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Περίληψη

Οι  αλγόριθμοι  Όρασης  Υπολογιστών  γίνονται  ολοένα  και  περισσότερο
δημοφιλείς   σε  σημερινές  εφαρμογές.  Συνήθως,εισάγουν  σημαντικό  φόρτο
εργασίας στις εφαρμογές,εξαιτίας της αυξημένης πολυπλοκότητάς τους αλλά και
του  τεράστιου  μεγέθους  των  δεδομένων  που  χρησιμοποιούν.  Γι'αυτό,δεν
εκτελούνται  αποτελεσματικά  από  μονάδες  γενικού  σκοπού.  Αντιθέτως,
υλοποιούνται  ικανοποιητικά  από ειδικού  σκοπού υλικό(FPGA ή ASIC)  για  να
βελτιστοποιηθεί η απόδοσή τους.

Σε  αυτή  τη  διπλωματική  εργασία,ασχολούμαστε  με  τον  αλγόριθμο
ανίχνευσης γωνιών των Harris & Stephens. Σκοπός μας είναι να παράσχουμε μία
software  λύση  στο  ζήτημα  της  υλοποίησης  του  αλγορίθμου  σε
FPGA,χρησιμοποιώντας το εργαλείο Vivado High-Level Synthesis της εταιρείας
Xilinx. Αφού περάσουμε με επιτυχία την διαδικασία σύνθεσης και παράξουμε την
περιργαφή  επιπέδου  καταχωρητή,ξεκινάμε  να  εισάγουμε  ορισμένες
βελτιστοποιήσεις,ώστε  να  επιτύχουμε  υψηλότερες  επιδόσεις.
Τελικά,εκμεταλλευόμενοι  τις  διαδικασίες  βελτιστοποίησης  του  Vivado  HLS
σημειώσαμε  μεγάλη  επιτυχία  μειώνοντας  το  χρόνο  εκτέλεσης,αυξάνοντας  την
απόδοση  και  χρησιμοποιώντας  λιγότερη  μνήμη.  Η  συσκευή  στην  οποία
στοχεύεται η υλοποίηση και με βάση την οποία πήραμε μετρήσεις είναι η πλακέτα
Kintex-7 της Xilinx.

Τα αποτελέσματα της  παρούσας  εργασίας  παρουσιάστηκαν στο συνέδριο
HiPEAC  2015,Workshop  in  Recofigurable  Computing  (WRC)  in
Amsterdam,2015(https://www.hipeac.org/2015/amsterdam/schedule/#wshop)
''A  Framework  for  Rapid  System-Level  Synthesis  Targeting  to
Reconfigurable  Platforms  :A  Computer  Vision  Study '',Dionysios
Diamantopoulos, Ioannis Galanis, Kostas Siozios, George Economakos, and Dimitrios Soudris.

Το κείμενο της διπλωματικής οργανώνεται ως εξής:

Στο Κεφάλαιο 1 υπάρχει η εισαγωγή στα FPGA και γίνεται ειδική αναφορά στον
ειδικό τρόπο προγραμματισμού του.

Στο  Κεφάλαιο  2  αναλύεται  ο  επιστημονικός  κλάδος  της  Όρασης
Υπολογιστών,καθώς και η σχέση του με τα FPGA.
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Ακολούθως στο Κεφάλαιο 3 ,παρουσιάζουμε τον αλγόριθμο ανίχνευσης γωνιών
Harris. Αρχικά,εξηγούμε τον τρόπο λειτουργίας του,δίνοντας λεπτομέριες για τις
βασικές  του  συναρτήσεις.  Στη  συνέχεια  κάνουμε  μία  γενική  εκτίμηση  των
αναγκών μνήμης του αλγορίθμου,χρησιμοποιώντας το εργαλείο valgrind.

Στο  Κεφάλαιο  4  περιγράφονται  οι  μετασχηματισμοί  που  ήταν  απαραίτητο  να
γίνουν ώστε η υλοποίηση να μπορεί να περάσει από τη διαδικάσια της σύνθεσης.
Στη  συνέχεια,αναλύεται  η  στρατηγική  σχεδιασμού  καθώς  παρουσιάζονται
αναλυτικά οι βελτιστοποιήσεις που έγιναν. Επόμενα,στο κεφάλαιο 5 συνοψίζονται
τα  επιτέυγματα  που  αφορούν  τη  βελτίωση  της  απόδοσης  της  υλοποίησης  του
αλγορίθμου(χρόνος εκτέλεσης,μνήμη διεκπαιρεωτική ικανότητα-throuhgput)  και
τη  εξοικονόμηση  της  χρήσης  των  διαθέσιμων  πόρων.  Τέλος,στο  κεφάλαιο  6
παραθέτουμε τις μελλοντικές κατευθύνσεις της επιστημονικής έρευνας  με βάση
τις τελευταίες τάσεις στον κλάδο των Συστημάτων σε Ψηφίδα(System on Chip -
SoC).

Λέξεις  κλειδιά:  Όραση  Υπολογιστών,Σύνθεση  Υψηλού  Επιπέδου,Αλγόριθμος
Harris,FPGA,Kintex-7, Ανίχνευση γωνιών, Vivado HLS.
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Abstract

Computer  Vision  algorithms  become  more  and  more  popular  in  modern
applications. They usually introduce significant performance workload,due to their
increased complexity and intensive size of the data input. This is why they are not
efficiently performed by general-purpose computing systems.  However,they are
adequately implemented onto specific hardware(for example ASICs or FPGAs) in
order to optimize their execution.

In  this  diploma  thesis,we  deal  with  the  Harris  &  Stephens  corner
detection algorithm. Our purpose is to provide a software solution of mapping the
algorithm onto an FGPA device,using the Vivado High-Level Synthesis tool of
Xilinx. After going through the synthesis flow and produce the RTL description
successfully,we  started  introducing  several  optimizations,in  order  to  achieve
higher performance. We began from simple transformations and continued to more
complex ones,which aimed at transforming the structure of our implementation.
Finally,we took advantage of  Vivado HLS optimization directives and reached
great  success by reducing the  runtime,increasing throughput  and requiring less
memory. The target device of our implementation which gave those measures is
the Xilinx Kintex-7 board.

This work was presented in HiPEAC conference in Workshop in 
Recofigurable Computing (WRC) in 
Amsterdam,2015(https://www.hipeac.org/2015/amsterdam/schedule/#wshop)
''A Framework for Rapid System-Level Synthesis Targeting to 
Reconfigurable Platforms :A Computer Vision Study '',Dionysios 
Diamantopoulos, Ioannis Galanis, Kostas Siozios, George Economakos, and Dimitrios Soudris

The thesis text is organized as follows:

In  Chapter  1,there  is  an  introduction  to  FPGA devices  and  a  more  specific
reference is made for their unique programming style.

In  Chapter  2  it  is  discussed  the  scientific  field  of  Computer  Vision  and  its
relationship with FPGAs.
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In  the  following  chapter,Chapter  3,we  present  the  Harris  corner  detection
algorithm. Firstly,we explain its functionality,giving details for its basic functions.
Then we make a profiling for the algorithm's memory needs,using the valgrind
tool.

Chapter 4 describes the transformations that were necessary so the implementation
could be synthesized. Then, our design strategy is explained in detail and then we
perform several optimizations that are discussed  extensively. Next,in Chapter 5
we  discuss  the  achievements  in  performance  of  our
implementation(latency,memory  and  throughput)  and  the  utilized  resources.
Finally,in Chapter 6 we present the possible future work according to the latest
trends in the field of hybrid systems that use  System on Chip (SoC) architecture.

Keywords:Computer Vision,High-Level Synthesis,Harris algorithm,FPGA,

Kintex-7, Corner detection, Vivado HLS.
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Chapter 1:Introduction

1.1 Introduction to FPGA

An  FPGA(field-programmable  gate  array)  is  an  electronic  device  that
consists of an integrated circuit (IC) that allows its user to configure it for a variety
of  applications.  In  fact,  almost  every  algorithm  that  is  computable  can  be
performed  by  an  FPGA  device.  Unlike  the  Application-Specific  Integrated
Circuit(ASIC),FPGA 's main feature is that it can be dynamically re-programmed
without  any restriction after  being manufactured.  Thus the  functionality  of  the
design can be updated to any possible change in late design cycle and adapt to
new,higher standards. To do so,a FPGA contains a large number of programmable
logic  blocks,alongside  with  reconfigurable  interconnects  which  can  be
re-connected  in  many  different  combinations,depending  on  the  application  's
requirements. Most FPGA include additional resources to implement complicated
digital  operations,  such  as  high‐speed  transceivers,  high‐speed  I/Os,  memory
elements like blocks of RAM or flip-flops(FFs),and also analog components like
analog-to-digital converters(ADCs) and digital-to-analog converters(DACs ). [1]

1.1.1 History

FPGA 's ancestors where simple programmable  logic devices(PLDs) and
programmable read-only memory (PROM) .PROM was the non-volatile memory
that can be loaded with information. It could have been programmed either in a
factory-level or a user-lever(field-programmable). PLDs were electronic devices
which contained an array of logic gates OR and logic gates AND,also both factory
and  field-programmable.  In  the  80's,Xilinx  co-founders  R.Freeman  and
B.Vonderschmitt introduced the first commercial  field-programmable gate array.
In the '90's,FPGAs  production grew explosively [2] . Other vendors emerged and
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the  market  percentage  was  shared.  In  early  '90's,they  were  initially  used  in
telecommunications  and  networking  and  later  that  decade  expanded  to
consumer,automotive and industrial fields of market.

1.1.2 Latest Trends

Traditionally,  FPGAs  where  slower,consumed  more  energy  and  achieved
less  functionality  than  the  ASICs.  However,nowadays  FPGAs  have  evolved
significantly and they can provide solutions that can be preferred from an ASIC
one. They can achieve:

• low power
• increased speed
• low materials cost
• increased possibilities for re-configuration 'on-the-fly'.
• short time to market
• low non-recurring engineering(NRE) costs

In  addition,according  to  Xilinx's  estimations,there  are  recent   technology  and
market changes that are changing the FPGA/ASIC relation:

• Integrated circuit  costs grow sharply
• ASIC high-complexity extends design time
• R&D resources are decreasing
• Costs  for slow time-to-market is increasing
• Financial constraints in a poor economy are driving low-cost technologies

12



Since FPGAs have lower material cost,can enter the market in a short amount of
time and the NRE costs are constantly reducing,the cost per unit will finally be
less than ASIC at higher volumes. 
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Figure 1: Time Spent on FPGA/ASIC Implementation



These trends make FPGAs a highly flexible alternative than ASICs for a larger
number of higher-volume applications than they have been historically used for, to
which the company attributes the growing number of FPGA design starts:

•2005: 80,000[3]
•2008: 90,000[4]

This evolution would not  have been achieved if  there were not   the explosive
increase of the logic gates of FPGA :

• 1982: 8192 gates, Burroughs Advances Systems Group, integrated into 
the S- Type 24-bit processor for reprogrammable I/O.[5]

• 1987: 9,000 gates[6]
• 1992: 600,000, Naval Surface Warfare Department[7]
• Early 2000s: Millions[8]
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As a result,it is concluded  that FPGA market has expanded significantly through

the past three decades:  

•1985: First commercial FPGA: Xilinx XC2064 [6]
•1987: $14 million [6]
•≈1993: >$385 million [6]
•2005: $1.9 billion [9]
•2010 estimates: $2.75 billion [9]

As we can observe in the graph below,in 2010 the market was dominated by Altera
and Xilinx,but there were other smaller vendors too and all together shared the
market.

Latest estimations,though,have shown that approximately 90% of the market
in 2012 was shared between Altera and Xilinx(Xilinx 47%, Altera 41%),  with
combined revenues in excess of $4.5B and a market cap over $20B.In future, we
expect that the programmable logic fabric will continue to rise, since the  major
companies insist on investing heavily for new technologies and manufacturing. 

