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ITepiindn oto EAANVIxd
H mopoloo dwdaxtopxr) Slotpydr| apopd To mapaxdte Véuaro:

o Auldpunto omdctuo TNG UTERCUUUETEIOC amd GpOUC aVWTERUS TAENC.

H Yewpla tng unepouypetplog elvon 1 o TOAAL UTOGY OUEVY] ETEXTUOT GTO XANEQWUEVO TEOTU-
TO TWV GTOWYEWWBNOY OOUUTOIOY. AuTh 1 cuuueTpla €yel apxeTég allohoyes VewenTnég xou
potvopevohoyixég wiotnteg. Ev toltowg dev €yel mapatnendel uéypl ofuepa xdmoto ofjua Tng
OTOUG ETUTUYUVTES XOU AUTO GNpalvel OTL av elvor TporypoTixd Wiot cuppeTela TN @oong Yo mpénel
vo etva omaopévn. Tov xuplopyo pdho 6to auiddpunto ondowo tne uncpoupueTplac Tallet To
dLVOLXO TOL BorduwTol Tediou Tou Vo TEOXUAESEL AUTO TO PaVOVEVO BLOTL xodopllel Toleg eivan
ot Yepehaxeg xataotdoelg g Jewplag. To Loduwmtd duvouxd yio Jewpleg pe dpoug uéypl
0dotaon téooepa €yel pehetnidel extevae. Eivor dpng yvwo 16,6t dpol avwtépac TaEng €youv
dueom enidpacn og auTO To duVaULXS. Beélnxe 0Tt uTdEYOUY CLUYXEXPUEVY LOVTERN TWV OTOLWY
oL 6pol BACTAOTC TECGEPX DEV 00NYOLY G aIOPUNTO OTUCLUO TNG UTEQCUUUETEIOG EVE Ao-
Bavovtag um ‘6dm ouyxexpyévoug bpoug avwTépag dldoTaong 1 Vempla £yel Ta TV SUVUTOTNTA
va Bpedel xou o Yepehtoanéc xatactdoelg 6Tou 1) unEpoLUUETElN Elval OTUCUEVT.

o Mrrypoupixés avamapaotdoels Yewpliy OTACHEVNS UTERCUUUETElOC.

2o TAXUOLAL TWY U1 YRUUULXWY VATHEC TUCEWY TNG UTERCUUUETEIG 0TO EAIOCOV UTEROUUUE-
Tewo xahepwuévo TeoTuTo UEAETHONXE 1 duvatoTnTa UTaEENS CUVETOUEC UOVTENOL TOU YET
owototel povo éva medio Higgs. Ou doplmoeic Aoyw tng Un-yeuuuxc LTepoLUpeTelag oTo
ouvaxé tou medlov Higgs Peltidvouy TV cuumepLpopd Tou o GYEoT UE TO avTioTOLO duVo-
o 6T0 EAGOCOV UTERCUUUETEIXG xaicpwuévo tpoturo. Enlone Beédnye 611 tétola yovtéha
Yevvolv amd wéva Toug dia tepapyior otic paleg twv Baptayv gepuiovimy.I'ia v eCoudetépwon
TV A(BAVTIXOY AVOUIALOY UTEEYOLY BIIPOPES BUVITOTNTEG ,Uld €X TV oTtolwy elvar yiar mo-
edderypa 1 umoveoT) UTOEENG UG ETITAEOY UIONG OXOYEVELNS AETTOVimY. e To VewmpnTixd
eninedo yehethRunxay Vewpieg utepBapitnTog émou 1 uepcuUUEeTElo iTay AU HoEUNTI CTIUCUEVT.
Beéinxe, ot oto dpto drepne palac tou PodunTtod cwuatdiou Tou OTdEL TNV UTEPCUUMETELA,
auT6 amocLlELYVETOL X Ol €ELOOOELC X(VNOTC TOU UETATEETOVTAL OE GUVOEGUOUSC TTOU OTUATO-
0OTOUV 1] YRUUUIXT| VITOREC TUOY) TNG UTEROUUUETELOG.

o Yuvenelc Yewpleg avmTépwy TapayOdYwWY GTNY UTERCUUPETEIN xou oTNV LTERBoEUTN T,

Katd v xuplapymn drodn yio v yévynorn tou clunaviog uniple pa teplodog xotd tny omola
auTO emEXTEVOTAY eXVETNE ,YVOO T w¢ “TAntuplouds”. Elvor yvwotd 611 Yewpleg ye avote-
PEC TORUY(YOUS EUVOOUY TNV UTapETn WG TETOLNG TEPLOBOU Blol TOUTO X0l UTERYEL XIVNTEO Vol
euPBantioTovy oty Yewplo tne urepBapitntac. To eviiagpépov dune dev meplopileton LovoV yia
TNV EQaPUOYY| TOUG GTNV xoouohoyio. Ao uévn g 1 UEAETH TWV BUVATOTATWY TOU UTHEYOUV
Vo elodryel xavelc Tétoloug dpoug amotehel TEdXANOT BLOTL cuveTEl Vewpleg avwTERWY Tapa-
YOYOV Ywelg actdeeg etvar dOoxoho va xataoxevactoly otny Yewplo tng unepBapdtnTag.
‘Evor emmA€ov xiynTeo Yo TNV XoTooXELT] TETOLWY 0pwV amoTeAel 1 UTapdY TOUC OTIC EVERYEC
Vewpleg younhov evepYeldy tne Vemplog yopdmy. Luyxexpuuévo To LoVTEAA ToU HEAETHUNMOY
otnv urmepPBapitnTa fray To e€hc: Mnreddoowy o0leuén tapaydywy Baduwtol Tedlou Ye Ty u-
TepPBapltnTa, utepouppeTEeg Yewpleg Galileon cuppetplag xou eyfontioeg Tou TANYWELGTIXOU
novtélou Starobinsky otic ehdocwveg Vewpleg unepPoapinTog.

11



12



Abstract

This dissertation is concerned with the following topics:

e Spontaneous breaking of supersymmetry by higher dimension operators.

The dominant role in the breaking of supersymmetry is taken over by the scalar potential
which in theories with up to dimension four operators has been studied extensively. This work
has showed that there are examples where theories with terms of up to dimension four do not
lead to spontaneous breaking of supersymmetry while taking into account the contribution
of the higher dimension operators may lead to ground states where supersymmetry is broken.

e Non-linear realizations in theories of broken supersymmetry.

