0 OTOie 6TV ovoia eivor TAeddeg (tuples) mov £xovv cuvtebel amd Evav GUVILAGUO TNG

APYIKNG AEENG KOl T®V YOPOKTNPICTIKAOV TG,

IIpwv amd 0 6TASI0 TOV VEVPOVIKOV SIKTOOV, £YVOV KATOW PHOTO Yo TNV TPOETOLUAGIO TV
€1600mV TOV £T61 MOTE Vo Elval 68 LopeT KaTovonT amd avtd. Xpnoipomombnke pio cuvaptnon hashing
Y. TNV KOOKOTOINGoN ToL KAbe S10vOCUOTOG YOPOUKTNPICTIKAOV G8 Evav LOVOdKO aképalo apiud. Kabe
tweet avtimpocmmedeTol amd o Aloto akepaiov kot €16t divetar g €icodog oto diktvo. Emiong, éywve
“véumopa” (padding) g kébe Aiotog akepaiov pe undevikd (téca don n dpopd g kabepiog pe) Aiota
TOV UEYIOTOVL UNKOVG), £TGL MOTE VA, EYOLV OAEG KOWVO UNKOG.

‘Eywve doxyun g te)vIKNG TV n-grams, ywo. n=1 (povoypauparte, unigrams) kot n=2 (drypdppora,
bigrams). To n-grams eivor pio cvveyng akolovdio amd n AéEelg evog tweet. Mo AMoto SlovuoUATOV TOV
€xel TPOKVYEL 0md €va tweet, [LE TNV TEYVIKN TOV LOVOYPOUUATOV, avamapioTatol and po Opotd Aota, Vo
LE TNV TEYVIKN TV OIYPUULATOV, OVATOPIoTATAL o Lo AIGTO amOTEAOVEV OO TAEIAOES 2 SLOVUGUAT®V:
amd 10 Kabe ddvucpo cuvdvacpévo e to endpevd tov. Xpnotlporomdnke Eova 1 Topamdved GuvapTnoT)

hashing ywo TNV k@d1Kom0OiNoT TOV SYPAUUATOV (O AKEPOIOVC.

To vevpwvikd dikTvo vAomoteital amd Evo molveninedo perceptron 3 emmESOV KAl EKTOIOEVETAL OO
tov alyopiBpo BK. To emimedo €16680v vAomoteiton amd Eva Ypappiko enimedo, mov epapuolel Evav amhd
TOAMOTAAGLOGHO HETAED E1000MV KOl GUVORTIKOV POopdv Kol TPOcHETEL TNV TOAMGN. XTI GLVEYEWN, TO
KpLPO eminedo epapuodlel T cuvaptnon vrepfoikng epamtouévng (tanh) otig €£660Vg TOV TPONYOVUEVOL
emmédov. Téhog, 10 emimedo €£660v elvar €va ypappukd eminedo. Tapakdto eaivetor 0 cupBoMoUOg TOL

P OLOTOONKE:

dip = O1G0TOON ETTEIOV ELGOIOD
dhigien = O1ATTOON KPOLYPOD EMITEOOD

Aowpe = OlG0TOON EMTEIOD £E000D

Wiz 016VVOUO. POPAY OTO TO ETUTEDO EIGOIOD GTO KPVYO ETITEIO

W3 oLavoaua Popwy Oxo T0 KpOPO ETITEOO TTO ETITENO ECOOOD
O1 018popeg apyltekToViKEG oV €EeTdoBNKAY KPATOUV oTOOEPES TIG Ol0GTACELS TOV EMMEdMV
€16000V Ko €£0060V Kot SOKIUALOVY OLPOPETIKEG SLUCTACELS OTO KPLPO EMinedo, OTMG QPOAIVETOL GTOV

TOPOKATM TIVoKa:

Awotdaceig Emméowv
ApyrrekToviKi Eninedo Exc660v Kpvp6 Eninedo Eninedo EE0d0v
1 inpuu inpuu outpur
2 dinput dinpm div 2 doutput
3 dinput dinput div 4 doutput
4 dinput dinput -2 dourput
5 dinpul dinput -2div3 doulpul
6 dinput dinput -4 doutput
7 dinput (dinpuz‘ + doutput) - 3div2 doutput
8 dinput (dinput + dom‘put) -2div 3 doutput

Ov apyrtektovikég e€etdotnkay oe 0600 meWPapata: oto 1o 0 SvOGUATO YOPOKTIPIOTIKOV
ovvtifetal amd v apykn AEEN, To Ao AEENG Kot To PEPOG TOV AGYOV, VM 0T0 20 cuvtifevtal amd TV
apykn AEEN, 1o oTéAEYXOG TNG KoL TO HEPOG TOL AOYov. AkoOua efetdotnov 2 TEXVIKEG, OUTH TOV
HOVOYPOUUATOV KOl 0TI TOV OYpapdTev. METpo GUYKAIGNG TOV SIKTOOV OTOTEAECE TO HECO TETPOYDVIKO
opdipa (MTE).

INao 10 1o cOvoro dedopévav, eEetdotnKoy OAQ TO PYLTEKTOVIKG oynpata, yio Kabévo omd to 2
TEWPAPOTA LLE TNV TEYVIKT TV povoypappdtov. H didotacn tov emmédov 160000 givar 26 v 1 d1dotaon
Tov gmmédov e£0dov 3 (yw Tnv TaEvounon tov tweets oe 3 kKAdoeg). To 75% twov tweets Tov GuVOLOVL
YPTOWOTOMONKE Yo TNV EKMAIOEVOT] TOV OIKTVOV, €A T0 25% Yo Tn dokun Tov. Xpnowworomdnke n
pébodog K-fold cross-validation, yio K=5. [Tapatmpnnke 61t ke apyrtektovikn cuvékiive o€ éva TePiTOv
0o MTZ, katd péco 6po ico pe 0.147. Metd t ovykhion tov diktHov, Eekivnoe n pdon g doxyng Tov. H
KoAOTEPT 0mdd00T| EMTEVYONKE KOt Y1l To. 2 TEWPAUATO Y10 TNV 31 OPYITEKTOVIKT], L€ TOGOCTO EMTUYING OTIS
npofréyelg ico pe 70%.

I'a 10 devTEPO GHVOLO dedopévamv eEgtdotnkay Eava OAES Ol aPYITEKTOVIKEG, Yo To 1o melpapa, Le
TG dVo TeYVIKEG (Hovoypdupota Ko drypappata). H dibotaon tov emumédov e1c6dov givar 27 evd 1
dudotaomn Tov emmédov €£600v 2 (yio v tagvounon Tev tweets og 2 kKAdoglg moAkotntag). Kot edm, to
75% tov tweets Tov GLVOLOL YpPNCILOTOMONKE Yo TNV EKTAIOELOT TOV JIKTVLOV, EVA TO 25% Yl Tn dOKIUN
tov. Emiong, ypnowomomOnke n 5-fold cross-validation. Kéfe apyitextovikny mapatnpndnke 6t cuvékive
v 10 1o melpapo og éva péco MTX ico pe 0.166, evad yia to 20 meipapa o éva péco MTZE ico pe 0.176.
Metd) ovykAon Tov diktHov, Eekivioe 1 @don g dokyng tov. To cuykekpipuévo chivoro dedopévav dev
£dmwoe 1660 KOVOTOMTIKA amoTeEAEGHOTA 0G0 TO Tponyovpevo: H kakdteprn amddoon emitevydnke yio v
In teyvikn pe v 1n apyltektoviky, pe mocootd emtvyiag otig npoPréyels ico pe 63.84%. Ia) 21

TEYVIKT,) 51 ApYLITEKTOVIKT £00GE TNV KAADTEPN AtOd00N UE T060aTO emttvyiag 58.35%.

Elvar @avepd amd ta mopondve amoteAécpota 0Tl To koo Ae&ildyio A0ym Tov Kotvol 0éuatog TV
tweets oL €ival TOPOV GTO TPMTO GVVOAO O£d0UEVMV EIVOL TO YAPOKTNPIOTIKO EKEIVO TOL 00NYNCE GTNV
KoAOTEPT amddoon tov. To debtepo chvoro dedopévev egivar oyetikd pikpd oe péyebog, to omoio oe
ouvdvacUd He TNV ToKIAia TV BEPdTOV Kot TEPLEYOLEVOV TV tweets ToL TO GUVIGTOUYV, 00N YEl 68 amovcia
EMOVAANYNG KOV Aé&e@V ava tweet Kol GUVETMS G€ 0OLVALIC TOV VELPOVIKOD SIKTOOVL VO KAVEL TOVG
KATAAANAOVG CLUGYETICUOVG. AVTO EMOEVAVETOL OKOUO TEPIGCOTEPO WE TNV TEYVIKN TV drypappdtov. H
TEYVIKT LT GLVNOMG divel KOADTEPEG AMOOOGELG GO QLT TOV LOVOYPOUUAT®V, ®GTOCO GTNV TEPITTMON
pog ovpPaivel to avtiBeto, eEotiog Tov pKpoL peyEBOLS Kot Tng amovsiog Kowvoy BEpatog 6to devTEPO
oUVOAO, TO omoio Oyl povo de Ponbaet otn cuoyétion TV Stypapidtoy (K TOV 0TolmV KOWd StypapLioto
ondvia eravolappdvoviar) oAAd xavel kot TAnpoopio mov Bo PrTopovce vo £yl OMOKTNGEL TO diKTVLO amd
TO GUGYETIOUO TOV UEPOVOUEVOV AEEEWV.

M 16éa yuo Bedtioon eival, Kot apyds, xprion HeyaAdtepov cuVOLOV SESOUEVOV 1| GUVOL®V LIE
tweets Kovov 0&partog. Xtn cuvéyela, pmopel va SOKIHOOTOOV TPOTOTOWCELS GTN OOUT TOV O1KTVOV: £val
GUVEMKTIKO SikTvO eivon dtaitepa KATAAANAO Yoo TV Taivopmon mpotimwv. AkOpo pmopel vo yivel
Bedprnon GAL®V YOPOKTNPIGTIKAV TOV EVOEXOUEVMS VO 001 YIGOVV GE KAADTEPT AOS0GT), OTMG 1| GLYVOTI T
eueavions tov Aéemv N 1 B€om Tovg ToL EVOEXOUEVME VO akoAoVBEl Kdmolo dopn péca oto tweet (T.y.
KOplo copa tweet — hashtag mov exppdlel cvvaicOnua). Téloc, n vAomoinon ¢ uebBddov Tov user profiling
OMAO™N 1 OMpovpyia EVOG TPOPIA avd xprotn evdeyouévmg vo Bonbnoet ot Pelticoon g amddoong Kabdg
£€to1 Bo AapPdvovior emmALOV LIOWYIV OTATIOTIKA TOV YPNOTN Kot 1 mOavotnto Vo eKQPACTEL

OeTikd/apvnTikd/ovdéTepa M TPOg Eva BEuaL.

10

Abstract

The subject of this diploma thesis is the automatic detection of the polarity — also known as
sentiment analysis — of the opinion which is expressed by users on web. Twitter consisted the web source of
our interest. Twitter is an online social networking service that enables users to publish and read short
messages known as fweets. Sentiment analysis aims to classify correctly text samples according the overall

polarity of the opinion they express (positive, negative, neutral).

In order to achieve the sentiment analysis of tweets, we implemented a supervised online learning
system, based on artificial neural networks. This system consists of two main parts: the first one pre-
processes the tweets, while the second one implements the learning procedure based on the neural network.
The first part aims to the refinement and cleaning of the tweets from noise and useless information, as well
as to their transmutation into a form which is comprehensible by a machine. This is achieved through the
extraction of specific features and the construction of the corresponding vectors. The second part, the part of
the neural network, is implemented by a multi-layer perceptron, which is trained by the error back
propagation algorithm, and aims to the correct classification of the tweets into two or three discrete classes,
each one of them corresponds to the opinion polarity expressed in each tweet (positive, negative or positive,

negative, neutral).

Keywords: sentiment analysis, user opinion mining, machine learning, supervised learning,
artificial neural networks, mutli-layer perceptron, back propagation algorithm,

Twitter, data mining.

11

12

Acknowledgements

This diploma thesis was conducted in the Image, Video and Multimedia Systems Laboratory under
the supervision of Professor Stefanos Kollias, whom I would like to thank for the opportunity he offered me
to get involved with a very inspiring topic of computer science, that combines areas of my great interest -

machine learning and linguistics - and that motivated me to explore them in depth.

Furthermore, 1 would specially like to express my appreciation and gratitude to the Research
Director of ICCS of NTUA, Kostas Karpouzis, for his guidance and precious support during the whole

process of this thesis, his inspiring ideas and valuable feedback.

I would also like to thank deeply my family, my parents Sofia and Manolis, my brothers Thodoris
and Giorgos, and my grandmothers Kaiti and Eleni, who have been on my side on the bad and the good

times, and have always supported my choices.

Finally, a big thank you goes out to all the friends who have accompanied me so far, and especially

Marina, Efigianna, loanna, Anna, Antonis, Giannis, Giorgos and Kostas.

13

14

Instead of a Preface

The sixth member of the crew cared for none of these things, for it was not human. It was the highly

advanced HAL 9000 computer, the brain and nervous system of the ship.

Hal (for Heuristically programmed ALgorithmic computer, no less) was a masterwork of the third
computer breakthrough. These seemed to occur at intervals of twenty years, and the thought that another one

was now imminent already worried a great many people.

The first had been in the 1940s, when the long-obsolete vacuum tube had made possible such
clumsy, high-speed morons as ENIAC and its successors. Then, in the 1960s, solid-state microelectronics
had been perfected. With its advent, it was clear that artificial intelligences at least as powerful as Man's

need be no larger than office desks - if one only knew how to construct them.

Probably no one would ever know this, it did not matter. In the 1980s, Minsky and Good had shown
how neural networks could be generated automatically — self replicated — in accordance with any arbitrary
learning program. Artificial brains could be grown by a process strikingly analogous to the development of a
human brain. In any given case, the precise details would never be known, and even if they were, they would
be millions of times too complex for human understanding. Whatever way it worked, the final result was a
machine intelligence that could reproduce - some philosophers still preferred to use the word “mimic” -
most of the activities of the human brain - and with far greater speed and reliability. It was extremely
expensive, and only a few units of the HAL9000 series had yet been built; but the old jest that it would

always be easier to make organic brains by unskilled labor was beginning to sound a little hollow.

Hal had been trained for this mission as thoroughly as his human colleagues - and at many times
their rate of input, for in addition to his intrinsic speed, he never slept. His prime task was to monitor the
life-support systems, continually checking oxygen pressure, temperature, hull leakage, radiation, and all the
other interlocking factors upon which the lives of the fragile human cargo depended. He could carry out the
intricate navigational corrections, and execute the necessary flight maneuvers when it was time to change
course. And he could watch over the hibernators, making any necessary adjustments to their environment
and doling out the minute quantities of intravenous fluids that kept them alive. The first generations of
computers had received their inputs through glorified typewriter keyboards, and had replied through high-
speed printers and visual displays. Hal could do this when necessary, but most of his communication with his
shipmates was by means of the spoken word. Poole and Bowman could talk to Hal as if he were a human
being and he would reply in the perfect idiomatic English he had learned during the fleeting weeks of his

electronic childhood.

Whether Hal could actually think was a question which had been settled by the British
mathematician Alan Turing back in the 1940s. Turing had pointed out that, if one could carry out a

prolonged conversation with a machine - whether by typewriter or microphone was immaterial - without

15

being able to distinguish between its replies and those that a man might give, then the machine was thinking,

by any sensible definition of the word. Hal could pass the Turing test with ease.

The time might even come when Hal would take command of the ship. In an emergency, if no one
answered his signals, he would attempt to wake the sleeping members of the crew, by electrical and chemical
stimulation. If they did not respond, he would radio Earth for further orders.

And then, if there was no reply from Earth, he would take what measures he deemed necessary to
safeguard the ship and to continue the mission - whose real purpose he alone knew, and which his human

colleagues could never have guessed.

Poole and Bowman had often humorously referred to themselves as caretakers or janitors aboard a
ship that could really run itself. They would have been astonished, and more than a little indignant, to

discover how much truth that jest contained.

Excerpt from the book “2001: A Space Odyssey”
Arthur C. Clarke, 1968 [33]

16

Contents

J W ET1 17 | LV | TP ceseesssecssseessnesssessnsnessnsesasssnsens ceseesssecssnsessnssssessnsesnnnee 1
Exterapévn Mepiinyn..... cessseccseseeecee sesecssescssnssssessnnsessssesessssaseesssans 3
Abstract.......... cessseccsssaceces cesssecessaeecssaseeesessesssssnsssanee 11
Acknowledgements cesseeecsesenenee cesseeecseseeenee cesseccseseecseennaee .13
Instead of a Preface...........cccceeeee... cesscecessseecesssseessssessssssnssessssssssssaseeessssesaes 15
Contents.....ccoeeeneesnecenne cesecssseessseessncssassnsnessnessnesssaees cesecessecssseessneessnesssncessaesssnssssassssnssnsas 17
List of Figures cesseesesssecessnesssnsesnnne cesecsssesssseessasennsnsaes ceseceesssseeeessnnaseeenns 21
List of Tables.....c.ccceeeeeerueecinecesnecenncene cesecssseesuseessasesnnssanaes cesessssesaaaeeeees 25
1 Sentiment Analysis and Twitter........cceeceeeeeecennceee cesecsssecsuscessasessnssanaes ceseecessanneeeessnanee 29
1.1 Machine Learning.......ooeeeueiiiiiiiiiiieie e 29
111 Definition. ceeeeeeeeeeiiiieiiiiiiiiiieiieeieieeeeeeee e 29

1.1.2 THEOTY .t e 30

1.1.3 APPIOACHES. .ottt ettt e 30

1.2 Sentiment ANALYSIS. . ceeeeueeiiiiitiiiiiiiiiiiteie i 33
1.2.1 DO iNitiON. ceeeetiteisiie ettt ettt e e e e 33

1.2.2 Historical Background and Learning Approaches.........oeeeeeiieiiiieiniiiniiiiiiiiiiiiiiiiiiiiieeens 34
1.2.2.1 Supervised Learning.ue.eeeeieieiiiiiiiieiee i eieee it eie e e et eieiiee e eeeeaens 34

1.2.2.2 Semi-Supervised Learning.....oue.ueeeeeueeeieiieiieiiiiiieiiiiee i eeiee et eieie e eie i 35

1.2.2.3 Unsupervised or Weakly Supervised Learning........ooveeveeieeiieensiiiiiiiiiiiiiiiiiieiieieeeeenee. 35

1.3 Twitter Sentiment ANALYSIS. . ..eueueeeieeieeiieeiiie ittt eeet ettt eeieeeeeieeeiieeeeiieeeeeeeeeeiinens 36
1.3.1 MiCTODIO@@ING. cueeuiiiiiiiiiiiii e 36

1.3.2 Twitter Sentiment ANAIYSIS. ..ouueeeeeeieieiieeisiieeiee ittt ettt eee e eite et e ee e e, 37

2 Artificial Neural Networks cessesessannnenes cesecsssesensesenns ..39
2.1 Human Nervous SYSTOM.....eeueeeeiineinieiiiiiiiiiiieiitiiieiieiieiieiieeie ettt cie i e 40
2.1.1 BaSIC StIUCIUIC. .ot 40

2.1.2 Anatomy and PhySiolOgY......coeesiiiiiiiiiiiiiiiiiiiiiiiesee 42

2.2 INOUTOMS ettt ettt et et s e et e sttt ettt ettt et e e aee e e 43
2.2.1 Neuron ModelS.....ccoeeniiiiiiiiiiiie e 43

17

2.2.2 ACtVALION FUNCHON. c.uuttiiiiiiiiiiiiiiiiiiiiiieeeeeeee ettt eee ettt eeeeeeeeeeeeeeeeeenenann 47

2.2.3 Stochastic Neuron Model.........ccuiiiiiiiiiiiiiiiiiiiiiiieciieis e 50
2.2.4 Definition of Neural NetWorK........oeeeeiiiiiiiiiiiiiiiiiiiiieiiseseseeseieee 51
2.3 Neural Networks as Directed Graphs........oeeeeeseeesiiiiiiiiiiiiiiiiiiiiiiicsiiieiic 51
24 FeedbacK. . ..ooooueiieiiiiiiiiii e 54
2.5 Neural Networks Architectures. ... eeeeeeieiiiiiiiiiiiiieieees e 55
2.5.1 Single-layer Feedforward NetWoOrk.......ccooeeeeeiiiiiiiieiiiiiiiiiiiiiiiiiiiiiieeiiiiiiiciee 55
2.5.2 Multi-layer Feedforward NetWork........oooceeeeiieiiisiiiiiiiiiiiiieeiiieiec e, 56
2.5.3 Recurrent Neural NetWork.....oooeeeeeeii e 57
2.6 Knowledge RepreSentation. ... eeees e 58
2.7 L.earning ProCedUIES....cu.ueenueeneiiiiiiiiiiiiiiiieiie e 60
2.7.1 Learning with a Trainer or Supervised Learning........oecueeeeueeeieieiiiiiiiiiiiiiiiiieiiciieiiie e 60
2.7.2 Learning Without TralNer .. ee.ueeeeieiiiieeiieiee ettt eee i e eeeieaens 62
2.7.2.1 Reinforcement Learning......oeeeeeeieeiniinieiiiiiiiiiiiiiieiiieiiiii i 62
2.7.2.2 Unsupervised Learning. . ..ceeuueeeesiiieiiieiieiii e i eieie et eee i et eeeee i e e e eeiaaes 63

2.8 Rosenblatt's Perceptron. ... e eeeseeeieiiiiiiiiiiiiiiiiiiiiieeieeisee e 64
2.8.1 The PerCePtrON. cueeeessiii et eie ettt eie et eeeeeaeeeeanaeee 64
2.8.2 Perceptron's Convergence Theorem. . e eeeeeeseiiiiiiiiiiiiiiiiiiieiiiiiiieeiieee 66
2.8.3 Summary of Perceptron's Convergence Algorithm.......oceeeeeieeeieiiiiiiiiiieiieiieiieeeeeeeee 70
2.9 Multi-layer Perceptron. ..ooueueeaeeieiiiiiiiiiiiiiiiiiieeeeeies e 72
2.9.1 Definition. e, 72
2.9.2 Batch and Onling Learning. ..oo.eeeeeeeeeieiiiiiiiiiiiiis i eeeee e e e e e eeeeiaeee 74
2.9.2.1 Batch Learning. . .o.ceeeieueesiiieiiiiieieie ittt eee et ee et e e e e e e e 75
2.9.2.2 ONliNe [LearNING. euueieieeie ettt ee et se e ese e e 76

2.9.3 Back Propagation.......cceeeeseesiiiiiiiieeeiese e 77
2.9.3.1 The AIGOTIthM...ccuisiiiiiiiiiiiiiee s 77
2.9.3.2 Phases of BK AlgOrithm......ceaeeiiiiiiiiiiiiiiceeiiieseeise 83
2.9.3.3 Activation FUNCHON. c..eeeeeiiiiiiiiiieees s 84
2.9.3.4 Learning Rate.....ooceeeeieeiiiiniiiiiiiiiiiiiiiieiiieiiii i 86
2.9.3.5 Termination Criteral. . e esieseeiiiie i 88
2.9.3.6 SUMMATY.c.eieiiiieie et ae 89

2.9.4 Cross-Validation........oueeeesiiiiiiiiiiiiseiese e 92

18

2.9.4.1 BASIC MEtNOQ.uuuuiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeee ettt 92

2.9.4.2 Early Stopping Method........ooeueeiiiiiiiiiiiiiiiiiiiiiiiicieisie 94

3 Model's Implementation cesecsssecssseessaseansensaes cesssecessseesssaneesessecsssasesssssesssnnnas 99
3.1 Data ACQUISTHON. eeueeeieieiii s 101
3.2 Pre-processing and Feature EXtraction.......eeeeeeneeeinieiiiiiiniiiiniiiiiiiiiiiiiiiieiiieiieiecieeieinee 105
3.2.1 Features of our MOdel....ceeueesiiiiiiiiiieiieee s 105

3.2, PrePIOCESSING . ettt 110

3.2.3 Feature EXtraction. .ooeeeeeineiniiniiiiiiiiiiiieiiieiieiieiieieieeeiei i 116

3.3 ATCRIEECTUIE. oot 119
3.3.1 INnpUt Preparation. . . e e et e 119

3.3.2 Multi-layer Perceptron. . ue e eeieiiieeiiiiiiiiiiiiiiieiii i 123

3.4 Computational ComMPIeXity....oeeueieniuieniiiiiiiiiiiiiiiiiiiiiiiiieiiseiieee e 126
3.5 Performance Evaluation.....eueeeeeeeeeisisiiiei it ans 129
3.6 IMpPlementation....o.eeeueeeniiiiiiiiiiiiiieieiei e 130

4 Experiments and Results... eeee 131
4.1 Computer System CharaCteriStiCs. e uueeueririieiiieiiiiiiiieeeiee ettt eieeeiiee et eieieeeiee e eeiseiiiaaenn, 131
4.2 Training and Testing COrPUS......ueuieiieiiiiiiiieieseee e 132
4.3 Training and Testing ParamEterS. . eue.ueeeeeseeeeeesieeiitie e ittt eie e et eee e eeeeeeete e e e e eeieieeeeeenne, 133
4.4 Experiments and TeChNIQUES.ceeuieiiiiiiiiiiiiiiiieisee i, 134
4.5 Examined ATChiteCtUIeS. ...cuueeeiiiiiiiiiiiiieee i 134
4.6 RESUILS...coueieiiiiiiiiiis e 135
4.6.1 Results for the Dataset balanced referendum dS.........ccceeceeieiiieiiiieiiiiiiiiiieiiiieieieiieee 135
4.6.1.1 Examined ArChiteCtUIeS. . .uuuuesiesieiiiisiieieseee e 135

4.6.1.2 Summarized RESUIS.....coueeeuiiiiiiiiiiiieiiie ittt eeie e 136

4.6.2 Results for the Dataset various _cONteNtS dS........ceueeeueieiieiiiiiiiiieiiiiiiiiiiiieiiiiiiieeieiieeeeeenne, 139
4.6.2.1 Examined ArChiteCtUIeS. ..uuaresieiieiiisieeieseee i 139

4.6.2.2 Summarized ReSUltS......ooeeereiiniininiiniiiiiiiiiiiiiiiiiiiiiiiiciiiii e 139

4.7 DiSCUSSION. teuiaui et 141
4.8 Ideas for Improvement and Future DireCtionS......eeeeeeeieeeneiinniiiiiiiiiiiiiiiiiiiiiiiiciieeiiceeeee 144
4.9 CONCIUSION. teeurieietiietiiitiiti ittt 146
Bibliography........cceccceeueeenee ceseessscesncene ..149
Appendix sssesssesssessnsiensasnannns 153