It is also the main feature of FPGA,that can execute an implementation in
parallel,thanks  to  their  concurrent  nature,that  makes  them  faster  than  a  soft
microprocessor in a variety of applications. So recently,  the main trend in FPGA
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technology is  to  combine the  advantages of  the  logic  blocks  of  the  traditional
FPGA design  with  embedded  microprocessors  and  the  required  peripherals  to
develop a whole system-on chip(SoC) device.[1]

In  2010,  Xilinx  presented the  first  SoC device(  Zynq™-7000 )  that  combined

16
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features  of  an  ARM  microcontroller  (hard-core  implementations  of  a  32-bit
processor,  memory,  and  I/O)  with  an  FPGA  core.  By  including  an  ARM
processor-based  platform  into  FPGA  family  enables  developers  to  apply  a
conjunction  of serial and parallel processing to their embedded system designs,
for which the general trend has been to progressively increasing complexity. The
high  level  integration  (commercial  levels  at  28nm)  are  able  to  cut  power
consumption and power leakage,resulting in a smaller design,less parts cost  an
more reliable implementation,since most failures in modern electronics take place
on PCBs connections and not inside the actual chips.[10]

1.1.3 Applications

As the FPGA technology evolves rapidly,the number of applications they are
used  in  has  been  expanded.  From   their  initial  purpose,ASIC  prototyping,to
Aerospace and Defense,from medical electronics to consumer electronics, there is
almost no field of the modern electronic industry that has not been affected my the
rise of the FPGA technology.[11]

17

            Source:Aldec
Figure 5: Fpga market applications



1.1.4 FPGA  Architecture

An  overall  view  of  a  FPGA  board  would  reveal  several  electronic
components that cooperate in order to implement the desired digital circuit. The
main functional unit of the FPGA board is the Configurable Logic Blocks(CLB).
Each  board  contains  a  large  number  of  CLBs,which  are   organized  in  a  two
dimensional array and the are interconnected via horizontal and vertical  routing
channels. 

There are also several I/O blocks that allow the device to communicate with the
outside  environment.  A more  detail  view  of  array  of  CLBs  would  show  the
following figure: 
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Figure 6:  Array of CLBs



        

Each CLB comprises a number of slices ,each of one contains a number of
logic cells. A logic cell consists of the following:

• Look-up table(LUT):Responsible for logic operation.
• Flip-Flop(FF) : Stores the result of the LUT.
• Network connection units:Connect each element to one another.
• Input/Output(I/O) pads:Physical ports to interchange data in and out of the

board 
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Figure 7:  Structure of FPGA



Combining all  of  the  CLBs is  responsible  for  implementing any kind of
application. Responsible for making different designs are the switch boxes,which
are configured each time depending on the circuit they implement. Actually,there
switch box consists of a matrix with 6 pass transistors,as it is shown below: 

However,  this  architecture  brings  limitations,in  terms  of  computational
throughput,resources and clock frequency.[12]
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1.1.4.1  Memory

FPGA boards are equipped with various memory elements that can be used
as RAM,ROM or shift-registers. These units are block RAMs (BRAMs),LUTs and
shift registers. 

The BRAM is a dual-port RAM component embedded into the FPGA board
that can achieve storage of a large set of data. Two types of BRAMs with different
capacity  are  usually  instantiated:  18k  or  36k  bits.  The  total  number  of  these
memories devices is always specific in every board. Also,the dual port operation
of  these  memories  can provide access to different  locations in  the same clock
cycle(parallel behavior).

1.1.4.2 LUT

In every modern FPGA device, LUTs  are the fundamental elements that can
apply every logical function of N boolean variables. In fact, it is a truth table that
depending  on  the  input  values,generates  different  functions  to  produce  output.
Since the number of inputs  is  N,  the maximum output  values that  a  LUT can
calculate is 2N ,which corresponds to the memory locations that are accessed by
the LUT. Hence,the number of implemented functions are   2N N

.A regular value
of N is a Xilinx FPGA  board is 6.
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      Source: Xilinx

Figure 10: Functional Representation of a LUT as Collection 
      of Memory Cells



1.1.4.3 Flip-Flops

Flip-flops  are  the  basic  unit  of  storage  in  FPGA design.  Each  flip-flop
includes  several  inputs:data  input,clock  input,clock  enable,reset  and  one  data
output. The functionality of the FF is to preserve the value for more than one clock
cycle (when the enable input is ON). If a new data input occurs,only if clock value
and clock enable are to logic 1 (or ON in other words),then the input data value is
passed to the output.

Modern  FPGA devices  are  equipped  with  additional  components  which
increase the computational efficiency of the board. Such elements are:

• Embedded memories(RAMs,ROMs and shift-registers)
• Phase-locked loops (PLLs) for driving the FPGA fabric at different clock

rates
• High-speed serial transceivers
• Off-chip memory controllers
• Multiply-accumulate blocks

The  combination  of  all  these  components  results  in  the  whole  architecture
schematic of the modern FPGA devices:
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        Source:Xilinx
Figure 11: Structure of a Flip-Flop



 

1.1.4.4 DSP Blocks

Probably the most complex computational unit into the Fpga fabric is the
DSP block.  Modern  FPGA vendors  have  established  actual  DSP devices  into
Fpga,in  order  to  support  the  increasing  amount  of  computational  load.  Dsp's
consist  of  adders,subtractor  units  and  multipliers,  combined  to  compose  an
arithmetic logic unit(ALU).
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Figure 12:  Modern FPGA structure
Source:Xilinx



1.2 Programming the FPGA
 

  

  

Traditionally,to program an FPGA device the user has to provide a 
register-transfer-level(RTL) description,which is applied by code in  a  hardware
description language(HDL). At most cases,FPGA boards are accompanied with a
design tool by the vendor which is used to generate the technologically-mapped
netlist. This netlist is implemented to the actual board via a special process,called
place-and-route(PnR). Once the output is verified(with validation of the generated
map  ,  simulation  and  examination  if  the  meeting  the  timing  constraints  are
met),then the binary file called bitstream is produced. Finally,the bitstream file is
loaded to the FPGA board via a serial interface(JTAG) or an external memory and
in the end the board is programmed-configured to the desired circuit.
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Figure 13: FPGA design flow
         Source:Xilinx



    

          Historically,FPGA programming is implemented by the two most common 
HDLs, VHDL and Verilog. After the developer has written the code, the next step 
in the design circle is to simulate the RTL description in every stage of the design 
process. To do that, an specific validation program is created ,called 
testbench,which can determine if the implementation requirements are met and if 
not, warn the  user that there is an error. Since no errors occur,the design flow 
continues to the next stage: the specialized software produces the netlist by the 
synthesis procedure and it is simulated again to confirm that there are no errors. 
Finally, the design is applied to the FPGA board.
          It is obvious from above that the programming flow of FPGAs has a lot of 
complex stages that may cause substantial delays in the completion of a project. 
We could compare the difficulties in HDL programming of an FPGA design,to the 
assembly language programming in software engineering. Thus,as it is shown in 
the figure below,the traditional FPGA design flow with RTL results in limitations 
in terms of implementation time and achievable performance for different 
computation platforms.
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Figure 14: Design Time vs. Application Performance with RTL 
Design Entry                              

Source: Xilinx



In that previous figure is demonstrated that despite the higher performance
for  both  initial  and  optimized  implementation,compared  to  standard  and
specialized  processors,FPGA  development  time  required  to  arrive  at  this
performance is far  beyond the duration of a typical software development time.
Therefore, FPGAs were usually used when the design requirements could not have
been met with any other means,such as multiple-processor designs. [13]

However,recent advances in that field have come out and they are able to
remove any difference between the programming methods of a typical processor
and an FPGA. As there are compilers for high-level languages,like C,to different
processor architectures,Xilinx created Vivado® High-Level Synthesis(HLS),which
is a compiler that provides the same functionality for C/C++ programs targeted to
different FPGA boards. The results of the comparison between the HLS compiler
and other,standard or specialized compilers,is figured below.[13]

It is presented a large difference in favor of the HLS compiler,as it achieves 
the highest performance,within the design time of a x86 processor and a DSP. That
gap is justified if we realize that assuming the five-stage pipeline,5 consequent 
instructions would execute in a processor like the following: 
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Source: Xilinx
Figure 15: Design Time vs. Application Performance with Vivado HLS Compiler



However,the natural execution on an FPGA board is not being held on a common
computational platform. It executes each single program on a custom circuit. If the
program changes,then the implementation changes and so does the circuit.
So,the ''exe'' stage for a single instruction appears below:

Therefore,given the same set of 5 instructions as before,it is easy to come to the
following figure:[13]
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Figure 16: 5-stage Pipeline  
Source: Xilinx

Figure 17: Execution stage for a single instruction 
 Source: Xilinx



Comparing the previous graphs we can come to the conclusion that FPGAs
have a nominal performance that is lot faster than a processor. Of course,actual
numbers depend on each application,but in general FPGAs are at least 10x faster
than  a  processor,concerning  computationally  demanding  algorithms.  Therefore,
FPGAs  have  grown  explosively  the  past  decade,  concerning  computational
performance,since they can accomplish true parallel execution and  high
complexity  operations  better  than  CPUs.  Alongside  with  the  evolution  of
processing capabilities because of Moore's Law,the gap between FPGA and CPU
performance continues to grow. The chart below demonstrates the comparison of
FPGA and CPU performance.
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Figure 18: Concurrent execution   
Source: Xilinx



One  fundamental  difference  between  programming  a  processor  and  an
FPGA is  that  FPGA lacks  of  on-chip  memory.  So,the  HLS tool  builds  a  fast
memory architecture and thus the implementation can access one or more memory
banks independently.

Another  feature  that  a  software  engineering  has  to  adapt  to  when
programming an FPGA device is that dynamic memory allocation is not available.
Thus,the  regular  processor  code  has  to  be  adapted  to  the  special  FPGA
requirements,as it is presented below:
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Source: National Instruments
Figure 19: Moore’s law comparing FPGA and CPU performance.



Except for the memory issues,HLS compiler handles operations (arithmetic
and logical) differently than a standard processor.[13] A software developer faces
several restrictions when it comes to optimize the performance of an application.
The only effect that can be applied is trying to limit as the dependencies between
sequential operations as much as possible, or improving memory access pattern in
order to increase cache performance. However, HLS has not such constraints: the
compiler builds the circuit that specified to the application and the developer has
the  opportunity  to  optimize  the  design's  throughput,power  consumption  and
latency. For example,assuming we have the following set of operations:

 A [ i ]=B[ i ]∗C [ i ];

 D [ i]=B[ i]∗E [i ] ;

     F [i ]=A [ i]+B [i ] ;

If  the  previous  instruction  set  is  executed  in  a  standard  processor,  the  only
dependency  is  that  A[i]  and  D[i]  must  be  computed  before  F[i]
(Read-After-Write).  The execution would be like that:
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Source: Xilinx
Figure 20: FPGA static memory allocation



However, in the HLS compiler the previous set would be executed in less cycles:
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 Source: Xilinx
Figure 21: Execution of Example Code on Processor



This  happens  because  HLS  compiler  creates  a  custom  memory  architecture,
depending only on each algorithms requirements. HLS corresponds the arrays to
different memory banks,whereas on the processor case the arrays are stored in the
same memory space and this is why delays occur.[13]

Same with  the  HDLs,  writing  C/C++ with  the  HLS tool  needs  software
validation,respectively.  The reason to write a software test  bench is to validate
that the software implementation runs without any segmentation faults and that
functionality of the implemented algorithm is has correct functionality. A rule of
thumb is that the test bench must reach at least 90% code coverage to be advised
as an adequate test  bench. Hence,the test  vectors examine all  branches in case
statements,conditional if-else statements and for loops.  The test bench alerts the
user whether the algorithm code behaves the way it is expected. If not, prints an
appropriate message informing for the wrong functionality.

