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Abstract

The scope of this Diploma Thesis is to explore several performance, power consumption
and scalability aspects of the execution of Big Data and Cloud Based workloads on
the Intel Single-chip Cloud Computer Manycore Platform, which differentiates from
typical cluster topologies, since it integrates 48 cores on a single chip. The applications
we study are implemented using the MapReduce framework on top of the Hadoop Dis-
tributed File System. For the purpose of this analysis we have developed a runtime
monitoring infrastructure which utilizes Ganglia, a monitoring tool for large clusters.

Chapter 1 initially states the importance of studying Cloud Computing and Big
Data Applications and presents some basic aspects of the concepts this diploma thesis
deals with. This chapter concludes with the contribution this thesis attempts to make
in the field of scale-out applications and many-core systems.
Chapter 2 describes recent research findings in the related fields of scale-out work-
loads and performance and power monitoring of the Intel SCC that have provided the
background and inspiration for this diploma thesis.
Chapter 3 describes the architecture of the Intel SCC in detail, emphasizing on aspects
of the platform whose understanding is crucial for application behavior characteriza-
tion.
Chapter 4 presents a detailed analysis of the Hadoop Distributed File System and
the MapReduce framework, by discussing key implementation aspects and providing
guidelines of how to configure an HDFS cluster installation and tune the execution of
MapReduce jobs.
Chapter 5 provides a detailed description of the tools that have been used and de-
veloped so as to deploy and launch Hadoop Clusters on the Intel SCC. The Runtime
Environment setup and the Hadoop Cluster installation processes are described and
explained in detail.
Chapter 6 presents the Runtime Monitoring Framework we have developed for the
Intel SCC. The Ganglia Cluster topology we have configured for the Intel SCC is ana-
lyzed and the process of collecting, storing and visualizing runtime metrics is explained.
Chapter 7 describes and explains the experimental analysis we have conducted for
four MapReduce applications when they run on the Intel SCC. Our investigation is
focused on the behavior of those applications for varying input sizes, HDFS cluster
topologies and frequency settings for the cluster nodes.
Chapter 8 concludes the findings of this diploma thesis and presents suggestions for
future work.
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Chapter 1

Introduction

Cloud computing is emerging as a dominant computing platform for providing scal-
able online services to a global client base. Today’s popular online services (e.g. web
search, social networking and business analytics) are characterized by massive working
sets, high degrees of parallelism and real-time constraints. These characteristics set
scale-out applications apart from desktop (SPEC), parallel (PARSEC) and traditional
commercial server applications.

In the context of digitalized information explosion, more and more businesses are an-
alyzing massive amount of data - so called big data - with the goal of converting big
data to ”big value”. Typical data analysis workloads include business intelligence, ma-
chine learning, bio-informatics and ad hoc analysis. The business potential of the data
analysis applications in turn is a driving force behind the design of innovative data
center systems, both hardware and software.

The explosion of accessible human generated information necessitates automatic an-
alytical processing to cluster, classify and filter this information. The MapReduce
paradigm has emerged as a popular approach to handling large-scale analysis, farming
out requests to a cluster of nodes that first perform filtering and transformation of the
data (map) and then aggregate the results (reduce).

This introductory chapter initially presents a synopsis of the concepts of distributed
file systems and the MapReduce framework, that this thesis is going to deal with in
the following chapters. Consecutively, it provides a high-level description of the Intel
SCC architecture, the big data applications that have been ported on the Intel SCC
and characterized and the Ganglia monitoring system, which has been leveraged so as
to extract all the necessary metrics that enable us to track the performance of these
applications. It concludes with the contribution that this thesis attempts to make in
the fields of scale-out applications and manycore systems.
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1.1 The Hadoop Distributed File System

The Hadoop Distributed File System (HDFS) has been developed by Apache, as part
of the Apache Hadoop Core project. It was initially built so as to provide infrastruc-
ture for the Apache Nutch Web Search Engine project. It was predominantly inspired
by the Google File System (GFS), a proprietary distributed file system which was de-
veloped in Google Labs by Google. GFS was designed so as to provide efficient and
reliable access to data using large clusters of commodity hardware. Therefore, HDFS
and GFS share some common principles. The design and the implementation of HDFS
is based on some key assumptions and goals.

First, since the filesystem consists of hundreds or even thousands of storage machines
built from inexpensive commodity parts and is accessed by a comparable number of
client machines, it is guaranteed that some of the components are not functional for any
given time and will not recover from their current failures. Therefore, since component
failures are the norm rather than the exception, constant monitoring, error detection,
fault tolerance and automatic recovery must be integral to the system.

Second, applications that run on HDFS have large datasets, meaning that a typical file
in HDFS is gigabytes to terrabytes in size. Thus, HDFS is tuned to support large files.
It provides high aggregate data bandwidth and scales to hundreds of nodes in a sin-
gle cluster. It can potentially support tens of millions of files in a single cluster instance.

Third, the supported access pattern for the files that are stored in HDFS is muta-
tion by appending new data rather than overwriting existing data or writing data at
a random offset. This assumption greatly simplifies coherency issues and places the
focus of performance optimization on the append operation. In addition, data reads
are sequential in most cases.

Fourth, applications that run on HDFS need streaming access to their datasets. They
are not general purpose applications that run on general purpose file systems. As a
result, HDFS is designed for batch processing rather than interactive use by users.
The emphasis is on high throughput of data accesses rather than low latency of data
accesses. In order to achieve this functionality, several hard requirements that are im-
posed by POSIX and are not needed for applications that are targeted for HDFS have
been traded to increase throughput rates.

Fifth, HDFS provides interfaces for applications to move themselves closer to where
the data is located because of the fact that a computation requested by an application
is much more efficient if it is executed near the data it operates on, especially when the
size of the data is huge. This minimizes network congestion and increases the overall
throughput of the system. The assumption is that it is often better to migrate the
computation closer to where the data is located rather than moving the data to where
the application is running.
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Sixth, HDFS has been designed to be easily portable from one platform to another.
This facilitates widespread adoption of HDFS as a platform of choice for a large set of
applications.

1.2 The MapReduce Framework

MapReduce is a software framework for easily writing applications which process vast
amounts of data in parallel on large clusters of commodity hardware in a reliable, fault
tolerant manner. The MapReduce framework that has been implemented by Apache,
is designed to run on top of an HDFS cluster deployment. The datasets that are pro-
cessed by MapReduce jobs can potentially scale to several terabytes. MapReduce jobs
can utilize clusters that consist of hundreds or even thousands of nodes.

A MapReduce job usually splits the input data set into independent chunks which
are processed by the map tasks in a completely parallel manner. The framework sorts
the outputs of the maps, which are then input to the reduce tasks. The map tasks
process key/value pairs to generate a set of intermediate key/value pairs and the reduce
tasks merge all intermediate values associated with the same intermediate key, so as
to produce the final key value pairs, which are the output of the MapReduce job.

The input and the output of a MapReduce job are stored in HDFS. This decision
allows the framework to effectively schedule tasks on the nodes where the data is al-
ready present, resulting in very high aggregate bandwidth across the cluster.

The MapReduce framework takes care of the details of partitioning of the input data,
scheduling the program’s execution across a set of machines , handling machine failures
and handling the required inter machine communication. Therefore, it provides a level
of abstraction that hides the messy details of parallelization, fault tolerance, data distri-
bution and load balancing, allowing programmers to express the simple computations
that they are trying to perform.

1.3 Energy Inefficiencies of Hadoop Clusters

Typically, the energy efficiency of a cluster can be improved in two ways: by matching
the number of active nodes to the current needs of the workload, placing the remaining
nodes in low-power standby modes and by engineering the compute and storage features
of each node to match its workload and avoid energy waste on oversized components.
Unfortunately, MapReduce frameworks have many characteristics that complicate both
options.

MapReduce frameworks implement a distributed data-store comprised of the disks
in each node, which enables affordable storage for multi-petabyte datasets with good
performance and reliability. Since high data availability is demanded, even idle nodes
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remain powered on to ensure this requirement is met. Therefore, while significant pe-
riods of inactivity are observed, the need for data availability prohibits the shutting
down of idle nodes and a significant amount of the power that is consumed is wasted on
idle CPU cycles [5]. Figure 1.1 depicts the distribution of lengths of system inactivity
periods across a cluster during a multi-job batch workload, comprised of several scans
and sorts of 32 GB of data. Figure 1.2 shows the average CPU utilization across a
cluster when sorting 128 GB of data.

Figure 1.1: Distribution of the lengths of system inactivity periods, [5]

Figure 1.2: Average CPU utilization, [5]

As a consequence of the above, the energy efficiency of Hadoop clusters is an area to
be searched. This diploma thesis makes an attempt to investigate performance and
power consumption tradeoffs of MapReduce workloads. The Intel SCC provides a fine-
grained power management API which enables us to perform frequency and voltage
perturbations on subsets of cores of the SCC board. Later in this thesis, we utilize this
power management API so as to explore power saving opportunities that can result
from statically scaling down the frequency of nodes that are expected to have low CPU
utilization during the execution of a MapReduce job.

1.4 The Intel SCC Manycore Platform

The Single-chip Cloud Computer is a 48-core Intel Architecture (IA) many-core expre-
rimental processor prototype. It is a research chip, which was built in Intel Labs so
as to study many-core CPUs, their architectures and the techniques to program them.
The Intel SCC was created as part of Intel’s Tera Scale Computing Research Program,
which is a worldwide effort to advance computing technology for the next decade and
beyond. The program is investigating how to increase the performance and capabilities
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of current computers.

The research regarding the Intel SCC has the following goals:

? To demonstrate a shared memory message-passing architecture for a large number
of cores and to experiment with its programmability and scalability.

? To design and explore the performance and power characteristics of an on-die 2D
mesh fabric.

? To explore benefits and costs of software-controlled dynamic voltage and fre-
quency scaling for multiple cores.

The SCC is the second generation processor design that resulted from Intel’s Tera-Scale
research. The first was Intel’s Teraflops Research Chip; it had 80 non-IA cores. The
second is the SCC; it has 24 tiles and two cores per tile. The SCC core is a full IA
P54C core and hence can support the compilers and OS technology required for full
application programming. Figure 1.3 shows a stylized view of the SCC chip. The 24
tiles of the SCC board are arranged in a XxY = 6x4 array. There is a router associ-
ated with each tile. The tiles are connected by a fully synchronous mesh fabric with
rigorous performance and power requirements. The SCC has multiple voltage and fre-
quency domains, some configurable at startup, others that may be dynamically varied
for application-controlled fine grained dynamic power and performance management.
The SCC has four on-die memory controllers capable of addressing a total of up to 64
GB of external memory. It also has a small amount of fast local memory located in
each tile. Message-passing support is provided that uses shared regions of local mem-
ory or off-die main memory. The SCC has a new memory type and a new processor
cache instruction to facilitate memory management.

The entire system is controlled by a Board Management Microcontroller (BMC) that
initializes and shuts down critical system functions. It is commonly connected by a
PCI-express cable to a PC acting as a Management Console (MCPC). The Management
Console is a 64-bit PC running some version of Linux. Intel Labs provides software
that runs on the Management Console to manage the SCC chip. Key features of this
software are the ability to load a Linux image on each core or a subset of cores, to
read and modify SCC configuration registers and to load programs on the SCC cores.
Running Linux on the SCC cores is the most common configuration, but it is not
mandatory.

1.5 The Benchmark Suites

This diploma thesis utilizes benchmarks that have been introduced as part of the
Cloudsuite and DCBench benchmark suits. Both Cloudsuite and DCBench employ
machine learning algorithms implementations that are included in Apache Mahout.
Apache Mahout is a scalable machine learning library which is implemented on top
of distributed systems. The Apache Mahout version we use includes implementations
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Figure 1.3: Intel SCC Top-Level Architecture

of core machine learning algorithms such as clustering, classification and collaborative
filtering using the MapReduce framework, on top of an HDFS deployment.

Cloudsuite is a benchmark suite for emerging scale-out applications. It consists of
eight applications that have been selected based on the popularity in today’s datacen-
ters. The benchmarks are based on real-world software stacks and represent real world
setups. The application categories that are covered by Cloudsuite are Data Analytics,
Data Serving, Data Caching, Graph Analytics, Media Streaming, Software Testing,
Web Search and Web Serving. In this diploma thesis, we examine the data analytics
benchmark, which provides an implementation of the Bayesian Classification algorithm
using the MapReduce framework, which is derived from Apache Mahout.

DC Bench is a benchmark suite for representative workloads that are found in mod-
ern datacenters. DC Bench offers implementations of applications that are based on
diverse programming models which run in large distributed environments employing
state-of-art techniques. DC Bench offers implementations for the following datacenter
workloads : Base Operations (e.g. Wordcount), Classification, Clustering, Recom-
mendation, Association Rule Mining, Segmentation, Warehouse Operations, Feature
Reduction, Vector Calculation, Graph Mining, Services and Interactive Real-Time Ap-
plications. Those applications are implemented using either the MapReduce or the
MPI paradigm. In these diploma thesis, we examine three benchmarks that are pro-
vided by DC Bench, which are Wordcount, K-Means Clustering and Frequent Pattern
Growth, that belong to the Base Operations, Clustering and Association Rule Min-
ing categories respectively. The implementation for K-Means Clustering and Frequent
Pattern Growth are provided by the Apache Mahout library, whereas Wordcount is
derived from the Hadoop Examples that accompany every HDFS installation.
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1.6 The Ganglia Monitoring System

In order to capture critical per core metrics such as CPU utilization and network traf-
fic, we utilize the monitoring infrastructure that is provided by Ganglia, which is a tool
for large cluster monitoring. Ganglia is architecturally composed by three daemons :
gmond, gmetad and gweb. Operationally, each daemon is self-contained, but all three
are architecturally cooperative (Figure 1.4).

gmond is responsible for collecting the metrics that are specified in each configu-
ration file in each host of the cluster. gmond instances share with each other the state
of the node they reside on, so that each gmond instance knows the current value of
every metric recorded by every other node in the Ganglia cluster. This communication
takes place with UDP datagrams, through either multicast or unicast channels. An
XML-format dump of the entire cluster can be requested from a remote poller from
any single node in the cluster running gmond, on port 8649.

gmetad periodically polls gmond nodes and stores the metrics that it receives in
round-robin databases using RRDtool. Since each gmond node that is polled provides
the values for all the metrics that are collected in the entire cluster, gmetad needs to
poll only one gmond node per gmond cluster.

gweb is Ganglia’s frontend visualization UI. gweb is implemented in PHP and ex-
poses the data that is stored in the RRD databases by gmetad. It typically runs under
the Apache Web Server. gweb gives easy and instant access to any metric from any
host in the network. It graphically summarizes the grid using graphs that combine
metrics by cluster and provides sane click-throughs for increased specificity.

1.7 The Contribution of this Diploma Thesis

This diploma thesis provides a detailed description of the tools that have been used and
developed so as to build Hadoop Clusters on the Intel SCC, with respect to technical
problems that have been encountered and physical limitations that the platform in-
troduces. In addition, it presents a run-time monitoring framework for the Intel SCC,
which enables us to capture per-core metrics such as CPU utilization and network traf-
fic as well as aggregate metrics for the entire SCC board such as power consumption and
board temperature. This infrastructure is subsequently utilized so as to characterize
four MapReduce applications (Wordcount, Bayes Classification, K-Means Clustering
and Frequent Pattern Growth) in terms of performance, scalability and power con-
sumption when they run on SCC hardware.

The behavior of these applications is studied for varying input sizes so as to explore
the scalability of those applications in terms of input size when they run on the SCC
platform. This approach enables us to determine the input size that scalability breaks
for each application, thus the completion of a MapReduce job is impossible and to
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Figure 1.4: Ganglia Architecture

correlate this information with physical limitations of the SCC platform.

In addition, the performance of these applications is examined for diverse cluster de-
ployments that utilize different amount of SCC cores, resulting in different cluster
topologies on the SCC board. For cluster topologies that leverage only some of the
cores of the SCC board, the remaining cores operate at the minimum frequency, so as
to avoid power being wasted on idle cycles. This strategy gives us the opportunity to
draw conclusions regarding the scalability of those applications in terms of the number
of cores they employ, so as to define the point at which phenomena such as network
congestion or I/O bandwidth saturation become bottlenecks, resulting in suboptimal
performance and utilization of the on-die resources.

Furthermore, performance and power consumption tradeoffs are investigated so as to
spot possible power and energy saving opportunities that those applications might con-
ceal. This goal is achieved by configuring different groups of cores (frequency islands)
to run at different frequencies. The target of our is investigation is to realize if stati-
cally scaling down the frequency of cores that are expected to have low CPU utilization
throughout the execution of a MapReduce job significantly degrades performance, thus
canceling the benefits of power consumption saving.
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Chapter 2

Related Work

This chapter presents a detailed analysis and presentation of recent research findings
related to the fields that this diploma thesis intends to cover. It is divided into two
sections. In the first section findings regarding the field of scale-out workloads are
presented. In the second section, research results in the field of performance and power
monitoring of the Intel SCC are described.

2.1 Scale-Out Workloads

Cloud computing is emerging as a dominant computing platform for delivering scalable
online services to a global client base. Today’s popular online services, such as web
search, social networks and video sharing are all hosted in large data centers. With the
industry rapidly expanding, service providers are building new data centers, augment-
ing the existing infrastructure to meet the increased demand. However, while demand
for cloud infrastructure continues to grow, the semiconductor manufacturing industry
has reached the physical limits of voltage scaling [12, 13], no longer able to reduce
power consumption or increase power density in new chips. Physical constraints have
therefore become the dominant limiting factor for data centers, because their sheer size
and electrical power demands cannot be met.

Recognizing the physical constraints that stand in the way of further growth, cloud
providers now optimize their data centers for compute density and power consumption.
Cloud providers have already began building server systems specifically targeting cloud
data centers, improving compute density and energy efficiency by using high-efficiency
power supplies and removing unnecessary board-level components such as audio and
graphics chips [14, 15].

Today’s volume servers are designed with processors that are essentially general-purpose.
These conventional processors combine a handful of aggressively speculative and high
clock frequency cores supplemented by a large on-chip cache. Recently, tiled proces-
sors have emerged as competition to volume processors in the scale-out server space
[16]. Recognizing the importance of per-server throughput, these processors use a
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large number of relatively simple cores, each with a slice of the shared LLC, intercon-
nected via a packet-based mesh interconnect. Lower-complexity cores are more efficient
than those in conventional designs [17]. Additionally, the many-core architecture im-
proves throughput compared to conventional chips and memory and I/O bound scale
out workloads. Despite the differences in the chip-level organization, the technology
scaling trends of tiled processors are similar to conventional designs; each technology
generation affords more tiles, which increases the core count, cache capacity and inter-
connect resources.

In the context of processors for scale-out applications, both architectures make sub-
optimal use of the die area. As recent research examining scale-out [10] and traditional
server workloads [18] has demonstrated, large caches, such as those found both in
conventional and tiled designs, are inefficient due to limited reuse at the LLC result-
ing from vast data footprints of these applications. In fact, large LLC configurations
have been shown to be detrimental to performance, as they increase the fetch latency
of performance-critical instructions whose footprint exceeds the capacity of first-level
caches. Moreover, recent work has identified significant over-provisioning in conven-
tional server chip’s core capabilities, on-die interconnect, and memory bandwidth.

Micro-architectural studies of scale-out workloads have proved a large mismatch be-
tween the demands of the scale-out workloads and today’s predominant processor
micro-architecture [10]. It has been demonstrated that:

? Scale-out workloads suffer from high instruction-cache miss rates. In-
struction caches and associated next-line prefetchers found in modern processors
are inadequate for scale-out workloads (Figure 2.1).

Figure 2.1: L1-I and L2 instruction cache miss rates for scale-out workloads compared
to traditional benchmarks, [10]

? Instruction- and memory-level parallelism in scale-out workloads is
low. Modern aggressive out-of-order cores are excessively complex, consuming
power and on-chip area without providing performance benefits to scale-out work-
loads (Figure 2.2).

10



Related Work Diploma Thesis

Figure 2.2: Instruction and Memory - Level Parallelism for scale-out workloads com-
pared to traditional benchmarks, [10]

? Data working sets of scale-out workloads considerably exceed the ca-
pacity of on-chip caches. Processor real-estate and power are misspent on
large last-level caches that do not contribute to improved scale-out workloads
performance (Figure 2.3).

Figure 2.3: Performance sensitivity to LLC capacity for scale-out workloads, [10]

? On-chip and off-chip bandwidth requirements of scale-out workloads
are low. Scale-out workloads see no benefit from fine-grained coherence and
high memory and core-to-core communication bandwidth (Figure 2.4).

Based on those findings, methodologies for designing scalable and efficient scale-out
processors have been proposed [11]. Those studies have verified that smaller caches
than can capture the dynamic instruction footprint of scale-out workloads, afford more
die area for the cores, without penalizing per core performance. Moreover, it has been
demonstrated that while the simpler cores found in tiled designs are more effective
than conventional server cores for scale-out workloads, the latency incurred by the on-
chip interconnect in tiled organizations lowers performance and limits the benefits of
integration, as additional tiles result in more network hops and longer delays.

Performance Density, defined as throughput per unit area is used to quantify how
effectively an architecture uses the silicon real-estate. Proposed design methodologies
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Figure 2.4: Average off-chip memory bandwidth utilization for scale-out workloads,
[10]

[11] derive a performance density optimal processor building block called a pod, which
tightly couples a number of cores to a small LLC via a fast interconnect. As technol-
ogy scales to allow more on-chip cores, those methodologies calls for keeping the design
of the pod unchanged, replicating the pod to use up the available die area and power
budget. A key aspect of the Proposed architecture is that pods are stand-alone servers,
with no inter-pod connectivity or coherence.

Figure 2.5: Comparison of Conventional, Tiled and Scale-Out architectures, [11]

With the use of analytic models and cycle-accurate full-system simulation of a diverse
suite of representative scale-out workloads, it is demonstrated that:

? The core and cache area budget of conventional server processors is misallocated,
resulting in a performance density gap of 3.4× to 6.5× against an optimally-
efficient processor.

? The distributed cache architecture in tiled designs increases access latencies and
lowers performance, as manifested in a performance density gap of 1.5× to 1.9×
versus an optimally-efficient processor.

? Performance density can be used to derive an optimally efficient pod that uses a
small (i.e. 2-4 MB) last-level cache and benefits from a high core-to-cache area
ratio and simple crossbar interconnect.
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? Replicating pods to fill the die results in an optimally-efficient processor which
maximizes throughput and provides scalability across technology generations.
For example, in the 20 nm technology, scale-out processors improve performance
density by 1.5× - 6.5× over alternative organizations.

Efforts have also been made towards improving the energy efficiency of MapReduce
frameworks like Hadoop [5]. It has been shown that Hadoop has the global knowledge
necessary to manage the transition of nodes to and from low-power modes. Hence,
Hadoop should be, or cooperate with, the energy controller for a cluster. It has also
been shown that it is possible to recast the data layout and task distribution of Hadoop
to enable significant portions of a cluster to be powered down while still fully opera-
tional. Energy can be conserved at the expense of performance, as there is a trade-off
between these two.

In order to enable the disabling of storage nodes without affecting data availability, a
new invariant has been proposed for use during block replication: at least one replica of
a data-block should be stored in a subset of nodes referred as the covering subset. The
premise behind a covering subset is that it contains a sufficient set of nodes to ensure
the immediate availability of data, even were all nodes not in the covering subset to
be disabled. The experimental evaluation of this proposition has clearly demonstrated
that while data availability is preserved, energy savings come with a deleterious im-
pact on performance. However, it is argued that nodes tend to contribute less to
performance than they do in energy consumption. Figure 2.6 depicts the performance
and energy consumption trade-offs that are observed while running web data sort and
web data scan MapReduce jobs on a 36-node cluster with a covering subset of 9 nodes.

Figure 2.6: Runtime, Energy Consumption and Average Power Consumption for the
32 GB Sort and 32 GB Scan workloads as nodes are disabled, [5]

This diploma thesis attempts to explore the behavior of scale-out workloads, which
have been implemented using the MapReduce framework, when they are executed on
the Intel SCC, which is many core platform, integrated on a single chip, as opposed to
the traditional cluster topology organization.
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2.2 Performance Analysis and Power Consumption

Monitoring on the Intel SCC

There has been a continuous change over the past years in CPU design and development
towards both power-aware hardware architectures as well as many-core processors. The
Intel SCC is a highly configurable many-core chip that provides unique opportunities
to optimize run time, communication and memory access as well as power and energy
consumption of parallel programs.

Significant efforts have been made to analyze and characterize the performance be-
havior of the chip under various power settings, mappings of processes to cores and
memory controllers as well as different techniques for data exchange between cores
through benchmarking [19]. Conclusions from those studies have shown that:

? Data exchange based on shared memory is slower compared to using a message
passing scheme, which utilizes the on-chip SRAM of the Intel SCC, called the
Message Passing Buffer. The performance advantage of communication using
message passing compared to shared memory varies from 3.26× to 9.06×. The
reason for the comparatively low performance of shared memory communication
lies in the time required to copy the data between private and shared memory
at the sender and the receiver core. In addition, communication time increases
linearly with the number of cores that are involved regardless of the size of the
message that is sent. Figure 2.7 shows the communication time required to
complete a broadcast operation using shared memory and message passing data
exchange for various data sizes with increasing number of cores.

Figure 2.7: Communication time required to complete a broadcast operation using
shared memory and message passing data exchange, [19]

? Contrary to popular belief, lowest energy consumption is not achieved for the
fastest execution time but rather for a medium frequency-voltage setting, de-
pending on the program being executed. Figure 2.8 depicts the experimental
results that where derived from the execution and run-time monitoring of the
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BT and LU NAS parallel benchmarks, NAS problem classes A and B and Gad-
get2 simulator in terms of overall energy consumption [23, 24]. It is evident that
lowest energy consumption is reached for a core frequency of 400 or 320 MHz,
depending on the application. As a consequence, the benefits of core clock fre-
quency and voltage scaling depend on the actual program executed and whether
it is computationally-bound.

Figure 2.8: Energy consumption for all possible core clock frequencies, [19]

? In order to improve the memory access behavior it is more beneficial to increase
the clock frequency of both, mesh network and memory controllers, compared to
just increasing the clock of one of the two entities. Furthermore, parallel memory
access that involves all cores shows performance degradation of up to 14.2% com-
pared to serial memory access. The tendency is a lower performance for higher
distances between cores and their memory controllers, as well as for a higher num-
ber of cores accessing the memory controller simultaneously. Figure 2.9 shows
the memory bandwith observed when running the Stream Benchmark, which is a
well known memory-intensive benchmark [25] on the Intel SCC on a single core,
for varying core distances from the corresponding memory controller. Figure 2.9
presents the memory bandwidth degredation that occurs when the benchmark is
executed concurrently in more than one cores, resulting in an increasing number
of cores accessing the same memory controller simultaneously.

Intel provides a customized programming library for the SCC, called RCCE, that al-
lows for fast message passing between the cores. RCCE operates on an application
programming interface (API) with techniques based on the well-established message
passing interface (MPI). The use of MPI in a large many-core system is expected to
change the performance-power trends considerably compared to today’s commercial
multi-core systems. Furst and Coskun in [20] develop a system monitoring software
and benchmarks specifically targeted at investigation the impact of message passing
on the performance and the power consumption of the Intel SCC.

This experimental evaluation that is offered by this study is based on the execution
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Figure 2.9: Single core memory bandwidth for all distance and frequency possibilities,
[19]

Figure 2.10: Memory bandwidth degradation for increasing numbers of cores acessing
the same memory controller, [19]

and performance monitoring of the Share, Shift, Stencil, Pingpong and Bcast bench-
marks which are provided by Intel. The main conclusions that have been drawn are
the following:

? High IPC workloads suffer from execution time increase, as the distance of the
communicating cores grows. Figure 2.11 depicts the execution time and average
IPC of the Stencil benchmark when it runs on a pair of cores, as the distance
between those cores increases. Stencil is an application that is characterized by
its high IPC.

? Memory intensive applications present significant delays as the number of cores
that are concurrently executing them increases, due to memory contention. Fig-
ure 2.12 presents the execution time and average IPC of the Share benchmark
with local communication as the number of pairs that are executed concurrently
increases. Share is known to present memory intensive behavior.

? Applications that heavily utilize broadcast messages suffer from significant exe-
cution time delays, after the number of the cores participating in the broadcast
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Figure 2.11: Execution time and average IPC for Stencil as distance between cores
increases, [20]

Figure 2.12: Execution time and average IPC for Share as number of pairs executed
concurrently increases, [20]

increases beyond a certain count. Figure 2.13 shows the execution time and
the average IPC observed at the execution of the Bcast benchmark, as the core
count participating in the broadcast increases. Clearly, for core counts greater
than 8, network contention becomes a bottleneck causing an overall performance
drop. Bcast is evidently a network intensive application because of the significant
number of messages it sends and receives.

? Applications characterized by a high number of memory accesses but low IPC
tend to present low power consumption. On the contrary, applications with high
IPC consume more power. Figure 2.14 presents a comparison of the IPC and
power consumption between Share, Shift, Sencil and Pingpong when they are
executed with local communication, using all 24 pairs of cores. Evidently, power
consumption is highly correlated with the applications IPC. Moreover, memory
intensive applications do not benefit from running on a larger number of cores,
since high delays because of memory contention keep the execution time and thus
the overall energy consumption high. However, high IPC applications can greatly
benefit of an increased core count, since the execution time drop compensates
for the increased power consumption, leading in an overall energy consumption
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Figure 2.13: Execution time and average IPC for Bcast with respect to number of
cores, [20]

reduction.

Figure 2.14: Power consumption and IPC for Share, Shift, Stencil and Pingpong, [20]

Efficient broadcasting is essential for good performance on distributed or multipro-
cessor systems. RCCE implements broadcasting in a traditional way: sending n − 1
unicast messages, where n is the number of cores participating in the broadcast. This
implementation hinders performance as the number of cores participating in the broad-
cast increases and the data being sent to each core is large. In addition, in the RCCE
implementation the broadcasting core is blocked from doing any useful work until all
cores receive the broadcast.

Matienzo and Jerger in [21] explore several broadcasting schemes that take advan-
tage of the resources of the SCC and the RCCE library. Their best broadcast scheme
achieves a 35× speedup over the RCCE implementation. They also demonstrate that
this broadcasting scheme significantly reduces the time spent in communication in some
benchmarks. This study presents two approaches towards implementing more efficient
broadcast schemes. The first approach is to utilize cores that have already received
the broadcast. The original broadcasting core is responsible for only sending the mes-
sage to a few processors and the cores that have received the message are responsible
for forwarding the message to the other cores, which happens in parallel. The second
strategy is to utilize concurrent accesses to a specific memory location, which contains
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the message to be broadcasted. Figure 2.15 depicts the average broadcast latency
that is observed of the broadcast schemes that were implemented for increasing mes-
sage size. It is evident that all of them but one outperform the RCCE implementation.

Figure 2.15: Broadcast latency for varying message size, [21]

Dynamic frequency and voltage scaling (DVFS) techniques have been widely used
for meeting energy constraints. Single-chip many-core systems bring new challenges
owing to the large number of operating points and the shift to message passing in-
terface from shared memory communication. Bartolini et al. evaluate the impact of
frequency scaling on the performance and power of many-core systems with MPI at
[22]. They provide an extensive analysis quantifying the effects of frequency pertur-
bations on performance and energy efficiency. Their experimental results show that
run-time communication patterns lead to significant differences in power/performance
trade-offs in many-core systems with MPI.

In this study, performance aspects of the execution of Share, Shift, Stencil, Ping-
pong, NPB and Bcast applications on the SCC are measured. Those applications are
deployed on pairs of cores for different numbers of hops between them. Each cores
runs at either 533 MHz or 166 MHz, so as to measure the impact of frequency scaling.
The metrics that are extracted from these experiments are the execution time, the
chip power and energy consumption, the instructions per second and the message den-
sity. It is verified that memory intensive benchmarks with low IPS such as Pingpong
and Share have lower sensitivity to scaling down of frequency, compared to high IPS,
CPU intensive or network intensive benchmarks such as Shift and Stencil. All appli-
cations benefit from both cores running at the same frequency since they are based
on bidirectional communication, apart from Bcast, whose communication pattern is
unidirectional. Figure 2.16 summarizes those findings.

The metrics that are collected by those experiments are used so as to train neural
networks who attempt to predict the execution time of an application for a given fre-
quency configuration. It is verified that message density and frequency of communica-
tion significantly improve the accuracy of those predictors. As a result, communication
patterns and message densities should be included in DVFS performance optimization
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Figure 2.16: Sensitivity of the Intel SCC benchmarks to frequency scaling, [22]

on many-core systems with MPI.

This diploma thesis expands the research that has been carried out on the Intel SCC
regarding performance and power consumption analysis to the field of scale-out work-
loads, which are characterized by significantly different runtime behavior, compared to
traditional PARSEC benchmarks.
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Chapter 3

The Intel SCC Architecture

This chapter provides a detailed description of the functional units of the Intel Single-
chip Cloud Computer.

3.1 The SCC Core Layout

The Intel SCC consists of 48 cores, which are organized in 24 tiles. The 24 tiles
are connected through a Network on a Chip (NoC) with each other and with other
functional units of the platform, such as the memory controllers. There are three IDs
associated with each core, the processor ID, the tile ID and the core ID. Figure 3.1
depicts the way the 48 cores are laid on the SCC board, with their tile ID (blue),
processor ID (red) and (x, y) coordinates. The tile ID of each core is calculated from
its coordinates as 0xyx. The decimal number of the tile ID is thus 16 ∗ y+x. The core
ID of each core is either 0 or 1 and identifies the core within the boundaries of a specific
tile. The processor ID is equal to tile id ∗ 2 + core id. Each core is also identified by a
unique hostname, which is the concatenation of the word ’rck’ and the processor ID.
As a consequence, core hostnames range from rck00 to rck47.

Figure 3.1: Intel SCC Core Layout
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3.2 The SCC Tile

Figure 3.2 shows an overview of an individual tile. In this section, the functional units
that are part of each tile are described.

Figure 3.2: Intel SCC Tile Overview

3.2.1 P54C IA Core

The core is a P54C Pentium design that has been altered to increase the L1 data
and instruction cache size to 16 KB each. These caches are 4-way set associative
with pseudo-LRU replacement policy. Additionally, the original front side bus-to-
cache controller interface (M-unit) has been integrated into the core. The P54C ISA
(instruction set architecture) was extended with a new instruction (CL1INVMB) and
a new memory type (MPBT) introduced to facilitate the use of message data. All
accesses to MPBT data bypass the L2 cache. The new instruction was added to
invalidate all L1 cache lines typed as MPBT. These changes were added to facilitate
maintaining coherency between caches and message data. Finally, a write combine
buffer was added to the M-unit to accelerate the message transfer between cores.

3.2.2 L2 Cache

Each core has its own private 256 KB L2 cache and an associated controller. During
a miss, the cache controller sends the address to the Mesh Interface Unit (MIU) for
decoding and retrieval. Each core can only have one outstanding memory request and
will stall on missed reads until data are returned. On missed writes, the processor will
continue operation until another miss of either type occurs. Once the data has arrived,
the processor continues normal operation. Tiles with multiple outstanding requests
can be supported by the network and memory system. The L2 cache is a 4-way set
associative with a pseudo-LRU replacement policy. It is write-back only. It is not
write-allocate.
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3.2.3 Message Passing Buffer (MPB)

In addition to the traditional cache structures, a message passing buffer (MPB) capable
of fast R/W operations has been added to each tile. This 16 KB on-chip SRAM buffer
provides the equivalent of 512 full cache lines of memory. Any core or the system
interface can write or read data from these 24 on-die message buffers. One of the
intended uses of the MPB is message passing.