19

A. Table of the 100 Most Common Emoticons in Twitter Considered by our Model...........ccvueeeennn....... 153

B. Table of 50 out of the 664 Acronyms Considered by our Model......ooooeuvevuveeeeeeeiiiiiiiiiiiiiiiiieeiieiiinnn, 154

C. Table of the 320 English Stop Words Considered by our MOdel.........uuveeeeeeeieiiiiiiiiiiiiiiiiiiaaaeeeeieinnnnn. 155

20

List of Figures

Figure 1: Schematic representation of human NervVOUS SYSLEM..............cccueeeureeivreeieeeeieeenieeeeeenenees 40
Figure 2: Structure of a typical NEUFON [34]........ccccuoovouiiiiiieeeiie et 41

Figure 3: Architecture of the cerebral cortex. Some of the main sensory areas are the following:

Motor cortex: areas 4, 6 and 8; Somatosensory cortex: areas 1, 2 and 3; Visual cortex: areas 17, 18

and 19; Auditory cortex: areas 41 and 42 [35].......ccoueovoiiiiiiiiiiie et 42
Figure 4: Non-linear neuron MOAeL.........................ccccueeeuiiiiiieiiiieeeiee e 44
Figure 5: Affine transformation due to the presence of bias. It is vk = bk at uk = 0......................... 46
Figure 6: Non linear neuron model: the weight wk0 corresponds to the bias bk.............................. 47
Figure 7: Plot of the threShOId fUNCIION.ccoooviuiiiiiiiieieeee et 48
Figure 8: Plot of the SIGMOId fUNCLION.ccccueeiiuiieiiiiieciie e 49
Figure 9: Basic rules for the design of signal flOWCRAFTS...............ccccoociiioiiiiiiiiiieieee e 52
Figure 10: Signal flOWCRAFt Of @ ROUFOMN.................cc.ooveieiiiaiiieiieeieee e 53
Figure 11: Architectural graph Of G NEUFOM................ccc.covvuieeeieeeeiee e 53
Figure 12: Signal flowchart of a system with single-loop feedback.................c..ccccooveeciiieencnnnn... 54
Figure 13: Feedforward network with a single layer of NEUTONS...............cccccccevvieiviiiiiiniiiee, 55
Figure 14: Fully connected feedforward network with a hidden layer and an output layer............. 56
Figure 15: Recurrent network without auto-feedback loops and hidden neurons............................. 57
Figure 16: Recurrent network with hidden NeUFrONS.ccccueeeuieeieieiiieecieee e 58

Figure 17: Schematic diagram of supervised learning; the gray part of the diagram consists a

JECADACK LOOP............ocooeieeieeee et ettt e et e e eaaaeens 61

Figure 18: Schematic diagram of reinforcement learning, both the learning system and the

21

environment are in the feedback lOOP...................cccocueiiiiiiiiiiiiiiiiit e 63

Figure 19: Schematic diagram of unsupervised [earning.....................ccccocceveveeveeeiiesceeaieenieeeennenns 64
Figure 20: Signal flowchart Of PErCePIFON................cccoeeeuieiiiieeiieeeee et 65
Figure 21: Hyperplane as decision boundary for a binary classification task.................................. 66
Figure 22: Equivalent signal flowchart of Perceptron................cccooevevoueeiienieiiieiieeiieeieeee e 67

Figure 23: (a) Pair of linearly separable patterns. (b) Pair of non-linearly separable patterns......68
Figure 24: Architectural graph of a multi-layer perceptron with two hidden layers......................... 73

Figure 25: The flow directions of the two basic signals in a multi-layer perceptron: forward

propagation of operating signals and backwards propagation of error signals............................... 74
Figure 26: Signal flowchart describing the details of output REUFON j................cccoevveviiieecieeneannn... 78

Figure 27: Signal flowchart describing the details of output neuron k, which is connected to hidden

FLOUFOM] .veeeeeeee e e e et e et e e et e e e ettt e e et e e e e e s sss e e e e anss e e e e e ssb e e e e ensbe e e e e ssseee e e e nnstaab s bbb aaaaaeaeeeeeens 80

Figure 28: Signal flowchart of part of the conjugate system that executes the back propagation of

@FFOF SEQIALS ..o ettt e et e e e e at e e e st e ettt e ettt e ettt e etteeennteeentt e e e e e ennraeaaeeans 82
Figure 29: Signal flowchart presenting the effect of momentum constant o. (in the feedback loop)..87

Figure 30: Summary plot of the learning procedure with error back propagation. Top: the
feedforward phase. Bottom: the error back propagation phase..................ccccccoeeeveeniciieninnenincn. 90

Figure 31: Plot of the early stopping rule based on cross-validation....................ccc..ccccceeeeeuneennn... 95

Figure 32: Plot of multiple cross-validation method. For a given test, the colored data subset is

used for the model’s validation. The model is trained by the rest of the data...................c............... 96
Figure 33: Schematic representation of the implemented model.....................cccccoocvvviniiiniiannnc.n. 100

Figure 34: Schematic representation of the sequence of actions taking place for the acquisition of

AALA JTOM TWIHLOToooeee ettt e e et e et e et e e et e e e stb e e e e e e estbaeeeeeenntssaeeens 101

Figure 35: “Twitter bird in real life”. Humorous portrayal of the language used in Twitter by Scott

22

HAMPSON [30] ..ot ettt ettt e ettt e et e et eenee e 110

Figure 36: Flowchart of the pre-processing procedure. The output of this procedure (the pre-
processed tweet) is a cleaned version of the original tweet, in the sense that noise has tried to be

eliminated while the meaningful information has tried to be maintained........................cccccccc.... 111

Figure 37: Schematic representation of the pre-processing procedure (as a black box) of a random
raw tweet from our dataset. The output of this procedure is a cleaned tweet containing the

meaningful information of the OFrigiNAl tWeef...................ccceeecueeeiieeeiiieeeieeeie e 115

Figure 38: Schematic representation of the feature extraction process (as a black box). After
extracting the features of each word consisting a tweet, the latter is transformed into a feature

VBCTOF: ..o e ettt e 117

Figure 39: Procedure of feature extraction. The stems, lemmas and POS tags of a word are

extracted and combined in order to construct the feature vector of a tweet...............cccc..ceeeeune.... 119
Figure 40: Transformation of the feature vectors' data type through a hash function.................... 120

Figure 41: Summary of the sequence of stages of tweets' processing procedure before feeding the
INPUL Of the NEUFAL MEIWOFK..............ooeeeeieiiiieiee ettt te e et e e e e e araeaeeens 122

Figure 42: Architecture of the network. In this example, the inputs of the network are fed by
Digrams Of the fEATUTE VECIOT...............c..cccueeeuiiiieeiieiee ettt 124

Figure 43: Example of network with the architecture 5. The input vector is consisted of bigrams of
the feature vector [f1, f2, ..., [9]. The dimension of the input layer is 8; the dimension of the hidden
layer is (8-2 div 3) = 5, and the dimension of the output layer is 3, as the network is able to classify

the input vector into one out of three classes (positive, negative or neutral)...................cc............ 126

Figure 44: Distribution of success rates of experiments 1 and 2, for the technique of unigrams and

the dataset balanced referendum _dSs..................cccocccuveviiiiiiiiiiiii e 143

Figure 45: Distribution of success rates of experiment I, for the techniques of unigrams and

bigrams, and the dataset Various CONIENIS dS.............cc.cccueivieiiiiiiiiiieeiieee e 144

23

24

List of Tables

Table 1: Overview Of the dAUASELS...............cc.cccueeeieieeiie ettt e e aaaee e e e 104
Table 2: The part-of-speech (POS) tags considered by our model...................cccccocciiroiiniiinnnnnn. 109
Table 3: Overview of the examined ArCRILECIUTES................ccccoveeieeeieiaiieeie e 125
Table 4: Summary of computational complexity of all individual tasks of the model...................... 129
Table 5: Computer SYStem CAATACIEFISIICS.cccueeeeueeeecieeeeiieeeeiee e e et e eae et e e e e earaeee e e 131
Table 6: Overview of the training and teStNG COVPUS...........cccoceroiieiiiciiiieiieeniee e 132
Table 7: Overview of the traiNning PAVAMELETS................cccocceeieieiieiieeeeeeiee e eaee e e 134
Table 8: Overview of the examined ArCRILECIUTES.cc.ccceueeeiiieeiiieeie e 135

Table 9: Overview of the examined architectures of the multi-layer perceptron for the dataset

balanced 1eferendum_dS..................ccoccoiiiiiiiiiiiiiiii e 136

Table 10: Summarized results of dataset balanced referendum_ds, for experiments 1 and 2, with the

LECHNIQUE Of URMTGFAMS. ...ttt ettt e e et e b e e etaeeabeeensseeeensseeas 138

Table 11: Summarized results of the predictions of the neural network for the dataset
balanced 1eferendum_dS..................ccoccoiiiiiiiiiiiiiiii e 138

Table 12: Overview of the examined architectures of the multi-layer perceptron for the dataset

VAVIOUS _CONMIOMES (S oeeiueieiiie ettt ettt e e e e e et e ettt e e stee e st eeesaeeetseeensseesnsaeeeeennenees 139

Table 13: Summarized results of the dataset various contents ds, for experiment 1, with the

techniques of UNiGrams And DIGFAMS.cccoocciiiiiiiiiiiii ettt 140

Table 14: Summarized results of the predictions of the neural network for the dataset

VAVIOUS _COMIOMES (S oeeiueieiiie ettt ettt e e e e et e ettt e e sae e e tteeetaeeetaeeensseesnseeeeeennenees 141

Table 15: Table of the 100 most common emoticons in Twitter that were considered by our model.

25

Table 16: Table of 50 out of the 664 acronyms that were considered by our model........................ 154

Table 17: Table of the 320 english stop words that were considered by our model......................... 155

26

27

28

Sentiment Analysis and Twitter

Sentiment analysis is a subfield of text mining which aims to the identification of the user's
sentiment with respect to a specific subject. The subjective information is extracted from texts by using a

combination of machine learning and natural language processing techniques [1].

In this chapter, we are going to speak about machine learning and describe its approaches.
Afterwards, we will speak about sentiment analysis, the historical background as well as the learning
approaches that have been used for this task. Finally, we will speak about microblogs and, especially, Twitter.
We are going to describe the special characteristics that Twitter gathers and make it an ideal source for the

task of user opinion mining, which motivated us for this work.

1.1 Machine Learning

1.1.1 Definition

Machine learning is an approach to the development of algorithms of artificial intelligence that
produce predictions by exploiting known properties learned from a certain dataset [2]. It is a subfield of
computer science that explores the construction and study of algorithms that can learn from and make
predictions on data. Such algorithms operate by building a model from example inputs in order to make data-

driven predictions or decisions, rather than following strictly static program instructions [3].

29

Machine learning evolved from the study of pattern recognition and computational learning theory in

Artificial Intelligence.

1.1.2 Theory

A core objective of a learner is to generalize from its experience. Generalization in this context is the
ability of a learning machine to perform accurately on new, unseen examples or tasks after having
experienced a learning dataset. The training examples come from some generally unknown probability
distribution (considered representative of the space of occurrences) and the learner has to build a general

model about this space that enables it to produce sufficiently accurate predictions in new cases.

Computational learning theory is the computational analysis of machine learning algorithms and
their performance. Training sets are finite and the future is uncertain, hence learning theory usually does not
guarantee the performance of algorithms. Instead, probabilistic bounds on the performance are quite

common. The bias—variance decomposition is one way to quantify generalization error.

In computational learning theory, a computation is considered feasible if it can be done in
polynomial time. There are two kinds of time complexity results. Positive results show that a certain class of
functions can be learned in polynomial time. Negative results show that certain classes cannot be learned in

polynomial time [4].

1.1.3 Approaches

Below we describe the approaches of machine learning [3].
* Decision tree learning

A decision tree is used as a predictive model, mapping observations corresponding to an item to

conclusions about the item's target value.

* Association rule learning

Association rule learning is a method for discovering interesting relations between variables in large

databases.

¢ Artificial neural networks

An artificial neural network (ANN) learning algorithm, usually called “neural network” (NN), is a

30

learning algorithm that is inspired by the structure and functional aspects of biological neural networks
(nervous systems). Computations are structured in terms of an interconnected group of artificial neurons,
processing information using a connectionist approach to computation. Modern neural networks are non-
linear statistical data modeling tools. They are usually used to model complex relationships between inputs
and outputs, to find patterns in data, or to capture the statistical structure in an unknown joint probability
distribution between observed variables. ANN is the technique that we are going to use in our application

and they are further described in chapter 2.

* Inductive logic programming

Inductive logic programming (ILP) is an approach to rule learning using logic programming as a
uniform representation for input examples, background knowledge, and hypotheses. Given an encoding of
the known background knowledge and a set of examples represented as a logical database of facts, an ILP
system will derive a hypothesized logic program that entails all positive and no negative examples. Inductive
programming is a related field that considers any kind of programming languages for representing

hypotheses (and not only logic programming), such as functional programs.

* Support vector machines

Support vector machines (SVMs) are a set of related supervised learning methods used for
classification and regression. Given a set of training examples, each marked as belonging to one of two
categories, an SVM training algorithm builds a model that predicts whether a new example falls into one

category or the other.

* Clustering

Cluster analysis is the assignment of a set of observations into subsets (called clusters) so that
observations within the same cluster are similar according to some predesignated criterion or criteria, while
observations drawn from different clusters are dissimilar. Different clustering techniques make different
assumptions on the structure of the data, often defined by some similarity metric and evaluated for example
by internal compactness (similarity between members of the same cluster) and separation between different
clusters. Other methods are based on estimated density and graph connectivity. Clustering is a method of

unsupervised learning, and a common technique for statistical data analysis.

* Bayesian networks

A Bayesian network, belief network or directed acyclic graphical model is a probabilistic graphical
model that represents a set of random variables and their conditional independences via a directed acyclic

graph (DAG). For example, a Bayesian network could represent the probabilistic relationships between

31

diseases and symptoms. Given symptoms, the network can be used to compute the probabilities of the

presence of various diseases. Efficient algorithms exist that perform inference and learning.

* Reinforcement learning

Reinforcement learning is concerned with how an agent ought to take actions in an environment so
as to maximize some notion of long-term reward. Reinforcement learning algorithms attempt to find a policy
that maps states of the world to the actions the agent ought to take in those states. Reinforcement learning
differs from the supervised learning problem in that correct input/output pairs are never presented, nor sub-

optimal actions explicitly corrected.

* Representation learning

Several learning algorithms, mostly unsupervised learning algorithms, aim to discovering better
representations of the inputs provided during training. Classical examples include principal components
analysis and cluster analysis. Representation learning algorithms often attempt to preserve the information in
their input but transform it in a way that makes it useful, often as a pre-processing step before performing
classification or predictions, allowing to reconstruct the inputs coming from the unknown data generating
distribution, while not being necessarily faithful for configurations that are implausible under that

distribution.

Manifold learning algorithms attempt to do so under the constraint that the learned representation is
low-dimensional. Sparse coding algorithms attempt to do so under the constraint that the learned
representation is sparse (has many zeros). Multi-linear subspace learning algorithms aim to learn low-
dimensional representations directly from tensor representations for multidimensional data, without
reshaping them into (high-dimensional) vectors. Deep learning algorithms discover multiple levels of
representation, or a hierarchy of features, with higher-level, more abstract features defined in terms of (or
generating) lower-level features. It has been argued that an intelligent machine is one that learns a

representation that disentangles the underlying factors of variation that explain the observed data.

* Similarity and metric learning

In this problem, the learning machine is given pairs of examples that are considered similar and pairs
of less similar objects. It then needs to learn a similarity function (or a distance metric function) that can

predict if new objects are similar. It is sometimes used in Recommendation systems.

* Sparse dictionary learning

In this method, a datum is represented as a linear combination of basis functions, and the coefficients

are assumed to be sparse. Let x be a d-dimensional datum, D be a d by n matrix, where each column of D

32

represents a basis function. » is the coefficient to represent x using D. Mathematically, sparse dictionary
learning means the following x = Dr where r is sparse. Generally speaking, # is assumed to be larger than d

to allow the freedom for a sparse representation.

Learning a dictionary along with sparse representations is strongly NP-hard and also difficult to

solve approximately. A popular heuristic method for sparse dictionary learning is K-SVD.

Sparse dictionary learning has been applied in several contexts. In classification, the problem is to
determine which classes a previously unseen datum belongs to. Suppose a dictionary for each class has
already been built. Then a new datum is associated with the class such that it's best sparsely represented by
the corresponding dictionary. Sparse dictionary learning has also been applied in image de-noising. The key

idea is that a clean image patch can be sparsely represented by an image dictionary, but the noise cannot.

* Genetic algorithms

A genetic algorithm (GA) is a search heuristic that mimics the process of natural selection, and uses
methods such as mutation and crossover to generate new genotype in the hope of finding good solutions to a
given problem. In machine learning, genetic algorithms found some uses in the 1980s and 1990s. Vice versa,
machine learning techniques have been used to improve the performance of genetic and evolutionary

algorithms.

1.2 Sentiment Analysis

1.2.1 Definition

Sentiment analysis (also known as user sentiment and opinion analysis, opinion mining) is a
subfield of text mining which aims to the identification of the user's sentiment with respect to a specific
subject. The subjective information is extracted from texts by using a combination of machine learning and
natural language processing techniques [1]. Subjective information expressed in texts vary from opinion
attitudes to feelings expressed. The tasks of sentiment analysis include, though they are not limited to, the

following [5]:

» Sentiment classification, which classifies a given piece of text as positive, negative or neutral.
* Opinion retrieval, which retrieves opinions in relevance to a specific topic or query.

e Opinion summarization, which summarizes opinions over multiple text sources towards a certain

33

topic.
* Opinion holder identification, which identifies who express a specific opinion.
* Topic/sentiment dynamics tracking, which aims to track sentiment and topic changes over time.
* Opinion spam detection, which identifies fake/untruthful opinions.

* Prediction, which predicts people's behaviors, market trends, political election outcomes etc., based

on opinions or sentiments expressed in online contents.

1.2.2 Historical Background and Learning Approaches

In the past, text information processing focused mainly on mining and retrieving factual information,
such as classifying documents according to their subject matter. Later, in recent years, there has been a rapid
growth of research interests in natural language processing that seeks to better understand sentiment and
opinion expressed in text. There are several reasons that explain this growth. One of them is that with the rise
of various types of social media, communicating on the web has become increasingly popular, and millions
of people are able to broadcast their thoughts and opinions on a wide variety of topics, such as feedbacks on
products and services, opinions on political development and events etc. For that reason, new computational
tools are needed for the organization, summarization and comprehension of this huge amount of information.
In addition, a big number of ideas for useful applications is triggered by the discovery of opinions reflecting
people's attitudes towards various topics, and this is an additional motivation for sentiment analysis. We are

going to describe here some learning approaches and their historical background [5].

1.2.2.1 Supervised Learning

Sentiment analysis can be considered as computational treatments of subjective information such as
opinions and emotions expressed in text. In a primitive manner, sentiment analysis aims to the automatic
identification of the positive or negative opinion expressed in a given piece of text. The first approaches of
Pang et al. (2002) and Matsumoto et al. (2005) view sentiment classification as a text classification problem,
where a corpus with sentiment orientation annotated is required for the classifiers training. This is the basic
idea of supervised sentiment classification approaches. These approaches usually perform well when there is
a large enough training set. The state-of-art approach (Matsumoto et al. 2005) can achieve an accuracy
greater than 90% on the movie review data. [5] Nevertheless, this approach has several not negligible issues:
the supervised classifier trained on a specific domain, it is very possible to fail to produce satisfactory

performance when tested on other domains, while online content varies widely in domains and evolves

34

rapidly over time, making corpora annotation for each domain unrealistic (domain transfer and labeling cost

problems).

1.2.2.2 Semi-Supervised Learning

In response to the above problems, there has been a rising interest in exploring hybrid or semi-
supervised approaches, leveraging a large amount of unlabeled data and a small amount of labeled data for
classifier training. Aue and Gamon (2005) explored various strategies for training SVM classifiers for the
target domain lacking sufficient labeled data. Blitzer et al. (2007) proposed structural correspondence

learning (SCL), addressing to the domain transfer problem with [5].

1.2.2.3 Unsupervised or Weakly Supervised Learning

Unsupervised or weakly supervised approaches are mostly lexicon based, which do not require
labeled document for training. Their main idea is that the sentiment orientation of a document is an averaged
sum of the sentiment orientation of its words and phrases. Supervised or weakly supervised methods for
sentiment classification are very challenging, having taken into account the difficulties of supervised and
semi-supervised sentiment analysis. However, solutions to unsupervised or weakly supervised sentiment

classification are of practical significance owing to its domain-independent nature.

The pioneer work is the point-wise mutual information (PMI) approach proposed by Turney (2002).
Turney calculated the sentiment orientations of phrases in documents as its PMI with a positive prototype
“excellent” minus the PMI with a negative prototype “poor”. This approach achieved 84% accuracy for
automobile reviews and 66% accuracy for movie reviews. The work of Read and Carroll (2009) is also a

good example of a lexical-based approach.

Weakly supervised sentiment classification approaches are similar to unsupervised approaches as
they do not require labeled documents for training. What they do is that they typically incorporate
supervision information either from sentiment lexicons containing a list of words marked as positive or
negative (usually much larger in size than the sentiment seed words used in unsupervised approaches) or
from users feedback. Lin and He (2009) proposed a joint sentiment-topic (JST) model to detect document-
level sentiment and extract sentiment bearing topics simultaneously from text. The JST model incorporated a
small set of domain-independent sentiment words as prior knowledge for model learning, and it achieved

comparable performance to semi-supervised approaches with a percentage of 40% of labeled data [5].

35

1.3 Twitter Sentiment Analysis

1.3.1 Microblogging

Microblogging is a web service that allows the subscriber to broadcast short messages to other
subscribers of the service. A subscriber can publish microblog posts on a website and/or distribute them to a
group of subscribers. Depending on the privacy settings of the microblog, unsubscribed users might be able
to read microblog posts but not post new ones or share/comment the posts of subscribers. Subscribers can
read microblog posts online. They can also request updates to be delivered in real time to their desktop as an

instant message or sent to a mobile device as an SMS text message [6].

Micropost is a term that is sometimes used to describe a microblog post. Microtext is another term,

that describes a type of written text document that has the following three characteristics [7]:

* itis very short (typically one or two sentences)

* it is written in an informal manner and unedited for quality, and thus it may use loose grammar, a

conversational tone, vocabulary errors, and uncommon abbreviations and acronyms

e it is semi-structured in the NLP sense, in that it includes some metadata such as a time stamp, an

author or the name of a field it was entered into.

Microtexts have become omnipresent in today's world: they are notably found in online chat
discussions, online forum posts, user comments posted on online material such as videos, pictures and news

stories, Facebook newsfeeds and Twitter updates, Internet search queries, and SMS.

The content of a microtext/micropost may vary from short sentences to individual images, video or
other links. This may be the main reason for the popularity of microblogs. The major difference between a
microblog and a traditional blog is that the content of a microblog is typically smaller in both actual and
aggregated file size. The first microblogs were known as tumblelogs. Jason Kottke described tumblelogs on
October 19, 2005: “A tumblelog is a quick and dirty stream of consciousness, a bit like a remaindered links
style linklog but with more than just links. They remind me of an older style of blogging, back when people
did sites by hand, before Movable Type made post titles all but mandatory, blog entries turned into short
magazine articles, and posts belonged to a conversation distributed throughout the entire blogosphere. Robot
Wisdom and Bifurcated Rivets are two older style weblogs that feel very much like these tumblelogs with
minimal commentary, little cross-blog chatter, the barest whiff of a finished published work, almost pure

editing...really just a way to quickly publish the "stuff" that you run across every day on the web.” [8].

Microblogging is both immediate and portable, and this is why it's massively attractive. Posts are

36

brief (typically 140 - 200 characters) and can be written or received with a variety of computing devices,
including cell phones. Although most microblog broadcasts are posted as text, some microblogging services
allow video or audio posts. Microblogging is slowly moving into the mainstream. For example, in USA,
presidential candidate Barack Obama microblogged from the campaign trail using Twitter. Traditional media
organizations, such as newspapers, television channels have started to share headlines and links in
microposts [9]. Furthermore, other potential applications of microblogging include traffic and sports updates

and emergency broadcast systems.

Microbloggers post about topics ranging from very simple everyday issues to the topical issues, as
they have the possibility to use hashtags and share their opinion on a certain topic. Commercial microblogs

also exist to promote websites, services and products, and to promote collaboration within an organization.

Microblogs often offer features such as privacy settings, which allow users to control who can read
their microblogs, or alternative ways of publishing entries besides the web-based interface. These may

include text messaging, instant messaging, e-mail, digital audio or digital video [8].

Several popular microblogging services are Google+, Tumblr, Facebook and Twitter. Besides,
Twitter and Facebook are the two most popular social networks today. We are going to focus on Twitter for

this thesis and we explain the reasons of this choice in the next chapter.

1.3.2 Twitter Sentiment Analysis

Twitter [10] is an online social networking service that enables users to send and read short 140-
character messages. These messages are called “tweets”. A tweet is an expression of a moment or idea. It can
contain text, photos and videos. Millions of tweets are shared in real time, every day. Registered users of
Twitter can read and post tweets but unregistered users can only read them. Users can access Twitter through

the website interface twitter.com, SMS or mobile device app.

Twitter Inc. is based in San Francisco and has more than 25 offices around the world. The service
was created in March 2006 by Jack Dorsey, Evan Williams, Biz Stone and Noah Glass and launched by July
2006. Twitter rapidly gained worldwide popularity with more than 100,000,000 users who in 2012 posted
340,000,000 tweets per day. It also handled 1.6 billion search queries per day. Twitter was one of the ten
most-visited websites in 2013, and due to its short size, it has been described as “the SMS of the Internet”.

As of May 2015, Twitter has more than 500,000,000 users, out of which 302,000,000 are active users [9].

It is obvious that Twitter can be seen as a large source of short texts (tweets), often consisted of user
opinions, most of which are appropriate for sentiment analysis tasks by identifying user attitudes and
opinions toward a particular topic or product. Besides, the fact that it is quite common to use hashtags in
order to indicate the topic about which a user expresses an opinion, as well as the fact that Twitter limits

tweet length to 140 characters makes tweets more possible to contain pure opinions on a topic without much

37

chatter (noise). From all the above, it is quite clear that Twitter can be considered as an excellent source of

short texts containing user opinions for the task of user opinion mining [7].

Twitter microblog sentiment analysis aims to identify and detect the sentiments or emotions that are
present in a microblog post (tweet). The techniques developed for microblog sentiment analysis can also be

applied to classify social media data in a real-time manner [7].

Twitter has become a quite attractive source of data for opinion analysis due to the large amount of
information contained in tweets. However, Twitter also consists a much harder challenge than sentiment
analysis on conventional text. The main reasons for this are some particular characteristics of Twitter: the
short length of tweets (tweets are too short to be linguistically analyzed), the frequent use of informal and
irregular words, slang, misspellings and colloquialisms as well as the rapid evolution of language [7]. In
addition, we have to deal with human subjectivity, while even humans often disagree on the categorization of
the positive or negative sentiment that is supposed to be expressed on a given text. All these special

characteristics make the task of Twitter sentiment analysis a hard challenge.