A simple  example  of  an  algorithm  code(on  the  right)  with  the  corresponding
software test bench(on the left) are shown below:
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Figure 22: Default execution of HLS Code on an FPGA 
Source: Xilinx



 In the example above,concerning the assignments, the instruction A=0 will never
be executed. HLS is able to recognize if there is an unreachable statement like the
above and cuts it off the configurable circuit.[13]

After the software test bench is build the next step to the HLS design flow is
to implement  the  process of  co-simulation.  From one hand the  test  bench can
detect most of possible errors in the design,but it cannot verify if the functionality
remains  correct  after  the  implementation  being  transformed  to  concurrent
execution.  The  co-simulation  stage  checks  if   the  C/C++  test  bench  and  the
generated  RTL have  the  same  behavior.  To  do  so,HLS  generates  a  hardware
emulator and  simulates how the RTL would function on the device.  [13]
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Figure 23: Example of Code coverage 
Source: Xilinx



Chapter 2: Computer Vision

2.1 Definition

With  the term Computer Vision(  CV) we refer to the scientific field that
includes all the methods for gathering,processing and analyzing data from the real
world(usually images) and generate arithmetic or symbolic information as results.
The target is to extend the ability of human vision so as to derive conclusions
from  image  processing,which  consists  of  applying  several  math  fields(like
algebra,geometry,probability theory or statistics) alongside with laws of physics
and learning theory. [14][15]Hence,the field of Computer Vision is multi-scientific
fields which can be depicted  in the following figure: 
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 Source: Wikipedia

Figure 24:Scientific fields of Computer Vision



2.2 Applications

Computer Vision algorithms have evolved rapidly the past few years and
they cover a vast field of applications:
• Automotive:

Depending  on  the  application  ,CV 's  assistance  ranges  from  supporting
drivers or pilots in a variety of real-time situations,to more fully autonomous
applications of small wheel-robots,cars,aerial vehicles. The main use of CV
for  all  those  kind of  vehicles  is  to  navigation.  In  the  first  category,  CV
supporting systems warn drivers for obstacles or help pilots for landing of
aircraft. In the second, vehicles use CV algorithms to create a map of the
environment  and  thus  be  able  to  navigate  to  the  desired  route.  Space
exploration  is  being held  with  fully  autonomous  land-based  vehicles,like
NASA's Mars Exploration rover or ESA's ExoMars Rover.[16] Some car
industries  make  efforts  to  introduce  unmanned  driving  cars,but  there  are
some improvements to be done until they reach commercial use.

• Industry(machine vision,video surveillance,manufacturing applications)
In industrial applications,CV provides the necessary information to support 
the manufacturing process. Usually, products are being examined through  
automatic procedures to find any imperfections. Alternatively, robotic arms 
measure position and orientation to implement pick-and-place processes.

• Medical Imaging 
   Computer Vision algorithms provide information from image data in order 

to make medical diagnosis for patients. The image data may vary:X-ray  
images,  ultrasonic  images  or  tomography  images.  The  output  could  be  
measurements  of  organ  dimensions,blood  flow  or  more  complex  
information  about  the  structure  of  the  brain  or  the  quality  of  medical  
treatments. 

Reconfigurable computing has been successful also in many  compute intensive
areas, including DNA matching,encryption/decryption, image processing, neural
networks.
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2.3 Computer Vision and FPGA 

The complexity of Computer Vision algorithms combined with the growing
demand for applications with intensive amount of information(like high definition
images or  videos)  leads  to  greater  amount  of  computational  power.  So,general
purpose CPU's can satisfy only those applications which have low complexity. For
more demanding requirements specific processors like GPUs can perform better. 
However,  CV  algorithms  become  more  complex,as  they  often  demand  for
example,nonlinear  optimizations,in  order  to  be  more  accurate.  In  addition,
concerning image processing, ordinary image sizes range from 512x512 pixels  to
1024x1024.  The  resulting  computational  load can reach,sometimes,the  level  of
several  million operations.  In these cases,  VLSI based devices,like ASICs,  can
meet high performance expectations,for example high-throughput in a real-time
CV system. Still,the ASIC approach encounters difficulties: the cost is high,design
is time consuming and because the ASIC architecture is  not  reconfigurable,the
design cannot be updated after shipping.  

One the other hand, the unique feature of reconfigurability of FPGAs can
surpass  the  limitations  created  by  an  ASIC.  With  the  recent  improvements  in
FPGA technology,  we  can  manage  to  reach  very  high  performance  with  an
FPGA,close  enough  to  an  ASIC.  The  natural  concurrent  behavior  of
reconfigurable platforms is a great advantage in implementing CV algorithms. For
example,  one of  the  most  common operations in  image processing and digital
signal   is  convolution. Many  machine  vision  systems  use  two-dimensional
convolution  for  image  filtering,  edge  detection,  and  template  matching.
Convolution  of  a  regular  image  has  four  loops  and  its  overall  complexity  is

O(N2
) .With a 3x3 or 5x5 kernel,convolution computations can demand several

millions of multiplications and additions. In a standard processor this operation
could be quite time consuming,but in FPGA it can be implemented simultaneously.
Compared to ASICs, the design can be updated very easily in a time to make any
modifications or improvements to the algorithm's implementation. This happens
because the FPGA board can be reprogrammed(reconfigured) in a matter of hours,
but ASIC needs separate hardware to be added. This sequence of re-programming
reminds the CPU operation,  where a  program is loaded and after  another one.
Moreover,  FPGAs  can  reach  applications  beyond  CPU.  For  example,  FPGAs
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operate in slower clock frequency than CPUs and thus they can be preferred in
space robotics applications, since radiation prevents usage of fast-clock CPUs.[17]

Nevertheless, FPGA applications display one major drawback when it comes
to implement CV algorithms that use primarily fixed point arithmetic. In this case,
computations that include floating-point operations occupy excessively much of
the  available  resources  and  this  becomes  even  worse,when  the  operations  are
repeated many times(like in the convolution example) ,in order to accelerate the
implementation,taking   advantage  of  the  concurrent  behavior  of  the  FPGA
architecture.  One  solution  is  to  make  a  profile  of  the  data  inputs  and  then
determine  the  minimum digits  required  to  balance  precision  with  the  FPGA's
available  resources.  Another  solution  is  to  limit  those  operations  as  much  as
possible  without  losing  any  accuracy,since  automotive  vehicles  driven  by  CV
algorithm depend strongly on orientation information calculated in floating point
operations  and  thus  any  deviation  of  the  correct  route  would  have  disastrous
results.[18]

 The optimal solution,though is to embed actual DSPs into the FPGA board.
For example ,Xilinx has included DPS blocks into the FPGA fabric. Each DSP
contains of three different elements:an add/subtract unit which is connected to a
multiplier  which  has  cascade  connection  to  the  final  add/subtract/accumulator
engine. Hence,each  DSP block is capable of computing functions of the following
form: 

p=a×(b+d )+c

37



38

Source: Xilinx
Figure 25: Structure of a DSP Block



Chapter 3:Harris Corner Detector

3.1 Introduction to feature detection 

One of the main targets of the field of Computer Vision is to extract features
from images and supply the results as inputs to systems,in order to make important
decisions(such as triggering an actuator to move a robot hand). This process is
called feature detection and refers to all methods and operations that are necessary
to calculate at every pixel of an image whether or not satisfies the criteria of each
feature.  The  result  is  a  subset  of  the  image,containing  either  isolated
points,continuous  lines  or  connected  regions.  Although  there  is  not  a  clear
definition of the meaning of feature, usually we refer to feature as an interesting
part of an image,which is repeated two or more times throughout the image. 

There have been developed several feature detection algorithms,varying on
the desired feature detected, the computational complexity and repeatability. We
could divide them into the following groups:

• Edges 
       With the term “edges” we refer to the locations in an image where
there is a border (an edge)  between two regions. There is no a predefined
shape  for  an  edge,since  it  can  contain  everything.  To  compute  an
edge,most  algorithms  rely  on  the  fact  that  edges  consist  of  sets  that
include  pixels  on  an  image  that  have  high  value  gradient  magnitude.
Hence, edges have one dimensional structure.  

• Corners/Interest points 
            The term “corner” was suggested when image processing algorithms
were detecting edges in the fist place and then they were using the results to
compute  corners,by  determining  where  there  was  a  strong  change  in
direction.  Thus,the  algorithms  evolved  and  they  stopped  calculating
exclusively edges, but they were searching for strong values of curvature in
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the  image  gradient.  However,it  was  claimed  that  those  algorithms  could
detect false corners,when for example detected a small white dot in a black
background. These points were named interesting points.

• Blobs/regions of interest or interest points 
             In contrast with corners,which are point features,blobs detect region
like features of an image. But,they do usually include a centered point or a
local maximum. In that  sense,we could include blob detectors as interest
point operators.

• Ridges
                      In case we have stretched objects in an image,it is necessary to use 

ridges. A ridge could be described as an one-dimensional line that constitutes
a  symmetry  axis  and  plus  its  width  depends  on  the  local  ridge  point.  
Nevertheless,  calculating  ridge  points  in  gray-scale  images  is  
computationally heavier than detecting edges,corners or blobs. 

In this thesis,we are going to deal with the field of edge detection. A corner
is calculated as an intersection of two edges or as a point where there are  two
strong and different  edge directions in a local  region around the point.  Corner
detection(equal term of edge detection) is usually used in motion detection,image
registration,video tracking,3D modeling and object recognition.

3.1.1 Moravec detector 

One of the fist efforts in corner detection was Moravec detection algorithm
which determines a corner as a  point  of  low self-similarity.[19] The algorithm
checks whether the neighborhood of a  centered pixel  resembles with the other
local  pixels,by  computing  the  sum  of  squared  differences  between  the  two
sections. If the sum has a low value,then the algorithm implies more similarity.
So,if  the pixel has intensity value that is similar to its neighbors,then the regions
will not differ. However, if the pixel belongs to an edge,then it is obvious that the
two regions that are in  vertical direction  to the edge will have strong differences
in  intensity  values,  whereas  in  a  parallel  direction  there  would  be  plenty  of
similarities.  If  the  pixel  belongs  in  a  section  that  intensity  values  vary  in  all
directions,  then all  of  the  neighborhood patches  will  look different.  Hence,the
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corner strength is defined as the lowest sum of squared differences(SSD) between
the  region  of  the  centralized  pixel  and  its  neighbors  in  all
directions(horizontal,vertical and the two diagonals). If the value of SSD is a local
maximum, then that point is considered to be an point of interest. Nevertheless, the
Moravec detector has a strong drawback:it is not isotropic,meaning that if there is
an edge that is in a different direction of its neighbors, then the smallest SSD will
be high and thus the edge will be considered a corner incorrectly. 

In mathematical terms,this relationship can be presented as follows: 

E(u , v)=∑ w(x , y)∗[ I (x+u , y+v)−I (x , y)]2

where: 
• E is the computed sum of square differences
• W(x,y) is the window function which can be graphically defined as:

• I(x,y) is the intensity of the pixel
• I(x+u,y+v) is the shifted intensity

We compute shifted intensity in four directions:(u,v)={(1,0),(1,1),(0,1),(-1,1)}
The algorithm searches for the local maximal in min{E(u,v)}. The mathematical
formula of the Moravec detector confirms the problems mentioned above:

• because of the binary window function, the response of the algorithm is very
vulnerable to noise.

• The step of the operator is  45 degrees and thus important information is
eliminated.

