
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙ
ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ
ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

High-Level-Synthesis του αλγορίθμου Όρασης Υπολογιστών
Harris σε FPGA

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Ιωάννης Π.Γαλάνης

Επιβλέπων: Δημήτριος Σούντρης
 Αναπληρωτής καθηγητής Ε.Μ.Π.

Αθήνα,Ιούνιος 2015

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙO
ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ
ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

High-Level-Synthesis του αλγορίθμου Όρασης Υπολογιστών
Harris σε FPGA

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Ιωάννης Π.Γαλάνης

Επιβλέπων: Δημήτριος Σούντρης
 Αναπληρωτής καθηγητής Ε.Μ.Π.

Εγκρίθηκε απο την τριμελή εξεταστική επιτροπή

…............................... …................................ …..............................

Κιαμάλ Πεκμεστζή Δημήτριος Σούντρης Γεώργιος Οικονομάκος
Καθηγητής ΕΜΠ Αν. Καθηγητής ΕΜΠ Επ.Καθηγητής ΕΜΠ

2

…..

Ιωάννης Π.Γαλάνης

Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών ΕΜΠ

Copyright © Ιωάννης Π.Γαλάνης,2015

Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή
τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για
σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να
αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν
τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον
συγγραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του
Εθνικού Μετσόβιου Πολυτεχνείου.

3

Περίληψη

Οι αλγόριθμοι Όρασης Υπολογιστών γίνονται ολοένα και περισσότερο
δημοφιλείς σε σημερινές εφαρμογές. Συνήθως,εισάγουν σημαντικό φόρτο
εργασίας στις εφαρμογές,εξαιτίας της αυξημένης πολυπλοκότητάς τους αλλά και
του τεράστιου μεγέθους των δεδομένων που χρησιμοποιούν. Γι'αυτό,δεν
εκτελούνται αποτελεσματικά από μονάδες γενικού σκοπού. Αντιθέτως,
υλοποιούνται ικανοποιητικά από ειδικού σκοπού υλικό(FPGA ή ASIC) για να
βελτιστοποιηθεί η απόδοσή τους.

Σε αυτή τη διπλωματική εργασία,ασχολούμαστε με τον αλγόριθμο
ανίχνευσης γωνιών των Harris & Stephens. Σκοπός μας είναι να παράσχουμε μία
software λύση στο ζήτημα της υλοποίησης του αλγορίθμου σε
FPGA,χρησιμοποιώντας το εργαλείο Vivado High-Level Synthesis της εταιρείας
Xilinx. Αφού περάσουμε με επιτυχία την διαδικασία σύνθεσης και παράξουμε την
περιργαφή επιπέδου καταχωρητή,ξεκινάμε να εισάγουμε ορισμένες
βελτιστοποιήσεις,ώστε να επιτύχουμε υψηλότερες επιδόσεις.
Τελικά,εκμεταλλευόμενοι τις διαδικασίες βελτιστοποίησης του Vivado HLS
σημειώσαμε μεγάλη επιτυχία μειώνοντας το χρόνο εκτέλεσης,αυξάνοντας την
απόδοση και χρησιμοποιώντας λιγότερη μνήμη. Η συσκευή στην οποία
στοχεύεται η υλοποίηση και με βάση την οποία πήραμε μετρήσεις είναι η πλακέτα
Kintex-7 της Xilinx.

Τα αποτελέσματα της παρούσας εργασίας παρουσιάστηκαν στο συνέδριο
HiPEAC 2015,Workshop in Recofigurable Computing (WRC) in
Amsterdam,2015(https://www.hipeac.org/2015/amsterdam/schedule/#wshop)
''A Framework for Rapid System-Level Synthesis Targeting to
Reconfigurable Platforms :A Computer Vision Study '',Dionysios
Diamantopoulos, Ioannis Galanis, Kostas Siozios, George Economakos, and Dimitrios Soudris.

Το κείμενο της διπλωματικής οργανώνεται ως εξής:

Στο Κεφάλαιο 1 υπάρχει η εισαγωγή στα FPGA και γίνεται ειδική αναφορά στον
ειδικό τρόπο προγραμματισμού του.

Στο Κεφάλαιο 2 αναλύεται ο επιστημονικός κλάδος της Όρασης
Υπολογιστών,καθώς και η σχέση του με τα FPGA.

4

https://www.hipeac.org/2015/amsterdam/schedule/#wshop

Ακολούθως στο Κεφάλαιο 3 ,παρουσιάζουμε τον αλγόριθμο ανίχνευσης γωνιών
Harris. Αρχικά,εξηγούμε τον τρόπο λειτουργίας του,δίνοντας λεπτομέριες για τις
βασικές του συναρτήσεις. Στη συνέχεια κάνουμε μία γενική εκτίμηση των
αναγκών μνήμης του αλγορίθμου,χρησιμοποιώντας το εργαλείο valgrind.

Στο Κεφάλαιο 4 περιγράφονται οι μετασχηματισμοί που ήταν απαραίτητο να
γίνουν ώστε η υλοποίηση να μπορεί να περάσει από τη διαδικάσια της σύνθεσης.
Στη συνέχεια,αναλύεται η στρατηγική σχεδιασμού καθώς παρουσιάζονται
αναλυτικά οι βελτιστοποιήσεις που έγιναν. Επόμενα,στο κεφάλαιο 5 συνοψίζονται
τα επιτέυγματα που αφορούν τη βελτίωση της απόδοσης της υλοποίησης του
αλγορίθμου(χρόνος εκτέλεσης,μνήμη διεκπαιρεωτική ικανότητα-throuhgput) και
τη εξοικονόμηση της χρήσης των διαθέσιμων πόρων. Τέλος,στο κεφάλαιο 6
παραθέτουμε τις μελλοντικές κατευθύνσεις της επιστημονικής έρευνας με βάση
τις τελευταίες τάσεις στον κλάδο των Συστημάτων σε Ψηφίδα(System on Chip -
SoC).

Λέξεις κλειδιά: Όραση Υπολογιστών,Σύνθεση Υψηλού Επιπέδου,Αλγόριθμος
Harris,FPGA,Kintex-7, Ανίχνευση γωνιών, Vivado HLS.

5

Abstract

Computer Vision algorithms become more and more popular in modern
applications. They usually introduce significant performance workload,due to their
increased complexity and intensive size of the data input. This is why they are not
efficiently performed by general-purpose computing systems. However,they are
adequately implemented onto specific hardware(for example ASICs or FPGAs) in
order to optimize their execution.

In this diploma thesis,we deal with the Harris & Stephens corner
detection algorithm. Our purpose is to provide a software solution of mapping the
algorithm onto an FGPA device,using the Vivado High-Level Synthesis tool of
Xilinx. After going through the synthesis flow and produce the RTL description
successfully,we started introducing several optimizations,in order to achieve
higher performance. We began from simple transformations and continued to more
complex ones,which aimed at transforming the structure of our implementation.
Finally,we took advantage of Vivado HLS optimization directives and reached
great success by reducing the runtime,increasing throughput and requiring less
memory. The target device of our implementation which gave those measures is
the Xilinx Kintex-7 board.

This work was presented in HiPEAC conference in Workshop in
Recofigurable Computing (WRC) in
Amsterdam,2015(https://www.hipeac.org/2015/amsterdam/schedule/#wshop)
''A Framework for Rapid System-Level Synthesis Targeting to
Reconfigurable Platforms :A Computer Vision Study '',Dionysios
Diamantopoulos, Ioannis Galanis, Kostas Siozios, George Economakos, and Dimitrios Soudris

The thesis text is organized as follows:

In Chapter 1,there is an introduction to FPGA devices and a more specific
reference is made for their unique programming style.

In Chapter 2 it is discussed the scientific field of Computer Vision and its
relationship with FPGAs.

6

https://www.hipeac.org/2015/amsterdam/schedule/#wshop

In the following chapter,Chapter 3,we present the Harris corner detection
algorithm. Firstly,we explain its functionality,giving details for its basic functions.
Then we make a profiling for the algorithm's memory needs,using the valgrind
tool.

Chapter 4 describes the transformations that were necessary so the implementation
could be synthesized. Then, our design strategy is explained in detail and then we
perform several optimizations that are discussed extensively. Next,in Chapter 5
we discuss the achievements in performance of our
implementation(latency,memory and throughput) and the utilized resources.
Finally,in Chapter 6 we present the possible future work according to the latest
trends in the field of hybrid systems that use System on Chip (SoC) architecture.

Keywords:Computer Vision,High-Level Synthesis,Harris algorithm,FPGA,

Kintex-7, Corner detection, Vivado HLS.

7

 Acknowledgements

For the completion of this thesis, principally I would like to express my
sincere gratidute to Prof. Mr Dimitrios Soudris for inspiring me through his
teaching and reasearch.I would also like to thank him for trusting me to deal with
such a demanding,as well as interesting scientific task.

I would like to also thank Dr. Manolis Lourakis for his contribution of the C
source code.

In addition,this thesis would not have been completed succesfully without
the contribution of PhD student Dionysios Diamantopoulos. His relentless effort
of supporting my reaserch with answering any question I had and giving
immediately solution to any obstacle we encountered, played a major role in
completing our research succesfully.I would like to thank,also,Mr George Lentaris
for supporting us with valuable ideas throughout this work. Finally,Iwould like to
thank Dr Kostas Siozios for his precious comments all over our reaserch and for
his contribution in composing our conference paper.

Furthermore I would like to thank all my teachers throughout all of my
education years that helped me to develop my way of thinking .Of course I could
not forget the support of all of my friends all these years in National Technical
University of Athens. I would like to give them my gratitude for all the times we
worked together in lab sessions,cooperated to finish projects,and studied hard to
complete our studies succesfully.

Last but not least,I would like to give a special thank to my family that gave
me the opportunity to pursue my dreams and become a qualified engineer.Their
endless love and support throughout all these years gave me the opportunity to
complete successfully my studies in NTUA.

8

Table of Contents

Περίληψη...3
Abstract..6
Chapter 1:Introduction...10

1.1 Introduction to FPGA..10
1.1.1 History...10
1.1.2 Latest Trends..11
1.1.3 Applications...16
1.1.4 FPGA Architecture...17

1.1.4.1 Memory..20
1.1.4.2 LUT..20
1.1.4.3 Flip-Flops...21
1.1.4.4 DSP Blocks..23

1.2 Programming the FPGA..24
Chapter 2: Computer Vision...34

2.1 Definition...34
2.2 Applications...35
2.3 Computer Vision and FPGA..36

Chapter 3:Harris Corner Detector..39
...39
3.1 Introduction to feature detection...39

3.1.1 Moravec detector...40
3.1.2 The Harris & Stephens / Plessey / Shi–Tomasi corner detection algorithm..........................42

3.2 Implementation of Harris Algorithm...44
3.3 Vo_anms() analysis..55

3.3.1 Non-recursive implementation..55
3.3.2 Select the strongest corners...57

Chapter 4: Harris Implementation..58
4.1 Harris syntesizable version..58

4.1.1 Memory optimizations...59
4.1.2 Vo_anms() synthesis..64

4.2 Parametric Fragmentation of input image...66
Test Case 1..68
Test Case 2..72
Test Case 3..75

4.3 Synthesis Optimizations...78
4.3.1 Throughput Optimizations...80

4.3.1.1 Pipeline..80
4.3.1.2 Dataflow...83
4.3.1.3 Array partition..84
4.3.1.4 Loop unrolling...86

4.3.2 Latency optimizations..87

9

4.3.2.1 Latency directive..88
4.3.2.2 Loop merge directive...89
4.3.2.3 Loop flatten directive...
..90

4.3.3 Timing Results...91
4.3.4 Area optimizations...92

4.3.4.1 Data types and Bit-lengths...92
4.3.4.2 Function Inlining..92
4.3.4.3 Directive array_map...93
4.3.4.3 Directive Resource...95

4.4 Synthesizable dynamic memory allocation...97
Chapter 5: Conclusion..102
Chapter 6:Future Work...103

10

Chapter 1:Introduction

1.1 Introduction to FPGA

An FPGA(field-programmable gate array) is an electronic device that
consists of an integrated circuit (IC) that allows its user to configure it for a variety
of applications. In fact, almost every algorithm that is computable can be
performed by an FPGA device. Unlike the Application-Specific Integrated
Circuit(ASIC),FPGA 's main feature is that it can be dynamically re-programmed
without any restriction after being manufactured. Thus the functionality of the
design can be updated to any possible change in late design cycle and adapt to
new,higher standards. To do so,a FPGA contains a large number of programmable
logic blocks,alongside with reconfigurable interconnects which can be
re-connected in many different combinations,depending on the application 's
requirements. Most FPGA include additional resources to implement complicated
digital operations, such as high‐speed transceivers, high‐speed I/Os, memory
elements like blocks of RAM or flip-flops(FFs),and also analog components like
analog-to-digital converters(ADCs) and digital-to-analog converters(DACs). [1]

1.1.1 History

FPGA 's ancestors where simple programmable logic devices(PLDs) and
programmable read-only memory (PROM) .PROM was the non-volatile memory
that can be loaded with information. It could have been programmed either in a
factory-level or a user-lever(field-programmable). PLDs were electronic devices
which contained an array of logic gates OR and logic gates AND,also both factory
and field-programmable. In the 80's,Xilinx co-founders R.Freeman and
B.Vonderschmitt introduced the first commercial field-programmable gate array.
In the '90's,FPGAs production grew explosively [2] . Other vendors emerged and

11

the market percentage was shared. In early '90's,they were initially used in
telecommunications and networking and later that decade expanded to
consumer,automotive and industrial fields of market.