Annotated tweets data are impractical to obtain. There are several ideas for the task of annotation of
the tweets. The works of Go et al. (2009), Pak and Paroubek (2010), Barbosa and Feng (2010) proposed
noisy labels or distant supervision, for example by taking emoticons or hashtags as the indication of tweet
sentiment to train supervised classifiers [1]. Other works (Agarwal et al. 2011, Kouloumpis et al. 2011)
explore feature engineering in combination of machine learning methods to improve sentiment classification

accuracy on tweets.

There have been many approaches for Twitter sentiment analysis. The most prominent of them are
Naive Bayes algorithm, Maximum Entropy, Support Vector Machines and Artificial Neural Networks. For

the present work, we explore the approach that is based on Artificial Neural Networks.

38

Artificial Neural Networks

Artificial neural networks consist the machine learning technique that was used for the
implementation of the learning procedure of our model. A neural network is a huge parallel processor with
distributed architecture, comprised of simple processing units, called neurons, and natively having the ability

to store empirical knowledge and make it available for use. It resembles the human brain in two points:

* The network receives the knowledge from its environment through a learning procedure.

* The strength of the connections among neurons, which is called synaptic weight, is used for the

storing of the acquired knowledge.

The learning procedure through which a neural network achieves learning is called learning
algorithm and its operation is modify the synaptic weights of the network in an appropriate way for the

achievement of the desirable goal.

In this chapter, firstly we are going to describe the human nervous system, from which the artificial
neural networks were inspired. Afterwards, we will speak about the neurons as processing units and the
neural networks architectures. Furthermore, we will see the ways knowledge can be represented and the
learning procedures. We are also going to describe the Rosenblatt's perceptron and the multi-layer
perceptron, as well as the back propagation algorithm that aims to train a multi-layer perceptron. Finally, we

are going to see the method of cross-validation.

39

2.1 Human Nervous System

2.1.1 Basic Structure

The human nervous system is comprised of two major subdivisions: the central nervous system
(CNS) and the peripheral nervous system (PNS). The CNS includes the brain and spinal cord. It is consisted
of the nerve cells, known as neurons, and the supporting cells, known as glial cells. The brain is the body's

control center [11].

Human nervous system can be treated as a three stages system (figure 1), as Arbid proposed in 1987.
Brain can be represented by a neural network that always receives information, processes it and makes the
appropriate decisions based on it. In fig. 1, the arrows are of two directions; the ones that are directed from
left to right indicate the forward transmission of information signals, the ones that are directed from right to
left mark the presence of feedback in the system. The receptors convert the stimuli or stimulations coming in
from the human body or the external environment through the human sensors to electrical signals (known as
impulses) that transport information to the neural network (the brain). The effector cells convert these

electrical signals produced by the neural network into aesthetic responses, which are the system outputs.

neural network

stimulus ——Jp| receivers effector cells ——)p response

—>
S

—>
(_

Figure 1: Schematic representation of human nervous system.

Ramon y Cajal (1911) [12] firstly inducted the idea of the neuron as the structural component of the
brain. Typically, neurons are 5 or 6 orders of magnitude slower than silicon based logic gates; in an
integrated circuit, events take place in the scale of nanoseconds, while in human neural network they take
place in the scale of milliseconds. However, the human brain compensates this relatively slow operating
speed of a neuron with the presence of an immense crowd of neurons and a respectively huge crowd of
interconnections among them. It is estimated that there are 10 billions of neurons in the human cerebral
cortex and 60 trillions connections (Shepherd and Koch, 1990). All these make the brain an amazingly
efficient structure. The energy efficiency of the human brain is around 107 Joule, while the corresponding

value for the best computers is greater by many orders of magnitude. There are three main types of neurons:

* The sensory neurons: These neurons are connected to receptors that are specialized to detect and

respond to various stimulations from the internal or external environment. The receptors that are

40

sensitive to changes of light, sound, mechanical or chemical stimulations serve the senses of sight,
hearing, touch, smell and taste. When thermal or chemical stimulations on the skin exceed a certain
intensity level, it is possible to cause tissue disaster, which will activate a specific category of
receptors, the nociceptors (receptors of stimulations of pain). These receptors activate the protective

reflexes as well as the pain sensation.

e The motor neurons (or motoneurons): These neurons control the muscles' activity and are involved

in all kinds of behavior, including speech.

* The interneurons: These neurons are interposed between the sensory and the motor neurons. These
nerve cells consist the majority of cells in human brain. The interneurons intermediate simply

reflexively, but they also participate in the brain's superior functions.

The glial cells were believed to contribute only in a supportive way; however today it is known that
they contribute in a very significant way to the development of the nervous system and to the operation of an
adult brain. Even though the glial cells are more in number than the neurons, they do not transmit the

information in the same way with them.

The architectural structure of neurons (fig. 2) is consisted of the cell body, which is known as the
soma, and two additional parts, called neurite. The neurite is consisted of the axons and the dendrites. Axons'
task is the information transmission from a neuron to the ones it is connected to. Dendrites' task is to receive
the transmitted information from the axons of other neurons. Both the axons and the dendrites participate in
the formation of special points of contact, which are called synapses. The neurons are organized in
complicated chains and networks, that consist the paths through which the information is transmitted in the

nervous system [11].

Dendrite
Axon terminal
Node of
Soma Ranvier
/ Axon

S

‘ Schwann cell

Nuéleus Myelin sheath

Figure 2: Structure of a typical neuron [34].

The connections or nerve endings (synapses) are the elementary structural and functional units that

41

intermediate during the interactions among the neurons. The most common type of a synapse is the chemical
synapse. Its operation is the following: a presynaptic procedure releases a chemical substance, known as
neurotransmitter, which is diffused in the synaptic junction between neurons and then acts on a postsynaptic
process. Thus, a synapse converts a presynaptic electrical signal to a chemical signal, and then it converts

again the chemical signal into a postsynaptic electrical signal (Shepherd and Koch, 1990).

In terms of electronics, such a component consists a double-door network. In traditional descriptions
of the nervous system organization, a synapse is considered a simple connection that can cause stimulation or

suspension, but not both of them to the neuron-receiver.

The brain and the spinal cord are connected with aesthetic receptors and muscles through a large
length of axons that consist the peripheral nerves. The spinal cord has two main operations: it consists the
setting of simple and more complicated reflexes, and it forms a path of quick information transmission from
the body to the brain and vice versa.

The above basic structures of the nervous system are the same in all the vertebrate. The attribute that
makes the human brain different is its big size compared with its body size. This is caused by the huge
growth of the number of interneurons during the evolution of the species, and this fact provides the human

with countless choices of reactions to stimulations received from the environment.

2.1.2 Anatomy and Physiology

The human brain is consisted of the brainstem and the cerebral hemispheres. The brainstem is

divided to the hindbrain, the midbrain and to an interbrain, called diencephalon. It contains neural networks

6

Figure 3: Architecture of the cerebral cortex. Some of the main sensory areas are the following: Motor cortex:
areas 4, 6 and 8; Somatosensory cortex: areas 1, 2 and 3; Visual cortex: areas 17, 18 and 19; Auditory cortex:

areas 41 and 42 [35].

42

that consist control centers for vital operations, such as breathing and the arterial pressure. From the top of
the hindbrain, the cerebellum arises, playing a quite significant role in the movements control and

coordination.

The midbrain contains the groups of neurons. Each one of them uses a specific type of a chemical
neurotransmitter, but all of them project to the cerebral hemispheres. It is believed that these neurons are able
to regulate the neurons' activity to the superior brain centers that control operations such as sleep, attention

and reward.

The diencephalon is divided into two very different areas, which are the thalamus and the
hypothalamus. Thalamus transfers impulses from all the sensory systems to the cerebral cortex, which,
subsequently, sends messages back to thalamus. This forward-backward way of this assembly is quite
interesting; the information is not transferred only to one direction. Hypothalamus controls operations such

as eating and drinking. In addition, it controls the release of hormones regarding sexual functions.

The cerebral hemispheres are consisted of a nucleus, the basic ganglia and an extended but thin
casing of neurons, which consists the gray matter of cerebral cortex. The basic ganglia play a central role to
the inception and control of movements. The cerebral cortex, pressured in the limited space of cranium, is
shaped by aspects that are wrapped inwards and outwards, enlarging in this way the surface of the casing.
The cortex is the most developed structure of human brain; it is 4 times bigger than the one of gorillas. It is
divided into a big number of discrete areas. Each of these areas is distinguished depending on layers and
connections. The operations of many of these areas are known, for example the visual, auditory and olfactory
areas, the somatosensory areas receiving information from the skin and several motor areas. The paths of the
sensory receptors to the cortex and from the cortex to the muscles are intersected on the one side and the
other. Thus, the movements of the right side of body are controlled by the left side of the cortex, and vice
versa. Likewise, the left part of the body sends sensory signals to the right hemisphere. However, the two
parts of the brain don't work isolated; the left and right cerebral cortex are connected through a long bundle
of neural fibers, called corpus callosum. The cerebral [13] cortex is indispensable for the voluntary
movements of tongue and speech, as well as superior operations like thinking and memory. Many of these
operations take place in both sides of the brain, but some of them are located mainly in one of the two

hemispheres [11].

2.2 Neurons

2.2.1 Neuron Models

A neuron is a generic computational unit that takes a number of inputs and produces a single output

[13]. It processes information which is fundamental for the operation of a neural network, such as the human

43

nervous system or an artificial neural network (ANN). The model of a neuron on which is based the design

of big neural networks family is presented in the schematic diagram of figure 4 [14].

The basic components of this model are described here [14]:

* A set of synapses or interconnections. Each one of them is characterized by its own weight or
strength. Specifically, a signal x; in the input of a synapse j that is connected to the neuron k, is
multiplied by the synaptic weight wy. It is important here to explain the manner of indicating the
symbol of the synaptic weight wy: The first indicator corresponds to the certain neuron, k, and the
second indicator corresponds to the input edge of the synapse to which the weight refers. Unlike the

synaptic weights of human brain, a synaptic weight of an artificial neuron can take

input signals synaptic weights

X;
activation function
output
" ®» >
summing node
xm

Figure 4: Non-linear neuron model

both negative or positive values.

* An adder. This component adds the input signals, weighted by the respective synaptic weights of the

neuron; these operations consist a linear combiner.

* An activation function. The activation function is necessary for the amplitude limitation of the
neuron's output signal within a finite range. This is why it is also mentioned as squashing function.

Typically, the normalized range of a neuron is written as a unit closed interval, in the form of [0, 1]

44

or [-1, 1].

Furthermore, the neuron's model of fig. 4 includes a bias that is externally applied and is symbolized
by the symbol b This bias b, is used to increase or decrease the network stimulation of the activation

function, depending on whether the latter is, respectively, positive or negative.

Neuron % of fig. 4 can be described in mathematical terms with the following equations:

U=, wyx, (1)
i=1

and
Yk:¢(“k+bk) 2

where x,, x5, ..., X, are the input signals, wi, Wi, . Wi are the corresponding synaptic weights of neuron &, u
is the output of the linear combiner caused by the input signals, by is the bias, ¢(*) is the activation function,
and y, is the neuron's output signal. The use of bias b, causes the application of an affine transformation on

the output u, of the linear combiner in the model of fig. 4, as it is obvious in the equation:
v, =u,tb, 3)

Specifically, depending on the bias, if it is negative or positive, the relation between the local field or
activation potential v, of the neuron k and the u; is modified in the way that is presented in fig. 5. These two
terms are going to be used as synonymous. Because of this affine transformation, the curve vs-u doesn't pass

through the origin (0, 0) [14].

45

local

field, 6} /
Ok al bias by > 0 /

-1.0 -0.5 0.0 0.5 1.0
output of the linear combiner, uy

Figure 5: Affine transformation due to the presence of bias. It is v = by at ux = 0.

Bias b, is an external parameter of neuron k£ and can be counted in through the equation (2).

Equivalently, we can combine the equations (1) and (2) into the following:

v, = i Wy X 4
j=0
And
V=9 (Dk) (5)
We added a new synapse in equation (4) and now its input and its weight are, respectively:
X,=+1 (6)
and

46

w,,=b, (7

The model of a neuron & can now be rephrased, as seen in fig. 6. Here, we count in the effect of the
bias in two steps: firstly we add a new constant input signal equal to +1, and afterwards we add a new
synaptic weight equal to the bias b;. Even though they look different, models of figures 4 and 6 are

mathematically equivalent.

constant input x,= +1

X
activation function
output
-0

Q >
) : summing node
Xm

input signals synaptic weights
(including bias)

Figure 6: Non linear neuron model: the weight wyy corresponds to the bias by.

2.2.2 Activation Function

The neuron's output is defined by the activation function, ¢(v), where v is the symbol of the local
field [15]. The activation function can belong to one of two basic categories: the threshold function or the

sigmoid function.

The threshold function (fig. 7), which is known as Heaviside function in Mechanics, is described

by the following equation:

47

I, forv=0
v)=y 8
go() [0, otherwise ®)
The output of neuron £ is:
1, forv,=0
k)= k 9
y(k) [O, otherwise ©)
where vy is the local field of the neuron, which is expressed by
0=, WX, +b, (10)

J=1

This is the McCulloh-Pitts model, within which the neuron's output is equal to 1 if the local field of

the particular neuron isn't negative, and 0 otherwise.

1.0 T

0.8} 8

0.6} i

o(v)

0.4} -

0.2} .

0.0 * ‘
-10 =5 0 5 10

Figure 7: Plot of the threshold function.

48

The sigmoid function (fig. 8) is the most common activation function for the implementation of
neural networks. It is defined as a strictly increasing function, displaying elegant balance between linear and

non-linear behavior. Logistic function is an example of sigmoid function and is defined as:

]) So— — (1)
1+exp(—av)

where a is the gradient parameter of the sigmoid function. By varying the parameter o, we take sigmoid
functions of various gradients. Actually, the gradient on the origin is equal to a/4. While the gradient
parameter approaches infinity, the sigmoid function turns into a threshold function. A threshold function can
take only the discrete values of 1 and 0. A sigmoid function can take values of a constant range, from 0 to 1.

In addition, the sigmoid function is differentiable while the threshold function is not.

1.0

0.8f

0.6

P(v)

0.2+

0.0
-10

10

Figure 8: Plot of the sigmoid function.

Both the activation functions (8) and (11) have a range from 0 to +1. Sometimes it is important to

have a range from -1 to +1; then the activation function is an odd function of local field. Specifically, the

49

threshold function would be now defined as the widely known sign function:

1, forv>0
o(v)= 0, forv=0 (12)
-1, forv<0

For the sigmoid function, we could use in this case the hyperbolic tangent function, which can get
negative values and allows us have practical benefits instead of a logistic function. The sigmoid function

would be then defined as:

¢(v)=tanh(v) (13)

2.2.3 Stochastic Neuron Model

The neuron model of fig. 6 is deterministic, as its behavior is exactly predefined for every input. For
certain NN applications, the analysis is desired to be based on a stochastic neuron model. The activation
function of McCulloh-Pitts can have a probabilistic interpretation; a neuron can be only in one of two states,
e.g. +1 or -1. The decision of the neuron's activation is probabilistic. If x is the neuron's state and P(v) is the

activation probability, where v is the local field of the neuron, then we can write:

_|+1, witha possibility of P(v)

- 1, witha possibility of 1—P(v) (14)

A typical choice for P(v) is the sigmoid form function:

_ 1
P(v)_l-l-exp(—v/T) (15)

where 7 is a pseudotemperature (borrowed by thermodynamics), which is used for the level control of the
noise, thus the uncertainty regarding to the activation (Little, 1974). However, it is important to make clear
here that 7 is not the natural temperature of a NN, even if it is a biological NN or an ANN. 7 is just a
parameter that controls the thermal fluctuation that represents the affect of synaptic noise. When 7 — 0, the
stochastic neuron that is described by the equations (14) and (15), is transformed into a noise-free

(deterministic) form, and specifically into the McCulloh-Pitts model [14].

50

2.2.4 Definition of Neural Network

Let's now express the definition of a neural network [14]:

A neural network is a huge parallel processor with distributed architecture, comprised of simple
processing units, called neurons, and natively having the ability to store empirical knowledge and make it

available for use. It resembles the human brain in two points:

* The network receives the knowledge from its environment through a learning procedure.

* The strength of the connections among neurons, which is called synaptic weight, is used for the

storing of the acquired knowledge.

The learning procedure through which a neural network achieves learning is called learning
algorithm and its operation is modify the synaptic weights of the network in an appropriate way for the

achievement of the desirable goal.

2.3 Neural Networks as Directed Graphs

We are going to handle the neural networks that will be described here as directed graphs which will
be presented with signal flowcharts [14]. A signal flowchart is a network of directive connections (branches)
that are interconnected at certain points which are named nodes. Node j corresponds to the node signal x;.

There are three basic rules, which should be respected by the flow of the signals:

» First rule: A signal flows along a connection only towards the direction that is defined by the arrow

of the connection.

* Second rule: A node signal is equal to the algebraic sum of all the incoming to this node signals

through the incoming connections.

* Third rule: A node signal is transmitted to every outgoing connection starting from this node, and its

transmission is totally independent of the transfer functions of the outgoing connections.

51

x,0 ' PO Y= WX, X0 PO Y= Px)
‘yi X;
Y=Yt X;
Jj
X

Figure 9: Basic rules for the design of signal flowcharts.

Taking into account the above rules, a neural network can be mathematically defined as a directed

graph through the following definition:

A neural network is a directed graph, which is consisted of nodes with interconnected synaptic

connections and activation connections, and is characterized by the four following properties:

1. Each neuron is represented by a set of linear synaptic connections, an externally applied bias and one
possibly nonlinear activation function. The bias is represented by a synaptic connection that is

connected to an input of constant value equal to +1.
2. The synaptic connections of a neuron weighs the corresponding input signals.
3. The weighted sum of the input signals defines the local field of the particular neuron.

4. The activation connection limits the local field of the neuron in order to produce an output.

A directed graph which is defined respecting the above rules is considered full, on the sense that it
describes both the signal's flow neuron by neuron, and the signal's flow within each neuron. However, we
will use a simplified graph here, which will not take into account the signal flow within a neuron. Such a
graph is considered partially full. It is described by the source nodes, which provide the graph with input
signals, the computational nodes, each one of which represents a neuron, and the communication connections
that interconnect the source and the computational nodes of the network. The communication connections
are not weighted; they just show the direction of the signal flow in the graph. This type of graphs actually

describes the topology of the graph and because of this, it is named architectural graph.

52

o) output

Figure 10: Signal flowchart of a neuron.

To summarize, there are three representations of a neural network:

* the schematic diagram, that describes the operation of the network
* the architectural graph, that describes the topology of the network

* the signal flowchart, that describes the signal flow in the network

output

Figure 11: Architectural graph of a neuron.

53

2.4 Feedback

Feedback [14] exists in a dynamic system whenever the output of a component of the system affects
partially the input that is applied to the certain component, causing the appearance of one or more closed

paths for the signal transmission in the system.

As a matter of fact, feedback takes place in almost all the parts of the neural network (nervous
system) of animals. Feedback is an important factor in the study of a particular category of neural networks,
known as recurrent networks.

Figure 12 presents the signal flowchart of a system with single loop feedback. The input signal x;(n),

the internal signal x’(n) and the output signal yx(n1) are discrete time functions of the variable #.

XM,

x, (O Uyk(n)

B
Figure 12: Signal flowchart of a system with single-loop feedback

The system is assumed to be linear, consisted of a feed-forward path and a feed-backwards path,
characterized by the operators 4 and B respectively. The relationship between input and output is defined by

the following equations:

viln)=A[x";(n)] (16)

x';(n)=x;(n)+ B[y(n)] (17)
A

viln)=r—zlx;(n)] (18)

The factor A/(1-AB) is called closed-loop operator and AB is called open-loop operator. In general, AB#BA.

The analysis of the dynamic behavior of neural networks containing feedback gets complicated by

the fact that the processing units that construct the network are usually non-linear.

54

2.5 Neural Networks Architectures

The learning algorithm that is used for the training of the network is closely related to the way that
the neurons of the network are structured. Hence, the learning algorithms or rules that are used in neural
networks design should be treated as structured. There are three fundamental ways of structure or

architectures of neural networks and they are described below [14].

2.5.1 Single-layer Feedforward Network

The neurons are organized in layers in a neural network. The simplest neural network has an input
layer that is consisted of source nodes and is directly connected to an output neurons layer, which act as
computational nodes, but not vice versa. This is a feedforward network, as seen in fig. 13. It is a single layer

network; the input layer is not admeasured as there is no computation taking place there.

layer of layer of
input nodes output neurons

Figure 13: Feedforward network with a single layer of neurons

55

2.5.2 Multi-layer Feedforward Network

This architecture consists of one or more hidden layers. The computational nodes of each layer are
called hidden neurons or hidden units; the term “hidden” refers to the fact that this part of the neural network
is not directly seen from the input or the output of the network. The hidden neurons intervene between the
externally provided input and the output of the network in a useful manner. The source nodes at input layer
provide the first hidden layer nodes with the input vector. The output signals of the first hidden layer are
provided as inputs to the second hidden layer, which after some computation, provides them to the next
hidden layer. Typically, the neurons of each layer take as inputs the output signals of the previous layer. This
procedure continues for all the hidden layers and finishes when they reach the output layer. The set of the
output signals consist the total response of the network in the activation pattern that is provided by the source

nodes at the input layer.

Figure 14 presents the architecture of such a network. The network of this figure is fully connected,
as each node of each layer in the network is connected to all the nodes of the next layer. If some of the

synaptic connections were absent, the network would be partially connected.

layer of layer of layer of
input nodes hidden neurons output neurons

Figure 14: Fully connected feedforward network with a hidden layer and an output layer

56

2.5.3 Recurrent Neural Network

A recurrent neural network has at least one feedback loop. Figure 15 presents a recurrent neural
network, which has a single-layer of neurons, with each neuron feeding its output signal back to the inputs of
all the other neurons. In the architecture of this figure, there is no auto-feedback in the network; there is auto-

feedback in a network when the output of a neuron feeds the input of the same neuron.

4 14 4 7 unit delay
operators

Ty

Figure 15: Recurrent network without auto-feedback loops and hidden neurons.

Figure 16 presents a different category of recurrent networks with hidden neurons. The feedback

connections of this figure come from both the hidden and the output neurons.

Feedback loops are very essential and have a great effect on the learning ability of the network, in

both forms of figures 15 and 16. Furthermore, the feedback loops require the use of certain branches,

57

consisted of elements of unit time delay (symbolized as z”), which result to the non-linear behavior of the

network, having supposed that it includes non-linear units.

v

outputs

v

21

z]

z]

unit delay
operators

inputs

Figure 16: Recurrent network with hidden neurons.

2.6 Knowledge Representation

Fischler and Firschein, in 1987, expressed the following definition of knowledge:

Knowledge is the stored information or the models that are used by an individual or a machine in

order to interpret, predict and respond appropriately to the external world [16].

Intelligence and problem solving depend upon the use of stored knowledge and information about
objects, processes, goals, causality, time and action. The study of knowledge, memory, symbols and mental
representations are areas of high interest for cognitive scientists and psychologists as well as Artificial
Intelligence (AI) researchers. Cognitive science researchers have studied the representations used by people

in the process of solving different types of problems.

58

A problem in Al is translated into a system for representing the types of knowledge and reasoning.
Knowledge representation may consist of hierarchical, sequential and spatial relationships with names, facts,
procedures and constraints. Models are language representations for describing the world. Logic and
mathematical systems are also representations of formal languages for representing the world. For example,
a natural language is a representational system which obviously has a language and a structure or syntax for

both verbal and written communication [17].

The main characteristics of knowledge representation are the following ones: what information is
really represented in explicit form and how the information is encoded for future use. The possible forms of
knowledge representation, from the inputs to the internal parameters of a network, may vary significantly,

and this makes the development of a satisfactory solution through a neural network a great challenge.

An essential task for a neural network is to learn a model of the world (its environment), to which it
belongs, and maintain this model sufficiently consistent to the real world in order to be able to achieve the
goals for which it was initially designed. The knowledge of the world is consisted of two kinds of

information:

* The known state of the world, which is represented by facts and hints of what has already

been known; this kind of information is mentioned as past information.

* The observations (and measurements) on the world, which are received by sensors that were
designed in order to monitor the environment in which the neural network operates. Usually,
these observations contain noise, due to the noise collected by the sensors and the system's
imperfections. In all cases, the observations that are received in this way consist an
information pool; the examples that are used for the neural network's training are pulled

from it.

The examples can be labeled (annotated) or unlabeled (unannotated). In the labeled examples, every
example representing an input signal corresponds to a desirable response. On the other hand, the unlabeled
examples are consisted of various implementations of the input signal only. In any case, a set of examples
represents the knowledge about the environment, which a neural network can learn through the training. We
should note here that the labeled examples may be expensive to acquire as they require the availability of a
trainer who will provide a desirable and accurate response for every input example. In opposition, unlabeled

examples are in abundance and do not require such a supervision from a trainer.

The fundamental difference between the design of a neural network and the design of traditional
information processing network is in the mechanism that executes the pattern classification. In a traditional
network implementation, usually we move on based on a mathematical model of environmental
observations, verifying its correctness with real data, and then basing the network's design on this model. In

opposition, the design of a neural network is based directly on the real world's data; the dataset can “speak”

59

and reveal information on its behalf. Hence, the neural network not only provides the implied model of the

environment, but it also executes the desirable information processing.

The examples set that is used for the training of a neural network can contain positive and negative
examples. In a neural network of a certain architecture, the representation of the knowledge of the
environment is defined by the values of the free parameters (which are the synaptic weights and the bias) of
the network. The form of this knowledge representation consists the design of the network and, consequently,

is the key for its performance [14].

2.7 Learning Procedures

There are various ways in which a neural network is able to learn [14]. The ways that were described
in section 1.2.2, for learning approaches of sentiment analysis tasks, are inspired by the approaches we are
going to describe here. These approaches were inspired by human learning and try to simulate it. In a broad
sense, the categories of learning procedures are the following: learning with a trainer (or supervised learning)
and learning without trainer. Learning without trainer can be divided into the subcategories of unsupervised

learning and reinforcement learning.

2.7.1 Learning with a Trainer or Supervised Learning

The trainer knows the environment and this knowledge is represented by a set of input-output
examples. However, the environment is unknown to the neural network. Let's assume that the trainer and the
neural network are exhibited to a training vector, which is an example alleged from the environment. Due to
its native knowledge, the trainer is able to provide the neural network with a desired response for the certain
training vector. The desired response represents the optimal action that the neural network should perform.
The network parameters are fitted by the combination of the training vector and the error signal. The error
signal is defined as the difference between the desired response and the real response of the network. The
network parameters are fitted in a repetitive way, step by step, and its goal is to bring the neural network in a
state where it can simulate the trainer's behavior. This simulation is considered optimal under a statistical

S€nse.