The minimal supersymmetric standard model includes two Higgs fields. In the framework of
non-linear realizations of supersymmetry, the existence of a consistent model with a single
Higgs field was studied. It was found that such models are equally promising: Corrections
due to non-linear supersymmetry in the scalar potential of the Higgs field improve its behav-
ior relative to the minimal supersymmetric standard model, moreover, such models seem to
generate a hierarchy of masses for the heavy fermions. Supergravity theories where super-
symmetry is spontaneously broken are also studied. It is found that in the limit of infinite
mass of the scalar particle that breaks supersymmetry, it decouples and its equations of
motion are converted into constraints that signal a non-linear realization of supersymmetry.

e Consistent higher derivative theories in supergravity.

The dominant view for the birth of the universe is that there was a period in which it
expanded exponentially, known as ”Inflation.” Theories with higher derivatives favor the
existence of such a period and it is motivating to incorporate them in a supergravity theory.
An additional incentive for the construction of such higher derivative terms is their existence
in the effective low energy actions of string theory. The models studied were: Non-minimal
derivative coupling of a scalar field to supergravity, supersymmetric theories with Galileon
symmetry and the Starobinsky inflationary model in old- and new-minimal supergravity.

13



14



Contents

Extevig Ilepiindrn otiv EAAnvixA

L1 Ewoyoyh . . .o
1.2 Yndowo Yrepouppetplac and Tereotéc Avotépac Adotaone . . . . . . . . . . . ..
1.3 Ymdowo Yrepouppetplag xou Loyotdtaxr) Puowey . . . . ..o
1.4 Oewpiec TrepBaplntoc Avwtépny Iapaydywy ye Egopuoyr otnv Kooporoyla . . .
1.b Emfhoyoc . . . o o e

Introduction

Techniques of 4D, N =1 Superspace

3.1 Global Supersymmetry . . . . . .. .
3.1.1 Supersymmetry Algebra . . . . . ... oL
3.1.2  The Definition via Projection Method . . . . . . . . .. ... ... ... ...
3.1.3 Supersymmetry Transformations and Lagrangians . . . . . . .. .. ... ..
3.1.4 Superfield Equations of Motion . . . . . .. ... ... ... .........

3.2 Old-minimal Supergravity . . . . . . . . . . ..
3.2.1 Simple old-minimal supergravity . . . . . . .. ... ... oL
3.2.2  Old-minimal Superspace Geometry . . . . . . . .. .. ... .. ... ...
3.2.3 Superfields in Curved Space . . . . . . . . . .. ... ... .
3.2.4  Chiral Densities and Invariant Actions . . . . . . . ... ... .. ... ...

3.3 New-minimal Supergravity . . . . . . . . . . ..o
3.3.1 Simple new-minimal supergravity . . . . . .. ... ... L.
3.3.2 New-minimal Superspace Geometry and Multiplets . . . . . ... ... ...
3.3.3  Chiral superfields in new-minimal supergravity . . . . . . .. .. .. .. ...
3.3.4 Chiral Densities and Invariant Actions . . . . . . . . .. ... ... .....

Supersymmetry Breaking by Higher Dimensional Operators

4.1 Emergent Potentials . . . . . . . . ... L
4.1.1 F-Emergent Potential . . . . . . . .. .. oo
4.1.2 Gauge Invariant F-Emergent Potential . . . . .. . .. ... ... ... ...
4.1.3 D-Emergent Potential . . . . . . .. .. ... o

4.2 Supersymmetry Breaking by Higher Dimension Operators and Non-Linear Realiza-
TIONS . . o o
4.2.1 SUSY Breaking and Volkov-Akulov Actions . . . . . ... ... ... ... ..
4.2.2 The Complex Linear Multiplet . . . . . . . . . . ... .. ... .. ... ...
4.2.3 SUSY Breaking by Complex Linear Multiplets . . . . . ... ... ... ...

15

17
17
22
24
26
31

33

39
39
39
41
45
93
54
54
95
o7
o8
99
99
62
64
65



4.24 Y-Emergent potential . . . . . . . ... oo 95

4.3 SUMMATY . . . . . . 96

5 Supersymmetry Breaking and Particle Physics 98
5.1 Non-Linear Single-Higgs MSSM . . . . . . . . . . .. ... ... . ... .. ... 98
5.1.1 Non-Linear MSSM . . . . . . . .. . .. 100

51.2 Non-Linear MSSM3Z . . .. ... .. ... ... ... ... ... ... 103

5.1.3 Spectator Hy . . . . . . . . 107

5.1.4 Constrained Chiral Superfield . . . . . . ... ... ... .00 109

5.1.5 Higher Dimensional Operators . . . . . . . .. ... ... .. ... ...... 110

5.2 sGoldstino Decoupling . . . . . . . .. . 111
5.2.1 Supergravity in Einstein frame . . . . . . . . .. o000 0oL L 113

5.2.2  Sgoldstino decoupling . . . . . . . . ... 115

5.3 SUmMmMAary . . ... 119

6 Higher Derivative Supergravity and Cosmology 122
6.1 Supersymmetric Galileons . . . . . . ... Lo Lo 122
6.1.1 Non-minimally kinetically coupled Supergravity . . . . . .. ... ... ... 124

6.1.2 Linearized Lagrangian for the non-minimal derivative coupling . . . . . . . . 127

6.1.3 Decoupling limit . . . . . ... ... 128

6.1.4 Supersymmetric Galileon . . . . . . . ... 129

6.2 Non-minimal Derivative Coupling in New Minimal Supergravity . . . . . . . . . .. 131
6.3 Starobinski Model of Inflation in Supergravity . . . . . ... .. ... ... ... .. 138
6.3.1 Starobinsky model in the old-minimal supergravity . . . .. .. .. ... .. 139

6.3.2 Starobinsky model in new-minimal supergravity . . . . . .. .. .. ... .. 142

6.3.3 The issue of higher-order corrections . . . . . ... ... ... ... ..... 145

6.4 Summary . . ... 150

7 Concluding Remarks 153

16



Kepdhawo 1
Extevnc Ilepiindn octnv EAAN VXN

1.1 Ewaywyn

H unepouppetpio etvon wio ouppetpla Baduidag mou cuvdéer umolovixoie xan geputovixols Boduoig
ehewdeplog. Ebvan yio eméxtaon tng diyefeag Poincare ye omvoplonols yevwhtopeg 1 ontola ooy ua-
TWVETOL (G ECOTEPWT| CUUUETEl dTay peheTtniel otar mhadotar piag Yewmplag medlou xon yopoxtnelleton
OLUYVE WS 1) O OUOEYT CUPUETEIO TNE PUOLXTC G TOLYELODWY COUNTLOIWY.