3.2.4 DDR3 Memory Controllers

The four memory controllers provide a maximum capacity of 64 GB of DDR3 memory.
The Intel SCC we have used for our experiments is configured with a total of 32 GB
of system memory, as stated in section 3.4.1. This memory physically exists on the
SCC board. Each memory controller supports two unbuffered DIMMs per channel
with two ranks per DIMM. The supported DRAM type is DDR3-800 x8 with 1 GB, 2
GB or 4 GB capacity, leading up to 16 GB capacity per channel. The DDR3 protocol
includes automatic training, calibration and compensation as well as periodic refresh of
the DRAM. Memory accesses are processed in order, while accesses to different banks
and ranks are interleaved to improve throughput. The memory controllers can either
operate at 800 MHz or 1066 MHz. The memory controllers’ frequency is determined
during platform initialization and cannot be changed during normal operation.

3.2.5 Look Up Table (LUT)

Each core has a lookup table (LUT) which is a set of configuration registers that map
the core’s physical addresses to the extended memory map of the system. Each LUT
contains 256 entries, one for each 16 MB segment of the cores 4 GB physical memory
address space. Each entry can point to any memory location (private memory, message
passing buffer, configuration registers, system interface, SCC power controller or system
memory). On an L2 cache miss, the MIU looks through the LUT to determine where
the memory request should be sent.

3.2.6 Mesh Interface Unit (MIU)

The Mesh Interface Unit (MIU) contains the following:

? Packetizer and De-Packetizer

? Command interpretation and address decode/lookup

? Local configuration registers

? Link level flow control and Credit Management

? Arbiter
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The packetizer/depacketizer translates the data to/from the agents and to/from the
mesh. The Data, Command and Address Buffers provide queuing for flit organization.
Specifically, the MIU takes a cache miss and decodes the address, using the LUT to map
from the core address to system address. It then places the request to the appropriate
queue. The queues are the following:

? Router → DDR3 request

? Message Passing Buffer access

? Local Configuration Register access

For traffic coming from the router, the MIU routes the data to the appropriate lo-
cal destination. The link level flow control ensures flow of data on the mesh using a
credit-based protocol. Finally, the arbiter controls tile element access to the MIU at
any given time via a round robin scheme.

The tile configuration registers provide a method for applications to control the op-
erating modes of various tile hardware elements. Table 3.1 presents the configuration
registers of the MIU and they desired operations that they are designed for. Each
register is mapped to the core address space through the LUT and can be referenced
using memory-mapped I/O.

The Tile ID register contains the tile’s (x,y) coordinates. The Core Configuration regis-
ters are dedicated to each core of the tile and are writable by each core and the System
Interface unit. The GCU configuration register is dedicated to the global clocking unit
and is writable by all cores and the System Interface as well. The test-and-set reg-
isters enable communication protocols (such as message passing) in a multi-processor
environment. The LUT registers contain the LUT entries of each core. The L2 Cache
Configuration registers controls the sleep and power behavior of the L2 cache. The
Sensor Registers allows enabling and checking the thermal sensors in the core.

3.2.7 Traffic Generator

The traffic generator is a unit used to test the performance capabilities of the mesh by
injecting and checking traffic patterns and is not used in normal operation.

3.3 The SCC Mesh

The on-die 2D mesh network has 24 packet-switched routers connected in a 6 × 4
configuration and is on its own power supply and clock source. This enables power-
performance tradeoffs to ensure that the mesh is delivering the required performance
while consuming minimal power. The SCC Mesh can either operate at 800 MHz or 1.6
GHz. The mesh frequency is determined during platform initialization and cannot be
changed during normal operation.
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Register Name Desired Operation Register Offset
Valid
Data Bits

LUT register core 1

(256 8-byte entries)
Read/write LUT1 0x1000 22

LUT register core 0

(256 8-byte entries)
Read/write LUT0 0x0800 22

Atomic Flag Core1

LOCK1

Read/write test-and-set

Core 1 atomic
0x0400 1

Atomic Flag Core0

LOCK0

Read/write test-and-set

Core 0 atomic
0x200 1

Tile ID register

MYTILEID
Read Tile ID 0x0100 11

Global Clock Unit (GCU)

GCBCFG
Read/write GCU 0x0080 26

Sensor Register
Read Thermal

Sensor value
0x0048 26

Sensor Register

SENSOR

Read/write Thermal

Sensor control
0x0040 14

L2 Cache Configuration 0

L2CFG0
Read/write L2 Cache 0 0x0020 14

L2 Cache Configuration 1

L2CFG1
Read/write L2 Cache 1 0x0028 14

Core Configuration 0

GLCFG0
Read/write Core 0 config 0x0010

26 (top 14

read only)

Core Configuration 1

GLCFG1
Read/write Core 1 config 0x0018

26 (top 14

read only)

Table 3.1: Intel SCC Configuration Registers

3.3.1 Router (RXB)

The RXB is the next generation router for future many-core 2D mesh fabrics. It has
the following design targets:

? Wide Links : 16 B data + 2 B side band

? High Frequency : 2 GHz @ 1.1 V P1266

? Low Latency : No load latency = 4 cycles including link traversal

? Multiple Message Classes : Two Message Classes 1 Request (Message class 0) +
1 Response (Message class 1)

? Multiple Virtual Channels (VCs): 1 VC reserved per Message Class (VC6 for
request and VC7 for response), six VCs in free pool for a total point of eight VCs

? Dynamic Power Management : sleep, clock gating, voltage control etc.
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3.3.2 Packet Structure and Flit Types

The different agents of the mesh fabric communicate with each other at packet gran-
ularity. A packet consists of a single flit or multiple flits (up to three) with header,
body and tail flits. Control flits are used to communicate control information such as
credits.

3.3.3 Flow Control in SCC

Flow control in SCC is credit-based for the routers of the mesh.

? Each router has eight credits to give per port

? A router can send a packet to another router only when it has a credit from that
router

? Credits are automatically routed back to the sender when the packet moves on
to the next destination

Most of the other agents use on-off signal-based flow control. The exception is the
MIU which is the main traffic controller in the tile and uses a request/grant protocol
to control access of the tile agents to the router.

3.3.4 Error Checking

Error checking is done end-to-end, primarily through parity bits on mesh packets.
Parity checks on packets are done on the following fields : route field, commands and
data. Parity generation is done at the mesh interface (MIF) of the MIU. No automatic
error correction is attempted. Error signals are sent to agents if a parity error is
detected. In such cases, a retry mechanism is used by the agents.

3.4 The SCC System Memory

3.4.1 System Memory Map

Each of the SCC’s four memory controllers provides access to from 4 GB to 16 GB of
main memory, depending on the density of the DIMMs used, for a total of up to 64 GB.
The Intel SCC used for our experiments has been configured with 8 GB per memory
controller, resulting to a total 32 GB of system memory. Each core has 32 address bits
capable of addressing only 4 GB, so system address Lookup Tables map addresses from
the core physical addresses to system physical addresses. Memory addresses can be
mapped in a manner that shares all, some or none of the system memory among cores.
The boundaries between the shared and private space are dynamically programmable,
giving some flexibility in the partitioning of tasks between cores.

All I/O accesses are passed through the system interface and on to the board FPGA.
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The 4 GB core address space is divided into 256 16 MB pages, for system address
translation. Each page has an entry in the LUT that provides routing and address
translation information. The LUT is programmed at boot time. However, no restric-
tions are placed on LUT re-programming during normal operation.

3.4.2 Memory Address Translation

The SCC Lookup Table (LUT) unit performs the address translation from core address
to system address. Two LUTs, one for each core are used to translate all outgoing core
addresses into system addresses. Figure 3.3 illustrates address translation. During
address translation, the upper 8 bits of the core address are used to index one of the
256 LUT entries. A 22-bit output bus is distributed as follows : 10 bits for the upper
10 bits in the new memory address, 8 bits for the tile destination ID, 3 bits for the
subdestination ID and 1 bit for MIU bypass. The subdestination ID is used to identify
the specific component of the destination tile that the packet should be routed at.
Different values correspond to the tile MPB, CRB (configuration register) and the four
ports of the router of the destination tile (east,west,north,south).

Figure 3.3: Intel SCC Address Translation

3.5 The SCC Power Management API

3.5.1 Voltage and Frequency Islands

SCC cores are divided into six voltage islands, each containing a 2 × 2 array of tiles;
each island has a total of eight P54C cores. Each island has a separate power supply.
The voltage islands are also called voltage domains. Clocking is at an even finer gran-
ularity with each tile on SCC able to have its own operating frequency. The voltage
and frequency islands enable parts of SCC to be turned off or dialed down to a lower
frequency to minimize power consumption. Figure 3.4 illustrates the voltage and fre-
quency domains on the SCC.

The mesh has its own clock and power supply with all router stops on the same clock
and power supply. The power consumption of the mesh can thus be controlled inde-
pendently of the cores and vice versa. Thus, the entire mesh can be thought as a single
voltage/frequency island.
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Figure 3.4: Intel SCC Voltage and Frequency Islands

3.5.2 The Global Clock Unit (GCU) Configuration Register

The Global Clock Unit (GCU) Configuration Register regulates the operating frequency
of each tile. The router clock is set at either 800 MHz or 1.6 GHz. When the router
clock is 800 MHz, the memory clock is also at 800 MHz. When the router clock is 1.6
GHz, the memory clock is either 800 MHz or 1066 MHz. When the router frequency
is 800 MHz, the default tile frequency is 533 MHz. When the router frequency is 1.6
GHz, the default tile frequency is 800 MHz.

By writing bits 25:08 of the GCU, the tile frequency can be changed. The value
that has to be written to those bits of the GCU depends on the desired tile frequency
as well as the frequency of the mesh. Due to Intel SCC hardware limitations, we have
noticed that it is possible to perform frequency perturbations only when the router
operates at 800 MHz and the memory at 800 MHz. Table 3.2 shows the binary value
that has to be written to the 25:08 bits of the GCU so as to achieve the specific tile
frequency.

3.5.3 The SCC Power Controller (VRC)

The SCC Power Controller (VRC) enables each core of the platform to adjust the
voltage of each voltage island. The VRC has its own destination target in the core’s
memory map and thus its own entry in the LUT. A core or the system interface can
write to this memory location, and it will be decoded as a command for the VRC. This
command is then routed to the VRC across the mesh and executed. The VRC accepts
the command, adjusts the voltage and then sends an acknowledgement back to the tile
so that it knows the command completed successfully.

The VRC can set the voltage of a voltage domain to any value between 0 V and
1.3 V, with a 6.25 mV step. However, depending on the frequency settings of the
tiles of the voltage domain, a minimum voltage level is required so as to ensure stable
operation. Table 3.3 states the minimum voltage that is required for safe operation for
all possible frequency settings.
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Tile Frequency (MHz) GCU Config Setting [25:08]

800 00 0111 0000 1110 0001

533 00 1010 1000 1110 0010

400 00 1110 0000 1110 0011

320 01 0001 1000 1110 0100

266 01 0101 0000 1110 0101

228 01 1000 1000 1110 0110

200 01 1100 0000 1110 0111

176 01 1111 1000 1110 1000

160 10 0011 0000 1110 1001

145 10 0110 1000 1110 1010

133 10 1010 0000 1110 1011

123 10 1101 1000 1110 1100

114 11 0001 0000 1110 1101

106 11 0100 1000 1110 1110

100 11 1000 0000 1110 1111

Table 3.2: Tile Frequency Settings for Router Clock of 800 MHz

3.5.4 Changing The Tile Frequency

Each core can access its own configuration registers as well as those of other cores using
memory-mapped I/O. Memory-mapped I/O is performed in standard Linux using the
mmap() function. The base address for the configuration registers for the tile at (x=0,
y=0) is 0xe0000000. The configuration registers for each tile are offset by 0x01000000
from 0xe0000000 as you travel along the x axis. Following this convention, the base
address for the tile at (x=1, y=0) is 0xe1000000, that for the tile at (x=2, y=0) is
0xe2000000, etc. The tile after (x=5, y=0) is (x=0, y=1), etc. Continuing with this
method, the base address for the final tile at (x=5, y=3) is 0xf7000000. The base ad-
dress 0xf8000000 is a special one. When a core specifies this base address, it specifies
its own base address.

The program shown below (setFreq800.c) sets the frequency of a specific tile to 800
MHz (for router frequency at 800 MHz). The device /dev/rckncm is used to specify the
file descriptor of the file to be mapped. This filed is mapped to a memory page using
mmap(). The Global Clocking Unit Configuration Register is accessed by specifying an
offset of 0x80 from the base address of the Configuration Registers of the specific core
(0xf8000000). The bits 25:08 of the GCU are set to 0x070e100, which corresponds to
a tile frequency of 800 MHz. Finally, the page is unmapped using munmap().

setFreq800.c :

#include <stdio.h>

#include <unistd.h>

#include <sys/mman.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>
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Tile Frequency (MHz) Minimum Voltage (V)
800 1.16250

533 0.85625

400 0.75625

320 0.69375

267 0.66875

229 0.65625

200 0.65625

178 0.65625

160 0.65625

145 0.65625

133 0.65625

123 0.65625

114 0.65625

107 0.65625

100 0.65625

Table 3.3: Minimum Voltage Levels for Safe Operation

#include <stdlib.h>

#define CRB_OWN 0xf8000000

#define GCBCFG 0x80

main() {

typedef volatile unsigned char* t_vcharp;

int PAGE_SIZE, NCMDeviceFD;

// NCMDeviceFD is the file descriptor for

// non-cacheable memory (e.g. config regs).

unsigned int result;

t_vcharp MappedAddr;

unsigned int alignedAddr, pageOffset, ConfigAddr;

ConfigAddr = CRB_OWN+GCBCFG;

PAGE_SIZE = getpagesize();

if ((NCMDeviceFD=open("/dev/rckncm", O_RDWR|O_SYNC))<0) {

perror("open");

exit(-1);

}

alignedAddr = ConfigAddr & (~(PAGE_SIZE-1));

pageOffset = ConfigAddr - alignedAddr;

MappedAddr = (t_vcharp) mmap(NULL, PAGE_SIZE, PROT_WRITE|PROT_READ,

MAP_SHARED, NCMDeviceFD, alignedAddr);

if (MappedAddr == MAP_FAILED) {

perror("mmap");exit(-1);

}

result = *(unsigned int*)(MappedAddr+pageOffset) & 0xff;

result += 0x070e100;
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*(unsigned int*)(MappedAddr+pageOffset) = result;

munmap((void*)MappedAddr, PAGE_SIZE);

}

This program is cross-compiled with icc on the MCPC so as to produce the setFreq800
executable that will run on SCC hardware. The executable is executed using the pssh
command. The pssh command is used so as to load the executable on the SCC cores.
The resulting executable has to be placed in a subdirectory of the /shared directory,
so that it can be accessed by the cores. The /shared directory is mounted on all the
cores as a network file system. The pssh command has to be executed as follows:

pssh -h hosts.txt -p 1 -P -t -1 /shared/ageo/setFreq800

The file hosts.txt specifies the cores that this program will be run. If for exam-
ple, this file contains the following two lines, then the program is executed by cores
rck00 and rck02 and will set the frequency of cores rck00, rck01, rck02 and rck03
to 800 MHz.

hosts.txt :

rck00 root

rck02 root

The -p switch defines the number of concurrent threads that will be executed by the
pssh command. The -t switch specifies the timeout in seconds, which in this case is
-1, which means that the execution never times out. The -P switch specifies that the
program prints the output as it is received.

3.6 The Management Console

The Management Console is a PC that communicates with the SCC platform over a
PCI Express bus. The PCIe bus connects to the system FPGA interface on the SCC
board which connects to the System Interface on the SCC itself. The MCPC runs a
stable version of Ubuntu Linux. The sccKit software that is provided by Intel, en-
ables users to boot Linux on the SCC cores, read and write core memory locations and
registers, monitor performance etc.

Figure 3.5 illustrates how the SCC and the MCPC are connected. The figure shows
two Ethernet cables coming from the SCC chassis. The MCPC also has two Ethernet
cables and to NICs. The eth0 cable connects to the Internet through a public IP. The
eth1 cable connects to the Board Management Microcontroller (BMC). The BMC is
an ARM processor that is responsible for initializing and shutting down critical system
functions.

The sccKit software offers a variety of functions that are available from the command
line so as to configure and monitor the SCC platform. In the remainder of this section,
the commands offered by sccKit are described. Appropriate examples are given as well.
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Figure 3.5: Connection of the Intel SCC to the MCPC

3.6.1 sccBoot

sccBoot enables users of the platform to boot Linux on the SCC cores and to check
that the cores have been successfully booted as well. When run with the -L switch,
sccBoot boots Linux on all SCC cores. When run with the -l switch, followed by a
core ID or a range of core IDs, then sccBoot boots Linux on the specified core or range
of cores. For example, in order to boot Linux on cores rck00 and rck01, the following
command should be executed:

sccBoot -l 0..1

In order to check that Linux has been successfully booted on all cores, sccBoot should
be run with the -s switch. This commands pings all cores on the SCC board and
returns the processor IDs of the cores that were successfully reached.

3.6.2 sccPerf

sccPerf opens a graphical user interface (GUI) that visualizes the status of the SCC
board. This GUI shows the CPU utilization of each core, the overall CPU utilization
and the overall power consumption of the platform. The performance meter window
is shown at figure 3.6.

3.6.3 sccDump

sccDump provides the ability to read data from the off-chip DRAM (using the -d
switch), a Message Passing Buffer (using the -m switch), a Core Configuration Register
(using the -c switch) or the System Interface (using the -s switch). The following
example shows the output that is received when sccDump is executed with the -c switch,
followed by the hexadecimal identification of the bottom left tile (that includes cores
rck00 and rck01). The output of this command lists the values of all the configuration
registers of the specific tile, as well as all the LUT entries of both cores of the tile.

ageo@mitsos:~$ sccDump -c 0x00

INFO: Packet tracing is disabled...

INFO: Initializing System Interface (SCEMI setup)....

INFO: Successfully connected to PCIe driver...

INFO: Welcome to sccDump 1.4.1 (build date Jun 28 2011 - 16:02:28)...
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Figure 3.6: Intel SCC Performance Meter

=============================================================

Dumping CRB registers of Tile 0x00

=============================================================

GLCFG0 = 0x00348df8

GLCFG1 = 0x00348df8

L2CFG0 = 0x000006cf

L2CFG1 = 0x000006cf

SENSOR = 0x00002554

GCBCFG = 0x0070e1f0

MYTILEID = 0x00000005

LOCK0 = 0x00000001

LOCK1 = 0x00000001

-------------------------------------------------------------

Restoring locks: LOCK0 and LOCK1

=============================================================

Dumping LUTs of Tile 0x00

Format: Bypass(bin)_Route(hex)_subDestId(dec)_AddrDomain(hex)

=============================================================

LUT0, Entry 0x00 (CRB addr = 0x0800): 0_0x00_6(PERIW)_0x000

LUT0, Entry 0x01 (CRB addr = 0x0808): 0_0x00_6(PERIW)_0x001

. . . .

LUT0, Entry 0xfe (CRB addr = 0x0ff0): 0_0x95_1(CORE1)_0x014

LUT0, Entry 0xff (CRB addr = 0x0ff8): 0_0x00_6(PERIW)_0x1f4

LUT1, Entry 0x00 (CRB addr = 0x1000): 0_0x00_6(PERIW)_0x029

LUT1, Entry 0x01 (CRB addr = 0x1008): 0_0x00_6(PERIW)_0x02a

. . . .
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LUT1, Entry 0xfe (CRB addr = 0x17f0): 1_0xc5_0(CORE0)_0x24b

LUT1, Entry 0xff (CRB addr = 0x17f8): 0_0x00_6(PERIW)_0x1f5

=============================================================

3.6.4 sccBmc

sccBmc is used for initializing the SCC platform and for sending commands to the
BMC. The platform can be initialized when running the sccBmc command with the -i
switch. The -i switch has to be accompanied by one of the following configurations,
which determine the tile, mesh and memory frequency respectively:

Tile533_Mesh800_DDR800

Tile800_Mesh1600_DDR1066

Tile800_Mesh1600_DDR800

Tile800_Mesh800_DDR1066

Tile800_Mesh800_DDR800

The sccBmc command can also be executed with the -c switch, so as to connect to
the BMC and execute the specific command. The following example shows the output
of the execution of the status command at the BMC, which displays information
regarding the current board status, such as voltage levels and board temperature. This
functionality of the sccBmc command has been significantly utilized in the monitoring
infrastructure we have developed.

ageo@mitsos:~$ sccBmc -c status

INFO: openBMCConnection(10.3.16.126:5010): You are participant #2

INFO: Welcome to sccBmc 1.4.1 (build date Jun 28 2011 - 16:01:43)...

INFO: Result of BMC command "status":

I?C access is switched to BMC

Power Status = 0xCF3F, ON

Standby supplies:

5V0PWR: 5.002 V (Primary)

1V8SB: 1.800 V (Secondary)

3V3PWR: 3.260 V -"-

Primary supplies:

3V3IN: 3.360 V

5V0IN: 5.054 V

12V0R1: 11.972 V

12V0R2: 11.999 V

Secondary supplies:

1V0: 1.018 V 1.590 A

1V1VCCA: 1.104 V 2.480 A

1V1VCCT: 1.096 V 4.229 A

1V5: 1.522 V 6.241 A

1V65: 1.666 V

1V65ADJ: 1.652 V
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1V8PHY: 1.796 V

2V5: 2.480 V

3V3: 3.316 V 2.350 A

3V3SCC: 3.304 V 15.842 A

Tertiary supplies:

OPVR VCC0: 1.0928 V

OPVR VCC1: 1.1014 V

OPVR VCC2: 1.1862 V

OPVR VCC3: 1.0874 V

OPVR VCC4: 1.1089 V

OPVR VCC5: 1.0931 V

OPVR VCC7: 1.0984 V

Temperatures:

Board: 34 ?C

FPGA: 43 ?C

Fan speed:

FPGA: 108 RPM (Needs real conversion to RPM!)

SCC: 148 RPM

Misc.:

FPGA status: 0xC7

Lane Good LED is off

L0: normal operation

CPLD status: 0x47

PLL is locked.

PLL lock lost is cleared.

3.7 The SCC Linux

The MCPC contains an Intel-provided Linux image that runs on the SCC cores. This
sections discusses two aspects of the SCC Linux whose understanding is critical for
characterizing MapReduce workloads that run on the SCC : the TCP/IP stack and
the Network File System that is mounted on the cores.

3.7.1 The TCP/IP Stack

Each SCC Linux instance has two virtual network interfaces : mb0 and emac0.

? emac0 is used for communication between the cores and the MCPC. The IP
address of this interface is 192.168.3.x where 1 < x < 48, depending on the
processor ID. Packets that are directed towards this interface, are sent to the
Gigabit Ethernet Switch that connects the SCC with the MCPC, so as to reach
the MCPC, whose IP address is 192.168.3.254. Communication between cores
is not possible through this interface.

35



Diploma Thesis The Intel SCC Architecture

? mb0 is used for communication between the cores of the SCC. The IP address of
this interface is 192.168.0.x where 1 < x < 48, depending on the processor ID.
Packets that are directed towards this interface are sent to the Message Passing
Buffer of the receiving core, i.e. the destination IP address is translated to a
physical MPB address. That is, the communication between cores takes place
entirely within the boundaries of the SCC Mesh and does not exit the SCC board.

3.7.2 The Network File System

The directory /shared on the MCPC is NFS - mounted on the cores. As a consequence
disk I/O takes place through the emac0 interface and is directed to the MCPC, where
it is stored in its physical storage.
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Chapter 4

The Hadoop Distributed File
System and the MapReduce
Framework

This chapter provides a detailed analysis of the Hadoop Distributed File System and
the MapReduce framework. Each of the following two sections covers several imple-
mentation aspects of HDFS and MapReduce respectively and concludes with a list of
configuration and runtime parameters that users and cluster administrators can specify
with respect to the HDFS cluster installation and the execution of MapReduce jobs.

4.1 The Hadoop Distributed File System

This section describes several aspects of the Hadoop Distributed File System (HDFS)
in detail. Particular emphasis is placed on the master/slave architecture of HDFS,
data replication and data reliability and availability, which are some of the key features
offered by HDFS. The section concludes with the runtime and configuration parameters
that can be used so as to customize an HDFS cluster installation.

4.1.1 The NameNode and the DataNodes

HDFS has a master/slave architecture. An HDFS cluster consists of a single NameN-
ode, a master server that manages the file system namespace and regulates access to
files by clients. In addition, there are a number of DataNodes, usually one per node
in the cluster, which manage storage attached to the nodes that they run on. HDFS
exposes a file system namespace and allows user data to be stored in files. Internally, a
file is split into one or more blocks and these blocks are stored in a set of DataNodes.
The NameNode executes file system namespace operations like opening, closing, and
renaming files and directories. It also determines the mapping of blocks to DataN-
odes. The DataNodes are responsible for serving read and write requests from the file
systems clients. The DataNodes also perform block creation, deletion, and replication
upon instruction from the NameNode. Figures 4.1 illustrates the organization of the
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HDFS architecture.

Figure 4.1: The HDFS Architecture

The NameNode and DataNode are pieces of software designed to run on commod-
ity machines. These machines typically run a GNU/Linux operating system (OS).
HDFS is built using the Java language; any machine that supports Java can run the
NameNode or the DataNode software. Usage of the highly portable Java language
means that HDFS can be deployed on a wide range of machines. A typical deployment
has a dedicated machine that runs only the NameNode software. Each of the other
machines in the cluster runs one instance of the DataNode software. The architecture
does not preclude running multiple DataNodes on the same machine but in a real de-
ployment that is rarely the case.

The existence of a single NameNode in a cluster greatly simplifies the architecture
of the system. The NameNode is the arbitrator and repository for all HDFS meta-
data. The system is designed in such a way that user data never flows through the
NameNode.

4.1.2 The File System Namespace

HDFS supports a traditional hierarchical file organization. A user or an application
can create directories and store files inside these directories. The file system names-
pace hierarchy is similar to most other existing file systems; one can create and remove
files, move a file from one directory to another, or rename a file. HDFS does not yet
implement user quotas. HDFS does not support hard links or soft links. However, the
HDFS architecture does not preclude implementing these features.

The NameNode maintains the file system namespace. Any change to the file system
namespace or its properties is recorded by the NameNode. An application can specify
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the number of replicas of a file that should be maintained by HDFS. The number of
copies of a file is called the replication factor of that file. This information is stored by
the NameNode.

4.1.3 Data Organization

HDFS is designed to support very large files. Applications that are compatible with
HDFS are those that deal with large data sets. These applications write their data
only once but they read it one or more times and require these reads to be satisfied at
streaming speeds. HDFS supports write-once-read-many semantics on files. A typical
block size used by HDFS is 64 MB. Thus, an HDFS file is chopped up into 64 MB
chunks, and if possible, each chunk will reside on a different DataNode.

A client request to create a file does not reach the NameNode immediately. In fact,
initially the HDFS client caches the file data into a temporary local file. Application
writes are transparently redirected to this temporary local file. When the local file
accumulates data worth over one HDFS block size, the client contacts the NameNode.
The NameNode inserts the file name into the file system hierarchy and allocates a data
block for it. The NameNode responds to the client request with the identity of the
DataNode and the destination data block. Then the client flushes the block of data
from the local temporary file to the specified DataNode. When a file is closed, the
remaining un-flushed data in the temporary local file is transferred to the DataNode.
The client then tells the NameNode that the file is closed. At this point, the NameN-
ode commits the file creation operation into a persistent store. If the NameNode dies
before the file is closed, the file is lost.

Suppose the HDFS file has a replication factor of three. When the client application
local file accumulates a full block of user data, the client retrieves a list of DataN-
odes from the NameNode. This list contains the DataNodes that will host a replica
of that block. The client then flushes the data block to the first DataNode. The first
DataNode starts receiving the data in small portions (4 KB), writes each portion to
its local repository and transfers that portion to the second DataNode in the list. The
second DataNode, in turn starts receiving each portion of the data block, writes that
portion to its repository and then flushes that portion to the third DataNode. Finally,
the third DataNode writes the data to its local repository. Thus, a DataNode can be
receiving data from the previous one in the pipeline and at the same time forwarding
data to the next one in the pipeline. Thus, the data is pipelined from one DataNode
to the next.

4.1.4 Data Replication

HDFS is designed to reliably store very large files across machines in a large cluster.
It stores each file as a sequence of blocks; all blocks in a file except the last block are
the same size. The blocks of a file are replicated for fault tolerance. The block size
and replication factor are configurable per file. An application can specify the number
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of replicas of a file. The replication factor can be specified at file creation time and
can be changed later. Files in HDFS are write-once and have strictly one writer at any
time.

Figure 4.2: HDFS Data Replication

The NameNode makes all decisions regarding replication of blocks. It periodically
receives a Heartbeat and a Blockreport from each of the DataNodes in the cluster.
Receipt of a Heartbeat implies that the DataNode is functioning properly. A Blockre-
port contains a list of all blocks on a DataNode.

Large HDFS instances run on a cluster of computers that commonly spread across
many racks. Communication between two nodes in different racks has to go through
switches. In most cases, network bandwidth between machines in the same rack is
greater than network bandwidth between machines in different racks.

For the common case, when the replication factor is three, HDFSs placement pol-
icy is to put one replica on one node in the local rack, another on a node in a different
(remote) rack, and the last on a different node in the same remote rack. This policy
cuts the inter-rack write traffic which generally improves write performance. In addi-
tion, since the chance of rack failure is far less than that of node failure, this policy
does not impact data reliability and availability guarantees.

To minimize global bandwidth consumption and read latency, HDFS tries to satisfy a
read request from a replica that is closest to the reader. If there exists a replica on the
same rack as the reader node, then that replica is preferred to satisfy the read request.
If an HDFS cluster spans multiple data centers, then a replica that is resident in the
local data center is preferred over any remote replica.

On startup, the NameNode enters a special state called Safemode. Replication of
data blocks does not occur when the NameNode is in the Safemode state. The Na-
meNode receives Heartbeat and Blockreport messages from the DataNodes. Each block
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has a specified minimum number of replicas. A block is considered safely replicated
when the minimum number of replicas of that data block has checked in with the
NameNode. After a configurable percentage of safely replicated data blocks checks in
with the NameNode (plus an additional 30 seconds), the NameNode exits the Safemode
state. It then determines the list of data blocks (if any) that still have fewer than the
specified number of replicas. The NameNode then replicates these blocks to other
DataNodes.

4.1.5 The Communication Protocols

All HDFS communication protocols are layered on top of the TCP/IP protocol. A
client establishes a connection to a configurable TCP port on the NameNode machine.
It communicates through the ClientProtocol with the NameNode. The DataNodes
communicate with the NameNode using the DataNode Protocol. A Remote Pro-
cedure Call (RPC) abstraction wraps both the Client Protocol and the DataNode
Protocol. By design, the NameNode never initiates any RPCs. Instead, it only re-
sponds to RPC requests issued by DataNodes or clients.

4.1.6 The Persistence of File System Metadata

The HDFS namespace is stored by the NameNode. The NameNode uses a transaction
log called the EditLog to persistently record every change that occurs to file system
metadata. For example, creating a new file in HDFS causes the NameNode to insert a
record into the EditLog indicating this. Similarly, changing the replication factor of a
file causes a new record to be inserted into the EditLog. The NameNode uses a file in
its local host OS file system to store the EditLog. The entire file system namespace,
including the mapping of blocks to files and file system properties, is stored in a file
called the FsImage. The FsImage is stored as a file in the NameNodes local file system
too.

The DataNode stores HDFS data in files in its local file system. The DataNode has no
knowledge about HDFS files. It stores each block of HDFS data in a separate file in
its local file system. When a DataNode starts up, it scans through its local file system,
generates a list of all HDFS data blocks that correspond to each of these local files and
sends this report to the NameNode: this is the Blockreport.

4.1.7 Data Availability and Reliability

The primary objective of HDFS is to store data reliably even in the presence of fail-
ures. The three common types of failures are NameNode failures, DataNode failures
and network partitions.

A network partition can cause a subset of DataNodes to lose connectivity with
the NameNode. The NameNode detects this condition by the absence of a Heartbeat
message. The NameNode marks DataNodes without recent Heartbeats as dead and
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does not forward any new IO requests to them. Any data that was registered to a
dead DataNode is not available to HDFS any more. DataNode death may cause the
replication factor of some blocks to fall below their specified value. The NameNode
constantly tracks which blocks need to be replicated and initiates replication whenever
necessary. The necessity for re-replication may arise due to many reasons: a DataNode
may become unavailable, a replica may become corrupted, a hard disk on a DataNode
may fail, or the replication factor of a file may be increased.

It is possible that a block of data fetched from a DataNode arrives corrupted. This
corruption can occur because of faults in a storage device, network faults, or buggy
software. The HDFS client software implements checksum checking on the contents
of HDFS files. When a client creates an HDFS file, it computes a checksum of each
block of the file and stores these checksums in a separate hidden file in the same HDFS
namespace. When a client retrieves file contents it verifies that the data it received
from each DataNode matches the checksum stored in the associated checksum file. If
not, then the client can opt to retrieve that block from another DataNode that has a
replica of that block.

The FsImage and the EditLog are central data structures of HDFS. A corruption of
these files can cause the HDFS instance to be non-functional. For this reason, the Na-
meNode can be configured to support maintaining multiple copies of the FsImage and
EditLog. Any update to either the FsImage or EditLog causes each of the FsImages
and EditLogs to get updated synchronously. When a NameNode restarts, it selects the
latest consistent FsImage and EditLog to use.

4.1.8 File and Block Deletion

When a file is deleted by a user or an application, it is not immediately removed from
HDFS. Instead, HDFS first renames it to a file in the /trash directory. The file can
be restored quickly as long as it remains in /trash. A file remains in /trash for a
configurable amount of time. After the expiry of its life in /trash, the NameNode
deletes the file from the HDFS namespace. The deletion of a file causes the blocks
associated with the file to be freed. Note that there could be an appreciable time delay
between the time a file is deleted by a user and the time of the corresponding increase
in free space in HDFS.

When the replication factor of a file is reduced, the NameNode selects excess replicas
that can be deleted. The next Heartbeat transfers this information to the DataNode.
The DataNode then removes the corresponding blocks and the corresponding free space
appears in the cluster. Once again, there might be a time delay between the completion
of the setReplication API call and the appearance of free space in the cluster.
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4.1.9 The HDFS Command Line API

HDFS provides a command line interface called FS Shell that lets a user interact with
the data in HDFS. The following examples demonstrate how a user can create the
directory /testdir and view the contents of the testfile.txt file, which is under the
/testdir directory in HDFS using the FS Shell. Those commands should be executed
from the parent directory of the HDFS installation.

bin/hadoop dfs -mkdir /testdir

bin/hadoop dfs -cat /testdir/testfile.txt

The DFSAdmin command set is used for administering an HDFS cluster. These
are commands that are used only by an HDFS administrator. The following example
demonstrates how to force the NameNode to exit the SafeMode:

bin/hadoop dfsadmin -safemode leave

HDFS APIs are also available for the Java and C programming languages, so as
to enable client applications interact with files stored in HDFS. HDFS also offers a
Browser Interface that enables users navigate the HDFS namespace and view the
contents of its files.

4.1.10 Configuring an HDFS Cluster

Each HDFS cluster deployment is configured by a big set of parameters. A default
value is specified for each configuration parameter, which can be overriden so as to
customize the HDFS installation. The HDFS deployment configuration is controlled
by four configuration files : core-default.xml, core-site.xml, hdfs-default.xml
and hdfs-site.xml. Those files are loaded in the classpath of each HDFS daemon
(NameNode and DataNodes) at runtime. The runtime environment of an HDFS clus-
ter is set up by the hadoop-env.sh configuration script.

core-default.xml and core-site.xml contain information that regards global proper-
ties of an HDFS installation, such as the endpoint URI that consists of the host and the
port of the file system. Additional information that is determined in those files regards
I/O properties such as error checking and rack topology configuration. The default
values of those parameters are specified in core-default.xml. Default parameter val-
ues overrides should be included in core-site.xml. Table 4.1 provides a description
of configuration parameters that can be defined in core-site.xml accompanied by
example values.

hdfs-default.xml and hdfs-site.xml contain information such as the local file system
directories where HDFS metadata and file data blocks should be stored by the NameN-
ode and the DataNodes. In addition, those files determine the default block size and
replication factor of the distributed file system. The default values of those parameters
are specified in hdfs-default.xml. Default parameter values overrides should be in-
cluded in hdfs-site.xml. Table 4.2 provides a description of configuration parameters
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Configuration Parameter Description Example Value

fs.default.name

The name of the default

file system, in the form

of and endpoint URI.

hdfs://192.168.0.1:54310

hadoop.tmp.dir
A base for other

temporary directories.
/home/ageo/tmp dir

topology.script.file.name

The script name that

determines the

allocation of cluster

nodes to HDFS racks.