1.1.2 Latest Trends

Traditionally, FPGAs where slower,consumed more energy and achieved
less functionality than the ASICs. However,nowadays FPGAs have evolved
significantly and they can provide solutions that can be preferred from an ASIC
one. They can achieve:

• low power
• increased speed
• low materials cost
• increased possibilities for re-configuration 'on-the-fly'.
• short time to market
• low non-recurring engineering(NRE) costs

In addition,according to Xilinx's estimations,there are recent technology and
market changes that are changing the FPGA/ASIC relation:

• Integrated circuit costs grow sharply
• ASIC high-complexity extends design time
• R&D resources are decreasing
• Costs for slow time-to-market is increasing
• Financial constraints in a poor economy are driving low-cost technologies

12

Since FPGAs have lower material cost,can enter the market in a short amount of
time and the NRE costs are constantly reducing,the cost per unit will finally be
less than ASIC at higher volumes.

13

Source:Mathworks.com
Figure 1: Time Spent on FPGA/ASIC Implementation

These trends make FPGAs a highly flexible alternative than ASICs for a larger
number of higher-volume applications than they have been historically used for, to
which the company attributes the growing number of FPGA design starts:

•2005: 80,000[3]
•2008: 90,000[4]

This evolution would not have been achieved if there were not the explosive
increase of the logic gates of FPGA :

• 1982: 8192 gates, Burroughs Advances Systems Group, integrated into
the S- Type 24-bit processor for reprogrammable I/O.[5]

• 1987: 9,000 gates[6]
• 1992: 600,000, Naval Surface Warfare Department[7]
• Early 2000s: Millions[8]

14

Figure 2: Fpga/Asic cost per unit

As a result,it is concluded that FPGA market has expanded significantly through

the past three decades:

•1985: First commercial FPGA: Xilinx XC2064 [6]
•1987: $14 million [6]
•≈1993: >$385 million [6]
•2005: $1.9 billion [9]
•2010 estimates: $2.75 billion [9]

As we can observe in the graph below,in 2010 the market was dominated by Altera
and Xilinx,but there were other smaller vendors too and all together shared the
market.

Latest estimations,though,have shown that approximately 90% of the market
in 2012 was shared between Altera and Xilinx(Xilinx 47%, Altera 41%), with
combined revenues in excess of $4.5B and a market cap over $20B.In future, we
expect that the programmable logic fabric will continue to rise, since the major
companies insist on investing heavily for new technologies and manufacturing.

It is also the main feature of FPGA,that can execute an implementation in
parallel,thanks to their concurrent nature,that makes them faster than a soft
microprocessor in a variety of applications. So recently, the main trend in FPGA

15

Figure 3: FGPA market share in 2010

technology is to combine the advantages of the logic blocks of the traditional
FPGA design with embedded microprocessors and the required peripherals to
develop a whole system-on chip(SoC) device.[1]

In 2010, Xilinx presented the first SoC device(Zynq™-7000) that combined

16

Source: Xilinx
Figure 4: System-on-Chip: Zynq series

features of an ARM microcontroller (hard-core implementations of a 32-bit
processor, memory, and I/O) with an FPGA core. By including an ARM
processor-based platform into FPGA family enables developers to apply a
conjunction of serial and parallel processing to their embedded system designs,
for which the general trend has been to progressively increasing complexity. The
high level integration (commercial levels at 28nm) are able to cut power
consumption and power leakage,resulting in a smaller design,less parts cost an
more reliable implementation,since most failures in modern electronics take place
on PCBs connections and not inside the actual chips.[10]

1.1.3 Applications

As the FPGA technology evolves rapidly,the number of applications they are
used in has been expanded. From their initial purpose,ASIC prototyping,to
Aerospace and Defense,from medical electronics to consumer electronics, there is
almost no field of the modern electronic industry that has not been affected my the
rise of the FPGA technology.[11]

17

 Source:Aldec
Figure 5: Fpga market applications

1.1.4 FPGA Architecture

An overall view of a FPGA board would reveal several electronic
components that cooperate in order to implement the desired digital circuit. The
main functional unit of the FPGA board is the Configurable Logic Blocks(CLB).
Each board contains a large number of CLBs,which are organized in a two
dimensional array and the are interconnected via horizontal and vertical routing
channels.

There are also several I/O blocks that allow the device to communicate with the
outside environment. A more detail view of array of CLBs would show the
following figure:

18

Figure 6: Array of CLBs

Each CLB comprises a number of slices ,each of one contains a number of
logic cells. A logic cell consists of the following:

• Look-up table(LUT):Responsible for logic operation.
• Flip-Flop(FF) : Stores the result of the LUT.
• Network connection units:Connect each element to one another.
• Input/Output(I/O) pads:Physical ports to interchange data in and out of the

board

19

Figure 7: Structure of FPGA

Combining all of the CLBs is responsible for implementing any kind of
application. Responsible for making different designs are the switch boxes,which
are configured each time depending on the circuit they implement. Actually,there
switch box consists of a matrix with 6 pass transistors,as it is shown below:

However, this architecture brings limitations,in terms of computational
throughput,resources and clock frequency.[12]

20

Figure 9: Programmable interconnect

Figure 8: FPGA basic element

1.1.4.1 Memory

FPGA boards are equipped with various memory elements that can be used
as RAM,ROM or shift-registers. These units are block RAMs (BRAMs),LUTs and
shift registers.

The BRAM is a dual-port RAM component embedded into the FPGA board
that can achieve storage of a large set of data. Two types of BRAMs with different
capacity are usually instantiated: 18k or 36k bits. The total number of these
memories devices is always specific in every board. Also,the dual port operation
of these memories can provide access to different locations in the same clock
cycle(parallel behavior).

1.1.4.2 LUT

In every modern FPGA device, LUTs are the fundamental elements that can
apply every logical function of N boolean variables. In fact, it is a truth table that
depending on the input values,generates different functions to produce output.
Since the number of inputs is N, the maximum output values that a LUT can
calculate is 2N ,which corresponds to the memory locations that are accessed by
the LUT. Hence,the number of implemented functions are 2N N

.A regular value
of N is a Xilinx FPGA board is 6.

21

 Source: Xilinx

Figure 10: Functional Representation of a LUT as Collection
 of Memory Cells

1.1.4.3 Flip-Flops

Flip-flops are the basic unit of storage in FPGA design. Each flip-flop
includes several inputs:data input,clock input,clock enable,reset and one data
output. The functionality of the FF is to preserve the value for more than one clock
cycle (when the enable input is ON). If a new data input occurs,only if clock value
and clock enable are to logic 1 (or ON in other words),then the input data value is
passed to the output.

Modern FPGA devices are equipped with additional components which
increase the computational efficiency of the board. Such elements are:

• Embedded memories(RAMs,ROMs and shift-registers)
• Phase-locked loops (PLLs) for driving the FPGA fabric at different clock

rates
• High-speed serial transceivers
• Off-chip memory controllers
• Multiply-accumulate blocks

The combination of all these components results in the whole architecture
schematic of the modern FPGA devices:

22

 Source:Xilinx
Figure 11: Structure of a Flip-Flop

1.1.4.4 DSP Blocks

Probably the most complex computational unit into the Fpga fabric is the
DSP block. Modern FPGA vendors have established actual DSP devices into
Fpga,in order to support the increasing amount of computational load. Dsp's
consist of adders,subtractor units and multipliers, combined to compose an
arithmetic logic unit(ALU).

23

Figure 12: Modern FPGA structure
Source:Xilinx

1.2 Programming the FPGA

Traditionally,to program an FPGA device the user has to provide a
register-transfer-level(RTL) description,which is applied by code in a hardware
description language(HDL). At most cases,FPGA boards are accompanied with a
design tool by the vendor which is used to generate the technologically-mapped
netlist. This netlist is implemented to the actual board via a special process,called
place-and-route(PnR). Once the output is verified(with validation of the generated
map , simulation and examination if the meeting the timing constraints are
met),then the binary file called bitstream is produced. Finally,the bitstream file is
loaded to the FPGA board via a serial interface(JTAG) or an external memory and
in the end the board is programmed-configured to the desired circuit.

24

Figure 13: FPGA design flow
 Source:Xilinx

 Historically,FPGA programming is implemented by the two most common
HDLs, VHDL and Verilog. After the developer has written the code, the next step
in the design circle is to simulate the RTL description in every stage of the design
process. To do that, an specific validation program is created ,called
testbench,which can determine if the implementation requirements are met and if
not, warn the user that there is an error. Since no errors occur,the design flow
continues to the next stage: the specialized software produces the netlist by the
synthesis procedure and it is simulated again to confirm that there are no errors.
Finally, the design is applied to the FPGA board.
 It is obvious from above that the programming flow of FPGAs has a lot of
complex stages that may cause substantial delays in the completion of a project.
We could compare the difficulties in HDL programming of an FPGA design,to the
assembly language programming in software engineering. Thus,as it is shown in
the figure below,the traditional FPGA design flow with RTL results in limitations
in terms of implementation time and achievable performance for different
computation platforms.

25

Figure 14: Design Time vs. Application Performance with RTL
Design Entry

Source: Xilinx

In that previous figure is demonstrated that despite the higher performance
for both initial and optimized implementation,compared to standard and
specialized processors,FPGA development time required to arrive at this
performance is far beyond the duration of a typical software development time.
Therefore, FPGAs were usually used when the design requirements could not have
been met with any other means,such as multiple-processor designs. [13]

However,recent advances in that field have come out and they are able to
remove any difference between the programming methods of a typical processor
and an FPGA. As there are compilers for high-level languages,like C,to different
processor architectures,Xilinx created Vivado® High-Level Synthesis(HLS),which
is a compiler that provides the same functionality for C/C++ programs targeted to
different FPGA boards. The results of the comparison between the HLS compiler
and other,standard or specialized compilers,is figured below.[13]

It is presented a large difference in favor of the HLS compiler,as it achieves
the highest performance,within the design time of a x86 processor and a DSP. That
gap is justified if we realize that assuming the five-stage pipeline,5 consequent
instructions would execute in a processor like the following:

26

Source: Xilinx
Figure 15: Design Time vs. Application Performance with Vivado HLS Compiler

However,the natural execution on an FPGA board is not being held on a common
computational platform. It executes each single program on a custom circuit. If the
program changes,then the implementation changes and so does the circuit.
So,the ''exe'' stage for a single instruction appears below:

Therefore,given the same set of 5 instructions as before,it is easy to come to the
following figure:[13]

27

Figure 16: 5-stage Pipeline
Source: Xilinx

Figure 17: Execution stage for a single instruction
 Source: Xilinx

Comparing the previous graphs we can come to the conclusion that FPGAs
have a nominal performance that is lot faster than a processor. Of course,actual
numbers depend on each application,but in general FPGAs are at least 10x faster
than a processor,concerning computationally demanding algorithms. Therefore,
FPGAs have grown explosively the past decade, concerning computational
performance,since they can accomplish true parallel execution and high
complexity operations better than CPUs. Alongside with the evolution of
processing capabilities because of Moore's Law,the gap between FPGA and CPU
performance continues to grow. The chart below demonstrates the comparison of
FPGA and CPU performance.

28

Figure 18: Concurrent execution
Source: Xilinx

One fundamental difference between programming a processor and an
FPGA is that FPGA lacks of on-chip memory. So,the HLS tool builds a fast
memory architecture and thus the implementation can access one or more memory
banks independently.

Another feature that a software engineering has to adapt to when
programming an FPGA device is that dynamic memory allocation is not available.
Thus,the regular processor code has to be adapted to the special FPGA
requirements,as it is presented below:

29

Source: National Instruments
Figure 19: Moore’s law comparing FPGA and CPU performance.