60

vector describing the
state of the environment

environment trainer

desirable
response

real response

learning system

t

Figure 17: Schematic diagram of supervised learning; the gray part of the diagram consists a feedback loop.

error signal

The above consist the base of learning through error correction. In fig. 17 the gray part of the
diagram consists a closed loop feedback system. The unknown environment is out of this loop. The mean
squared error (MSE) or the error sum of squares (SSE) on the training sample, defined as function of the free
parameters (which are the synaptic weights), can be used as a performance metric of the system. This
operation can be seen as a multidimensional surface of error-performance, or simply an error surface, with
the free parameters acting as coordinates. The real error surface is calculated by the average of all possible
input-output examples. Every specific operation of the system, under the supervision of the trainer, is
represented by a point on the error surface. This point must be moved successively downwards, towards a
minimum point of the error surface, in order to improve the system's performance over time and make the
system learn by the trainer. The minimum point can be a local or a global minimum. A supervised learning
system is able to achieve this by using the available useful information regarding the gradient of the error
surface corresponding to the current system's behavior. The gradient of the error surface at a point is
represented by a vector towards the direction of the steepest descent. In fact, in the case of supervised
learning through examples, the system can use an instantaneous evaluation of the gradient vector, with time
indicators for the examples. The use of such an evaluation has as a result the movement of the operating
point on the error surface, which typically has the form of a random path. However, given an algorithm that
is specialized to minimize the cost function, a sufficient example of inputs-outputs and sufficient time for the
training, a supervised learning system is usually able to approach an unknown, reasonably fine, pairing of

inputs-outputs.

61

2.7.2 Learning without Trainer

The learning procedure takes place without the guidance of a trainer. This actually means that there
are no labeled examples of the operation that the network aims to learn. There are two subcategories of this

procedure, that are described below.

2.7.2.1 Reinforcement Learning

In reinforcement learning, an input-output mapping is learned through the constant interaction

between the network and its environment in order to minimize a scalar performance indicator.

Fig. 18 presents the schematic diagram of the procedure of reinforcement learning. The base of this
procedure is a mechanism that functions as a “judge”. The judge converts the main reinforcement signal, that
is received from the environment, into a higher-quality reinforcement signal, which is named heuristic
reinforcement signal. Both these signals are scalar inputs (Barto et al. 1983). The system is designed in such
a way that it is able to learn through delayed reinforcement, which actually means that the system observes a
time sequence of stimuli, received from the environment, which end up to the production of the heuristic

reinforcement signal.

Reinforcement learning aims to minimize a current error function, which is defined as the prediction
of the summed cost of actions that are executed in a step sequence. Several of the executed procedures of this
step sequence are possibly the best determinants of the total system behavior. The learning system function is

to discover these actions and to feed them back, to the environment.

Delayed Reinforcement learning is difficult to be executed due to the following factors: There is no
trainer to provide a desired response at every step of the learning procedure, and the delay with which every
reinforcement signal is produced suggests that learning machine has to solve a time problem of trust
assignment. This means that the learning machine must be able to determine individually the success degree
individually for each action of the time step sequence that drove to the final result, while the main

reinforcement mechanism may evaluate only the final result.

62

main reinforcement signal

state vector (input)

environment judge

heuristic
reinforcement
signal

\ 4

learning system

actions

Figure 18: Schematic diagram of reinforcement learning; both the learning system and the environment are in the

feedback loop.

2.7.2.2 Unsupervised Learning

In unsupervised or self organized learning there is no external trainer or judge supervising the
learning procedure. Instead, an independent of the task metric of the quality of the representation is used, and
this is assigned to train the network. The network's free parameters are optimized compared to this metric.
When the network is coordinated with the statistic regularities of the input data, it develops the ability to
form internal representations for the encoding of the input features, and, through them, to automatically

create new classes (Becker, 1991).

For the execution of unsupervised learning, we can use a rule of competitive learning. A very simple

63

example of this would be a neural network consisted of two layers: an input layer and a competitive layer.
The input layer receives the available data. The competitive layer is consisted of neurons, of which each one
competes the others, according a learning rule, for the chance to respond to features that are contained in the
input data. In its simplest possible form, the network functions under the strategy “the winner takes
everything”. Based on such a strategy, the neuron with the highest total input “wins” in the competition and

is activated; all the other network neurons are deactivated.

vector describing the
state of the environment

environment - learning system

Figure 19: Schematic diagram of unsupervised learning.

2.8 Rosenblatt's Perceptron

2.8.1 The Perceptron

Perceptron (“sensor”) was the first neural network that was able to be described with an algorithm. It
was invented by Rosenblatt in 1958 and is based on a non-linear neuron (the neuron model of McCulloch-
Pitts) [14]. This model is consisted of a linear combiner followed by a hard limiter. The latter executes the
sign function, as presented in figure 20. The summing node of the neural model calculates a linear
combination of the inputs that are applied to its synapses, and, additionally, it incorporates an externally
applied bias (or predisposition). The resulting sum or induced local field is applied to a hard limiter. In
response, the neuron produces an output equal to +1 if the input of the hard limiter is positive, and -1 if the

input is negative.

64

bias b

v oC) output
»O 2 @) y
hard
limiter

Figure 20: Signal flowchart of perceptron.

In the flowchart of fig. 20, the perceptron's synaptic weights are symbolized by w;, w,, ..., wa. The
perceptron's inputs are respectively symbolized by x;, x5, ..., X, and the externally applied bias is symbolized

by b. The input of the hard limiter (or the neuron's local field) is equal to:

0= w,x+b (19)

i=1

Perceptron's goal is the correct classification of a set of externally applied stimulations x;, x», ..., Xu
into one of two classes, C; or C.. The decision rule for the classification dictates the mapping of an item
represented by the inputs x,, x, ..., X, to the class C; if the perceptron's output y equals to +1, or to the class
C; if y equals -1.

It is common to represent a map of the decision areas in the m-dimensional space of signals, due to
the m input variables. In the simplest possible form of a perceptron, there are two decision areas, separated

by a hyperplane, defined by the following equation:
> wx+b=0 (20)
i=1

Fig. 21 presents the case of two input variables, x; and x.. In this case, the decision bound is a straight
line. An item (x,, x,) that is above the boundary line is classified to the class C;, while an item (x,, x;) that is

below the boundary line is classified to the class C.. Bias b affects on the displacement of the decision limit

65

from the origin.

The synaptic weights w;, w», ..., w, can be fitted through a repetitive procedure and an error-

correction rule, which is known as perceptron's convergence algorithm.

X

decision boundary
WX+ wX,+b =0

Figure 21: Hyperplane as decision boundary for a binary classification task.

2.8.2 Perceptron's Convergence Theorem

In order to express perceptron's error-correction learning algorithm, it is more convenient to use a
modified model, which is presented in the flowchart of fig. 22, and is equivalent to the model presented in
the flowchart of fig. 20. In this model, the bias b(n) is treated as a synaptic weight driven from a stable input

which is equal to +1. Hence, the inputs vector (m+1)x1 is defined as

x(n)=[+1,x,(n), xy(n), ..., x,(n)]"

where n symbolizes the time step of the application of the algorithm. The weights vector is defined as:

w(n)=[b,w,(n),ws(n), ..., w,(n)]

Consequently, the output of the linear combiner can be written as

66

m:iw[<n>xi(n>=w’<n>x<n> e

wo(n) is the synaptic weight for i = 0 and actually represents the bias .

constant input
X,=+1

v e0) output
Yy

linear hard
combiner limiter

inputs

Figure 22: Equivalent signal flowchart of perceptron

If n is constant and b preset, if we map the equation w'’x = 0 in a m-dimensional space with
coordinates x,, x», ..., X», @ hyperplane is defined, as the boundary decision surface between two separate

classes of inputs.

Classes C; and C, must be linearly separable so that the perceptron can work properly. This means
that the patterns for classification should be sufficiently separable so that the decision surface is consisted of
one hyperplane. This requirement is presented in fig. 23(a), for the case of a perceptron of 2 dimensions. In
this figure, C; and C. are sufficiently separable and we can draw a hyperplane (a line) as the decision
boundary. However in fig. 23(b), the classes C; and C, are very close, and hence they are non-linearly

separable; this is a state out of the perceptron's computational ability.

67

decision boundary

/
/
/
/
/
/
(@) /
/
/

/

/

()

Figure 23: (a) Pair of linearly separable patterns. (b) Pair of non-linearly

separable patterns.

Assuming that the perceptron's input variables come from two linearly separable classes, let H; and

Hbe the subspaces of the following training vectors, respectively,

x,(1),x,(2),...eC,

68

H symbolizes the full space. Given the vectors H; and H, for the classifier's training, the training
procedure requires the weights vector's fitting, so that C; and C; are linearly separable. This means that there

is a weights vector w such that we can denote that:

w' x>0 foreveryinputs x vector €C, 22)
w' x<0 for every inputs x vector€ C,

For (22) we have arbitrarily decided that the inputs x vector belongs to C- if w'x = 0 . Given the
training vectors subsets, H; and H., the perceptron's training problem consists on finding a weights vector w,

such that the inequalities of formula (22) are satisfied.

The algorithm for the perceptron's weights vector fitting can be formulated as following:

1. If the n-th member of a training subset, x(n), is correctly classified from the weights vector w(n)
calculated in the n-th iteration of the algorithm, no correction takes place for the perceptron's weights

vector, according the following rule:

w’ x>0 forevery inputs x vector €C,

T . (23)
w' x <0 for every inputs x vectore C,
2. Otherwise, the perceptron's weights vector w(n) is updated according the following rule:
w(n+1)=w(n)—n(n)x(n)if w'(n)x(n)>0Ax(n)ecC, (24)

w(n+1)=w(n)—y(n)x(n)if w' (n)x(n)<0Ax(n)ecC,

where the learning rate parameter #(n) controls the fitting applied to the weights vector in the n-th

iteration.

If n(n) = n > 0, where 7 is a constant independent of the iteration number #, then we get a fitting rule

through constant increment for the perceptron, which can be formulated in the following theorem:

Perceptron's Convergence Theorem with constant increment:

If two subsets of the training vectors H; and H are linearly separable, and the inputs that are applied

69

to the perceptron belong to one of these subsets, then the perceptron converges after n, iterations, in the sense

that

w(ng)=w(n,+1)=w(n,+2)=... (25)
is a solutions vector for np=r,a.

Let's now examine the absolute error correction procedure for the single-layer perceptron's fitting,

for which #(n) is variable. Specifically, we assume that #(n) is the minimum integer for which it is

n(n)x"(n)x(n)>|w" (n) x(n)

With this procedure, we find that if the dot product w’(n)x(n) in the n-th iteration has a wrong sign,
then w'(n+1)x(n) in (n+1)-th iteration will have the correct sign. This shows that if w’(n)x(n) has a wrong
sign in iteration n, then we can notify the training procedure for the (n—+1) iteration by setting x(n+1) = x(n).

In other words, every pattern is presented repeatedly in the perceptron until it is classified correctly.

The following algorithm is the perceptron's convergence algorithm. The symbol sgn(*) represents the

sign function:

+1, forv>0
= > 26
sgn(v) -1, forv<0 (26)
The perceptron's quantized response y(n) can be expressed in the following compact form:
y(n)=sgnlw" (n)x(n)] 27)

2.8.3 Summary of Perceptron's Convergence Algorithm

The summary of the steps of perceptron's convergence algorithm is described below [14].

Variables and Parameters:

70

x(n) = inputs vector (m+1)-by-1 = [+1, x1(n), X2(n), ..., Xm(n)]"
w(n) = weights vector (m+1)-by-1 = [b, wi(n), wa(n), ..., wm(n)]"
b =bias

y(n) = real response (quantized)

d(n) = desirable response

n = learning rate parameter, positive constant less than 1

1. Initialization: Set w(0) = 0. Then execute the following computations for a time stepn=1, 2,

2. Activation: In time step n, activate the perceptron applying the (constant values) inputs vector x(n)

and the desirable response d(n).

3. Computation of real response: Compute the real response of the perceptron y(n) = sgn[w’(n)x(n)],

where sgn(-) is the sign function.

4. Fitting the weights vector: Update the perceptron's weights vector in order to end up to:

w(n+1)=w(n)+n[d(n)=y(n)]x(n)

o= 10

9,

. Continuation: Increase the time step n by 1 and go to step 2.

The weights vector w(n) is a vector (m+1)-by-1, the first element of which equals to the bias b.
Another important note for the perceptron's convergence algorithm is that we have introduced a quantized

desirable response d(n), which is defined as:

d(n)z(—H’ ifx(n)eCi

|-1, ifx(n)ec2 @8

Thus, the fitting of the weights vector w(n) is summed up in the form of the learning rule with error

correction:

71

w(n+1)=w(n)+nld(n)=y(n)]x(n) (29)

where 7 is the learning rate parameter. and the difference d(n)-y(n) acts as an error signal. The learning rate
parameter is a positive constant that is limited within the range 0<#<I. When it is assigned to a value from

this range, we have to have in mind two conflicting requirements (Lippman, 1987):

* The computation of the average past inputs for the provision of constant evaluations for the weights,

requires a small #.

* The quick fitting regarding the real changes in the underlying distributions of the procedure that is

responsible for the production of the inputs vector x requires a large #.

2.9 Multi-layer Perceptron

2.9.1 Definition

A multi-layer perceptron (MLP) [14] is a feedforward artificial neural network model that maps sets
of input data to a set of appropriate outputs. A multi-layer perceptron consists of multiple layers of nodes in a
directed graph, with each layer fully connected to the next one (which means that each neuron on any layer is
connected to all the neurons of the previous layer). Except for the input nodes, each node is a neuron with a

non-linear activation function.

Figure 24 presents the architectural graph of a multi-layer perceptron with two hidden layers and an
output layer. The signal flows forward, from left to right and from a layer to its next layer. There are
operating signals and error signals, as seen in fig. 25. An operating signal is a stimulation (an input signal)
that arrives at the input of the network, is transmitted forward (neuron by neuron) in the whole network and,
eventually, arrives at the output of the network as an output signal. An error signal comes from an output

neuron and is transmitted backwards (layer by layer) through the network.

72

input first second output
layer hidden hidden layer
layer layer

Figure 24: Architectural graph of a multi-layer perceptron with two hidden layers.

The neurons of the output consist the output layer of the network. The rest of the neurons consist the
hidden layers of the network. It is clear that the hidden layers are neither part of the input nor of the output of
the network. The first hidden layer is fed by the input layer, which is consisted of sensor units (source
nodes). The outputs of the first hidden layer feeds as inputs the second hidden layer, and so on for the rest of

the network.

Every hidden neuron and every output neuron of a multi-layer perceptron is designed to perform two
kinds of computations. The first one is the computation of the operating signal showing up at the output of
each neuron, and which is expressed as a constant non-linear function of the input signal and the synaptic
weights that are related to the neuron. The second computational task of the neuron is the computation of an
estimation of the gradient vector, which is necessary for the phase of the backwards development of the
network. The gradient vector is actually the gradients of the error surface compared with the weights that are

connected to the inputs of a neuron.

73

—) operating signals
<« - - error signals

Figure 25: The flow directions of the two basic signals in a multi-layer perceptron.
forward propagation of operating signals and backwards propagation of error

signals

The hidden neurons act as features detectors and their contribution is critical for the operation of a
multi-layer perceptron. While the learning procedure develops, the hidden neurons start gradually to discover
the outgoing features. These features are the ones that describe the training data. In order to do this, the
hidden neurons perform a non-linear transformation on the input data, in the feature space. In the feature
space, the classes of the features, that a classification task is interested in, are able to be separated from
everything else existing in the initial input data space. The formation of this features space is the difference

between the multi-layer perceptron and Rosenblatt's perceptron.

2.9.2 Batch and Online Learning

Let's consider a multi-layer perceptron, with an input layer, one or more hidden layers, and an output
layer consisted of one or more neurons as the one of fig. 24. The training sample. which is used for the

training of the network in a supervised way, is symbolized by

T=(x(n).d(n)},-, (30)

The operating signal that is produced at the output of neuron j by the stimulation x(n) is symbolized by yj(n).

74

The error signal is symbolized by

e,(n)=d (n)=y,(n) €3))

where dj(n) is the i-th item of the desirable responses vector d(n). The instantaneous error energy (cost

function) of neuron j is defined as:
) 1 »
&(n)==e(n) (32)

If we sum the energy-error distributions of all neurons of the output layer, we can express the total

instantaneous error energy of the total network as:

£(n)=3 #(n)=2 3 &(n) (3)

jeC jeC

where C contains all the output layer neurons. The training sample is consisted of N examples. The average

error energy for all the training sample, which is also known as experienced risk, is defined as:

N N
1

2. & (n)===2.2. eln) (34)

: 1
Z (N)=—
“ () Nn:I 2N n=1 jeC

Apparently, the instantaneous error energy as well as the average error energy are both functions of
all the adaptable synaptic weights (which are the free parameters) of the multi-layer perceptron. This
functional dependency has not been included in formulas (33) and (34) in order to have a simpler

terminology.

Depending on the way of the supervised learning of a multi-layer perceptron, we can recognize two

different methods: the batch learning and the on-line learning [14].

2.9.2.1 Batch Learning

In this learning method, the fitting of the multi-layer perceptron's synaptic weights takes place after

75

the presentation of the set of N examples of the training set 7, which consist a training epoch. In other words,
the cost function for batch learning is defined by an average error energy, &.. The fitting of the multi-layer
perceptron's synaptic weights takes place epoch by epoch. As a consequence, we can produce a learning
curve implementation, presenting &, by the number of epochs, where, for each epoch, the examples of the
training sample 7 are presented in a random order. The learning curve is produced by computing statistical
medians for a set of a sufficiently great number of such implementations, where each implementation is

executed for a different set of initial, randomly chosen, conditions.

With the method of gradient descent, that is used for the training, batch learning shows the following

advantages:

* precise estimation of the gradient vector (which is the derivative of the cost function &, to the
weights vector w, which guarantees, under simple conditions, the convergence of the steepest

descent method to a local minimum.

* parallel implementation of the learning procedure.

However, the significant drawback of batch learning is its large storing requirements.

In a statistical framework, batch learning can be treated as a form of statistical implication. For this

reason, it is appropriate for solving problems of non-linear regression.

2.9.2.2 Online Learning

In this learning method, the fitting of the multi-layer perceptron's synaptic weights is taking place

example by example. The cost function that has to be minimized is the total instantaneous error energy &(n) .

Let's consider a given epoch that contains N training examples, organized in the following order:
x(1), d(1)}, {x(2), d(2)}, ..., {x(N), d(N)}. The first example pair {x(1), d(1)} of this epoch is presented to the
network and the weights' fitting takes place using the gradient descent method. Afterwards, the second
example {x(2), d(2)} is presented to the network and leads to further fitting on the synaptic weights. This
procedure continues until the last example, {x(N), d(N)}. Unfortunately, this kind of procedure doesn't allow

a parallel implementation.

For a given set of initial conditions, we can take a single implementation of the learning curve,
presenting the final value &(N) by the number of epochs that were used during the training session, where the
examples arrive in a random order at the network's input after every epoch. The learning curve for on-line
learning is made by computing statistical medians for a set of such implementations for a sufficiently great

number of initial, randomly chosen, conditions. It's obvious the fact that, for a given network structure, the

76

learning curve achieved by on-line learning is much different from the one achieved by batch learning.

Given the fact that the training examples are presented to the network in a random way, the use of
on-line learning makes the search in multidimensional weights space natively stochastic; this is why
sometimes on-line learning is also mentioned as a stochastic method. This helps to decrease the possibility of
the learning procedure being trapped in a local minimum, which consists a certain advantage of on-line
learning in comparison to batch learning. Another advantage is that on-line learning requires much less
storing space than batch learning does. On-line learning has the additional useful property of observing small
changes of the training data, especially when the environment that is responsible for the production of these

data is non-static.

To sum up, on-line learning is extremely popular for the solution of pattern classification tasks, as it
can be implemented very easily and can provide efficient solutions to classification problems of large scale

and increased difficulty.

2.9.3 Back Propagation

2.9.3.1 The Algorithm

The Back Propagation (BK) algorithm was first proposed by Paul Werbos in the 1970's. However, it
became widely used when it was rediscovered in 1986 by Rumelhart and McClelland. BK algorithm has
helped to improve even more the performance of on-line learning for the supervised training of a multi-layer
perceptron [14].

Figure 26 presents an output neuron j, being fed by a set of operating signals produced at a neurons'
layer on the left. The local field of v;(n), produced at the input of the activation function regarding neuron j,

is described by the equation:
Uj(”)zz Wji(n)yi(n) (35)
i=0

where m is the total number of inputs (apart from the bias) applied to neuron j. The synaptic weight w;
(corresponding to the constant input y,=+1/) equals to the bias b; applied to neuron j. Hence, the operating

signal y;(n), appearing in the output of neuron j in the n-th iteration is:

y‘/(n):(Dj(U_/(n)) (36)

i

dj(n)

. y.(m)
o) >3 1 >0 ¢ (1)

neuron j

Figure 26: Signal flowchart describing the details of output neuron j.

BK algorithm applies a correction Awy;(n) to the synaptic weight w;(n), which depends on the partial

derivative 0é&(n)/Ow;(n). According the chain rule of calculus, this gradient can be expressed as:

o0& (n) :5g(n) 6ej(n) Gyj(n) a“.f(”)
8wﬁ(n) Gej(n) Gyj(n) ij(n) Gwﬁ(n)

(37

The partial derivative 0&(n)/Ow;(n) represents a sensitivity factor, which determines the search

direction in the weights space for the synaptic weight w,.

By differentiating the equations (31) and (33) we receive:

o0& (n) _
Ge n =e,(n) (38)
de (n)

! =—1 39
ay,(n) 9

And then, after differentiating the (35) and (36),

78

L) (@0)

ov J(n) B
E;;;;z;;;-—){,(") (41)
Combining the equations (38) and (40), we get:
Set=e oo, (n)) o @)

The correction Awjy(n) applied to w;(n) is defined by the delta rule. The delta rule is a gradient
descent learning rule for updating the weights of the inputs to neurons in single-layer neural network. For

neuron j, the delta rule is given by:

o0& (n)

AWﬁOﬂZ—ﬂggjzg

(43)

where 7 is the learning rate parameter of BK algorithm. The negative sign refers to the gradient descent in

the weights space. It is:
Aw ,(n)=nd(n)y,(n) (44)
where the local gradient J;(n) is defined by

2(n)66j(n) 8yj(n)_ ’
90, n) 2, (m) Oy, (m) du,(m) -0) (45)

As seen in the above equations, the error signal e;(n) at the output of neuron j is an important factor for the
calculation of the weight fitting Aw;(n). We can recognize two separate cases, depending on the place where

neuron j is located in the network:

1. Neuron j is an output node: In this case, neuron j is fed by its own desirable response. The equation

(31) can be used for the calculation of the error signal ¢;(n) corresponding to this neuron (fig. 26).

79

Then, it is a simple assumption to calculate the local gradient §;(n), using the equation (45).

2. Neuronj is a hidden node: In this case, there is no predefined desirable response for j. Consequently,
the error signal for a hidden neuron should be defined recursively, working backwards, based on the
error signals of all the neurons j is directly connected. In fig. 27, neuron j is a node of a hidden layer
of the network. According to the equation (45) the local gradient of neuron j, d;(n), can now be

written as:

_orloxln__ozn)
= g, =) o

In fig. 27, it is also obvious that
ez 1 2
#(n)==52, en) (47)

where neuron £ is an output node.

Y,=+1

wijp(n) = b;(n)
dj(n)

o) Y

1 2% > PO e;(n)

vm eC)

neuron j neuron k

Figure 27: Signal flowchart describing the details of output neuron k, which is connected to hidden neuron j .

By differentiating to the operating signal y;(n), it is:

(43)

80

Using the chain rule for the partial derivative Oex(n)/0y;(n), formula (48) is equivalent to

de,(n) ov,(n)

0% (n)_
oy, %) G, (w3 () “)
However, in fig. 27, it is clear that
ek(”):dk(n)_yk(n):dk(n)_(ok(vk(n)) (50)
and hence,
aek(”)_ ,
avk(n)—_¢’ k(vk(n)) (5D
vk(n)=Zow,g(n)y,(n) (52)

where m is the total number of inputs (apart from the bias) applied to neuron %. The synaptic weight
wo(0) is equal to the bias bi(n) applied to neuron k and the corresponding input is equal to +1

constantly. After differentiating the equation (52), we get:

v, (n)
WZW@(H) (33)

And then, using the formulas (49), (51) and (53), we can write:

2?@3=‘§ek<n>¢'k<vk<n>>w@<n>=—§5k<n>wkj<n> 9

Finally, using the equations (46) and (54), we get the back propagation formula for the local gradient

d;(n), which is described by:

81

8,(n)=",(v,(n)) 2 6,(n)w,(n) (55)

where neuron j is hidden.

o} (Tl) {
PPRLAC LY

1

6.(n) 6.(n) |
< j n k0¢ (0k(Uk(n))$ ek(n)
5mL(n)
o) emL(n)

G V()

Figure 28: Signal flowchart of part of the conjugate system that executes the

back propagation of error signals.

Fig. 28 represents the equation (55) as a signal flowchart, assuming that the output layer is consisted
of m; neurons.

For the calculation of the local gradient d,(n), two factors are used. The first one is the external factor
@'{(vi(n)) is dependent exclusively on the activation function that corresponds to neuron j. The second factor
is the sum for all £ and depends on two sets: the first terms set, di(n), requires knowledge for the error signals
ex(n) for all the neurons of the next (to the right) layer of the hidden neuron j and connected directly to it; the
second terms set, wy(n), is consisted of all the synaptic weights regarding these connections.

Let's now summarize the formulas about BK algorithm that were described before. Firstly, the
correction Awy(n) that is applied to the synaptic weight connecting neuron i to neuron j, is defined by the

delta rule:
Aw ;(n)=nx6,(n)xy (n) (56)

Secondly, the local gradient d;(n) depends on whether the neuron j is an output or a hidden node, as described

analytically before.

82

2.9.3.2 Phases of BK Algorithm

When BK algorithm takes place, there are two different phases of computations; the feed-forward
phase and the feed-backward phase. We need to underline here that the input vector remains the same during

both phases [14].

e Feed-Forward Phase

In this phase, the synaptic weights remain invariable in all network and the operating signals of the

network are calculated neuron by neuron. The operating signal at the output of neuron j is calculated by

y;(n)=p(v,(n)) (57)

where v;(n) is the neuron's j local field, defined as:

”j(”)zéwﬁ(n)yi(n) (58)

where m is the total number of inputs (apart from the bias) applied to neuron j; wy(n) is the synaptic weight
connecting neuron i with neuron j; y;(n) is the input signal for neuron j, or, equivalently, the operating signal
appearing in the output of neuron . If neuron j is in the first hidden layer of the network, then m=m, and i

refers to the i-th terminal input node of the network, for which it is:

yi(n)=x,(n) (59)

where x;(n) is the i-th element of the input vector (pattern). On the other side, if neuron j is in the network's
output layer, then m = m, and the indicator j refers to the j-th terminal output node of the network, for which

it is
y;(n)=0,(n) (60)

where 0;(n) is the j-th element of the output vector of the multi-layer perceptron. This output is

compared with the desirable response d;(n) and then we get the error signal e;n) for the j-th output neuron.