/home/ageo/hadoop-topology.sh

io.skip.checksum.errors

If true, when a checksum

error is encountered while

reading a sequence file

entries are skipped,

instead of throwing an

exception.

true/false

Table 4.1: Configuration Parameters Defined in core-site.xml

that can be defined in hdfs-site.xml accompanied by example values.

hadoop-env.sh determines overrides for environment variables that are related to the
HDFS installation, such as the Java Home directory and the Java Heap Size. Table 4.3
provides a description of runtime parameters that can be defined in hadoop-env.sh

accompanied by example values.

4.2 The MapReduce Framework

This section describes several aspects of the MapReduce framework in detail. A
MapReduce Job usually splits the input dataset into independent chunks which are
processed by the Map tasks in a completely parallel manner. The framework sorts
the outputs of the maps, which are then input to the Reduce tasks. Typically both
the input and the output of the job are stored in HDFS. The framework takes care of
scheduling and monitoring tasks and the re-execution of the failed tasks. This section
concludes with a list of configuration parameters that can be specified so as to tune
the execution of MapReduce jobs.

4.2.1 The JobTracker and the TaskTrackers

The MapReduce framework consists of a single master JobTracker and one slave
TaskTracker per cluster-node. The JobTracker is responsible for scheduling the jobs’
component tasks on the slaves, monitoring them and re-executing the failed tasks. The
TaskTrackers execute the tasks as directed by the JobTracker.

Minimally, applications specify the input/output locations and supply map and re-
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Configuration Parameter Description Example Value

dfs.replication

Default block replication.

The actual number of

replications can be specified

when the file is created.

1

dfs.block.size
The default block size

for new files.
4194304 (4 MB)

dfs.name.dir

Determines the local

filesystem directory, where

the NameNode should

store the name table

(fsimage).

/home/ageo/hdfsnames

dfs.data.dir

Determines the local

filesystem directory, where

the DataNode should store

file data blocks.

/home/ageo/hdfsdata

Table 4.2: Configuration Parameters Defined in hdfs-site.xml

Configuration Parameter Description Example Value

JAVA HOME

Home directory

of the Java

installation

/opt/ibm-jdk-bin-1.6.0.8 p1

HADOOP HEAPSIZE

Maximum Java

heap size in MB

for Hadoop

Daemons

128

HADOOP SSH OPTS
Extra SSH

options
-p 1234 -l root

HADOOP ROOT LOGGER
Hadoop logging

level
ERROR,console

Table 4.3: Runtime Parameters Defined in hadoop-env.sh

duce functions via implementations of appropriate interfaces and/or abstract-classes.
These and other job parameters comprise the job configuration. The Hadoop Job
Client then submits the job (jar/executable etc.) and configuration to the JobTracker
which then assumes the responsibility of distributing the software/configuration to the
slaves, scheduling tasks and monitoring them, providing status and diagnostic infor-
mation to the Job Client.

The MapReduce framework operates exclusively on <key, value> pairs, that is, the
framework views the input to the job as a set of <key, value> pairs and produces a
set of <key, value> pairs as the output of the job, conceivably of different types.

Figure 4.3 illustrates how the MapReduce framework can be leveraged in order to count
the occurences of each word in an input document. Initially, the document is split into
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three different InputSplits, which are provided to each Map task as <key,value>

pairs of the form <byte offset, line string>. Each Map task tokenizes each line
string in order to generate intermediate <key,value> pairs for each word, which con-
tain the found word as a key and 1 as value, <word,1>. During the shuffle stage, the
intermediate <key,value> pairs are sorted and grouped based on the intermediate key
and each <key,list of values> pair is provided to each Reducer task. The Reducer
tasks sum the 1’s that are contained in each list of values and output the number of
occurences of each word in the input document.

Figure 4.3: MapReduce Wordcount

4.2.2 The Mapper Function

The Mapper function maps input key/value pairs to a set of intermediate key/value
pairs. Maps are the individual tasks that transform input records into intermediate
records. The transformed intermediate records do not need to be of the same type as
the input records. A given input pair may map to zero or many output pairs. The
framework calls the map() method for each key/value pair in the InputSplit for that
task. The Hadoop MapReduce framework spawns one map task for each InputSplit

generated by the InputFormat for the job. Thus, the number of maps is driven by the
total size of the inputs, that is, the total number of blocks of the input files.

Applications can use the Reporter to report progress, set application-level status mes-
sages and update Counters, or just indicate that they are alive. All intermediate values
associated with a given output key are subsequently grouped by the framework, and
passed to the Reducer(s) to determine the final output. Users can control the grouping
by specifying a Comparator. The Mapper outputs are sorted and then partitioned per
Reducer. The total number of partitions is the same as the number of reduce tasks
for the job. Users can control which keys (and hence records) go to which Reducer
by implementing a custom Partitioner. Users can optionally specify a Combiner, to
perform local aggregation of the intermediate outputs, which helps to cut down the
amount of data transferred from the Mapper to the Reducer. The intermediate, sorted
outputs are always stored in a simple (key-len, key, value-len, value) format.
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4.2.3 The Reducer Function

The Reducer function reduces a set of intermediate values which share a key to a
smaller set of values. The number of reducers for the job can be configured by the
user. The Reduce phase of a MapReduce Job has 3 primary stages: shuffle, sort and
reduce. During the Shuffle stage, the framework fetches the relevant partition of the
output of all the mappers, via HTTP. During the Sort stage the framework groups
Reducer inputs by keys, since different mappers may have output the same key. The
shuffle and sort phases occur simultaneously; while Map outputs are being fetched they
are merged. During the Reduce stage, the reduce() method is called for each <key,

(list of values)> pair in the grouped inputs.

The output of the reduce task is typically written to HDFS. Applications can use
the Reporter to report progress, set application-level status messages and update
Counters, or just indicate that they are alive. The output of the Reducer is not sorted.
It is possible to set the number of Reduce tasks to zero if no reduction is desired. In
this case the outputs of the Map tasks go directly to the corresponding HDFS output
path. The framework does not sort the map outputs before writing them out to HDFS.

The Partitioner controls the partitioning of the keys of the intermediate Map out-
puts. The key (or a subset of the key) is used to derive the partition, typically by a
hash function. The total number of partitions is the same as the number of the Reduce
tasks of the job. That is, the Partitioner controls to which of the Reduce tasks the
intermediate key (and hence the record) is sent to for reduction.

4.2.4 Job Configuration

The JobConf entity represents a MapReduce job configuration. JobConf is the pri-
mary interface for a user to describe a MapReduce job to the Hadoop framework for
execution. The framework tries to faithfully execute the job as described by JobConf.
JobConf is typically used to specify the Mapper, Combiner (if any), Partitioner,
Reducer, InputFormat, OutputFormat and OutputCommitter implementations. JobConf
also indicates the set of input files and where the output files should be written.

Optionally, JobConf is used to specify other advanced facets of the job such as the
Comparator to be used, files to be put in the DistributedCache, whether intermedi-
ate and/or job outputs are to be compressed (and how), debugging via user-provided
scripts, whether job tasks can be executed in a speculative manner, maximum number
of attempts per task, percentage of tasks failure which can be tolerated by the job etc.

4.2.5 Task Execution and Environment

The TaskTracker executes the Mapper/Reducer task as a child process in a separate
JVM. The child-task inherits the environment of the parent TaskTracker. The user can
specify additional options to the child JVM via the mapred.{map|reduce}.child.java.opts
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configuration parameter in the JobConf.

The TaskTracker has its local directory, ${mapred.local.dir}/taskTracker/. When
the job starts, the TaskTracker creates the localized job directory $user/jobcache/$jobid/,
which is relative to the previous directory. The localized job directory contains the fol-
lowing subdirectories/files:

• work/ : The job-specific shared directory. The tasks can use this space as scratch
space and share files among them.

• jars/ : The jars directory, which has the job jar file and expanded jar. The
job.jar is the application’s jar file that is automatically distributed to each
machine. It is expanded in the jars/ directory before the tasks for the job start.

• job.xml : The job.xml file, the generic job configuration, localized for the job.

• $taskid/ : The task directory for each task attempt. Each task directory con-
tains the following subdirectories/files.

– job.xml : A job.xml file, task localized job configuration. Task localization
means that properties have been set that are specific to this particular task
within the job.

– output/ : A directory for intermediate output files. This contains the tem-
porary MapReduce data generated by the framework such as Map output
files etc.

– work/ : The current working directory of the task.

– work/tmp/ : The temporary directory for the task. This directory will be
created if it doesn’t exist.

The standard output (stdout) and error (stderr) streams of the task are read by the
TaskTracker and logged to ${HADOOP LOG DIR}/userlogs.

4.2.6 Job Submission and Monitoring

The JobClient is the primary interface by which user-job interacts with the JobTracker.
The JobClient provides facilities to submit jobs, track their progress, access component-
tasks’ reports and logs, get the MapReduce cluster’s status information and so on. The
job submission process involves:

1. Checking the input and output specifications of the job.

2. Computing the InputSplit values for the job.

3. Setting up the requisite accounting information for the DistributedCache of the
job, if necessary.

4. Copying the job’s jar and configuration to the MapReduce system directory on
the FileSystem.
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5. Submitting the job to the JobTracker and optionally monitoring it’s status.

Job submission is also possible through the Hadoop FS Shell, with the usage of the
jar command as follows:

bin/hadoop jar <jar file> <main class> [arguments]

Users may need to chain MapReduce jobs to accomplish complex tasks which cannot
be done via a single MapReduce job. This is fairly easy since the output of the job
typically goes to distributed file-system, and the output, in turn, can be used as the
input for the next job.

The JobClient interface is also available from the Linux shell. The following exam-
ples state how a user can view all the Jobs that are currently running in a MapReduce
cluster and how a MapReduce Job can be killed.

bin/hadoop job -list

bin/hadoop job -kill <jobId>

4.2.7 Job Input

The InputFormat describes the input specification for a MapReduce job. The MapRe-
duce framework relies on the InputFormat of the job to:

? Validate the input-specification of the job.

? Split-up the input file(s) into logical InputSplit instances, each of which is then
assigned to an individual Mapper.

? Provide the RecordReader implementation used to glean input records from the
logical InputSplit for processing by the Mapper.

The InputSplit represents the data to be processed by an individual Mapper. Typ-
ically the InputSplit presents a byte-oriented view of the input, and it is the re-
sponsibility of RecordReader to process and present a record-oriented view. The
RecordReader reads <key, value> pairs from an InputSplit. Typically the Record

Reader converts the byte-oriented view of the input, provided by the InputSplit,
and presents a record-oriented to the Mapper implementations for processing. The
RecordReader thus assumes the responsibility of processing record boundaries and
presents the tasks with keys and values.

4.2.8 Job Output

The OutputFormat describes the output specification for a MapReduce job. The
MapReduce framework relies on the OutputFormat of the job to:

? Validate the output specification of the job; for example, check that the output
directory doesn’t already exist.
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? Provide the RecordWriter implementation used to write the output <key, value>

pairs to the output files of the job. The output files of the job are stored in HDFS.

The OutputCommitter describes the commit of task output for a MapReduce job. The
MapReduce framework relies on the OutputCommitter of the job to:

? Setup the job during initialization. For example, create the temporary output
directory for the job during the initialization of the job. Job setup is done by a
separate task when the job is in PREP state and after initializing tasks. Once
the setup task completes, the job will be moved to RUNNING state.

? Cleanup the job after the job completion. For example, remove the temporary
output directory after the job completion. Job cleanup is done by a separate task
at the end of the job. Job is declared SUCCEDED/FAILED/KILLED after the
cleanup task completes.

? Setup the task temporary output. Task setup is done as part of the same task,
during task initialization.

? Check whether a task needs a commit. This is to avoid the commit procedure if
a task does not need to commit.

? Commit of the task output. Once task is done, the task will commit it’s output
if required.

? Discard the task commit. If the task has been failed/killed, the output will be
cleaned-up. If task could not cleanup (in exception block), a separate task will
be launched with same attempt id to do the cleanup.

4.2.9 Configuring the MapReduce Framework

The MapReduce framework is configured by a big set of parameters. A default value
is specified for each configuration parameter, which can be overriden. The MapRe-
duce configuration is controlled by two configuration files : mapred-default.xml and
mapred-site.xml. Those files are loaded in the classpath of each MapReduce daemon
(JobTracker and TaskTrackers) at runtime. The runtime environment of the MapRe-
duce framework is also set up by the hadoop-env.sh configuration script.

mapred-default.xml and mapred-site.xml contain information that regards the
execution of a MapReduce Job, such as the number of Reducer tasks, the maximum
Map and Reducer tasks per node, the task timeout etc. The default values of those
parameters are specified in mapred-default.xml. Default parameter values overrides
should be included in mapred-site.xml. Table 4.4 provides a description of configu-
ration parameters that can be defined in mapred-site.xml accompanied by example
values.
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Configuration Parameter Description Example Value

mapred.job.tracker

The host and port

that the MapReduce

JobTracker runs at.

192.168.0.1:54311

mapred.reduce.tasks

The default number

of reduce tasks per

job.

32

mapred.tasktracker.

map.tasks.maximum

The maximum

number of map

tasks that will be

run simultaneously

by a task tracker.

1

mapred.tasktracker.

reduce.tasks.maximum

The maximum

number of reduce

tasks that will be run

simultaneously by

a TaskTracker.

1

mapred.child.java.opts

Java opts for the

TaskTracker child

processes.

-Xmx160m

mapred.task.timeout

The number of

milliseconds before

a task will be

terminated if it neither

reads an input, writes

an output, nor updates

its status string.

3600000

mapred.map.max.attempts

The maximum

number of attempts

per map task.

15

mapred.reduce.max.attempts

The maximum number

of attempts per reduce

task.

10

mapred.jobtracker.taskScheduler

The class responsible

for scheduling the

tasks.

org.apache.hadoop.

mapred.FairScheduler

Table 4.4: Configuration Parameters Defined in mapred-site.xml
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Chapter 5

Hadoop Cluster Deployment on the
Intel SCC

This chapter provides a detailed description of the tools that have been used and
developed so as to deploy and launch Hadoop Clusters on the Intel SCC. The version of
Hadoop we have used is 0.20.2. The first section of this chapter analyzes the necessary
Runtime Environment setup that has to be performed and the next section explains the
deployment process for four Hadoop Cluster topologies on the Intel SCC. The chapter
concludes with the installation process of Apache Mahout on the MCPC.

5.1 Hadoop Runtime Environment for the Intel SCC

This section presents the Runtime Environment that is required so as to launch Hadoop
Clusters on the Intel SCC. It provides a detailed description of the Gentoo Linux Image
that we have used so as to provide all of the software tools and are necessary for a
Hadoop Cluster installation that are not provided by the Intel SCC Linux. In addition,
several modifications that we have applied regarding the Network Configuration of the
Intel SCC and the MCPC are stated. Moreover, the Java installation process and the
setup of password-less SSH communication between the Intel SCC cores are described.
The section concludes with a script we have developed, which sets up the runtime
environment required by HDFS in each Intel SCC core.

5.1.1 Gentoo Linux for the Intel SCC

Since the Intel SCC Linux provides only a restricted application development API that
does not cover the requirements of a Hadoop Cluster installation, we have utilized a
Gentoo Image which has been developed specifically for the Intel SCC by Sobania and
Tröger [26]. This Gentoo Image makes all usual Linux tools available for us, as well
as it’s software repository, which contains a big variety of software packages for this
specific version of Linux.

The Gentoo Linux for the Intel SCC can be downloaded from the link

http://www.dcl.hpi.uni-potsdam.de/research/scc/scc_gentoo_20101117.tar.bz2.
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The archive that is provided by this link consists of the Gentoo root filesystem under
gentoo/ directory and two bash scripts, to gentoo.sh and set nat.sh which are used
to enter the Gentoo Linux interactive shell from an Intel SCC core and to enable the
cores of Intel SCC access the public Internet with NAT routing through the MCPC
respectively.

to gentoo.sh is used for entering the Gentoo interactive shell from an Intel SCC
core. This script changes the root directory to the Gentoo Linux root directory, which
has to be located under /shared, so as to be accessible from an Intel SCC core. This
is achieved by invoking the chroot command. to gentoo.sh contains the following
single line of code. The root directory of Gentoo Linux is

/shared/ageo/rck00/shared/gentoo

in this case. Before this script is executed, /proc and /dev directories of Intel SCC
Linux have to be mounted to the corresponding directories of the Gentoo Linux direc-
tory structure.

to gentoo.sh:

/usr/sbin/chroot /shared/ageo/rck00/shared/gentoo/ ‘‘$SHELL -i /home/myinit.sh’’

gentoo directory contains the Gentoo Linux file system structure:

ageo@mitsos:~$ ls /shared/ageo/rck00/shared/gentoo

bin bonnie boot dev etc home lib mnt opt proc root

sbin shared sys tmp user usr var

Since it is required that the Gentoo Linux is mounted on all 48 Intel SCC cores, we
have replicated the directory structure under gentoo/ 48 times, so as to create the
Gentoo Linux root directory for each Intel SCC core, as shown below. All of those
directories where placed under the /shared directory, so that they will be accessible
from the Intel SCC cores.

/shared/ageo/rck00/shared/gentoo

/shared/ageo/rck01/shared/gentoo

. . . . .

/shared/ageo/rck46/shared/gentoo

/shared/ageo/rck47/shared/gentoo

For each core, we have also created one to gentoo.sh script, which contains the cor-
responding chroot directory for this specific core. This way, we are able to enter the
Gentoo Linux shell from each Intel SCC core. Each Gentoo Image has access only to
the file system structure that is dedicated to this specific core.

ageo@mitsos:~$ ssh root@rck00

rck00:/root # /shared/ageo/rck00/shared/to_gentoo.sh

Now in myinit.sh on i586 (SCC)

4 Apr 12:35:48 ntpdate[146]: step time server 192.53.103.108

offset 124325786.277508 sec

rck00 / #
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set nat.sh is used to configure the MCPC as a NAT router for the Intel SCC cores,
so that they can have access to the Gentoo Linux repositories and download all the
software packages that are required so as to launch a Hadoop Cluster on the Intel SCC.
The script assumes that eth0 is the primary (WAN) connection, whereas the Intel SCC
cores are connected via eth1 (LAN), so it enables NAT routing from eth1 to eth0.
set nat.sh has to be executed by an administrator with root privileges on the MCPC.

set nat.sh:

#!/bin/sh

##First we flush our current rules

iptables -F

iptables -t nat -F

##Setup default policies to handle unmatched traffic

iptables -P INPUT ACCEPT

iptables -P OUTPUT ACCEPT

iptables -P FORWARD DROP

##Copy and paste these examples ...

#export LAN=crb0 ## sccKit 1.3.0 and earlier: LAN via crbif

export LAN=eth1 ## sccKit 1.3.1: LAN via Ethernet port

export WAN=eth0

##Then we lock our services so they only work from the LAN

iptables -I INPUT 1 -i ${LAN} -j ACCEPT

iptables -I INPUT 1 -i lo -j ACCEPT

iptables -A INPUT -p UDP --dport bootps ! -i ${LAN} -j REJECT

iptables -A INPUT -p UDP --dport domain ! -i ${LAN} -j REJECT

##(Optional) Allow access to our ssh server from the WAN

##iptables -A INPUT -p TCP --dport ssh -i ${WAN} -j ACCEPT

##Drop TCP / UDP packets to privileged ports

#iptables -A INPUT -p TCP ! -i ${LAN} -d 0/0 --dport 0:1023 -j DROP

#iptables -A INPUT -p UDP ! -i ${LAN} -d 0/0 --dport 0:1023 -j DROP

##Finally we add the rules for NAT

iptables -I FORWARD -i ${LAN} -d 192.168.0.0/255.255.0.0 -j DROP

iptables -A FORWARD -i ${LAN} -s 192.168.0.0/255.255.0.0 -j ACCEPT

iptables -A FORWARD -i ${WAN} -d 192.168.0.0/255.255.0.0 -j ACCEPT

iptables -t nat -A POSTROUTING -o ${WAN} -j MASQUERADE

##Tell the kernel that ip forwarding is OK

echo 1 > /proc/sys/net/ipv4/ip_forward

for f in /proc/sys/net/ipv4/conf/*/rp_filter ; do echo 1 > $f ; done
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5.1.2 Network Configuration

We have performed several modifications to the network configuration of the Intel
SCC and the MCPC. First, we enabled the Intel SCC cores access the public Internet
though the MCPC. After running the set nat.sh script on the MCPC, we configured
the MCPC as the default gateway and the default DNS server for the Intel SCC cores
as follows. This way, the cores can have access to the Gentoo Linux software package
repository.

rck00:/root # route add default gw 192.168.3.254

rck00:/root # echo "domain rck

> search rck in.rck.net

> nameserver 192.168.3.254

> " > /etc/resolv.conf

rck00:/root # /shared/ageo/rck00/shared/to_gentoo.sh

Now in myinit.sh on i586 (SCC)

4 Apr 12:35:48 ntpdate[146]: step time server 192.53.103.108

offset 124325786.277508 sec

rck00 / # ping -n www.mit.edu

PING e9566.dscb.akamaiedge.net (95.100.78.187) 56(84) bytes of data.

64 bytes from 95.100.78.187: icmp_req=1 ttl=54 time=30.0 ms

64 bytes from 95.100.78.187: icmp_req=2 ttl=54 time=30.0 ms

^C

--- e9566.dscb.akamaiedge.net ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 1006ms

rtt min/avg/max/mdev = 30.083/30.084/30.086/0.173 ms

In addition, we modified the routing table of the MCPC, so that it can access the in-
ternal virtual network interfaces of the Intel SCC cores (mb0) directly. The purpose of
this was to manipulate the way that the file blocks are stored in the HDFS namespace.
Since we run Apache Mahout at the MCPC and the communication of the MCPC to
the Intel SCC cores takes place via the emac0 interface, the communication between
Mahout, the NameNode and the DataNode takes place through this interface. As a
consequence, the mapping of file blocks to DataNodes in the FsImage of the NameNode
uses the IP addresses that correspond to the emac0 interfaces (192.168.3.x, 1 <= x
<= 48). This makes the data transfer between DataNodes and TaskTrackers during
the execution of a MapReduce job impossible, since the Intel SCC cores cannot com-
municate through the emac0 intefaces.

To overcome this problem, we added static routes to the MCPC routing table, which
route the traffic whose destination is the IP address 192.168.0.x to the IP address
192.168.3.x. This way, the HDFS file blocks are stored using the IP addresses of
the mb0 interfaces in the HDFS namespace and data transfer between DataNodes and
TaskTrackers is made possible. This is achieved by executing the following script. This
script has to be executed every time the MCPC is re-booted, by an administrator with
root privileges on the MCPC.

add routes.sh:

for i in {1..48}
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do

route add -host 192.168.0.$i gw 192.168.3.$i

done

ageo@mitsos:~$ netstat -rn

Kernel IP routing table

Destination Gateway Genmask Flags MSS Window irtt Iface

192.168.0.1 192.168.3.1 255.255.255.255 UGH 0 0 0 eth1

192.168.0.2 192.168.3.2 255.255.255.255 UGH 0 0 0 eth1

. . . . . .

192.168.0.47 192.168.3.47 255.255.255.255 UGH 0 0 0 eth1

192.168.0.48 192.168.3.48 255.255.255.255 UGH 0 0 0 eth1

147.102.37.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

192.168.3.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1

192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 crb0

192.168.0.0 192.168.1.1 255.255.255.0 UG 0 0 0 crb0

10.3.16.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1

169.254.0.0 0.0.0.0 255.255.0.0 U 0 0 0 crb0

0.0.0.0 147.102.37.200 0.0.0.0 UG 0 0 0 eth0

5.1.3 Java Installation

In order to install Java on the Intel SCC cores, we utilized the Portage package manager
which is offered by Gentoo Linux. Gentoo Linux provides several Java packages through
its software package repository:

rck00 / # emerge --search jdk

Searching...

[ Results for search key : jdk ]

[ Applications found : 12 ]

* dev-java/apple-jdk-bin [ Masked ]

Latest version available: 1.6.0

Latest version installed: [ Not Installed ]

Size of files: 0 kB

Homepage: http://java.sun.com/j2se/1.6.0/

Description: Links to Apple’s version of Sun’s J2SE Development Kit

License: as-is

* dev-java/db4o-jdk11

Latest version available: 7.4

Latest version installed: [ Not Installed ]

Size of files: 312 kB

Homepage: http://www.db4o.com

Description: Core files for the object database for java

License: GPL-2

* dev-java/db4o-jdk12

57



Diploma Thesis
Hadoop Cluster Deployment

on the Intel SCC

Latest version available: 7.4

Latest version installed: [ Not Installed ]

Size of files: 89 kB

Homepage: http://www.db4o.com

Description: Core files for the object database for java

License: GPL-2

* dev-java/db4o-jdk5

Latest version available: 7.4

Latest version installed: [ Not Installed ]

Size of files: 63 kB

Homepage: http://www.db4o.com

Description: Core files for the object database for java

License: GPL-2

* dev-java/diablo-jdk [ Masked ]

Latest version available: 1.6.0.07.02

Latest version installed: [ Not Installed ]

Size of files: 62,591 kB

Homepage: http://www.FreeBSDFoundation.org/downloads/java.shtml

Description: Java Development Kit

License: sun-bcla-java-vm

* dev-java/gcj-jdk [ Masked ]

Latest version available: 4.5.1

Latest version installed: [ Not Installed ]

Size of files: 0 kB

Homepage: http://www.gentoo.org/

Description: Java wrappers around GCJ

License: GPL-2

* dev-java/hp-jdk-bin [ Masked ]

Latest version available: 1.6.0.05

Latest version installed: [ Not Installed ]

Size of files: 231,550 kB

Homepage: http://www.hp.com/go/java

Description: HP JDK/JRE and Plug-In

License: HP-JDKJRE6

* dev-java/ibm-jdk-bin

Latest version available: 1.6.0.8_p1-r1

Latest version installed: 1.6.0.8_p1-r1

Size of files: 374,278 kB

Homepage: http://www.ibm.com/developerworks/java/jdk/

Description: IBM Java SE Development Kit

License: IBM-J1.6
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* dev-java/jrockit-jdk-bin [ Masked ]

Latest version available: 1.5.0.14

Latest version installed: [ Not Installed ]

Size of files: 241,996 kB

Homepage: http://commerce.bea.com/products/weblogicjrockit/jrockit_prod_fam.jsp

Description: BEA WebLogic’s J2SE Development Kit

License: jrockit

* dev-java/sun-jdk

Latest version available: 1.6.0.22

Latest version installed: [ Not Installed ]

Size of files: 163,745 kB

Homepage: http://java.sun.com/javase/6/

Description: Sun’s Java SE Development Kit

License: dlj-1.1

* java-virtuals/jdk-with-com-sun

Latest version available: 20100419

Latest version installed: [ Not Installed ]

Size of files: 0 kB

Homepage: http://www.gentoo.org

Description: Virtual ebuilds that require internal com.sun classes from a JDK

License: GPL-2

* virtual/jdk

Latest version available: 1.6.0

Latest version installed: 1.6.0

Size of files: 0 kB

Homepage:

Description: Virtual for JDK

License:

In our setup, we have selected the JDK that is provided by IBM (dev-java/ibm-jdk-bin).
In order to install this package, we execute the following command. The Portage pack-
age manager then takes care of downloading all the necessary source files, extracting
compiling and installing them to the appropriate directories.

rck00 / # emerge dev-java/ibm-jdk-bin

. . . . . .

rck00 / # java -version

java version "1.6.0"

Java(TM) SE Runtime Environment (build pxi3260sr8fp1-20100624_01(SR8 FP1))

IBM J9 VM (build 2.4, JRE 1.6.0 IBM J9 2.4 Linux x86-32

jvmxi3260sr8ifx-20100609_59383 (JIT enabled, AOT enabled)

J9VM - 20100609_059383

JIT - r9_20100401_15339ifx2
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GC - 20100308_AA)

JCL - 20100624_01

Gentoo Linux masks several software packages that are available through its repository,
due to license mismatches. The installation of masked packages is not allowed. In order
to allow the installation of masked software packages, the following line has to be added
to the /etc/make.conf file:

ACCEPT_LICENSE="*"

5.1.4 SSH Communication Between Cluster Nodes

During the start up of a Hadoop Cluster, the master node (where the NameNode and
the JobTracker are executed) is responsible for starting the DataNode and TaskTracker
daemons in all the remote nodes of the cluster. In order to achieve this, the master
node connects using SSH to all the slave nodes. As a consequence, it is essential that
the master node can connect to all the slave nodes with SSH using public key authen-
tication. In addition, since in our setup we run the Hadoop daemons on the Gentoo
Image and not the Intel SCC Linux, the master node has to be able to connect di-
rectly to the Gentoo Image, rather than the Intel SCC Linux Image. In order to meet
the above requirements, we have created a second SSH server than runs on each core,
listens to the port 1234 and enables the clients to open an interactive Gentoo Linux
shell remotely.

We have modified the default SSH server configuration file (/etc/sshd config), which
is located in the Intel SCC Linux filesystem, in order to provide the functionality de-
scribed above. For each cluster node, we configured overrides for the default values of
the Port and ChrootDirectory properties as shown below, for core rck00. For differ-
ent cores, the value for ChrootDirectory is set accordingly. The ChrootDirectory of
each Gentoo Linux instance should be owned by root.

Port 1234

ChrootDirectory /shared/ageo/rck00/shared/gentoo

In order to enable SSH communication using public key authentication, we created a
public and private key pair in node rck00, using the command

ssh-keygen -t rsa

This command generates a public key which is stored in /root/.ssh/id rsa.pub and a
private key which is stored in /root/.ssh/id rsa. Both of the paths refer to the Gen-
too Linux filesystem. Since the SSH communication takes place between the Gentoo
Linux shells of the Intel SCC cores, the private key has to be copied in the /root/.ssh
directory of the Gentoo Linux filesystem of each core and the public key should be
added to the /root/.ssh/authorized keys file of the Intel SCC Linux filesystem of
each core. The configuration of our SSH server is placed in /etc/sshd config1 file,
in the Intel SCC Linux of each core. The SSH server can be started by executing the
sshd command. The Gentoo Linux shell of the cores is then accessible through both
the MCPC and the other cores, without a password being requested.
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rck00:/root # /usr/sbin/sshd -f /etc/sshd_config1

rck00 / # ssh -p 1234 root@rck27

rck27 ~ #

ageo@mitsos:~$ ssh -p 1234 root@rck00

rck00 ~ #

5.1.5 Hadoop Runtime Environment Setup

In order to setup the runtime environment for each Intel SCC core, we have created
the following script for each core, which is called start.sh. This code presented below
regards nodes rck00 and rck22. This script copies the public key we have generated
to the /root/.ssh/authorized keys directory of each core, starts the SSH server
that was described in the previous section, mounts the /proc directory of the Intel
SCC Linux to the corresponding directory of the Gentoo Linux directory structure and
copies the files under /dev of Intel SCC Linux to the corresponding directory of the
Gentoo Linux directory structure. This script is placed in /shared/ageo/rck00 direc-
tory so that it can be accessed by the core. Similar scripts are used for the other cores,
which mount the /proc directory into the corresponding directory of the Gentoo Linux
filesystem and are placed in the directory that is dedicated for the specific core. For
example, the start.sh script for rck22 is placed in the /shared/ageo/rck22 directory
and mounts the /proc directory into /shared/ageo/rck22/shared/gentoo/proc.

start.sh for rck00 :

cat /shared/ageo/rck00/shared/gentoo/root/.ssh/id_rsa.pub

>> /root/.ssh/authorized_keys

cp /shared/ageo/rck00/sshd_config1 /etc

/usr/sbin/sshd -f /etc/sshd_config1

mount -t proc proc /shared/ageo/rck00/shared/gentoo/proc

cp -r /dev/* /shared/ageo/rck00/shared/gentoo/dev

start.sh for rck22 :

cat /shared/ageo/rck00/shared/gentoo/root/.ssh/id_rsa.pub

>> /root/.ssh/authorized_keys

cp /shared/ageo/rck22/sshd_config1 /etc

/usr/sbin/sshd -f /etc/sshd_config1

mount -t proc proc /shared/ageo/rck22/shared/gentoo/proc

cp -r /dev/* /shared/ageo/rck22/shared/gentoo/dev

5.2 Hadoop Cluster Topologies on the Intel SCC

This section describes the process that has to be followed so that a Hadoop Cluster
is launched on the Intel SCC. Initially, the principal design choices we have made
are presented and explained. Subsequently, the list of configuration parameters we
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have defined, in order to deploy four Hadoop Cluster topologies on the Intel SCC,
is presented. Those topologies consist of 16, 24, 32 and 48 nodes each. The section
concludes with the description of a failover mechanism we have developed, which is
crucial for the stability of the HDFS clusters that are deployed on the Intel SCC,
during the execution of MapReduce jobs.

5.2.1 Design Choices and Platform Limitations

This section states the basic design choices that we have made and the failover mech-
anisms we have developed, regarding the deployment of Hadoop Cluster topologies on
the Intel SCC, with respect to the architectural characteristics of the Intel SCC and
the physical limitations that are imposed by this platform.

The most devastating limitation that our setup suffers from, is the lack of sufficient
main memory space for each core. Since 32 GB of memory are connected to the Intel
SCC die through the memory controllers, only 640 MB of main memory is available
for each core, thus Hadoop Cluster node. After testing several MapReduce jobs for
various values of maximum Java Heap Size, we decided that a value of -Xmx128m is
appropriate for the Hadoop Dameons and the Child JVMs, so that the Java processes
will neither be killed by the OS (or make the core freeze), nor be terminated with a
java.lang.OutOfMemoryError exception.

As a consequence of the above, it is essential that the typical Hadoop Cluster de-
ployment strategy, which supposes that DataNodes and TaskTrackers run on the same
cluster nodes, is dropped. In our setup, we have configured DataNodes and TaskTrack-
ers to run on different cores and have explicitly divided the on-die cluster to Hadoop
Racks, so that the rack locality-aware scheduling mechanism of MapReduce is not
thrown away. In addition, the typical MapReduce framework configuration determines
that the Reduce phase of a MapReduce job is triggered after only the 5% of the Map
phase has completed. That is, reduce tasks are scheduled for cluster nodes where child
JVMs are already executing Map tasks. With so little main memory available, this
is evidently impossible. As a result, we have configured the Reduce phase to start
after the 100% of the Map phase has completed successfully. For the same reason,
the TaskTracker nodes are configured to run only one Map or Reduce task at a time.
Moreover, we significantly reduced the file block size from the default value of 64 MB
to 4 MB. Since a Map task is scheduled for each InputSplit we made that decision
so that to reduce the I/O load for the DataNode cores.

Another design choice we made regards the placement of the cluster nodes on the
Intel SCC die. We decided to locate the DataNodes at the edge of the Intel SCC die,
that is in the cores of the tiles with either x=0 or x=5 in the Intel SCC core layout.
This decision was driven by the fact that since DataNodes are responsible for storing
file blocks in their local filesystem, they are expected to have heavier I/O load during
the execution of a MapReduce job. As a consequence, placing the DataNodes closer
to the memory controllers of the Intel SCC die, reduces the latency of their frequent
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accesses to the NFS.