• Only the minimum value of E(u,v) is taken into account.
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 Figure 26: Binary window function



3.1.2  The  Harris  &  Stephens  /  Plessey  /  Shi–Tomasi  corner
detection algorithm

 Because of the previous mentioned problems of Moravec detector, Harris
and Stephens improved Moravec's detector by taking into account the differential  
value of the corner,regarding the direction directly and not using shifted regions.
[19]
This corner value is often called autocorrelation(introduced in the actual paper). In
fact,in  paper  the  mathematical  formulas  are  the  clearly calculating the  sum of
square differences(SSD). The weighted sum is calculated as in Moravec detector :

S(x , y)=∑∑ w(u , v)[ I (u+x , v+ y )−I (u , v)]
2 ,where we consider 

a two-dimensional gray-scale image.

An  important  development  compared  with  Moravec's  operator  is  that  Harris
algorithm considers all small shifts and not with 45 degree step. Thus,a Taylor
expansion is used to compute I (u+x , v+ y) approximately. Letting I x and I y

be the partial derivatives of the Intensity of an image,we have:
I(u+x , v+ y)≈I (u , v)+ I x (u , v )x+ I y (u , v ) y

Thus the sum expression becomes:
S (x , y)≈∑∑ w (u , v )( I(u ,v)+ I x (u , v) x+ I y (u , v ) y)2

In a matrix form,the previous relationship can be rewritten as follows:

S (x , y)≈(x y) A ( x
y ) ,where A is the structure tensor:

,
where the brackets 〈... 〉  imply averaging (summation over u,v).

Another improvement comparing to Moravec detector is that the window
function is now Gaussian,guaranteeing isotropic response. The general form of a
Gaussian window function is presented below:
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In Harris algorithm a corner is considered to have a large variation of S  in
all  of  the  directions  of  the  vector  (x y ) .  In  mathematical  form,  this  can  be
expressed  through  the  eigenvalues  of  the  matrix  A.  If  an  interest  point  is
examined,then  matrix  A  should  have  two  eigenvalues  with  grand  value.
Considering the magnitudes of the eigenvalues, we can determine the following
cases:

• λ1≈0 and λ2≈0 ,then this point is not of interest.
• λ1≈0 and λ2 has a grand positive value,then at this point there is an edge.
• Both λ1 , λ2 have grand positive values,then at this point we have found a

corner.

Nevertheless,because computing the eigenvalues requires a big workload,Harris
and Stephens suggested an alternative function M c which is presented below:

considering  that  det (M )=λ1 λ2 and  trace(M )=λ1+ λ2 and  k  is  a  factor  that  is

chosen depending on the sensitivity level required.
From literature,an accepted value of k is between  0.04–0.15.[20]

A graphical representation of the classification of image points,according to
the eigenvalues of M is shown below:
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Figure 27: Gaussian window function



3.2 Implementation of Harris Algorithm

For the evaluation of our framework we employed a C-code implementation 
of Harris & Stephens algorithm[20] ,provided by  Dr. Manolis 
Lourakis[http://users.ics.forth.gr/~lourakis ].We present the following flow 
chart to describe the implementation of the algorithm:
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Figure 28: Classification of Image points

Source:  Chris Harris &
Mike Stephens Plessey Research Roke Manor, United

Kingdom © The Plessey Company pic. 1988
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Figure 29: Harris algorithm flow chart



At first,the  input  image  is  lead  to  the  function  that  calculates  the  partial
derivatives of the intensity I of the image in every pixel.  That function is
called imgradient(). It is presented below in pseudo-code style:

In the first two-for loop,the algorithm computes in each pixel the derivative
and the smoothed value respectively by accumulating the local sum of the 5 value
kernel.  It  uses  the  values  of  the  previous  two and  the  next  two pixels  in  the
particular row. Then,each value  is normalized by the equivalent factors. 

In the second two-for loop,the kernels are interchanged. The multiplication
is done by the previous two and next  two pixels  vertically,following the same
procedure as before. The resulting gradx,grady arrays have the derivative values in
each pixel. Notice that as it is obvious,the pixels of the first and the last two rows
of the image and the fist two and the last two pixels of each column do not have
the  derivative  values  because  the  algorithm uses  windows that  go  beyond the
limits of the image in those regions of pixels.

Because the algorithm cannot calculate the desired values at the borders of
the image,there is another function called  imgradient_bfill() which computes the
differences in those regions .
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     int imgradient5_smo(image[width,height],width,height,gradx,grady){
   for (i=[0,width-1]){

for ( j=[0,width-1]){
/* 5-tap derivative kernel */

   / * derivative_kernel=[-1 -3 0 3 1]
 /  * smoothing_kernel=[1 6 12 6 1] == [1 6 2*6 6 1]

 wrkx[i,j]=image[i,j]*derivative_kernel;
wrky[i,j]=image[i,j]*smoothing_kernel;

next_line;
}

for (i=[0,width-1]){

   for ( j=[0,width-1]){

 gradx[i,j]=wrkx[i,j]*smoothing _kernel;
grady[i,j]=wrky[i,j]*derivative_kernel;

next_line;
}

}



Then,a  Gaussian  kernel  is  formed  with  mean  value  μ=0  and  standard
deviation σ=1.  We compute ,according to  the previous quantities,the  following
Gaussian kernel: kern=[1 12 55 90 12 1],which is symmetric and normalized.

Then,image is filtered by imgblur() which is the function that performs  an
horizontal and then sequentially a vertical convolution,using the Gaussian kernel
formed before. The horizontal convolution is held by a window that is 7 points
wide and takes into consideration three pixels before and three after. Respectively,
the vertical convolution considers the tree pixels above and the three below the
center pixel.

The quantities  gradx2,grady2,gradxy correspond to I x
2 , I y

2 , I xy respectively. 
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int imgblurg(gradx,grady,gradxy){

/* separability: convolve horizontally ... */
for (i=[0,height]){
  for (j=[0,width]){

    wrkx[i,j]=convolution_with_gaussian_kernel_horizontal(gradx,gaussian_kernel);
    wrky[i,j]=convolution_with_gaussian_kernel_horizontal(grady,gaussian_kernel);
    wrkxy[i,j]=convolution_with_gaussian_kernel_horizontal(gradxy,gaussian_kernel);
}

}
  /* ... then convolve vertically */
for (i=[0,height]){
  for (j=[0,width]){

     gradx2[i,j]=convolution_with_gaussian_kernel_vertical(gradx,gaussian_kernel);
     grady2[i,j]=convolution_with_gaussian_kernel_vertical(grady,gaussian_kernel);

          gradxy[i,j]=convolution_with_gaussian_kernel_vertical(gradxy,gaussian_kernel);
}

      }

}



Next,we present a typical example of horizontal convolution graphically[20]:

In  that  figure  we  observe  that  since  our  window function  is  a  5-sample
kernel,the  convolution cannot start at the first pixel. Otherwise,it would need to
include pixel values that are actually outside the image. Thus,it  starts from the
third pixel and ends in the width-3 pixel in each row. The first 5 pixels of the first
row of the source image(Hsamp) are used to be convolved with the 5 samples of
the kernel(Hcoeff). The first output is now calculated. The same process continues
in the second set of Hsamp,until the final value of the last row is computed.
 A typical C code for implementing the horizontal convolution would be the
following:
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HconvH:for(int col = 0; col < height; col++){
HconvWfor(int row = border_width; row < width - border_width; row++){

int pixel = col * width + row;
Hconv:for(int i = - border_width; i <= border_width; i++){

local[pixel] += src[pixel + i] * hcoeff[i + border_width];
}

}
}

Figure 30: Horizontal Convolution
Source: Xilinx



Then,in  the  vertical  convolution,we  perform  the  same  calculations,but  in  the
vertical direction this time,as it shown next:
 

Likewise,we start to compute the destination from the third row,since our kernel is
again  5-sample.  Consequently,we  end  in  the  height-3  row.  Then,the  process
follows the way the horizontal is implemented:all  the 5 data samples convolve
with the convolution coefficients,Vcoeff in vertical case. After the first value is
created using the first 5 samples in the vertical direction,the next set of 5 samples
is used to calculate the second output. That process is repeated until the value of
the final pixel in the last column is calculated.   A typical C code for implementing
the vertical convolution would be the following:
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Figure 31:  Vertical Convolution
Source: Xilinx



In the last figure we can notice that the output image is smaller in both horizontal
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// Vertical convolution
VconvH:for(int col = border_width; col < height - border_width; col++){

VconvW:for(int row = 0; row < width; row++){
int pixel = col * width + row;
Vconv:for(int i = - border_width; i <= border_width; i++){

int offset = i * width;
dst[pixel] += local[pixel + offset] * vcoeff[i + border_width];

     }
}

}

 Source: Xilinx
Figure 32: Convolution Border Samples



and vertical directions,due to the convolution border effect. So,we have to fill in
the border pixels with data.  We can create those values by simply copying the
nearest pixel's value in the convolved output.

A simple approach to apply that solution is to handle each case differently:
• Top border

• Side border
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int border_width_offset = border_width * width;
int border_height_offset = (height - border_width - 1) * width;
// Border pixels
Top_Border:for(int col = 0; col < border_width; col++){

int offset = col * width;
for(int row = 0; row < border_width; row++){

int pixel = offset + row;
dst[pixel] = dst[border_width_offset + border_width];

}
for(int row = border_width; row < width - border_width; row++){

int pixel = offset + row;
dst[pixel] = dst[border_width_offset + row];

}
for(int row = width - border_width; row < width; row++){

int pixel = offset + row;
dst[pixel] = dst[border_width_offset + width - border_width - 1];
}

}



• Bottom border

Consequently,it  is  calculated  in  every  pixel  the  quantity  R=detA−k∗(traceA)
2

,where  A=[ I x
2 I xy

I xy I y
2 ] .All  the  values  of  R  are  stored  in  the  array  called

''cornerness[]''.
Then,if the value of R in the arbitrary pixel ( x0 , y0 ) is local maximum in a

3x3 window,then that pixel is marked as a local maximum and thus takes a value
of 1 in a binary map that represents the corners with the logical value of 1,and
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Side_Border:for(int col = border_width; col < height - border_width; col++){
int offset = col * width;
for(int row = 0; row < border_width; row++){

int pixel = offset + row;
dst[pixel] = dst[offset + border_width];

}
for(int row = width - border_width; row < width; row++){

Int pixel = offset + row;
dst[pixel] = dst[offset + width - border_width - 1];
}

}

Bottom_Border:for(int col = height - border_width; col < height; col++){
int offset = col * width;
for(int row = 0; row < border_width; row++){

int pixel = offset + row;
dst[pixel] = dst[border_height_offset + border_width];

}
for(int row = border_width; row < width - border_width; row++){

int pixel = offset + row;
dst[pixel] = dst[border_height_offset + row];

}
for(int row = width - border_width; row < width; row++){

int pixel = offset + row;
dst[pixel] = dst[border_height_offset + width - border_width - 1];
}

}



other not-interesting pixels with 0. 

Finally,at  pixels  that  have  the  value  of  “1”  in  the  map,it  is  applied  a
geometrical  fitting  in  image  proportional  coordinates.  It  is  determined  the
quantity,consider it L(x0 , y0) . If L(x0 , y0) is not zero,then the coordinates of that
pixel ,after being corrected by sub-pixel calculations, are stored in the corner array.
When that procedure is completed,the corners are drawn in the image,using the
coordinates from the corner array.

There is another function that is executed only if there is a large number of
corners  detected.   The  operation  of  that  function  is  that  given  the  corner
map(called ''cmap'')  that  was computed in a previous step that  has marked the
candidate  corners,lets  say  n.  First,it  sorts  the  corners  in  descending  order
depending on its corner's strength,meaning the corresponding value of R for each
pixel.  Then,it  selects  N<n corners  and  distributes  them ''uniformly''  across  the
image. Then cmap is returned,containing only the selected N corners.