Except for the memory issues,HLS compiler handles operations (arithmetic
and logical) differently than a standard processor.[13] A software developer faces
several restrictions when it comes to optimize the performance of an application.
The only effect that can be applied is trying to limit as the dependencies between
sequential operations as much as possible, or improving memory access pattern in
order to increase cache performance. However, HLS has not such constraints: the
compiler builds the circuit that specified to the application and the developer has
the opportunity to optimize the design's throughput,power consumption and
latency. For example,assuming we have the following set of operations:

 A [i]=B[i]∗C [i];

 D [i]=B[i]∗E [i] ;

 F [i]=A [i]+B [i] ;

If the previous instruction set is executed in a standard processor, the only
dependency is that A[i] and D[i] must be computed before F[i]
(Read-After-Write). The execution would be like that:

30

Source: Xilinx
Figure 20: FPGA static memory allocation

However, in the HLS compiler the previous set would be executed in less cycles:

31

 Source: Xilinx
Figure 21: Execution of Example Code on Processor

This happens because HLS compiler creates a custom memory architecture,
depending only on each algorithms requirements. HLS corresponds the arrays to
different memory banks,whereas on the processor case the arrays are stored in the
same memory space and this is why delays occur.[13]

Same with the HDLs, writing C/C++ with the HLS tool needs software
validation,respectively. The reason to write a software test bench is to validate
that the software implementation runs without any segmentation faults and that
functionality of the implemented algorithm is has correct functionality. A rule of
thumb is that the test bench must reach at least 90% code coverage to be advised
as an adequate test bench. Hence,the test vectors examine all branches in case
statements,conditional if-else statements and for loops. The test bench alerts the
user whether the algorithm code behaves the way it is expected. If not, prints an
appropriate message informing for the wrong functionality.

A simple example of an algorithm code(on the right) with the corresponding
software test bench(on the left) are shown below:

32

Figure 22: Default execution of HLS Code on an FPGA
Source: Xilinx

 In the example above,concerning the assignments, the instruction A=0 will never
be executed. HLS is able to recognize if there is an unreachable statement like the
above and cuts it off the configurable circuit.[13]

After the software test bench is build the next step to the HLS design flow is
to implement the process of co-simulation. From one hand the test bench can
detect most of possible errors in the design,but it cannot verify if the functionality
remains correct after the implementation being transformed to concurrent
execution. The co-simulation stage checks if the C/C++ test bench and the
generated RTL have the same behavior. To do so,HLS generates a hardware
emulator and simulates how the RTL would function on the device. [13]

33

Figure 23: Example of Code coverage
Source: Xilinx

Chapter 2: Computer Vision

2.1 Definition

With the term Computer Vision(CV) we refer to the scientific field that
includes all the methods for gathering,processing and analyzing data from the real
world(usually images) and generate arithmetic or symbolic information as results.
The target is to extend the ability of human vision so as to derive conclusions
from image processing,which consists of applying several math fields(like
algebra,geometry,probability theory or statistics) alongside with laws of physics
and learning theory. [14][15]Hence,the field of Computer Vision is multi-scientific
fields which can be depicted in the following figure:

34

 Source: Wikipedia

Figure 24:Scientific fields of Computer Vision

2.2 Applications

Computer Vision algorithms have evolved rapidly the past few years and
they cover a vast field of applications:
• Automotive:

Depending on the application ,CV 's assistance ranges from supporting
drivers or pilots in a variety of real-time situations,to more fully autonomous
applications of small wheel-robots,cars,aerial vehicles. The main use of CV
for all those kind of vehicles is to navigation. In the first category, CV
supporting systems warn drivers for obstacles or help pilots for landing of
aircraft. In the second, vehicles use CV algorithms to create a map of the
environment and thus be able to navigate to the desired route. Space
exploration is being held with fully autonomous land-based vehicles,like
NASA's Mars Exploration rover or ESA's ExoMars Rover.[16] Some car
industries make efforts to introduce unmanned driving cars,but there are
some improvements to be done until they reach commercial use.

• Industry(machine vision,video surveillance,manufacturing applications)
In industrial applications,CV provides the necessary information to support
the manufacturing process. Usually, products are being examined through
automatic procedures to find any imperfections. Alternatively, robotic arms
measure position and orientation to implement pick-and-place processes.

• Medical Imaging
 Computer Vision algorithms provide information from image data in order

to make medical diagnosis for patients. The image data may vary:X-ray
images, ultrasonic images or tomography images. The output could be
measurements of organ dimensions,blood flow or more complex
information about the structure of the brain or the quality of medical
treatments.

Reconfigurable computing has been successful also in many compute intensive
areas, including DNA matching,encryption/decryption, image processing, neural
networks.

35

2.3 Computer Vision and FPGA

The complexity of Computer Vision algorithms combined with the growing
demand for applications with intensive amount of information(like high definition
images or videos) leads to greater amount of computational power. So,general
purpose CPU's can satisfy only those applications which have low complexity. For
more demanding requirements specific processors like GPUs can perform better.
However, CV algorithms become more complex,as they often demand for
example,nonlinear optimizations,in order to be more accurate. In addition,
concerning image processing, ordinary image sizes range from 512x512 pixels to
1024x1024. The resulting computational load can reach,sometimes,the level of
several million operations. In these cases, VLSI based devices,like ASICs, can
meet high performance expectations,for example high-throughput in a real-time
CV system. Still,the ASIC approach encounters difficulties: the cost is high,design
is time consuming and because the ASIC architecture is not reconfigurable,the
design cannot be updated after shipping.

One the other hand, the unique feature of reconfigurability of FPGAs can
surpass the limitations created by an ASIC. With the recent improvements in
FPGA technology, we can manage to reach very high performance with an
FPGA,close enough to an ASIC. The natural concurrent behavior of
reconfigurable platforms is a great advantage in implementing CV algorithms. For
example, one of the most common operations in image processing and digital
signal is convolution. Many machine vision systems use two-dimensional
convolution for image filtering, edge detection, and template matching.
Convolution of a regular image has four loops and its overall complexity is

O(N2
) .With a 3x3 or 5x5 kernel,convolution computations can demand several

millions of multiplications and additions. In a standard processor this operation
could be quite time consuming,but in FPGA it can be implemented simultaneously.
Compared to ASICs, the design can be updated very easily in a time to make any
modifications or improvements to the algorithm's implementation. This happens
because the FPGA board can be reprogrammed(reconfigured) in a matter of hours,
but ASIC needs separate hardware to be added. This sequence of re-programming
reminds the CPU operation, where a program is loaded and after another one.
Moreover, FPGAs can reach applications beyond CPU. For example, FPGAs

36

operate in slower clock frequency than CPUs and thus they can be preferred in
space robotics applications, since radiation prevents usage of fast-clock CPUs.[17]

Nevertheless, FPGA applications display one major drawback when it comes
to implement CV algorithms that use primarily fixed point arithmetic. In this case,
computations that include floating-point operations occupy excessively much of
the available resources and this becomes even worse,when the operations are
repeated many times(like in the convolution example) ,in order to accelerate the
implementation,taking advantage of the concurrent behavior of the FPGA
architecture. One solution is to make a profile of the data inputs and then
determine the minimum digits required to balance precision with the FPGA's
available resources. Another solution is to limit those operations as much as
possible without losing any accuracy,since automotive vehicles driven by CV
algorithm depend strongly on orientation information calculated in floating point
operations and thus any deviation of the correct route would have disastrous
results.[18]

 The optimal solution,though is to embed actual DSPs into the FPGA board.
For example ,Xilinx has included DPS blocks into the FPGA fabric. Each DSP
contains of three different elements:an add/subtract unit which is connected to a
multiplier which has cascade connection to the final add/subtract/accumulator
engine. Hence,each DSP block is capable of computing functions of the following
form:

p=a×(b+d)+c

37

38

Source: Xilinx
Figure 25: Structure of a DSP Block

Chapter 3:Harris Corner Detector

3.1 Introduction to feature detection

One of the main targets of the field of Computer Vision is to extract features
from images and supply the results as inputs to systems,in order to make important
decisions(such as triggering an actuator to move a robot hand). This process is
called feature detection and refers to all methods and operations that are necessary
to calculate at every pixel of an image whether or not satisfies the criteria of each
feature. The result is a subset of the image,containing either isolated
points,continuous lines or connected regions. Although there is not a clear
definition of the meaning of feature, usually we refer to feature as an interesting
part of an image,which is repeated two or more times throughout the image.

There have been developed several feature detection algorithms,varying on
the desired feature detected, the computational complexity and repeatability. We
could divide them into the following groups:

• Edges
 With the term “edges” we refer to the locations in an image where
there is a border (an edge) between two regions. There is no a predefined
shape for an edge,since it can contain everything. To compute an
edge,most algorithms rely on the fact that edges consist of sets that
include pixels on an image that have high value gradient magnitude.
Hence, edges have one dimensional structure.

• Corners/Interest points
 The term “corner” was suggested when image processing algorithms
were detecting edges in the fist place and then they were using the results to
compute corners,by determining where there was a strong change in
direction. Thus,the algorithms evolved and they stopped calculating
exclusively edges, but they were searching for strong values of curvature in

39

the image gradient. However,it was claimed that those algorithms could
detect false corners,when for example detected a small white dot in a black
background. These points were named interesting points.

• Blobs/regions of interest or interest points
 In contrast with corners,which are point features,blobs detect region
like features of an image. But,they do usually include a centered point or a
local maximum. In that sense,we could include blob detectors as interest
point operators.

• Ridges
 In case we have stretched objects in an image,it is necessary to use

ridges. A ridge could be described as an one-dimensional line that constitutes
a symmetry axis and plus its width depends on the local ridge point.
Nevertheless, calculating ridge points in gray-scale images is
computationally heavier than detecting edges,corners or blobs.

In this thesis,we are going to deal with the field of edge detection. A corner
is calculated as an intersection of two edges or as a point where there are two
strong and different edge directions in a local region around the point. Corner
detection(equal term of edge detection) is usually used in motion detection,image
registration,video tracking,3D modeling and object recognition.

3.1.1 Moravec detector

One of the fist efforts in corner detection was Moravec detection algorithm
which determines a corner as a point of low self-similarity.[19] The algorithm
checks whether the neighborhood of a centered pixel resembles with the other
local pixels,by computing the sum of squared differences between the two
sections. If the sum has a low value,then the algorithm implies more similarity.
So,if the pixel has intensity value that is similar to its neighbors,then the regions
will not differ. However, if the pixel belongs to an edge,then it is obvious that the
two regions that are in vertical direction to the edge will have strong differences
in intensity values, whereas in a parallel direction there would be plenty of
similarities. If the pixel belongs in a section that intensity values vary in all
directions, then all of the neighborhood patches will look different. Hence,the

40

corner strength is defined as the lowest sum of squared differences(SSD) between
the region of the centralized pixel and its neighbors in all
directions(horizontal,vertical and the two diagonals). If the value of SSD is a local
maximum, then that point is considered to be an point of interest. Nevertheless, the
Moravec detector has a strong drawback:it is not isotropic,meaning that if there is
an edge that is in a different direction of its neighbors, then the smallest SSD will
be high and thus the edge will be considered a corner incorrectly.

In mathematical terms,this relationship can be presented as follows:

E(u , v)=∑ w(x , y)∗[I (x+u , y+v)−I (x , y)]2

where:
• E is the computed sum of square differences
• W(x,y) is the window function which can be graphically defined as:

• I(x,y) is the intensity of the pixel
• I(x+u,y+v) is the shifted intensity

We compute shifted intensity in four directions:(u,v)={(1,0),(1,1),(0,1),(-1,1)}
The algorithm searches for the local maximal in min{E(u,v)}. The mathematical
formula of the Moravec detector confirms the problems mentioned above:

• because of the binary window function, the response of the algorithm is very
vulnerable to noise.

• The step of the operator is 45 degrees and thus important information is
eliminated.

• Only the minimum value of E(u,v) is taken into account.

41

 Figure 26: Binary window function

3.1.2 The Harris & Stephens / Plessey / Shi–Tomasi corner
detection algorithm

 Because of the previous mentioned problems of Moravec detector, Harris
and Stephens improved Moravec's detector by taking into account the differential
value of the corner,regarding the direction directly and not using shifted regions.
[19]
This corner value is often called autocorrelation(introduced in the actual paper). In
fact,in paper the mathematical formulas are the clearly calculating the sum of
square differences(SSD). The weighted sum is calculated as in Moravec detector :

S(x , y)=∑∑ w(u , v)[I (u+x , v+ y)−I (u , v)]
2 ,where we consider

a two-dimensional gray-scale image.