Finally, we noticed that the presence of high I/O load and very low free main memory
space causes some cores to freeze and become unreachable rather frequently. That is,
at least one core freezing during the execution of a MapReduce job is the norm and not
the exception on the Intel SCC. Configuring a replication factor greater than 1 looked
a reasonable solution at first, since this is the out-of-the-box mechanism Hadoop pro-
vides so as to ensure data is always available. However, a replication factor greater
than 1, forces the DataNodes replicate under-replicated file blocks, thus significantly
increasing their I/O load, which is the reason that causes them to fail in the first place.
As a consequence, we observed that configuring a replication factor greater than 1
causes the DataNode cores to freeze one after the other, rendering the completion of
the MapReduce job impossible.

In order to tackle this problem, we followed a completely different approach. We
implemented a node-failover watchdog script, which pings the Intel SCC cores period-
ically so as to ensure that all of them are up and running. In case a core is observed to
be unreachable, that is ping receives no response packet, the SCC Linux is booted on
the core immediately, the Hadoop Runtime Environment is set up and the correspond-
ing Hadoop Daemon is started. This sequence of actions is also triggered if a core is
reachable by ping, but the Hadoop Daemon it is supposed to run has been killed by the
OS. This way, we have overcome the complication of cores freezing frequently and have
ensured the forward progress of MapReduce jobs despite the presence of this situation.
Map or Reduce tasks may be terminated with exceptions during a core (especially a
DataNode because of data being unavailable) is rebooted, but the retry mechanism of
MapReduce guarantees that those tasks will be completed successfully once they are
re-executed and the Hadoop Cluster is in a stable state.

5.2.2 The hadoop-env.sh Configuration Script

This section describes the hadoop-env.sh configuration script that we have used in
our setup.

hadoop-env.sh :

# Set Hadoop-specific environment variables here.

# The only required environment variable is JAVA_HOME. All others are

# optional. When running a distributed configuration it is best to

# set JAVA_HOME in this file, so that it is correctly defined on

# remote nodes.

# The java implementation to use. Required.

export JAVA_HOME=/opt/ibm-jdk-bin-1.6.0.8_p1

# Extra Java CLASSPATH elements. Optional.
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# export HADOOP_CLASSPATH=

# The maximum amount of heap to use, in MB. Default is 1000.

export HADOOP_HEAPSIZE=128

# Extra Java runtime options. Empty by default.

# export HADOOP_OPTS=-server

# Command specific options appended to HADOOP_OPTS when specified

export HADOOP_NAMENODE_OPTS=

"-Dcom.sun.management.jmxremote $HADOOP_NAMENODE_OPTS"

export HADOOP_SECONDARYNAMENODE_OPTS=

"-Dcom.sun.management.jmxremote $HADOOP_SECONDARYNAMENODE_OPTS"

export HADOOP_DATANODE_OPTS=

"-Dcom.sun.management.jmxremote "

export HADOOP_BALANCER_OPTS=

"-Dcom.sun.management.jmxremote $HADOOP_BALANCER_OPTS"

export HADOOP_JOBTRACKER_OPTS=

"-Dcom.sun.management.jmxremote $HADOOP_JOBTRACKER_OPTS"

# export HADOOP_TASKTRACKER_OPTS=

# The following applies to multiple commands (fs, dfs, fsck, distcp etc)

# export HADOOP_CLIENT_OPTS

# Extra ssh options. Empty by default.

export HADOOP_SSH_OPTS="-p 1234 -l root "

# Where log files are stored. $HADOOP_HOME/logs by default.

# export HADOOP_LOG_DIR=${HADOOP_HOME}/logs

# File naming remote slave hosts. $HADOOP_HOME/conf/slaves by default.

# export HADOOP_SLAVES=${HADOOP_HOME}/conf/slaves

# host:path where hadoop code should be rsync’d from. Unset by default.

# export HADOOP_MASTER=master:/home/$USER/src/hadoop

# Seconds to sleep between slave commands. Unset by default. This

# can be useful in large clusters, where, e.g., slave rsyncs can

# otherwise arrive faster than the master can service them.

# export HADOOP_SLAVE_SLEEP=0.1

# The directory where pid files are stored. /tmp by default.

# export HADOOP_PID_DIR=/var/hadoop/pids

# A string representing this instance of hadoop. $USER by default.

# export HADOOP_IDENT_STRING=$USER

# The scheduling priority for daemon processes. See ’man nice’.
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# export HADOOP_NICENESS=10

export HADOOP_ROOT_LOGGER="ERROR,console"

In this configuration script we have set the JAVA HOME environment variable to the
directory path where Java is installed in each Gentoo Linux image in the Intel SCC
cores. In the HADOOP SSH OPTS variable we have determined that ssh connections should
be attempted at port 1234 as the root user, so as to utilize the SSH server we described
in a previous section of this chapter. Finally, we have disabled Hadoop Logging, for log
messages which are marked with severity lower than ERROR by log4j, by setting the
HADOOP ROOT LOGGER variable, so as to prevent CPU cycles and I/O bandwidth being
wasted during the execution of a MapReduce job. This version of hadoop-env.sh is
used by all of the cluster topologies we describe in this thesis.

5.2.3 The core-site.xml Configuration File

This section describes the core-site.xml configuration file that we have used in our
setup.

core-site.xml :

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>

<property>

<name>fs.default.name</name>

<value>hdfs://192.168.0.1:54310</value>

</property>

<property>

<name>topology.script.file.name</name>

<value>/home/ageo/hadoop-topology.sh</value>

</property>

</configuration>

In this configuration file, we have defined the URL of the NameNode in the fs.
default.name property. In addition, we have determined the topology.script.file.
name, which assigns cluster nodes to Hadoop Racks. This script receives the IP address
of a cluster node as an input and provides the rack name it is assigned to as the output.
This version of core-site.xml and hadoop-topology.sh is used by all of the cluster
topologies we describe in this thesis. The complete code of hadoop-topology.sh is
available in Appendix A.

hadoop-topology.sh :

if [ "$1" = "192.168.0.1" ]

then

echo "/rack00";

fi
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if [ "$1" = "192.168.0.2" ]

then

echo "/rack01";

fi

. . . . . .

if [ "$1" = "192.168.0.47" ]

then

echo "/rack14";

fi

if [ "$1" = "192.168.0.48" ]

then

echo "/rack15";

fi

5.2.4 The hdfs-site.xml Configuration File

This section describes the hdfs-site.xml configuration file that we have used in our
setup.

hdfs-site.xml for 16-node and 24-node cluster topology:

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>

<property>

<name>dfs.replication</name>

<value>1</value>

</property>

<property>

<name>dfs.block.size</name>

<value>4194304</value>

</property>

<property>

<name>hadoop.tmp.dir</name>

<value>/home/ageo/tmp_dir-topo16-24</value>

</property>

<property>

<name>dfs.name.dir</name>

<value>/home/ageo/hdfsnames-topo16-24</value>

</property>

<property>

<name>dfs.data.dir</name>

<value>/home/ageo/hdfsdata-topo16-24</value>

</property>

</configuration>

hdfs-site.xml for 32-node and 48-node cluster topology:
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<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>

<property>

<name>dfs.replication</name>

<value>1</value>

</property>

<property>

<name>dfs.block.size</name>

<value>4194304</value>

</property>

<property>

<name>hadoop.tmp.dir</name>

<value>/home/ageo/tmp_dir-topo32-48</value>

</property>

<property>

<name>dfs.name.dir</name>

<value>/home/ageo/hdfsnames-topo32-48</value>

</property>

<property>

<name>dfs.data.dir</name>

<value>/home/ageo/hdfsdata-topo32-48</value>

</property>

</configuration>

The file block replication factor is defined by the dfs.replication property and the
file block size by the dfs.block.size property. The dfs.name.dir defines the local
file system directory, where the NameNode should store the name table (FsImage) and
the dfs.data.dir defines the directory where the DataNodes should store file data
blocks, in their local file systems. The reason why different values have been set for
the last two properties, depending on the Hadoop Cluster topology, is explained in a
later section.

5.2.5 The mapred-site.xml Configuration File

This section describes the mapred-site.xml configuration file that we have used in
our setup.

mapred-site.xml for 16-node topology:

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>

<property>

<name>mapred.job.tracker</name>

<value>192.168.0.1:54311</value>
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</property>

<property>

<name>mapred.reduce.tasks</name>

<value>8</value>

</property>

<property>

<name>mapred.tasktracker.map.tasks.maximum</name>

<value>1</value>

</property>

<property>

<name>mapred.tasktracker.reduce.tasks.maximum</name>

<value>1</value>

</property>

<property>

<name>mapred.reduce.slowstart.completed.maps</name>

<value>1.00</value>

</property>

<property>

<name>mapred.child.java.opts</name>

<value>-Xmx128m</value>

</property>

<property>

<name>mapred.task.timeout</name>

<value>3600000</value>

</property>

</configuration>

mapred-site.xml for 24-node and 32-node topology:

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>

<property>

<name>mapred.job.tracker</name>

<value>192.168.0.1:54311</value>

</property>

<property>

<name>mapred.reduce.tasks</name>

<value>16</value>

</property>

<property>

<name>mapred.tasktracker.map.tasks.maximum</name>

<value>1</value>

</property>

<property>

<name>mapred.tasktracker.reduce.tasks.maximum</name>

<value>1</value>
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</property>

<property>

<name>mapred.reduce.slowstart.completed.maps</name>

<value>1.00</value>

</property>

<property>

<name>mapred.child.java.opts</name>

<value>-Xmx128m</value>

</property>

<property>

<name>mapred.task.timeout</name>

<value>3600000</value>

</property>

</configuration>

mapred-site.xml for 48-node topology:

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>

<property>

<name>mapred.job.tracker</name>

<value>192.168.0.1:54311</value>

</property>

<property>

<name>mapred.reduce.tasks</name>

<value>32</value>

</property>

<property>

<name>mapred.tasktracker.map.tasks.maximum</name>

<value>1</value>

</property>

<property>

<name>mapred.tasktracker.reduce.tasks.maximum</name>

<value>1</value>

</property>

<property>

<name>mapred.reduce.slowstart.completed.maps</name>

<value>1.00</value>

</property>

<property>

<name>mapred.child.java.opts</name>

<value>-Xmx128m</value>

</property>

<property>

<name>mapred.task.timeout</name>

<value>3600000</value>
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</property>

</configuration>

The IP address and the TCP port the JobTracker listens to is defined in mapred.job.

tracker property. The maximum number of Map and Reduce tasks that can be run
by a TaskTracker at a time are defined in mapred.tasktracker.map.tasks.maximum

and mapred.tasktracker.reduce.tasks.maximum properties respectively. The per-
centage of Map tasks that have to be completed successfully before the Reduce phase
starts is defined in the mapred.reduce.slowstart.completed.maps property. The
Java Heap Size used by the Child JVMs that execute the Map and Reduce tasks is
defined in mapred.child.java.opts property. Other JVM command line arguments
can be defined in this property as well. The mapred.task.timeout determines the
time interval in milliseconds that has to pass, for the JobTracker to kill a Map or
Reduce task, if this specific task has not reported its status during that time. Finally,
the mapred.reduce.tasks determines the number of reduce tasks that have to be ex-
ecuted by a MapReduce job. The value of this property is set equal to the number of
TaskTracker nodes, for each Hadoop Cluster topology we have deployed.

5.2.6 The masters Configuration file

The masters configuration file contains the IP address of the master node, which is
192.168.0.1. This version of masters is used by all of the cluster topologies we de-
scribe in this thesis.

masters :

192.168.0.1

5.2.7 16-Node Cluster Topology

This section describes the 16-Node HDFS Cluster Topology we have deployed on the
Intel SCC. It contains one master node, where the NameNode and the JobTracker
are executed and 15 slave nodes, which break down to 7 DataNodes and 8 TaskTrack-
ers. Figure 5.1 illustrates the layout of the Hadoop Cluster nodes on the Intel SCC die.

We have created two directories under the Hadoop installation root directory, conf-
hdfs-topo16 and conf-mapred-topo16, where we have placed the configuration files
that contain the properties that will be loaded when the DataNodes and the TaskTrack-
ers are started, respectively. The content of those two directories is identical, except
for the slaves file, which contains the IP addresses of the nodes where the DataNodes
and the TaskTrackers will be executed in each case, as shown below. Since in the
16-Node and the 24-Node cluster topologies the DataNodes run on the same Intel SCC
cores, those two cluster topologies share the same dfs.name.dir and dfs.data.dir
directories, where the FsImage is stored by the NameNode and the file data blocks
are stored by the DataNodes, respectively. That is, those cluster topologies share the
same HDFS namespace and differ only in the number of TaskTracker nodes they em-
ploy, which execute the Map and Reduce tasks of MapReduce jobs.
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Figure 5.1: 16-Node Hadoop Cluster on the Intel SCC

conf-hdfs-topo16/slaves :

192.168.0.2

192.168.0.11

192.168.0.12

192.168.0.25

192.168.0.26

192.168.0.35

192.168.0.36

conf-mapred-topo16/slaves :

192.168.0.3

192.168.0.4

192.168.0.9

192.168.0.10

192.168.0.27

192.168.0.28

192.168.0.33

192.168.0.34

In order to launch the 16-Node Hadoop Cluster on the Intel SCC, two scripts have to be
executed. Firstly, start cluster topo16.sh has to be invoked from the MCPC so as
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to setup the runtime environment for HDFS. It is located in our home directory in the
MCPC. Afterwards, bin/start-all-topo16.sh has to be executed from the master
node (rck00) so as to start the Hadoop Daemons on the Intel SCC cores and launch
the HDFS cluster. The above path is relative to the Hadoop installation root direc-
tory. The Hadoop Cluster can be shut down by invoking the bin/stop-all-topo16.sh
script from the master node. The above path is relative to the Hadoop installation
root directory.

start cluster topo16.sh :

RESOLV_CONF="domain rck

search rck in.rck.net

nameserver 192.168.3.254"

for i in {0,1,2,3,8,9}

do

ssh root@rck0$i "/shared/ageo/rck0$i/start.sh ;

route add default gw 192.168.3.254 ;

echo "${RESOLV_CONF}" > /etc/resolv.conf"

done

for i in {10,11,24,25,26,27,32,33,34,35}

do

ssh root@rck$i "shared/ageo/rck$i/start.sh ;

route add default gw 192.168.3.254 ;

echo "${RESOLV_CONF}" > /etc/resolv.conf"

done

bin/start-all-topo16.sh :

bin=‘dirname "$0"‘

bin=‘cd "$bin"; pwd‘

. "$bin"/hadoop-config.sh

# start dfs daemons

"$bin"/start-dfs.sh --config /home/ageo/hadoop-0.20.2/conf-hdfs-topo16

# start mapred daemons

"$bin"/start-mapred.sh --config /home/ageo/hadoop-0.20.2/conf-mapred-topo16

bin/stop-all-topo16.sh :

bin=‘dirname "$0"‘

bin=‘cd "$bin"; pwd‘

. "$bin"/hadoop-config.sh

"$bin"/stop-mapred.sh --config /home/ageo/hadoop-0.20.2/conf-mapred-topo16

"$bin"/stop-dfs.sh --config /home/ageo/hadoop-0.20.2/conf-hdfs-topo16
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5.2.8 24-Node Cluster Topology

This section describes the 24-Node HDFS Cluster Topology we have deployed on the
Intel SCC. It contains one master node, where the NameNode and the JobTracker are
executed and 23 slave nodes, which break down to 7 DataNodes and 16 TaskTrack-
ers. Figure 5.2 illustrates the layout of the Hadoop Cluster nodes on the Intel SCC die.

Figure 5.2: 24-Node Hadoop Cluster on the Intel SCC

We have created two directories under the Hadoop installation root directory, conf-
hdfs-topo24 and conf-mapred-topo24, where we have placed the configuration files
that contain the properties that will be loaded when the DataNodes and the TaskTrack-
ers are started, respectively. The content of those two directories is identical, except
for the slaves file, which contains the IP addresses of the nodes where the DataNodes
and the TaskTrackers will be executed in each case, as shown below. Since in the
16-Node and the 24-Node cluster topologies the DataNodes run on the same Intel SCC
cores, those two cluster topologies share the same dfs.name.dir and dfs.data.dir
directories, where the FsImage is stored by the NameNode and the file data blocks
are stored by the DataNodes, respectively. That is, those cluster topologies share the
same HDFS namespace and differ only in the number of TaskTracker nodes they em-
ploy, which execute the Map and Reduce tasks of MapReduce jobs.

conf-hdfs-topo24/slaves :

192.168.0.2
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192.168.0.11

192.168.0.12

192.168.0.25

192.168.0.26

192.168.0.35

192.168.0.36

conf-mapred-topo24/slaves :

192.168.0.3

192.168.0.4

192.168.0.5

192.168.0.6

192.168.0.8

192.168.0.7

192.168.0.9

192.168.0.10

192.168.0.27

192.168.0.28

192.168.0.29

192.168.0.30

192.168.0.31

192.168.0.32

192.168.0.33

192.168.0.34

In order to launch the 24-Node Hadoop Cluster on the Intel SCC, two scripts have to be
executed. Firstly, start cluster topo24.sh has to be invoked from the MCPC so as
to setup the runtime environment for HDFS. It is located in our home directory in the
MCPC. Afterwards, bin/start-all-topo24.sh has to be executed from the master
node (rck00) so as to start the Hadoop Daemons on the Intel SCC cores and launch
the HDFS cluster. The above path is relative to the Hadoop installation root direc-
tory. The Hadoop Cluster can be shut down by invoking the bin/stop-all-topo24.sh
script from the master node. The above path is relative to the Hadoop installation
root directory.

start cluster topo24.sh :

RESOLV_CONF="domain rck

search rck in.rck.net

nameserver 192.168.3.254"

for i in {0..9}

do

ssh root@rck0$i "/shared/ageo/rck0$i/start.sh ;

route add default gw 192.168.3.254 ;

echo "${RESOLV_CONF}" > /etc/resolv.conf"

done

for i in {10,11}

do
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ssh root@rck$i "shared/ageo/rck$i/start.sh ;

route add default gw 192.168.3.254 ;

echo "${RESOLV_CONF}" > /etc/resolv.conf"

done

for i in {24..35}

do

ssh root@rck$i "shared/ageo/rck$i/start.sh ;

route add default gw 192.168.3.254 ;

echo "${RESOLV_CONF}" > /etc/resolv.conf"

done

bin/start-all-topo24.sh :

bin=‘dirname "$0"‘

bin=‘cd "$bin"; pwd‘

. "$bin"/hadoop-config.sh

# start dfs daemons

"$bin"/start-dfs.sh --config /home/ageo/hadoop-0.20.2/conf-hdfs-topo24

# start mapred daemons

"$bin"/start-mapred.sh --config /home/ageo/hadoop-0.20.2/conf-mapred-topo24

bin/stop-all-topo24.sh :

bin=‘dirname "$0"‘

bin=‘cd "$bin"; pwd‘

. "$bin"/hadoop-config.sh

"$bin"/stop-mapred.sh --config /home/ageo/hadoop-0.20.2/conf-mapred-topo24

"$bin"/stop-dfs.sh --config /home/ageo/hadoop-0.20.2/conf-hdfs-topo24

5.2.9 32-Node Cluster Topology

This section describes the 32-Node HDFS Cluster Topology we have deployed on the
Intel SCC. It contains one master node, where the NameNode and the JobTracker are
executed and 31 slave nodes, which break down to 15 DataNodes and 16 TaskTrack-
ers. Figure 5.3 illustrates the layout of the Hadoop Cluster nodes on the Intel SCC die.

We have created two directories under the Hadoop installation root directory, conf-
hdfs-topo32 and conf-mapred-topo32, where we have placed the configuration files
that contain the properties that will be loaded when the DataNodes and the TaskTrack-
ers are started, respectively. The content of those two directories is identical, except
for the slaves file, which contains the IP addresses of the nodes where the DataNodes
and the TaskTrackers will be executed in each case, as shown below. Since in the
32-Node and the 48-Node cluster topologies the DataNodes run on the same Intel SCC
cores, those two cluster topologies share the same dfs.name.dir and dfs.data.dir
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Figure 5.3: 32-Node Hadoop Cluster on the Intel SCC

directories, where the FsImage is stored by the NameNode and the file data blocks
are stored by the DataNodes, respectively. That is, those cluster topologies share the
same HDFS namespace and differ only in the number of TaskTracker nodes they em-
ploy, which execute the Map and Reduce tasks of MapReduce jobs.

conf-hdfs-topo32/slaves :

192.168.0.2

192.168.0.11

192.168.0.12

192.168.0.13

192.168.0.14

192.168.0.22

192.168.0.23

192.168.0.25

192.168.0.26

192.168.0.35

192.168.0.36

192.168.0.37

192.168.0.38

conf-mapred-topo32/slaves :

192.168.0.3
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192.168.0.4

192.168.0.9

192.168.0.10

192.168.0.15

192.168.0.16

192.168.0.21

192.168.0.22

192.168.0.27

192.168.0.28

192.168.0.33

192.168.0.34

192.168.0.39

192.168.0.40

192.168.0.45

192.168.0.46

In order to launch the 32-Node Hadoop Cluster on the Intel SCC, two scripts have to be
executed. Firstly, start cluster topo32.sh has to be invoked from the MCPC so as
to setup the runtime environment for HDFS. It is located in our home directory in the
MCPC. Afterwards, bin/start-all-topo32.sh has to be executed from the master
node (rck00) so as to start the Hadoop Daemons on the Intel SCC cores and launch
the HDFS cluster. The above path is relative to the Hadoop installation root direc-
tory. The Hadoop Cluster can be shut down by invoking the bin/stop-all-topo32.sh
script from the master node. The above path is relative to the Hadoop installation
root directory.

start cluster topo32.sh :

RESOLV_CONF="domain rck

search rck in.rck.net

nameserver 192.168.3.254"

for i in {0..3}

do

ssh root@rck0$i "/shared/ageo/rck0$i/start.sh ;

route add default gw 192.168.3.254 ;

echo "${RESOLV_CONF}" > /etc/resolv.conf"

done

for i in {8..9}

do

ssh root@rck0$i "/shared/ageo/rck0$i/start.sh ;

route add default gw 192.168.3.254 ;

echo "${RESOLV_CONF}" > /etc/resolv.conf"

done

for i in {10..15}

do

ssh root@rck$i "shared/ageo/rck$i/start.sh ;

route add default gw 192.168.3.254 ;

echo "${RESOLV_CONF}" > /etc/resolv.conf"
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done

for i in {20..27}

do

ssh root@rck$i "shared/ageo/rck$i/start.sh ;

route add default gw 192.168.3.254 ;

echo "${RESOLV_CONF}" > /etc/resolv.conf"

done

for i in {32..39}

do

ssh root@rck$i "shared/ageo/rck$i/start.sh ;

route add default gw 192.168.3.254 ;

echo "${RESOLV_CONF}" > /etc/resolv.conf"

done

for i in {44..47}

do

ssh root@rck$i "shared/ageo/rck$i/start.sh ;

route add default gw 192.168.3.254 ;

echo "${RESOLV_CONF}" > /etc/resolv.conf"

done

bin/start-all-topo32.sh :

bin=‘dirname "$0"‘

bin=‘cd "$bin"; pwd‘

. "$bin"/hadoop-config.sh

# start dfs daemons

"$bin"/start-dfs.sh --config /home/ageo/hadoop-0.20.2/conf-hdfs-topo32

# start mapred daemons

"$bin"/start-mapred.sh --config /home/ageo/hadoop-0.20.2/conf-mapred-topo32

bin/stop-all-topo32.sh :

bin=‘dirname "$0"‘

bin=‘cd "$bin"; pwd‘

. "$bin"/hadoop-config.sh

"$bin"/stop-mapred.sh --config /home/ageo/hadoop-0.20.2/conf-mapred-topo32

"$bin"/stop-dfs.sh --config /home/ageo/hadoop-0.20.2/conf-hdfs-topo32

5.2.10 48-Node Cluster Topology

This section describes the 48-Node HDFS Cluster Topology we have deployed on the
Intel SCC. It contains one master node, where the NameNode and the JobTracker are
executed and 47 slave nodes, which break down to 15 DataNodes and 32 TaskTrack-
ers. Figure 5.4 illustrates the layout of the Hadoop Cluster nodes on the Intel SCC die.
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Figure 5.4: 48-Node Hadoop Cluster on the Intel SCC

We have created two directories under the Hadoop installation root directory, conf-
hdfs-topo48 and conf-mapred-topo48, where we have placed the configuration files
that contain the properties that will be loaded when the DataNodes and the TaskTrack-
ers are started, respectively. The content of those two directories is identical, except
for the slaves file, which contains the IP addresses of the nodes where the DataNodes
and the TaskTrackers will be executed in each case, as shown below. Since in the
32-Node and the 48-Node cluster topologies the DataNodes run on the same Intel SCC
cores, those two cluster topologies share the same dfs.name.dir and dfs.data.dir
directories, where the FsImage is stored by the NameNode and the file data blocks
are stored by the DataNodes, respectively. That is, those cluster topologies share the
same HDFS namespace and differ only in the number of TaskTracker nodes they em-
ploy, which execute the Map and Reduce tasks of MapReduce jobs.

conf-hdfs-topo48/slaves :

192.168.0.2

192.168.0.11

192.168.0.12

192.168.0.13

192.168.0.14

192.168.0.22

192.168.0.23
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192.168.0.25

192.168.0.26

192.168.0.35

192.168.0.36

192.168.0.37

192.168.0.38

conf-mapred-topo48/slaves :

192.168.0.3

192.168.0.4

192.168.0.5

192.168.0.6

192.168.0.7

192.168.0.8

192.168.0.9

192.168.0.10

192.168.0.15

192.168.0.16

192.168.0.17

192.168.0.18

192.168.0.19

192.168.0.20

192.168.0.21

192.168.0.22

192.168.0.27

192.168.0.28

192.168.0.29

192.168.0.30

192.168.0.31

192.168.0.32

192.168.0.33

192.168.0.34

192.168.0.39

192.168.0.40

192.168.0.41

192.168.0.42

192.168.0.43

192.168.0.44

192.168.0.45

192.168.0.46

In order to launch the 48-Node Hadoop Cluster on the Intel SCC, two scripts have to be
executed. Firstly, start cluster topo48.sh has to be invoked from the MCPC so as
to setup the runtime environment for HDFS. It is located in our home directory in the
MCPC. Afterwards, bin/start-all-topo48.sh has to be executed from the master
node (rck00) so as to start the Hadoop Daemons on the Intel SCC cores and launch
the HDFS cluster. The above path is relative to the Hadoop installation root direc-
tory. The Hadoop Cluster can be shut down by invoking the bin/stop-all-topo48.sh
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script from the master node. The above path is relative to the Hadoop installation
root directory.

start cluster topo48.sh :

RESOLV_CONF="domain rck

search rck in.rck.net

nameserver 192.168.3.254"

for i in {0..9}

do

ssh root@rck0$i "/shared/ageo/rck0$i/start.sh ;

route add default gw 192.168.3.254 ;

echo "${RESOLV_CONF}" > /etc/resolv.conf"

done

for i in {10..47}

do

ssh root@rck0$i "/shared/ageo/rck0$i/start.sh ;

route add default gw 192.168.3.254 ;

echo "${RESOLV_CONF}" > /etc/resolv.conf"

done

bin/start-all-topo48.sh :

bin=‘dirname "$0"‘

bin=‘cd "$bin"; pwd‘

. "$bin"/hadoop-config.sh

# start dfs daemons

"$bin"/start-dfs.sh --config /home/ageo/hadoop-0.20.2/conf-hdfs-topo48

# start mapred daemons

"$bin"/start-mapred.sh --config /home/ageo/hadoop-0.20.2/conf-mapred-topo48

bin/stop-all-topo48.sh :

bin=‘dirname "$0"‘

bin=‘cd "$bin"; pwd‘

. "$bin"/hadoop-config.sh

"$bin"/stop-mapred.sh --config /home/ageo/hadoop-0.20.2/conf-mapred-topo48

"$bin"/stop-dfs.sh --config /home/ageo/hadoop-0.20.2/conf-hdfs-topo48

5.2.11 Node Failover Watchdog

This section presents the watchdog mechanism that we have developed and was de-
scribed earlier in this chapter. We have developed one watchdog script per node type,
i.e. DataNode or TaskTracker and per operating frequency. Cluster nodes operate at
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200 MHz, 533 MHz or 800 MHz in our setup. Code samples of the watchdog scripts
are available in Appendix A.

Those six scripts operate in a similar fashion. Initially, they check if an Intel SCC
core is reachable by ping periodically every 30 seconds. If not, they immediately boot
Linux on that specific core (sccBoot -l) and wait for 200, 75 or 50 seconds, depending
on the core frequency, so that core will be reachable by TCP/IP. The reason we have
used different wait intervals is that the lower the frequency of the tile clock is, the more
time Linux needs to be booted and a core to be accessible. After Linux has been booted,
the script start.sh is called so as to setup the Hadoop Runtime Environment, gmond
monitoring daemon is started (more details in the next chapter) and the correspond-
ing Hadoop Daemon is launched on the core. If the core corresponds to a DataNode,
start-dfs.sh is executed. start-mapred.sh is executed if the core corresponds to a
TaskTracker. The conf-local directory’s contents are identical to the ones described
in the previous section. The only file that is different is the slaves file, which contains
only the IP address of the specific core, so that the Hadoop Daemon is started only on
that core. For instance, core rck31 contains only the IP address 192.168.0.32 in the
conf-local/slaves file. Specifically for DataNodes, the same sequence of actions is
triggered if the specific core can been reached by ping, but the DataNode process has
been killed by the OS. This situation is detected when netstat -na | grep 50010
returns no lines. 50010 is the default port for data transfer between DataNodes and
TaskTrackers or other HDFS clients.

The scripts described above are combined in a parent script, for each cluster topology
and frequency setting for DataNodes and TaskTrackers. Since we perform frequency
perturbations only at the 48-Node cluster, we need 9 + 3 = 12 parent scripts. The
following script is invoked so as to support the HDFS cluster when the 48-node topol-
ogy has been launched, the DataNodes operate at 200MHz and the TaskTrackers at
800MHz. Similar scripts have been developed for the rest of the cases.

watchdog-topo48-dn200-tt800.sh :

for i in 1

do

./watchdog-datanode-200.sh $i > watchdog-logs/rck0$i.out &

done

for i in {10,11,12,13,22,23,24,25,34,35,36,37,46,47}

do

./watchdog-datanode-200.sh $i > watchdog-logs/rck$i.out &

done

for i in {2..9}

do

./watchdog-tasktracker-800.sh $i > watchdog-logs/rck0$i.out &

done

for i in {14,15,16,17,18,19,20,21,26,27,28,29,30,31,32,33,38,39,40,41,42,43,44,45}

do

./watchdog-tasktracker-800.sh $i > watchdog-logs/rck$i.out &

done
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5.3 Apache Mahout Installation on the MCPC

In out setup, we use Apache Mahout 0.6, which is provided by Cloudsuite. Apache
Mahout can be installed using Maven as shown below.

mvn install -DskipTests

. . . . . .

ageo@mitsos:~$ $MAHOUT_HOME/bin/mahout

MAHOUT_LOCAL is not set; adding HADOOP_CONF_DIR to classpath.

Running on hadoop, using HADOOP_HOME=/home/ageo/hadoop-0.20.2

No HADOOP_CONF_DIR set, using /home/ageo/hadoop-0.20.2/conf

MAHOUT-JOB: /home/ageo/analytics-release/mahout-distribution-0.6/

examples/target/mahout-examples-0.6-job.jar

An example program must be given as the first argument.

Valid program names are:

. . . . . .

fpg: : Frequent Pattern Growth

. . . . . .

kmeans: : K-means clustering

. . . . . .

trainclassifier: : Train the text based Bayes Classifier

. . . . . .

We also have copied the Hadoop root directory on the MCPC, so that Mahout can
find the NameNode and DataNode URLs at the core-site.xml and mapred-site.xml

configuration files and access the HDFS cluster that is deployed on the Intel SCC.
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Chapter 6

Runtime Monitoring Framework for
the Intel SCC

This chapter presents and analyzes the Runtime Monitoring Framework we have de-
veloped for the Intel SCC. The first section of the chapter explains the process of
configuring a Ganglia Cluster that consists of the Intel SCC cores and the MCPC, as
well as the way this Ganglia Cluster operates, i.e. how per-core runtime metrics are
collected and reported. The second section of the chapter provides a detailed descrip-
tion of the scripts we have developed, which query the Ganglia Cluster and the BMC
so as to capture the runtime metrics, store those metrics in the Monitoring Database
we have designed and visualize the data that has been collected.

6.1 Ganglia Monitoring Infrastructure for the Intel

SCC

This section describes the process of setting up a Ganglia Monitoring Cluster that
consists of the Intel SCC cores and the MCPC. In our implementation we have utilized
the gmond daemon of Ganglia, which is responsible for collecting and transmitting the
per-core runtime metrics we are interested in capturing. This section initially analyzes
the way that gmond operates and subsequently states the process of configuring a
Ganglia Cluster on the Intel SCC. Finally, the way that the Ganglia Cluster state is
reported, is presented.

6.1.1 The gmond Monitoring Daemon

gmond stands for Ganglia Monitoring Daemon. It is a lightweight service that must be
installed on each node from which metrics should be collected. It interacts with the
host operating system to obtain metrics and shares the metrics it collects with other
hosts in the same cluster. Every gmond instance in the cluster knows the value of every
metric collected by every host in the same cluster and provides and XML-formatted
dump of the entire cluster state to any client that connects to gmond’s port.
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gmond’s default topology is a multicast mode, meaning that all nodes in the clus-
ter both send and receive metrics and every node maintains an in-memory database
containing the metrics of all nodes in the cluster. This topology is illustrated in Figure
6.1. Internally, gmond’s sending and receiving halves are not linked. gmond does not
talk to itself, it only talks to the network. Any local data captured by the metric mod-
ules are transmitted directly to the network by the sender and the receiver’s internal
database contains only metric data gleaned from the network.

Figure 6.1: gmond Multicast Topology

This topology is adequate for most environments, but in some cases it is desirable
to specify a few specific listeners rather than allowing every node to receive metrics
from each other node. The use of deaf nodes, as illustrated in Figure 6.2 eliminates
the processing overhead associated with large clusters. The deaf and mute parameters
exist to allow some gmond nodes to act as special-purpose aggregators and relays for
other gmond nodes. mute means that the node does not transmit; it will not even
collect information about itself but will aggregate the metric data from other gmond

daemons in the cluster. deaf means that the node does not receive any metrics from
the network; it will not listen to state information from multicast peers, but if it is not
muted it will continue sending out its own metrics for any other node that does listen.

The use of multicast in not required in any topology. The deaf/mute topology can
be implemented using UDP unicast, which may be desirable when multicast is not
practical or preferred, as depicted in Figure 6.3.

6.1.2 Ganglia Cluster Topology on the Intel SCC

In order to collect per-core metrics, such as CPU utilization and Network Traffic,
we have configured Ganglia with a UDP unicast topology. The Intel SCC cores are
configured as deaf nodes, that is they do not listen to any unicast or multicast channel
for cluster state information. The MCPC is configured as a mute node, so that it
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Figure 6.2: gmond Deaf/Mute Multicast Topology

Figure 6.3: gmond UDP Unicast Topology

aggregates all the metrics collected from the Intel SCC cores and can provide an XML-
formatted dump from a telnet interface. The Ganglia Topology we have implemented
is illustrated in Figure 6.4.