"Eyouv tepdoel cappdvTta ypovia amd TOTE TOU TEWTY Yopd TeoTdlNXe ooy edeMax ) CUPHETEI TNG
wPoavtinhc Yewplog mediou, oTig apyés Tng dexactiog Tou 70. Ao tdTe dev €youv mapatneniel dueceg
TELRAUATIXEC EVOEIEEIS Yl TNV OYEOT TNG UTEQOUMUETELNG UE TNV (PUOLXT| GTOLYEIWOMY COUATIOWY.
Emnhéov 0e, €youpe HONC UMEL O o Vo €Oy Yl TNV Vewentxd] Quowt| VPnhdY evepyeldy:
Eipacte otny enoy tne avoxdindng tou ocwuatidiov Xuyye, pe udla 126 GeV. Me tnv avoxdiudm tou
TOAVAVOUEVOUEVOU owToL BarduwTtol mediou dha tor cwudtia Tou TEoEBAETE TO XaMEPWUEVO TEOTUTO
€youv ma avoxohudel. H ouyxexpyévn pdlo mou petehinxe y to Baduntd medlo Xiyyg €yet
TEOXAAECEL AUPBOMES Yia TO oY Xou TIw¢ 1) UTEpoLUUETEl Umopel var AOGEL TO TPOPBANU TNg tepapytag,
xodog Evar TEOBANUAL Lepapy o UECA OTO UTERCUUUETEIXO XUNEPWUEVO TEOTUTIO (QOUVETAL VOL YEVVIETOL.
Yuyvéd ma tideton to gpdTuar To xoiepwpévo TEOTUTO TWV GTOLYELWOWY COUUTIOIWY AetTovpyel
dorota, Yot vor TeooTodiooVUE Vo B1opUMCOUUE XdTL TOL BeV Efval YoAAGUEVO;

H amdvtnon oe autd 10 epmtrua €pyetan and didpopous Toelc Tng YewpenTinhc Quotxic, cuyypo-
VOGS OELYVOVTUC TWE 1) UTEPOUUMETELN Efval TRoryUoTid 1) TO AUTOCULVETHG TTEOTAUOT YLol VEX QUOLXT.
Eivou yvewoté 6Tt ot udleg v Baduwt®dv couatidinwy eivon wialtepa evaiointes oe xBaviounyavixég
dlopdwoeic Aoyw UTapdng Bapltepmy CLUATOIOY 1 EVERYELIX®Y XAWdXwWY. §l¢ ex ToUTOU Péoo G TO
xoepwUévo TeoTUTIO LTdEYEL To TEpipnUo TEOBANua Tne tepapyiog - H udla tou urmoloviou Xiyyg
elvon Wdwktepar evaioVnTn oTN PUOLX LVPNAGY EVEQYELNXMY XAAXOY OO AUTAY TOU XUEPWUEVOU
TEOTUTOU WOTE Uiar AeTougpetaxt] PUUULOT TWV TUPUUETEWY EVOL AUCTNEA ATOEULTNTY YL VoL B-
oel TNV mepapoTid emBefonmuévn T Twv 126 GeV. Edv mopdho autd 0ev UTdoyEL VEU QUOLXY
TOTE OEV UTPYEL TO TEOPANUA TNG AeTTouEPElax G PUUMIONG TWV TUPUUETOMY , Xol XAVEVAS AGYOG
vou apgofntAcouue Ty adlomotior Tou xaiepwuévou TedTUTOL we amelipng VYNAES evépyele. TNy
TEUYUATIXOTNTA 1) UTOREN QUOIXHC TEEOY TOU XNEPWUEVOU TEOTUTOL Efval TEOQUVAC omd [Lal xodn-
uepwt| pog eunetplo, Ty Popvtnra. Kovevég eldoug PBaputint| ahAnAenidpaoT Oev Exel Teplypapel oTo
mhadolo Tou xahepwuevou tpotinou. M cuvenrg eloaywyy| Tng Bopltntag ot xadepnuivn Yenplio
O TOYELWOMY COUAUTOIWY amoutel TNV amdvTnor VEUEAX®Y EPWTNUATWY OTKS Yo TOURADELY U

o Kpavtu dewpla Papdtntog
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e To mpdPAnua Tng xoouoloyixig oTaepdc
o Muxpooxomxn Teplypopy| OXOTEWAS UANG

HpoBrAuata to omola anéyouv moA) amd To va €youv hudel. Apo véa Quoixr) TeEmel Vo UTdpEYEL
xou Yo meEmel va amevduviel mpog autd To cpwTAuaTa. EmnAdov umdpyel 1 eAnida tng evonoinorng
TV Yewpldv Baduidac urnd ploy peyordtepn Yewmplo. Mo tétota Yewplo dev gatveton var umopel vo
Tpoypatonotniel oTo TAGCIL TV CUUUETELOY POVO ToU XoepwUévou TeoTUToU.

Arnodeyduevol hotmoy TNy UTOEEN EVEQYELIXMY XAIXWY AVOTERWY TN NAEXTEAcUEVOUC, EQYOMo-
OTE AVTWETOTOL UE TO TEOPANUa NG tepapylac. Ot nhextpacievelc ahhnhemdpdoel 010 xohepWUEVO
TeéTUTO Yopoxtnellovtal amd Uior EVERYELOXT XALUOXAL, Ulal TOPHUETEPO UE DLAOTUON EVEQYELNS

v ~ 246GeV (1.1)

bmou v/v/2 ebva T avVoEVOUEVT T Tou oudetepou Xiyyg medlou oto xevo. To yeyovog 6t o
medlo Xuyyg €yel un Undevixy| avaUEVOUEVY] TYY| OTO XEVO ot TEOXAAEL To awldpunTo OTdoLO TNg
oudpeTelog Boduldog, £xel we anotéheoua TNV dntovpyia Uiog QUL evepyelaxhc xAluaxag 1 omolo
Yo cuvdéeTon e Oheg Tic pdlec tne Vewploc. I'or mapdderypa n xAocowr pudlo Twyv W=+ uroloviwy
dlveton amd Ny oyéon

My = % ~ 80GeV (1.2)

émou g evou 1 otadepd o0levéng e SU(2). To Xuyye medlo eivon pior imhétta e SU(2) x U(1)y

Bt
n () 03
omou hY elvor apdpTioTo *dTw and Ty pn onacuévn U(1) tou nextpopayvntiopol. To Paduwtd
OLVAULXO EYEL TNV DLACTUN HOPYT

V= —u?H'H + 2(1{*1{)2 (1.4)

omou A > 0 xau pi? > 0 7o omolo odnyel oe o pdla yia 1o oudétepo Hiyyc cwpatidio

A
M, = v\/; ~ 126GeV. (1.5)

pénet vo tovicouue 61t 10 opvnTxd Tpdonuo —u? otov tono (1.4) elvar onuovtnd dote vor hPeL
Y WP 0 Pnyovioog awddpuntou onactuatog Tng cuppeTelag xon Yo TEETEL EV TUCEL TEPLTTWOEL VoL
Srtnenet , To (B0 woyler xou yio To Pétpo Tou —p?. Av drhadi elyope +p? dev Yo unhpye ondowo
CUUUETENG XaL 1) ovaeVOUEYT Tir Tou Tedlou Xiyye 6To xevd Yo tav v = 0.