The pseudo-code is presented below:
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/* Adaptive Non-maximal Suppression using the scheme of MSR-TR-2004-133 */
 
float vo_anms_schemeA(cmap,conrerness,n,N){

quicksort(cmap,indexes,n);
for (i=0;i<n;i++){

compute_the_k_strongest_cornerness();
/*find the closest distance to j among the first k strongest corners*/ 
min_distance[i]=find_closest_distance_to_j();
 /* select the N largest values in r */
threshold=quick_Select(min_distance,k);
for(i=[0,k]){

if(r[i]<threshold)erase_from_map();
}

   }
return cmap[];
}



That  was  a  general  structure  of  the  implementation  of  Harris  corner  detector.
After,we used the valgrind tool ,we produced a rough profiling of the percentage
of the cycles that ever part of the algorithm needs. To do that,we open a terminal
and we type: 

where ./harris is the executable of the implementation.[21]

Callgrind is a tool of valgrind that makes the particular estimation. We open
the output with kcachegrind,another tool of valgrind. The output  is shown below:
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valgrind --tool=callgrind ./harris

Figure 33: Harris cycle estimation



To be clear,''my_func()'' is the function that combines the results of the other
functions  and  performs  the  processing:local  maximum  calculations,filling  the
binary map of the candidate corners and finally draw the correct corners on the
output  image.  As  we  can  observe,''my_func''  demands  about  12% of  the  total
cucles,''vo_anms_schemeA()'' about 5%,''imgradient'' about 14% and ''imgblurg()''
about 62%. The reason for that large difference is that the process of bluring is
performed three  times,for matrices :  I x

2 , I xy , I y
2  ,where  I  is  the intensity of  the

image. As a result,the previous figure is a guide that can help us to emphasize
where to put effort in order to optimize the parts of the implementation that are
more computationally intensive.

3.3 Vo_anms() analysis

3.3.1 Non-recursive implementation
In that point we will analyze the functionality of ''vo_anms()'' function. The

main characteristic of that function is that is has recursive operation. It uses the
classic  quicksort function to sort in a descending the ''strength'' of each corner.
However,since  our  target  device  is  an  FPGA board,we  know  that  recursive
functions  are  not  synthesized,unless  we  are  able  to  define  the  depth  of  the
recursive tree at compile time. Because we were not able to determine that,it was
inevitable that we changed the quicksort to a non-recursive implementation. So,we
present below the non-recursive version of quicksort:
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In that version,in every iteration we select new pivot at first and then we
start to compare the elements with the pivot from the left and from the right of the
array. 
The first step is to select a pivot. We follow the most simplest approach and we
select as pivot the first element in the array. Starting from the right end of the
array,when we find an element that is less than the pivot at position ''Right'',we
move it to the left side-at position ''Left''. Then we start to look up from the left
side for position ''Left +1'' and when we find an element that is greater than the
pivot we move it to the position ''Right''. Finally we select as new pivot the value
at the ''Left'' position and we start again the previous procedure. When the array is
sorted,we  have  to  re-arrange  items  in  order  to  achieve  descending  order
sorting,instead of the ascending one that was initially applied.
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void quicksort_flint(int  farr[],int arr[])
{
  i=0;
  beginning[0]=0; end[0]=n;
  while (i>=0) {
    Left=beginning[i]; Right=end[i]-1;
    if (L<R) {
    select_pivot_value();
    select_pivot_index();if (i==end)stop();
      while (Left<Right) {

      
find_the_less_element_than_pivot_from_the_right();
move_it_to_the_left();
find_the_greater_element_than_pivot_from_the_left();

move_it_to_the_right();
      }

select_new_pivot();
beginning[i+1]=Left+1;
end[i]=Left;
i++;}

    else {
      i--; 
    }
   }
//reverse array-descending sorting
descending_sorting();  
return;
}



3.3.2 Select the strongest corners

After the sorting,vo_anms finds the k-strongest corners,by calculating
the corners  that  have  R-value[see  below]  that  is  over  a  threshold.  From those
corners,we  compute  the  minimum distance  to  the  j-th  corner(j={1,..n}).  When
having measured all the minimum distances we have to determine which of them
are  the  N strongest(N is  variable  and  is  user's  choice).  Therefore  we  use  the
function ''quickSelect()'',which is presented below in pseudo-code:

In each iteration,left of the selected pivot there are values that are less equal than
pivot. Depending on the value of k,the do-while loop is repeated until a[i] has the
value that is the k-th strongest. That value is returned to vo_anms() and plays the
role of threshold. We scan all the previously calculated minimum distances and
we only keep those that are above the threshold. Whichever corner is less than
threshold is erased. This is done by marking the corner's position on cmap with the
value of '0',so it is not listed as corner any more.
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int quickSelect(int a[n], int n, int k)
{
// a[] contains the minimum distances
// n:size of the array  
// k:number of elements to select
 l=0; r=n-1;
  do{

   select_the_last_element_as_pivot();
    for(i=j=l; j<n-1; ++j)
      compare_element_pivot();

if (element<=pivot)swap(element,pivot);
next_element();
if(a[j]<=pivot){

        swap(a[j],pivot);
i++;// next element

        }
  }while (not_sorted(k));
  return a[i];// the k-th strongest value



Chapter 4: Harris Implementation 

4.1 Harris syntesizable version

In  this  thesis,we  evaluate  our  proposed  framework  with  the
High-Level-Synthesis of Harris Computer Vision algorithm. We selected Xilinx
Vivado  HLS  as  a  state-of-art  HLS  industrial  tool  [13].Our  final  target  is  to
synthesize  the  C-implementation  of  Harris  algorithm,in  order  to  be  able  to  be
mapped to the FPGA board. To do so,we used the Vivado®  Design Suite,and
especially the Vivado High Level Synthesis (HLS) tool. Our target board is the
Xilinx  kintex7- xc7k325tffg900-2.

Moreover,the final target of this thesis is to optimize the implementation, by 

• Accelerating the algorithm's performance

• Achieving optimal area utilization 

The first challenge was to remove any dynamical memory allocations from
the code. Since our target is an FPGA board,it is apparent that HLS compiler must
know exactly how much memory it is required at compile time and not at linking
time. Thus,any malloc() functions where eliminated and were replaced by static
memory allocations,meaning arrays. The result was that there was a lot of memory
acquired by the start of the implementation and so there was mandatory to start
making memory adjustments.

4.1.1 Memory optimizations
One of the first obstacles that every engineer has to deal with when it comes

to program an FPGA device is the constraint of memory. Unlike other general
purpose  systems,where  the  amount  of  memory  is  more  than  sufficient,in
reconfigurable machines it demands a lot of adaptations to be made in algorithms
's  implementations,  sometimes  with  inevitable  loss  in  quality  of  the  produced
application.
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As a first step,a simple improvement is to adjust the word-length,depending
on the application' s  needs. Although in general purpose computing word-length is
already defined by the  architecture  of each processor,reconfigurable  computing
allows  the  customization  of  every  single  variable  's  word-length,in  order  to
accomplish  optimal  trade-offs  in  numerical  accuracy,speed  and  power
consumption.

So,the designer is able to achieve the most sufficient hardware 
implementation of the algorithm at which different word-lengths are used for 
different internal variables,depending on their size. Thus,some word-lengths are 
reduced,without decreasing the level of accuracy. In fact,sometimes it is observed 
that accuracy is less sensitive in some variables than to others. So it is possible to 
cut down some extra bits in order to shrink the area of the hardware used, without 
losing any sufficient information.

Hence,selecting the optimal word-length for each variable can be very hard 
problem. Actually,as demonstrated in it is  NP-hard,even for systems that have  
special mathematical properties that simplify the problem. Nevertheless,there have
been published several approaches to that problem:some of them can considered as
heuristics,providing an area/signal quality trade-off. Others,offer simplifying 
assumptions on error properties and others present optimal approaches that can be 
applied to algorithms that have special mathematical properties.[22]

Our  approach  to  that  problem   was  based  on  the  special  mathematical
properties of the algorithm. Particularly, our goal is to reduce the area utilized by
the arrays of the implementation. Those arrays are:

• I x [ ] , I y [ ] , I xy [ ] , I x
2
[ ] , I y

2
[ ] ,which all contain integer values

• Cornerness [ ] ,which  contains  all  the  R-values(see  chapter  3)  with  float
arithmetic.

The sample image we used as input to our implementation is 256x256 ,gray-scale
and  shown below:
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Analyzing  the  algorithm,we  found  out  that  each  element  of  the  array
''Cornerness[]'' is compared with its neighbors in a 3x3 window. Thus, what we
need is to reduce the word-length,but try to maintain the size relationship between
the elements.  What  was found out  is  that  making a  cast  from float  to  integer
arithmetic  did  not  have  negative  effect  on  the  output's  accuracy.  By  the  term
accuracy here we mean counting the variation of the coordinates of the corners
detected,comparing to the initial ones.

With all of our arrays including values of 32bit,a first try of synthesizing the
project gave as the results below:

 

The  table  above  is  the  Synthesis  report  created  by  the  Vivado  High  Level
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Figure 34: Sample input image 

Figure 35: Harris initial report



Synthesis (HLS).As it can be observed,the initial version of the algorithm actually
needs more memory than it is available in the FPGA board,making it impossible to
be mapped. 

So,we  analyzed  more  the  elements  that  the  arrays  of  partial  gradients
contain,finding out that in most times the length of 32 bits was a redundant luxury.
Then,our decision was to reduce to half the word-length(16bits) of the following
arrays: I x [ ] , I y [ ] , I xy [ ] , I x

2
[ ] , I y

2
[ ] and  examine  the  accuracy  of  the  output.  In  that

case,we did have some some variation but its was inside of the permitted error
margin. In fact,using the Euclidean norm, we compute the error margin as follows:

error margin=
∑‖z‖

corners detected
, ‖z‖=√(x i−x j)

2+( y i− y j)
2 ∀ i=1,. ..n , j=1,. ..m

where  n  is  the  initial  detected  corners  and  m  is  the  detected  corners  of  the
optimized version. The error margin was calculated to be 0.5% . The gain of the
memory utilization is shown below:

As it is figured,the reduction of BRAM_18K utilization was cut off by about 45%
and the DSP48E by 5%,making possible to map the design onto the actual Kintex7
board. 

Consequently,another  try  was  to  decline  the  word-length  of  the
''Cornerness[]'' array 's elements to half,because for the detailed synthesis report it
was  depicted that  a  lot  of  memory banks  were  occupied in  the  32bit  version.
However,it was detected a large declination of the corners detected,and the actual
coordinates of each corner. However,with detail analysis of the elements of that
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Figure 36: 16 bit optimization



array,we found out that we could represent efficiently its contents with less bits,but
definitely more than 16 bits.

In  that  case,C-language  can't  provide  any  help  to  make  a  custom
word-length.  C-based  predefined  data  types  have  word-length  multiple  of  8
(8,16,32,64 bits) .So,since RTL description can support any arbitrary data length, it
is possible  that needless hardware would be occupied. For example,in the case
that we perform a multiplication,the standard unit to do that in a Xilinx FPGA is
the  DSP48.  This  contains  a  18*18  bit  multiplier.  Thus,if,for  example,a  17-bit
multiplication  is  needed,then  using  C  data  types  you  have  to  implement  a
multiplier  which  is  32*32  bit  occupying  3  DSP48  macros,when  just  one  is
required,resulting in unnecessary overuse of FPGA's hardware. [23]

In that case,we can take advantage of Vivado HLS arbitrary precision data types.
Vivado contains libraries that provide data types which can define variables of any
custom width. For example, user can define variables of 10 bit,24 bit or 35 bit,
while  using  the  standard  C  data  types  those  variables  would  be  16,32,64  bit
respectively.  In  the  figure  below  it  is  shown  the  summary  of  the  supported
arbitrary precision data types of the Vivado HLS:

The great advantage of the Vivado 's data types is that you do not have to
sacrifice accuracy,as a trade-off in hardware area. The engineer has the opportunity
to  adjust  variables  to  smaller  bit-widths  and  then  re-execute  C  simulation  to
confirm that the functionality is still correct or inside the allowed error margin. In
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Figure 37: Arbitrary Precision Data Types
Source: Xilinx



the previous example,the 35-bit hardware would have been implemented without
losing any accuracy, and saving the remaining 29-bit for other needs of the design.
Hence,shorter bit-lengths can provide smaller and faster hardware circuits. We can
place more logic in the FPGA and the implementation can be executed at higher
clock frequencies. 