6.1.3 The gmond.conf Configuration File

Each gmond instance that runs on an Intel SCC core, is configured by the gmond.conf
configuration file. This file is located in the /etc/ganglia directory of the MCPC
and the Gentoo Image of the Intel SCC cores. Ganglia is pre-installed in the Gentoo
Image that we use. This section states the configuration properties that have been set
for the gmond instances that run on the Intel SCC cores and the MCPC, so as that
the Ganglia Cluster we have developed on the Intel SCC operates as described before.
The whole gmond.conf configuration file, for both the MCPC and the Intel SCC cores
is included in Appendix A.
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Figure 6.4: Ganglia Cluster Topology on the Intel SCC

The gmond.conf file which configures the gmond instance that runs on the MCPC
defines that this instance is mute, that is gmond does not collect runtime metrics
that regard the MCPC. Those properties are included in the globals section of
gmond.conf. In the cluster section, the Ganglia Cluster name is set to MARC. The
udp recv channel section configures the gmond instance that runs on the MCPC to lis-
ten to one UDP unicast channel, at port 8649. The runtime metrics which are reported
by the Intel SCC cores are received through this channel. The tcp accept channel
section configures gmond to accept TCP connections at port 8649. External pollers
can query and receive an XML dump of the cluster state through this channel. Code
samples that regard the configuration parameters of the gmond instance that runs on
the MCPC, are listed below.
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globals {

. . . . . .

mute = yes

deaf = no

. . . . . .

}

cluster {

name = "MARC"

}

udp_recv_channel {

port = 8649

}

tcp_accept_channel {

port = 8649

}

The gmond.conf which configures each gmond instance that runs on the Intel SCC cores
defines that this instance is deaf, that is it does not receive any metrics data from
other peers. Those properties are included in the globals section of gmond.conf. The
Ganglia Cluster name is set to MARC in the cluster section. The udp send channel
section configures gmond to send the core metrics it collects to the MCPC, at port 8649.

The collection group sections configure which metrics are to be collected and re-
ported by gmond. We have configured two collection groups. The first collection group
concerns CPU-related runtime metrics. This collection group contains four metrics,
which are cpu user, cpu system, cpu wio and cpu idle. cpu user contains the per-
centage of CPU utilization that occurred while executing at the user level. cpu system
reports the percentage of CPU utilization that occured while executing at the system
level. cpu wio regards the percentage of time that the CPU was idle during which the
system had an outstanding I/O request. cpu idle concerns the percentage of time that
the CPU was idle during which the system did not have any outstanding I/O request.
The second collection group concerns runtime metrics that capture the Network Traffic
from and to an Intel SCC core. This collection group contains two metrics, which are
bytes in and bytes out and capture the traffic in bytes/second that was received and
sent by the core respectively. Code samples that regard the configuration parameters
of the gmond instance that runs on an Intel SCC core are listed below.

globals {

. . . . . .

mute = no

deaf = yes

. . . . . .

}

cluster {

name = "MARC"

}

udp_send_channel {

host = 192.168.3.254
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port = 8649

ttl = 1

}

/* CPU status */

collection_group {

collect_every = 1

time_threshold = 1

metric {

name = "cpu_user"

value_threshold = 0.1

title = "CPU User"

}

metric {

name = "cpu_system"

value_threshold = 0.1

title = "CPU System"

}

metric {

name = "cpu_wio"

value_threshold = 0.1

title = "CPU WIO"

}

metric {

name = "cpu_idle"

value_threshold = 0.1

title = "CPU Idle"

}

}

/* network traffic */

collection_group {

collect_every = 1

time_threshold = 1

metric {

name = "bytes_in"

value_threshold = 0.01

title = "Bytes Received"

}

metric {

name = "bytes_out"

value_threshold = 0.01

title = "Bytes Sent"

}

}

The collect every attribute of each collection group section specifies the polling
interval for each metric in this collection group. The time threshold determines the
maximum amount of time that can pass before gmond sends all metrics specified in
the collection group to all configured udp send channels. The value threshold
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attribute of each metric section defines the least difference that the current value of
the metric should have compared to the previous value of this metric, so that the
collection group is sent to the udp send channels defined. It has to be noted that
the collect every and time threshold attributes have to be set with respect to
the core frequency. We have noticed that the Intel SCC cores always assume that
they operate at 800 MHz. That is, if a core operates at 200 MHz and we have set
collect every to 2 seconds, the metrics of this specific collection group will be col-
lected every 8 seconds instead of 2.

6.1.4 Ganglia Cluster State Reporting

We have developed the following simple script, that starts the gmond daemon on all the
Intel SCC cores, that participate in the current active Hadoop Cluster Topology. This
script assumes that the SSH server that listens to port 1234 has been started on those
cores. When this script attempts to start the gmond daemon on cores which do not
participate in the current active Hadoop topology, it gets a Connection refused error,
because the SSH server has not been started on that core. This way, the gmond dae-
mon is started only in the cores that participate in the current active Hadoop topology.

start gmond.sh :

ssh -p 1234 root@rck00 "gmond"

for i in {1..9}

do

ssh -p 1234 root@rck0$i "gmond"

done

for i in {10..47}

do

ssh -p 1234 root@rck$i "gmond"

done

Once gmond has been started on the Intel SCC cores, an XML dump of the Ganglia
Cluster state is available from gmond UDP aggregator that runs on the MCPC. The
cluster state can be obtained by opening a telnet connection to the MCPC, at port
8649. The next section describes how this XML can be mined, so as to extract the
runtime metrics of each Intel SCC core.

ageo@mitsos:~$ telnet localhost 8649

Trying ::1...

Trying 127.0.0.1...

Connected to localhost.

Escape character is ’^]’.

<?xml version="1.0" encoding="ISO-8859-1" standalone="yes"?>

<!DOCTYPE GANGLIA_XML [

<!ELEMENT GANGLIA_XML (GRID|CLUSTER|HOST)*>

<!ATTLIST GANGLIA_XML VERSION CDATA #REQUIRED>

<!ATTLIST GANGLIA_XML SOURCE CDATA #REQUIRED>

. . . . . .
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]>

<GANGLIA_XML VERSION="3.1.2" SOURCE="gmond">

<CLUSTER NAME="MARC" LOCALTIME="1428561879"

OWNER="unspecified" LATLONG="unspecified" URL="unspecified">

<HOST NAME="rck25.ex.rck.net" IP="192.168.3.26"

REPORTED="1428561878" TN="0" TMAX="20" DMAX="0"

LOCATION="unspecified" GMOND_STARTED="0">

<METRIC NAME="cpu_wio" VAL="47.5" TYPE="float"

UNITS="%" TN="2" TMAX="90" DMAX="0" SLOPE="both">

<EXTRA_DATA>

<EXTRA_ELEMENT NAME="GROUP" VAL="cpu"/>

<EXTRA_ELEMENT NAME="DESC" VAL="Percentage of time

that the CPU or CPUs were idle during which

the system had an outstanding disk I/O request"/>

<EXTRA_ELEMENT NAME="TITLE" VAL="CPU wio"/>

</EXTRA_DATA>

</METRIC>

. . . . . .

</HOST>

<HOST NAME="rck43.ex.rck.net" IP="192.168.3.44"

REPORTED="1428561876" TN="2" TMAX="20" DMAX="0"

LOCATION="unspecified" GMOND_STARTED="0">

<METRIC NAME="bytes_in" VAL="1313026.13" TYPE="float"

UNITS="bytes/sec" TN="2" TMAX="300" DMAX="0" SLOPE="both">

<EXTRA_DATA>

<EXTRA_ELEMENT NAME="GROUP" VAL="network"/>

<EXTRA_ELEMENT NAME="DESC" VAL="Number of bytes in per second"/>

<EXTRA_ELEMENT NAME="TITLE" VAL="Bytes Received"/>

</EXTRA_DATA>

</METRIC>

. . . . . .

</HOST>

</CLUSTER>

</GANGLIA_XML>

6.2 Runtime Metrics Extraction and Visualization

This section presents and explains the Python and gnuplot scripts we have developed
so as to collect, store and visualize the runtime metrics of the Intel SCC cores and the
Intel SCC board. Initially, the structure of the Monitoring Database we have designed
is described. Subsequently the set Python scripts that extract the runtime metrics
from Ganglia and the BMC are introduced. After that, the set of Python scripts that
query the monitoring database so as to create CSV files are analyzed. Finally the
gnuplot scripts that visualize the data contained in the CSV files mentioned above are
explained.
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6.2.1 Monitoring Database Structure

We utilize a relational MySQL database to store the runtime metrics that are collected
from each core. Platform aggregate metrics are also collected. The platform aggregate
metrics that we capture is the Power Consumption, the Board Temperature and the Fan
Speed of the Intel SCC die. Those metrics are mined from the output of the sccBmc
command. We have designed two database table prototypes to store the runtime
metrics. The first prototype is called CPU NETWORK and is used to store the CPU and
Network related metrics that we extract from the Ganglia XML. The second prototype
is called POWER THERMAL and is used to store the overall Energy Consumption of the
chip for a specific time interval, the Board Temperature and the Fan Speed. The DDLs
of CPU NETWORK and POWER THERMAL are shown below.

mysql> SHOW CREATE TABLE CPU_NETWORK;

| Table | Create Table

| CPU_NETWORK | CREATE TABLE ‘CPU_NETWORK‘ (

‘ID‘ int(11) NOT NULL AUTO_INCREMENT,

‘TIMESTAMP‘ datetime NOT NULL,

‘CORE‘ varchar(5) DEFAULT NULL,

‘CPU_USER‘ varchar(5) DEFAULT NULL,

‘CPU_SYSTEM‘ varchar(5) DEFAULT NULL,

‘CPU_WIO‘ varchar(5) DEFAULT NULL,

‘CPU_IDLE‘ varchar(5) DEFAULT NULL,

‘BYTES_IN‘ varchar(15) DEFAULT NULL,

‘BYTES_OUT‘ varchar(15) DEFAULT NULL,

PRIMARY KEY (‘ID‘)

) ENGINE=MyISAM AUTO_INCREMENT=1 DEFAULT CHARSET=latin1 |

mysql> SHOW CREATE TABLE POWER_THERMAL;

| Table | Create Table

| POWER_THERMAL | CREATE TABLE ‘POWER_THERMAL‘ (

‘ID‘ int(11) NOT NULL AUTO_INCREMENT,

‘TIMESTAMP‘ datetime DEFAULT NULL,

‘FAN_SPEED‘ varchar(8) DEFAULT NULL,

‘TEMPERATURE‘ varchar(8) DEFAULT NULL,

‘POWER_FILE‘ varchar(40) DEFAULT NULL,

‘ENERGY_CONSUMPTION‘ varchar(30) DEFAULT NULL,

PRIMARY KEY (‘ID‘)

) ENGINE=MyISAM AUTO_INCREMENT=1 DEFAULT CHARSET=latin1 |

In order to calculate the instant Power Consumption and the overall Energy Con-
sumption of the chip, we use shorter time intervals, because of the big variations
that characterize the intensity of the electric current that is drawn by the Intel SCC
board. Metrics that concern the Voltage supply of the Intel SCC board as well as
the Intensity of the Electric Current it draws are stored in a seperate POWER FILE
and concern the time interval from the TIMESTAMP value of the previous database en-
try to the TIMESTAMP value of the current entry of the POWER THERMAL table. For
instance, supposing we have two entries in the POWER THERMAL table with ID=372

93



Diploma Thesis
Runtime Monitoring Framework

for the Intel SCC

and ID=373, the POWER FILE that appears in the row with ID=373 contains volt-
age, current and power consumption measurements that cover the time interval be-
tween the TIMESTAMP of the row with ID=372 and the TIMESTAMP of the row with
ID=373. The power file is a CSV file which contains the above mentioned metrics in tab
delimited columns as <Timestamp>\t<Voltage>\t<Current>\t<Power Consumption>
\t<Energy Consumption>. The Power Consumption refers to the instant value and
the Energy Consumption regards the time interval between the current measurement
and the previous. The value that is stored in the ENERGY CONSUMPTION column re-
sults from the summation of all the individual energy consumption measurements of
the corresponding power file. This way, we manage to accurately capture the overall
energy consumption of the chip. Sample measurements that are stored in a power file
are presented below.

2015-03-07 10:30:13.341655 3.300 21.485 70.9005 0.0162447406054

2015-03-07 10:30:13.593029 3.300 21.485 70.9005 0.0109199817181

2015-03-07 10:30:13.863168 3.300 21.584 71.2272 0.0098155311584

2015-03-07 10:30:14.143957 3.300 21.584 71.2272 0.0099683681488

2015-03-07 10:30:14.429008 3.300 21.386 70.5738 0.0110715771675

2015-03-07 10:30:14.704333 3.300 21.287 70.2471 0.0098981943369

2015-03-07 10:30:14.974797 3.300 21.287 7 0.2471 0.00941249613762

. . . . . .

6.2.2 Extracting and Storing Runtime Metrics

This section presents two Python scripts we have developed so as to extract the run-
time metrics we mentioned above in the monitoring database and the power files.
The code of both scripts is included in Appendix A. The first script, which is called
store-power.py repeatedly executes the sccBmc command, it parses the output it
provides and stores the voltage, current, power and energy consumption in a power
file. The power file and the time interval that this script is executed are provided as
command line arguments.

The second script, which is called store-metrics.py initially invokes the store-power
.py script. After store-power.py is completed, store-metrics.py mines the power
file that was populated by store-power.py and calculates the total energy consump-
tion for the specific time interval. Subsequently, it queries the BMC with the sccBmc

command so as to obtain the Board Temperature and the Fan Speed of the platform.
Finally, store-metrics.py queries the Ganglia Cluster so as to obtain the CPU Uti-
lization and the Network Traffic of each core, parses the XML that is returned by
Ganglia and stores the extracted metrics in the monitoring database. The extracted
and calculated metrics are stored in database tables which have been created from the
CPU NETWORK and POWER THERMAL prototypes. The names of those tables are provided
as command line arguments. The time interval that is passed to the store-power.py

script is also provided as a command line argument, so as to determine the time interval
that should separate subsequent monitoring entries.
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6.2.3 Runtime Metrics Mining

This section presents three Python scripts that we have developed so as to mine the
monitoring database and the power files and create CSV files, which be given as inputs
to the gnuplot scripts that will be presented in the subsequent section, which visual-
ize the runtime metrics which have been collected. The code of the Python scripts is
available in Appendix A.

The first script, which is called prepare-metrics-cpu-network.py queries a database
table that has been created based on the CPU NETWORK prototype, so as to create a CSV
file which contains the following metrics in tab delimited columns as <Timestamp>\t
<CPU User>\t<CPU System>\t<CPU WIO>\t<CPU Idle>\t<Bytes In>\t<Bytes Out>.
Those metrics concern a specific Intel SCC core, whose name is provided as a command
line argument. The name of the database table to be queried, as well as the name of
the output CSV file are also provided as command line arguments. Sample metrics
stored in this file are presented below.

ageo@mitsos:~$ cat ganglia-monitoring/

plot_files/cpu_network/bayes-dn200-tt533.dat

0:00:00 1.1 2.2 0.0 96.7 630.94 1342.14

0:00:21 0.7 3.9 0.0 95.4 835.37 1447.84

0:00:42 0.6 2.3 0.0 97.1 695.06 1378.13

0:01:03 0.7 4.7 0.0 94.6 1384.27 2123.21

0:01:24 0.2 2.2 0.0 97.6 606.78 1186.35

0:01:44 2.6 3.8 0.0 93.5 620.15 1281.80

0:02:05 0.1 2.3 0.0 97.6 489.62 1038.12

0:02:26 0.2 2.1 0.0 97.7 614.23 1274.73

. . . . . .

The second script, which is called prepare-metrics-thermal.py queries a database
table that has been created based on the POWER THERMAL prototype, so as to cre-
ate a CSV file which contains the following metrics in tab delimited columns as
<Timestamp>\t<Board Temperature>\t<Fan Speed>. Those metrics concern the en-
tire Intel SCC Board. The name of the database table to be queried, as well as the
name of the output CSV file are provided as command line arguments. Sample metrics
stored in this file are presented below.

ageo@mitsos:~$ cat ganglia-monitoring/

plot_files/thermal/wordcount-topo16.dat

0:00:00 34 213

0:00:05 34 223

0:00:10 34 234

0:00:15 34 245

0:00:20 34 255

0:00:25 34 10

0:00:30 33 20

0:00:34 34 31

. . . . . .
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The third script, which is called prepare-metrics-power.py queries the power files
that are located at a specific file system directory, so as to create a CSV file which
contains the following metrics in tab delimited columns as <Timestamp>\t<Voltage>\t
<Current>\t<Power Consumption>. Those metrics concern the entire Intel SCC Board.
Because of the fact that those metrics have been collected with a shorter polling in-
terval than the ones mentioned earlier in this section, they are sampled at a sample
rate that is provided as a command line argument, so that the Power Consumption
plot will contain relatively smooth curves. The name of the file system directory to be
queried, as well as the name of the output CSV file are also provided as command line
arguments. Sample metrics stored in this file are presented below.

ageo@mitsos:~$ cat ganglia-monitoring/

plot_files/power/kmeans-low.dat

0:00:06.006023 3.304 17.327 57.248408

0:00:12.053117 3.304 17.129 56.594216

0:00:18.079477 3.304 17.129 56.594216

0:00:24.725223 3.304 16.931 55.940024

0:00:30.957759 3.304 17.030 56.267120

0:00:36.985528 3.304 17.228 56.921312

0:00:43.079844 3.304 18.218 60.192272

0:00:49.640558 3.304 18.119 59.865176

. . . . . .

6.2.4 Runtime Metrics Visualization

This section presents five gnuplot scripts we have developed so as to visualize the
metrics that we have collected. The first two scripts, called plot-cpu.gp and plot-
network.gp query the CSV file that was created by prepare-cpu-network.py. plot-
temperature.gp and plot-fan-speed.gp query the CSV files that were created by
prepare-thermal.py. Finally, plot-power.gp queries the CSV file that has been
created by prepare-power.py. Sample plots that are generated by those files are
presented below, in Figures 6.5 - 6.8. All the above mentioned scripts receive the step
of the x-axis of the plot, the time interval that the x-axis spans and the input CSV file
as command line arguments, like in the following example.

ageo@mitsos:~/ganglia-monitoring$ gnuplot -e "xtics=’0:04:0’"

-e "time=’1:54:54’" -e "datafile=’fpg-dn200-tt200.dat’" plot_cpu.gp

Figure 6.5: CPU Utilization Plot
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Figure 6.6: Network Traffic Plot

Figure 6.7: Power Consumption Plot

Figure 6.8: Board Temperature Plot

Figure 6.9: Fan Speed Plot
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Chapter 7

Workload Characterization of Big
Data Applications on the Intel SCC

This chapter states the experimental analysis we have conducted for four MapReduce
applications that run on top of the HDFS cluster topologies we have deployed on
the Intel SCC. Each section of this chapter is dedicated to one application. Initially
pseudocode that describes the algorithm that is implemented by each application is
provided and the input file generation and application execution process is presented.
In the remainder of each section, the experimental results we have collected are ex-
plained and analyzed in detail in order to investigate the behavior of these applications
when they run on the Intel SCC, on top of different HDFS cluster topologies, with
different frequency settings for the cluster nodes and for different input file sizes.

7.1 The Wordcount Application

This section presents our analysis regarding the execution of the Wordcoun applica-
tion on the Intel SCC. We initially describe the MapReduce implementation of the
Wordcount algorithm. In addition, the input file generation and application execution
process are stated. We have utilized resources which are provided by DCBench for
that purpose. Subsequently, the experimental results we have received are analyzed,
in order to draw conclusions regarding the behavior of the Wordcount application on
the Intel SCC for different input sizes, cluster topologies and frequency settings.

7.1.1 Algorithm Description

The Wordcount application counts the number of words of an input text. The MapRe-
duce implementation of this application consists of a Mapper and a Reducer function,
whose pseudocode is presented below.

map(String key, String value):

words = tokenize(value)

for each word in words:

output(word,’1’)
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reduce(String key, List<String> values):

sum = 0

for each value in values:

sum += 1

output(key,sum)

The Mapper function receives <key,value> pairs for each line in the input text file.
The key of each pair represents the character offset of the specific line and the value
is the character String of this line. The Mapper function tokenizes each line so as to
extract the words it contains, and outputs intermediate <key>,<value> pairs. The key
of each intermediate pair contains one word of the input text and the value is always
1.

The Reducer function receives <key>,<list(value)> pairs. That is, each Reducer re-
ceives a list that contains all the 1s that where generated by the Mappers. The Reducer
sums all the 1s that are contained in the list and outputs the final <key>,<value> pairs.
The key of each output pair contains one word that was included in the input text file
and the value contains the number of occurences of this specific word in the input text
file.

7.1.2 Application Execution and Input Files

We use four different input files for the Wordcount application, whose size is 256 MB,
512 MB, 1 GB and 2 GB. Those files are generated randomly by the RandomTextWriter
class which is included in hadoop-0.20.2-examples.jar. DC Bench provides a script
called prepare-wordcount.sh, which receives the desired input size as an argument,
generates a random text file of this specific size and uploads this file to HDFS. We have
modified this script to also receive the number of TaskTracker nodes as a command
line argument. The code of this script is included in Appendix A.

ageo@mitsos:~/HVCBench-hadoop/workloads/base-operations/wordcount$

./prepare-wordcount.sh 256m 32

BYTES_PER_MAP 8388608

MAPS_PER_HOST 1

HOSTS 32

generating rtw-wordcount-256M data

Running 32 maps.

Job started: Fri Apr 10 15:13:42 EEST 2015

15/04/10 15:13:51 INFO mapred.JobClient: Running job: job_201504101105_0004

15/04/10 15:13:52 INFO mapred.JobClient: map 0% reduce 0%

. . . . . .

15/04/10 15:18:10 INFO mapred.JobClient: map 100% reduce 0%

15/04/10 15:18:40 INFO mapred.JobClient: Job complete: job_201504101105_0004

. . . . . .

The job took 298 seconds.
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In order to run the Wordcount benchmark, the run-wordcount.sh script, which is
provided by DCBench has to be executed. This script receives the input size of the
text file as a command line argument and searches in HDFS for the input file with this
specific size that was created by prepare-wordcount.sh. The code of this script is
included in Appendix A.

ageo@mitsos:~/HVCBench-hadoop/workloads/base-operations/wordcount$

./run-wordcount.sh 256m

rmr: cannot remove /cloudrank-out/rtw-wordcount-256M-out: No such file or directory.

15/03/15 15:13:25 INFO input.FileInputFormat: Total input paths to process : 32

15/03/15 15:13:30 INFO mapred.JobClient: Running job: job_201503151246_0001

15/03/15 15:13:31 INFO mapred.JobClient: map 0% reduce 0%

. . . . . .

15/03/15 15:31:22 INFO mapred.JobClient: map 100% reduce 100%

15/03/15 15:32:01 INFO mapred.JobClient: Job complete: job_201503151246_0001

. . . . . .

7.1.3 Scalability Analysis Per Input Size

This section presents the analysis we have conducted regarding the scalability of the
Wordcount application, in terms of input size, when it runs on the Intel SCC. We have
executed the application with four different input files, whose size is 256 MB, 512 MB,
1 GB and 2 GB. We have utilized the 48-Node Cluster Topology for this analysis and
have configured both the DataNodes and the TaskTrackers to operate at the maximum
frequency of 800 MHz. The experimental results we have received regarding the exe-
cution time and the energy consumption of the Wordcount application are presented
below. Detailed plots that illustrate the CPU utilization and the network traffic for one
DataNode and one TaskTracker as well as the overall power consumption and board
temperature of the Intel SCC, for each run, are included in Appendix B1.

Figure 7.1: Wordcount Input Size Scalability Analysis (1/2)

Our analysis indicates clearly that both the execution time and the energy consumption
of the Wordcount application scale linearly as the size of the input text file increases.
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Figure 7.2: Wordcount Input Size Scalability Analysis (2/2)

The CPU utilization plots of the TaskTracker nodes that are presented in the Appendix
denote that the Map phase of the Wordcount MapReduce job is expanded when the in-
put size increases, since the number of the InputSplits and thus the number of issued
Map tasks rises. The intermediate <key,value> pairs are evenly distributed among
the reducers by the HashPartitioner and as consequence, a slight increase in the du-
ration of the Reduce phase is also observed when the size of the input text file increases.

The idle period in the beginning of the execution accounts for the Job initialization
phase that is performed by the JobTracker. The idle period between the Map and
the Reduce phases indicates that the Map task of this specific TaskTracker has fin-
ished, but the JobTracker waits for the completion of Map tasks that run on other
TaskTrackers, so that the Reduce phase can be started for the Job. The idle period
after the Reduce phase depicts that the Reduce task of this specific TaskTracker has
completed its execution, but the JobTracker waits for Reduce tasks that run on other
TaskTrackers to finish as well.

7.1.4 Cluster Topology Analysis

This section presents our analysis concerning the behavior of the Wordcount appli-
cation when it is executed on top of different HDFS cluster topologies on the Intel
SCC. We have created one input file for this study, with a size of 256 MB. We have
configured both the DataNodes and the TaskTrackers of each cluster topology to op-
erate at the maximum frequency of 800 MHz. The idle nodes of each topology (if any)
operate at the minimum frequency of 100 MHz. gmond is not active on those nodes as
well. The experimental results we have received regarding the execution time and the
energy consumption of the Wordcount application are presented below. Detailed plots
are included in Appendix B1, as in the previous case.

Our results evidently suggest that the Wordcount application benefits when the num-
ber of TaskTracker nodes increases, both in execution time and in energy consumption.
However, the energy consumption gain is not proportional to the decrease of the exe-
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Figure 7.3: Wordcount Cluster Topology Analysis (1/2)

Figure 7.4: Wordcount Cluster Topology Analysis (2/2)

cution time, since the power that is drawn by the Intel SCC is higher as the number of
nodes of the Hadoop cluster increases. The CPU utilization plots of the TaskTracker
nodes illustrate that the increase in execution time can be interpreted by the fact that
more Map tasks have to be issued for each TaskTracker node, as the TaskTracker node
count decreases. The intermediate <key,value> pairs are evenly distributed among
the reducers by the HashPartitioner and as consequence, a slight increase in the du-
ration of the Reduce phase is also observed when the number of TaskTracker nodes of
the HDFS cluster decreases.

Another conclusion that can be drawn is that for a given name of TaskTracker nodes,
both the execution time and the energy consumption of the application deteriorate
when the number of DataNodes is increased from 7 to 15. (24-Node Topology versus
32-Node Topology). This observation can be attributed to the fact that the DataNodes
do not execute any computation regarding the MapReduce job and are only respon-
sible for providing the TaskTrackers with data from HDFS. As a consequence, the
application is charged with higher power consumption, without yielding any benefit in
execution time, which results to an increase in the overall energy consumption.
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7.1.5 Frequency Scaling Analysis

This section analyzes the impacts of frequency scaling on the execution time and the
energy consumption of the Wordcount application on the Intel SCC. We have tested
the input text file with the size of 256 MB in the 48-Node Cluster topology for nine
frequency settings. We have configured the DataNodes and Master Node and the Task-
Trackers to run at either 200 MHz, 533 MHz or 800 MHz and each frequency setting
represents one combination of those values. The experimental results we have received
regarding the execution time and the energy consumption of the Wordcount application
are presented below. Detailed plots are included in Appendix B1, as in the previous
case.

Figure 7.5: Wordcount Frequency Scaling Analysis (1/2)

Figure 7.6: Wordcount Frequency Scaling Analysis (2/2)

The experimental results presented above point out that the Wordcount application
benefits from the TaskTrackers running at the maximum frequency of 800 MHz, both
in terms of execution time and energy consumption. The frequency of the DataNodes
and the Master node appears to have a minor impact the execution time and the energy
consumption of the application. This assumption could suggest that scaling down the
frequency of the DataNodes to 200 MHz, while the TaskTrackers operate at 800 MHz,
could result in lower energy consumption because the slightly higher execution time
would be mitigated by the lower power consumption resulting in lower overall energy
consumption. Such a conclusion cannot be drawn by the energy consumption observa-
tions mentioned above. However, it has to be mentioned that the energy consumption
of the DN200-TT800 and DN800-TT800 setting differ by less than 3%, indicating that
we cannot draw a safe conclusion regarding that matter.
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In addition, it has to be mentioned that the execution time of the DN800-TT800
setting is misleading, because of the fact that Map tasks were re-run because of errors
in this specific execution, during the idle period that is depicted in the CPU utilization
plot of TaskTracker rck45 in the Appendix, between the 10th and the 16th minute.
This fact is illustrated in the following CPU utilization plots of TaskTrackers rck04,
rck29 and rck32. To corroborate this hypothesis, we re-executed the application for
this specific setting and it was completed in 13.50 minutes. However, the power con-
sumption that was recorded was on average 20 W less than the power consumption
that we observed in the first run. This fact can be attributed to the lower board
temperature of the Intel SCC, because of lower platform utilization at the time. As
a consequence, the results of this re-execution cannot be used so as to yield a more
accurate measurement for the energy consumption of the DN800-TT800 setting. The
safest conclusion that can be drawn is that it is expected to be less than the value of
73.30 Joules that observed in the first run.

Figure 7.7: CPU utilization plots for the Wordcount application

Moreover, it has to be mentioned that the energy consumption saving would have
been more significant if the Intel SCC architecture allowed Voltage Scaling at the tile
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level. Because of the fact that in our setting all voltage domains contain DataNodes
and TaskTrackers as well, we were not able to perform Voltage Scaling. Since power
consumption is proportional to the product of the core frequency and the square of the
voltage, as the following equation denotes, scaling down the voltage would decrease
energy consumption even more, without impairing performance at all.

P ∝ CV 2

7.1.6 Cluster Utilization Overview

This section provides an overview figure (Figures 7.11-7.16) for the CPU utilization
of all cluster nodes, when the Wordcount application is executed with the input file
of 512 MB, on the 48-Node HDFS cluster topology and with the DataNodes and the
TaskTrackers configured to operate at 800 MHz. The very low utilization of all the
DataNodes which explains the minimal performance impairment that we observe when
their operating frequency is scaled down to 200 MHz. The CPU utilization diagrams
of the TaskTracker nodes depict the execution on Map and Reduce tasks on the cores
that they are hosted.

Those figures clearly point out that Wordcount is a CPU-intensive application and
as a consequence it benefits greatly from a cluster topology with many TaskTracker
nodes, which operate at the maximum frequency of 800 MHz.
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Figure 7.8: Wordcount Overall Cluster Utilization (1/6)
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Figure 7.9: Wordcount Overall Cluster Utilization (2/6)
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Figure 7.10: Wordcount Overall Cluster Utilization (3/6)
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Figure 7.11: Wordcount Overall Cluster Utilization (4/6)
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Figure 7.12: Wordcount Overall Cluster Utilization (5/6)
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Figure 7.13: Wordcount Overall Cluster Utilization (6/6)
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7.2 The Bayes Classification Application

This section presents our analysis regarding the execution of the Bayes Classification

application on the Intel SCC. We initially describe the MapReduce implementation of
the Bayes Classification algorithm. In addition, the input file generation and ap-
plication execution process are stated. We have utilized resources which are provided
by Cloudsuite for that purpose. Subsequently, the experimental results we have re-
ceived are analyzed, in order to draw conclusions regarding the behavior of the Bayes

Classification application on the Intel SCC for different input sizes, cluster topolo-
gies and frequency settings.

7.2.1 Algorithm Description

The purpose of the Bayes Classification Application is to train a text classification
model, based on given training set of classified documents. This classification model is
based on the frequency of the words that appear in the training documents of a specific
class. The classification model enables us to calculate the probability of an unclassified
document being a member of a specific class. The document is assigned to the class
that yields the highest probability depending on the classification model.

The Bayes Classification implementation that is provided by Mahout splits the training
of the classification model in four MapReduce jobs. The first two jobs calculate the nor-
malized Term Frequency - Inverse Document Frequency (Tf-Idf) for each <class,term>

pair. Supposed that ~d = (d1, d2, ..., dn) is the vector of the training documents, dij is
the number of occurrencies of term j in document i, ~t = (t1, t2, ..., tm) is the vector of
the term vocabulary and ~y = (y1, y2, ..., yn) is the vector of the document classes, then
the normalized Tf-Idf of term j for document class k is calculated by the formula

TfIdf(k, j) = ln( |{di:di∈yk}|∑
i:di∈yk

dij
)
∑

i:di∈yk
ln(dij+1)√∑

dij∈di
d2ij

The third MapReduce job calculates the Sigmaj for each term, the Sigmak for each
class and the SigmajSigmak, based on the following formulas.

Sigmaj(j) =
∑
k

TfIdf(k, j)

Sigmak(k) =
∑
j

TfIdf(k, j)

SigmajSigmak =
∑
j,k

TfIdf(k, j)

The fourth MapReduce job calculates the weight normalization factor for each class,
which is denoted by Theta(k), based on the following formula. M represents the total
number of terms in the document vocabulary.
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Theta(k) =
∑

j
TfIdf(k,j)+1
Sigmak(k)+M

The calculation of the probability of a document being a member of a specific class
breaks down to the calculation of the contribution of each of its terms. The contribution
of each term j for class k is equal to the expression

p(k, j) = −ln( TfIdf(k,j)+1
Sigmak(k)+M

)

As a consequence, the probability of document d being a member of class k is

p(d, k) =
∑

j:tj∈d f(j) ∗ p(k, j)

where f(j) denotes the number of occurences of term tj in the document to be clas-
sified. The document is assigned to the class that yields the maximum value for p(d, c).

The following pseudocode points out the master flow of the Mahout implementation
of the Bayes Classification algorithm, which consists of four MapReduce jobs.

BayesDriver :

BayesDriver.main(input,output,params):

BayesFeatureDriver.runJob(input,output,params)

BayesTfIdfDriver.runJob(input,output,params)

BayesWeightSummerDriver.runJob(input,output,params)

BayesThetaNormalizerDriver.runJob(input,output,params)

The BayesFeatureDriver job processes the input training documents, which are stored
as <key,value> pairs in HDFS. The key of each file (and InputSplit) represents the
class to which this document has been assigned to and the value of each pair con-
tains the terms of each document separated by spaces. BayesFeatureDriver outputs
<key,value> pairs of four types : LABEL COUNT, DOCUMENT FREQUENCY, FEATURE COUNT

and WEIGHT, as presented below.

LABEL COUNT pairs denote the number of documents that belong to each class:

< (”LABEL COUNT”, class(yk)), |{di : di ∈ yk}| >

DOCUMENT FREQUENCY pairs represent the number of occurences of a term in the docu-
ments that belong to a specific class:

< (”DOCUMENT FREQUENCY ”, class(yk), term(tj)),
∑

i:di∈yk
dij >

FEATURE COUNT pairs include the number of occurences of a specific term in all the
training documents:

< (”FEATURE COUNT”, term(tj)),
∑

j,i∈{1,..,n}
dij >
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WEIGHT COUNT pairs contain the length normalized and TF transformed frequency of a
term for a specific class:

< (”WEIGHT”, class(yk), term(tj)),
∑

i:di∈yk

ln(dij + 1)√∑
dij∈di d

2
ij

>

The above purpose is achieved by the following Map and Reduce functions. Please
note that the terms label and class and the terms term and feature are used
interchangeably.

BayesFeatureMapper.map(String key, String value):

class = key

terms = tokenize(value)

termCountMap = []

for (term : terms):

if (!termCountMap.contains(term)):

termCountMap.put(term,1)

else

termCountMap.put(term,termCountMap.get(term)+1)

lengthNormalization = 0.0

for (term : termCountMap)

lengthNormalization += termCountMap.get(term) * termCountMap.get(term)

lengthNormalization = sqrt(lengthNormalization)

for (term : termCountMap):

output(("WEIGHT",class,term), ln(termCountMap.get(term)) / lengthNormalization)

output(("DOCUMENT_FREQUENCY",class,term),1)

output(("FEATURE_COUNT",term),1)

output(("FEATURE_TF",term),termCountMap.get(term))

output((’LABEL_COUNT",class),1)

BayesFeatureReducer.reduce(StringTuple key, List<Double> values)

sum = 0

for (value : values)

sum += value

if (key.get(0).equals("WEIGHT") or

key.get(0).equals("DOCUMENT_FREQUENCY") or

key.get(0).equals("FEATURE_COUNT") or

key.get(0).equals("LABEL_COUNT")):

output(key,sum)

The BayesTfIdfDriver job processes the intermediate results which were generated by
BayesFeatureDriver so as to calculate the normalized TfIdf for each <class,term>

pair. BayesTfIdfDriver outputs pairs of two types : WEIGHT and FEATURE SET SIZE.