Méypt tipa culntolooue LTS pla Evvola anoTEAEOUATY HOVOY TNG xhaootxig Quotxrc. To mpdBin-
Ho TNg Aemtopgpeloxhc pLUOTE TapapéTewy avadleTon 6Tay Adfouue utt oy pag xBaviounyavixég
oopinoec. To xadhepwuévo mpdTuTo ebvan Lo emavaxavovixoTolorurn Yewpla ,To omolo onualvel
OTL TEMEPAUOHEVOL ATOTEAEGUOTA TROXVTTOUV 0xOUn) ot oy Adfoupe LT Gty dag 6houg Toug GEouS TNS
Yewplag BlaTopory MV oL ETLTAEOY 0XOUN XL AV ETULTEEPOUUE TIC OPUES TV BUVNTIXMY COUTIOWY Vo
mdve oto dnewo. To yeyovoc autd eyyudtar Ty ollomotio Tng Vewplog xou OTL ebvan xahd Vepe-
MPEVT, 0AAd Oev amoxAelel Ty Umopén vEag Quohc, HaMoTa To oxe3oe avtideto, 1 euocinola
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TV TOEAUUETEOY AUTAC TN Vewplag o€ Véo Quotxy| Teénel va Jog Bdlel oe mpofAnuatiogols 6mwe Ya
OOUUE TORUXAT.
Yy xBavting Yewpla mediou yevind cuVaVTIUE OAOXANPOUATI TNG LOPYPHC

A
/ d*k f (k, cEotepinée opuée) (1.6)

omou A elvon 1 eVEQYELX AMOXOTNG Lol EVERYELOXT XA{daxar 1) omtola onuatodotel ToTe 1) Vewplo pog
el va €yel TeoBAediuotnTo xou TeEmel va BeAtindel. Amo teyvinfc drodng To xadiepwuévo TedTuTOo
oTNY anoucio VEUC QUOXAC TUPUUEVEL AELOTIGTO Yo

A — . (1.7)

Hopoho autd YveploUUE TOUALYLOTOV Yo EVEQYELOXT XAlHoX OTIOU TO XAIEPWHEVO TPOTUTIO TTEETEL
va Bertinlel, n evepyelant| teployy| mou yivovtan onuavTiny 1 xBoavted BapdtnTa

Mp ~ 1.2 x 10"GeV. (1.8)

Eminhéov umdpyet xon onuovTics VOEEr Yo Lot oxoun) EVERYELo XAlponcal , TNV xAlaxa TG MEYEANG
evorolnong

MGUT ~ 1016G6V (19)

OTOL PECU 0TO XANEPOWUEVO TEOTUTIO Ot PETABANTEG oUCELENS Telvouy va ouvavtnloly. Autd ouwg
oudfatvel uovov oo TAKGLa TOU UTEPCUUHETEWOU XaHEpmUEVOU TeOTUTIOU, BivovTog SO Eva onuddL
YLoL TNV UTEPCLUUETELN

LUYEXPWEVR,0 6p0¢ auTOUANAETDpaoTS Tou TEdiou Xiyyg

%(HTH)z (1.10)

otov tOno (1.4) Ya yevvioel évay xBavtounyavixd 6po evog -Ledyyou avdroyo ue

1

A
)\/ d%k:?——M? (1.11)
H

TOU GUVELTPEREL GTOV TeTParywVixd 6po HTH. Autéd Ha ddoer wo detind| diopdnon oto xhaoowxd
OLVAULXO

~AM*HTH (1.12)
Tou Vo 00N YHOEL OE €V EVOG -BpoYYOU BLOPUMUEVO TETRUYWVIXO 6RO
— e, = —p7 + AN, (1.13)

Qote va AMdBoupe mporydotind Tic xPovTtinég Slop¥Doelg UT Gty Lag TEETEL VoL EAUYLO TOTOLCOUUE TO
Borduwtd duvopxd (2.4), 0ARd TR YENOLLOTOLOVTIS TO ,ufp\)a avtl yio to p?. Ac Bupndolue 6t n
uéla Tou cwPaTdiou XiyYS CUVOEETAL UE TO flgus, HEOL TNG OYECTS

My, = V21g00.. (1.14)
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Ac Yewpriooupe howmdy 6L mparypatind véa puotxl| eugavileton oty xhipaxa Plank (10GeV) e-
voy 1) pdlo Tou cwuatdiou Xuyye €yel petpniel ota 126 GeV. Ondte 1 mopoxdte Vauvgotovpyt
arnhoe€oudetépmaon Va Teénel var cuUfel

—126GeV = —pu? + 10"GeV (1.15)

UTIOVOWVTOG OTL 1) XAACOWXT| TWT) 12 Vo meémeL vau ebvan TG TaENg evepyelwy IThavi kote vor avonpet
T CUVELCPOPS TOU A? 7o omnolo emlong eivon g tdEng evepyedv IThavx pe wio amicteutn axplPela
uepwwv GeV. Autéd elvor 1o mpdPBAnua Aentouepelaxric pUUUONG TOPUUETEWY TOU XUEPWUEVOU
meotunou. Ilpénel va tovio¥el Tt To TEOBANU TS AeTTopERELOM | PUIULOTC TOV TUEOUETEMY TUPONO
Tou yevviEton amd TNy udla tou mediou Xiyyc Bev elvor GUVOEBEUEVT UOVOY UE AUTH €V TEAEL OAEC OL
udlec Twv cwuatdiwy Tou xaepwuévou Teotinou empedlovial and AuTo.