An important development compared with Moravec's operator is that Harris
algorithm considers all small shifts and not with 45 degree step. Thus,a Taylor
expansion is used to compute I (u+x , v+ y) approximately. Letting I x and I y

be the partial derivatives of the Intensity of an image,we have:
I(u+x , v+ y)≈I (u , v)+ I x (u , v)x+ I y (u , v) y

Thus the sum expression becomes:
S (x , y)≈∑∑ w (u , v)(I(u ,v)+ I x (u , v) x+ I y (u , v) y)2

In a matrix form,the previous relationship can be rewritten as follows:

S (x , y)≈(x y) A (x
y) ,where A is the structure tensor:

,
where the brackets 〈... 〉 imply averaging (summation over u,v).

Another improvement comparing to Moravec detector is that the window
function is now Gaussian,guaranteeing isotropic response. The general form of a
Gaussian window function is presented below:

42

In Harris algorithm a corner is considered to have a large variation of S in
all of the directions of the vector (x y) . In mathematical form, this can be
expressed through the eigenvalues of the matrix A. If an interest point is
examined,then matrix A should have two eigenvalues with grand value.
Considering the magnitudes of the eigenvalues, we can determine the following
cases:

• λ1≈0 and λ2≈0 ,then this point is not of interest.
• λ1≈0 and λ2 has a grand positive value,then at this point there is an edge.
• Both λ1 , λ2 have grand positive values,then at this point we have found a

corner.

Nevertheless,because computing the eigenvalues requires a big workload,Harris
and Stephens suggested an alternative function M c which is presented below:

considering that det (M)=λ1 λ2 and trace(M)=λ1+ λ2 and k is a factor that is

chosen depending on the sensitivity level required.
From literature,an accepted value of k is between 0.04–0.15.[20]

A graphical representation of the classification of image points,according to
the eigenvalues of M is shown below:

43

Figure 27: Gaussian window function

3.2 Implementation of Harris Algorithm

For the evaluation of our framework we employed a C-code implementation
of Harris & Stephens algorithm[20] ,provided by Dr. Manolis
Lourakis[http://users.ics.forth.gr/~lourakis].We present the following flow
chart to describe the implementation of the algorithm:

44

Figure 28: Classification of Image points

Source: Chris Harris &
Mike Stephens Plessey Research Roke Manor, United

Kingdom © The Plessey Company pic. 1988

45

Figure 29: Harris algorithm flow chart

At first,the input image is lead to the function that calculates the partial
derivatives of the intensity I of the image in every pixel. That function is
called imgradient(). It is presented below in pseudo-code style:

In the first two-for loop,the algorithm computes in each pixel the derivative
and the smoothed value respectively by accumulating the local sum of the 5 value
kernel. It uses the values of the previous two and the next two pixels in the
particular row. Then,each value is normalized by the equivalent factors.

In the second two-for loop,the kernels are interchanged. The multiplication
is done by the previous two and next two pixels vertically,following the same
procedure as before. The resulting gradx,grady arrays have the derivative values in
each pixel. Notice that as it is obvious,the pixels of the first and the last two rows
of the image and the fist two and the last two pixels of each column do not have
the derivative values because the algorithm uses windows that go beyond the
limits of the image in those regions of pixels.

Because the algorithm cannot calculate the desired values at the borders of
the image,there is another function called imgradient_bfill() which computes the
differences in those regions .

46

 int imgradient5_smo(image[width,height],width,height,gradx,grady){
 for (i=[0,width-1]){

for (j=[0,width-1]){
/* 5-tap derivative kernel */

 / * derivative_kernel=[-1 -3 0 3 1]
 / * smoothing_kernel=[1 6 12 6 1] == [1 6 2*6 6 1]

 wrkx[i,j]=image[i,j]*derivative_kernel;
wrky[i,j]=image[i,j]*smoothing_kernel;

next_line;
}

for (i=[0,width-1]){

 for (j=[0,width-1]){

 gradx[i,j]=wrkx[i,j]*smoothing _kernel;
grady[i,j]=wrky[i,j]*derivative_kernel;

next_line;
}

}

Then,a Gaussian kernel is formed with mean value μ=0 and standard
deviation σ=1. We compute ,according to the previous quantities,the following
Gaussian kernel: kern=[1 12 55 90 12 1],which is symmetric and normalized.

Then,image is filtered by imgblur() which is the function that performs an
horizontal and then sequentially a vertical convolution,using the Gaussian kernel
formed before. The horizontal convolution is held by a window that is 7 points
wide and takes into consideration three pixels before and three after. Respectively,
the vertical convolution considers the tree pixels above and the three below the
center pixel.

The quantities gradx2,grady2,gradxy correspond to I x
2 , I y

2 , I xy respectively.

47

int imgblurg(gradx,grady,gradxy){

/* separability: convolve horizontally ... */
for (i=[0,height]){
 for (j=[0,width]){

 wrkx[i,j]=convolution_with_gaussian_kernel_horizontal(gradx,gaussian_kernel);
 wrky[i,j]=convolution_with_gaussian_kernel_horizontal(grady,gaussian_kernel);
 wrkxy[i,j]=convolution_with_gaussian_kernel_horizontal(gradxy,gaussian_kernel);
}

}
 /* ... then convolve vertically */
for (i=[0,height]){
 for (j=[0,width]){

 gradx2[i,j]=convolution_with_gaussian_kernel_vertical(gradx,gaussian_kernel);
 grady2[i,j]=convolution_with_gaussian_kernel_vertical(grady,gaussian_kernel);

 gradxy[i,j]=convolution_with_gaussian_kernel_vertical(gradxy,gaussian_kernel);
}

 }

}

Next,we present a typical example of horizontal convolution graphically[20]:

In that figure we observe that since our window function is a 5-sample
kernel,the convolution cannot start at the first pixel. Otherwise,it would need to
include pixel values that are actually outside the image. Thus,it starts from the
third pixel and ends in the width-3 pixel in each row. The first 5 pixels of the first
row of the source image(Hsamp) are used to be convolved with the 5 samples of
the kernel(Hcoeff). The first output is now calculated. The same process continues
in the second set of Hsamp,until the final value of the last row is computed.
 A typical C code for implementing the horizontal convolution would be the
following:

48

HconvH:for(int col = 0; col < height; col++){
HconvWfor(int row = border_width; row < width - border_width; row++){

int pixel = col * width + row;
Hconv:for(int i = - border_width; i <= border_width; i++){

local[pixel] += src[pixel + i] * hcoeff[i + border_width];
}

}
}

Figure 30: Horizontal Convolution
Source: Xilinx

Then,in the vertical convolution,we perform the same calculations,but in the
vertical direction this time,as it shown next:

Likewise,we start to compute the destination from the third row,since our kernel is
again 5-sample. Consequently,we end in the height-3 row. Then,the process
follows the way the horizontal is implemented:all the 5 data samples convolve
with the convolution coefficients,Vcoeff in vertical case. After the first value is
created using the first 5 samples in the vertical direction,the next set of 5 samples
is used to calculate the second output. That process is repeated until the value of
the final pixel in the last column is calculated. A typical C code for implementing
the vertical convolution would be the following:

49

Figure 31: Vertical Convolution
Source: Xilinx

In the last figure we can notice that the output image is smaller in both horizontal

50

// Vertical convolution
VconvH:for(int col = border_width; col < height - border_width; col++){

VconvW:for(int row = 0; row < width; row++){
int pixel = col * width + row;
Vconv:for(int i = - border_width; i <= border_width; i++){

int offset = i * width;
dst[pixel] += local[pixel + offset] * vcoeff[i + border_width];

 }
}

}

 Source: Xilinx
Figure 32: Convolution Border Samples

and vertical directions,due to the convolution border effect. So,we have to fill in
the border pixels with data. We can create those values by simply copying the
nearest pixel's value in the convolved output.

A simple approach to apply that solution is to handle each case differently:
• Top border

• Side border

51

int border_width_offset = border_width * width;
int border_height_offset = (height - border_width - 1) * width;
// Border pixels
Top_Border:for(int col = 0; col < border_width; col++){

int offset = col * width;
for(int row = 0; row < border_width; row++){

int pixel = offset + row;
dst[pixel] = dst[border_width_offset + border_width];

}
for(int row = border_width; row < width - border_width; row++){

int pixel = offset + row;
dst[pixel] = dst[border_width_offset + row];

}
for(int row = width - border_width; row < width; row++){

int pixel = offset + row;
dst[pixel] = dst[border_width_offset + width - border_width - 1];
}

}

• Bottom border

Consequently,it is calculated in every pixel the quantity R=detA−k∗(traceA)
2

,where A=[I x
2 I xy

I xy I y
2] .All the values of R are stored in the array called

''cornerness[]''.
Then,if the value of R in the arbitrary pixel (x0 , y0) is local maximum in a

3x3 window,then that pixel is marked as a local maximum and thus takes a value
of 1 in a binary map that represents the corners with the logical value of 1,and

52

Side_Border:for(int col = border_width; col < height - border_width; col++){
int offset = col * width;
for(int row = 0; row < border_width; row++){

int pixel = offset + row;
dst[pixel] = dst[offset + border_width];

}
for(int row = width - border_width; row < width; row++){

Int pixel = offset + row;
dst[pixel] = dst[offset + width - border_width - 1];
}

}

Bottom_Border:for(int col = height - border_width; col < height; col++){
int offset = col * width;
for(int row = 0; row < border_width; row++){

int pixel = offset + row;
dst[pixel] = dst[border_height_offset + border_width];

}
for(int row = border_width; row < width - border_width; row++){

int pixel = offset + row;
dst[pixel] = dst[border_height_offset + row];

}
for(int row = width - border_width; row < width; row++){

int pixel = offset + row;
dst[pixel] = dst[border_height_offset + width - border_width - 1];
}

}

other not-interesting pixels with 0.

Finally,at pixels that have the value of “1” in the map,it is applied a
geometrical fitting in image proportional coordinates. It is determined the
quantity,consider it L(x0 , y0) . If L(x0 , y0) is not zero,then the coordinates of that
pixel ,after being corrected by sub-pixel calculations, are stored in the corner array.
When that procedure is completed,the corners are drawn in the image,using the
coordinates from the corner array.

There is another function that is executed only if there is a large number of
corners detected. The operation of that function is that given the corner
map(called ''cmap'') that was computed in a previous step that has marked the
candidate corners,lets say n. First,it sorts the corners in descending order
depending on its corner's strength,meaning the corresponding value of R for each
pixel. Then,it selects N<n corners and distributes them ''uniformly'' across the
image. Then cmap is returned,containing only the selected N corners.

The pseudo-code is presented below:

53

/* Adaptive Non-maximal Suppression using the scheme of MSR-TR-2004-133 */

float vo_anms_schemeA(cmap,conrerness,n,N){

quicksort(cmap,indexes,n);
for (i=0;i<n;i++){

compute_the_k_strongest_cornerness();
/*find the closest distance to j among the first k strongest corners*/
min_distance[i]=find_closest_distance_to_j();
 /* select the N largest values in r */
threshold=quick_Select(min_distance,k);
for(i=[0,k]){

if(r[i]<threshold)erase_from_map();
}

 }
return cmap[];
}

That was a general structure of the implementation of Harris corner detector.
After,we used the valgrind tool ,we produced a rough profiling of the percentage
of the cycles that ever part of the algorithm needs. To do that,we open a terminal
and we type:

where ./harris is the executable of the implementation.[21]

Callgrind is a tool of valgrind that makes the particular estimation. We open
the output with kcachegrind,another tool of valgrind. The output is shown below:

54

valgrind --tool=callgrind ./harris

Figure 33: Harris cycle estimation

To be clear,''my_func()'' is the function that combines the results of the other
functions and performs the processing:local maximum calculations,filling the
binary map of the candidate corners and finally draw the correct corners on the
output image. As we can observe,''my_func'' demands about 12% of the total
cucles,''vo_anms_schemeA()'' about 5%,''imgradient'' about 14% and ''imgblurg()''
about 62%. The reason for that large difference is that the process of bluring is
performed three times,for matrices : I x

2 , I xy , I y
2 ,where I is the intensity of the

image. As a result,the previous figure is a guide that can help us to emphasize
where to put effort in order to optimize the parts of the implementation that are
more computationally intensive.

3.3 Vo_anms() analysis

3.3.1 Non-recursive implementation
In that point we will analyze the functionality of ''vo_anms()'' function. The

main characteristic of that function is that is has recursive operation. It uses the
classic quicksort function to sort in a descending the ''strength'' of each corner.
However,since our target device is an FPGA board,we know that recursive
functions are not synthesized,unless we are able to define the depth of the
recursive tree at compile time. Because we were not able to determine that,it was
inevitable that we changed the quicksort to a non-recursive implementation. So,we
present below the non-recursive version of quicksort:

55

In that version,in every iteration we select new pivot at first and then we
start to compare the elements with the pivot from the left and from the right of the
array.
The first step is to select a pivot. We follow the most simplest approach and we
select as pivot the first element in the array. Starting from the right end of the
array,when we find an element that is less than the pivot at position ''Right'',we
move it to the left side-at position ''Left''. Then we start to look up from the left
side for position ''Left +1'' and when we find an element that is greater than the
pivot we move it to the position ''Right''. Finally we select as new pivot the value
at the ''Left'' position and we start again the previous procedure. When the array is
sorted,we have to re-arrange items in order to achieve descending order
sorting,instead of the ascending one that was initially applied.