In  our  implementation,we  performed  specific  analysis  of  the  necessary
word-length of the array's elements. The arrays where divided into 2 categories:

• gradient content arrays

• Cornerness content arrays

For  the  first  category,as  said  before,16-bit  word-length  brought  no  problem to
accuracy. Trying to reduce it even more,we found out bottleneck at 15-bits(further
reduction  had  unacceptable  results).  In  the  second  category,after  some
trial-and-error techniques,we concluded to data width of 24 bits. The results of
Synthesis procedure are shown below:

As it is depicted,from the previous 16-32 bit version,our implementation uses 65
less  BRAMs,that  is  8%  reduction.  Notice  that  the  error  remained  the  same.
Furthermore,any  bit  decrease  would  bring  inaccuracies  in  the  output  that  are
beyond the acceptable error margin,which is not desirable. So, it is necessary to
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Figure 38: Arbitrary precision types optimization



carry out other optimizations to decline more the area of the FPGA that is required
by the Harris implementation.

4.1.2 Vo_anms() synthesis
Vo_anms() function is a bit of expensive computationally,since it performs a

variety  of  complex  operations.  We  can  observe  below  that  vo_anms()  has
increased the percentage of resources utilization in all categories:

We can observe that there is an offset added in BRAM_18K utilization,that is 26
block  rams,initially.  Then,we  perform  some  changes  concerning  data  reuse  in
vo_anms() and we have a new synthesis report:
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Figure 39: Harris utilization with Vo_anms()



We can observe that the BRAM utilization has reduce from 26 to 9 %. The other
resources have not been changed,since the operations that vo_anms() implements
remain the same.

4.2 Parametric Fragmentation of input image

To make  our  design  more  memory  efficient,we  examined  the  structure  of  the
algorithm. We started form the idea of observing the core of the algorithm,which is
the  part  that  computes the  gradients  of  the  image's  intensity,then performs the
horizontal and vertical convolution and eventually marks the corners on the image
wherever there is a local maximum in a 3x3 window that passes the whole image.
We concluded that if we wanted cut of the size of the arrays,we should execute the
core of the algorithm for only a fraction of the initial input image. Thus,the core
would be performed multiple times. We decided,then,to divide the image in parts
that  are  power  of  2  in  order  to  have  easier  calculations.  The  factor  of
fragmentation  was  2,4,8,16.  We  present  graphically  the  way  we  did  the
fragmentation:
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Figure 40: Harris Vo_anms() optimized



At the first iteration,the convolution window(red rectangle) moves throughout the
the yellow region. The double for-loop would be like following:

We  notice  that  the  border  for  the  external  loop  is  not  height/factor,where
factor={1,2,4,8,16}. Since the convolution window in vertical direction is 5,in the
border the center pixel(the green one) needs values from the next iteration. So,we
need to include 2 more lines in the first iteration to keep the functionality of the
algorithm correct. This is why the border of the external loop has been extended to
height/size+2.  In the second iteration,the pattern is a little bit different,as we can
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for(i=0;i<height/factor+2; ++i{
for(j=0; j<width; ++j){

perform_calculations();
}

}

Figure 41:   First iteration

First
iteration

Pixels from 
second 
iteration
needed to 
perform 
convolution



see below. In that case,same as before we need to have the values of the previous's

iteration region,so we do not start from the  i=
height

factori−1

,but from i=
height

factor i−1

−2

The loop now is changed :

We still keep the upper bound of i ,and that is the patter we apply for the general
case  of  the  i-iteration.  In  the  last  iteration,we follow the  approach of  the  first
iteration with the difference that we only need the 2 previous row's values.

That approach is computationally expensive,since we actually use twice the same

67

for(i=height/ factor i−1 ;i<height/factor+2; ++i{
for(j=0; j<width; ++j){

perform_calculations();
}

}

Figure 42:  Second iteration 
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values. However,this aliasing is necessary since otherwise the convolution would
not be correct and the candidate corner pixels at borders would not be detected.

The error margin was calculated with two ways:

➢ one that counts the difference between the detected corners of each version
and the correct corners 

➢ the  other  that  counts  the  percentage of  the  corners  that  their  coordinates
differ from the correct ones inside the desired error margin

Test Case 1

Initially,the  correct  output  of  the  algorithm  with  input  the  previous
gray-scale image is presented below:

Below are shown the two kinds of error:
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Figure 43:  Correct output



 

In  each  version  we  counted  the  resources  that  were  required  for  the
implementation and are depicted in the following charts:
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Figure 44: Absolute error
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Figure 45:  Relative error
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Figure 46: BRAM utilization

0 2 4 6 8 10 12 14 16 18
0

10
20
30
40
50
60
70
80
90

100
BRAM utilization

256x256

factor

%
 o

f B
R

A
M

s

Figure 47: DSP utilization
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As  expected,since  the  size  of  the  arrays  was  declined  by  2,4,8,16  each
time,likewise the percentage of BRAMs was decreased exponentially. The other
parts of the resources( DPSs,FFs and LUTs) remained steady,as there was not any
important change in the logic that was implemented. In the following table we
present accumulated utilization of FPGA resources for Test Case 1:
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Figure 48: FF utilization
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Figure 49: LUT utilization
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In that case we could refer to another application that was made from scratch
by Microprocessors and Digital Systems Lab [to be sumbitted] implemented 
Harris Algorithm without using High-Level Synthesis. However,this version was 
completely hand-made and the code was written straightaway to VHDL. The 
implementation was mapped onto Xilinx Virtex-6 board(XC6VLX240T-2) with 
frequency at 172MHz and for input image size 512x384. The results are shown in 
the following table:

The star in the time cell denotes that the time is to be optimized.

Test Case 2
Then we tried to examine the algorithm's performance with an image of the

same size,but with more corners to detect. We simply added several objects in the
previous image,which changes as follows:
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LUTs DSPs Slices BRAMs 36K Time
11477 10 4045 82 14 *

 Fpga resources BRAM_18K BRAM_18K % DSP48E DSP48E %
Factor

1 499 56 69 8
2 301 33 76 9
4 202 22 76 9
8 103 11 76 9
16 56 6 76 9

Available 890 ----- 840 -----

 Fpga resources FF FF % LUT LUT %
Factor

1 10676 2 23351 11
2 11399 2 24652 12
4 11324 2 24584 12
8 11420 2 24565 12
16 11431 2 24537 12

Available 407600 ----- 203800 -----



The algorithm reacted adequately and found all the corners of the image:

In that case,we do not need to calculate the resources again,since the size of
the image is the same. But,we do have to measure the error ,depending on the level
of fragmentation of the input image. Below,we present the absolute and relative
error:
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Figure 50: Sample image 2

Figure 51:  Sample image 2 output

 



Test Case 3
In that test case,we put as input a significantly larger image with 4-times

bigger width and height,resulting in a 16-times the size of the initial image. 
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Figure 53: Relative error
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Figure 52: Absolute error
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That  image  is  actually  16-times  the  initial  sample  image  and  thus  is  of  size
1024x1024. We experimented our algorithm's performance and as it was obvious
the memory problem in that case was huge. The percentage of BRAMs occupied
depending on the level of fragmentation is figured below:
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Figure 54:Input sample image 1024x1024 



As  expected,  only  with  the  value  factor=16  the  algorithm  could  actually  be
mapped onto FPGA,because only in that case the percentage of BRAM utilization
is below 100%(actually is about 60%). In all other cases,the memory needs exceed
beyond the available hardware. The other resources have very similar values,as the
amount  of  logic  used  in  the  processing  of  the  arrays  did  not  change.  In  the
following table we present the total resource utilization in Case 3:
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Figure 55: BRAM utilization
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 Fpga resources BRAM_18K BRAM_18K % DSP48E DSP48E %

1 6499 730 69 8
2 3331 374 76 9
4 1747 196 76 9
8 955 107 76 9
16 559 62 74 8

 Fpga resources FF FF % LUT LUT %

1 10823 2 23607 11
2 11511 2 24914 12
4 11496 2 24847 12
8 11537 2 24835 12
16 11411 2 24767 12



We also counted the absolute and the relative error of the sample 2 image output:
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Figure 56: Absolute error
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Figure 57:  Relative error
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4.3 Synthesis Optimizations

In this chapter we are going to discuss the various optimization methodologies that
can be performed using the features of Vivado High-Level Synthesis tool,in order
to  produce  a  circuit's  architecture  that  meets  the  design's  desired  performance
specifications,satisfying  the  area  constraints.  In  general,Vivado  HLS  has  an
automatic procedure to handle each design. By default,it tries to create the most
optimal implementation,according to the design 's   requirements. The clock is the
first constraint to be determined and Vivado HLS uses  the specification of the
target device to decide which is the maximum number of operations that can be
executed,within  a  clock  cycle.  After  achieving  the  optimum  clock
frequency,Vivado HLS produces the synthesized circuit and makes optimizations
automatically according to the following goals:

• Throughput

•  Latency

• Area

78



79

 Figure 58: Design optimization  strategy



In addition to the default synthesis operations,Vivado HLS provides a number of
synthesis directives and configurations which can make optimizations in each of
the  previous  three  sectors,depending  on  the  application  requirements.  Next,we
present a flowchart  that shows the general optimization strategy.[6]

4.3.1 Throughput Optimizations
The first step to maximize the application's throughput is to minimize the

interval between new inputs and thus reach a peak on the output rate. In order to
achieve  that,a  number  of  optimization  are  available  through  Vivado  HLS[6].
Next,we present a flow chart of throughput optimization design flow:

4.3.1.1 Pipeline

Pipelining can give the opportunity to operations to be executed in parallel:each
task does not have to complete all of its operations before it begins the next set of
assignment. It  can  be  applied  to  either  functions  or  loops.  Then,we  present  a
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Figure 59: Design strategy-Throughput



simple example of how pipeline can improve a function's throughput.

In the non-pipelined version,the function reads every 3 cycles and produces the
output value in every 2 cycles. So,the function has an Initiation Interval (II) of
3,and a latency of 2.  In the pipelined version,our function reads every 1 cycle
( II=1) and still has latency=2. [6]

 Next,we can see the changes from a standard sequential loop to a pipelined
one with concurrent execution:
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Source: Xilinx
Figure 60: Pipeline behavior



In figure (A),every 3 cycles we have new input and every 8 cycles we have new
output value.  In the pipelined version,our program reads new value in every 1
clock cycle and the number of cycles needed to produce new output has been cut
off to 4 cycles. Hence,there is significant reduction in both II and latency,without
using more hardware recourses.

To  apply  PIPELINE  synthesis  directive,we  have  to  place  the  following
pragma in the C source code inside within the boundaries of the required location:

where II is the desired initiation interval. 
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Source: Xilinx

#pragma HLS pipeline II=<int>

Figure 61: Loop pipeline



4.3.1.2 Dataflow

 Dataflow optimization technique can be applied when  sequential  code is
executed. The target is to change the sequential order of functions or loops and
make it concurrent. It is one of the most powerful methods to improve the circuit's
throughput. In the next figure it is depicted how the Dataflow technique allows
sequential  execution of three functions to overlap and thus increase the overall
throughput and cut down latency.[6]

  In figure (A) where there is no dataflow applied,our implementation takes 8
cycles to produce an output and the same time for  func_A to read a new input.
However,in  figure  (B),dataflow pipelining allows  func_A  to  read a  new input
every 3 cycles(lower II) and the overall  implementation takes now 5 cycles to
produce its output(shorter latency).