83

Thus, the feed-forward phase starts at the first hidden layer, presenting to this layer the inputs vector and

terminates at the output layer, computing the error signal for every neuron of this layer.

* Feed-Backward Phase

In this phase, the computations pass backwards. It starts from the output layer, sending error signals
to the left, in all layers of the network, layer by layer, and by computing ¢ recursively. This recursive
procedure allows the synaptic weights of the network to be changed according delta rule. For a neuron of the
output layer, ¢ is simply equal to the error signal of this neuron, multiplied by the first derivative of its non-
linearity. Consequently, we use the equation (56) in order to calculate the changes in the weights of all
connections that feed the output layer. Given the J for the output layer neurons, we use the equation (55) in
order to compute the J for the neurons of the semifinal layer, and, consequently, the changes of the weights
of all connections feeding it. This recursive computation continues, layer by layer, propagating the changes

of all the synaptic weights in the network.

2.9.3.3 Activation Function

As described before in section 2.2.2, a neuron's output is defined by the activation function, ¢(v),
where v is the symbol of the local field. For the calculation of J for each neuron of a multi-layer perceptron,
it is required to know the derivative of its activation function. This means that ¢(:) has to be differentiable. A
constantly differentiable non-linear activation function that is widely used in multi-layer perceptrons is a

function with sigmoid non-linearity. Two forms of this functions are described here [14].

* Logistic Function

This form of sigmoid non-linearity is defined, in its generic form, as:

gDj<v-"(n)):1+exp(1—0cuj(n))’O(>O 61

where v;(n) is the local field of neuron j and a is a fitting positive parameter. According to this non-

linearity, the output's amplitude is within the range 0<),<I. After differentiating (61), we get:

84

(0 ()= aexp(—av,(n))
v j(/\) [l—i-exp(—ocv/(n))]2 (62)

With y;(n)=@;(v;(n)), we can express ¢ 'j(v;(n)) as
§0'_j(v_/<n)):ay_/(n)[l_y_/(n)] (63)

For a neuron j of the output layer, it is y;(n)=0;(n), where 0;(n) is the operating signal at the output

of neuron j. Hence, the local gradient for neuron j is
5j(n):ej<n)¢ 'j(vj<n)>:a[dj<n)_0j(n)]0j(n)[l_Oj (l’l)] (64)
where dj(n) is the desirable response for neuron ;.

For a hidden neuron j, the local gradient can be expressed as

5,(n)=p",(v,(n) 22 6,(n)w,(n)=ay, (n)[1=y (1)1 2 &, (n)w,(n) 65)

k k

* Hyperbolic Tangent Function

Hyperbolic Tangent Function is another widely used form of sigmoid non-linearity. In its generic

form, it is defined as
¢,(v;(n))=atanh (bv (n)) (66)

where a and b are positive constants. In fact, the hyperbolic tangent function is a scaled version of

the logistic function where bias has been applied.
b
0;(v,(n))=absech’(bv,(n))=ab(1—tanh*(bo,(n)))=—la=y,(n)]la+y,(n)] (67)

For a neuron j of the output layer, the local gradient is:

85

[d ,(n)—0,(n)]la—o,(n)][a+0,(n)] (68)

d,(n)=¢",(v,(n)) 2. 5k(n)wk,(n)=§[a—y,-(n)][a+y,(n)]2 d(n)wy(n) (69)

2.9.3.4 Learning Rate

BK algorithm is actually an approach on the weights space, as computed by the method of steepest
descent. The smallest the learning parameter # is, the smallest the changes in the synaptic weights of the
network from the one iteration to the next are. Nevertheless, there is a trade-off on the learning rate, which is
decreased by this improvement. On the other hand, if we increase extremely the learning rate parameter in
order to accelerate a learning rate, the occurring (big) changes in the synaptic weights take such a form that

the network may become unstable and start to oscillate.

A simple method to increase the learning rate with concurrent avoiding of the instability danger is to

modify the delta rule, by including a momentum term:

Aw ;(n) =0 4w ;(n=1)+n6 (n)y,(n) (70)

where o is the momentum constant and usually is a positive number. This constant controls the feedback loop
around Aw;(n), as presented in fig. 29, where z’ is the unit delay operator. The equation (70) is called

generalized delta rule.

86

6,(n) y;(n)

Figure 29: Signal flowchart presenting the effect of momentum constant o. (in the feedback loop).

The equation (70) can be written as an time sequence with ¢ as indicator. The indicator ¢ starts from
the initial moment 0 until the current moment n. Equation (70) can be seen as an equation of differences of

first order for the weights correction Aw;(n).

Aw‘ji(’/Z):nzaniléj(ﬁyi(t) (71)

Equation (71) represents a time sequence with (n+1) length and is equivalent to:

_ N it 0& (1)
Aw ,(n)= 77;)0: 1) (72)

Based on the equation (72) we observe that:

* The current fitting Awj(n) represents the sum of an exponentially weighted time series. In order this
time series to converge, the momentum constant has to be limited in the range 0<|a|<I. When a
equals to 0, the BK algorithms functions without momentum. Besides, o can be positive or negative,
even though it is rather impossible to be negative in practice.

* When the partial derivative 0&(#)/0Ow;(¢t) has the same algebraic sign in following iterations, the
exponentially weighted sum Aw;(n) is increased in value, and consequently the weight wy(n) is
fitted at a great quantity. The inclusion of the momentum in the BK algorithm tends to accelerate the
descent.

* When the partial derivative 0&(?)/0w;(t) has a positive sign in successive iterations, the exponentially

weighted sum Aw;;(n) is decreased in value, and consequently a small quantity of the weight w;(n)

87

is fitted. The inclusion of momentum in the BK algorithm has a stabilizing affect in the directions of

which the sign oscillates.

The embedding of momentum in BK algorithm represents a modification of small significance in the
weights update; however, it may have specific beneficial affects in the learning behavior of the algorithm.
The momentum term may also have the advantage that it prevents the learning procedure from finishing in a

shallow local minimum of the error surface.

We have assumed that the learning rate parameter is a constant symbolized by #. However, in fact it

should be defined as #7;;; this means that it should depend on the connection between neurons i and j.

It is also important to mention here that in the application of the BK algorithm, we are able to decide
whether all the synaptic weights of the network are adaptable or a certain set of synaptic weights remains
constant during the fitting procedure. In the second case, the errors propagate backwards through the network

in the usual way; however the constant synaptic weights remain invariable. This is feasible by setting the

learning rate parameter #;; for the synaptic weight wj; equal to 0 [14].

2.9.3.5 Termination Criteria

In general, it cannot be proved that BK algorithm converges and there are no well-defined criteria for
its termination. Instead, there are some logical criteria, each one of them having its own practical value,
which could be used for the termination of the weights fitting procedure. In order to define such a criterion, it
is reasonable to use the unique properties of a local or global minimum of the error surface. Let the weights
vector w* symbolize a minimum, local or global. A necessary condition for the w* to be a minimum is the
gradient vector g(w) of the error surface depending on the weights vector w, to be equal to 0 at w = w*
Consequently, a convergence criterion for the learning rate with error back propagation is the one of Kramer

and Sangiovanni-Vincentelli (1989) :

BK algorithm is considered to converge when the Euclid norm of the gradient vector reaches a sufficiently

small gradient threshold.

However, this criterion may have a long learning time for successful testings and it requires the

calculation of g(w).

Another unique property of a minimum is the fact that the cost function &.,.(w) is static at w = w*.

Then we could suggest the following convergence criterion:

88

BK algorithm is considered to converge when the absolute learning rate of the MSE per period is sufficiently

small.

Typically, the rate of change of the MSE is considered sufficiently small if it is within the range from
0.1 to 1% per epoch. Sometimes, much smaller values, e.g. 0.01% per epoch, are used. Unfortunately, this

criterion may have as a result the early termination of the learning procedure.

Another useful and theoretically supported criterion is to control the network for its performance
about the achievable generalization after each iteration of the learning procedure. The learning procedure is
finished when the performance about generalization is judged as sufficient or when it is obvious that its

performance about generalization has come to a maximum [14].

2.9.3.6 Summary

Fig. 24 presents the architectural topology of a multi-layer perceptron. The signal flowchart of fig.
30 presents the learning procedure with error backpropagation, which embeds both phases (feed-forward and
feed-backward) of the involving computations, for the case where L=2, my=m;=m,=3. The top of the
flowchart refers to the feed-forward phase, while the bottom refers to the error backpropagation and is
referred as a flowchart of sensitivity for the computation of the local gradients of BK algorithm (Narendra

and Parthasarathy, 1990) [14].

89

+1

(W_ D
w,'=b

Uy @] o() 1 -1

Y
Y
A
o

Xy

)

Uy (@] o)

y
A
[e]

X3

Y

(1 (1) (2)
Y o0 % v o0 o 1

Y
v
£
(o]

a @
13) 13

Q20— 04E
20«4 <
9.04—0¢
A A
.0«
<
2 04—« l

Figure 30: Summary plot of the learning procedure with error back propagation. Top: the feedforward phase. Bottom:

the error back propagation phase.

For the implementation of BK algorithm, it is considered preferable to update successively the

synaptic weights. For this state of operation, BK algorithm runs the training sample in the following steps

[14]:

3.

Initialization: Assuming that no past information is available, choose the synaptic weights and the
thresholds from a uniform distribution, of which the median is 0 and the variance is chosen in such a
way that it sets the standard deviation of neurons' local fields within the limit between the linear and

the constant part of the sigmoid activation function.

Presentations of training examples: Present an epoch of training examples to the network. For each
example included in the sample, execute the (forward and backwards) computations sequence that

are described in steps 3 and 4 (respectively).

Forward Computations: Let a training example in the current epoch be symbolized by (x(n), d(n)).
The inputs vector x(n) is applied to the inputs layer of the sensory nodes and the desirable responses
vector d(n) is presented to the output layer of the computational nodes. Calculate the local fields and
the operating signals of the network moving on forward, in all the extent of the network, layer by

layer. The local field v/”(n) for neuron j of layer / is:

90

UF,”(”)ZZ w(n) y "V (n) (73)

where y/(n) is the output signal (operating signal) of neuron i of the previous layer /-, in the n-th
iteration, and w;”(n) is the synaptic weight of neuron j of layer /, fed by neuron i of layer /-1. For i =
0, it is yo""(n) = +1 and w;”(n) = b”(n) is the bias applied to neuron j of level /. Assuming that a

sigmoid function is used, the output signal of neuron j of level / is

If neuron j belongs to the first hidden layer, set

(0)
Y, =X (n)
where x;(n) is the j-th element of the input vector x(n).

If neuron j belongs to the output layer (and then / = L, where L indicates the network's depth), set

Compute the error signal as

ej(n):dj<n>_0j<n) (74)
where dj(n) is the j-th element of the desirable responses vector d(n).

Backwards computations: Compute the local gradients J of the network, which are defined as:

e@ '/.(o(j”(n)), for neuron j €output layer L
5(,([+”(n)w(é.+])(n), for neuron j € hidden layer | (75

Fit the network's synaptic weights of layer / according the generalized delta rule:

91

w(f/i)(n—l- 1):w(;l.)(n) +a[w(‘/{l.)(n— 1)]+175(‘;)(n)y(/_1)(n) (76)

i
where 7 is the learning rate parameter and a is a constant of momentum.

5. Repetition: Repeat the computations described in steps 3 and 4, presenting new epochs of training

examples to the network, until the selected termination criterion is satisfied.

2.9.4 Cross-Validation

2.9.4.1 Basic Method

The substance of learning with back propagation of the error signal is to encode an input-output
mapping (represented by a set of annotated samples) to the synaptic weights and thresholds of a multi-layer
perceptron. Hence, we expect that the network will end to be well trained, in order to be able to generalize
and make decisions for the future, after having learned a lot from the past experience. Seen from this angle, a
learning procedure is equivalent to the choice of a network configuration for a dataset. Specifically, we can
see the problem of choosing a network as the problem of choosing the “optimal” configuration according to a
particular criterion. A standard tool of statistics for this work is the cross-validation method, which provides

an attractive directive principle (Stone 1974, 1978) [14].

In the first stage of cross-validation method, the available dataset is partitioned randomly in a
training sample and a control set. The training sample is then partitioned in two disjoint subsets: an
evaluation subset and a validation subset. The evaluation subset is used for the choice of the model. The

validation subset is used for the control (validation) of the model.

The idea of the method of cross-validation is the validation of the model to take place based on a
different dataset from the one that was used for the evaluation of the parameters. In this way, the training
sample can be used for the validation of the performance of several candidate models, hence the optimal
among them can be chosen. However, it's very possible the model chosen in this way to end up to being
overfitted. In order to avoid this case, the performance of generalization of the chosen model is evaluated by
a control set which is different from the validation subset. The use of this validation method is attractive

especially if we need to design a large neural network for reliable generalization.

In order to describe the way of thinking for the model choice with cross-validation, we assume an

inlaid structure of categories of Boolean functions:

92

F,cF,c..cF,
Fk:{Fk}:{F(x’w);WEWk} (77)
wherek=1,2,...,n

The k-th category of functions Fj encloses a family of multi-layer perceptrons with similar
architecture and vectors of weights w, pulled from a multidimensional space of weights, W,. A member of
this category, which is characterized by the function or hypothesis Fx = F(x, w), where w € W, maps the
vector of inputs x to {0, 1}. The vector of inputs x is pulled from a space of inputs H with some unknown
probability P. Every multi-layer perceptron of this structure is educated through the BK algorithm, which is
responsible for the education of the parameters of the perceptron. The choice of a model is a problem of a
choice of a certain multi-layer perceptron that gives the optimal value for w, the number of free parameters.
Taking into account that the scalar desirable response for a vector of inputs x is d={0, 1}, we can define the

generalization error as the following probability:
e,(F)=P(F(x)#d), forxeH (78)

A training sample consisted of annotated examples is described by

T=|(x,.d) (79)

“N
\ Ji=1
Our goal is to choose a particular hypothesis F(x, w) that minimizes the generalization error &.(F),

occurring when the network is fed by inputs from the control set.

We assume that the structure described by equation (77) has the following property: for every sample
size N, there is always a multi-layer perceptron with a sufficiently great number of free parameters W,..(N),
which is called fitting number, such that the fitting of the training sample is sufficient. The fitting number is
very significant, as a logical procedure for the choice of a model would choose a hypothesis F(x, w) which
requires W < W,...(N); otherwise, the complexity of the network would be increased.

Let r be an independent parameter, with value range from 0 to 1 specifies the partitioning of the
training sample 7, between the evaluation subset 7" and the validation subset 7". The evaluation subset is
used for the training of an inlaid sequence of multi-layer perceptrons, resulting to hypotheses F), F>, ..., F, of
increasing complexity. 7" is consisted of (7-7)N examples. We examine the values of W that are less than or

equal to the corresponding fitting number Wmax((1-r)N).

Using the cross-validation method, we end up to the choice:

93

Fo= min le'" (F)] (80)

where v corresponds to W,<W,.((I-r)N), and e"(F}) is the classification error that is produced by the

hypothesis F; when is controlled on the validation subset 7", which is consisted of #N examples.

The way to determine the parameter » is quite important. There are several quality properties of the

optimal parameter r, as described in a study of Kearns (1996), such as the following:

* When the target function complexity, which actually defines the desirable response d depending on
the vector of inputs X, is relatively small compared to the sample size N, the performance of the

cross-validation method, shows a relative “unconsciousness” on the choice of r.

* While the target function gets more complex depending on the sample size N, the choice of an
optimal r has a bigger effect on the performance of cross-validation and the value of the same target

function is decreased.

* A single constant value of » works almost optimally for a wide complexity range of the target

function.

Based on the results of the above study (Kearns, 1996), a constant value of the parameter r, equal to
0.2, seems to be a reasonable choice, which means that 80% of the training sample 7 consists a partition for

the evaluation subset, and the rest 20% consists a partition for the validation subset.
2.9.4.2 Early Stopping Method

A multi-layer perceptron trained by BK algorithm learns in stages: it starts with the implementation
of simple mapping functions and continues with more complicated ones while its training session develops.
In a typical case, the training session develops in many epochs, and while the number of epochs increases,
the mean squared error (MSE) is decreased; usually, in the beginning of the training the MSE has a large
value but after a while it decreases rapidly and then it continues decreasing but more smoothly when the
network is reaching a local minimum on the error surface. When a good generalization is the target, it is
quite difficult to identify when is the appropriate moment to stop the training of the network, taking into
account only the learning curve. The network is likely to result in over-fitting if the training session doesn't

stop on the correct moment.

94

mean squared
error (MSE)

error of the
validation sample

error of the
training sample

(0, 0) \ -

point of
early stopping

Figure 31: Plot of the early stopping rule based on cross-validation.

The point at which the overfitting starts can be recognized through the cross-validation method, with

which, as described before, the training data is divided into an evaluation subset and a validation subset. The

evaluation subset can be used for the network training with the usual way with a small difference. The

training session is interrupted periodically every some epochs. After every training period, the network is

controlled on the base of the validation subset. This procedure is called early stopping of the training and is

widely used. It is performed in the following two phases:

* After an evaluation period (which is the training period), every some epochs, all the synaptic weights

and the biases of the multi-layer perceptron are constant and the network functions in a forward

state. The validation error is calculated for each example in the validation subset.

* When the above phase is complete, the evaluation (training) continues for a next period and this

procedure is repeated.

Fig. 31 presents two ideal learning curves; the one corresponds to the evaluation subset and the other

one corresponds to the validation subset. Typically, this model has a better performance in the evaluation

subset (which was the base for the design of the curves) rather than the validation subset. The learning curve

95

for the evaluation subset is decreased monotonically with the increment of the number of epochs. In
opposition, the learning curve for the validation subset is decreased monotonically until a minimum and then
it starts increasing while the training goes on. After the minimum point in the learning curve for the
validation subset, the network only learns the noise contained in the training data. This heuristic direction
suggests that the minimum point of the learning curve for the validation subset can be used as a logical

criterion for the termination of the training session.

Nevertheless, in fact the error for the validation subset doesn't evolve over time so smoothly as the
ideal curve of fig. 31. Instead, the error for the validation subset can reach some local minima before starting
to increase with the increment of the number of epochs. In such cases, a termination criterion should be
chosen in a systematic way. Prechelt (1998) conducted an empirical research and proved experimentally that
in fact there is a trade-off on the training time compared to the network performance, regarding the
generalization as target. Based on the experimental results of this work, on a set of 1,296 training sessions,
12 different problems and 24 different network architectures, it is found that, when there are two or more
local minima, the choice of a slower termination criterion, which will finish the procedure later than the other
criteria would do, allows the achievement of a small improvement in the generalization performance, of 4%

on average, with a trade-off on the training time (which is quadruple on average).

Test 1

Test 2

Test 3

Test 4

Figure 32: Plot of multiple cross-validation method. For a given test, the colored data subset is used

for the model's validation. The model is trained by the rest of the data.

Apart from the procedure that was described above, there are variations of it that are applied in
practice, mainly in cases of insufficient annotated examples. In such a case, we can use the multiple cross-
validation method, by dividing the available set of N examples into K subsets, where K > [. This procedure

assumes that X is divisible by N. The model is trained with all subsets except from one, and the validation

96

error is calculated by controlling the validation subset based on the specific subset with which the network
didn't train before, during the training period. This procedure is repeated for a set of K tests and each time it
uses a different subset for the validation, as presented in fig. 32 for K = 4. The performance of this model is
evaluated based on the MSE of the validation over the the testing set. The drawback of the multiple cross-
validation is that it might require an excessive volume of computations, as the model needs to be trained K

times, and /<K<N .

If the available number of annotated examples N is drastically reduced, an extreme form of multiple
cross-validation can be used. This method is known as leave-one-out method. In this case, N-1 examples are
used for the training of the model and the validation is taking place based on the example that was left out.
The experiment is repeated N times in total and every time a different example is left out and left for the

validation phase. Afterwards, the validation MSE is calculated over the testing set, consisted of N tests [14].

97

98

3 Model's Implementation

Our model implements a supervised on-line learning system for Twitter sentiment analysis. It

consists of the following stages:

* Data acquisition: collection of raw tweets, construction and annotation of the datasets.

» Data pre-processing: a series of steps that aim to reduce as much as possible the noise of our datasets

and maintain the meaningful information.

* Feature Extraction: a series of steps for the extraction of the most important features we considered

in our model, out of the pre-processed tweets, and the construction of the feature vectors.

* Multi-layer Perceptron: the feature vectors feed the inputs of an artificial neural network trained by
the BK algorithm, which aims to classify correctly its inputs into two or three classes ({positive,

negative} or {positive, negative, neutral}).

Each of these stages is going to be described in depth in this chapter. A schematic representation of the

implemented model can be seen in the following figure (fig. 33).

99

dataset of
raw tweets

positive
tweets

negative
tweets

neutral
tweets

pre-processing

pre-processed
tweets

Figure 33: Schematic representation of the implemented model.

data acquisition

feature extraction

training set

"

100

feature
vectors

ANN
classifier

predicted class
(positive/negative/neutral)

testing set

tweet

3.1 Data Acquisition

Our system is going to automatically detect the sentiment polarity of tweets. Hence, as a matter of
fact, our first goal is to collect data of raw tweets. For this cause, we created a Twitter account and a Twitter
application under the name “sentiment_analysis_gr” in the Twitter API [18]. A consumer key and a consumer
token as well as an access key and an access token were generated for this application, which allow us to

connect to Twitter and have access to the data the users we follow share (fig. 34).

In order to work with the Twitter API, we have to use OAuth to authorize our application for making
requests on our behalf. Twitter supports OAuth, which is an open standard for authorization. OAuth provides
client applications a secure delegated access to server resources on behalf of a resource owner. It specifies a
process for resource owners to authorize third-party access to their server resources without sharing their
credentials. It is designed specifically to work with Hypertext Transfer Protocol (HTTP); OAuth essentially
allows access tokens to be issued to third-party clients by an authorization server, with the approval of the
resource owner, or end-user. The client then uses the access token to access the protected resources hosted by
the resource server. OAuth is commonly used in Twitter as well as other third party websites, as a way for

users to log into accounts without exposing their password.

dataset of

Twitter application raw tweets

on Twitter API

Figure 34: Schematic representation of the sequence of actions taking place for the acquisition

of data from Twitter.

We trained and tested our model using a corpus that was divided in two datasets: the first one
contains tweets expressing opinions of three discrete classes (positive, negative, neutral), while the second

one contains tweets expressing opinions of two discrete classes (positive, negative).

The second dataset consists of raw tweets of various contents, already annotated as positive or
negative. Apart from this already prepared annotated dataset, we also collected our own data according to a

certain topic, which consisted our first dataset. The topic that was chosen is the referendum that took place in

101

Greece on July 5" 2015. Inherently, a referendum is a binary problem that tends to polarize and divide
people's opinions, therefore it was considered an excellent source of data for our cause. We collected data in

a period of time from 1/7/2015 until 7/7/2015.

The annotation was performed manually. In chapter 1, we described some techniques for the
annotation of tweets in an automated way, such as the annotation by taking into account the emoticons used
[7]; for example the smiling smiley “:-)” is more possible to be part of a generally positive tweet rather than
a negative one. However, as the topic about which the tweets were collected is a political one, so the use of
emoticons was not so common, as well as it is very often to use them in an ironic way, we performed the task

of the annotation manually in order to have an accurate and, as much as possible, error-free annotation.

In order to make this task easier for the trainer that performed the annotation, we implemented a
series of pre-processing tasks (described in the subsequent section) that reduced the volume of the available
data. As it will be seen further along, we achieved an average volume reduction of the datasets by 50.07%
per day (or per data subset), which proved to be a very good and helpful result for the trainer's job. However,
even the fact that the original datasets containing from 2,000 to 2,670 tweets were reduced to ones containing
from 1,042 to 1,139 tweets, due to time constraints, we performed the annotation on a set of 500 tweets per
day. The reason for this is that the task of manual annotation is a quite demanding and time consuming
process. Nevertheless, these data were collected with view to be used in a common experiment. In addition,
they were used in combination and not being isolated, so our system could take into account and evaluate the
common dictionary being used in all of them in the framework of the certain political topic. The total number
of the all these data subsets is 7-500 = 3,500 tweets. This number can be considered quite sufficient in order

to train our system.

During the process of manual annotation, it was apparent how difficult it is even for a human to
identify the exact polarity of the sentiment of a written opinion, especially when the polarity should be
quantized in such a small number of classes (3 classes; positive, negative or neutral) and cannot take into
account other types of sentiments, e.g. the irony. Many times we met the difficulty of recognizing the

polarity of the sentiment of an opinion as well as the framework within which it was expressed.

For example, let's check out a tweet of the tweets' collection of July 3™, 2015 (from the dataset

referendum_ds{3}):

“RT @EJDionne: A hope post-#greekreferendum: "The risk of catastrophe

will concentrate minds..lead to positive surprises" @LHSummers”

The above tweet was finally considered to express a positive sentiment. However, it is commonly
accepted that its meaning can be ambiguous due to the use of both words that express extremely negative

sentiments (“risk”, “catastrophe”) and words that express positive sentiments (“positive ”); thus, it took us

some time to process and consider the meaning within the total context of the sentence and finally decide

102

about its class. Therefore, it gets quite clear now that the task of sentiment extraction and classification of
microtexts is a very hard and complicated challenge for an automated system like the one we are

implementing here.

Given the fact that the annotation was performed by the same trainer for all datasets, we can assume
that there is a kind of uniformity in the way that the samples were classified as positive, negative or neutral;
hence, even though a flawless annotation of our samples was, as a matter of fact, impossible, there is a
uniformity in the possibly existing deviations (between the trainer's annotation and the actual intentions of
sentiment from the users expressing the collected opinions) of all datasets, and we therefore consider these

deviations negligible regarding the conclusions extracted from our system.

* referendum_ds{1}: a dataset of initially 2,000 unannotated raw tweets, posted on July 1%, 2015 and
regarding the Greek Referendum of July 5™, 2015. After a series of pre-processing tasks, a subset of

the initial dataset was created, consisting of 1,119 positive, negative and neutral tweets.

* referendum_ds{2}: a dataset of initially 2,670 unannotated raw tweets, posted on July 2", 2015 and
regarding the Greek Referendum of July 5™, 2015. After a series of pre-processing tasks, a subset of

the initial dataset was created, consisting of 1,095 positive, negative and neutral tweets.

» referendum_ds{3}: a dataset of initially 2,670 unannotated raw tweets, posted on July 3™, 2015 and
regarding the Greek Referendum of July 5™, 2015. After a series of pre-processing tasks, a subset of

the initial dataset was created, consisting of 1,042 positive, negative and neutral tweets.

* referendum_ds{4}: a dataset of initially 2,000 unannotated raw tweets, posted on July 4", 2015 and
regarding the Greek Referendum of July 5™, 2015. After a series of pre-processing tasks, a subset of

the initial dataset was created, consisting of 1,043 positive, negative and neutral tweets.