WEIGHT pairs include the normalized TfIdf for each <class,term> pair:

< (”WEIGHT”, class(yk), term(tj)), ln(
|{di : di ∈ yk}|∑

i:di∈yk dij
)

∑
i:di∈yk

ln(dij + 1)√∑
dij∈di d

2
ij

>
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Only one FEATURE SET SIZE pair is generated in the output and it contains the number
of all terms in the document vocabulary:

< (”FEATURE SET SIZE”),
∑

j,i∈{1,..,n}
dij >

The above purpose is achieved by the following Map and Reduce functions. The
getClassDocumentCount() method retrieves the number of documents that belong
to a specific class from HDFS, that was calculated by BayesFeatureDriver.

BayesTfIdfMapper.map(StringTuple key, Double value):

if (key.get(0).equals("WEIGHT"):

output(key,value)

else if (key.get(0).equals("DOCUMENT_FREQUENCY"):

class = key.get(1)

classDocumentCount = getClassDocumentCount(class)

output(("WEIGHT",class,term), ln(classDocumentCount / value))

else:

output(("FEATURE_SET_SIZE"),1)

BayesTfIdfReducer.reduce(StringTuple key, Double value):

if (key.get(0).equals("FEATURE_SET_SIZE"):

vocabCount = 0.0

for (value : values):

vocabCount += value

output(key,vocabCount)

else if (key.get(0).equals("WEIGHT"):

tfIdf = 1.0

for (value : values)

tfIdf *= value

output(key,tfIdf)

The BayesWeightSummerDriver job processes the results that were produced by Bayes

TfIdf driver so as to calculate the weight sums for each term and each class. Bayes

WeightSummerDriver outputs pairs of three types : FEATURE SUM, LABEL SUM and
TOTAL SUM.

FEATURE SUM pairs hold the weight sum values for each term:

< (”FEATURE SUM”, term(tj)),
∑
k

TfIdf(k, j) >

LABEL SUM pairs hold the weight sum values for each class:

< (”LABEL SUM”, class(yk)),
∑
j

TfIdf(k, j) >

The TOTAL SUM pair holds the total sum value:

< (”TOTAL SUM”),
∑
k,j

TfIdf(k, j) >

The above purpose is achieved by the following Map and Reduce functions.
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BayesWeightSummerMapper.map(StringTuple key, Double value):

class = key.get(1)

term = key.get(2)

output(("FEATURE_SUM",term), value)

output(("LABEL_SUM",class), value)

output(("TOTAL_SUM"), value)

BayesWeightSummerReducer.reduce(StringTuple key, List<Double> values)

sum = 0.0

for value : values

sum += value

output(key,sum)

The BayesThetaNormalizerDriver job calculates the weight normalization factor
for each class, based on the results that were generated by BayesTfIdfDriver and
BayesWeightSummerDriver. BayesThetaNormalizerDriver outputs pairs of LABEL

THETA NORMALIZER type, one for each class. Each of these pairs contains the weight
normalization factor for this class:

< ((”LABEL THETA NORMALIZER”, class(yk)),
∑
j

TfIdf(k, j) + 1

Sigmak(k) +M
) >

The above purpose is achieved by the following Map and Reduce functions. getSigma k()
and getVocabCount() methods retrieve the Sigma k value of class k that was calcu-
lated by BayesWeightSummerDriver and the number of all terms that are included in
the document vocabulary that was calculated by BayesTfIdfDriver respectively. The
Map function operates on the output that was created by BayesTfIdfDriver.

BayesThetaNormalizerMapper.map(StringTuple key, Double value):

class = key.get(1)

output(("LABEL_THETA_NORMALIZER", label),

ln((value + 1.0) / (getSigma_k(class) + getVocabCount())))

BayesThetaNormalizerReducer.reduce(StringTuple key, List<Double> value):

sum = 0.0

for (value : values):

sum += value

output(key,sum)

7.2.2 Application Execution and Input Files

In order to train the Bayes Text Classifier, we use the training set provided by Cloud-
suite, which includes classified Wikipedia texts in an XML format. The training set file,
whose size is 5.4 GB, is uploaded to HDFS using the wikipediaXMLSplitter command
of Mahout as follows. The name of the input Wikipedia xml is wikipedia-training-
input.xml and is placed in the $MAHOUT HOME/examples/temp directory. The size of
each XML chunk is determined by the -c switch. In this case, we have used a chunk
size of 16 MB.
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$MAHOUT_HOME/bin/mahout wikipediaXMLSplitter

-d $MAHOUT_HOME/examples/temp/wikipeida-training-input.xml

-o wikipedia/chunks -c 16

ageo@mitsos:~$ $HADOOP_HOME/bin/hadoop dfs

-lsr wikipedia-training

drwxr-xr-x - root supergroup 0 2015-04-14 13:11

/user/root/wikipedia-training

drwxr-xr-x - root supergroup 0 2015-04-14 13:13

/user/root/wikipedia-training/chunks

-rw-r--r-- 1 root supergroup 16934212 2015-04-14 13:11

/user/root/wikipedia-training/chunks/chunk-0001.xml

-rw-r--r-- 1 root supergroup 16912840 2015-04-14 13:12

/user/root/wikipedia-training/chunks/chunk-0002.xml

-rw-r--r-- 1 root supergroup 16921155 2015-04-14 13:12

/user/root/wikipedia-training/chunks/chunk-0003.xml

-rw-r--r-- 1 root supergroup 16891897 2015-04-14 13:12

/user/root/wikipedia-training/chunks/chunk-0004.xml

. . . . . .

Subsequently, we split the Wikipedia XML chunks, so as to create four datasets, whose
size is 256 MB, 512 MB, 1 GB and 2 GB.

ageo@mitsos:~$ $HADOOP_HOME/bin/hadoop dfs

-lsr wikipedia-training/dataset-512

drwxr-xr-x - root supergroup 0 2015-04-14 13:11

/user/root/wikipedia-training

drwxr-xr-x - root supergroup 0 2015-04-14 13:13

/user/root/wikipedia-training/chunks

-rw-r--r-- 1 root supergroup 16934212 2015-04-14 13:11

/user/root/wikipedia-training/chunks/chunk-0009.xml

-rw-r--r-- 1 root supergroup 16912840 2015-04-14 13:12

/user/root/wikipedia-training/chunks/chunk-0010.xml

-rw-r--r-- 1 root supergroup 16921155 2015-04-14 13:12

/user/root/wikipedia-training/chunks/chunk-0011.xml

-rw-r--r-- 1 root supergroup 16891897 2015-04-14 13:12

/user/root/wikipedia-training/chunks/chunk-0012.xml

Before the Bayes Classifier can be trained, the category based splits of the Wikipedia
training dataset have to be created, by wikipediaDataSetCreator. The categories.
txt file contains the possible categories (i.e. classes) that an input document can be
assigned to. In this setup, we have 25 classes. The following example demonstrates
how the 256 MB input dataset is transformed into category based splits, which are
subsequently used by Mahout so as to train the classifier model. Each file that is
created by wikipediaDataSetCreator contains <key,value> pairs, where each key
represents the class of the document and the value contains the terms of this document
seperated by spaces.

ageo@mitsos:~$ $MAHOUT_HOME/bin/mahout wikipediaDataSetCreator
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-i wikipedia-training/chunks/dataset-256

-o traininginput-256

-c $MAHOUT_HOME/examples/temp/categories.txt

bin/hadoop dfs -lsr traininginput/dataset-256

. . . . . .

-rw-r--r-- 1 ageo supergroup 0 2015-02-04 22:59

/user/ageo/traininginput/dataset-256/part-r-00000

-rw-r--r-- 1 ageo supergroup 13907858 2015-02-04 23:00

/user/ageo/traininginput/dataset-256/part-r-00001

. . . . . .

-rw-r--r-- 1 ageo supergroup 36979226 2015-02-04 23:01

/user/ageo/traininginput/dataset-256/part-r-00023

-rw-r--r-- 1 ageo supergroup 0 2015-02-04 22:59

/user/ageo/traininginput/dataset-256/part-r-00024

ageo@mitsos:~/hadoop-0.20.2$ bin/hadoop dfs -cat

/user/ageo/traininginput/dataset-256/part-r-00018

religion monty python’s life brian 17920 382763986 2010-09-03t22 32

49z polisher cobwebs 12812034 infobox film name monty python s life brian

image lifeofbrianfilmposter jpg writer unbulleted list graham chapman john

. . . . . .

In order to train the Bayes Classifier and create the document classification model,
the trainclassifier command of Mahout has to be executed. In the following
example, after the training of the model has completed, the model parameters, i.e.
TfIdf(k, j), Sigmaj(j), Sigmak(k), SigmajSigmak and Theta(k) will be stored in
trainer-tfIdf/trainer-tfIdf, trainer-weights/Sigma j, trainer-weights/Sigma
k, trainer-weights/Sigma jSigma k and trainer-thetaNormalizer HDFS direc-

tories respectively. All of those directories are located under wikipediamodel-256
directory.

ageo@mitsos:~$ $MAHOUT_HOME/bin/mahout trainclassifier

-i traininginput/dataset-256

-o wikipediamodel-256

-mf 4 -ms 4

. . . . . .

15/04/13 12:20:39 INFO bayes.TrainClassifier: Training Bayes Classifier

15/04/13 12:20:40 INFO bayes.BayesDriver: Reading features...

. . . . . .

15/04/13 12:21:49 INFO mapred.JobClient: map 0% reduce 0%

. . . . . .

15/04/13 13:22:56 INFO mapred.JobClient: map 100% reduce 100%

. . . . . .

15/04/13 13:23:26 INFO bayes.BayesDriver: Calculating Tf-Idf...

. . . . . .

15/04/13 13:24:53 INFO mapred.JobClient: map 0% reduce 0%

. . . . . .
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15/04/13 13:49:35 INFO mapred.JobClient: map 100% reduce 100%

. . . . . .

15/04/13 13:50:10 INFO bayes.BayesDriver:

Calculating weight sums for labels and features...

. . . . . .

15/04/13 13:51:33 INFO mapred.JobClient: map 0% reduce 0%

. . . . . .

15/04/13 14:11:06 INFO mapred.JobClient: map 100% reduce 100%

. . . . . .

15/04/13 14:11:37 INFO bayes.BayesDriver:

Calculating the weight Normalisation factor for each class...

. . . . . .

15/04/13 14:13:11 INFO mapred.JobClient: map 0% reduce 0%

. . . . . .

15/04/13 14:29:03 INFO mapred.JobClient: map 100% reduce 100%

. . . . . .

15/04/13 14:29:36 INFO driver.MahoutDriver:

Program took 7736347 ms (Minutes: 128.93911666666668)

ageo@mitsos:~/hadoop-0.20.2$ bin/hadoop dfs -lsr wikipediamodel-256

. . . . . .

drwxr-xr-x - ageo supergroup 0 2015-04-13 13:48

/user/ageo/wikipediamodel/trainer-tfIdf/trainer-tfIdf

-rw-r--r-- 1 ageo supergroup 788697 2015-04-13 13:46

/user/ageo/wikipediamodel/trainer-tfIdf/trainer-tfIdf/part-00000

-rw-r--r-- 1 ageo supergroup 806391 2015-04-13 13:46

/user/ageo/wikipediamodel/trainer-tfIdf/trainer-tfIdf/part-00001

. . . . . .

-rw-r--r-- 1 ageo supergroup 797885 2015-04-13 13:46

/user/ageo/wikipediamodel/trainer-tfIdf/trainer-tfIdf/part-00030

-rw-r--r-- 1 ageo supergroup 794212 2015-04-13 13:47

/user/ageo/wikipediamodel/trainer-tfIdf/trainer-tfIdf/part-00031

. . . . . .

drwxrwxrwx - ageo supergroup 0 2015-04-13 14:28

/user/ageo/wikipediamodel/trainer-thetaNormalizer

-rw-r--r-- 1 ageo supergroup 99 2015-04-13 14:26

/user/ageo/wikipediamodel/trainer-thetaNormalizer/part-00000

-rw-r--r-- 1 ageo supergroup 131 2015-04-13 14:26

/user/ageo/wikipediamodel/trainer-thetaNormalizer/part-00001

. . . . . .

-rw-r--r-- 1 ageo supergroup 163 2015-04-13 14:26

/user/ageo/wikipediamodel/trainer-thetaNormalizer/part-00030

-rw-r--r-- 1 ageo supergroup 99 2015-04-13 14:27

/user/ageo/wikipediamodel/trainer-thetaNormalizer/part-00031

drwxrwxrwx - ageo supergroup 0 2015-04-13 14:10

/user/ageo/wikipediamodel/trainer-weights

drwxr-xr-x - ageo supergroup 0 2015-04-13 14:09
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/user/ageo/wikipediamodel/trainer-weights/Sigma_j

-rw-r--r-- 1 ageo supergroup 82475 2015-04-13 14:08

/user/ageo/wikipediamodel/trainer-weights/Sigma_j/part-00000

-rw-r--r-- 1 ageo supergroup 83082 2015-04-13 14:08

/user/ageo/wikipediamodel/trainer-weights/Sigma_j/part-00001

. . . . . .

-rw-r--r-- 1 ageo supergroup 81464 2015-04-13 14:09

/user/ageo/wikipediamodel/trainer-weights/Sigma_j/part-00030

-rw-r--r-- 1 ageo supergroup 82977 2015-04-13 14:09

/user/ageo/wikipediamodel/trainer-weights/Sigma_j/part-00031

drwxr-xr-x - ageo supergroup 0 2015-04-13 14:09

/user/ageo/wikipediamodel/trainer-weights/Sigma_k

-rw-r--r-- 1 ageo supergroup 133 2015-04-13 14:08

/user/ageo/wikipediamodel/trainer-weights/Sigma_k/part-00001

-rw-r--r-- 1 ageo supergroup 130 2015-04-13 14:08

/user/ageo/wikipediamodel/trainer-weights/Sigma_k/part-00003

. . . . . .

-rw-r--r-- 1 ageo supergroup 169 2015-04-13 14:08

/user/ageo/wikipediamodel/trainer-weights/Sigma_k/part-00026

-rw-r--r-- 1 ageo supergroup 167 2015-04-13 14:09

/user/ageo/wikipediamodel/trainer-weights/Sigma_k/part-00029

drwxr-xr-x - ageo supergroup 0 2015-04-13 14:09

/user/ageo/wikipediamodel/trainer-weights/Sigma_kSigma_j

-rw-r--r-- 1 ageo supergroup 125 2015-04-13 14:09

/user/ageo/wikipediamodel/trainer-weights/Sigma_kSigma_j/part-00013

. . . . . .

7.2.3 Scalability Analysis Per Input Size

This section presents the analysis we have conducted regarding the scalability of the
Bayes Classifier application, in terms of input size, when it runs on the Intel SCC.
We have executed the application with four different input files, whose size is 256 MB,
512 MB, 1 GB and 2 GB. Those files were transformed to category based splits before
they were used in order to train the text classification model. We have utilized the 48-
Node Cluster Topology for this analysis and have configured both the DataNodes and
the TaskTrackers to operate at the maximum frequency of 800 MHz. The experimental
results we have received regarding the execution time and the energy consumption of
the Bayes Classifier application are presented below. Detailed plots that illustrate
the CPU utilization and the network traffic for one DataNode and one TaskTracker
as well as the overall power consumption and board temperature of the Intel SCC, for
each run, are included in Appendix B2.

Our analysis indicates evidently that both the execution time and the energy con-
sumption of the Bayes Classifier application scale linearly as the size of the input
documents increases. The detailed plots of the CPU utilization of the TaskTracker
nodes indicate that this increase is primarily attributed to the expansion of the ex-
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Figure 7.14: Bayes Classifier Input Size Scalability Analysis (1/2)

Figure 7.15: Bayes Classifier Input Size Scalability Analysis (2/2)

ecution time of the Map phase of the BayesFeatureDriver job and secondarily to
a smaller increase of the Reduce phase of this job. The increased execution time of
the Map phase can be explained by the fact that the category based splits that are
processed by BayesFeatureDriver include more <class,document> pairs as the in-
put size increases and as a result are stored in more InpuSplits in HDFS, resulting
in an increased amount of issued Map tasks. The increase in the Reduce phase can
be explained by the fact that the Map phase of the MapReduce job generates more
intermediate <key,value> pairs, increasing the processing load of the Reduce phase
and thus the execution time.

In the beginning of each MapReduce job a period which is dominated by idle CPU
cycles because of outstanding I/O, for all input sizes, is noticed. This behavior can be
attributed to the fact that the mahout-examples-0.6-job.jar is distributed to each
TaskTracker during the initialization of a MapReduce job and is expanded when the
first task (Map or Reduce) is executed on this node. This jar file has a size of 23 MB
and its expanded contents have a total size of 85 MB, adding up to a total of 108
MB outgoing I/O per TaskTracker. The presence of a high percentage of idle CPU
cycles due to outstanding I/O indicates that the I/O bandwidth between the Intel SCC
and the NFS that is mounted on /shared is saturated, causing the cores to stall until
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the jar is expanded and its contents are stored in the physical storage of the MCPC.
The increased I/O of this period is also depicted in the Network Traffic plots of the
TaskTracker nodes, since each core accesses the NFS through the emac0 virtual net-
work interface and as a consequence, disk I/O is recorded as network traffic by gmond.
The reason that such a behavior was not evident in the Wordcount application is that
the corresponding jar was hadoop-0.20.2-examples.jar, whose size is 140 KB, and
whose expanded contents in each TaskTracker are 484 KB, adding up to a total of
only 624 KB outgoing I/O per TaskTracker, which did not cause the I/O bandwidth
saturation we observe at the Bayes Classification application.

7.2.4 Cluster Topology Analysis

This section presents our analysis concerning the behavior of the Bayes Classifier

application when it is executed on top of different HDFS cluster topologies on the Intel
SCC. For this study, we have used the category based splits which were generated by
the 256 MB dataset. We have configured both the DataNodes and the TaskTrack-
ers of each cluster topology to operate at the maximum frequency of 800 MHz. The
idle nodes of each topology (if any) operate at the minimum frequency of 100 MHz.
gmond is not active on those nodes as well. The experimental results we have received
regarding the execution time and the energy consumption of the Bayes Classifier

application are presented below. Detailed plots are included in Appendix B2, as in the
previous case.

Figure 7.16: Bayes Classifier Cluster Topology Analysis (1/2)

Our experimental results clearly indicate that the 48-Node cluster topology is non-
optimal for the Bayes Classifier application, if the energy consumption is taken
into account apart from the execution time, in contrast to our conclusion for the
Wordcount application. The application completes at approximately the same time
when it is executed on the 24-Node and the 48-Node cluster, but because of the lower
power consumption of the 24-Node cluster, it consumes 22% less energy. This ob-
servation can be explained by the fact that the period that was characterized by a
high percentage of idle CPU cycles because of outstanding I/O is reduced significantly
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Figure 7.17: Bayes Classifier Cluster Topology Analysis (2/2)

as the number of cores that participate in the cluster drops, since the requested I/O
bandwidth and thus the I/O saturation diminish. As a consequence, the reduced par-
allelism that is imposed by the smaller number of TaskTracker nodes is mitigated by
the fact that less CPU cycles are wasted for outstanding I/O requests, resulting in the
same execution time and reduced energy consumption for the 24-Node cluster topology
compared to the 48-Node cluster topology.

It has to be noted however, that this conclusion would be most probably overturned if
the total size of the input category based splits was increased, because of the fact that
the CPU-intensive part of the application would be expanded and the impact of the
reduced parallelism would be more intense. This fact would result in higher execution
time for the 24-Node topology and probably higher energy consumption if the execu-
tion time overhead is significant.

The 24-Node topology outperforms the 32-Node topology in the Bayes Classifier

application, similar to our conclusion regarding the Wordcount application. That is, the
application does not benefit from the increased number of DataNodes, yielding higher
execution time than the 24-Node cluster topology and even higher energy consumption
because of the higher power consumption it is charged with.

7.2.5 Frequency Scaling Analysis

This section analyzes the impacts of frequency scaling on the execution time and the
energy consumption of the Bayes Classifier application on the Intel SCC. We have
tested the category based splits that were generated by the 256 MB dataset in the
48-Node Cluster topology for nine frequency settings. We have configured the DataN-
odes and Master Node and the TaskTrackers to run at either 200 MHz, 533 MHz or
800 MHz and each frequency setting represents one combination of those values. The
experimental results we have received regarding the execution time and the energy con-
sumption of the Bayes Classifier application are presented below. Detailed plots
are included in Appendix B2, as in the previous case.
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Figure 7.18: Bayes Classifier Frequency Scaling Analysis (1/2)

Figure 7.19: Bayes Classifier Frequency Scaling Analysis (2/2)

Similar to the Wordcount application, the conclusion that both the execution time
and the energy consumption are driven by the frequency of the TaskTrackers can
be drawn. Increasing the frequency of the DataNodes, does not appear to yield any
significant benefit in terms of the execution time, while charging the application with
higher energy consumption. The experimental results for the DN200-TT800 setting
seem to contradict the above conclusions.

In the DN200-TT800 case, the failure of DataNode rck13 between the 30th and the
40th minute and the unusually long time it took to be rebooted and rejoin the cluster
by the node failover watchdog caused a series of Map tasks to fail and be re-executed.
This fact prolonged the Map phase of BayesFeatureDriver for more than an hour,
leading to a misleading execution time and energy consumption outcome. The CPU
utilization plots that are included in the Figure 7.20 illustrate that situation. In the
CPU utilization plot of rck13, the period that is distinguished by persistent CPU uti-
lization metrics corresponds to the time when the core was unreachable, thus gmond

did not report any updated metrics.

In order to corroborate the claim that the execution time we observed is mislead-
ing, we re-executed the Bayes Classification, using the DN200-TT800 setting and
the execution time we recorded was 159.27 minutes. This execution was not charac-
terized by any unusual node failures and the time it took to complete is close to the
DN533-TT800 and DN800-TT800 settings, indicating that scaling down the frequency
of DataNodes does not impair performance, while yielding energy consumption savings.
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However, we could not obtain an accurate estimation of the energy consumption of
this re-execution, because the power consumption we recorded was on average 20 W
lower than the power consumption we observed in the first run. This fact is attributed
to lower platform temperature, which is a result of lower platform utilization during the
period the second execution was performed. As a consequence, comparing the energy
consumption measurement we observed in the second run with the one we observed in
the first run would be also misleading.

In order to provide a fair comparison in terms of energy consumption as well, we
also re-executed the application using the DN800-TT800 setting. Our results regard-
ing execution time and energy consumption are included in the following table. This
comparison indicates that scaling down the frequency of the DataNodes to 200 MHz,
despite increasing the execution time by 8.4% manages to reduce the energy consump-
tion of the application by 3.7%, because of the reduced power budget of the cluster.

Frequency Setting Execution Time Energy Consumption Energy Delay Product
DN200-TT800 159.27 631.29 100546
DN800-TT800 146.89 655.72 96319

This behavior is expected to be maintained for bigger input sizes, because of the fact
that increasing the input size prolongs the CPU-intensive parts of the application
which are executed by the TaskTrackers, which operate at the maximum frequency of
800 MHz. Moreover, it has to be mentioned that, as in the previous applications, the
energy consumption saving would have been more notable if the Intel SCC architecture
allowed Voltage Scaling at the tile level, enabling us to scale down the voltage of the
DataNodes which operate at the frequency of 200 MHz.

126



Workload Characterization of Big Data
Applications on the Intel SCC Diploma Thesis

Figure 7.20: CPU utilization plots for the Bayes Classifier application
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7.2.6 Cluster Utilization Overview

This section provides an overview figure (Figures 7.21-7.26) for the CPU utilization
of all cluster nodes, when the Bayes Classification application is executed with
category-based splits that has been generated from the input file of 512 MB, on the 48-
Node HDFS cluster topology and with the DataNodes and the TaskTrackers configured
to operate at 800 MHz. The very low utilization of all the DataNodes which explains
the minimal performance impairment that we observe when their operating frequency
is scaled down to 200 MHz. The CPU utilization diagrams of the TaskTracker nodes
depict the execution on Map and Reduce tasks on the cores that they are hosted.

The CPU utilization plots of the TaskTracker nodes also denote the period at the
beginning of each MapReduce job, when the mahout-examples-0.6-job.jar is dis-
tributed and expanded at those cores. This period is characterized by a high percent-
age of CPU cycles due to outstanding I/O. The overview utilization figure also depicts
that the CPU idle period that is observed in the beginning of each MapReduce job
is attributed to the execution of the setup Map task in one TaskTracker node. Each
MapReduce job executes one setup Map task before the beginning of computation,
which performs the job initialization.

Another observation that we can make from that figure is that the execution time
of each Map or Reduce task varies per node. In addition a different number of Map
and Reduce tasks are assigned to each TaskTracker by the JobTracker, depending on
the execution status of the MapReduce jobs. Finally, we can spot the cores that froze
and were rebooted during the execution of the application. The time period during
which the cores where unreachable is characterized by persistent measurements of the
CPU utilization. This behavior is explained by the fact that since the gmond instance
that runs on the MCPC did not receive any updated values for the CPU utilization,
it reported the last value it received from the core again and again, until the core was
rebooted and new metrics were received through UDP datagrams.
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Figure 7.21: Bayes Classification Overall Cluster Utilization (1/6)
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Figure 7.22: Bayes Classification Overall Cluster Utilization (2/6)
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Figure 7.23: Bayes Classification Overall Cluster Utilization (3/6)
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Figure 7.24: Bayes Classification Overall Cluster Utilization (4/6)
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Figure 7.25: Bayes Classification Overall Cluster Utilization (5/6)
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Figure 7.26: Bayes Classification Overall Cluster Utilization (6/6)
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7.3 The K-Means Clustering Application

This section presents our analysis regarding the execution of the K-Means Clustering

application on the Intel SCC. We initially describe the MapReduce implementation
of the K-Means Clustering algorithm. In addition, the input file generation and
application execution process are stated. We have utilized resources which are provided
by DCBench for that purpose. Subsequently, the experimental results we have received
are analyzed, in order to draw conclusions regarding the behavior of the K-Means

Clustering application on the Intel SCC for different input sizes, cluster topologies
and frequency settings.

7.3.1 Algorithm Description

K-Means algorithm is the most well-known and commonly used clustering method. It
takes the input parameter, k, and partitions a set of n objects into k clusters so that
the resulting intra-cluster similarity is high whereas the inter-cluster similarity is low.
Cluster similarity is measured according to the mean value of the objects in the cluster,
which can be regarded as the cluster’s center of gravity.

The algorithm proceeds as follows : Firstly, it randomly selects k objects from the
whole objects, which represent initial cluster centers. Each remaining object is as-
signed to the cluster to which it is the most similar, based on the distance between the
object and the cluster center. The new mean for each cluster is then calculated. This
process iterates until the criterion function converges.

The MapReduce implementation of K-Means clustering executes repeatedly a MapRe-
duce job, which implements a parallel version of the K-Means algorithm. The input
objects that have to be clustered are point vectors. The execution stops if the con-
vergence criterion is met or if the job has been executed for the maximum number
of iterations has been reached. The K-Means MapReduce job consists of a Mapper
and a Reducer function, and a Combiner function, which combines the intermediate
<key,value> pairs that are generated by the Mappers locally before they are processed
by the Reducers, for performance optimization.

KMeansMapper iterates over the point vectors of the input file and searches for the
cluster that yields the minimum distance for each specific point. KMeansMapper out-
puts intermediate <key,value> pairs, whose key is the clusterId of the nearest clus-
ter and the value is a tuple that consists of the number 1, the point vector and the
point vector which consists the squared values of the dimensions of the original vector.
KMeansCombiner combines all the intermediate pairs that were generated by a specific
Mapper and share the same clusterId by summing the elements that are included in
the value tuple.

KMeansReducer processes all <key,value> pairs that share the same clusterId and
computes the new center of the specific cluster, as the mean value of the point vectors
that were assigned to it. KMeansReducer also checks if the cluster it processes has
converged and if so it marks the corresponding flag of the cluster as true. The output
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<key,value> pairs of each reducer contain the clusterId as the key and the Cluster
object instance as the value.

The list of Clusters that is provided as input both in the Map and the Reduce func-
tions contains the clusters that were computed by the Reduce phase of the previous
iteration of the K-Means algorithm. In the first iteration of the K-Means algorithm,
this lists contains a set of clusters with randomly selected center vector points.

KMeansMapper.map(String key, Point value, List<Cluster> clusters):

nearestDistance = Double.MAX_VALUE

nearestCluster = null

for (cluster : clusters):

distance = computeDistance(value,cluster)

if (distance < minDistance):

nearestDistance = distance

nearestCluster = cluster

nearestClusterId = nearestCluster.getId()

output(nearestClusterId, (1,value,squareElements(value)))

KMeansMapper.computeDistance(point,cluster):

clusterCenter = cluster.getCenter()

return dotProduct((clusterCenter-point), (clusterCenter-point))

KMeansCombiner.combine(String key, List<ClusterObservation> values):

sum1 = 0

sum2 = new Point()

sum3 = new Point()

for (value : values):

sum1 += value.get(1)

sum2 += value.get(2)

sum3 += value.get(3)

output(key,(sum1,sum2,sum3))

KMeansReducer.reduce(String key, List<ClusterObservation> values,

List<Cluster> clusters):

sum1 = 0

sum2 = new Point()

sum3 = new Point()

for (value : values):

sum1 += value.get(1)

sum2 += value.get(2)

sum3 += value.get(3)

cluster = clusters.get(key)

clusterCenter = cluster.getCenter

clusterCentroid = sum2.divide(sum1)

vectorSumSquared = sum3

converged = checkConvergence(clusterCenter,clusterCentroid)

if (converged):
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cluster.setConverged(true)

cluster.setCenter(clusterCentroid)

output(key,cluster)

KMeansReducer.checkConvergence(clusterCenter, clusterCentroid, convergenceDelta):

return dotProduct(clusterCentroid-clusterCenter,

clusterCentroid-ClusterCenter) <= convergenceDelta

7.3.2 Application Execution and Input Files

We use three different input files for the K-Means Clustering application, whose size
is 121 KB, 4 MB and 16 MB. Those input files are provided by DC Bench. DC Bench
also provides a script called prepare-kmeans.sh, which receives the desired input size
as an input and uploads the corresponding file to HDFS. The code of this script is
included in Appendix A.

ageo@mitsos:~/HVCBench-hadoop/workloads/cluster/kmeans$

./prepare-kmeans.sh low

ageo@mitsos:~/hadoop-0.20.2$

bin/hadoop dfs -ls /cloudrank-data/sougou*

Found 2 items

drwxr-xr-x - root supergroup 0 2015-04-15 12:08

/cloudrank-data/sougou-low-tfidf-vec/_logs

-rw-r--r-- 1 root supergroup 124357 2015-04-15 12:08

/cloudrank-data/sougou-low-tfidf-vec/part-r-00000

In order to run the K-Means Clustering benchmark, the run-kmeans.sh script, which
is provided by DCBench has to be executed. This script receives the size of the input
file that contains the point vectors as a command line argument and searches in HDFS
for the input file with this specific size that was uploaded by prepare-kmeans.sh. The
code of this script is included in Appendix A.

ageo@mitsos:~/HVCBench-hadoop/workloads/cluster/kmeans$

./run-kmeans.sh low

. . . . . .

15/03/22 19:37:16 INFO kmeans.KMeansDriver: K-Means Iteration 1

. . . . . .

15/03/22 19:38:24 INFO mapred.JobClient: map 0% reduce 0%

. . . . . .

15/03/22 19:56:58 INFO mapred.JobClient: map 100% reduce 100%

. . . . . .

15/03/22 19:57:34 INFO kmeans.KMeansDriver: K-Means Iteration 2

. . . . . .

15/03/22 20:01:14 INFO mapred.JobClient: map 0% reduce 0%

. . . . . .

15/03/22 20:23:12 INFO mapred.JobClient: map 100% reduce 100%

. . . . . .

15/03/22 20:23:55 INFO driver.MahoutDriver:
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Program took 2800226 ms (Minutes: 46.670433333333335)

7.3.3 Scalability Analysis Per Input Size

This section presents the analysis we have conducted regarding the scalability of the
K-Means Clustering application, in terms of input size, when it runs on the Intel
SCC. We have executed the application with three different input files, whose size is
121 KB, 4 MB and 16 MB as mentioned above. We have utilized the 48-Node Cluster
Topology for this analysis and have configured both the DataNodes and the TaskTrack-
ers to operate at the maximum frequency of 800 MHz. The experimental results we
have received regarding the execution time and the energy consumption of the K-Means
Clustering application are presented below. Both the execution time and the energy
consumption are divided by the number of iterations the K-Means Clustering algorithm
was executed, so as to provide a basis for fair comparison. Detailed plots that illustrate
the CPU utilization and the network traffic for one DataNode and one TaskTracker
as well as the overall power consumption and board temperature of the Intel SCC, for
each run, are included in Appendix B3.

Figure 7.27: K-Means Clustering Input Size Scalability Analysis (1/2)

Figure 7.28: K-Means Clustering Input Size Scalability Analysis (2/2)
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Our analysis points out that execution time and energy consumption do not scale
significantly when the size of the input file increases. This behavior can be explained
by the fact that the input files we have provided are stored in 1, 3 and 5 input splits
in HDFS respectively. That is, the Map tasks that are issued are much less than the
available TaskTracker nodes, meaning that the application cannot leverage the level
of parallelism that is provided by the platform. The same conclusion can be drawn
regarding the Reduce tasks, since the application attempts to create 5 clusters of point
vectors, meaning that the rest 27 reduce tasks will not receive and process any inter-
mediate <key,value> pairs. The slight increase in energy consumption for the 4 MB
and 16 MB input files can be attributed to the fact that more Map tasks were issued
in these cases, causing more Intel SCC cores operate at high CPU utilization and as a
result increasing the power consumption of the platform.

In the 121 KB input file case, only 1 Map task is issued for both iterations, which
is not evident in the diagram we have provided in the Appendix. Figure 7.29 depicts
the execution of the setup Map tasks on rck26 and rck41 and the execution of the
only Map task for Iterations 1 and 2 on rck09 and rck18 respectively.

It also has to be mentioned, that the period of high percentage of CPU idle cycles
because of outstanding I/O and increased outgoing network traffic is also present in
the K-Means Clustering application, since the mahout-examples-0.6-job.jar is dis-
tributed and expanded by all TaskTracker nodes in this case as well. In this case, this
period is observed at the beginning of the Map phase, for nodes where Map tasks were
executed and in the beginning of the Reduce phase, for nodes that did not execute
Map tasks. In addition, it is evident in Figure 7.29 that this behavior is much more
intense during the Reduce phase, because more nodes are attempting to expand their
jar file, leading in higher I/O bandwidth contention and a higher percentage of wasted
CPU cycles.

7.3.4 Cluster Topology Analysis

This section presents our analysis concerning the behavior of the K-Means Clustering

application when it is executed on top of different HDFS cluster topologies on the Intel
SCC. For this study, we have used the 121 KB input file which is provided by DCBench.
We have configured both the DataNodes and the TaskTrackers of each cluster topology
to operate at the maximum frequency of 800 MHz. The idle nodes of each topology (if
any) operate at the minimum frequency of 100 MHz. gmond is not active on those nodes
as well. The experimental results we have received regarding the execution time and
the energy consumption of the K-Means Clustering application are presented below.
Both the execution time and the energy consumption are divided by the number of
iterations the K-Means Clustering algorithm was executed, so as to provide a basis for
fair comparison. Detailed plots are included in Appendix B3, as in the previous case.