Na onuewwocouye €6 6Tt T0 TEOBANUA TG AeTTOEPELMY |G PUULONG TOQUUETEWY OTO XoiEpw-
PEvo mpoTUTIO OEV elvon povov Véua TeooKmTXo) YOUGTOU Tou Xadevog, LY VA oTN PuUoLX AUCELS
o€ TEOBAAUUTA oxadNoUX0) EVOLUPEPOVTOS €Y0UV 0ONYHoEL O parydaieg eCeEMEEC 0TOV *AdBO TN
Yewentic guowc. o mopdderyua ,6tav o Dirac mpoteve tny Yewplio Twv nhextpovinv xat toll-
TEOVIWY OO TE Vo AUoeL To TEOPBANua apvnTixwy evepyelwy Tou Klein-Gordon mediou ftav adlivatov
vor un SimhactacTel 0 aptiuds TV oToLEWWdOY cwuaTwdiny. H avtidin (6T ovopdo TNXaY oUTd
o owportiduar) avaohbpinxe pohic Béxa ypdvia apyotepa. ‘Evo dAlo mapddetyua amoteAel 1 oAhn-
Aemidpaon Tecodpwy gepuiovioy Tou Fermi. Auty| n aAAnienidpaon Asttoupyoloe Wiadtepa xohd Yo
UEypt ouyxexpéves eVEpYeleg, aAld o Heisenberg eiye 101 exgpdoel avnouiiec yia To yeyovog 6Tl
auTh 1 Yewplo ydvel Tnv alomiotla Tng yio evépyeteg amd T 300GeV xan Téve- EVEQYEIEC TOU EXEIVN
™V enoyT| HToy eEWTPUYUATXES Yo To Telpapa. ApyoTepa £YIVE XATOVONTO OTL AUTO TO TEOBATAL
e Yewplog mOyale amd TNV 4N -ETOVOXAVOVIXOTOINOTUOTNTA TNG Vewplag ,Eva xodopd Yewentind
TeoBANua. Tehxd Beédnxe n enavaxavovixonolfown Yewpla mou Teprypdgel auty| TNV aAknienidpoon
oTig uPnhdTepe evépyeteg xan €yl o emPBeBanwiel xon mewpopaTixd. Eivon o mpdBinuo tng tepapyiog
GANO €var TaPABELY U OTWE TA TUEATEVE, TOU CTIUATOOOTEL TNV averyXT] Yial VEX QUOLXT);

Eivon xowvig amodextd 6TL 1 mo guowr) Abon yio To TeoBhnua tng tepapyiag Yo Aoy 1 Omapdn
mag véag evepyetaxhc xAluaxag n omolo va Peloxetar oyetind xovtd otnv nhextpacivev). ‘Etol
BetoxOUacTE AVTYETWTOL UE TU TUEOXATL TROPOVT| EQWTHUNTA

o o elvor auTA 1) Ve PuoLXH;
e 'Eyel xau 1 (B avtiototyo mpdBinua tepoupyiog;
e Mmnopolue va elodyoupe ota mhaiolo authc Tng Vewplag xan Ty BapdtnTa;

‘Eyouv mpotoel dudpopeg evdlagpepouoeg Vemwpleg yioo TNy véEa @uowt], Ayeg Ouwe mopEyouy Tny
amopadtnTy Poderd Vewpentnr dwdodnon.

‘A¢ elpacte aot6d0lol xon ag PavTAcTOUUE TNV xah0Tepn mepiotaom yio vor Audel to mpdBAnua
e tepapytag: Ot A2 dloptwoeic otny wdlo Tou Xiyye uroloviou autéuata aAnroavoipoivton. Autod
ornuotver 6Tt 1 Vewplo pag Yo Tpénel vor TEPLEYEL TOM) CUYXEXQIIEVES IAANAETLORAOELS TTOU Vot EYYUMVTOL
autég Tig avonpéoelg. H Abomn otny mporyuatiedtnTa dev efvar ToAD poxpld, téTotou eidoug xBavtineg
olopinoelg TpogpyovTal and aAAniemdpdoelc Tomou Wuxofo tou Xiyyg mEdiou PE Eval PEQULOVIO.
Hporypatind, ayvomvtag Tig eEWTEPES OpUECS 1) EVOC PpdY Y 0L GUVELGPOR artd TéTolou TOTou Yukawa
aAnhenidpoon divetow and

(—4g§ /A d‘%W) H'H (1.16)
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0BNYOVTOC OF Uiol GUVOAIXY| GUVELT(PORE amd PEPUIOVIXOUC Xau uTtolovixolg Bpdyyoug
(A—g))N’H'H. (1.17)
Av Yéocoupue
A=g7 (1.18)

TOTE OL OLVELGQORES amd BlaryEauuaTa EVOC Pedvyyou adlnhoavopolvton pe axpifelio. Mmropel vo
umdipyet évac Paditepog Adyog Yo vor cuUfel plar Tétotor adAAnloavalpeon; Edm elvon mou cuvels@épet
1 unepouuueTeio: TéTolou eldouc cuoyeTiopol YeTah oToepny oULELENC Elval YaUPAXTNELOTIXY O TIG
umepouuPeTEwES Vemplee. Tlopatnpodue dTL n cuvelo@opd evdg Pedvyyou tou uroloviou VYa urnopoloe
var avorpedel uévo amd Evay QEPUIOVIXG,AOYW TNG AVTIOTROPAS TROCHUOU GTO PepUIOVIXG [BpdvYYO.
Yuvendyeton hotmov OTL pla TéTola ouppeTeia Yo aroutovoe Leuydipta @epulovimy xou urolovikv, dhho
EVOL YUEAXTNELOTIXO TNG UTEPCUUMETENS. Nxomog authc Tne datpl3ric ebvan 1 uehétn dewpumy tétolog
umep-ouuueTeiog Boduidog.

To TMpwTO €QMOTNUA TOL EPYETAL GTO UUAAG evOg Vewpnunol Quaotxol eivon: Mropel 1 unepoup-
petpla v yiver wa o oupuetplo; H amdvinon elvon 611 awtd yiveTon, elvon 1 Yewplor tng umnee-
Boapttnrac. Egdcov 1 urnepoupueteia eivon wor xheto ) ‘AlyeBpo uall Ye TNy TOUAVXUEE, XAVOVTOG
NV unepouuueTeion Tomxr| amoutel ot xodolxol yetacynuatiopol cuvteTayUEvwy Vo Yivouv tomxof,
ONAadY| yevixol Yetaoynuatiodol ouvtetayuévewy. Eivar Aowmdv avandgeuxto av déhoupe uo Yewmplo
vau efvor ovolholwtn %dte amd Tomixy| unepouUpeTelo vor uny ebtvan avahAolonTn xdte and yevixolg e-
TOCY NUATIOUOUE CUVTETAYUEVKDY. AuTO ornuaiver 6T o Yewpiot TOTIXAC UTEPCUUUETELUS ELGOYaYEL TNV
Bagbtnta. To pdvo mou mopauével elvar vor Tawtonoticouue To medio PBaduldag tng urepoupueTplog,
ouTo ebvon To heyduevo gravitino , o onolo eivor 0 UTEECUUHETEXOS GUVTEOPOC Tou Baputoviou (To
xPBoavto Tou TEdiov @ap\’)mmg). Hporypotixnd and tnv douvAeld twv Rarita xou Schwinger unopet xovelc
VoL OEL OTL TO PEQULOVIO LUE LOLOG TROPORUN 3/2 €yer o ouppeteio Barduldag g popprc

6U% = Dint® (1.19)

T0 omolo onputodotel T Umapdn wag Yewplag Baduldag xon dieuxpwilel mold eivor o medio Pordui-
oag. Ewvon mporypatind agiéroyo 6t 1 Yewpla tng amiric utepPoapitntag tepthauBdvel povo v dpdon
Einstein-Hilbert xou tnv dpdon Popita-Xenwivyep yia 1o @eputovind medlo. H évvola tng unepBopi-
™Nta¢ oUVOIlEToL GTNY YETATEOTH TWV GUVAAROIOTOY TOCOTHTWY OE UTER-CUVIANOIWTES.