56

void quicksort_flint(int farr[],int arr[])
{
 i=0;
 beginning[0]=0; end[0]=n;
 while (i>=0) {
 Left=beginning[i]; Right=end[i]-1;
 if (L<R) {
 select_pivot_value();
 select_pivot_index();if (i==end)stop();
 while (Left<Right) {

find_the_less_element_than_pivot_from_the_right();
move_it_to_the_left();
find_the_greater_element_than_pivot_from_the_left();

move_it_to_the_right();
 }

select_new_pivot();
beginning[i+1]=Left+1;
end[i]=Left;
i++;}

 else {
 i--;
 }
 }
//reverse array-descending sorting
descending_sorting();
return;
}

3.3.2 Select the strongest corners

After the sorting,vo_anms finds the k-strongest corners,by calculating
the corners that have R-value[see below] that is over a threshold. From those
corners,we compute the minimum distance to the j-th corner(j={1,..n}). When
having measured all the minimum distances we have to determine which of them
are the N strongest(N is variable and is user's choice). Therefore we use the
function ''quickSelect()'',which is presented below in pseudo-code:

In each iteration,left of the selected pivot there are values that are less equal than
pivot. Depending on the value of k,the do-while loop is repeated until a[i] has the
value that is the k-th strongest. That value is returned to vo_anms() and plays the
role of threshold. We scan all the previously calculated minimum distances and
we only keep those that are above the threshold. Whichever corner is less than
threshold is erased. This is done by marking the corner's position on cmap with the
value of '0',so it is not listed as corner any more.

57

int quickSelect(int a[n], int n, int k)
{
// a[] contains the minimum distances
// n:size of the array
// k:number of elements to select
 l=0; r=n-1;
 do{

 select_the_last_element_as_pivot();
 for(i=j=l; j<n-1; ++j)
 compare_element_pivot();

if (element<=pivot)swap(element,pivot);
next_element();
if(a[j]<=pivot){

 swap(a[j],pivot);
i++;// next element

 }
 }while (not_sorted(k));
 return a[i];// the k-th strongest value

Chapter 4: Harris Implementation

4.1 Harris syntesizable version

In this thesis,we evaluate our proposed framework with the
High-Level-Synthesis of Harris Computer Vision algorithm. We selected Xilinx
Vivado HLS as a state-of-art HLS industrial tool [13].Our final target is to
synthesize the C-implementation of Harris algorithm,in order to be able to be
mapped to the FPGA board. To do so,we used the Vivado® Design Suite,and
especially the Vivado High Level Synthesis (HLS) tool. Our target board is the
Xilinx kintex7- xc7k325tffg900-2.

Moreover,the final target of this thesis is to optimize the implementation, by

• Accelerating the algorithm's performance

• Achieving optimal area utilization

The first challenge was to remove any dynamical memory allocations from
the code. Since our target is an FPGA board,it is apparent that HLS compiler must
know exactly how much memory it is required at compile time and not at linking
time. Thus,any malloc() functions where eliminated and were replaced by static
memory allocations,meaning arrays. The result was that there was a lot of memory
acquired by the start of the implementation and so there was mandatory to start
making memory adjustments.

4.1.1 Memory optimizations
One of the first obstacles that every engineer has to deal with when it comes

to program an FPGA device is the constraint of memory. Unlike other general
purpose systems,where the amount of memory is more than sufficient,in
reconfigurable machines it demands a lot of adaptations to be made in algorithms
's implementations, sometimes with inevitable loss in quality of the produced
application.

58

As a first step,a simple improvement is to adjust the word-length,depending
on the application' s needs. Although in general purpose computing word-length is
already defined by the architecture of each processor,reconfigurable computing
allows the customization of every single variable 's word-length,in order to
accomplish optimal trade-offs in numerical accuracy,speed and power
consumption.

So,the designer is able to achieve the most sufficient hardware
implementation of the algorithm at which different word-lengths are used for
different internal variables,depending on their size. Thus,some word-lengths are
reduced,without decreasing the level of accuracy. In fact,sometimes it is observed
that accuracy is less sensitive in some variables than to others. So it is possible to
cut down some extra bits in order to shrink the area of the hardware used, without
losing any sufficient information.

Hence,selecting the optimal word-length for each variable can be very hard
problem. Actually,as demonstrated in it is NP-hard,even for systems that have
special mathematical properties that simplify the problem. Nevertheless,there have
been published several approaches to that problem:some of them can considered as
heuristics,providing an area/signal quality trade-off. Others,offer simplifying
assumptions on error properties and others present optimal approaches that can be
applied to algorithms that have special mathematical properties.[22]

Our approach to that problem was based on the special mathematical
properties of the algorithm. Particularly, our goal is to reduce the area utilized by
the arrays of the implementation. Those arrays are:

• I x [] , I y [] , I xy [] , I x
2
[] , I y

2
[] ,which all contain integer values

• Cornerness [] ,which contains all the R-values(see chapter 3) with float
arithmetic.

The sample image we used as input to our implementation is 256x256 ,gray-scale
and shown below:

59

Analyzing the algorithm,we found out that each element of the array
''Cornerness[]'' is compared with its neighbors in a 3x3 window. Thus, what we
need is to reduce the word-length,but try to maintain the size relationship between
the elements. What was found out is that making a cast from float to integer
arithmetic did not have negative effect on the output's accuracy. By the term
accuracy here we mean counting the variation of the coordinates of the corners
detected,comparing to the initial ones.

With all of our arrays including values of 32bit,a first try of synthesizing the
project gave as the results below:

The table above is the Synthesis report created by the Vivado High Level

60

Figure 34: Sample input image

Figure 35: Harris initial report

Synthesis (HLS).As it can be observed,the initial version of the algorithm actually
needs more memory than it is available in the FPGA board,making it impossible to
be mapped.

So,we analyzed more the elements that the arrays of partial gradients
contain,finding out that in most times the length of 32 bits was a redundant luxury.
Then,our decision was to reduce to half the word-length(16bits) of the following
arrays: I x [] , I y [] , I xy [] , I x

2
[] , I y

2
[] and examine the accuracy of the output. In that

case,we did have some some variation but its was inside of the permitted error
margin. In fact,using the Euclidean norm, we compute the error margin as follows:

error margin=
∑‖z‖

corners detected
, ‖z‖=√(x i−x j)

2+(y i− y j)
2 ∀ i=1,. ..n , j=1,. ..m

where n is the initial detected corners and m is the detected corners of the
optimized version. The error margin was calculated to be 0.5% . The gain of the
memory utilization is shown below:

As it is figured,the reduction of BRAM_18K utilization was cut off by about 45%
and the DSP48E by 5%,making possible to map the design onto the actual Kintex7
board.

Consequently,another try was to decline the word-length of the
''Cornerness[]'' array 's elements to half,because for the detailed synthesis report it
was depicted that a lot of memory banks were occupied in the 32bit version.
However,it was detected a large declination of the corners detected,and the actual
coordinates of each corner. However,with detail analysis of the elements of that

61

Figure 36: 16 bit optimization

array,we found out that we could represent efficiently its contents with less bits,but
definitely more than 16 bits.

In that case,C-language can't provide any help to make a custom
word-length. C-based predefined data types have word-length multiple of 8
(8,16,32,64 bits) .So,since RTL description can support any arbitrary data length, it
is possible that needless hardware would be occupied. For example,in the case
that we perform a multiplication,the standard unit to do that in a Xilinx FPGA is
the DSP48. This contains a 18*18 bit multiplier. Thus,if,for example,a 17-bit
multiplication is needed,then using C data types you have to implement a
multiplier which is 32*32 bit occupying 3 DSP48 macros,when just one is
required,resulting in unnecessary overuse of FPGA's hardware. [23]

In that case,we can take advantage of Vivado HLS arbitrary precision data types.
Vivado contains libraries that provide data types which can define variables of any
custom width. For example, user can define variables of 10 bit,24 bit or 35 bit,
while using the standard C data types those variables would be 16,32,64 bit
respectively. In the figure below it is shown the summary of the supported
arbitrary precision data types of the Vivado HLS:

The great advantage of the Vivado 's data types is that you do not have to
sacrifice accuracy,as a trade-off in hardware area. The engineer has the opportunity
to adjust variables to smaller bit-widths and then re-execute C simulation to
confirm that the functionality is still correct or inside the allowed error margin. In

62

Figure 37: Arbitrary Precision Data Types
Source: Xilinx

the previous example,the 35-bit hardware would have been implemented without
losing any accuracy, and saving the remaining 29-bit for other needs of the design.
Hence,shorter bit-lengths can provide smaller and faster hardware circuits. We can
place more logic in the FPGA and the implementation can be executed at higher
clock frequencies.

In our implementation,we performed specific analysis of the necessary
word-length of the array's elements. The arrays where divided into 2 categories:

• gradient content arrays

• Cornerness content arrays

For the first category,as said before,16-bit word-length brought no problem to
accuracy. Trying to reduce it even more,we found out bottleneck at 15-bits(further
reduction had unacceptable results). In the second category,after some
trial-and-error techniques,we concluded to data width of 24 bits. The results of
Synthesis procedure are shown below:

As it is depicted,from the previous 16-32 bit version,our implementation uses 65
less BRAMs,that is 8% reduction. Notice that the error remained the same.
Furthermore,any bit decrease would bring inaccuracies in the output that are
beyond the acceptable error margin,which is not desirable. So, it is necessary to

63

Figure 38: Arbitrary precision types optimization

carry out other optimizations to decline more the area of the FPGA that is required
by the Harris implementation.

4.1.2 Vo_anms() synthesis
Vo_anms() function is a bit of expensive computationally,since it performs a

variety of complex operations. We can observe below that vo_anms() has
increased the percentage of resources utilization in all categories:

We can observe that there is an offset added in BRAM_18K utilization,that is 26
block rams,initially. Then,we perform some changes concerning data reuse in
vo_anms() and we have a new synthesis report:

64

Figure 39: Harris utilization with Vo_anms()

We can observe that the BRAM utilization has reduce from 26 to 9 %. The other
resources have not been changed,since the operations that vo_anms() implements
remain the same.

4.2 Parametric Fragmentation of input image

To make our design more memory efficient,we examined the structure of the
algorithm. We started form the idea of observing the core of the algorithm,which is
the part that computes the gradients of the image's intensity,then performs the
horizontal and vertical convolution and eventually marks the corners on the image
wherever there is a local maximum in a 3x3 window that passes the whole image.
We concluded that if we wanted cut of the size of the arrays,we should execute the
core of the algorithm for only a fraction of the initial input image. Thus,the core
would be performed multiple times. We decided,then,to divide the image in parts
that are power of 2 in order to have easier calculations. The factor of
fragmentation was 2,4,8,16. We present graphically the way we did the
fragmentation:

65

Figure 40: Harris Vo_anms() optimized

At the first iteration,the convolution window(red rectangle) moves throughout the
the yellow region. The double for-loop would be like following:

We notice that the border for the external loop is not height/factor,where
factor={1,2,4,8,16}. Since the convolution window in vertical direction is 5,in the
border the center pixel(the green one) needs values from the next iteration. So,we
need to include 2 more lines in the first iteration to keep the functionality of the
algorithm correct. This is why the border of the external loop has been extended to
height/size+2. In the second iteration,the pattern is a little bit different,as we can

66

for(i=0;i<height/factor+2; ++i{
for(j=0; j<width; ++j){

perform_calculations();
}

}

Figure 41: First iteration

First
iteration

Pixels from
second
iteration
needed to
perform
convolution

see below. In that case,same as before we need to have the values of the previous's

iteration region,so we do not start from the i=
height

factori−1

,but from i=
height

factor i−1

−2

The loop now is changed :

We still keep the upper bound of i ,and that is the patter we apply for the general
case of the i-iteration. In the last iteration,we follow the approach of the first
iteration with the difference that we only need the 2 previous row's values.

That approach is computationally expensive,since we actually use twice the same

67

for(i=height/ factor i−1 ;i<height/factor+2; ++i{
for(j=0; j<width; ++j){

perform_calculations();
}

}

Figure 42: Second iteration

Second
iteration

Pixels from
previous
iteration

Pixels from next
iteration

values. However,this aliasing is necessary since otherwise the convolution would
not be correct and the candidate corner pixels at borders would not be detected.