To perform dataflow directive,we simple  add the  following pragma into the C
source code,inside the region we wish to apply dataflow behavior:

 #pragma HLS dataflow
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Figure 62: Dataflow behavior 
Source: Xilinx



4.3.1.3 Array partition 

A common issue when applying pipeline synthesis directive is that Vivado
HLS creates a warning that it cannot reach the desired initiation interval (II) of
1,since it  cannot assign a load or a write operation onto a memory because of
memory ports limitation. That problem is usually created by arrays. We know that
they are implemented by Vivado HLS as block RAMs which have a maximum of
two data ports. Thus,it is consequent that the throughput of a read/write(load/store)
is bordered.

A possible solution to that limitation is to split the array into multiple smaller
arrays(a single block RAM into multiple smaller ones respectively),creating more
number of available ports.  To perform that  partition,we can use the equivalent
synthesis  directive  called   ARRAY_PARTITION.  Vivado  HLS  gives  as  the
opportunity to make three types of array partition:

• block:the  initial  array  is  split  into  blocks  of  equal  size,containing
consecutive elements of the initial block 

• cyclic: the initial  array is split into equally sized blocks interpolating  the
elements of the original array

• complete: the default choice  is to split the array into its individual elements.
This is actually degenerate a memory into registers.

To apply array partition directive,we add the following command in the source
code:
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Source: Xilinx
Figure 63: Array partition 



#pragma  HLS  array_partition  variable=<variable>  <block,cyclic,complete>  factor=<int>
dim=<int>

where variable is the desired array to be partitioned,factor is the desired level of
partition and dim is the desired dimension to apply the partition. 

We  decided  to  apply  partition  to  the  ''cornerness[]''  array(the  one  which
contains  the  R-values)  because  it  is  the  array  with  the  largest  word-length.
However,the  results  did  not  have  any  positive  effect  on  our  implementation.
Actually, the timing was a little worse and the area utilization increased(number of
BRAMs,LUTs and DPSs),as we present below:
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Figure 64: Area utilization of array_partition



The numbers correspond to the first version without word-length optimizations.
The initial numbers without array_partition where 63,8,2,11 % respectively.

4.3.1.4 Loop unrolling

Vivado HlS also has the strength to fully or partially unroll for-loops in an 
automatic way,with applying the equivalent synthesis directive UNROLL. The 
way unroll directive can change a set of code is depicted in the following figure:
It is concluded that with just applying the unroll directive,every user can produce a
variety of different implementations,based on the varying unroll depth[6]. There 
are three ways to perform loop unrolling:
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Figure 65: Loop unroll
Source: Xilinx



• Rolled loop:in the case that the loop is rolled, each iteration is executed in a
single clock cycle. The initial version requires four cycles to be completed
and needs one multiplier and a block RAM. Notice here that BRAM can be
a single-port RAM.

• Partially unrolled loop: in that case,the loop is partially unrolled by the
factor of 2,so this version needs two multipliers and dual-port RAMs,since
data has to be read and written in the same clock cycle twice. However,the
improvement  is  that  the  unrolled  version  needs  2  cycles  to  be
completed:both initiation interval and latency are cut to half,comparing to
the rolled version.

• Unrolled loop:  That case is when the loop is fully unrolled. That is,it its
completed in one cycle. In that example,the implementation requires four
multipliers. The main constraint here is that we need to support 4 reads and 4
writes  executions  in  the  same  cycle.  Thus,we  need  to  perform  array
partition,since block-RAMs have maximum 2 ports.

The unroll directive can be applied inside the source code  like following:

within the desired code region.

4.3.2 Latency optimizations
After making throughput optimizations,Vivado HLS provides  three kind of

synthesis directives that allow us to either reduce latency on our design,or indicate
the desired value of latency[6]. In the following chart we present the three of them:

87

#pragma HLS unroll skip_exit_check factor=<int>



4.3.2.1 Latency directive

Vivado  HLS  supports use  of  latency  constraint,which  is  defined  by  the
LATENCY directive and it can be applied either in function loop or region. The
syntax is simple:

 

where  min  and  max  specify  the  minimum  and  maximum  desired
latency,respectively. So,when we place latency directive,Vivado HLS has to make
sure that all operations inside  the function or region must be completed within the
desired number of clock cycles. If Vivado cannot achieve the desired latency,then
it relaxes the constraint,so as to try to achieve the best possible latency.

A simple example of how to apply latency directive is shown below:
Loop_A: for (i=0; i<N; i++) {
#pragma HLS latency max=10

..Loop Body...
}

In that case,we placed latency directive inside the loop and so we give Vivado
HLS the command to limit each iteration's latency to 10 clock cycles.

If we wish to place latency directive to all iterations,we place the latency directive
just outside the loop:
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Figure 66: Latency optimizations 

#pragma HLS latency min=<int> max=<int>



Region_All_Loop_A: {
#pragma HLS latency max=10
Loop_A: for (i=0; i<N; i++)

{
..Loop Body...

}
}

4.3.2.2 Loop merge directive

When we deal with code that contains lots of sequential loops,there is an
additional  unnecessary  overhead  that  can  increase  the  clock  cycles
needed(latency). In the figure  below we present  an example  of  two sequential
loops and how that programming style can have negative effect on the design' s
performance. 

As it is shown,in the first case the implementation takes 1 cycle to enter the ADD
loop,4 cycles to do the operations and 1 cycle to leave the loop and enter the next
one,SUB loop. The sub loop needs the same 4 cycles to complete its operations
and 1 cycle  to leave the loop.  In total,the  non-merged version needs 11 clock
cycles to be completed. Whereas, in the merged version we notice that we need 1
cycle to enter the merged loop,4 cycles to do its operations and 1 cycle to leave the
loop.  In  total,the  merged version takes  6  loops,almost  half  of  the  non-merged
version.
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Figure 67: Loop merging 
Source: Xilinx



To apply loop_merge optimization all we have to do is to place the following
pragma inside the region we wish to merge:

Besides  the  reduction  of  the  clock  cycles,loop  merging  allows  concurrent
execution. In the previous example,we need to use a dual-port block RAM in order
to perform add and sub operations in the same cycle. In general,there are some
limitations concerning loop merging:

• Loop  bounds  must  have  the  same  values.  If  they  are  constants,then  the
maximum value is used as the bound in the merged loop. If one bound is
variable and the other one is constant,then merging cannot be applied.

• No dependencies are allowed between the loops operations.

In  our  implementation  of  Harris  algorithm,loop  merging  was  not  applicable
because  in  both  functions  that  compute  partial  derivatives  and  do
convolution(imgradient  and  imblurg  respectively)  there  are  dependencies  that
concern computations of future elements that do not allow loops to be merged.

Vivado HLS produced the following error:
@E [XFORM­522] Cannot merge loops in region 'label0': data dependence(s) between loops prevent
merging. 

4.3.2.3 Loop flatten directive

Alike before,it  is known that there are additional clock cycles to enter or
leave nested loops. In the following example,it requires one clock cycle to move
from one loop to another:
void foo_top { a, b, c, d} {
...
Outer: while(j<100)

Inner: while(i<6)// 1 cycle to enter inner
...
LOOP_BODY
...

} // 1 cycle to exit inner
    }
   ...
}
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#pragma HLS loop_merge



Taking into account the outer loop bounds,it requires 100 cycles to enter and 100
to  leave  the  inner  loop.  So,in  total  there  are  200  additional  loops  necessary.
Thus,we  perform loop  flatten  directive  in  order  to  flatten  all  kinds  of  nested
loops(perfect and semi-perfect)into a single loop hierarchy,achieving less number
of cycles needed to execute all the operations in the loop. In addition,flattened
loops  are  able  to  be  optimized  as  a  single  loop,achieving  greater  level  of
optimization in the united loop body. To apply loop flatten directive,we simply
have to add the following pragma in the C source code inside the desired region:

4.3.3 Timing Results
Applying all the optimizations above we selected the timing results from the

co-simulation  stage  of  design.  The  co-sim was  implemented  in  SystemC.  The
output figure is shown below: 

When the signals ap_start and ap_done are both in logic 1 then we know that the
output result is ready and we count the point in which the result is created. In the
figure above,the point is  t 0=101,346ms .In the same way we measured all of the
timing points which are shown in the following tables:
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#pragma HLS loop_flatten

Figure 68: SystemC output



4.3.4 Area optimizations

4.3.4.1 Data types and Bit-lengths

 As discussed before,the bit-lengths of variables in C can affect the size of the
memory required for the RTL implementation.  With Vivado arbitrary precision
types we can adjust the word-length exactly to the design' s needs,decreasing the
number of operations and possibly enlarge the initiation interval(II) and cut off
latency. We took advantage of the Vivado types in previous section,achieving great
memory save.[6]

4.3.4.2 Function Inlining

Inlining functions actually removes any function hierarchy,embedding all in
one single function. Inlining can possible reduce area utilization because it permits
the  components  of  each  inlined  function  to  ''cooperate''  or  optimized  more
effectively. Sometimes,when there are small functions Vivado HLS inlines them
automatically. Inline directive has also the capability of making all the functions
below inlined by using the  recursive  option. So,if we use apply inline directive
recursive option to the top-level function,we actually remove all the hierarchy of
the  design.  To perform inlining,we simply add the  following pragma in the  C
source code within the function  or region we wish to inline:
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#pragma HLS inline <region | recursive | off>

Table 1: Timing results(1/2)

time(ms)
no optimizations loop flatten pipeline pipeline+array partition

128x128x 25.729 24.278 12.893 13.4
256x256 101.346 95.631 50.8 52.662
1024x1024 24398 23022.2 3103.7 3225.9

Table 2: Timing results(2/2)

time(ms)
array partition(no pipeline) unroll(unroll_factor=10) unroll(unroll_factor=50)

27,831 24,193 24,085
109,626309 95,296227 94,870815
6700,03494 5824,22282 5798,2229



With the option ''off '' we can eliminate functions or regions to be inlined,when we
have  placed  inline  directive  at  the  top-function,or  prevent  Vivado  HLS  from
automatically inlining them.

     In our particular case,since as we mentioned before,the most computationally
expensive function is imblurg(),we decided to inline it to our top function in order
to  reduce  computational  overhead  and  make  the  RTL  implementation  more
resource effective.

4.3.4.3 Directive array_map

A usual technique to reduce the percentage of memory utilization when an
implementation consists of many small arrays is to combine the small arrays into a
larger one. In general,when an array is mapped into a block RAM there is the
possibility that the size of the array does not cover the whole capacity of the block
RAM. So,a more effective use of the FPGA's resources would be to create a large
array that contains all the small ones. Hence,the redundant memory units would be
used optimally. 

To perform mapping small arrays into a larger one we simply have to place
the directive array_map into our implementation by adding the following  pragma
into the source code:

The variable corresponds the array we are applying the directive,instance is the
new name of the target array of the mapping and the offset is the integer value
which defines the absolute offset in the target array for current mapping operation.
Then,we have to choose between the two types of array mapping:

• horizontal  mapping:the  default  type  of  mapping  which  combines  the
original arrays into a sequential order creating a  single bigger array. 

• vertical mapping: this type creates a new array with longer word-length
than the original small arrays. 