* referendum_ds{5}: a dataset of initially 2,000 unannotated raw tweets, posted on July 5, 2015 and
regarding the Greek Referendum that took place on this day. After a series of pre-processing tasks, a

subset of the initial dataset was created, consisting of 1,108 positive, negative and neutral tweets.

* referendum_ds{6}: a dataset of initially 2,000 unannotated raw tweets, posted on July 6™, 2015 and
regarding the Greek Referendum of July 5™, 2015. After a series of pre-processing tasks, a subset of

the initial dataset was created, consisting of 1,139 positive, negative and neutral tweets.

* referendum_ds{7}: a dataset of initially 2,000 unannotated raw tweets, posted on July 7", 2015 and
regarding the Greek Referendum of July 5™, 2015. After a series of pre-processing tasks, a subset of

the initial dataset was created, consisting of 1,121 positive, negative and neutral tweets.

Table 1 summarizes all datasets of our experiments. As one can notice in this Table, the original
subsets of positive, negative and neutral tweets for the datasets concerning the referendum

(referendum_ds{day}) are not balanced. However, for the examination of our implemented architecture, we

103

kept a set of 300 tweets per day (balanced referendum_ds{day}); 100 positive, 100 negative and 100 neutral.
The sum of these subsets produces a greater dataset, the balanced referendum_ds, of 300-7 = 2,100 tweets,

out of them 700 are positive, 700 negative and 700 neutral.
To sum up, the datasets that were used in order to train and test our model are the following ones:

* balanced referendum_ds: a dataset of 2,100 annotated raw tweets, regarding the Greek

Referendum of July 5™, 2015, and consisting of 700 positive, 700 negative and 700 neutral tweets.

* various_contents_ds: a dataset of 2,000 already annotated raw tweets of various contents,

consisting of 1,000 positive and 1,000 negative tweets.

Datasets Total Polarity Positive class Negative Neutral
number of class class
tweets
referendum_ds{1} 500 Positive, negative, 114 218 168
neutral
referendum_ds{2} 500 Positive, negative, 154 182 164
neutral
referendum_ds{3} 500 Positive, negative, 131 127 242
neutral
referendum_ds{4} 500 Positive, negative, 163 162 175
neutral
referendum_ds{5} 500 Positive, negative, 155 152 193
neutral
referendum_ds{6} 500 Positive, negative, 121 178 201
neutral
referendum_ds{7} 500 Positive, negative, 121 262 117
neutral
Sum of all 3,500 Positive, negative, 959 1281 1260
referendum_ds{1:7} neutral
balanced referendum_ds{ 300 Positive, negative, 100 100 100
day} neutral
Sum of all 2,100 Positive, negative, 700 700 700
balanced referendum_ds{ neutral
1:7}
various_contents_ds 2,000 Positive, negative 1000 1000 0

Table 1: Overview of the datasets.

104

3.2 Pre-processing and Feature Extraction

3.2.1 Features of our Model

The features we decided to take into account for the model we implemented are extracted from the

original words that consist a tweet, and are the following ones:

¢ lemmas
* stems

* parts-of-speech (POS)

Alemma (plural lemmas or lemmata) is the canonical form, dictionary form, or citation form of a set
of words (headword). For example, in English, the words “run”, “runs”, “ran” and “running” are forms of
the same lexeme, and their lemma is the word “run”. Lexeme, in this context, refers to the set of all the
forms that have the same meaning, and lemma refers to the particular form that is chosen by convention to
represent the lexeme. In lexicography, this unit is usually also the citation form or headword by which it is

indexed.

The process of determining the lemma for a given word is called lemmatization. The lemma can be

viewed as the chief of the principal parts, although lemmatization is at least partly arbitrary [19].

A stem is a part of a word. The term is used with slightly different meanings. In one usage, a stem is
a form to which affixes can be attached. Thus, in this usage, the English word “friendships” contains the
stem “friend”, to which the derivational suffix “-ship” is attached to form a new stem ‘‘friendship”, to

¢

which the inflectional suffix “-s” is attached. In a variant of this usage, the root of the word (in the example,

“friend”) is not counted as a stem.

In a slightly different usage, a word has a single stem, namely the part of the word that is common to
all its inflected variants. Thus, in this usage, all derivational affixes are part of the stem. For example, the

¢

stem of “friendships” is ‘friendship”, to which the inflectional suffix “-s” is attached. This is the usage we
adopted in our model. The stem needs not to be identical to the morphological root of the word; it is usually

sufficient that related words map to the same stem, even if this stem is not in itself a valid root.

Stemming is the term used to describe the process for reducing inflected (or sometimes derived)
words to their word stem, base or root form. Algorithms for stemming (also known as stemmers) have been
studied in computer science since the 1960s. Many search engines treat words with the same stem as
synonyms as a kind of query expansion [19].

The difference between stems and lemmas is that a stem is the part of the word that never changes

105

even when morphologically inflected, whilst a lemma is the base form of the word. For example, from
“produced”, the lemma is “produce”, but the stem is “produc”. This is because there are words such as
“production”. In linguistic analysis, the stem is defined more generally as the analyzed base form from
which all inflected forms can be formed. Some lexemes have several stems but only one lemma. For

example, the lemma “go ™ has the stems “go” and “went”.

A part-of-speech (POS) is a category of words (or, more generally, of lexical items) which have
similar grammatical properties. Words that are assigned to the same part of speech generally display similar
behavior in terms of syntax -they play similar roles within the grammatical structure of sentences- and
sometimes in terms of morphology, in that they undergo inflection for similar properties. Commonly listed
English parts of speech are noun, verb, adjective, adverb, pronoun, preposition, conjunction, interjection, and
sometimes numeral, article or determiner. Table 2 presents all the parts-of-speech we considered in our

model [20].

A part of speech (particularly in more modern classifications, which often make more precise
distinctions than the traditional scheme does) may also be called a word class, lexical class, or lexical
category, although the term lexical category refers in some contexts to a particular type of syntactic category,
and may thus exclude parts of speech that are considered to be functional, such as pronouns. The term form
class is also used, although this has various conflicting definitions. Word classes may be classified as open or
closed: open classes (like nouns, verbs and adjectives) acquire new members constantly, while closed classes
(such as pronouns and conjunctions) acquire new members infrequently, if at all.

Part-of-speech tagging (POS tagging or POST), also called grammatical tagging or word-category
disambiguation, is the process of marking up a word in a text (corpus) as corresponding to a particular part of
speech, based on both its definition, as well as its context.

Once performed by hand, POS tagging is now done in the context of computational linguistics, using
algorithms which associate discrete terms, as well as hidden parts of speech, in accordance with a set of
descriptive tags. POS tagging algorithms fall into two distinctive groups: rule-based and stochastic [19].

By POS tagging, we take into account the parts of speech within a document that indicate emotion.

In most cases these are adjective-noun combinations such as “devastating loss”.

106

CC

CD

DT

EX

FWwW

IN

JJ

JJIR

JJS

LS

MD

NN

NNP

NNPS

NNS

Conjunction, coordinating

(e.g. &, 'n, and, both, et, for, times, vs., yet)
Numeral, cardinal

(e.g. mid-1890, fifteen, 271.124, '60s, dozen)
Determiner

(e.g. all, an, another, any, this)

Existentiel there

(there)

Foreign word (non-english word)

(e.g. je, objets, fiche, hund, Herr)
Preposition or conjunction, subordinating
(e.g. astride, among, upon, below, within, behind)
Adjective or numeral, ordinal

(e.g. third, pre-war, multilingual)

Adjective comparative

(e.g. calmer)

Adjective, superlative

(e.g. calmest)

List item marker

(e.g. A, A, first, SP-44002)

Modal auxiliary

(can, cannot, couldn't, might)

Noun, common singular or mass

(e.g. wind, hyena, override)

Noun, proper, singular

(e.g. Oceanside, Escobar, Christos)

Noun, proper, plural

(e.g Americans, Amharas, Syndicalists)
Noun, common, plural

107

(e.g. undergraduates, bric-a-brac, products)
PDT | Pre-determiner

(e.g. all, both, half)

POS | Genitive marker

(e.g. George's)

PRP | Pronoun, personal

(e.g. hers, herself, me)

PRPS$ | Pronoun, possessive

(e.g. her, his, mine)

RB | Adverb

(e.g. occasionally, technologically, fiscally)
RBR | Adverb, comparative

(e.g. further, grander, gloomier, louder)
RBS | Adverb, superlative

(e.g. best, biggest, earliest)

RP | Particle

(e.g. aboard, about, across, along, back)
SYM | Symbol

(e.g %, & * +,<,=> @)

TO | “to” as preposition or infinitive marker
(o)

UH | Interjection

(e.g. Goodbye, Wow, Oops, amen, honey, anyways)
VB | Verb, base form

(e.g. ask, assess, assign, bake)

VBD | Verb, past tense

(e.g. dipped, pleaded, halted)

VBG | Verb, present participle or gerund

108

(e.g. telegraphing, focusing, alleging, encrypting)
VBN | Verb, past participle

(e.g. desired, used, experimented, imitated)

VBP | Verb, present tense, not 3™ person singular

(e.g. resort, sue, cure, appear, tend)

VBZ | Verb, present tense, 3 person singular

(e.g. bases, reconstructs, marks, mixes)

WDT | WH-determiner

(that, what, whatever, which, whichever)

WP | WH-pronoun

(that, what, whatever, whatsoever, which, who, whom,
whosoever)

WPS$ | WH-pronoun, possessive

(whose)

WRB | WH-adverb

(how, however, whence, whenever, where, whereby,

wherever, wherein, whereof, why)

Table 2: The part-of-speech (POS) tags considered by our model.

Therefore, after the pre-processing procedure of the raw datasets of tweets that is subsequently
described, we expect to have kept a refined form of the tweet, which constructs a feature vector consisting of
a combination of the features we described here: the original words, lemmas, stems and POS tags. For

example, the tweet

“the children are playing in the yard % #sunday”

is expected to take the following form, which makes use of a combination of the original words, their

lemmas and POS tags:
[(children', u'child', 'NNS"), ('are', u'be', 'VBP"), (playing', u'play', 'VBG'),
(yard, ‘yard', 'NN'), ('sun', 'sun', 'NN'), ('sunday', 'sunday', 'NN')]

109

3.2.2 Pre-processing

@birdnextom

RT e
chirp! chirp! << LoL
H#Cun nybfrdnoi_ses W‘H: !?
[+
o

/

&

Figure 35: “Twitter bird in real life”. Humorous portrayal of the language used in

Twitter by Scott Hampson [36].

Given the fact that the language of microblogging requires a special treatment (as the use of informal
and irregular words as well as the use of slang, misspellings, emoticons and acronyms are very frequent,
which is aptly presented in the humorous fig. 35), we implemented a series of pre-processing tasks in order

to correct and normalize the tweets for the feature extraction and construction of the feature vectors [21].

The pre-processing tasks we considered are the following:

1) Conversion of tweet to lower-case.

2) Conversion of hyperlinks (strings starting by “www.”, “http://” and “https://”) to the string
“url”.

3) Conversion of name mentions (“@username) to the string “at_user”.
4) Elimination of additional white spaces.

5) Replacement of hashtags by converting hashtags of the generic form “#oo” into ‘foo”

(removing the hash sign “#”).

110

6) Elimination of punctuation

7) Elimination of strings “at user”, “url” and “rt” strings.
8) Elimination of duplicates.

9) Replacement of emoticons.

10) Replacement of acronyms.

11) Elimination of stop words.

12) Elimination of remaining non-ASCII characters.

dataset of raw tweets

tweet

|

conversion to lower-case

conversion of hyperlinks to "url"
and name mentions to "at_user"

v list of tweets
that have been
pre-processed

elimination of additional

' Lo . <
white spaces > elimination of duplicates < until this step
A 4 A 4
replacement of hashtags 5
by relr:”loving the iash sig‘f) replacement of emoticons
elimination of punctuation replacement of acronyms
elimination of strings elimination of stop words

"at_user", "url" and "rt"

A 4

elimination of remaining
non-ASCII characters

.

cleaned tweet

Figure 36: Flowchart of the pre-processing procedure. The output of this procedure (the pre-
processed tweet) is a cleaned version of the original tweet, in the sense that noise has tried to

be eliminated while the meaningful information has tried to be maintained.

Let's now describe further the above steps:

111

Step 1: In the first step we convert all tweets to lower-case. This is because our implementation is
case-sensitive; if this step was absent, the system would treat different forms of the same word as
different words. Thus, it would miss a lot of significant information about the correlation among

words.

Step 2: In this step, hyperlinks (all strings starting by “www.”, “http://”, “https://”’) are converted
into the generic string “url”. The processing of hyperlinks would be extremely hard and quite
unlikely to provide us with meaningful information, due to the fact that hyperlinks are very possible
to contain meaningless sequences of letters or numbers. The most possible scenario would be that

such a task would add noise to our data.

Step 3: This step converts all mentions of usernames (of the form “@username”) into the generic

string “at_user”. Name mentions don't provide any useful information for our system.

Step 4: In this step, more than one white spaces are replaced.

Step 5: In opposition to hyperlinks and name mentions, hashtags are possible to carry very useful
information. A hashtag is a type of label or meta-data tag used on social network and microblogging
services which makes it easier for users to find messages with a specific theme or content, e.g.
“Yelections”. Users create and use hashtags by placing the hash sign “#” in front of a word or
unspaced phrase, either in the main text of a message or at the end of it. Searching for that hashtag
will then present each message that has been tagged with it. It is also very common for Twitter users
to use hashtags in order to describe their emotion or attitude, e.g. “#cool”. For this reason, we want
to make use of the information that hashtags contain for our feature vectors. In step 5, a hashtag of
the generic form “#foo” is replaced by the string “foo”, which is actually the original string of the
hashtag without the “#” sign. As mentioned before, it is common a hashtag to contain an unspaced
phrase, which makes the task of natural language processing much more complex. However, we
have not taken any precautions in order to recognize such phrases and divide them into the original
words; this kind of phrases may be considered as noise, but they are possible to additionally provide

information if they are repeated and express a certain attitude regarding a topic.

Step 6: In this step, all punctuation symbols are removed. Even though they are used to emphasize
the presence of a sentiment in a microtext (e.g. “I am very angry!”), they just amplify the intensity
of this sentiment and not add a new one; hence we didn't consider them important for the extraction

of significant information that would lead our system to further acquisition of knowledge.

112

Step 7: As by now we have grouped all hyperlinks and name mentions under the generic strings

“url” and “at_user” respectively, our system filters them out. In addition, in this step it filters out

€6 .9

the indicative string of retweets “r¢” as neither does this type of meta-data provide any useful
information to our model; actually the existence of retweets confirms the existence of duplicates,
which do not offer more knowledge to our system but repeating the already existent knowledge. For
this reason, we need to eliminate the strings of “r¢” from all tweets in order to identify and eliminate

the useless duplicates from our dataset (as seen in the subsequent step).

Step 8: In this step, all duplicate tweets from the whole dataset are eliminated, and only one instance
of every tweet is kept, as more instances of the same sample do not provide further knowledge to our

system.

Step 9: This step replaces emoticons by the word of the emotion or attitude they are considered to
express. Emoticons (or emoticon icons) are meta-communicative pictorial representations of facial
expressions that, in the absence of body language and prosody, serve to draw a receiver's attention to
the tenor or temper of a sender's nominal non-verbal communication, changing and improving its
interpretation. It expresses -usually by means of punctuation marks (though it can include numbers
and letters)- a person's feelings or mood, though as emoticons have become more popular, some
devices have provided stylized pictures that do not use punctuation. As social media has become
widespread, emoticons have played a significant role in communication through technology. They
offer another range of "tone" and feeling through texting that portrays specific emotions through
facial gestures while in the midst of text-based cyber communication. For these reasons, in order to
make use of their potentially very important value, in this step of the pre-processing procedure we
replace emoticons by the word of the emotion they are supposed to represent. A dictionary of the 100

most common emoticons used in Twitter was made and can be accessed in the Appendix.

Step 10: Acronyms are abbreviations formed from the initial components in a phrase or a word. They
dominate in social networks and Twitter; apart from the fact that acronyms consist a quick, easy and
popular way to write a phrase, they also compress a long phrase into several letters, which is very
useful for expressing a greater piece of information while respecting the 140-characters limitation of
Twitter. For this reason we couldn't ignore the information contained in acronyms. For our work, we
created a dictionary of the 664 most frequently used acronyms of Twitter. In this step of the pre-
processing procedure, acronyms are “decompressed” and replaced by the full phrase they express,
according to the dictionary of the collected acronyms. The first 50 acronyms of this dictionary are

given in the Appendix.

113

» Step 11: Stop words are words which are usually filtered out before or after processing of natural
language data. Though stop words usually refer to the most common words in a language, there is no
single universal list of stop words used by all processing of natural language tools, and indeed not all
tools even use such a list. Some tools specifically avoid removing these stop words to support phrase
search. In this step, all words that are members of a list of stop words we chose are eliminated from
the tweets dataset. The list contains 320 english stop words and can be seen in Appendix. This step
takes place after having replaced the emoticons and acronyms, as some words used in them (in the
emoticons and especially in the acronyms) may consist stop words and therefore they should be

eliminated.

* Step 12: In this step, the remaining non-ASCII characters (that were not replaced in previous steps,
e.g. &) are eliminated as our system wouldn't be able to understand and use them and, as a matter of

fact, they would consist pure noise.

Let's see an example of how the pre-processing procedure develops. The following tweet (from

referendum_ds{6}):

“RT @ariannahuff: Time for Europe to embrace #Greece

http://www.demanjo.com/news/world/...”

after steps 1 to 6, would be converted into:

“rt at_user time for europe to embrace greece url”

and after step 7 it would be converted into

“time for europe to embrace greece”

It is very common a user to share a tweet of another user, using the option of retweet and then the
string of “RT” would appear in the beginning of the shared tweet. In addition, a user might retweet an
already existing tweet and mention another user or add a hyperlink or hashtag. For instance, a user different

from the one that reposted the above tweet, had earlier written:

“Time for Europe to embrace #Greece”

These two tweets carry the same piece of information, which is extracted in the string:

“time for europe to embrace greece ”

114

This example makes obvious the fact that the first 1-8 steps are very useful in order to identify the
available information within a tweet and eliminate the meta-data of mentioning another user, retweeting or
adding a hyperlink, which are not offering any meaningful information but noise to our system. By doing
this, we are able to identify the duplicates in our dataset and eliminate them; they wouldn't give any
additional knowledge to the system, and they would increase the required storing space and the processing
time; hence they would burden the performance of the system. In addition, they would make the task of
manual annotation much harder: As we described in section 3.1 for the data acquisition, our first datasets
consist of already annotated tweets; nevertheless the datasets concerning the topic of the referendum
(referendum_ds{day}, where day={1,2, ..., 9}) were not annotated. The annotation was performed manually
by us. The task of annotation requires plenty of time and concentration in order to offer careful and accurate
results regarding the correct classification of tweets in the three classes of interest (positive, negative and
neutral). For this additional reason, steps 1-8 were very essential for making the task of annotation the
simplest possible for the human trainer that was assigned to it. Hence, for the datasets concerning the
referendum, the pre-processing procedure was interrupted after step 8 in order to perform the manual
annotation. After the annotation of tweets, the pre-processing procedure continued from step 9 to step 12.
For datasets DS1 and DS2, all steps of the pre-processing procedure, from 1 to 12, were performed in order,

without any interruption.

dataset of raw tweets

“‘RT @ariannahuff: Time for Europe to embrace #Greece http://www.demanjo.com/news/world/...”

!

pre-processing

“time for europe to embrace greece”

Figure 37: Schematic representation of the pre-processing procedure (as a black box) of a random raw tweet
from our dataset. The output of this procedure is a cleaned tweet containing the meaningful information of

the original tweet.

115

Let's now see how a tweet is transmuted after each pre-processing step, in another example. The

tweet:

“RT @ledzeppelin: FYI Now Playing on #radio: Led Zeppelin - Kashmir
https://youtu.be/sfR_HWMzgyc © 733"

after steps 1-6, would take the following form:

“rt at_user fyi now playing on radio led zeppelin kashmir url @ S153”7

After step 7, “at_user”, “url” and “rt” strings are eliminated, and it would be converted into:

“fyi now playing on radio led zeppelin kashmir @ F353”

If this cleaned tweet was repeated again in the dataset, the repetitions would be removed at step 8. Then, after

step 9, the tweet would take the form:

“fyi now playing on radio led zeppelin kashmir happy 533"

The subsequent step 10 would convert the tweet into:
“for your information now playing on radio led zeppelin kashmir happy
ﬁ ﬁ ”

Afterwards, at step 11, stop words would be eliminated:

“information playing on radio led zeppelin kashmir happy 353"

and finally, step 12 would convert the tweet into the final pre-processed tweet:

“information playing on radio led zeppelin kashmir happy”

Fig. 36 summarizes all the steps of the pre-processing procedure of our model.

3.2.3 Feature Extraction

After having performed the pre-processing steps described above onto our datasets, we have reduced
their volume and have tried to eliminate the noise from them. In addition we have tried to make the text of
tweets more comprehensible for a machine (for example a machine wouldn't be able to make a correlation
between an emoticon and its corresponding word; for instance, “happy” and “@” are referring to the same
or similar sentiment, and our algorithm should be able to make use of this property). Hence, at this point,

each tweet is represented by a much more clear sequence of words.

116

The features we chose for our system are the stems, lemmas and POS tags. Thus the next steps have
to do with extracting or constructing these features from our set of tweets, which actually now consist lists of
words; each tweet is now represented by a list of words. After extracting these features, by combining them

we construct the feature vectors, as seen in fig. 38.

pre-processed tweet

word, word, A word,,

feature extraction

feature vector
of length m

Figure 38: Schematic representation of the feature extraction process (as a black
box). After extracting the features of each word consisting a tweet, the latter is

transformed into a feature vector.

For the extraction of features, we have defined three functions: a function for the stemming, a

function for the lemmatization and a function for the POS tagging of the tweets.

For the POS tagging, the Natural Language Toolkit (NLTK) platform provides a tool which assigns
each word to its corresponding POS tag (one of the available POS tags we presented in Table 2). For
example, “loved” would be assigned to the POS tag “VBD”, which corresponds to a verb of past tense,

according to Table 2.

For the stemming we have used the Lancaster Stemmer from NLTK. Every word out of a tweet is
assigned to its stem. For example, the word “loved” would be assigned by the Lancaster Stemmer to the

stem “lov”.

117

Finally, for the lemmatization we have used the Wordnet Lemmatizer from NLTK, which also takes

into account the POS tag of words. For example, the word “loved” would be assigned to its lemma “/ove”.

After having assigned each word to its POS tag, stem and lemma, we can make various combinations
of these features. For example, we can construct feature vectors consisted of the original word appearing in
the raw tweet, with its stem and its POS tag; or we can construct feature vectors consisted of the original

word with its lemma and its POS tag. Let's see an example: For the original tweet coming from the dataset
referendum_ds{2}:
“RT @tsipras_eu: The #referendum gives an entire people the chance to
affect the negotiation process. #Greece #Greferendum”

after the pre-processing procedure we would end up with a list of words of this shape:

['referendum’, 'gives', 'entire', 'people', 'chance', 'affect’, 'negotiation',
4 peop 4
'process', 'greece', 'greferendum']
which can be assigned to a feature vector which consists of tuples of the form (original word, stem, POS

tag):

[(referendum!, 'referend', 'NN"), ('gives', 'giv', 'VBZ'), (‘entire', 'entir', 'JJ"),

('people’, 'peopl’, 'NNS'), (chance', u'chant', 'NN"), (‘'affect!, 'affect, 'NN'),

(‘negotiation', u'negoty', 'NN'), ('process', 'process', 'NN'), ('greece', 'greec),
'NN'), (greferendum’, 'greferend’, 'NN')]

or it could be presented as a feature vector of tuples of the form (original word, lemma, POS tag):

[(referendum’, 'referendum', 'NN'), (‘gives', u'give', 'VBZ"), (entire,
‘entire', 'JJ'), (people', 'people', 'NNS"), (chance', 'chance', 'NN'), (affect,
'affect’, 'NN'), (‘'negotiation', 'negotiation', 'NN'), ('process', 'process', 'NN'),
(‘'greece', 'greece', 'NN'), ('greferendum’, 'greferendum’, 'NN')]

or even as a vector that combines both stems and lemmas, of the form (word, stem, lemma):

[(referendum!, 'referend', 'referendum'), ('gives', 'giV', u'give'), (‘entire',
'entir', 'entire'), (‘people', 'peopl, 'people'), (‘chance', u'chant, 'chance"),
('affect, 'affect, 'affect'), (‘'negotiation', u'negoty', 'negotiation'), ('process',
'process', 'process'), (‘greece', 'greec', 'greece'), (‘greferendum’, 'greferend,

'greferendum’) |

118

word

stemming POS tagging lemmatization
stem POS tag lemma

combine(word, POS tag, stem) combine(word, POS tag, lemma)
(word, POS tag, stem) (word, POS tag, lemma)

Figure 39: Procedure of feature extraction. The stems, lemmas and POS tags of a word are

extracted and combined in order to construct the feature vector of a tweet.

This variety of combinations was used in our experiments (described in Chapter 4) in order to

examine which type of feature vectors achieves the optimal performance for our case.

3.3 Architecture

3.3.1 Input Preparation

As described in section 3.2.3, our feature vectors are consisted of a combination of the original

119

words of the preprocessed tweets, their stems, lemmas and POS tags. In our implementation, these vectors
are initially represented by lists of tuples; each tuple contains a number of string values, e.g. (‘people’,
'peopl’, 'NNS').

After the stages of pre-processing and feature extraction, we need to start training our model, and the
way we chose to do this is by an artificial neural network. The feature vectors feed the inputs of this ANN,
being also assigned to a target value, which corresponds to the desirable output of the network (+1 if the
tweet expresses a positive sentiment, 0 if it is neutral, and -1 if it expresses a negative sentiment). Based on
these feature vectors and their assigned targets, our network is being trained by the BK algorithm (described

in section 2.9).

Typically, a neural network is able to receive as inputs numerical values, in order to calculate the
outputs of the activation functions. For this reason, we need a way to transform the inputs of our network
from a list of tuple into numerical values. In order to achieve this, we made use of a hash function that

assigns each of the tuples contained in the feature vector to a unique integer.

In general, a hash function is any function that can be used to map digital data of arbitrary size to
digital data of fixed size. The values returned by this hash function are called hash values, hash codes, hash
sums, or simply hashes. For our model, the hash function converts every different tuple of string values into

a unique numerical value of integer data type.

feature f of > > feature f, of

string data type integer data type

feature f, of > > feature f, of
string data type integer data type
hash function
feature f, of > > feature f of
string data type integer data type

Figure 40: Transformation of the feature vectors' data type through a hash function.