The error margin was calculated with two ways:

➢ one that counts the difference between the detected corners of each version
and the correct corners

➢ the other that counts the percentage of the corners that their coordinates
differ from the correct ones inside the desired error margin

Test Case 1

Initially,the correct output of the algorithm with input the previous
gray-scale image is presented below:

Below are shown the two kinds of error:

68

Figure 43: Correct output

In each version we counted the resources that were required for the
implementation and are depicted in the following charts:

69

Figure 44: Absolute error

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

80

90

100

Absolute error

factor

%
 e

rr
o

r

Figure 45: Relative error

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

80

90

100
Relative error

256x256

factor

%
 r

e
la

tiv
e

 e
rr

o
r

70

Figure 46: BRAM utilization

0 2 4 6 8 10 12 14 16 18
0

10
20
30
40
50
60
70
80
90

100
BRAM utilization

256x256

factor

%
 o

f B
R

A
M

s

Figure 47: DSP utilization

0 2 4 6 8 10 12 14 16 18

DSP utilization
256x256

factor

%
 o

f D
S

P
s

As expected,since the size of the arrays was declined by 2,4,8,16 each
time,likewise the percentage of BRAMs was decreased exponentially. The other
parts of the resources(DPSs,FFs and LUTs) remained steady,as there was not any
important change in the logic that was implemented. In the following table we
present accumulated utilization of FPGA resources for Test Case 1:

71

Figure 48: FF utilization

0 2 4 6 8 10 12 14 16 18
0

10
20
30
40
50
60
70
80
90

100
FF utilization

256x256

factor

%
 o

f F
F

s

Figure 49: LUT utilization

0 2 4 6 8 10 12 14 16 18
0

10
20
30
40
50
60
70
80
90

100
LUT utilization

256x256

factor

%
 o

f L
U

Ts

In that case we could refer to another application that was made from scratch
by Microprocessors and Digital Systems Lab [to be sumbitted] implemented
Harris Algorithm without using High-Level Synthesis. However,this version was
completely hand-made and the code was written straightaway to VHDL. The
implementation was mapped onto Xilinx Virtex-6 board(XC6VLX240T-2) with
frequency at 172MHz and for input image size 512x384. The results are shown in
the following table:

The star in the time cell denotes that the time is to be optimized.

Test Case 2
Then we tried to examine the algorithm's performance with an image of the

same size,but with more corners to detect. We simply added several objects in the
previous image,which changes as follows:

72

LUTs DSPs Slices BRAMs 36K Time
11477 10 4045 82 14 *

 Fpga resources BRAM_18K BRAM_18K % DSP48E DSP48E %
Factor

1 499 56 69 8
2 301 33 76 9
4 202 22 76 9
8 103 11 76 9
16 56 6 76 9

Available 890 ----- 840 -----

 Fpga resources FF FF % LUT LUT %
Factor

1 10676 2 23351 11
2 11399 2 24652 12
4 11324 2 24584 12
8 11420 2 24565 12
16 11431 2 24537 12

Available 407600 ----- 203800 -----

The algorithm reacted adequately and found all the corners of the image:

In that case,we do not need to calculate the resources again,since the size of
the image is the same. But,we do have to measure the error ,depending on the level
of fragmentation of the input image. Below,we present the absolute and relative
error:

73

Figure 50: Sample image 2

Figure 51: Sample image 2 output

Test Case 3
In that test case,we put as input a significantly larger image with 4-times

bigger width and height,resulting in a 16-times the size of the initial image.

74

Figure 53: Relative error

0 2 4 6 8 10 12 14 16 18
0

10
20
30
40
50
60
70
80
90

100 Relative error

factor

%
 e

rr
o

r

256x256

Figure 52: Absolute error

0 2 4 6 8 10 12 14 16 18
0

10
20
30
40
50
60
70
80
90

100
Absolute error256x256

factor

%
 e

rr
o

r

That image is actually 16-times the initial sample image and thus is of size
1024x1024. We experimented our algorithm's performance and as it was obvious
the memory problem in that case was huge. The percentage of BRAMs occupied
depending on the level of fragmentation is figured below:

75

Figure 54:Input sample image 1024x1024

As expected, only with the value factor=16 the algorithm could actually be
mapped onto FPGA,because only in that case the percentage of BRAM utilization
is below 100%(actually is about 60%). In all other cases,the memory needs exceed
beyond the available hardware. The other resources have very similar values,as the
amount of logic used in the processing of the arrays did not change. In the
following table we present the total resource utilization in Case 3:

76

Figure 55: BRAM utilization

0 2 4 6 8 10 12 14 16 18

BRAM utilization1024 x1024

factor

%
 o

f B
R

A
M

s

 Fpga resources BRAM_18K BRAM_18K % DSP48E DSP48E %

1 6499 730 69 8
2 3331 374 76 9
4 1747 196 76 9
8 955 107 76 9
16 559 62 74 8

 Fpga resources FF FF % LUT LUT %

1 10823 2 23607 11
2 11511 2 24914 12
4 11496 2 24847 12
8 11537 2 24835 12
16 11411 2 24767 12

We also counted the absolute and the relative error of the sample 2 image output:

77

Figure 56: Absolute error

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

80

90

100
Absolute error1024 x1024

factor

%
 e

rr
o

r

Figure 57: Relative error

0 2 4 6 8 10 12 14 16 18
0

10
20
30
40
50
60
70
80
90

100
Relative error

1024 x1024

factor

%
 e

rr
o

r

4.3 Synthesis Optimizations

In this chapter we are going to discuss the various optimization methodologies that
can be performed using the features of Vivado High-Level Synthesis tool,in order
to produce a circuit's architecture that meets the design's desired performance
specifications,satisfying the area constraints. In general,Vivado HLS has an
automatic procedure to handle each design. By default,it tries to create the most
optimal implementation,according to the design 's requirements. The clock is the
first constraint to be determined and Vivado HLS uses the specification of the
target device to decide which is the maximum number of operations that can be
executed,within a clock cycle. After achieving the optimum clock
frequency,Vivado HLS produces the synthesized circuit and makes optimizations
automatically according to the following goals:

• Throughput

• Latency

• Area

78

79

 Figure 58: Design optimization strategy

In addition to the default synthesis operations,Vivado HLS provides a number of
synthesis directives and configurations which can make optimizations in each of
the previous three sectors,depending on the application requirements. Next,we
present a flowchart that shows the general optimization strategy.[6]

4.3.1 Throughput Optimizations
The first step to maximize the application's throughput is to minimize the

interval between new inputs and thus reach a peak on the output rate. In order to
achieve that,a number of optimization are available through Vivado HLS[6].
Next,we present a flow chart of throughput optimization design flow:

4.3.1.1 Pipeline

Pipelining can give the opportunity to operations to be executed in parallel:each
task does not have to complete all of its operations before it begins the next set of
assignment. It can be applied to either functions or loops. Then,we present a

80

Figure 59: Design strategy-Throughput

simple example of how pipeline can improve a function's throughput.

In the non-pipelined version,the function reads every 3 cycles and produces the
output value in every 2 cycles. So,the function has an Initiation Interval (II) of
3,and a latency of 2. In the pipelined version,our function reads every 1 cycle
(II=1) and still has latency=2. [6]

 Next,we can see the changes from a standard sequential loop to a pipelined
one with concurrent execution:

81

Source: Xilinx
Figure 60: Pipeline behavior

In figure (A),every 3 cycles we have new input and every 8 cycles we have new
output value. In the pipelined version,our program reads new value in every 1
clock cycle and the number of cycles needed to produce new output has been cut
off to 4 cycles. Hence,there is significant reduction in both II and latency,without
using more hardware recourses.

To apply PIPELINE synthesis directive,we have to place the following
pragma in the C source code inside within the boundaries of the required location:

where II is the desired initiation interval.

82

Source: Xilinx

#pragma HLS pipeline II=<int>

Figure 61: Loop pipeline

4.3.1.2 Dataflow

 Dataflow optimization technique can be applied when sequential code is
executed. The target is to change the sequential order of functions or loops and
make it concurrent. It is one of the most powerful methods to improve the circuit's
throughput. In the next figure it is depicted how the Dataflow technique allows
sequential execution of three functions to overlap and thus increase the overall
throughput and cut down latency.[6]

 In figure (A) where there is no dataflow applied,our implementation takes 8
cycles to produce an output and the same time for func_A to read a new input.
However,in figure (B),dataflow pipelining allows func_A to read a new input
every 3 cycles(lower II) and the overall implementation takes now 5 cycles to
produce its output(shorter latency).

To perform dataflow directive,we simple add the following pragma into the C
source code,inside the region we wish to apply dataflow behavior:

 #pragma HLS dataflow

83

Figure 62: Dataflow behavior
Source: Xilinx

4.3.1.3 Array partition

A common issue when applying pipeline synthesis directive is that Vivado
HLS creates a warning that it cannot reach the desired initiation interval (II) of
1,since it cannot assign a load or a write operation onto a memory because of
memory ports limitation. That problem is usually created by arrays. We know that
they are implemented by Vivado HLS as block RAMs which have a maximum of
two data ports. Thus,it is consequent that the throughput of a read/write(load/store)
is bordered.

A possible solution to that limitation is to split the array into multiple smaller
arrays(a single block RAM into multiple smaller ones respectively),creating more
number of available ports. To perform that partition,we can use the equivalent
synthesis directive called ARRAY_PARTITION. Vivado HLS gives as the
opportunity to make three types of array partition:

• block:the initial array is split into blocks of equal size,containing
consecutive elements of the initial block

• cyclic: the initial array is split into equally sized blocks interpolating the
elements of the original array

• complete: the default choice is to split the array into its individual elements.
This is actually degenerate a memory into registers.

To apply array partition directive,we add the following command in the source
code:

84

Source: Xilinx
Figure 63: Array partition

#pragma HLS array_partition variable=<variable> <block,cyclic,complete> factor=<int>
dim=<int>

where variable is the desired array to be partitioned,factor is the desired level of
partition and dim is the desired dimension to apply the partition.

We decided to apply partition to the ''cornerness[]'' array(the one which
contains the R-values) because it is the array with the largest word-length.
However,the results did not have any positive effect on our implementation.
Actually, the timing was a little worse and the area utilization increased(number of
BRAMs,LUTs and DPSs),as we present below:

85

Figure 64: Area utilization of array_partition

The numbers correspond to the first version without word-length optimizations.
The initial numbers without array_partition where 63,8,2,11 % respectively.

4.3.1.4 Loop unrolling

Vivado HlS also has the strength to fully or partially unroll for-loops in an
automatic way,with applying the equivalent synthesis directive UNROLL. The
way unroll directive can change a set of code is depicted in the following figure:
It is concluded that with just applying the unroll directive,every user can produce a
variety of different implementations,based on the varying unroll depth[6]. There
are three ways to perform loop unrolling:

86

Figure 65: Loop unroll
Source: Xilinx

• Rolled loop:in the case that the loop is rolled, each iteration is executed in a
single clock cycle. The initial version requires four cycles to be completed
and needs one multiplier and a block RAM. Notice here that BRAM can be
a single-port RAM.

• Partially unrolled loop: in that case,the loop is partially unrolled by the
factor of 2,so this version needs two multipliers and dual-port RAMs,since
data has to be read and written in the same clock cycle twice. However,the
improvement is that the unrolled version needs 2 cycles to be
completed:both initiation interval and latency are cut to half,comparing to
the rolled version.

• Unrolled loop: That case is when the loop is fully unrolled. That is,it its
completed in one cycle. In that example,the implementation requires four
multipliers. The main constraint here is that we need to support 4 reads and 4
writes executions in the same cycle. Thus,we need to perform array
partition,since block-RAMs have maximum 2 ports.

The unroll directive can be applied inside the source code like following:

within the desired code region.

4.3.2 Latency optimizations
After making throughput optimizations,Vivado HLS provides three kind of

synthesis directives that allow us to either reduce latency on our design,or indicate
the desired value of latency[6]. In the following chart we present the three of them:

87

#pragma HLS unroll skip_exit_check factor=<int>

4.3.2.1 Latency directive

Vivado HLS supports use of latency constraint,which is defined by the
LATENCY directive and it can be applied either in function loop or region. The
syntax is simple:

where min and max specify the minimum and maximum desired
latency,respectively. So,when we place latency directive,Vivado HLS has to make
sure that all operations inside the function or region must be completed within the
desired number of clock cycles. If Vivado cannot achieve the desired latency,then
it relaxes the constraint,so as to try to achieve the best possible latency.