To mpdta ypdvia e unepPoplTnTac UTHEYE 1) EATON OTL Tol VEWEV LT UN-ETOVOXAVOVIXOTOL -
oNUOTNTOC TNE LTEPoLUUETElOC Vot uTtopoLoay Vo THACEVCGOUY TOUE ATELPLOOUE TOU GUVAVTUEL XOVELG
oty mpoomdieln xBdvinong tng yevinic Yewplag tng oyetxdtnToc. Ilopdro mou n unepPoupdnTa
EYEL CUPWS XANITERT) XPUAVTOUNYAVIXT] CUUTERLPORE ATt TNV YEVIXT OYETIXOTNTA, Xou GTHY (BLor eupa-
viovton amoxhetvovta dlorypduuata oe opxetd LPNAY Ta&N e Yewplag datopaydv. H eni to mieloTov
amodexTY| dmodn autd Tov xoupd ebtvan OTL 1 UTERBUELTNTAL EVAL 1) YAUNAWDY EVEQYELDY TOXYUSTWOTN ULoG
mo Vepehtoxrc xou xPBovtounyavind cuvenolg Yewplac - H dewpla unepyopdoyv . Tpayuatixd etvou
dLYATOV VoL UToAOYIoEL XAVELS TALTY OXEBUOTG 0 TNV VEWplor UTEPYOEOMY XA VoL GUVETIYEL TNV EVERYO
Vewplo TOU To TEQLYPAPEL OTN YAWMOOU TWV GTOLYEIWONY CWUATIOIWY ot TEoXUTTEL 6Tl TPOBAETE-
Tou axEBOC To @dopa pag dexadidotatng Yewplag unepPoupitntac! Ondtay 1 Yerétn TV Vewpldv
uTEEPBaEUTNTOS QolvVETAL VoL TEPLYRAPEL TOV XOOUO UOC OE EVEQYELEC TOAD YOUNAWTERES Ao TNV EVEE-
yetaxr| xhipoxa Tne ueEy0edNc 6oL 1) Bpdon TS ®PoavTinrc PapdTnTog Xou dhha Gorvoueva YivovTo
ONUOVTIXG.
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Ye auth) TV otateBh Yo yehetAcouue olYyeova Véuata oTny utepouUUeTElo Xou TNV uTepBapl-
tuta . [t var To xdvoupe autd TEENEL Vol YENOULOTOLAGOUUE €Vl QOPUAAIGUO TOU Yol UaS ETLTEETEL VoL
YERWLOUUC TE TIC UTERCUUMETEXES Vewpleg e euxohio . To podnuotind autd xoataoxebooyo AEyeTto
umepyweog. H datpdh Aowmdy Eexwvdel Ye TNy EloaywYn) TEYVIXOY Tou utepyweou. Eicaydyouue tnv
EVVOLUL TWV UTEPTEDIY Xt TG amd auTtd umopel xavelc va SlBdoel Tic GUVIOTMOOES TOUS , oL OTolEg
YENOHLOTOOUVTOL Yial VoL YRAOUUE UTERCUUUETEWXES Spdoelc. Evan onuavtind to yeyovog 6t o Aoy-
xpatllavég Tou PBoloxoude Ye auTthAv TNV Yédodo elvor o€ Lop@y| Tou TepLEyel Oha To BorinTind medio
e Yewplag. H unepoupuetpla €yel éva yeydho e0pog and UTEETOMATAETES, €066 Yo avapepolue oE
QUTEC TIOU YPMNOWOTOOVUE GTO XLpltg %ElUEVO oL omoleg elval xaL oL To GUY VA YETOUOTOLOUUEVEC.
Aol mapoucidcoupe ta facind epyaieio Tng unepouuueTElag etexTeivoupe TNV Ll TNom oTig Yewpl-
e unepPapltnToc. Eivor agléhoyo 1o yeyovog dtL undpyouv BUo Eeywpiotol cuvduaouol BorinTixdy
TedlwY yior TNV TETEAOWIo TATY UTEEBaEUTNTA, 0 XalEvag EX TV OTolwY EYEL TIC OLXEC TOU LOLUTERO-
NTEC o EEYWELoTO evdlagépoy. H mpdtn éxdoon tne teTpadidotatng unepBapltnTog ue Bonintixd
Tedla Tou avaxaAb@inxe Tépay Tou Poputoviou xou Tou gravitino Tou ivor T PUOE TEdld, TEPLEYEL
EVOL U1~ OLOOLOOUEVO ULy add BodumTd Tedlo xan Eval un SLUBLOOUEVO TEAYHATIXG DLUVUOUATIXG TED{O®
Auth ebvon 1 Gewplor mou avagépetar w¢ mahod-ehhdoouca unepPupltnTa. H véa-eAddoovoo umep-
BaphtnTo avoxahOpinne Alyo xoupd apyoTepa oL VG TEPLEYEL TaL (Bl QuoLxd Tedla Ue TNV TaAwd,
otapéper ota Boninund medior . Ta Borintind medla Tng véag umepBoapltnTog elvor Eval Un-OLadLdOUEVO
otovuouatind medio Barduldag xon Eva un-otadtdouevo medio Poduidog 2-popgt|.. Eivor alidloyo otL ot
0Lo autéc Vewpleg 0To eninedo Twv dLO TopUYWYWYV eival 1oodLVaUES . ‘Otay Ouwe xavels ewodyet
0ROV AV TEPWY TUPAY YWY oUTH| 1) LoodLVAio PaVETOL VoL XAUTOPEEEL.