120

The length of a feature vector, m, is the number of its component tuples. Hence, the length of the
vector of the example of section 3.2.3 is 10. Our constructed set of feature vectors, which will be used for the
training and testing of our network, contains vectors of various lengths. The number of the inputs of the
network is judged by the length of the feature vectors; for this reason, all feature vectors of a given set need
to have a common, consistent, length. In order to achieve this, we pad the vectors that are shorter than the
longest one with as many padding tags as needed in order to make them consistent to the longest vector of
our set. The padding tags we used are zeros (0), as the padding tags need to be of the same data type as the
rest of the components of the vector, and, furthermore, zeros will not affect the network: the padding tags are
treated as another regular word by the network while it learns its weights; so, as they will be multiplied by
the synaptic weights, a result of 0 will be produced. The only reason we pad our vectors is to have a common
length for all tweets and these padding tags should not play any other role within the network; hence, zeros
serve this cause in an excellent way. Padding could have been avoided if the network was implemented with
a max-over-time module, which chooses the most significant features from variable-length sentences to get a
fixed size feature vector.

All the above processing steps took place for every experimental combination and system
architecture we examined. After performing the above steps, we examined two different techniques of
treating the input vectors. These techniques are two variations of the idea of n-grams.

An n-gram is a contiguous sequence of n items from a given sequence of text or speech. The items
can be phonemes, syllables, letters, words or base pairs. The n-grams typically are collected from a text or
speech corpus. A “unigram” is an n-gram of size 1 and a “bigram” is an n-gram of size 2. Bigram features are
not that commonly used in text classification tasks. However, bigrams seem to improve the performance

[22], and this is why we decided to try our system on both bigrams and unigrams.

For our application, the n sequential items are words (even if they are represented by numerical
values); we consider the feature vectors as vectors consisted of n-grams of the features we have extracted for

each tweet. For example, for the sentence

“time for europe to embrace greece”

a vector consisting of unigrams would be

L AN13 7« 7”4 ” o« ”

[“time”, “for”, “europe”, “to”, “embrace”, “greece”]

while a vector of bigrams would be

[(“time”, “for”), (“for”, “europe”), (“europe”, “to”), (“to”, “embrace”),

P13

(“embrace”, “greece”)]

Therefore, we examined the performance of our system being fed by the following types of feature vectors:

121

» a feature vector of unigrams of our processed tweets, which actually is equivalent to the feature

vector produced after the step of padding.

» afeature vector of bigrams of our processed tweets.

The vector of n-grams that is going to feed the neural network, in the second case (vector of
bigrams), is consisted of a number of tuples. For the reason we described earlier, we need again to apply a
hash function onto this vector in order to convert the tuples into numerical values. For the case of unigrams,

the feature vector remains the same.

data acquisition

A 4

pre-processing

A 4

feature extraction

padding

n-grams bigrams
construction construction

hashing

!

input of neural network

Figure 41: Summary of the sequence of stages of tweets' processing procedure before feeding the input

of the neural network.

122

3.3.2 Multi-layer Perceptron

By now, we have prepared the feature vectors in order to be in acceptable forms to feed the inputs of

our network. Let's now describe the architecture of the implemented neural network.

Neural networks initialized using weights derived from linear models have been shown to present a
good performance on a variety of classification tasks [23]. Our neural network for the task of sentiment
analysis consists of 3 layers (including the input layer); an input layer, a hidden one and an output one, as
seen in fig. 37. The architectures we examined depend on the dimension of the hidden layer and are

presented later, in Table 3. Let's, firstly, define the symbols we are going to use:

dipe = dimension of input layer
dhiaaen = dimension of hidden layer
doupe = dimension of output layer
wi; = weights vector from input layer to hidden layer

wi; = weights vector from hidden layer to output layer

The layers of our network are common in all the architectural variations we examined and are

described below.

1. Input Layer

The input layer is a linear layer, which performs a simple multiplication and an additive bias layer.
The synaptic weights vector w;; is multiplied with the input matrix x, and a bias b is added to each element.
The synaptic weights and the bias are learned using the BK algorithm (described in section 2.9). The

dimension of the input layer is equal to the length of the padded feature vectors, m,:

input: mp

123

feature f feature f; feature f; feature f; feature f, feature f feature f, <PADDING> <PADDING>

feature
vector
h b A L k5 % 5 & 5
\\~--_‘,"\~-- "/\\~--—’;\\\ ’,‘\‘\ ,,\\N - \\N ”,\\\ ’,
bigrams
¢ £ & 5 () 0 5 & £ &5 &5 G5
\ 4 v \ 4 v \4 \ 4 \ 4 \ 4

Linear Layer (w;,x+ b)

Tanh Layer

Linear Layer (w,; a,)

predicted class

Figure 42: Architecture of the network. In this example, the inputs of the network are fed by bigrams of the feature

vector.

2. Hidden Layer

The hidden layer is a hyperbolic tangent (tanh) layer, in the sense that it applies the tanh function to
each element in the matrix a; which is consisted of the outputs of the input layer. This introduces a sigmoid
non-linearity which make the architecture different from regular linear classifiers. Tanh is a constantly

differentiable non-linear activation function (it is a function with sigmoid non-linearity). It is defined as

124

. h X_ —X
tanh(x)= S (x) =£ ¢

cosh (x) e t+e "
where x is a continuous variable

We examined the system's response depending on different architectures; the difference among them lays on
the dimension of this layer. Table 3 presents the dimension of the hidden layer for every architecture we

examined.

3. Output Layer

The output layer is again a linear layer. As for the input, the linear output layer performs a
multiplication and an additive bias layer. The synaptic weights vector w;; is multiplied by the matrix a; of
the outputs of the hidden layer (i.e. after the application of the sigmoid activation function on them). The
synaptic weights and the bias are learned using the BK algorithm. The dimension of the output layer may be
3 in the case of 3 classes of interest (positive, negative, neutral), or 2 in the case of only two classes of

interest (positive, negative).

d = number of classes of interest :{ 2, - if 2 classgt? of interest {'p'ositive , n?gative}
3, if 3classesof interest | positive , negative , neutral |
Size of Layers ‘

Input Layer Hidden Layer Output Layer
Architecture 1 dinput input doutput
Architecture 2 input inpue div 2 doutput
Architecture 3 input dinput div 4 doutput
Architecture 4 dinput dinpu2 doutput
Architecture 5 input dinpu2 div 3 doutput
Architecture 6 input dinpu4 doutput
Architecture 7 dinput (dinpurtdoupur)-3 div 2 doutput
Architecture 8 input (dinputdoutpur)-2 div 3 doutput

Table 3: Overview of the examined architectures.

125

input vector predicted class

0.)

&5

¢ £

& £)

b
E)
~

S
ey
\I\a

£
o
=

G L

input layer hidden layer output layer
(linear layer) (tanh layer) (linear layer)

Figure 43: Example of network with the architecture 5. The input vector is consisted of bigrams of the feature vector
[f1, 12, ..., f9]. The dimension of the input layer is 8; the dimension of the hidden layer is (82 div 3) = 5; and the
dimension of the output layer is 3, as the network is able to classify the input vector into one out of three classes

(positive, negative or neutral).

3.4 Computational Complexity

As described earlier, our model consists of four main stages:
» the pre-processing stage
* the feature extraction stage
* the input preparation stage

* the multi-layer perceptron stage

The computational complexity of the total model is derived from the partial orders of complexity of

these stages. Before computing the complexity of each stage, let's define the symbols we are going to use for

126

the computation of the order of complexity of our model.

nmiiw = number of tweets that consist the original dataset

Muiig = 1nitial maximum number of words per tweet

nma = n = number of remaining tweets in dataset after step 7 of pre-processing,

N < Niniial
mempr = number of words per tweet after step 7 of pre-processing,
Miempt < Minitial
mwenp> = number of words per tweet after steps 9-10 of pre-processing,
Myemp2 = Miemp!
Mua = m = number of remaining words per tweet after step 11 of pre-processing,
m < Meemp2
dinpuw = m dimension of input layer of MLP
dhiagzen = dimension of hidden layer of MLP
doupe = dimension of output layer of MLP

/ = number of training epochs

Let's note here that the symbol » that will be used here as the (final) number of remaining tweets

after step 7 of pre-processing, is independent of the symbol » that was used in the case of n-grams earlier.

Let's now explain further these symbols. The initial number of tweets per dataset is symbolized by
Niinial. In step 8 of pre-processing, possible duplicate tweets are eliminated, hence the number of tweets per
dataset changes and now is equal to n4,, which will be referred as n for reasons of simplicity. It is 7gmu <
Rinitial-

The initial maximum number of words per tweet is symbolized by m...; at the worst case scenario,
all tweets are consisted of m words. In step 7, strings “at _user”, “url” and “rt” are eliminated, so the new
number of words per tweet is symbolized now by Memps, Miempr < M. In steps 9 and 10, emoticons and
acronyms are replaced by their corresponding words; thus the total number of words per tweet is possible to
increase, and now it is equal to Memp> > Miempr. Nevertheless, in the next step of pre-processing (step 11), stop

words are filtered out, hence the number of words per tweets is possible to differ from the previous one. We

symbolize this final number of words per tweet with . or m, for reasons of simplicity. It iS Ma < Miemp2.

In the stage of input preparation our system pads the tweets in order to set them all in a consistent

length; this length is equal to m as well as to the number of the inputs of the perceptron: diypu = m.

127

In the stage of pre-processing, steps 1-6 are performed in a single dataset scan, which means that the
system needs to access Muia tweets of length m..w each (at worst case scenario); step 7 is performed
similarly; step 8 accesses each tweet (7.4 tweets) without trying to access the words consisting it; steps 9-
10 are performed in a single scan and need to access nsa = n tweets of length m..,; each; step 11 needs to
access n tweets of the new length m..,»; step 12 needs to access n tweets of the new length (after step 11)

mgwa = m. The partial orders of complexity can be seen in Table 4.

In the stage of feature extraction, each one of the tasks of lemmatization, stemming and POS tagging
need to access each word of the pre-processed tweets. The number of pre-processed tweets is n and the
maximum number of words in them is m. This stage produces a tuple out of each word; the length of each

feature vector produced of each tweet remains equal to m.

In the stage of input preparation, each of the tasks of padding, hashing and construction of the
bigrams needs to access each tuple per feature vector; this means they need to access n feature vectors

consisting of m tuples.

The orders of complexity for the stages of feature extraction and input preparation can be also seen

in Table 4.

Let's now compute the complexity of the multi-layer perceptron. When training a multi-layer
perceptron, its computational complexity is determined by several factors. Our multi-layer perceptron
consists of a single hidden layer network. The network is fully connected and the factor of the momentum is

standard.

The dominating factor in training the MLP is the number of synaptic weights. As our network is fully
connected, there are diyurdhidden = M dhiasen Weights from the input layer to the hidden layer, and dhidden douspur
weights from the hidden layer to the output layer. This gives a total of duien (M +doupu) Weights. The number

of inputs and outputs for a given dataset is fixed, hence the only variable term is dhidden-

Let's now describe in terms of complexity the back propagation error phase. The computation of

error at the output nodes uses the same back propagation error term, J; :

d;=(t;=0,)o,(1-0,) (81)
where ¢ is the target for output node j and o; is the actual value for output node ;.

This error term is (1) for each output node and that there are doupurdhidaen Output weights, which
yields O(doupur driaaer) for the output layer. After computing the error at the output nodes, the error at each

hidden node is computed. Using the same assumptions as for equation 81,

9,=0,(1-0,) Z WO (82)

k €Eoutputs

128

where wy, represents the weight from node / in the hidden layer to node £ in the output layer.

This computation is O(doup) for each hidden node and there are dhaw.mm weights, yielding

O(m-dyuput driaaen) for the entire hidden layer.

The total order of complexity is O(m:doupur Anidden™t Anidden' Aoupu) O O(@idden’ Aouspur(m+1)) for training a
single epoch. For training / epochs, the total order of complexity is O(dhiaaen'douspur I (m+1)). For the training of
the whole (pre-processed and prepared) dataset that contains n tweets, the total order of complexity is
O(Ahidden Qougpur I'n*(m+1)). As we use standard momentum, this order of complexity is unchanged and fewer
epochs are required for convergence that without momentum. Standard momentum requires additional
storage for each weight. Storage requirements are directly proportional to the number of weights; with

hidden’ (M +doupu) Weights, there are 2-dhidden (M +doup) values to store.

The total order of complexity of our model is O(dhiden douspurl-n-(m+1)). Table 4 summarizes the

orders of complexity for every stage and individual task of our model.

Task Computational Complexity
Steps 1-6 OMinitiar Minitiat)
Step 7 ONinitiar Minitiat)
Step 8 O(Ninitia))
Pre-processing Steps 9-10 O Miemp)
Step 11 O Miemp2)
Step 12 Omm)
Lemmatization O(n'm)
Feature extraction Sl i Ofrem)
POS tagging O(mm)
Padding O(n'm)
Input preparation Hpslatig Ofrm)
Bigrams construction O(mm)
Multi-layer perceptron O(@ridden Aowipur ' (Mm~+1))

Table 4: Summary of computational complexity of all individual tasks of the model.

3.5 Performance Evaluation

For the performance evaluation of the implemented system we used the method of k-fold cross-
validation. As described in section 2.9.4, in this method, the original sample is randomly partitioned into &

equal sized subsamples. Of the k subsamples, a single subsample is retained as the validation data for testing

129

the model, and the remaining k—/ subsamples are used as training data. The cross-validation process is then
repeated k times, with each of the & subsamples used exactly once as the validation data. The k results from
the folds can then be averaged (or otherwise combined) to produce a single estimation. By using this method
over repeated random subsampling, all observations are used for both training and validation, and each
observation is used for validation exactly once. In our implementation, k£ was set equal to 5 (5-fold cross-

validation).

The performance of the our system is evaluated by the metric of the mean squared error (MSE),
defined as a function of the free parameters of our system, which are the synaptic weights of the neural
network. The MSE of an estimator measures the average (mean magnitude) of the squares of the errors, that
is the difference between the model's estimation of the test values and the actual (corresponding) test values.
Squaring is used to covert the errors to an absolute value. The physical interpretation of the MSE metric is
how close, on average, the hyperplane drawn by our network gets to the actual cloud of data in the validation

set.

3.6 Implementation

We implemented our system using Python [24]. Python provides some very useful tools for our
application. We mainly used the modules of Tweepy, NLTK and PyBrain. All of these modules are open-
sourced and hosted on GitHub [37].

Tweepy is Twitter API library for Python [25]. It enables Python to communicate with Twitter
platform and use its APL

NLTK (Natural Language Toolkit) is a leading platform for building Python programs to work with
human language data [20]. It provides easy-to-use interfaces to corpora and lexical resources, along with a
suite of text processing libraries for classification, tokenization, stemming, lemmatization, tagging, parsing,

and semantic reasoning.

PyBrain (Python-Based Reinforcement Learning, Artificial Intelligence and Neural Network
Library) [26] is a modular Machine Learning Library for Python. It offers powerful algorithms for machine
learning tasks and a variety of environments for testing and comparison. It contains algorithms for neural

networks, reinforcement learning (and the combination of the two), unsupervised learning, and evolution.

130

Experiments and Results

In this chapter we are going to describe the different experiments, techniques and architectures of the
neural network that were examined, and present their results. Before that, we are going to describe the
system characteristics of the computer where the experiments took place, the parameters that we set for the
training and the testing of the artificial neural network, as well as the data corpus that was used. In the end,

we will discuss the results and suggest ideas for improvement.

4.1 Computer System Characteristics

The characteristics of the computer system where the experiments took place are presented in the

following Table.

Memory | 7.7 GiB
Processor | Intel® Core™ i7-4500U CPU @ 1.80GHz x 4
OS type | 64-bit
OS | Ubuntu 14.04.2 LTS

Disk | 448.9 GB

Table 5: Computer system characteristics.

131

4.2 Training and Testing Corpus

Let's remind here the corpus of our experiments. The initial corpus is pre-processed and cleaned of

duplicates. The sections of the corpus that are used for the training and the testing phases of our system

consist of the 75% and 25%, respectively, of the datasets after the pre-processing steps.

Number of tweets
Datasets | Polarity | Initial Positive | Negative | Neutral Pre- Training | Testing
corpus class of | class of | class of | processed | corpus corpus
initial initial initial corpus
corpus corpus corpus
balanced_| Positive, 2,100 700 700 700 1,830 1,373 457
referendu | negative,
m_ds neutral
various_c | Positive, 2,000 1,000 1,000 0 1,751 1,314 437
ontents_d | negative
s

Table 6: Overview of the training and testing corpus.

Let's also underline that the two datasets of our corpus differ in two points:

e The dataset balanced referendum_ds contains tweets of a certain topic (the Referendum of July 5

Greece) while the dataset various_contents_ds contains tweets of various topics and contents.

* The dataset balanced referendum ds contains tweets with opinions that have been annotated as
positive, negative or neutral (three classes of polarity), while the dataset various contents ds
contains tweets of opinions that have been annotated as positive or negative (two classes of

polarity).

132

4.3 Training and Testing parameters

The proportion of the training and the testing data to the total corpus was set at 75% and 25%

respectively.

The term of the learning rate is a training parameter that controls the size of weight and bias changes
in learning of the training algorithm [14]. Its real domain is [0, 1]. We decided that the value that leads our

system to a better performance is 0.01.

The momentum is a term that adds a fraction m of the previous weight update to the current one. The
momentum parameter is used to prevent the system from converging to a local minimum or saddle point. A
high momentum parameter can also help to increase the speed of convergence of the system. However,
setting the momentum parameter too high can create a risk of overshooting the minimum, which can cause
the system to become unstable. A momentum coefficient that is too low cannot reliably avoid local minima,
and can also slow down the training of the system. Its real domain is [0, 1] [27]. We set the momentum

parameter equal to 0.5

The parameter of weight decay adds a penalty term to the error function. The penalty used is the sum
of squared weights times a decay constant. The weight decay penalty term causes the weights to converge to
smaller absolute values than they otherwise would. Large weights can hurt generalization in two different
ways. Excessively large weights leading to hidden units can cause the output function to be too rough,
possibly with near discontinuities [27]. Excessively large weights leading to output units can cause wild
outputs far beyond the range of the data if the output activation function is not bounded to the same range as
the data. In other words, large weights can cause excessive variance of the output (Geman, Bienenstock, and

Doursat 1992).

The number of epochs was set at 1,000. This number determines when training will stop once the

number of iterations exceeds epochs or when the network converges to a minimum error.

Table 5 summarizes the training parameters of the neural network.

133

Proportion of the training dataset
to the total corpus | 0.75
Proportion of the testing dataset

to the total corpus | 0.25

Learning rate| 0.01

Momentum | 0.5

Weight decay | 0.01
Number of epochs | 1,000
Cross-validation | 5-fold

Performance metric | Mean Squared Error (MSE)

Table 7: Overview of the training parameters

4.4 Experiments and Techniques

For the dataset balanced referendum_ds, we examined the performance of the implemented system

in two different experiments, depending the features that constructed the feature vectors:
* Experiment 1: The features that were selected are the original word, its stem and POS tag.
* Experiment 2: The features that were selected are the original word, its lemma and POS tag.

For the second dataset, various contents ds, we examined the performance of the system with the

techniques of unigrams and bigrams, taking into account the features of the experiment 1.

4.5 Examined Architectures

Apart from the different techniques and experiments that were tried and are related to the inputs of
the multi-layer perceptron, various architectural schemata of the perceptron were also examined, as described
in section 3.3.2. We rewrite here the Table that summarizes all the architectures that we examined (keeping

the symbolization of the previous chapter).

134

Size of Layers
Input Layer Hidden Layer Output Layer
Architecture 1 dinput input doutput
Architecture 2 dinput inpue div 2 doutput
Architecture 3 input dinpue div 4 doutput
Architecture 4 dinput dinpu2 doutput
Architecture 5 dinput inpue2 div 3 doutput
Architecture 6 input inpur4 doutput
Architecture 7 input (dinpuctdougpur)-3 div 2 doutput
Architecture 8 input (dinputdougpur)-2 div 3 doutput

Table 8: Overview of the examined architectures

4.6 Results

4.6.1 Results for the Dataset balanced referendum_ds

4.6.1.1 Examined Architectures

The following Table summarizes the dimensions of the layers of the multi-layer perceptron that was

created for the dataset balanced referendum _ds.

135

Size of Layers
Input Layer Hidden Layer Output Layer
Architecture 1 26 26 3
Architecture 2 26 13 3
Architecture 3 26 6 3
Architecture 4 26 52 3
Architecture 5 26 17 3
Architecture 6 26 104 3
Architecture 7 26 43 3
Architecture 8 26 19 3

Table 9: Overview of the examined architectures of the multi-layer perceptron for the dataset balanced referendum_ds.

4.6.1.2 Summarized Results

For the dataset balanced referendum_ds, we tested our implementation under all the architectural
schemata (1, 2, 3, 4, 5, 6, 7 and 8) and for both experiments, with the technique of unigrams. After 10
repetitions, we gathered the mean values of the MSE for every architectural schema. These results are

presented in the following Table.

After the pre-processing steps, the final number of tweets in our dataset is 1,830, out of them 1,373
are used for the training and 457 are used for the testing of our system (75% and 25%, respectively, of the

final corpus).

136

MSE (@ number of epoch)

Unigrams
Experiment
Architectu MSE 1 2

re

1 Minimum 0.1485 @ 708 0.1468 @ 694
1 Average 0.1905 0.1909

1 Maximum 0.5138 @ 98 0.5684 @ 126
2 Minimum 0.1455 @ 692 0.1485 @ 641
2 Average 0.1657 0.1695

2 Maximum 0.3858 @ 103 0.3585 @ 233
3 Minimum 0.1474 @ 264 0.1488 @ 242
3 Average 0.1572 0.1621

3 Maximum 0.2488 @ 89 0.2844 @ 122
4 Minimum 0.1474 @ 788 0.1470 @ 697
4 Average 0.2391 0.2485

4 Maximum 0.7964 @ 336 0.8472 @ 336
5 Minimum 0.1486 @ 691 0.1450 @ 845
5 Average 0.1765 0.1716

5 Maximum 0.4237 @ 132 0.4538 @ 147
6 Minimum 0.1457 @ 643 0.1478 @ 509
6 Average 0.4513 0.4557

6 Maximum 39719 @ 11 4.5260 @ 32
7 Minimum 0.1477 @ 748 0.1472 @ 592
7 Average 0.2210 0.2209

7 Maximum 0.7313 @ 117 0.6551 @ 92
8 Minimum 0.1476 @ 887 0.1451 @ 795
8 Average 0.1758 0.1741

8 Maximum 0.4825 @ 149 0.4483 @ 104

137

Table 10: Summarized results of dataset balanced referendum_ds, for experiments 1 and 2, with the technique of

unigrams.

The indicative running times for architecture 6 (which is the most complex architecture) for the first
and second experiments are 201m and 203m respectively.

We noticed that the neural network converges to a minimum MSE with a mean value of 0.147 for all
architectures. Thus, we started the testing phase of the system after this criterion was satisfied; its
convergence to the optimal MSE value for each architecture. After 10 repetitions for the tests of each

architectural schema and each experiment, we concluded to the following results (Table 6).

Unigrams
Experiment 1 Experiment 2
Architect Total Number Number Success Number of Number of Success rate
ure number of of wrong rate correct wrong
of correct predictio predictions predictions
predictio | predictio ns
ns ns
1 457 302 155 66.08% 310 147 67.83%
2 457 314 143 68.71% 303 154 66.30%
3 457 320 137 70.02% 322 135 70.46%
4 457 295 162 64.55% 307 150 67.18%
5 457 313 144 68.49% 306 151 66.96%
6 457 311 146 68.05% 303 154 66.30%
7 457 300 157 65.65% 305 152 66.74%
8 457 301 156 65.86% 306 151 66.96%

Table 11: Summarized results of the predictions of the neural network for the dataset balanced_referendum_ds.

138

4.6.2 Results for the Dataset various _contents _ds

4.6.2.1 Examined Architectures

The following Table summarizes the dimensions of the layers of the multi-layer perceptron that was

created for the dataset various contents_ds.

Size of Layers
Input Layer Hidden Layer Output Layer
Architecture 1 27 27 2
Architecture 2 27 13 2
Architecture 3 27 6 2
Architecture 4 27 54 2
Architecture 5 27 18 2
Architecture 6 27 108 2
Architecture 7 27 43 2
Architecture 8 27 19 2

Table 12: Overview of the examined architectures of the multi-layer perceptron for the dataset various_contents_ds.

4.6.2.2 Summarized Results

For the dataset various contents ds, we tested our implementation under the architectural schemata
1,2,3,4,5,6,7 and 8, for the first experiment and both the techniques of unigrams and bigrams. Again we
tested each architecture for 10 times in order to get the mean value of the MSE. We present the results in the

following Table (Table 13).

After the steps of pre-processing, the initial corpus of 2,000 tweets was decreased and the final
corpus contains 1,751 tweets. A section of 75% of this corpus, which consists of 1,314 tweets, was used in

order to train the system, while a section of 25% of it, which consists of 437 tweets, was used for testing it.

139

MSE (@ number of epoch)
Architect MSE Experiment 1

ure Unigrams Bigrams
1 Minimum 0.1629 @ 567 0.1789 @ 671
1 Average 0.1739 0.2012
1 Maximum 0.4081 @ 122 0.4532 @ 301
2 Minimum 0.1670 @ 696 0.1751@ 584
2 Average 0.1895 0.1960
2 Maximum 0.3604 @ 459 0.3641 @ 108
3 Minimum 0.1665 @ 578 0.1749 @ 479
3 Average 0.1767 0.1848
3 Maximum 0.2554 @ 306 0.3063 @ 265
4 Minimum 0.1676 @ 763 0.1751 @ 203
4 Average 0.2783 0.2808
4 Maximum 0.7224 @ 63 0.6993 @ 70
5 Minimum 0.1662 @ 74 0.1758 @ 912
5 Average 0.1971 0.2024
5 Maximum 0.3914 @ 676 0.3704 @ 102
6 Minimum 0.1662 @ 320 0.1769 @ 574
6 Average 0.9730 0.5902
6 Maximum 40.1450 @ 13 8.2925 @ 1
7 Minimum 0.1664 @ 998 0.1739 @ 807
7 Average 0.2512 0.2546
7 Maximum 0.6239 @ 855 0.6132 @ 68
8 Minimum 0.1661 @ 303 0.1754 @ 622
8 Average 0.2003 0.2062
8 Maximum 0.4236 @ 639 0.3916 @ 540

Table 13: Summarized results of the dataset various _contents_ds, for experiment 1, with the techniques of unigrams and

bigrams.

140

The indicative running time for architecture 6 (which is the most complex architecture) for unigrams

is 116m and for bigrams is 117m.

For the dataset various contents ds and the technique of unigrams, we notice that the network
converges for all architectures to a minimum MSE with a mean value of 0.166. For the technique of bigrams,
the corresponding minimum MSE has a mean value of 0.176. Consequently, we started the testing phase of
the system after the convergence criterion was satisfied, and the network converged to the optimal MSE for
each architecture and technique. After 10 repetitions of the tests of each architectural schema and each
technique, we concluded to the mean values of the success rates of the predictions of the network, which are

presented in the following Table (Table 14).