In our case,we firstly implemented horizontal mapping in the gradient arrays by
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#pragma  HLS  array_map  variable=<variable>  instance=<instance>  <horizontal,  vertical>
offset=<int>



placing the following pragma into the C source code:

#pragma HLS ARRAY_MAP variable=gradx instance=array3 horizontal 
#pragma HLS ARRAY_MAP variable=grady instance=array3 horizontal 
#pragma HLS ARRAY_MAP variable=gradxy instance=array4 horizontal 
#pragma HLS ARRAY_MAP variable=gradx2 instance=array4 horizontal 
#pragma HLS ARRAY_MAP variable=grady2 instance=array4 horizontal

We arranged together the first gradients(gradx and grady) into array3 because the
are used together,and then the rest of the gradients (gradxy,gradx2 and grady2)
into array4.In the following table we present the synthesis report:

It is shown that with the horizontal mapping the utilization percentage is reduced
by  5%  or  45  BRAMs.  However,the  vertical  mapping  did  not  bring  any
improvement in area utilization. That difference can be explained by the detailed
memory report of the Vivado HLS:
 

In the horizontal version,we truly have improvement because we take advantage of
the redundant memory blocks of the non array_map version. So,instead of having
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Figure 69: Array_map horizontalFigure 69: array_map vertical

Table 3:Array_map results

No array_map array_map horizontal array_map vertical
BRAM_18K

Total 499 454 499
Available 890 890 890
Utilization(%) 56,00% 51,00% 56,00%



five arrays of 75 BRAM_18K in the initial version,which makes a total of 375
block   RAMs,we  map  them  into  two  larger  arrays,array3  and  array4
respectively,with 135 and 195 block-rams. In total,330 block-rams,that makes 45
less.  However,vertical  mapping just  created two larger  arrays  of  150+225=375
block-rams making no impact on area utilization. That happened because as we
can derive from the Bits column,the bit length was doubled in the first array and
grew up three times in the second. So,we stay for the horizontal version.

4.3.4.3 Directive Resource

In Vivado HLS when a C operator is used,like +,-,* or /, in synthesis step
they  are  implemented  as  hardware  cores.  Vivado  can  select  automatically  the
optimal core  for  each case.  However,using the  RESOURCE directive user can
determine exactly which operator to be used in RTL description. The syntax of
resource directive is simply adding the following pragma to the C source code:
#pragma HLS resource variable=<variable> core=<core>

Variable is the argument that can be an array,an arithmetic operation or a function
argument and the core is the desired specific library resource which is going to
implement the variable in the RTL behavior.

In our implementation we selected a dual-port asynchronous RAM ,implemented
with LUTs. The results for Test Case 1(image input 256x256) compared with the
initial non-dual port version are shown in the next table:
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Table 4: Dual port Ram results 256x256

Fpga resources 265x256 256x256 dual port
% BRAM Utilization % BRAM Utilization

Factor=1 56 17
Factor=2 33 10
Factor=4 22 7
Factor=8 11 3
Factor=16 6 2



And are graphically presented in the following chart:

For  Test  Case  2(input  image  1024x1024)  we  do  the  same  comparison  in  the
following table:

And are graphically presented in the following chart:
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Figure 70: Dual port RAM 256x256

Table 5: Dual port Ram results 1024x1024

Fpga resources 1024x1024 1024x1024 dual port
% BRAM Utilization % BRAM Utilization

Factor=1 730 226
Factor=2 374 118
Factor=4 196 64
Factor=8 107 37
Factor=16 62 24
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4.4 Synthesizable dynamic memory allocation

 
Despite all the possible memory optimization techniques,we encountered a 

bottleneck considering the memory utilization. The main reason is the natural  
operation of the FPGA,since it allows only static memory allocation,which sets the
lower boundary of memory optimization.

 We overcame this issue by incorporating an HLS-synthesizable dynamic 
memory management library[27],which was called ''Memluv''. The next figure 
presents the flow chart of the dynamic memory allocator:
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Figure 71: Dual port Ram 1024x1024
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In the flow chart  below we can see that Memluv allocator starts with function
MemluvInit().Then,it expects the user to define the actual size of the memory to be
allocated-''Memluv_Depth''. Then,we can apply ''MemluvAlloc()'',which allocates
the desired number of bytes. We can perform multiple times '' MemluvAlloc()'',but
it is mandatory that the sum of the partial number of bytes does not exceed the
total  memory  allocated  initially,that  is  the  ''  Memluv_Depth'.  Otherwise,a
segmentation fault appears. After the memory space is used,we can free it with the
function ''MemluvFree()'' and allocate it again,if necessary.In the end,we terminate
the process by the function''MemluvEnd()''.

The main advantage of Memluv allocator is that  we can define a certain
memory space and do multiple allocations that cover the memory needs of our
application. 
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Figure 72: Memluv Allocator Flow Chart



Therefore,we applied Memluv allocator to our implementation and we present the
results below(compared to static memory allocation):

 

It  is  depicted  that  memluv  allocator  needs  more  block  RAMs than  the  static
memory allocation,as expected.

Then we tried to import more harris cores inside our implementation. Then we
present the results:

• Harris cores=2

• Harris cores=4

We  realize  that  with  static  memory  allocation  it  would  not  be  possible  to
implement  4  Harris  cores  onto  FPGA,since  it  exceeds  the  available  BRAM
memory.  However,using  dynamic  memory  allocation  permits  the  multiple
execution  of  Harris  cores  without  any  more  need  for  memory  resources.
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BRAM_18K BRAM_18K % DSP48E DSP48E%
static allocation 564 63 81 9
memluv allocation 667 74 78 9

FF FF% LUT LUT %
static allocation 12766 3 28602 14
memluv allocation 13621 3 30710 15

BRAM_18K BRAM_18K % DSP48E DSP48E%
static allocation 724 81 81 12
memluv allocation 667 74 101 12

FF FF% LUT LUT %
static allocation 16993 4 34037 16
memluv allocation 18106 4 37595 18

BRAM_18K BRAM_18K % DSP48E DSP48E%
static allocation 1044 117 145 17
memluv allocation 667 74 147 17

FF FF% LUT LUT %
static allocation 25002 6 49340 24
memluv allocation 28354 6 59576 29



Obviously,the multiple cores  cannot be executed simultaneously,but sequentially.
That  means  we  could  embed  more  Harris  algorithms,with  the  use  of  a  single
FPGA board. If dynamic memory allocation could not be synthesized,we should
use another FPGA board or an array of FPGA boards. In both cases,the cost of our
implementation would be significantly higher. In the following charts we present
the previous measures graphically:
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Chapter 5: Conclusion

In  this  thesis  we  examined  an  applicability  study  of  modern  HLS  for
computer vision algorithms. As a case study,we employed the Harris & Stephens
algorithm [19] targeting a Kintex-7 FPGA device. We examined 2 cases with 2
different input image sizes(256x256 and 1024x1024) and one case with 256x256
size  and  larger  number  of   detectable  corners.  In  all  of  the  cases,  our
implementation  reacted  efficiently.

So,our  proposed  methodology  is  to  apply  task-level  algorithmic
transformations  and then continue with  system-level optimizations through HLS
directives.  

The first  step was to make a profile of our C-code implementation using
valgrind tool.  Based on our  results,we concentrated our  attention  to  a  specific
function  that  occupies  about  62%  of  our  total  execution  cycles.  

At next step,we performed a number of optimizations to improve the initial
performance,in  terms  of  throughput,latency  and  area  utilization.

The first step was to optimize the word-length and replace all the floating
point arithmetic with integers. Next,we took advantage of the arbitrary precision
data types that Vivado HLS provides (fixed point replacements of build-in C data
types).The error that was expected to occur  was measured inside the desired error
margin,which is deviation of 0.1 in the coordinates of each detected corner. We
also eliminated all the dynamic memory functions(remove malloc()/free() ) and
replaced  them  with  static  memory  allocations(e.g  arrays).

Then we applied  parametric fragmentation of the input image and thus the
processing procedure changed:all of the calculations repeated  multiple times for
each  one  of  the  image  fragments.

Finally,  we  performed  a  number  of  optimizations  using  the  synthesis
directives  that  Vivado  HLS  provides.  We  placed  directives  for  increasing
throughput(pipeline,unroll,array partition),for minimizing latency(loop merge,loop
flatten)  and  to  reduce  area  utilization(array  map,resource,inline).

We also examined another case study with implementing a dynamic memory
allocator  that  is  synthesizable  and  thus  can  be  used  instead  of  static  memory
procedures.  The  result  is  that  our  implementation  is  able  to  embed   multiple
algorithm  cores,in  our  special  case  is  Harris  detector,without  requesting  more
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memory. However,it is inevitable that there would be necessary more resources
besides  memory(like  LUT's,DSP's  and  FFs).

Combining all of the possible solutions led in a design space exploration.
Band-devision techniques provide a reduction of about 9x BRAM decrease at the
best  case.  Our  proposed  prototyping  framework  also  achieved  a  simulation
environment of up to about 6x faster .

Therefore,our  implementation  proved  that  FPGA's  can  accelerate
significantly  a  high-complexity  Computer  Vision  algorithm,like  Harris  corner
detection, and deal with the intensive computational load efficiently.
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Chapter 6:Future Work

During  the  past  few years,traditional  ways  of  performance  improvement
have to be reconsidered,since  Moore's Law has to be re-explained. According to
the new tendencies,  hardware designers have to deal with  new constraints:the
exponential clock rate growth has reached an end so the new era is to double the
number  of  cores  per  chip,instead  of  doubling  the  clock  frequency  every  18
months[24]. Furthermore,over the last few years,networking systems are the on the
focus of attention concerning their performance,since they are enriched with more
and  more  capabilities  in  software  layer[25].  The  solution  to  both  needs  is
next-generation System-on-Chip (SoC) communications processors that combine
multiple cores with multiple hardware acceleration engines.

 Until recently,the solution to every computational challenge was Moore's
Law-doubling  the  processor  performance  every  18  months.  However,the  data
growth outnumbers Moore's  Law and so general  purpose processors,despite  of
embedding multiple cores,cannot reach today's performance requirements. They
are just too slow  to implement functions that are executed in the core of several
popular  applications,like  cryptographic  security  encryption/decryption,digital
signal processing or traffic management,which are necessary for achieving Quality
of  Results(QoR).  Sometimes,it  happens  these  functions  to  be  executed
sequentially,so the presence of multiple  cores cannot provide simultaneous access.
For all the previous reasons,such computationally intensive functions are usually
implemented  in  hardware.

The  procedure  of  implementing  one  of  these  functions  in  hardware  is
presented  in  that  thesis.  Especially,the  Harris  &  Stephens  corner  detection
algorithm is successfully mapped onto a specific FPGA device and its performance
is  optimized  through  the  design  process.

A step forward would be to embed a multi-core accelerator system alongside
with a CPU processor,creating a  Sytem-on-Chip(SoC).FPGAs are now powerful
computing devices and they are  suitable for use as fine-grained accelerators. This
trend is currently  followed by vendors and what is under research is to combine a

104



vendor's IP (intellectual property) into a custom acceleration engine,within a SoC.
That is,to manufacture a CPU-FPGA hybrid chip that consists of traditional CPU
cores with FPGAs in a single chip. Thus,with FPGAs integrated into CPU's,each
chip  will  be  possible  to  be  customized  to  optimal  performance  to  specific
workloads. Until now what has been announced is that FPGAs are to be embedded
into data center CPUs to deal  with web-based, storage or networking workloads.
[26]

One  of  the  largest  sector  vendors,Microsoft,announced  recently  that  they used
FPGA to  accelerate  data  center  performance  and  reported  several   impressive
results :

• 95% more throughput
• only 10% more power
• 30% total cost of ownership

It is also revealed by Intel that they plan to integrate FPGAs into CPUs with
estimated performance improvement at about 20x.

There are still some challenges into co-operation of CPUs and FPGAs,like
the  integration  process  itself.  Another  issue  is  the  memory  sharing  and  the
coherence  protocols  that  should  be  applied,or  generally  the  communication
between the components of the hybrid chip.

In the end,however,those limitations will  be surpassed and reconfigurable
computing  will  be  widely  used  in  distributed  systems,providing  an  efficient
solution to increase CPU's performance. So,Hardware accelerators are capable of
keeping pace along with the intensive grow of data volume and give a reliable
alternative to CPU-based multi-core systems.
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