Katd v Bidpxeto Tou Bidoxtopino’ doukéoue oo VEuo Tou oTAGHINTOS TNS UTERCUUUETElOC Xou
TO TS AUTO PETUDIBETOL O Tal cLuaTida Tou xaigpwuévou Tpotinou To Yéua autd eivar TOAD enixonpo
OLOTL péyeL oTLYUY|G OEV €xouv TaputnenUel oL UTEPCUUUETEXO! GOVTROPOL TWY CLUITIOILY Tou Xoie-
pwuévou potinou. Enlong pueietrioaue tnv meptypay| TV o TOAG UTOGYOUEVLY TANUVWELO TIXMY
HOVTEAWY ota mhadol Tng umtepPapitntog. Hopoxdte Yo avageptolue tepinmtind 610 xde Yeua.

1.2 Xrdowwo YTrepovppetelag and Telectéc AvwTEpag
Aldctaong

H vrepouppetpia eivon 1 mo moAAd unocyouevn vrodrglo Yewmpla yio var teprypapel VEo puowr. Aev
€yel mopatneniel €we ofucpa ,omdte Vo mEEmel Vo elval oTaoPEVY) OE xdmol UPMAGTERY EVERYELIXY
xhipocor oy ebvon mporypoTixnd o ouppetela g @uong. Tov xuplapyo pdAO GTO OTACIIO NG UTER-
ouupetplag Tov Exel To PaduwTtd duvouxd Tou TPAHATOSC TNE Vewplag TOU OTEEL TNV UTEPCUUUETELOL.
To Borduwtd duvopuxd otny unepcuupeteia xou oty unepBaplTnTa Eyouv ueAeTUEL ExTEVGS Yl Ve-
wpleg Y€yl 600 mopaywyouc. Ilapdho mou elvon YVwoTod 6Tl N EloaYwYY| OpWV AVWTERUS OLUC TAOTG
1) AVWTEQHY TORYGYOV BUVATOL VO AAROLWOEL TNV LORPPY| TOU BUVOIX00, UTEEYOLY Topadelypota 6-
ToL 1 Vewpiot XAMWS AUTOTEOC TUTEVETAL OO 1) CUUPBTIXG 1) UTEPOUUMETEXE XEVE QUTO OUKC OEV
ouuPaiver tdvta. O oxomdg pog €8¢ ebvan var ueAetAcoupE Twe Tar BarduwTd duvauxd TeoToTOLUY-
TOL X0 UTIOPOLY VoL 0O Y|OOLY GE OTUCLIO TNG UTEPOUMUETEIOG OTAY XavelS Elodyel 6pouUg avmTERIS
oLdoTaomNG.
To gepudévio goldstone mou cucyetiCetar ue To ondowo g uncpoupuetplag, To goldstino, mepl-
Yedpeton and v Volkov — Akoulov Spdon,omou 1 uncpoupueTelar etvan Un yEOUUXE TEAYHATWOUEVT
Yuyxexpwéva 1 duvopxr) Tou goldstino €yel ouvdelel ye TV yepahix ToAlomAétor X mou ey-
paviCeton oTnv oyéon moapotaong TNe dlatheNnong Tou umeppelpatog Ferrara — Zumino. Autéd To
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YELRUAXO UTIEPTEDIO OTIC YOUUNAES EVEQYELES IXaVOTIOLEL TOV GUVOEGUO
X%, =0. (1.20)

H Suvapia tou goldstino elvan ave&dptntn uixpooxomxhc neptypapnc. Ilpoypoatind,éyouue Poevet
oLdpopol evahhaxtixol TpéTOL TEPLYPUphc Tou goldstino umepmediou. Mo mapdderyua ymopel vor me-
prypapel amd Eva yelpahixd UTEETED{O,Eval UTEETEDIO DLUVUOUATOS EVOL PEQULIOVIXG UTIEPTEDID 1] vt
ULYodWo yeouuxo medlo, to xadéva ex Twv onolwv xavorolel Tov avtiotolyo clvoeouo. YTrepnedi-
o ME OLVBESHOUS EYoLV Yenotuononiel TEdoPUT GTA TAUCIL TOU UTEPOUUUETEXOV XUEQWUEVOU
TeotUTou xadde xou oe povtéha mAndwpelopol émou to inflaton (mAndopilotind Boduwtéd nedio)
TOUTOTIOLE(TOL PE TOV UTEQOUUUETELXO GUVTROQO Tou goldstino.

Trepouuueteinéc Yewpleg Tou TEQLEYOLY HEOUC AVOTERWY BLIC TACEWY (pe TOEOY Y OUG 1 prig)
€)0UV XATOLaL WOLETEQN YUPAXTNELC TS UVAUECH OE AUTE VAL EVOLAPEPOY YULUXTNELOTIXG Elvon OTL Te-
AEGTEC AVWTEPAS DLACTAONC CUVELGPEROLY G TO BardumTd duvauixd. Autéd éyel oulntniel vwpitepa oe
ULoL OELRd EQYAOLWY OTIOU PEEIXE TopadelyUoTa €youy dolel. Xuyxexpiuévo Yewplee ywpelc duvauxod
0100U¢ xUplapy0Lg BPOUC UTOEOVY Vo ATOXTACOLY U1 TETELIUEVO BUVOULXO OTAY OEOL AVKOTERAS OLIo Ta-
one An@doly uddy xou dOVUTUL Vor 00NYCOUY GTO OTACYIO TN UTERCUUUETENG. Xe ouTd To orelo
UTdEY 0LV OUWS duo onuavTxd Vépata. To mpdTo agopd v eupdvion aotadelwy . XTig Vewpleg
Tou epeic oulnTdue 6ev UTdEYEL Ao TAUEL SLOTL OL OEOL AVKOTERKY TORAY YWY TTOL YENOULOTOLOUUE OEV
odnyolyv ot emxivouva Toryvovixd tedla. To dedtepo Véua aopd T Bonintnd tedla. Edw etvan oncdun
OLVATOV VoL AUGOUUE TIG EELOWOELS XIVNOTE AUTWY TV TEdlWY EPOCOY AUTEC TUPUUEVOLY UAYEBELXEC.