Experiment 1
Unigrams Bigrams
architect Total Number Number Success Number of Number of Success rate
ure number of of wrong rate correct wrong
of correct prediction predictions predictions
prediction | predictio S
S ns
1 437 279 178 63.84% 222 215 50.80%
2 437 234 203 53.55% 225 212 51.49%
3 437 255 182 58.35% 238 199 54.46%
4 437 237 200 54.23% 235 202 53.78%
5 437 239 198 54.69% 255 182 58.35%
6 437 231 206 52.86% 244 193 55.84%
7 437 236 201 54.00% 235 202 53.78%
8 437 226 211 51.72% 229 208 52.40%

Table 14: Summarized results of the predictions of the neural network for the dataset various contents_ds.

4.7 Discussion

Let's, firstly, discuss about the outcome of our tests for the two separate datasets. We notice that the

141

first dataset (balanced referendum_ds) achieves an overall very satisfactory performance, with a maximum
success rate of 70%. On the other hand, the second dataset (various contents ds) doesn't give such good
results; the maximum success rate it achieves is 63.84%. We consider that this great difference between the
results of the experiments on our datasets is produced due to an essential characteristic that distinguishes
them: the fact that the first dataset contains tweets of a common topic. As a matter of fact, this dataset
contains a common dictionary which helps the perceptron correlate words and phrases in a context in a more
accurate and massive way, and learn more from its environment. It gets very clear here that the contents of a
dataset play a very significant role in the final results. Another factor that may have caused the unsatisfactory
performance of the network for the second dataset is its small size. We assume that a dataset that contains
opinions of various contents should be quite large in order to give the network the chance to gain knowledge

about the way the various dictionary is used and the information it carries.

Let's now explore the results of the experiments for the first dataset: balanced referendum_ds. We
notice that all the architectural schemata for both the experiments converge to a common optimum, for a
common minimum MSE, below which our model doesn't seem to be able to walk. The mean value of this
minimum MSE is 0.147. However, each architecture that was examined has a different behavior over time,
starts with different configurations and reaches its minimum more smoothly or abruptly. The best
performance of the experiments that used this dataset is achieved with the 3™ architectural schema, with a
success rate of 70% for both experiments. The difference between the success rates of this architecture
between the two experiments is very slight, hence it is considered negligible. The simplest probabilistic
model would classify tweets of three discrete classes with a success rate of 33.33%. As a matter of fact, our
system achieves a very satisfactory improvement to this performance, with a success rate of 70%. The worst
performance for experiment 1 is achieved with the 4™ architecture, with a success rate of 64.55%, while for
the experiment 2 it is achieved with the 2™ and 6™ architecture, with a success rate of 66.30% for both. In
general, we can say that the architectures for the 2™ experiment present success rates that follow a more
smooth distribution than the ones of the 1* experiment. However, four of the architectures that were tried for
the 1* experiment (architectures 2, 5 and 6) achieve a better success rate than the corresponding ones of the
2" experiment. The mean value of the success rates of the 1% experiment is 67.18% while the corresponding
mean value of the 2™ experiment is 67.34%; the difference between them is very small. The following plot
(fig. 44) presents the distributions of the success rates for the two experiments, for the technique of

unigrams, using the dataset balanced referendum_ds.

142

Distribution of Success Rates of Experiments 1 and 2

balanced_referendum_ds, unigrams

0.71
0.7

0.69

0.68
0.6
0.6
0.6
0.6
0.6
0.6
0.61
1 2 3 4 5 6 7 8

B Experiment 1

Success Rate
»®»; KX o & N

N

Architecture
W Experiment 2

Figure 44: Distribution of success rates of experiments 1 and 2, for the technique of unigrams and the dataset

balanced referendum_ds.

Let's now see the results that were achieved by experiment 1 for the dataset various contents_ds, for
each of the techniques of unigrams and bigrams, and all the architectures. First of all, as we mentioned
before and can be seen in Table 9, all the architectural schemata for each technique converge to an
approximately common optimum, a common minimum MSE, the mean value of which is 0.167 for unigrams
and 0.176 for bigrams. After the convergence of every configuration of the networks to this minimum value,
we started testing the network on the testing dataset. The mean success rate for the technique of unigrams is
55.40%, while the corresponding value for the technique of bigrams is 53.86%. The technique of unigrams
achieves an overall better performance than the technique of bigrams. We can assume that this happens
because of the fact that the dictionary that is used in the certain dataset is various and is not associated to a
common content or topic; hence, as a matter of fact, the phrases and the word sequences that are used might
be very different from tweet to tweet and, consequently, the bigrams that are formed are not frequently
repeated in order to help the network learn. The best performance of the network for the dataset

various_contents_ds is achieved for the 1% architecture and the technique of unigrams, with a success rate of

143

63.84%. Architecture 3 presents a performance that, for the case of unigrams, is the next most satisfactory
performance. Regarding the technique of bigrams, the maximum success rate achieved is 58.35% with the 5™
architectural schema. The following plot (fig. 45) presents the distribution of the success rates of the
experiment 1, for the techniques of unigrams and bigrams and every architecture, for the dataset

various _contents_ds.

Distribution of Success Rates of Unigrams and Bigrams

various_contents_ds, experiment 1

1 2 3 4 5 6 7

8 m Unigrams
Architecture B Bigrams

0.7

0.6

0.

[&)]

0.

~

0.

w

Success Rate

0.

N

0.

—_

0

Figure 45: Distribution of success rates of experiment 1, for the techniques of unigrams and bigrams, and the dataset

various contents_ds.

4.8 Ideas for Improvement and Future Directions

In the approaches we examined, we noticed that, out of the two datasets, the network performs much
better on the first one, balanced referendum ds. This dataset differs from the second one,
various _contents_ds, on the point that it is composed of tweets and opinions about a common topic and

content; this particular property of this dataset makes it contain a basic common dictionary, the words of

144

which may be repeated many times from tweet to tweet. This is a big assistance for the neural network, and it
helps it find the correlation between words and the sentiment they probably or usually carry, in a more
accurate and massive way. It is apparent that the results of our experiments depend very much on the
contents of a dataset. Thus, as a matter of fact, we consider that datasets containing opinions of the same
topic help the network learn better from its environment and improve itself. We suggest the use of such

datasets for the future experiments, or much larger (than the one we used) datasets of various contents.

Another idea for improvement of our model is a modification in the structure of the network. Our
model implements a multi-layer perceptron with one hidden layer that applies the hyperbolic tangent
function. A modification to the model of the multi-layer perceptron that can appear very promising is its
extension to a convolutional network [28] [29], by adding a layer of one of the following three types:

convolutional, max-pooling or fully-connected [30].

* Convolutional: Such layers consist of a rectangular grid of neurons. It requires the previous layer
also to be a rectangular grid of neurons. Each neuron takes inputs from a rectangular section of the
previous layer of neurons; the weights of this rectangular section are the same for each neuron in the
convolutional layer. Thus, the convolutional layer is just an image convolution of the previous layer,

where the weights specify the convolution filter.

* Max-Pooling: After each convolutional layer, there may be a pooling layer. The pooling layer takes
small rectangular blocks from the convolutional layer and subsamples it to produce a single output
from that block. There are several ways to do this pooling, such as taking the average or the
maximum, or a learned linear combination of the neurons in the block. Our pooling layers will

always be max-pooling layers; that is, they take the maximum of the block they are pooling.

* Fully-Connected: Finally, after several convolutional and max pooling layers, the high-level
reasoning in the neural network is done via fully connected layers. A fully connected layer takes all
neurons in the previous layer (be it fully connected, pooling, or convolutional) and connects it to
every single neuron it has. Fully connected layers are not spatially located anymore (you can
visualize them as one-dimensional), so there can be no convolutional layers after a fully connected

layer.

Apart from modifying the structure of the network, various forms of inputs can also be examined.
The input representations we tried are combinations of the lemmas, stems and POS tags of words, as well as
the n-grams. Other representations can also be tried. A simplifying representation that is widely used in
natural language processing and information retrieval is the bag-of-words model [31]. In this model, a text

(or sentence) is represented as a multiset (bag) of words appearing in the text, disregarding grammar and

145

even word order but keeping multiciplitly.

Furthermore, new features that are considered important can be extracted and taken into account. For
instance, the frequency of occurrences of a word in a tweet or in the total corpus, or the position of a word
[32] might make a difference (tweets might often have some kind of structure: it's common to begin with a
periphrastic expression of an opinion and then finish the tweet by an overall sentiment statement usually part

of a hashtag, e.g. “#angry”).

Finally, another idea we suggest for the improvement of our model is the implementation of a user
profiling system. Such a system will keep information about every user or every user model. This
information can be very essential for the task of the sentiment extraction of a tweet. For example, let's
imagine a user that usually posts positive tweets about a certain topic. If once he posts an apparently negative
tweet, a traditional system that performs sentiment analysis, like ours, would assume that this tweet should
be classified as negative, even though it might be a humorous or sarcastic tweet with a positive attitude.
Nevertheless, a system that keeps information about the users' profiles will be able to take into account the
fact that this particular user usually posts positive tweets about the certain topic, and after a procedure that
takes into account the user's statistics and the theory of probabilities, it might finally classify the certain

tweet into the positive class.

4.9 Conclusion

In this work we examined the performance of a model for Twitter sentiment analysis, composed of
two parts: a part that performs pre-processing tasks for the text refinement and noise cleaning and a part that
implements a multi-layer perceptron with one hidden layer. We tried our system onto a corpus of tweets that
was divided into two datasets: a dataset of tweets referring to a common topic and expressing sentiments of
three discrete classes (positive, negative, neutral), and a dataset of tweets expressing various content of

subjective opinions of two classes (positive, negative).

We performed two different experiments; each one of them was based on different combinations of
the features that consist the feature vectors: composed of the original words, stems and POS tags, or the
original words, lemmas and POS tags. We also examined what difference the performance of unigrams and

bigrams could have. In addition, we examined several different architectural schemata for the perceptron.

We noticed that the experiments that used the dataset of opinions of a common topic present a much
better performance, with a maximum success rate of 70%, compared to the experiments that used the dataset
of various contents, which succeeded a maximum success rate of 63.84%. The architectural schema that
achieved the most satisfactory performance for the first dataset and both experiments is the architecture 3,

with a success rate of 70% (there is a slight difference between the success rates of architecture 3 of the two

146

experiments but it is so small that is considered negligible). For the second dataset, the architecture 1
achieves the best performance for the technique of unigrams, with a success rate of 63.84%, while the
architecture 5 achieves the best performance for the technique of bigrams, with a success rate of 58.35%. In
our approaches, the technique of unigrams presents an overall better performance; we consider that the
reason for this performing difference is the fact that there is no common dictionary in the dataset
various_contents_ds, hence each phrase or word sequence is not present in many tweets. Consequently, no
more knowledge is offered to the network; actually the network might lose knowledge that it could have

gained by the repetition of single words (as in the case of unigrams).

The results of our approaches for the first dataset are very satisfactory. However, we recognize that
the results of the second dataset are not good enough and the overall outcome is not optimal. There are other
approaches, like support vector machines [32] [22], that seem to be highly competitive on such tasks and are
able to provide very good results. Nevertheless, our system based on artificial neural networks can
potentially present an equally competitive performance with light modifications or extensions. Our
implementation of a strong and self-sufficient model can consist a powerful base, to which a few extensions,
such as a convolutional layer in the multi-layer perceptron as mentioned earlier, can make the difference and

provide a very satisfactory improvement.

147

148

Bibliography

[1] L. Batista, “User Sentiment and Opinion Analysis”, Encyclopedia of Social Network Analysis and
Mining, Prof. Reda Alhajj, Prof. Jon Rokne, 2014.

[2] G. Lugano, “Extracting Individual and Group Behavior from Mobility Data”, Encyclopedia of
Social Network Analysis and Mining, Prof. Reda Alhajj, Prof. Jon Rokne, 2014.

[3] “Machine learning”, URL https://en.wikipedia.org/wiki/Machine learning.

[4] C. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

[5] C. Lin and Y. He, “Sentiment Analysis in Social Media”, Encyclopedia of Social Network Analysis
and Mining, Prof. Reda Alhajj, Prof. Jon Rokne, 2014.

[6] “Enterprise Mobile Computing news and information.” URL
http://searchmobilecomputing.techtarget.com/.

[7] G. Li and K. Chang, “Twitter Microblog Sentiment Analysis”, Encyclopedia of Social Network
Analysis and Mining, Prof. Reda Alhajj, Prof. Jon Rokne, 2014,

[8] “Microblogging”, 2015, URL https://en.wikipedia.org/wiki/Microblogging.

[9] “Twitter,” 2015, URL https://en.wikipedia.org/wiki/Twitter.

[10] “Twitter, Inc.”, URL https:/twitter.com/.

[11] W. Kahle and M. Frotscher, Color Atlas of Human Anatomy, Vol. 3: Nervous System and Sensory
Organs, 2nd ed. Paschalidis, 2010.

[12] S. Ramony Cajal, “Cajal’s Degeneration and Regeneration of the Nervous System”, Oxford

149

https://twitter.com/
https://en.wikipedia.org/wiki/Twitter
https://en.wikipedia.org/wiki/Microblogging
http://searchmobilecomputing.techtarget.com/
http://searchmobilecomputing/
https://en.wikipedia.org/wiki/Machine_learning

[13]

[14]

[15]

[16]

(18]

[19]

[22]

(23]

[24]

[25]

University Press, New York, 1991.

R. Mundra and R. Socher, “Deep Learning for Natural Language Processing”, Stanford University,

2015.

S. Haykin, Neural Networks and Learning Machines, 3rd ed. Pearson Education, Inc, 2009.

S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed. Prentice Hall, 1998.

M. A. Fischler and O. Firschein, Intelligence: The Eye, the Brain and the Computer. Addison-
Wesley, 1987.

T. D. McFarland and R. Parker, Expert Systems in Education and Training. Educational Technology,
1990.

Twitter Application Manager, URL https://apps.twitter.com/.

L. Bauer, Introducing Linguistic Morphology, 2nd ed. Georgetown University Press, 2003.

Natural Language Toolkit for Python, URL http://www.nltk.org/.

P. Gamallo and Garcia, Marcos, “Citius: A Naive-Bayes Strategy for Sentiment Analysis on English

Tweets”.

S. Wang and C. D. Manning, “Baselines and Bigrams: Simple, Good Sentiment and Topic

Classification”.

K. Sheng Tai, “Sentiment Analysis of Tweets: Baselines and Neural Network Models”, 2013.

Python, URL https://www.python.org/.

Twitter API library for Python, URL http://www.tweepy.org/.

150

http://www.tweepy.org/
https://www.python.org/
http://www.nltk.org/
https://apps.twitter.com/

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[34]

[35]

[36]

“Pybrain, Python-Based Reinforcement Learning, Artificial Intelligence and Neural Network

Library”, URL http:/pybrain.org/.

“Artificial Neural Networks/Neural Network Basics”, 2015. URL

https://en.wikibooks.org/wiki/Artificial Neural Networks/Neural Network Basics.

C. Nogueira dos Santos and M. Gatti, “Deep Convolutional Neural Networks for Sentiment Analysis

of Short Texts”.

Y. Kim, “Convolutional Neural Networks for Sentence Classification”, New York University.

A. Gibiansky, “Convolutional Neural Networks”, URL

http://andrew.gibiansky.com/blog/machine-learning/convolutional-neural-networks.

Y. Yoshikawa, T. Iwata, and H. Sawada, “Latent Support Measure Machines for Bag-of-Words Data

Classification”.

B. Pang, L. Lee, and S. Vaithyanathan, “Thumbs up? Sentiment Classification using Machine
Learning Techniques”, presented at the EMNLP 2002, 2002.

A. C. Clarke, 2001: A Space Odyssey, Hutchinson, 1968.

Q. Jarosz, “Structure of a typical neuron”, URL https://en.wikipedia.org/wiki/Axon.

“Brain clip art”, www.openclipart.org.

““Twitter bird in real life’ by Scott Hampson”, URL
https://www.flickr.com/photos/toonz/3677263997.

“GitHub: Where software is built”, URL https://github.com/.

151

https://github.com/
https://www.flickr.com/photos/toonz/3677263997
http://www.openclipart.org/
https://en.wikipedia.org/wiki/Axon
http://andrew.gibiansky.com/blog/machine-learning/convolutional-neural-
http://andrew.gibiansky.com/blog/machine-
https://en.wikibooks.org/wiki/Artificial_Neural_Networks/Neural_Network_Basics
http://pybrain.org/

152

our Model

>

o0 ap
L RSN

0:)
\XFO\KOR\X98\x8a

<

)
}
P
P

3:’-)
\xFO\x9F\x98\x81

e ——
VACHE

Al
X
\xFO\x9F\x98\x8
\xFO\x9F\x98\x85
\xFO\x9F\x98\x89
\xFO\x9F\x98\x8C
\xFO\x9F\x98\x92
\xFO\x9F\x98\x96
\xFO\x9F\x98\x9C
\xFO\x9F\x98\xA0
\XxFO\x9F\x98\xA3
\XFO\x9F\x98\xA8
\XFO\x9F\x98\xAB
\xFO\x9F\x98\xB1
\xFO\x9F\x98\xB5
\xFO\x9F\x98\xB9
\xFO\x9F\x98\xBC
\xFO\x9F\x98\xBF
\XE2\x9C\x94
\xFO\x9F\x92\x93

happy
happy
rappy
ironic
angel
happy
sad
happy
rappy
ironic
ironic
evil
happy
sad
happy
rappy
ironic
love
mute
sad
sad
sad
sad
sad
sad
sad
mute
laugh
laugh
happy
relieved
unhappy
confused
ironic
angry
persevere
afraid
tired
scream
dizzy
laugh
wry
cry

yes
love

Appendix

\xFO\x9F\x98\x83
\xFO\x9F\x98\x86
\xFO\x9F\x98\x8A
\xFO\x9F\x98\x8D
\xFO\x9F\x98\x93
\xFO\x9F\x98\x98
\xFO\x9F\x98\x9D
\XFO\x9F\x98\xAl
\XFO\x9F\x98\xA4
\XFO\Xx9F\x98\xA9
\XxFO\x9F\x98\xAD
\xFO\x9F\x98\xB2
\xFO\x9F\x98\xB7
\xFO\x9F\x98\xBA
\XFO\x9F\x98\xBD
\xFO\x9F\x98\x80

\XE2\x9C\x96
\xFO\x9F\x92\x94
\xFO\x9F\x92\x97
\xFO\x9F\x92\x9A
\xFO\x9F\x92\x9D

\xe2\x99\xa5\xe2\x99\xa5
\XE2\xID\XA\XE2\x9D\xA4\xE2\x9D\xA4
\XFO\x9F\x91\x8D\xFO\x9F\x91\x8D

\xE2\x98\x81
\xFO\x9F\x98\x84

\XE2\x9D\xA4
\xFO\x9F\x98\x8B
\xFO\x9F\x98\x8F
\xFO\x9F\x98\x94
\XFO\x9F\x98\x9A
\xFO\x9F\x98\x9E
\XxFO\x9F\x98\xA2
\XFO\x9F\x98\xA5
\XFO\x9F\x98\xAA
\xFO\x9F\x98\xB0
\xFO\x9F\x98\xB3
\xFO\x9F\x98\xB8
\xFO\x9F\x98\xBB
\xFO\x9F\x98\xBE

\XE2\x9C\x8C
\XFO\x9F\x92\xAA
\xFO\x9F\x92\x95
\xFO\x9F\x92\x98
\xFO\x9F\x92\x9B

A. Table of the 100 Most Common Emoticons in Twitter Considered by

happy
laugh
happy
love

tired

kiss

ironic
angry
triumph
weary

cry
astonished
mute
happy
kiss
scream

no

love

love

love

love

much love
very much love
like

cloud
happy
love

ironic
smirk

sad

kiss
disappointed
sad
disappointed
sleepy

sad
astonished
laugh

love
unhappy
victory
power
love

love

love

Table 15: Table of the 100 most common emoticons in Twitter that were considered by our model.

153

AAMOF
ABFL

AWHFY
AWGTHTGTTA
AWOL
AWOL
AYOR
AYPI?
B4

B4N
BAC
BAG
BAK
BBIAB
BBL
BBLBNTSBO
BBR
BBS
BBS

BC

B/C
BCnU
BEG

BF

B/F
BFN

BG
BION

B. Table of 50 out of the 664 Acronyms Considered by our Model

as a matter of fact

a big fat lady

about

any day now

as far as I'm concerned
as far as I can tell

as far as I can see

as far as I know

as far as you're concerned
away from keyboard
asshole

as I see it

as I understand it

also known as

all my love

and now for something completely different
as soon as possible
assistant section leader
age sex location

age sex location picture
age/sex/location
assistant system operator
at this moment

as well as

are we having fun yet?
are we going to have to go trough this again?
absent without leave
away without leave

at your own risk

and your point is?
before

bye for now

back at computer
busting a gut

back at the keyboard

be back in a bit

be back later

be back later but not to soon because of
burnt beyond repair

be back soon

bulletin board system

be cool

because

be seeing you

big evil grin

boyfriend

boyfriend

bye for now

big grin

believe it or not

Table 16: Table of 50 out of the 664 acronyms that were considered by our model.

154

a
about
above
across
after
afterwards
again
against
all
almost
alone
along
already
also
although
always
am
among
amongst
amoungst
amount
an
and
another
any
anyhow
anyone
anything
anyway
anywhere
are
around
as
at
back
be
became
because
become
becomes
becoming
been
before
beforehand

Table 17: Table of the 320 english stop words that were considered by our model.

behind
being
below
beside
besides
between
beyond
bill
both
bottom
but
by
call
can
cannot
cant
co
computer
con
could
couldnt
cry
de
describe
detail
do
done
down
due
during
each
€g
eight
either
eleven
else
elsewhere
empty
enough
etc
even
ever
every
everyone

everything
everywhere
except
few
fifteen
fify
fill
find
fire
first
five
for
former
formerly
forty
found
four
from
front
full
further
get
give
g0
had
has
hasnt
have
he
hence
her
here
hereafter
hereby
herein
hereupon
hers
herself
him
himself
his
how
however
hundred

i
ie
if
in
inc
indeed
interest
into
is
it
its
itself
keep
last
latter
latterly
least
less
Itd
made
many
may
me
meanwhile
might
mill
mine
more
moreover
most
mostly
move
much
must
my
myself
name
namely
neither
never
nevertheless
next
nine
no

155

nobody
none
noone
nor
not
nothing
now
nowhere
of
off
often
on
once
one
only
onto
or
other
others
otherwise
our
ours
ourselves
out
over
own
part
per
perhaps
please
put
rather
re
same
see
seem
seemed
seeming
seems
serious
several
she
should
show

side
since
sincere
Six
sixty
S0
some
somehow
someone
something
sometime
sometimes
somewhere
still
such
system
take
ten
than
that
the
their
them
themselves
then
thence
there
thereafter
thereby
therefore
therein
thereupon
these
they
thick
thin
third
this
those
though
three
through
throughout
thru

thus
to
together
too
top
toward
towards
twelve
twenty
two
un
under
until
up
upon
url
us
very
via
was
we
well
were
what
whatever
when
whence
whenever
where
whereafter
whereas
whereby
wherein
whereupon
wherever
whether
which
while
whither
who
whoever
whole
whom
whose

C. Table of the 320 English Stop Words Considered by our Model

why
will
with
within
without
would
yet
you
your
yours
yourself
yourselves

	Περίληψη
	Εκτεταμένη Περίληψη
	Abstract
	Acknowledgements
	Instead of a Preface
	Contents
	List of Figures
	List of Tables
	1 Sentiment Analysis and Twitter
	1.1 Machine Learning
	1.1.1 Definition
	1.1.2 Theory
	1.1.3 Approaches

	1.2 Sentiment Analysis
	1.2.1 Definition
	1.2.2 Historical Background and Learning Approaches
	1.2.2.1 Supervised Learning
	1.2.2.2 Semi-Supervised Learning
	1.2.2.3 Unsupervised or Weakly Supervised Learning

	1.3 Twitter Sentiment Analysis
	1.3.1 Microblogging
	1.3.2 Twitter Sentiment Analysis

	2 Artificial Neural Networks
	2.1 Human Nervous System
	2.1.1 Basic Structure
	2.1.2 Anatomy and Physiology

	2.2 Neurons
	2.2.1 Neuron Models
	2.2.2 Activation Function
	2.2.3 Stochastic Neuron Model
	2.2.4 Definition of Neural Network

	2.3 Neural Networks as Directed Graphs
	2.4 Feedback
	2.5 Neural Networks Architectures
	2.5.1 Single-layer Feedforward Network
	2.5.2 Multi-layer Feedforward Network
	2.5.3 Recurrent Neural Network

	2.6 Knowledge Representation
	2.7 Learning Procedures
	2.7.1 Learning with a Trainer or Supervised Learning
	2.7.2 Learning without Trainer
	2.7.2.1 Reinforcement Learning
	2.7.2.2 Unsupervised Learning

	2.8 Rosenblatt's Perceptron
	2.8.1 The Perceptron
	2.8.2 Perceptron's Convergence Theorem
	2.8.3 Summary of Perceptron's Convergence Algorithm

	2.9 Multi-layer Perceptron
	2.9.1 Definition
	2.9.2 Batch and Online Learning
	2.9.2.1 Batch Learning
	2.9.2.2 Online Learning

	2.9.3 Back Propagation
	2.9.3.1 The Algorithm
	2.9.3.2 Phases of BK Algorithm
	2.9.3.3 Activation Function
	2.9.3.4 Learning Rate
	2.9.3.5 Termination Criteria
	2.9.3.6 Summary

	2.9.4 Cross-Validation
	2.9.4.1 Basic Method
	2.9.4.2 Early Stopping Method

	3 Model's Implementation
	3.1 Data Acquisition
	3.2 Pre-processing and Feature Extraction
	3.2.1 Features of our Model
	3.2.2 Pre-processing
	3.2.3 Feature Extraction

	3.3 Architecture
	3.3.1 Input Preparation
	3.3.2 Multi-layer Perceptron

	3.4 Computational Complexity
	3.5 Performance Evaluation
	3.6 Implementation

	4 Experiments and Results
	4.1 Computer System Characteristics
	4.2 Training and Testing Corpus
	4.3 Training and Testing parameters
	4.4 Experiments and Techniques
	4.5 Examined Architectures
	4.6 Results
	4.6.1 Results for the Dataset balanced_referendum_ds
	4.6.1.1 Examined Architectures
	4.6.1.2 Summarized Results

	4.6.2 Results for the Dataset various_contents_ds
	4.6.2.1 Examined Architectures
	4.6.2.2 Summarized Results

	4.7 Discussion
	4.8 Ideas for Improvement and Future Directions
	4.9 Conclusion

	Bibliography
	Appendix
	A. Table of the 100 Most Common Emoticons in Twitter Considered by our Model
	B. Table of 50 out of the 664 Acronyms Considered by our Model
	C. Table of the 320 English Stop Words Considered by our Model