A simple example of how to apply latency directive is shown below:
Loop_A: for (i=0; i<N; i++) {
#pragma HLS latency max=10

..Loop Body...
}

In that case,we placed latency directive inside the loop and so we give Vivado
HLS the command to limit each iteration's latency to 10 clock cycles.

If we wish to place latency directive to all iterations,we place the latency directive
just outside the loop:

88

Figure 66: Latency optimizations

#pragma HLS latency min=<int> max=<int>

Region_All_Loop_A: {
#pragma HLS latency max=10
Loop_A: for (i=0; i<N; i++)

{
..Loop Body...

}
}

4.3.2.2 Loop merge directive

When we deal with code that contains lots of sequential loops,there is an
additional unnecessary overhead that can increase the clock cycles
needed(latency). In the figure below we present an example of two sequential
loops and how that programming style can have negative effect on the design' s
performance.

As it is shown,in the first case the implementation takes 1 cycle to enter the ADD
loop,4 cycles to do the operations and 1 cycle to leave the loop and enter the next
one,SUB loop. The sub loop needs the same 4 cycles to complete its operations
and 1 cycle to leave the loop. In total,the non-merged version needs 11 clock
cycles to be completed. Whereas, in the merged version we notice that we need 1
cycle to enter the merged loop,4 cycles to do its operations and 1 cycle to leave the
loop. In total,the merged version takes 6 loops,almost half of the non-merged
version.

89

Figure 67: Loop merging
Source: Xilinx

To apply loop_merge optimization all we have to do is to place the following
pragma inside the region we wish to merge:

Besides the reduction of the clock cycles,loop merging allows concurrent
execution. In the previous example,we need to use a dual-port block RAM in order
to perform add and sub operations in the same cycle. In general,there are some
limitations concerning loop merging:

• Loop bounds must have the same values. If they are constants,then the
maximum value is used as the bound in the merged loop. If one bound is
variable and the other one is constant,then merging cannot be applied.

• No dependencies are allowed between the loops operations.

In our implementation of Harris algorithm,loop merging was not applicable
because in both functions that compute partial derivatives and do
convolution(imgradient and imblurg respectively) there are dependencies that
concern computations of future elements that do not allow loops to be merged.

Vivado HLS produced the following error:
@E [XFORM­522] Cannot merge loops in region 'label0': data dependence(s) between loops prevent
merging.

4.3.2.3 Loop flatten directive

Alike before,it is known that there are additional clock cycles to enter or
leave nested loops. In the following example,it requires one clock cycle to move
from one loop to another:
void foo_top { a, b, c, d} {
...
Outer: while(j<100)

Inner: while(i<6)// 1 cycle to enter inner
...
LOOP_BODY
...

} // 1 cycle to exit inner
 }
 ...
}

90

#pragma HLS loop_merge

Taking into account the outer loop bounds,it requires 100 cycles to enter and 100
to leave the inner loop. So,in total there are 200 additional loops necessary.
Thus,we perform loop flatten directive in order to flatten all kinds of nested
loops(perfect and semi-perfect)into a single loop hierarchy,achieving less number
of cycles needed to execute all the operations in the loop. In addition,flattened
loops are able to be optimized as a single loop,achieving greater level of
optimization in the united loop body. To apply loop flatten directive,we simply
have to add the following pragma in the C source code inside the desired region:

4.3.3 Timing Results
Applying all the optimizations above we selected the timing results from the

co-simulation stage of design. The co-sim was implemented in SystemC. The
output figure is shown below:

When the signals ap_start and ap_done are both in logic 1 then we know that the
output result is ready and we count the point in which the result is created. In the
figure above,the point is t 0=101,346ms .In the same way we measured all of the
timing points which are shown in the following tables:

91

#pragma HLS loop_flatten

Figure 68: SystemC output

4.3.4 Area optimizations

4.3.4.1 Data types and Bit-lengths

 As discussed before,the bit-lengths of variables in C can affect the size of the
memory required for the RTL implementation. With Vivado arbitrary precision
types we can adjust the word-length exactly to the design' s needs,decreasing the
number of operations and possibly enlarge the initiation interval(II) and cut off
latency. We took advantage of the Vivado types in previous section,achieving great
memory save.[6]

4.3.4.2 Function Inlining

Inlining functions actually removes any function hierarchy,embedding all in
one single function. Inlining can possible reduce area utilization because it permits
the components of each inlined function to ''cooperate'' or optimized more
effectively. Sometimes,when there are small functions Vivado HLS inlines them
automatically. Inline directive has also the capability of making all the functions
below inlined by using the recursive option. So,if we use apply inline directive
recursive option to the top-level function,we actually remove all the hierarchy of
the design. To perform inlining,we simply add the following pragma in the C
source code within the function or region we wish to inline:

92

#pragma HLS inline <region | recursive | off>

Table 1: Timing results(1/2)

time(ms)
no optimizations loop flatten pipeline pipeline+array partition

128x128x 25.729 24.278 12.893 13.4
256x256 101.346 95.631 50.8 52.662
1024x1024 24398 23022.2 3103.7 3225.9

Table 2: Timing results(2/2)

time(ms)
array partition(no pipeline) unroll(unroll_factor=10) unroll(unroll_factor=50)

27,831 24,193 24,085
109,626309 95,296227 94,870815
6700,03494 5824,22282 5798,2229

With the option ''off '' we can eliminate functions or regions to be inlined,when we
have placed inline directive at the top-function,or prevent Vivado HLS from
automatically inlining them.

 In our particular case,since as we mentioned before,the most computationally
expensive function is imblurg(),we decided to inline it to our top function in order
to reduce computational overhead and make the RTL implementation more
resource effective.

4.3.4.3 Directive array_map

A usual technique to reduce the percentage of memory utilization when an
implementation consists of many small arrays is to combine the small arrays into a
larger one. In general,when an array is mapped into a block RAM there is the
possibility that the size of the array does not cover the whole capacity of the block
RAM. So,a more effective use of the FPGA's resources would be to create a large
array that contains all the small ones. Hence,the redundant memory units would be
used optimally.

To perform mapping small arrays into a larger one we simply have to place
the directive array_map into our implementation by adding the following pragma
into the source code:

The variable corresponds the array we are applying the directive,instance is the
new name of the target array of the mapping and the offset is the integer value
which defines the absolute offset in the target array for current mapping operation.
Then,we have to choose between the two types of array mapping:

• horizontal mapping:the default type of mapping which combines the
original arrays into a sequential order creating a single bigger array.

• vertical mapping: this type creates a new array with longer word-length
than the original small arrays.

In our case,we firstly implemented horizontal mapping in the gradient arrays by

93

#pragma HLS array_map variable=<variable> instance=<instance> <horizontal, vertical>
offset=<int>

placing the following pragma into the C source code:

#pragma HLS ARRAY_MAP variable=gradx instance=array3 horizontal
#pragma HLS ARRAY_MAP variable=grady instance=array3 horizontal
#pragma HLS ARRAY_MAP variable=gradxy instance=array4 horizontal
#pragma HLS ARRAY_MAP variable=gradx2 instance=array4 horizontal
#pragma HLS ARRAY_MAP variable=grady2 instance=array4 horizontal

We arranged together the first gradients(gradx and grady) into array3 because the
are used together,and then the rest of the gradients (gradxy,gradx2 and grady2)
into array4.In the following table we present the synthesis report:

It is shown that with the horizontal mapping the utilization percentage is reduced
by 5% or 45 BRAMs. However,the vertical mapping did not bring any
improvement in area utilization. That difference can be explained by the detailed
memory report of the Vivado HLS:

In the horizontal version,we truly have improvement because we take advantage of
the redundant memory blocks of the non array_map version. So,instead of having

94

Figure 69: Array_map horizontalFigure 69: array_map vertical

Table 3:Array_map results

No array_map array_map horizontal array_map vertical
BRAM_18K

Total 499 454 499
Available 890 890 890
Utilization(%) 56,00% 51,00% 56,00%

five arrays of 75 BRAM_18K in the initial version,which makes a total of 375
block RAMs,we map them into two larger arrays,array3 and array4
respectively,with 135 and 195 block-rams. In total,330 block-rams,that makes 45
less. However,vertical mapping just created two larger arrays of 150+225=375
block-rams making no impact on area utilization. That happened because as we
can derive from the Bits column,the bit length was doubled in the first array and
grew up three times in the second. So,we stay for the horizontal version.

4.3.4.3 Directive Resource

In Vivado HLS when a C operator is used,like +,-,* or /, in synthesis step
they are implemented as hardware cores. Vivado can select automatically the
optimal core for each case. However,using the RESOURCE directive user can
determine exactly which operator to be used in RTL description. The syntax of
resource directive is simply adding the following pragma to the C source code:
#pragma HLS resource variable=<variable> core=<core>

Variable is the argument that can be an array,an arithmetic operation or a function
argument and the core is the desired specific library resource which is going to
implement the variable in the RTL behavior.

In our implementation we selected a dual-port asynchronous RAM ,implemented
with LUTs. The results for Test Case 1(image input 256x256) compared with the
initial non-dual port version are shown in the next table:

95

Table 4: Dual port Ram results 256x256

Fpga resources 265x256 256x256 dual port
% BRAM Utilization % BRAM Utilization

Factor=1 56 17
Factor=2 33 10
Factor=4 22 7
Factor=8 11 3
Factor=16 6 2

And are graphically presented in the following chart:

For Test Case 2(input image 1024x1024) we do the same comparison in the
following table:

And are graphically presented in the following chart:

96

Figure 70: Dual port RAM 256x256

Table 5: Dual port Ram results 1024x1024

Fpga resources 1024x1024 1024x1024 dual port
% BRAM Utilization % BRAM Utilization

Factor=1 730 226
Factor=2 374 118
Factor=4 196 64
Factor=8 107 37
Factor=16 62 24

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

90

100 Dual Port RAM

dual port RAM

256x256

factor

%
 B

R
a

m
s

4.4 Synthesizable dynamic memory allocation

Despite all the possible memory optimization techniques,we encountered a

bottleneck considering the memory utilization. The main reason is the natural
operation of the FPGA,since it allows only static memory allocation,which sets the
lower boundary of memory optimization.

 We overcame this issue by incorporating an HLS-synthesizable dynamic
memory management library[27],which was called ''Memluv''. The next figure
presents the flow chart of the dynamic memory allocator:

97

Figure 71: Dual port Ram 1024x1024

0 2 4 6 8 10 12 14 16
0

100

200

300

400

500

600

700

800

Dual Port RAM
1024 x1024
dual port
RAM

factor

%
 B

R
A

M
s

In the flow chart below we can see that Memluv allocator starts with function
MemluvInit().Then,it expects the user to define the actual size of the memory to be
allocated-''Memluv_Depth''. Then,we can apply ''MemluvAlloc()'',which allocates
the desired number of bytes. We can perform multiple times '' MemluvAlloc()'',but
it is mandatory that the sum of the partial number of bytes does not exceed the
total memory allocated initially,that is the '' Memluv_Depth'. Otherwise,a
segmentation fault appears. After the memory space is used,we can free it with the
function ''MemluvFree()'' and allocate it again,if necessary.In the end,we terminate
the process by the function''MemluvEnd()''.

The main advantage of Memluv allocator is that we can define a certain
memory space and do multiple allocations that cover the memory needs of our
application.

98

Figure 72: Memluv Allocator Flow Chart

Therefore,we applied Memluv allocator to our implementation and we present the
results below(compared to static memory allocation):

It is depicted that memluv allocator needs more block RAMs than the static
memory allocation,as expected.

Then we tried to import more harris cores inside our implementation. Then we
present the results:

• Harris cores=2

• Harris cores=4

We realize that with static memory allocation it would not be possible to
implement 4 Harris cores onto FPGA,since it exceeds the available BRAM
memory. However,using dynamic memory allocation permits the multiple
execution of Harris cores without any more need for memory resources.