Our experimental results point out that increasing the number of DataNodes or Task-
Trackers that participate in the cluster deteriorates both the execution time and the
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Figure 7.29: CPU Utilization Plots for the K-Means Clustering Application

energy consumption of the application. This behavior can be explained by the anal-
ysis we presented in the previous section. Since the input file we use is stored in one
InputSplit in HDFS and only 5 reducer tasks will process intermediate key value
pairs, since we attempt to group the input vector points to 5 clusters, the application
cannot leverage the increased parallelism that is offered by the 24-Node, 32-Node and
48-Node topologies. In fact, it cannot fully take advantage of the parallelism that is
offered by the 16-Node topology as well. As a consequence, increasing the number of
nodes that participate in the cluster does not reduce the execution time of the appli-
cation, but increases it, since the idle CPU cycles period because of outstanding I/O
is prolonged because of the fact that the increased number of nodes increases the I/O
bandwidth congestion, leading in a higher percentage of wasted CPU cycles. More-
over, since cluster topologies with more nodes charge the application with higher power
consumption, the devastating impact of increased execution time, increases the energy
consumption of the application even more.
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Figure 7.30: K-Means Clustering Cluster Topology Analysis (1/2)

Figure 7.31: K-Means Clustering Cluster Topology Analysis (2/2)

7.3.5 Frequency Scaling Analysis

This section analyzes the impacts of frequency scaling on the execution time and the
energy consumption of the K-Means Clustering application on the Intel SCC. We
have tested the input file which has a size of 121 KB in the 48-Node Cluster topology
for nine frequency settings. We have configured the DataNodes and Master Node and
the TaskTrackers to run at either 200 MHz, 533 MHz or 800 MHz and each frequency
setting represents one combination of those values. The experimental results we have
received regarding the execution time and the energy consumption of the K-Means

Clustering application are presented below. Both the execution time and the energy
consumption are divided by the number of iterations the K-Means Clustering algorithm
was executed, so as to provide a basis for fair comparison. Detailed plots are included
in Appendix B3, as in the previous case.

As in the previous applications, the execution time appears to be driven primarily by
the frequency of the TaskTracker nodes, since the CPU-intensive parts of the K-Means

Clustering algorithm are executed on those nodes. For a given frequency for the
DataNodes, increasing the TaskTracker nodes frequency significantly reduces the exe-
cution time and the energy consumption of the application. On the contrary, increasing
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Figure 7.32: K-Means Clustering Frequency Scaling Analysis (1/2)

Figure 7.33: K-Means Clustering Frequency Scaling Analysis (2/2)

the frequency of the DataNodes for a fixed frequency for the TaskTrackers, does not
reduce the execution time and since the application is charged with higher power con-
sumption, the energy consumption is increased. As a consequence, we can deduce
that scaling down the frequency of the DataNodes does not impair the performance of
the application, while yielding benefits in terms of energy consumption. For example,
while the execution time of the DN200-TT800 and DN800-TT800 settings is almost
the same, the DN200-TT800 setting consumes 10% less energy.

7.3.6 Cluster Utilization Overview

This section provides an overview figure (Figures 7.34-7.39) for the CPU utilization
of all cluster nodes, when the K-Means Clustering application is executed with the
input file of 121 KB, on the 48-Node HDFS cluster topology and with the DataNodes
and the TaskTrackers configured to operate at 800 MHz. The conclusions that were
presented in the previous sections are corroborated by the following plots.

The cluster utilization figures clearly point out that only one Map task was executed
for each iteration of the K-Means Clustering application, plus one set up Map task
during the initialization phase of each MapReduce job. In addition, it is also evident
that the percentage of idle CPU cycles due to outstanding I/O for a specific is signifi-
cantly higher when it takes place during the Reduce phase of each job, because of the
fact that more cluster nodes attempt to expand the mahout-examples-0.6-job.jar

at that time resulting to higher I/O bandwidth saturation.
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Figure 7.34: K-Means Clustering Overall Cluster Utilization (1/6)
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Figure 7.35: K-Means Clustering Overall Cluster Utilization (2/6)
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Figure 7.36: K-Means Clustering Overall Cluster Utilization (3/6)
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Figure 7.37: K-Means Clustering Overall Cluster Utilization (4/6)
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Figure 7.38: K-Means Clustering Overall Cluster Utilization (5/6)
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Figure 7.39: K-Means Clustering Overall Cluster Utilization (6/6)
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7.4 The Frequent Pattern Growth Application

This section presents our analysis regarding the execution of the Frequent Pattern

Growth application on the Intel SCC. We initially describe the MapReduce implemen-
tation of the Frequent Pattern Growth algorithm. In addition, the input file gener-
ation and application execution process are stated. We have utilized resources which
are provided by DCBench for that purpose. Subsequently, the experimental results
we have received are analyzed, in order to draw conclusions regarding the behavior of
the Frequent Pattern Growth application on the Intel SCC for different input sizes,
cluster topologies and frequency settings.

7.4.1 Algorithm Description

The Frequent Pattern Growth Algorithm is an efficient and scalable method for mining
the complete set of frequent patterns by pattern fragment growth, using an extended
prefix-tree structure for storing compressed and crucial information about frequent pat-
terns named frequent-pattern tree (FP-tree). Let I = {a1, a2, ..., am} be a set of items,
and a transaction database DB is a set of subsets of I, denoted by DB = {T1, T2, ..., Tn},
where each Ti ⊂ I(1 ≤ i ≤ n) is said a transaction. The support of a pattern A ⊂ I,
denoted by supp(A), is the number of transactions containing A in DB. A is a frequent
pattern if and only if supp(A) ≥ ξ, where ξ is a predefined minimum support threshold.
Given DB and ξ, the problem of finding the complete set of frequent patterns is called
the frequent itemset mining problem.

Frequent Pattern Growth works in a divide and conquer way. It requires two scans on
the database. Frequent Pattern Growth first computes a list of frequent items sorted by
frequency in descending order (F-List) during its first database scan. In its second scan,
the database is compressed into an FP-tree. Then Frequent Pattern Growth starts to
mine the FP-tree for each item whose support is larger than by recursively building
its conditional FP-tree. The algorithm performs mining recursively on FP-tree. The
problem of finding frequent itemsets is converted to searching and constructing trees
recursively.

The Frequent Pattern Growth MapReduce implementation that is provided by Apache
Mahout consists of three MapReduce jobs, which are called ParallelCounting, Parallel
FPGrowth and Aggregator. Those jobs are orchestrated by the FrequentPatternGrowth
Driver master flow. Pseudocode for the FrequentPatternGrowthDriver flow is pre-
sented below.

FrequentPatternGrowthDriver.runJob(input,output,params):

ParallelCounting.runJob(input,output,params)

createFList()

createGList()

ParallelFPGrowth.runJob(input,output,params)

Aggregator.runJob(input,output,params)

The ParallelCounting job counts the number of occurences of each item in the trans-
action database, similar to the Wordcount application. ParallelCounting outputs
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<key,value> pairs, whose key is an item and whose value is its number of occurences
in the transaction database.

< item,N >

The above purpose is achieved by the following Map and Reduce functions.

ParallelCountingMapper.map(String key, Transaction value):

List<Item> itemList = tokenizeTransaction(value)

for (item : itemList):

output(item,1)

ParallelCountingReducer.reduce(String key, List<Integer> values):

sum = 0

for (value : values):

sum += value

output(key,sum)

The output of this job is used by FrequentPatternGrowthDriver so as to create FList,
which is a sorted list of the number of occurences (i.e. the support value) of each item,
in descending order. Items with a number of occurences less than the minimum support
value are eliminated from FList. Subsequently, the items present in fList are assigned
to groups, that is each item is assigned to a specific groupId. The total number of
groups is provided as an input parameter of FrequentPatternGrowthDriver. gList

contains the mapping of items to groupIds. fList and gList can be considered as
global invariants for the ParallelFPGrowth job, meaning that they can accessed by
all Map and Reduce tasks.

The ParallelFPGrowth job performs a second scan of the transaction database, in
order to convert the transactions of the database into group dependent transactions
and build independent FP-trees in parallel. ParallelFPGrowth outputs <key,value>

pairs whose key is an item ai ∈ I and whose value is a frequent pattern A (with
supp(A) ≥ ξ) that contains that item.

< item, pattern >

The above purpose is achieved by the following Map and Reduce functions. growth()
mines the FP-tree that has been created by the group-dependent transaction database,
so as to discover frequent patterns. The frequent patterns that are generated by
ParallelFPGrowthReducer are stored in a MaxHeap data structure. k denotes the
maximum number of frequent patterns that are included in each MaxHeap and is pro-
vided as an input parameter for the FrequentPatternGrowth algorithm.

ParallelFPGrowthMapper.map(String key, Transaction value):

gMap = new HashMap(gList)

List<Item> itemList = tokenizeTransaction(value)

itemList.sortBySupport(fList)

for (i=itemList.size(); i > 0 ; i--):

item = itemList(i)
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if (gMap.containsKey(item)):

groupId = gMap(item)

gMap.deleteAllValues(groupId)

transaction = new Transaction(sublist(itemList,1,i))

output(groupId,transaction)

ParallelFPGrowthReducer.reduce(String key, List<Transaction> values):

localFList = new FList()

itemSet = new Set<String>

for (value : values):

itemSet = tokenizeTransaction(value)

for (item : itemSet):

localFList.updateFList(item)

itemSet.add(item)

values.deleteInfrequentItems(fList)

localFPTree = new FPTree()

for (value : values):

localFPTree.addPattern(value)

k = getPatternMaxHeapSize()

for (item : itemSet):

topKPatternHeap = growth(localFPTree,item,minSupport,k)

output(item,topKPatternHeap)

The Aggregator job processes the output that has been provided by ParallelFPGrowth
and merges them in order to output <key,value> pairs which contain all the frequent
patterns that contain a specific item. The frequent patterns that are generated by
AggregatorReducer are stored in a MaxHeap data structure. k denotes the maximum
number of frequent patterns that are included in each MaxHeap and is provided as an
input parameter for the FrequentPatternGrowth algorithm. The above purpose is
achieved by the following Map and Reduce functions.

Aggregator.map(String key, MaxHeap<Item> value):

output(key,value)

Aggregator.reduce(String key, List<MaxHeap<Item>> values):

topKPatternMaxHeap = new MaxHeap<Item>()

k = getPatternMaxHeapSize()

for (value : values):

topKPatternMaxHeap.merge(value,k)

output(key,topKPatternMaxHeap)

7.4.2 Application Execution and Input Files

We use three different input files for the Frequent Pattern Growth application, whose
size is 4 MB, 34 MB and 377 MB. Those input files are provided by DC Bench. Each
line of these files contains a transaction present in the transaction database as follows.

ageo@mitsos:~/HVCBench-hadoop/basedata$ cat fpg-accidents.dat

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
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30 31 32

33 34 35

36 37 38 39 40 41 42 43 44 45 46

38 39 47 48

38 39 48 49 50 51 52 53 54 55 56 57 58

32 41 59 60 61 62

3 39 48

63 64 65 66 67 68

32 69

. . . . . .

DC Bench also provides a script called prepare-fpg.sh, which receives the desired
input size as an input and uploads the corresponding file to HDFS. The code of this
script is included in Appendix A.

ageo@mitsos:~/HVCBench-hadoop/workloads/associationrulemining/

kmeans$ ./prepare-fpg.sh low

ageo@mitsos:~/hadoop-0.20.2$

bin/hadoop dfs -lsr /cloudrank-data/fpg*

-rw-r--r-- 1 ageo supergroup 4167490 2015-03-30 10:46

/cloudrank-data/fpg-accidents.dat

In order to run the Frequent Pattern Growth benchmark, the run-fpg.sh script,
which is provided by DCBench has to be executed. This script receives the size of
the input file that contains the transaction database as a command line argument
and searches in HDFS for the input file with this specific size that was uploaded by
prepare-fpg.sh. The code of this script is included in Appendix A.

ageo@mitsos:~/HVCBench-hadoop/workloads/associationrulemining/fpg$

./run-fpg.sh high

15/04/01 01:14:37 INFO mapred.JobClient:

Running job: job_201503312203_0001

15/04/01 01:14:38 INFO mapred.JobClient: map 0% reduce 0%

. . . . . .

15/04/01 01:42:37 INFO mapred.JobClient: map 100% reduce 100%

15/04/01 01:43:21 INFO mapred.JobClient: Job complete:

job_201503312203_0001

. . . . . .

15/04/01 01:47:14 INFO mapred.JobClient: Running job:

job_201503312203_0002

15/04/01 01:47:15 INFO mapred.JobClient: map 0% reduce 0%

. . . . . .

15/04/01 02:05:52 INFO mapred.JobClient: map 100% reduce 100%

15/04/01 02:07:02 INFO mapred.JobClient: Job complete:

job_201503312203_0002

. . . . . .

15/04/01 02:09:28 INFO mapred.JobClient:Running job:

job_201503312203_0003
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15/04/01 02:09:29 INFO mapred.JobClient: map 0% reduce 0%

. . . . . .

15/04/01 02:25:23 INFO mapred.JobClient: map 100% reduce 100%

15/04/01 02:26:02 INFO mapred.JobClient: Job complete:

job_201503312203_0003

. . . . . .

15/04/01 02:26:02 INFO driver.MahoutDriver:

Program took 4353692 ms (Minutes: 72.56153333333333)

7.4.3 Scalability Analysis Per Input Size

This section presents the analysis we have conducted regarding the scalability of the
Frequent Pattern Growth application, in terms of input size, when it runs on the
Intel SCC. We have executed the application with three different input files, whose
size is 4 MB, 34 MB and 377 MB as mentioned above. We have utilized the 48-Node
Cluster Topology for this analysis and have configured both the DataNodes and the
TaskTrackers to operate at the maximum frequency of 800 MHz. The experimental
results we have received regarding the execution time and the energy consumption of
the Frequent Pattern Growth application are presented below. Detailed plots that
illustrate the CPU utilization and the network traffic for one DataNode and one Task-
Tracker as well as the overall power consumption and board temperature of the Intel
SCC, for each run, are included in Appendix B4.

Figure 7.40: Frequent Pattern Growth Input Size Scalability Analysis (1/2)

Our experimental results point out that the execution time of the Frequent Pattern

Growth application scales up only when the 377 MB input file is executed, while the
execution time of the 4 MB and 34 MB input files is almost the same. The reason for
that is that the 4 MB file is stored in one InputSplit in HDFS and as a consequence
1 Map task is issued for the ParallelCounting and ParallelFPGrowth jobs, while
the 34 MB input file is stored in 12 InputSplits and 12 Map tasks are issued for the
first two jobs. As a result, since the 4 MB and 34 MB input files do not fully leverage
the parallelism that is provided by the underlying HDFS cluster, the execution time
of the application is almost the same for these two cases. The 377 MB file is stored
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Figure 7.41: Frequent Pattern Growth Input Size Scalability Analysis (2/2)

in 95 InputSplits, causing at least 95 Map tasks to be issued, which are more than
the number of the TaskTracker nodes, thus leading to an increase in execution time
compared to the first two cases.

In addition, it has to be mentioned that the energy consumption of the application
execution with the 34 MB input file is higher compared to the one of the execution
with the 4 MB input file. The reason for that is that the higher number of issued
Map tasks result in higher overall CPU utilization of the platform, thus increasing the
power consumption that the application is charged with, resulting in a higher overall
energy consumption for this case.

In the 4 MB input file case, only 1 Map task is issued in ParallelCounting and
ParallelFPGrowth jobs, which is not evident in the diagram we have provided in the
Appendix. Figure 7.42 depicts the execution of the setup Map tasks for ParallelCounting,
ParallelFPGrowth and Aggregaton on the Intel SCC cores rck17, rck27 and rck45 re-
spectively and the execution of the only Map task for ParallelCounting and Parallel

FPGrowth on Intel SCC cores rck08 and rck07 respectively.

It also has to be mentioned, that the period of high percentage of CPU idle cycles
because of outstanding I/O and increased outgoing network traffic is also present in
the Frequent Pattern Growth application, since the mahout-examples-0.6-job.jar
is distributed and expanded by all TaskTracker nodes in this case as well. In this case,
this period is observed at the beginning of the Map phase, for nodes where Map tasks
were executed and in the beginning of the Reduce phase, for nodes that did not execute
Map tasks. In addition, it is evident in Figure 7.42 that this behavior is much more
intense during the Reduce phase of ParallelCounting and ParallelFPGrowth and
during the Map phase of Aggregation, because more nodes are attempting to expand
their jar file, leading in higher I/O bandwidth contention and a higher percentage of
wasted CPU cycles.
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Figure 7.42: CPU Utilization Plots for the Frequent Pattern Growth Application
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7.4.4 Cluster Topology Analysis

This section presents our analysis concerning the behavior of the Frequent Pattern

Growth application when it is executed on top of different HDFS cluster topologies
on the Intel SCC. For this study, we have used the 4 MB input file which is provided
by DCBench. We have configured both the DataNodes and the TaskTrackers of each
cluster topology to operate at the maximum frequency of 800 MHz. The idle nodes of
each topology (if any) operate at the minimum frequency of 100 MHz. gmond is not
active on those nodes as well. The experimental results we have received regarding
the execution time and the energy consumption of the Frequent Pattern Growth ap-
plication are presented below. Detailed plots are included in Appendix B4, as in the
previous case.

Figure 7.43: Frequent Pattern Growth Cluster Topology Analysis (1/2)

Figure 7.44: Frequent Pattern Growth Cluster Topology Analysis (2/2)

Our experimental results illustrate that similar to the K-Means Clustering applica-
tion, since the application for the given input file does not fully utilize the parallelism
that is offered by the underlying HDFS cluster completes faster and with a lower en-
ergy consumption when it is executed on top of the 16-Node cluster topology.
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One significant difference between these two applications, regards the Reduce phase
of all three MapReduce jobs of the Frequent Pattern Growth application. Since the
numGroups parameter of the application is set to 1000, all Reduce tasks of the three
MapReduce jobs receive intermediate <key,value> pairs. As a consequence, the load
of the Reduce tasks increases for cluster topologies with less TaskTracker nodes. How-
ever, this increased load is mitigated by the absence of a high percentage of idle CPU cy-
cles because of outstanding I/O during the period when the mahout-examples-0.6-job
.jar is distributed and expanded in all TaskTracker nodes of the cluster, resulting in
lower execution time and energy consumption for cluster topologies that employ less
Intel SCC cores.

7.4.5 Frequency Scaling Analysis

This section analyzes the impacts of frequency scaling on the execution time and the
energy consumption of the Frequent Pattern Growth application on the Intel SCC.
We have tested the input file which has a size of 4 MB in the 48-Node Cluster topology
for nine frequency settings. We have configured the DataNodes and Master Node and
the TaskTrackers to run at either 200 MHz, 533 MHz or 800 MHz and each frequency
setting represents one combination of those values. The experimental results we have
received regarding the execution time and the energy consumption of the Frequent

Pattern Growth application are presented below. Detailed plots are included in Ap-
pendix B4, as in the previous case.

Figure 7.45: Frequent Pattern Growth Frequency Scaling Analysis (1/2)

Figure 7.46: Frequent Pattern Growth Frequency Scaling Analysis (2/2)

Similar to the previous applications, the execution time and the energy consumption
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of the Frequent Pattern Growth application appears to be driven primarily by the
frequency of the TaskTracker nodes. The frequency of the DataNodes seems to have
a negligible impact in some cases, since increasing the DataNodes frequency seems to
slightly reduce the execution time and the energy consumption of the application for
a given frequency for the TaskTracker nodes.

As a consequence, scaling down the frequency of the DataNodes does not impair the
performance of the application by increasing its execution time and additionally yields
energy consumption saving benefits. Like in all other application the DN200-TT800
setting is optimal if both performance and energy consumption are taken into account.
Energy consumption savings would have been more significant in this case as well if
the Intel SCC architecture allowed us to perform voltage scaling at a finer granularity,
enabling us to scale down the voltage of the DataNodes that operate at 200 MHz.

7.4.6 Cluster Utilization Overview

This section provides an overview figure (Figures 7.47-7.52) for the CPU utilization of
all cluster nodes, when the Frequent Pattern Growth application is executed with
the input file of 34 MB, on the 48-Node HDFS cluster topology and with the DataN-
odes and the TaskTrackers configured to operate at 800 MHz. The conclusions that
were presented in the previous sections are corroborated by the following plots.

The cluster utilization figures clearly point out that 12 Map tasks was executed for each
ParallelCounting and ParallelFPGrowth MapReduce jobs, plus one set up Map task
during their initialization phase. In addition, it is also evident for the first two MapRe-
duce jobs that the percentage of idle CPU cycles due to outstanding I/O for a specific
is higher when it takes place during the Reduce phase of each job, because of the
fact that more cluster nodes attempt to expand the mahout-examples-0.6-job.jar

at that time resulting to higher I/O bandwidth saturation. On the contrary, during
the Aggregation phase of the Frequent Pattern Growth application, this behavior
is observed only during the Map phase, since more than 32 Map tasks are issued for
this MapReduce job, since it processes the intermediate results that were generated by
ParallelFPGrowth.
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Figure 7.47: Frequent Pattern Growth Overall Cluster Utilization (1/6)
159



Diploma Thesis
Workload Characterization of Big Data

Applications on the Intel SCC

Figure 7.48: Frequent Pattern Growth Overall Cluster Utilization (2/6)
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Figure 7.49: Frequent Pattern Growth Overall Cluster Utilization (3/6)
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Figure 7.50: Frequent Pattern Growth Overall Cluster Utilization (4/6)
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Figure 7.51: Frequent Pattern Growth Overall Cluster Utilization (5/6)
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Figure 7.52: Frequent Pattern Growth Overall Cluster Utilization (6/6)
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Chapter 8

Thesis Conclusion

This chapter concludes the findings that are provided by this diploma thesis and
presents suggestions for future work.

8.1 General Remarks

This thesis studied the runtime behavior of Big Data applications that have been im-
plemented with the MapReduce framework on top of HDFS clusters that were deployed
on the Intel SCC cores. The experimental results that we collected by executing those
applications helped us draw meaningful conclusions regarding the execution of these
scale-out workloads on Intel SCC hardware. Our analysis focused on the scalability
of those applications in terms of input size, their ability to leverage the parallelism
offered by different HDFS cluster topology organizations and the impact of frequency
perturbations on the application performance and the energy consumption.

Our analysis illustrated that the execution time and the energy consumption of the Big
Data workloads we studied scaled linearly with the input size increase. An exception
to that rule is the case when the size of application input files is too small to fully
leverage the parallelism offered by the platform, such as the input files of the K-Means

Clustering application for instance. In addition, our investigation regarding differ-
ent HDFS cluster topology organizations poses the trade-off between the number of
available TaskTracker nodes and the per-node available I/O bandwidth. This trade-
off is the key of understanding the optimal cluster topology for each application and
input file size. In addition, our results suggest that increasing the number of DataN-
odes of a cluster topology while keeping the number of TaskTrackers constant does
not improve application performance and aggravates energy consumption because the
cluster is charged with higher power consumption. Finally, our experimental results
clearly point out that scaling down the frequency of the Intel SCC cores which host
the DataNode HDFS daemons to 200 MHz does not impair application performance
and can yield performance saving benefits, due the lower platform power consumption.

Finally, it has to be stated that the Intel SCC hardware and platform architecture
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introduces grave limitations regarding the deployment of HDFS clusters and the exe-
cution of MapReduce jobs. Firstly, the very low amount of private memory per Intel
SCC core (∼ 640 MB) allowed us to configure a maximum of 128 MB for the Java Heap
Space of the Child JVMs which execute the Map and Reduce tasks. As a consequence,
a significant percentage of CPU cycles was wasted for garbage collection, so that the
application can respect that constraint. In addition, the available I/O bandwidth of-
fered by the Memory Controllers cannot satisfy concurrent I/O requests from all Intel
SCC cores, causing them to stall thus deteriorating application performance. Specif-
ically, we have found out that increasing the number of requesting cores from 16 to
32 (24-Node and 32-Node cluster topologies vs 48-Node cluster topology) increases the
I/O bandwidth saturation significantly resulting in a higher percentage of idle cycles
due to outstanding I/O. Moreover, the frequent failure of cores during the presence of
high I/O and low free memory made it necessary for us to implement a node failover
mechanism.

8.2 Future Work

This section presents propositions for future work that can be inspired by the exper-
imental results and the conclusions that have been provided by this thesis. Future
investigation and research could be focused on two diverse areas, tackling the Intel
SCC platform limitations and inefficiencies so as to meet the hardware requirements
of scale-out workloads and the development of a power-aware MapReduce framework,
based on our findings.

In order to achieve more efficient and performant execution of MapReduce applica-
tions on the Intel SCC, the issue of low per-core private memory has to be addressed.
We expect that Intel SCC boards configured with 64 GB of main memory, instead
of the 32 GB configuration in our case would yield significant improvements in terms
of application performance, since this would enable us to configure the MapReduce
framework with a higher amount of Java Heap Space for the Child JVMs. The whole
extra 640 MB of private memory for each core would be available for the application
user space, enabling as to configure a maximum heap size of 512 MB or even 768 MB,
which could result in tremendous performance improvements. If the expansion of the
Intel SCC memory is not possible an alternative would be to change the system mem-
ory map, assigning the whole memory to 24 cores for instance. This approach would
double the per-core available private memory but would also yield half of the Intel SCC
cores unusable. Another research proposition could be the development of a hypervi-
sor which would enable the Intel SCC Linux to be booted on top of 2 or 4 Intel SCC
cores. The purpose of this approach would be to reduce the percentage of the plat-
form memory being used by the OS, in order to make more memory available for the
application user space while being able to leverage all the cores of the Intel SCC board.

Finally, our conclusions regarding the frequency scaling analysis of MapReduce appli-
cations that run on top of HDFS clusters clearly point out that energy consumption can
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be reduced significantly if the operating frequency of cluster nodes with low CPU uti-
lization is scaled down. This conclusion could lead to the development of a power-aware
version of MapReduce, which would dynamically scale down the operating frequency
(and voltage if possible) of slave nodes that do not execute any Map or Reduce task at
the time, based on the information held by the JobTracker regarding the application
execution. Our proposition is that when a Map or Reduce task is issued for a slave
node by the JobTracker, then this node should transition to a high-power state, with a
higher operating frequency and when all Map and Reduce tasks that are executed on
this node are completed, then the node should transition to a power-saving state with
a lower or minimum operating frequency (and voltage if possible).
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Appendix A

Code Samples

A.1 hadoop-topology.sh

if [ "$1" = "192.168.0.1" ]

then

echo "/rack01";

fi

if [ "$1" = "192.168.0.2" ]

then

echo "/rack01";

fi

if [ "$1" = "192.168.0.3" ]

then

echo "/rack01";

fi

if [ "$1" = "192.168.0.4" ]

then

echo "/rack01";

fi

if [ "$1" = "192.168.0.5" ]

then

echo "/rack02";

fi

if [ "$1" = "192.168.0.6" ]

then

echo "/rack03";

fi

if [ "$1" = "192.168.0.7" ]

then

echo "/rack02";

fi

if [ "$1" = "192.168.0.8" ]

then

echo "/rack03";
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fi

if [ "$1" = "192.168.0.9" ]

then

echo "/rack02";

fi

if [ "$1" = "192.168.0.10" ]

then

echo "/rack03";

fi

if [ "$1" = "192.168.0.11" ]

then

echo "/rack02";

fi

if [ "$1" = "192.168.0.12" ]

then

echo "/rack03";

fi

if [ "$1" = "192.168.0.13" ]

then

echo "/rack04";

fi

if [ "$1" = "192.168.0.14" ]

then

echo "/rack05";

fi

if [ "$1" = "192.168.0.15" ]

then

echo "/rack04";

fi

if [ "$1" = "192.168.0.16" ]

then

echo "/rack05";

fi

if [ "$1" = "192.168.0.17" ]

then

echo "/rack04";

fi

if [ "$1" = "192.168.0.18" ]

then

echo "/rack05";

fi

if [ "$1" = "192.168.0.19" ]

then

echo "/rack06";

fi

if [ "$1" = "192.168.0.20" ]

then
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echo "/rack07";

fi

if [ "$1" = "192.168.0.21" ]

then

echo "/rack06";

fi

if [ "$1" = "192.168.0.22" ]

then

echo "/rack07";

fi

if [ "$1" = "192.168.0.23" ]

then

echo "/rack06";

fi

if [ "$1" = "192.168.0.24" ]

then

echo "/rack07";

fi

if [ "$1" = "192.168.0.25" ]

then

echo "/rack08";

fi

if [ "$1" = "192.168.0.26" ]

then

echo "/rack09";

fi

if [ "$1" = "192.168.0.27" ]

then

echo "/rack08";

fi

if [ "$1" = "192.168.0.28" ]

then

echo "/rack09";

fi

if [ "$1" = "192.168.0.29" ]

then

echo "/rack08";

fi

if [ "$1" = "192.168.0.30" ]

then

echo "/rack09";

fi

if [ "$1" = "192.168.0.31" ]

then

echo "/rack10";

fi

if [ "$1" = "192.168.0.32" ]
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then

echo "/rack11";

fi

if [ "$1" = "192.168.0.33" ]

then

echo "/rack10";

fi

if [ "$1" = "192.168.0.34" ]

then

echo "/rack11";

fi

if [ "$1" = "192.168.0.35" ]

then

echo "/rack10";

fi

if [ "$1" = "192.168.0.36" ]

then

echo "/rack11";

fi

if [ "$1" = "192.168.0.37" ]

then

echo "/rack12";

fi

if [ "$1" = "192.168.0.38" ]

then

echo "/rack13";

fi

if [ "$1" = "192.168.0.39" ]

then

echo "/rack12";

fi

if [ "$1" = "192.168.0.40" ]

then

echo "/rack13";

fi

if [ "$1" = "192.168.0.41" ]

then

echo "/rack12";

fi

if [ "$1" = "192.168.0.42" ]

then

echo "/rack13";

fi

if [ "$1" = "192.168.0.43" ]

then

echo "/rack14";

fi
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if [ "$1" = "192.168.0.44" ]

then

echo "/rack15";

fi

if [ "$1" = "192.168.0.45" ]

then

echo "/rack14";

fi

if [ "$1" = "192.168.0.46" ]

then

echo "/rack15";

fi

if [ "$1" = "192.168.0.47" ]

then

echo "/rack14";

fi

if [ "$1" = "192.168.0.48" ]

then

echo "/rack15";

fi
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A.2 watchdog-datanode-200.sh

while true

do

i=$1

if [ "$i" -lt 10 ]

then

PING="$(ping -c 1 rck0$i)";

IFS=’,’;

TOKENS=( $PING );

if [ ${TOKENS[1]} != " 1 received" ]

then

echo "WATCHDOG : REBOOTING DATANODE rck0"$i;

BOOT="$(sccBoot -l $i)";

echo "$BOOT";

IFS=’ ’;

TOKENS=( $BOOT );

while [ "${TOKENS[0]}" = "ERROR:" ]

do

sleep 10;

BOOT=$(sccBoot -l $i);

echo "$BOOT";

IFS=’ ’;

TOKENS=( $BOOT );

done

sleep 200;

ssh root@rck0$i "/shared/ageo/rck0$i/start.sh";

ssh -p 1234 root@rck0$i "gmond";

ssh -p 1234 root@rck0$i "/home/ageo/hadoop-0.20.2/bin/start-dfs.sh

--config /home/ageo/hadoop-0.20.2/conf-local"

sleep 600;

else

CHECK_SOCKET="$(ssh root@rck0$i ’netstat -na | grep 50010’)";

if [ "${CHECK_SOCKET}" = "" ]

then

echo "WATCHDOG : REBOOTING DATANODE rck0"$i;

BOOT="$(sccBoot -l $i)";

echo "$BOOT";

IFS=’ ’;

TOKENS=( $BOOT );

while [ "${TOKENS[0]}" = "ERROR:" ]

do

sleep 10;

BOOT=$(sccBoot -l $i);

echo "$BOOT";

IFS=’ ’;

TOKENS=( $BOOT );

done
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sleep 200;

ssh root@rck0$i "/shared/ageo/rck0$i/start.sh";

ssh -p 1234 root@rck0$i "gmond";

ssh -p 1234 root@rck0$i "/home/ageo/hadoop-0.20.2/bin/start-dfs.sh

--config /home/ageo/hadoop-0.20.2/conf-local"

sleep 600;

fi

fi

else

PING="$(ping -c 1 rck$i)";

IFS=’,’;

TOKENS=( $PING );

if [ ${TOKENS[1]} != " 1 received" ]

then

echo "WATCHDOG : REBOOTING DATANODE rck"$i;

BOOT="$(sccBoot -l $i)";

echo "$BOOT";

IFS=’ ’;

TOKENS=( $BOOT );

while [ "${TOKENS[0]}" = "ERROR:" ]

do

sleep 10;

BOOT=$(sccBoot -l $i);

echo "$BOOT";

IFS=’ ’;

TOKENS=( $BOOT );

done

sleep 200;

ssh root@rck$i "/shared/ageo/rck$i/start.sh";

ssh -p 1234 root@rck$i "gmond";

ssh -p 1234 root@rck$i "/home/ageo/hadoop-0.20.2/bin/start-dfs.sh

--config /home/ageo/hadoop-0.20.2/conf-local"

sleep 600;

else

CHECK_SOCKET="$(ssh root@rck$i ’netstat -na | grep 50010’)";

if [ "${CHECK_SOCKET}" = "" ]

then

echo "WATCHDOG : REBOOTING DATANODE rck"$i;

BOOT="$(sccBoot -l $i)";

echo "$BOOT";

IFS=’ ’;

TOKENS=( $BOOT );

while [ "${TOKENS[0]}" = "ERROR:" ]

do

sleep 10;

BOOT=$(sccBoot -l $i);

echo "$BOOT";
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IFS=’ ’;

TOKENS=( $BOOT );

done

sleep 200;

ssh root@rck$i "/shared/ageo/rck0$i/start.sh";

ssh -p 1234 root@rck$i "gmond";

ssh -p 1234 root@rck$i "/home/ageo/hadoop-0.20.2/bin/start-dfs.sh

--config /home/ageo/hadoop-0.20.2/conf-local"

sleep 600;

fi

fi

fi

sleep 30

done
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A.3 watchdog-datanode-533.sh

while true

do

i=$1

if [ "$i" -lt 10 ]

then

PING="$(ping -c 1 rck0$i)";

IFS=’,’;

TOKENS=( $PING );

if [ ${TOKENS[1]} != " 1 received" ]

then

echo "WATCHDOG : REBOOTING DATANODE rck0"$i;

BOOT="$(sccBoot -l $i)";

echo "$BOOT";

IFS=’ ’;

TOKENS=( $BOOT );

while [ "${TOKENS[0]}" = "ERROR:" ]

do

sleep 10;

BOOT=$(sccBoot -l $i);

echo "$BOOT";

IFS=’ ’;

TOKENS=( $BOOT );

done

sleep 75;

ssh root@rck0$i "/shared/ageo/rck0$i/start.sh";

ssh -p 1234 root@rck0$i "gmond";

ssh -p 1234 root@rck0$i "/home/ageo/hadoop-0.20.2/bin/start-dfs.sh

--config /home/ageo/hadoop-0.20.2/conf-local"

sleep 225;

else

CHECK_SOCKET="$(ssh root@rck0$i ’netstat -na | grep 50010’)";

if [ "${CHECK_SOCKET}" = "" ]

then

echo "WATCHDOG : REBOOTING DATANODE rck0"$i;

BOOT="$(sccBoot -l $i)";

echo "$BOOT";

IFS=’ ’;

TOKENS=( $BOOT );

while [ "${TOKENS[0]}" = "ERROR:" ]

do

sleep 10;

BOOT=$(sccBoot -l $i);

echo "$BOOT";

IFS=’ ’;