99

BRAM_18K BRAM_18K % DSP48E DSP48E%
static allocation 564 63 81 9
memluv allocation 667 74 78 9

FF FF% LUT LUT %
static allocation 12766 3 28602 14
memluv allocation 13621 3 30710 15

BRAM_18K BRAM_18K % DSP48E DSP48E%
static allocation 724 81 81 12
memluv allocation 667 74 101 12

FF FF% LUT LUT %
static allocation 16993 4 34037 16
memluv allocation 18106 4 37595 18

BRAM_18K BRAM_18K % DSP48E DSP48E%
static allocation 1044 117 145 17
memluv allocation 667 74 147 17

FF FF% LUT LUT %
static allocation 25002 6 49340 24
memluv allocation 28354 6 59576 29

Obviously,the multiple cores cannot be executed simultaneously,but sequentially.
That means we could embed more Harris algorithms,with the use of a single
FPGA board. If dynamic memory allocation could not be synthesized,we should
use another FPGA board or an array of FPGA boards. In both cases,the cost of our
implementation would be significantly higher. In the following charts we present
the previous measures graphically:

100

BRAM_18K DSP48 FF LUT
0

10

20

30

40

50

60

70

80

Core=1

static allocation

memluv allocation

Hardware Resourses

%
 U

til
iz

a
tio

n

101

BRAM_18K DSP48 FF LUT
0

20

40

60

80

100

120

Core=4

static allocation

memluv allocation

Hardware Resourses

%
 U

til
iz

a
tio

n

BRAM_18K DSP48 FF LUT
0

10
20
30
40
50
60
70
80
90

Core=2

static allocation

memluv allocation

Hardware Resourses

%
 U

til
iz

a
tio

n

Chapter 5: Conclusion

In this thesis we examined an applicability study of modern HLS for
computer vision algorithms. As a case study,we employed the Harris & Stephens
algorithm [19] targeting a Kintex-7 FPGA device. We examined 2 cases with 2
different input image sizes(256x256 and 1024x1024) and one case with 256x256
size and larger number of detectable corners. In all of the cases, our
implementation reacted efficiently.

So,our proposed methodology is to apply task-level algorithmic
transformations and then continue with system-level optimizations through HLS
directives.

The first step was to make a profile of our C-code implementation using
valgrind tool. Based on our results,we concentrated our attention to a specific
function that occupies about 62% of our total execution cycles.

At next step,we performed a number of optimizations to improve the initial
performance,in terms of throughput,latency and area utilization.

The first step was to optimize the word-length and replace all the floating
point arithmetic with integers. Next,we took advantage of the arbitrary precision
data types that Vivado HLS provides (fixed point replacements of build-in C data
types).The error that was expected to occur was measured inside the desired error
margin,which is deviation of 0.1 in the coordinates of each detected corner. We
also eliminated all the dynamic memory functions(remove malloc()/free()) and
replaced them with static memory allocations(e.g arrays).

Then we applied parametric fragmentation of the input image and thus the
processing procedure changed:all of the calculations repeated multiple times for
each one of the image fragments.

Finally, we performed a number of optimizations using the synthesis
directives that Vivado HLS provides. We placed directives for increasing
throughput(pipeline,unroll,array partition),for minimizing latency(loop merge,loop
flatten) and to reduce area utilization(array map,resource,inline).

We also examined another case study with implementing a dynamic memory
allocator that is synthesizable and thus can be used instead of static memory
procedures. The result is that our implementation is able to embed multiple
algorithm cores,in our special case is Harris detector,without requesting more

102

memory. However,it is inevitable that there would be necessary more resources
besides memory(like LUT's,DSP's and FFs).

Combining all of the possible solutions led in a design space exploration.
Band-devision techniques provide a reduction of about 9x BRAM decrease at the
best case. Our proposed prototyping framework also achieved a simulation
environment of up to about 6x faster .

Therefore,our implementation proved that FPGA's can accelerate
significantly a high-complexity Computer Vision algorithm,like Harris corner
detection, and deal with the intensive computational load efficiently.

103

Chapter 6:Future Work

During the past few years,traditional ways of performance improvement
have to be reconsidered,since Moore's Law has to be re-explained. According to
the new tendencies, hardware designers have to deal with new constraints:the
exponential clock rate growth has reached an end so the new era is to double the
number of cores per chip,instead of doubling the clock frequency every 18
months[24]. Furthermore,over the last few years,networking systems are the on the
focus of attention concerning their performance,since they are enriched with more
and more capabilities in software layer[25]. The solution to both needs is
next-generation System-on-Chip (SoC) communications processors that combine
multiple cores with multiple hardware acceleration engines.

 Until recently,the solution to every computational challenge was Moore's
Law-doubling the processor performance every 18 months. However,the data
growth outnumbers Moore's Law and so general purpose processors,despite of
embedding multiple cores,cannot reach today's performance requirements. They
are just too slow to implement functions that are executed in the core of several
popular applications,like cryptographic security encryption/decryption,digital
signal processing or traffic management,which are necessary for achieving Quality
of Results(QoR). Sometimes,it happens these functions to be executed
sequentially,so the presence of multiple cores cannot provide simultaneous access.
For all the previous reasons,such computationally intensive functions are usually
implemented in hardware.

The procedure of implementing one of these functions in hardware is
presented in that thesis. Especially,the Harris & Stephens corner detection
algorithm is successfully mapped onto a specific FPGA device and its performance
is optimized through the design process.

A step forward would be to embed a multi-core accelerator system alongside
with a CPU processor,creating a Sytem-on-Chip(SoC).FPGAs are now powerful
computing devices and they are suitable for use as fine-grained accelerators. This
trend is currently followed by vendors and what is under research is to combine a

104

vendor's IP (intellectual property) into a custom acceleration engine,within a SoC.
That is,to manufacture a CPU-FPGA hybrid chip that consists of traditional CPU
cores with FPGAs in a single chip. Thus,with FPGAs integrated into CPU's,each
chip will be possible to be customized to optimal performance to specific
workloads. Until now what has been announced is that FPGAs are to be embedded
into data center CPUs to deal with web-based, storage or networking workloads.
[26]

One of the largest sector vendors,Microsoft,announced recently that they used
FPGA to accelerate data center performance and reported several impressive
results :

• 95% more throughput
• only 10% more power
• 30% total cost of ownership

It is also revealed by Intel that they plan to integrate FPGAs into CPUs with
estimated performance improvement at about 20x.

There are still some challenges into co-operation of CPUs and FPGAs,like
the integration process itself. Another issue is the memory sharing and the
coherence protocols that should be applied,or generally the communication
between the components of the hybrid chip.

In the end,however,those limitations will be surpassed and reconfigurable
computing will be widely used in distributed systems,providing an efficient
solution to increase CPU's performance. So,Hardware accelerators are capable of
keeping pace along with the intensive grow of data volume and give a reliable
alternative to CPU-based multi-core systems.

105

References

[1] Mike Thompson, EE Times “Mixed-signal FPGAs provide Green Power”,7/2/2007,
(URL:http://www.eetimes.com/document.asp?doc_id=1271543)

[2] Peter Clarke, Xilinx, “ASIC vendors talk licensing”, EETimes, 6/22/2001,
(URL:http://www.eetimes.com/document.asp?doc_id=1180867)

[3] Dylan McGrath,EE Times, “Gartner Dataquest analyst gives ASIC, FPGA markets
clean bill of health”, 6/13/2005,(URL:http://www.eetimes.com/document.asp?
doc_id=1154636)

[4] Xilinx Inc, “Virtex-4 Family Overview” , August 30, 2010,
(URL:www.xilinx.com/support/documentation/data_sheets/ds112.pdf

[5] David W. Page, LuVerne R. Peterson, “ Re-programmable PLA”, Jan 11,
1983(URL:http://www.google.com/patents/US4508977)

[6]International Directory of Company Histories, Vol. 16. St. James Press, Xilinx, Inc.
History, 1997

[7] Wayback Machine,“History of FPGAs”, April 12,
2007(URL:https://web.archive.org/web/20070412183416/http://filebox.vt.edu/users/tma
gin/history.htm)

[8] Clive Maxfield(2004), “The Design Warrior's Guide to FPGAs: 1st
Edition:Devices,Tools and Flows”,Elsevier. p. 4,ISBN: 978-0750676045

[9] Dylan McGrath, EE Times, ''FPGA Market to Pass $2.7 Billion by '10, In-Stat Says'',
May 24, 2006.

[10] Xilinx, “Zynq-7000 All Programmable SoC Technical Reference Manual”,
September 19, 2014

[11] Aldec Inc. (URL:''https://www.aldec.com/en/company)

106

http://www.eetimes.com/news/design/business/showArticle.jhtml?articleID=188102617

[12] Rahul Gargon, "FPGA news roundup:Microsoft "Catapult",Intel's hybrid and
Xilinx OpenCL", June 21,2014
(URL:''http://www.anandtech.com/show/8189/fpga-news-roundup-microsoft-catapult-int
els-hybrid-and-xilinx-opencl- '')

[13] Xilinx, “Introduction to FPGA Design with Vivado High-Level Synthesis” , July 2,
2013(URL:http://www.xilinx.com/support/documentation/sw_manuals/ug998-vivado-int
ro-fpga-design-hls.pdf)

[14] Reinhard Klette, “Concise Computer Vision:An introduction into Theory and
Algorithms”,Springer 2014,ISBN:978-1447163190

[15] Linda G. Shapiro and George C. Stockman, “Computer Vision”,
2001,ISBN:978-0130307965

[16] Katz, Gregory, ''2018 mission: Mars rover prototype unveiled in UK'', 27 March
2014

[17] Nalini K. Ratha,Anil K. Jain, ''Computer Vision Algorithms on Reconfigurable
Logic Arrays'',IEEE Transactions on Parallel and Distributed Systems,January 1999

[18] W. James MacLean ,'' An Evaluation of the Suitability of FPGAs for Embedded
Vision Systems '', Computer Vision and Pattern Recognition – Workshops.IEEE
Computer Society Conference, 2005

[19] Chris Harris & Mike Stephens, “A Combined Corner and Edge Detector”, Plessey
Research Roke Manor, United Kingdom,1988

[20]Xilinx, “Vivado Design Suite User Guide:High-Level-Synthesis”, May 30, 2014

[21] http://valgrind.org/docs/manual/quick-start.html#quick-start.prepare, Valgrind,

[22] T.J. Todman, G.A. Constantinides, S.J.E. Wilton, O. Mencer, W. Luk and P.Y.K.
Cheung, “Reconfigurable computing: architectures and design methods”, March 2005

[23] Xilinx,“Vivado Design Suite User Guide:Getting Started”, July 25, 2012

107

http://www.anandtech.com/show/8189/fpga-news-roundup-microsoft-catapult-intels-hybrid-and-xilinx-opencl-
http://www.anandtech.com/show/8189/fpga-news-roundup-microsoft-catapult-intels-hybrid-and-xilinx-opencl-

[24] Rahul Gargon, "FPGA news roundup:Microsoft "Catapult",Intel's hybrid and Xilinx
OpenCL", June 21,2014

[25] David Sonnier, "Next-generation multicore SoC architectures for tomorrow's
communications networks", December 11th, 2012

[26] Rahul Gargon, "FPGA news roundup:Microsoft "Catapult",Intel's hybrid and Xilinx
OpenCL", June 21,2014

[27] Dionysios Diamantopoulos, Sotirios Xydis, Kostas Siozios, and Dimitrios
Soudris,''Dynamic Memory Management in Vivado-HLS for Scalable Many-Accelerator
Architectures'',11th International Symposium on Applied Reconfigurable Computing
 15-17 April 2015

108

	Περίληψη
	Abstract
	Acknowledgements
	Chapter 1:Introduction
	1.1 Introduction to FPGA
	1.1.1 History
	1.1.2 Latest Trends
	1.1.3 Applications
	1.1.4 FPGA Architecture
	1.1.4.1 Memory
	1.1.4.2 LUT
	1.1.4.3 Flip-Flops
	1.1.4.4 DSP Blocks

	1.2 Programming the FPGA

	Chapter 2: Computer Vision
	2.1 Definition
	2.2 Applications
	2.3 Computer Vision and FPGA

	
	Chapter 3:Harris Corner Detector
	3.1 Introduction to feature detection
	3.1.1 Moravec detector
	3.1.2 The Harris & Stephens / Plessey / Shi–Tomasi corner detection algorithm

	3.2 Implementation of Harris Algorithm
	3.3 Vo_anms() analysis
	3.3.1 Non-recursive implementation
	3.3.2 Select the strongest corners

	Chapter 4: Harris Implementation
	4.1 Harris syntesizable version
	4.1.1 Memory optimizations
	4.1.2 Vo_anms() synthesis

	4.2 Parametric Fragmentation of input image
	Test Case 1
	Test Case 2
	Test Case 3

	4.3 Synthesis Optimizations
	4.3.1 Throughput Optimizations
	4.3.1.1 Pipeline
	4.3.1.2 Dataflow
	4.3.1.3 Array partition
	4.3.1.4 Loop unrolling

	4.3.2 Latency optimizations
	4.3.2.1 Latency directive
	4.3.2.2 Loop merge directive
	4.3.2.3 Loop flatten directive

	4.3.3 Timing Results
	4.3.4 Area optimizations
	4.3.4.1 Data types and Bit-lengths
	4.3.4.2 Function Inlining
	4.3.4.3 Directive array_map
	4.3.4.3 Directive Resource

	
	4.4 Synthesizable dynamic memory allocation
	

	Chapter 5: Conclusion
	Chapter 6:Future Work