TOKENS=( $BOOT );

done
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sleep 75;

ssh root@rck0$i "/shared/ageo/rck0$i/start.sh";

ssh -p 1234 root@rck0$i "gmond";

ssh -p 1234 root@rck0$i "/home/ageo/hadoop-0.20.2/bin/start-dfs.sh

--config /home/ageo/hadoop-0.20.2/conf-local"

sleep 225;

fi

fi

else

PING="$(ping -c 1 rck$i)";

IFS=’,’;

TOKENS=( $PING );

if [ ${TOKENS[1]} != " 1 received" ]

then

echo "WATCHDOG : REBOOTING DATANODE rck"$i;

BOOT="$(sccBoot -l $i)";

echo "$BOOT";

IFS=’ ’;

TOKENS=( $BOOT );

while [ "${TOKENS[0]}" = "ERROR:" ]

do

sleep 10;

BOOT=$(sccBoot -l $i);

echo "$BOOT";

IFS=’ ’;

TOKENS=( $BOOT );

done

sleep 75;

ssh root@rck$i "/shared/ageo/rck$i/start.sh";

ssh -p 1234 root@rck$i "gmond";

ssh -p 1234 root@rck$i "/home/ageo/hadoop-0.20.2/bin/start-dfs.sh

--config /home/ageo/hadoop-0.20.2/conf-local"

sleep 225;

else

CHECK_SOCKET="$(ssh root@rck$i ’netstat -na | grep 50010’)";

if [ "${CHECK_SOCKET}" = "" ]

then

echo "WATCHDOG : REBOOTING DATANODE rck"$i;

BOOT="$(sccBoot -l $i)";

echo "$BOOT";

IFS=’ ’;

TOKENS=( $BOOT );

while [ "${TOKENS[0]}" = "ERROR:" ]

do

sleep 10;

BOOT=$(sccBoot -l $i);

echo "$BOOT";
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IFS=’ ’;

TOKENS=( $BOOT );

done

sleep 75;

ssh root@rck$i "/shared/ageo/rck0$i/start.sh";

ssh -p 1234 root@rck$i "gmond";

ssh -p 1234 root@rck$i "/home/ageo/hadoop-0.20.2/bin/start-dfs.sh

--config /home/ageo/hadoop-0.20.2/conf-local"

sleep 225;

fi

fi

fi

sleep 30

done
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A.4 watchdog-datanode-800.sh

while true

do

i=$1

if [ "$i" -lt 10 ]

then

PING="$(ping -c 1 rck0$i)";

IFS=’,’;

TOKENS=( $PING );

if [ ${TOKENS[1]} != " 1 received" ]

then

echo "WATCHDOG : REBOOTING DATANODE rck0"$i;

BOOT="$(sccBoot -l $i)";

echo "$BOOT";

IFS=’ ’;

TOKENS=( $BOOT );

while [ "${TOKENS[0]}" = "ERROR:" ]

do

sleep 10;

BOOT=$(sccBoot -l $i);

echo "$BOOT";

IFS=’ ’;

TOKENS=( $BOOT );

done

sleep 50;

ssh root@rck0$i "/shared/ageo/rck0$i/start.sh";

ssh -p 1234 root@rck0$i "gmond";

ssh -p 1234 root@rck0$i "/home/ageo/hadoop-0.20.2/bin/start-dfs.sh

--config /home/ageo/hadoop-0.20.2/conf-local"

sleep 150;

else

CHECK_SOCKET="$(ssh root@rck0$i ’netstat -na | grep 50010’)";

if [ "${CHECK_SOCKET}" = "" ]

then

echo "WATCHDOG : REBOOTING DATANODE rck0"$i;

BOOT="$(sccBoot -l $i)";

echo "$BOOT";

IFS=’ ’;

TOKENS=( $BOOT );

while [ "${TOKENS[0]}" = "ERROR:" ]

do

sleep 10;

BOOT=$(sccBoot -l $i);

echo "$BOOT";

IFS=’ ’;

TOKENS=( $BOOT );

done
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sleep 50;

ssh root@rck0$i "/shared/ageo/rck0$i/start.sh";

ssh -p 1234 root@rck0$i "gmond";

ssh -p 1234 root@rck0$i "/home/ageo/hadoop-0.20.2/bin/start-dfs.sh

--config /home/ageo/hadoop-0.20.2/conf-local"

sleep 150;

fi

fi

else

PING="$(ping -c 1 rck$i)";

IFS=’,’;

TOKENS=( $PING );

if [ ${TOKENS[1]} != " 1 received" ]

then

echo "WATCHDOG : REBOOTING DATANODE rck"$i;

BOOT="$(sccBoot -l $i)";

echo "$BOOT";

IFS=’ ’;

TOKENS=( $BOOT );

while [ "${TOKENS[0]}" = "ERROR:" ]

do

sleep 10;

BOOT=$(sccBoot -l $i);

echo "$BOOT";

IFS=’ ’;

TOKENS=( $BOOT );

done

sleep 50;

ssh root@rck$i "/shared/ageo/rck$i/start.sh";

ssh -p 1234 root@rck$i "gmond";

ssh -p 1234 root@rck$i "/home/ageo/hadoop-0.20.2/bin/start-dfs.sh

--config /home/ageo/hadoop-0.20.2/conf-local"

sleep 150;

else

CHECK_SOCKET="$(ssh root@rck$i ’netstat -na | grep 50010’)";

if [ "${CHECK_SOCKET}" = "" ]

then

echo "WATCHDOG : REBOOTING DATANODE rck"$i;

BOOT="$(sccBoot -l $i)";

echo "$BOOT";

IFS=’ ’;

TOKENS=( $BOOT );

while [ "${TOKENS[0]}" = "ERROR:" ]

do

sleep 10;

BOOT=$(sccBoot -l $i);

echo "$BOOT";
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IFS=’ ’;

TOKENS=( $BOOT );

done

sleep 50;

ssh root@rck$i "/shared/ageo/rck0$i/start.sh";

ssh -p 1234 root@rck$i "gmond";

ssh -p 1234 root@rck$i "/home/ageo/hadoop-0.20.2/bin/start-dfs.sh

--config /home/ageo/hadoop-0.20.2/conf-local"

sleep 150;

fi

fi

fi

sleep 30

done
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A.5 watchdog-tasktracker-200.sh

while true

do

i=$1

if [ "$i" -lt 10 ]

then

PING="$(ping -c 1 rck0$i)";

IFS=’,’;

TOKENS=( $PING );

if [ ${TOKENS[1]} != " 1 received" ]

then

echo "WATCHDOG : REBOOTING TASKTRACKER rck0"$i;

BOOT="$(sccBoot -l $i)";

echo "$BOOT";

IFS=’ ’;

TOKENS=( $BOOT );

while [ "${TOKENS[0]}" = "ERROR:" ]

do

sleep 10;

BOOT=$(sccBoot -l $i);

echo "$BOOT";

IFS=’ ’;

TOKENS=( $BOOT );

done

sleep 200;

ssh root@rck0$i "/shared/ageo/rck0$i/start.sh";

ssh -p 1234 root@rck0$i "gmond";

ssh -p 1234 root@rck0$i "/home/ageo/hadoop-0.20.2/bin/start-mapred.sh

--config /home/ageo/hadoop-0.20.2/conf-local"

fi

else

PING="$(ping -c 1 rck$i)"

IFS=’,’

TOKENS=( $PING )

if [ ${TOKENS[1]} != " 1 received" ]

then

echo "WATCHDOG : REBOOTING TASKTRACKER rck"$i;

BOOT="$(sccBoot -l $i)";

echo "$BOOT";

IFS=’ ’;

TOKENS=( $BOOT );

while [ "${TOKENS[0]}" = "ERROR:" ]

do

sleep 10;

BOOT=$(sccBoot -l $i);

echo "$BOOT";

IFS=’ ’;
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TOKENS=( $BOOT );

done

sleep 200;

ssh root@rck$i "/shared/ageo/rck$i/start.sh";

ssh -p 1234 root@rck$i "gmond";

ssh -p 1234 root@rck$i "/home/ageo/hadoop-0.20.2/bin/start-mapred.sh

--config /home/ageo/hadoop-0.20.2/conf-local"

fi

fi

sleep 30

done
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A.6 watchdog-tasktracker-533.sh

while true

do

i=$1

if [ "$i" -lt 10 ]

then

PING="$(ping -c 1 rck0$i)";

IFS=’,’;

TOKENS=( $PING );

if [ ${TOKENS[1]} != " 1 received" ]

then

echo "WATCHDOG : REBOOTING TASKTRACKER rck0"$i;

BOOT="$(sccBoot -l $i)";

echo "$BOOT";

IFS=’ ’;

TOKENS=( $BOOT );

while [ "${TOKENS[0]}" = "ERROR:" ]

do

sleep 10;

BOOT=$(sccBoot -l $i);

echo "$BOOT";

IFS=’ ’;

TOKENS=( $BOOT );

done

sleep 75;

ssh root@rck0$i "/shared/ageo/rck0$i/start.sh";

ssh -p 1234 root@rck0$i "gmond";

ssh -p 1234 root@rck0$i "/home/ageo/hadoop-0.20.2/bin/start-mapred.sh

--config /home/ageo/hadoop-0.20.2/conf-local"

fi

else

PING="$(ping -c 1 rck$i)"

IFS=’,’

TOKENS=( $PING )

if [ ${TOKENS[1]} != " 1 received" ]

then

echo "WATCHDOG : REBOOTING TASKTRACKER rck"$i;

BOOT="$(sccBoot -l $i)";

echo "$BOOT";

IFS=’ ’;

TOKENS=( $BOOT );

while [ "${TOKENS[0]}" = "ERROR:" ]

do

sleep 10;

BOOT=$(sccBoot -l $i);

echo "$BOOT";

IFS=’ ’;
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TOKENS=( $BOOT );

done

sleep 75;

ssh root@rck$i "/shared/ageo/rck$i/start.sh";

ssh -p 1234 root@rck$i "gmond";

ssh -p 1234 root@rck$i "/home/ageo/hadoop-0.20.2/bin/start-mapred.sh

--config /home/ageo/hadoop-0.20.2/conf-local"

fi

fi

sleep 30

done
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A.7 watchdog-tasktracker-800.sh

while true

do

i=$1

if [ "$i" -lt 10 ]

then

PING="$(ping -c 1 rck0$i)";

IFS=’,’;

TOKENS=( $PING );

if [ ${TOKENS[1]} != " 1 received" ]

then

echo "WATCHDOG : REBOOTING TASKTRACKER rck0"$i;

BOOT="$(sccBoot -l $i)";

echo "$BOOT";

IFS=’ ’;

TOKENS=( $BOOT );

while [ "${TOKENS[0]}" = "ERROR:" ]

do

sleep 10;

BOOT=$(sccBoot -l $i);

echo "$BOOT";

IFS=’ ’;

TOKENS=( $BOOT );

done

sleep 50;

ssh root@rck0$i "/shared/ageo/rck0$i/start.sh";

ssh -p 1234 root@rck0$i "gmond";

ssh -p 1234 root@rck0$i "/home/ageo/hadoop-0.20.2/bin/start-mapred.sh

--config /home/ageo/hadoop-0.20.2/conf-local"

fi

else

PING="$(ping -c 1 rck$i)"

IFS=’,’

TOKENS=( $PING )

if [ ${TOKENS[1]} != " 1 received" ]

then

echo "WATCHDOG : REBOOTING TASKTRACKER rck"$i;

BOOT="$(sccBoot -l $i)";

echo "$BOOT";

IFS=’ ’;

TOKENS=( $BOOT );

while [ "${TOKENS[0]}" = "ERROR:" ]

do

sleep 10;

BOOT=$(sccBoot -l $i);

echo "$BOOT";

IFS=’ ’;
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TOKENS=( $BOOT );

done

sleep 50;

ssh root@rck$i "/shared/ageo/rck$i/start.sh";

ssh -p 1234 root@rck$i "gmond";

ssh -p 1234 root@rck$i "/home/ageo/hadoop-0.20.2/bin/start-mapred.sh

--config /home/ageo/hadoop-0.20.2/conf-local"

fi

fi

sleep 30

done
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A.8 gmond.conf for the MCPC

/* This configuration is as close to 2.5.x default behavior as possible

The values closely match ./gmond/metric.h definitions in 2.5.x */

globals {

daemonize = yes

setuid = yes

user = ganglia

debug_level = 0

max_udp_msg_len = 1472

mute = yes

deaf = no

host_dmax = 0 /*secs */

cleanup_threshold = 300 /*secs */

gexec = no

send_metadata_interval = 0

}

/* If a cluster attribute is specified, then all gmond hosts are wrapped inside

* of a <CLUSTER> tag. If you do not specify a cluster tag, then all <HOSTS> will

* NOT be wrapped inside of a <CLUSTER> tag. */

cluster {

name = "MARC"

owner = "unspecified"

latlong = "unspecified"

url = "unspecified"

}

/* The host section describes attributes of the host, like the location */

host {

location = "unspecified"

}

/* You can specify as many udp_recv_channels as you like as well. */

udp_recv_channel {

port = 8649

}

/* You can specify as many tcp_accept_channels as you like to share

an xml description of the state of the cluster */

tcp_accept_channel {

port = 8649

}

/* Each metrics module that is referenced by gmond must be specified and

loaded. If the module has been statically linked with gmond, it does not

require a load path. However all dynamically loadable modules must include

a load path. */
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modules {

module {

name = "core_metrics"

}

module {

name = "cpu_module"

path = "/usr/lib/ganglia/modcpu.so"

}

module {

name = "disk_module"

path = "/usr/lib/ganglia/moddisk.so"

}

module {

name = "load_module"

path = "/usr/lib/ganglia/modload.so"

}

module {

name = "mem_module"

path = "/usr/lib/ganglia/modmem.so"

}

module {

name = "net_module"

path = "/usr/lib/ganglia/modnet.so"

}

module {

name = "proc_module"

path = "/usr/lib/ganglia/modproc.so"

}

module {

name = "sys_module"

path = "/usr/lib/ganglia/modsys.so"

}

}

include (’/etc/ganglia/conf.d/*.conf’)
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A.9 gmond.conf for an Intel SCC Core

/* This configuration is as close to 2.5.x default behavior as possible

The values closely match ./gmond/metric.h definitions in 2.5.x */

globals {

daemonize = yes

setuid = yes

user = nobody

debug_level = 0

max_udp_msg_len = 1472

mute = no

deaf = yes

allow_extra_data = yes

host_dmax = 0 /*secs */

cleanup_threshold = 300 /*secs */

gexec = no

send_metadata_interval = 0

}

/*

* The cluster attributes specified will be used as part of the <CLUSTER>

* tag that will wrap all hosts collected by this instance.

*/

cluster {

name = "MARC"

owner = "unspecified"

latlong = "unspecified"

url = "unspecified"

}

/* The host section describes attributes of the host, like the location */

host {

location = "unspecified"

}

/* Feel free to specify as many udp_send_channels as you like. Gmond

used to only support having a single channel */

udp_send_channel {

host = 192.168.3.254

port = 8649

ttl = 1

}

/* Each metrics module that is referenced by gmond must be specified and

loaded. If the module has been statically linked with gmond, it does

not require a load path. However all dynamically loadable modules must

include a load path. */

modules {

module {
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name = "core_metrics"

}

module {

name = "cpu_module"

path = "modcpu.so"

}

module {

name = "disk_module"

path = "moddisk.so"

}

module {

name = "load_module"

path = "modload.so"

}

module {

name = "mem_module"

path = "modmem.so"

}

module {

name = "net_module"

path = "modnet.so"

}

module {

name = "proc_module"

path = "modproc.so"

}

module {

name = "sys_module"

path = "modsys.so"

}

}

include (’/etc/ganglia/conf.d/*.conf’)

/* CPU status */

collection_group {

collect_every = 1

time_threshold = 1

metric {

name = "cpu_user"

value_threshold = 0.1

title = "CPU User"

}

metric {

name = "cpu_system"

value_threshold = 0.1

title = "CPU System"
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}

metric {

name = "cpu_wio"

value_threshold = 0.1

title = "CPU WIO"

}

metric {

name = "cpu_idle"

value_threshold = 0.1

title = "CPU Idle"

}

}

/* network traffic */

collection_group {

collect_every = 1

time_threshold = 1

metric {

name = "bytes_in"

value_threshold = 0.01

title = "Bytes Received"

}

metric {

name = "bytes_out"

value_threshold = 0.01

title = "Bytes Sent"

}

}
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A.10 store-power.py

import time

import datetime

import sys

import signal

def signal_handler(signal,frame):

sys.exit(0)

#register signal handler

signal.signal(signal.SIGINT,signal_handler)

f1 = open(sys.argv[1],’w+’);

start_time = time.time()

t1 = time.time()

t2 = time.time()

while (t2 - start_time < sys.argv[2]):

t1 = time.time()

f2 = os.popen(’sccBmc -c status | grep 3V3SCC’)

t2 = time.time()

status = f2.read().split()

voltage = status[1]

current = status[3]

time_interval = t2 - t1

power = float(status[1]) * float(status[3])

energy_consumption = power * time_interval

f1.write(str(datetime.datetime.now()) + ’\t’ + voltage + ’\t’

+ current + ’\t’ + str(power) + ’\t’ + str(energy_consumption) +’\n’);

f1.close()
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A.11 store-metrics.py

import xml.etree.ElementTree

import mysql.connector

import datetime

import os

import time

import signal

import sys

def signal_handler(signal,frame):

#close db connection

cursor.close()

connection.close()

sys.exit(0)

#open db connection

connection = mysql.connector.connect(user=’ageo’,password=’ageo’,

host=’127.0.0.1’,database=’SCC_CLOUDSUITE_METRICS’)

cursor = connection.cursor()

#register signal handler

signal.signal(signal.SIGINT,signal_handler)

f = os.popen(’sccTherm -initTherm 9556’)

f.close()

while (True):

now = datetime.datetime.now()

power_file = ’power_metrics/’ + sys.argv[1]

+ ’/power-’ + str(time.time()) + ’.txt’

f = os.popen(’python store-power.py ’ + power_file + ’ ’ + sys.argv[4])

f.close()

f = open(power_file,’r’)

energy_consumption = 0

for line in f:

energy_consumption += float(line.split(’\t’,6)[5])

f.close()

f = os.popen(’sccBmc -c status ’)

flag = ’other’
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for line in f:

if (flag == ’temperature’):

temperature = line.split()[1]

flag = ’other’

elif (flag == ’fan_speed’):

fan_speed = line.split()[1]

flag = ’other’

elif (line == ’Temperatures:\n’):

flag = ’temperature’

elif (line == ’Fan speed:\n’):

flag = ’fan_speed’

f.close()

insert_metrics_query = "INSERT INTO " + sys.argv[3] +

" (TIMESTAMP,FAN_SPEED,TEMPERATURE,ENERGY_CONSUMPTION,POWER_FILE)

VALUES (%s,%s,%s,%s,%s)"

insert_metrics_data = (now,fan_speed,temperature,

energy_consumption,power_file.split(’/’,3)[2])

cursor.execute(insert_metrics_query,insert_metrics_data)

connection.commit()

f = os.popen("telnet localhost 8649 > telnet_output" )

f.close()

f = os.popen("sed -n 5,7885p telnet_output > ganglia.xml")

f.close()

tree = xml.etree.ElementTree.parse("ganglia.xml")

root = tree.getroot()

hosts = root.findall("./CLUSTER/HOST")

for host in hosts:

hostname_of_core = host.get(’NAME’).split(’.’)[0]

metrics = host.findall(’./METRIC’)

for metric in metrics:

metric_name = metric.get(’NAME’)

metric_value = metric.get(’VAL’)

if metric_name == ’cpu_user’:

cpu_user = metric_value

elif metric_name == ’cpu_system’:

cpu_system = metric_value

elif metric_name == ’cpu_wio’:

cpu_wio = metric_value

elif metric_name == ’cpu_idle’:

cpu_idle = metric_value

elif metric_name == ’bytes_in’:

bytes_in = metric_value
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elif metric_name == ’bytes_out’:

bytes_out = metric_value

#store metrics in DB

insert_metrics_query = ("INSERT INTO " + sys.argv[2] +

"(TIMESTAMP,CORE, CPU_USER,CPU_SYSTEM,

CPU_WIO,CPU_IDLE,BYTES_IN,BYTES_OUT)

VALUES (%s,%s,%s,%s,%s,%s,%s,%s)")

insert_metrics_data = (now,hostname_of_core,cpu_user,

cpu_system,cpu_wio,cpu_idle,bytes_in,bytes_out)

cursor.execute(insert_metrics_query,insert_metrics_data)

connection.commit()
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A.12 prepare-metrics-cpu-network.py

import mysql.connector

import sys

#open db connection

connection = mysql.connector.connect(user=’ageo’,password=’ageo’,

host=’127.0.0.1’,database=’SCC_CLOUDSUITE_METRICS’)

cursor = connection.cursor()

f = open(’plot_files/cpu_network/’ + sys.argv[2],’w+’)

sql = "select TIMESTAMP,CPU_USER,CPU_SYSTEM,

CPU_WIO,CPU_IDLE,BYTES_IN,BYTES_OUT

from " + sys.argv[1] + " where CORE=’" + sys.argv[3] + "’"

try:

#execute sql query

cursor.execute(sql)

#fetch all rows in a list of lists

i=0

results = cursor.fetchall()

for row in results:

if (i==0):

start_timestamp = row[0]

i += 1

timestamp = row[0] - start_timestamp

cpu_user = row[1]

cpu_system = row[2]

cpu_wio = row[3]

cpu_idle = row[4]

bytes_in = row[5]

bytes_out = row[6]

f.write(str(timestamp) + ’\t’ + cpu_user + ’\t’ +

cpu_system + ’\t’ + cpu_wio + ’\t’ + cpu_idle +

’\t’ + bytes_in + ’\t’ + bytes_out+ ’\n’)

except:

print "sql error"

#close file and db connection

f.close()

cursor.close()

connection.close()
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A.13 prepare-metrics-thermal.py

import mysql.connector

import sys

#open db connection

connection = mysql.connector.connect(user=’ageo’,password=’ageo’,

host=’127.0.0.1’,database=’SCC_CLOUDSUITE_METRICS’)

cursor = connection.cursor()

f = open(’plot_files/thermal/’ + sys.argv[2],’w+’)

sql = "select TIMESTAMP,TEMPERATURE,FAN_SPEED from " + sys.argv[1]

try:

#execute sql query

cursor.execute(sql)

#fetch all rows in a list of lists

i=0

results = cursor.fetchall()

for row in results:

if (i==0):

start_timestamp = row[0]

i += 1

timestamp = row[0] - start_timestamp

temperature = row[1]

fan_speed = row[2]

f.write(str(timestamp) + ’\t’ + temperature + ’\t’ + fan_speed + ’\n’)

except:

print "sql error"

#close file and db connection

f.close()

cursor.close()

connection.close()
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A.14 prepare-metrics-power.py

import mysql.connector

import sys

import os

import datetime

os.system(’rm tmp/tmp.dat’)

os.system(’cat power_metrics/’ + sys.argv[1] + ’/* >> tmp/tmp.dat’)

f1 = open(’tmp/tmp.dat’,’r+’)

f2 = open(’plot_files/power/’ + sys.argv[2],’w+’)

i = 1

for line in f1:

if (i==1):

words = line.split()

start_timestamp = datetime.datetime.strptime(words[0]+

’ ’+words[1],"%Y-%m-%d %H:%M:%S.%f")

if (i % sys.argv[3]== 0):

words = line.split()

timestamp = datetime.datetime.strptime(words[0]+

’ ’+words[1],"%Y-%m-%d %H:%M:%S.%f") - start_timestamp

voltage = words[2]

current = words[3]

power = words[5]

f2.write(str(timestamp) + ’\t’ + voltage + ’\t’ +

current + ’\t’ + power + ’\n’)

i+=1

#close file connections

f1.close()

f2.close()
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A.15 plot-cpu.gp

set terminal png size 2880, 480

set output "image.png"

set key outside

set key right top

set xdata time

set timefmt x "%H:%M:%S"

set xtics xtics

set ytics 10

set xr ["0:00:00":time]

set yr [0:100]

set xlabel "Time"

set ylabel "CPU Utilization"

plot "plot_files/cpu_network/".datafile using 1:(100)

title ’CPU User’ with filledcurves x1 lt rgb "#FF0000", \

"plot_files/cpu_network/".datafile using 1:($3+$4+$5)

title ’CPU System’ with filledcurves x1 lt rgb "#FFD700", \

"plot_files/cpu_network/".datafile using 1:($4+$5)

title ’CPU WIO’ with filledcurves x1 lt rgb "#0000FF", \

"plot_files/cpu_network/".datafile using 1:($5)

title ’CPU Idle’ with filledcurves x1 lt rgb "#008000"
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A.16 plot-network.gp

set terminal png size 2880, 480

set output "image.png"

set key outside

set key right top

set xdata time

set timefmt x "%H:%M:%S"

set xtics xtics

set ytics auto

set xr ["0:00:00":time]

set xlabel "Time"

set ylabel "Network Traffic in KB/s"

plot "plot_files/cpu_network/".datafile using 1:($6/1000)

title ’KB/s In’ with lines linewidth 3 lt rgb "#B8860B", \

"plot_files/cpu_network/".datafile using 1:($7/1000)

title ’KB/s Out’ with lines linewidth 3 lt rgb "#0000FF"
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A.17 plot-power.gp

set terminal png size 2880, 480

set output "image.png"

set key outside

set key right top

set xdata time

set timefmt x "%H:%M:%S"

set xtics xtics

set ytics auto

set xr ["0:00:00":time]

set xlabel "Time"

set ylabel "Power Consumption in W"

plot "plot_files/power/".datafile using 1:4

title ’Power in W’ with lines linewidth 3 lt rgb "#FF0000"
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A.18 plot-temperature.gp

set terminal png size 2880, 480

set output "image.png"

set key outside

set key right top

set xdata time

set timefmt x "%H:%M:%S"

set xtics xtics

set ytics 1

set xr ["0:00:00":time]

set xlabel "Time"

set ylabel "Temperature in C"

plot "plot_files/thermal/".datafile using 1:2

title ’Temperature in C’ with lines linewidth 3 lt rgb "#FF0000"
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A.19 plot-fan-speed.gp

set terminal png size 2800, 480

set output "image.png"

set key outside

set key right top

set xdata time

set timefmt x "%H:%M:%S"

set xtics xtics

set ytics auto

set xr ["0:00:00":time]

set xlabel "Time"

set ylabel "Fan Speed in RPM"

plot "plot_files/thermal/".datafile using 1:3

title ’Fan Speed in RPM’ with lines linewidth 3 lt rgb "#0000FF"
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A.20 prepare-wordcount.sh

#!/bin/bash

source ../../configuration/config.include

# generate parameters

unit=‘echo $1 | sed ’s/[0-9.]//g’ | tr [a-z] [A-Z]‘

size=‘echo $1 | sed ’s/[A-Za-z]//g’‘

bytes_per_map=0

maps_per_host=0

unit_size=0

#hosts=‘/liuwb/hadoop-1.0.2/bin/hadoop dfsadmin

-report | grep -Po "Datanodes available: \d+" | grep -Po "\d+"‘

hosts=$2

if [ "$unit" = "M" ]; then

unit_size=20

elif [ "$unit" = "G" ]; then

unit_size=30

elif [ "$unit" = "T" ]; then

unit_size=40

elif test -z $1; then

echo "Workload wasnt specified, please specify one(for example:1m/1g/1t)"

exit

fi

size_per_host=‘echo "scale=2; $size / $hosts" | bc‘

index=0

while [ $(echo "$size_per_host < 0.5 " | bc) -eq 1

-o $(echo "$size_per_host > 1.5" | bc) -eq 1 ]

do

if [ $(echo "$size_per_host < 0.5 " | bc) -eq 1 ]

then

size_per_host=‘echo "scale=2; $size_per_host * 2" | bc‘

let "index-=1"

else

size_per_host=‘echo "scale=2; $size_per_host / 2" | bc‘

let "index+=1"

fi

done

let "unit_size+=$index"

if [ $unit_size -gt 33 ]

then

let "maps_per_host=8*2**($unit_size-33)"

let "bytes_per_host=2**$unit_size";
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bytes_per_map=‘echo

"($bytes_per_host*$size_per_host)/$maps_per_host"| bc‘

elif [ $unit_size -gt 29 ]

then

maps_per_host=8

let "bytes_per_host=2**$unit_size";

bytes_per_map=‘echo

"($bytes_per_host*$size_per_host)/$maps_per_host"| bc‘

else

maps_per_host=1

let "bytes_per_host=2**$unit_size";

bytes_per_map=‘echo "($bytes_per_host*$size_per_host)"| bc‘

fi

bytes_per_map=${bytes_per_map%.*}

echo BYTES_PER_MAP $bytes_per_map

echo MAPS_PER_HOST $maps_per_host

echo HOSTS $hosts

# fix the config file

lineno=‘grep -n "bytes_per_map" config-wordcount.xml‘

lineno=${lineno%:*}

let "lineno+=1"

sed -i "$lineno s/<value>[0-9]*<\/value>/<value>

$bytes_per_map<\/value>/" config-wordcount.xml

lineno=‘grep -n "maps_per_host" config-wordcount.xml‘

lineno=${lineno%:*}

let "lineno+=1"

sed -i "$lineno s/<value>[0-9]*<\/value>/<value>

$maps_per_host<\/value>/" config-wordcount.xml

echo "generating rtw-wordcount-$size$unit data"

#${HADOOP_HOME}/bin/hadoop fs -rmr /cloudrank-data/rtw-wordcount-$size$unit

${HADOOP_HOME}/bin/hadoop jar ../../jars/${hadoop_examples_jar}

randomtextwriter -conf config-wordcount.xml /cloudrank-data/rtw-wordcount-$size$unit

sed -i "/$size$unit/d" ./file.include

sed -i "/$size$unit/d" ../../configuration/file_all.include

echo "wordcount_file=rtw-wordcount-$size$unit-$1"

>>./file.include

echo "wordcount_file=rtw-wordcount-$size$unit-$1"

>>../../configuration/file_all.include
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A.21 run-wordcount.sh

#!/bin/bash

source ../../configuration/config.include

dataset=‘echo $1 | tr [a-z] [A-Z]‘

${HADOOP_HOME}/bin/hadoop fs -rmr /cloudrank-out/rtw-wordcount-$dataset-out

${HADOOP_HOME}/bin/hadoop jar ${HADOOP_HOME}/hadoop-0.20.2-examples.jar

wordcount /cloudrank-data/rtw-wordcount-$dataset

/cloudrank-out/rtw-wordcount-$dataset-out
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A.22 prepare-kmeans.sh

#!/bin/bash

source ../../configuration/config.include

source file.include

if [ $1 = low ]

then

kmeans_file="sougou-low-tfidf-vec"

ratio="low"

elif [ $1 = mid ]

then

kmeans_file="sougou-mid-tfidf-vec"

ratio="mid"

elif [ $1 = high ]

then

kmeans_file="sougou-high-tfidf-vec"

ratio="high"

elif test -z $1

then

echo "Workload wasnt specified, run the low workload as default."

kmeans_file="sougou-low-tfidf-vec"

ratio="low"

else

echo "Workload specified doesnot exist, please doublecheck."

exit

fi

#${HADOOP_HOME}/bin/hadoop fs -rmr "${hdfsdata_dir}/kmeans*"

${HADOOP_HOME}/bin/hadoop fs -copyFromLocal

"${basedata_dir}/${kmeans_file}" ${hdfsdata_dir}/

sed -i "/$ratio/d" ./file.include

#sed -i "/$ratio/d" ../../configuration/file.include

echo "kmeans_file=$kmeans_file-$ratio" >> ./file.include

echo "kmeans_file=$kmeans_file-$ratio" >> ../../configuration/file_all.include
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A.23 run-kmeans.sh

#!/bin/bash

source ../../configuration/config.include

source file.include

kmeans_file=

if [ $1 = low ]

then

kmeans_file="sougou-low-tfidf-vec"

elif [ $1 = mid ]

then

kmeans_file="sougou-mid-tfidf-vec"

elif [ $1 = high ]

then

kmeans_file="sougou-high-tfidf-vec"

elif test -z $1

then

echo "Workload wasnt specified, run the low workload as default."

kmeans_file="sougou-low-tfidf-vec"

else

echo "Workload specified doesnot exist, please doublecheck."

exit

fi

${HADOOP_HOME}/bin/hadoop fs -rmr /cloudrank-out/${kmeans_file}

${MAHOUT_HOME}/bin/mahout kmeans

-i /cloudrank-data/${kmeans_file}

-o /cloudrank-out/${kmeans_file}

-k 5

-c /cloudrank-out/${kmeans_file}

-x 5
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A.24 prepare-fpg.sh

#!/bin/bash

source ../../configuration/config.include

source file.include

fpg_file=

if [ $1 = low ]

then

fpg_file="fpg-accidents.dat"

ratio="low"

elif [ $1 = mid ]

then

fpg_file="fpg-retail.dat"

ratio="mid"

elif [ $1 = high ]

then

fpg_file="fpg-webdocs.dat"

ratio="high"

elif test -z $1

then

echo "Workload wasnt specified, run the low workload as default."

fpg_file="fpg-accidents.dat"

ratio="low"

else

echo "Workload specified doesnot exist, please doublecheck."

exit

fi

#${HADOOP_HOME}/bin/hadoop fs -rmr "${hdfsdata_dir}/fpg*"

${HADOOP_HOME}/bin/hadoop fs -put "${basedata_dir}/${fpg_file}" ${hdfsdata_dir}/

sed -i "/$ratio/d" ./file.include

sed -i "/$ratio/d" ../../configuration/file_all.include

echo "fpg_file=${fpg_file}-$ratio" >> ./file.include

echo "fpg_file=${fpg_file}-$ratio" >> ../../configuration/file_all.include
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A.25 run-fpg.sh

#!/bin/bash

source ../../configuration/config.include

source file.include

fpg_file=

if [ $1 = "low" ]

then

fpg_file="fpg-accidents.dat"

elif [ $1 = "mid" ]

then

fpg_file="fpg-retail.dat"

elif [ $1 = "high" ]

then

fpg_file="fpg-webdocs.dat"

elif test -z $1

then

echo "Workload wasnt specified, run the low workload as default."

fpg_file="fpg-accidents.dat"

else

echo "Workload specified doesnot exist, please doublecheck."

exit

fi

${HADOOP_HOME}/bin/hadoop fs -rmr /cloudrank-out/${fpg_file}-out

${MAHOUT_HOME}/bin/mahout fpg

-i /cloudrank-data/${fpg_file}

-o /cloudrank-out/${fpg_file}-out

-s 4

-k 100

-method mapreduce

216



Appendix B

Plots
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B.1 Wordcount

B.1.1 Input Size 256 MB, 48-Node Cluster Topology,
DataNodes at 800 MHz -TaskTrackers at 800 MHz
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B.1.2 Input Size 512 MB, 48-Node Cluster Topology,
DataNodes at 800 MHz -TaskTrackers at 800 MHz
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B.1.3 Input Size 1 GB, 48-Node Cluster Topology,
DataNodes at 800 MHz -TaskTrackers at 800 MHz
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B.1.4 Input Size 2 GB, 48-Node Cluster Topology,
DataNodes at 800 MHz -TaskTrackers at 800 MHz
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B.1.5 Input Size 256 MB, 16-Node Cluster Topology,
DataNodes at 800 MHz -TaskTrackers at 800 MHz
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B.1.6 Input Size 256 MB, 24-Node Cluster Topology,
DataNodes at 800 MHz -TaskTrackers at 800 MHz
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B.1.7 Input Size 256 MB, 32-Node Cluster Topology,
DataNodes at 800 MHz -TaskTrackers at 800 MHz
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B.1.8 Input Size 256 MB, 48-Node Cluster Topology,
DataNodes at 200 MHz -TaskTrackers at 200 MHz
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B.1.9 Input Size 256 MB, 48-Node Cluster Topology,
DataNodes at 200 MHz -TaskTrackers at 533 MHz
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