MehetAooue didpopeg Vewpiec 6mou eugaviCeton auldpunTo OTACIO TNG UTEPCUHETElUC UTO TNV
TOEOVGCIA TEAECTOVY AVWTERAS OLdoTaong. IBladtepo eVOLUPEROY EYEL EVOL LOVTEAO ULYUOWNC YROMUUXTS
umepnolhamActag. Mo tetotar pryodinr| yeouuxr| utepTolhamhéta tepteyet Toug Baduoie ehevdepiog
HLAG YELROMXAC TOMATAETAS %o €Tl TAEOV BUO QPEQULOVLAL XL EVOL ULy adLXO BlavuouaTixd medlo. XTo
eNinESO TWV BLO TUPAY YWY ,TA ETUTAEOY PEPULOVIAL XU TO ULYOBIXO DLUYUOUATIXO TEBIO TEQLYPdPOUY
Boninuxole Baduole erevieploc, evey ol dadtdouevol Poduol ercuieplac Teptypdgouy éva eheulepo
Uty adeo Baduemto medio xou eva ehediepo gepuiovio. Adyw Tng SoUNS TNG ULY oIS YROUUIXHS UTER-
TOMOTAETAS, BEV UTEPYEL TEOTOG VoL YRd)EL XaVElS UTEEBLUVOUIXG OUTE UTOREL VoL ELGAYEL TOUS GUVADELS
OPOLS YL UAANAETIORAOELS TTou BeV TepLEyouY Topaywyous. Omndte mpemel xavelc va Paciotel oty
ELOAYOYT) OpWY AVWTEQUS BIACTACTS 1) TUPAYDYWY, WOTE VoL ELPAVIGTOVY U1 TETEWIUEVES AAANAETIL-
Opdoelc xou avoduoPeEVa Buvouxd. Trd cuyxexpluévee cuVIxeS QuiveTon W aUTE To VEA BUVOULXS
umopoLY vo 0dnyrfoouy To BoninTixd medla 6 xouvolpld UXEOTATH TOU OTAVE TNV UTEPCUMUETELOL.
Yuyxexpuéva ot e€LloWoElg xivnong Yo To PoninTnd medio Exouv TNy HopN

1 _

Hapatneolue 6T UTdEyoLY Buo AICELS Yo AUTHY TNV ElCKON:

(i) F=0, (1.22)
(ii) FF =2A* (1.23)
H mpdhtn Mom meprypdgel 1o olVUEC UTEROUUHETEXO XEVO, EVE 1) DEUTERY TEOYUAUTIXG OTUUTODOTE!
TO OTUOWO TNG UTEPOUUMETElOC. e auTthy TNV TEPINTWOT , VEEC PAoELS avadloVToL UOVOY pio X

TV omolwy cuvdéetar Ye TNV oy Vewpla. Ilpénel va onuewdcoupe 6Tt autéc ol véeg @doelg dev
Yo Enpene v Jewpniolv wg dlaopeTinég @pdoelg g (Blag Vewmplog, dAAS XUADTEQN WE DLUPOPETIXES
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Yewplec. Ilpoomdieiec va xataoxevacoly tétolou eldouc LTEpoUUUETEIXESC Vewplec, oTIC omtolec va
UTBPY 0LV TEPLOGORERES omd ol Mool Yo Tar Bondnuind medio €youv yivel xan ToAOTERY, YwElS
emtuyla. H Buwitepn doun tng wyodnhc yeouuxic UTEPTOANATAETOC EMTEEREL Vo Ontovpy oLy
EMTUY WS TETOLES Vewpleg.

‘AXho €va oA eVOLapEEoY porvOuEvo AauPdvel yweo oc autd to woviéro. To goldstino outrg
e Vewplag mpoxdmtel va ebvon éva mpwny Pondntuixd medlo , to omolo 6To %EVE TOL OMdEL TNV
UTEPOUHMETELO AOXTAEL XOVOVIXO XTI 600 xau YiveTan SLadLdouevo. Autog o xvntindg dpoc BBona
0TO UTEQOUUUETEIXO %eVO Undeviletan xou To Tedio mopauével BoninTind, eve TeoQavas deV UTHPYEL
o0te goldstino. Ioaputnpolue AOLOY 6TL GTNY CTACUEVT PACT) UTERYEL ULd UT) LOOTNTO DLADLOOUEVGY
PEQUIOVIXGDY Xatt uTolovixy Barducyv ehevdeplog: €var Yopy X TNEIOTIXG UN YEUUUIXTS TEOYUATOONS TNS
unepouppetplag. ITlporyuatt, autd mod cuuPaivel ot onacuévn @don tng Vewplo dag meprypdpeTo
Ao LAl XAUVOVIXT| UTERCLUUETELXT ToAamhéTa xon éva Volkov — Akulov medlo amoocagpnvilovtag tny
Olapopd aToug dLadtdouevous Baduolc ehevdepiac. H Aon otig eiowoeic xivnone twv unepnediwy
olvetan amd TNV oyEon

Y =Xy, + P (1.24)

omov X g, oupPohiilet o Volkov — Akulov medlo, o TEPLYEApEL Uit EAeVUEET YELRAUALXY) UTEPTIOAAD-
TAETO, €V X elvor 1) ULy odr] Y QO] UTEQTOANATAETOL.

Téhog, peretidnxoy xon dhha mapadetyuato Ye avTioTolyeg WOIOTNTEC oTa oTola YENoLOTOLAC0-
UE TEOYUOTIXG YROUMIXE UTEETEDLOL 1) TEOYUATIXG UTEETEDLL DLtVOCUATOS 1) %ol (PEQULOVIXG. YELQUAXSL
UTEPTEDLOL XATUATYOVTUC OTL Xl QUTEC Ol Vewpleg €youv TNV BUVITOTNTA Vo TEEYOLY EVOLUPECOVTOL
ATOTEAECHUATO OTIWE T TOQOTIAVC).

1.3 Xrndoiwpmo YTrepovppetelag xar Xwuatiotaxr; Puoix

Am6 tov xoupd TN avaxdAUYNG TNG UTEPGUUPETEIOS TO EPMTNUA TOU TROGOLOPIOUOU TN UTEPGUUE-
Towrc Vewplag mou mepLypdpel Tic oA NAeTdRdoES Tou xadepwuévou TeoTOTou efval éva and Ta o
xadplar TeoBAYuaTo TNG Quo UPNAMY evepyelwy. Emmiéov elvan ma adugioBitnTo 6t o mepi-
gnuo urnolovio Xiyyg éyel Beedel otov emtayuvty LHC. Autd 1o yeyovog €yel avalwoyovhoel To
EVOLUPEQOY O TNV CWUATIOWXT PUOLXT| opoV , 1 udla Tou xou 1) 6OLEVET TOU UE ToL UTONOLTOL GOUATIOWL
T0U XOMEPWUEVOU TEOTUTOL EVOEYETAUL VoL amoxaAUeL Tou elva xpupuévn 1 véa puow). Ot urep-
CUUUETEIXEC ETEXTAOELS TOU XANEQWUEVOU TEOTUTIOU €YOLY , EXTOC TV GAAWY, TNV BUVATOTNTO Vo
otvouv ot Moo 6To TEORBATUA TN Lepapylag , Vo ETTEETOUY TNV evoToinom Twv PeTaBAntov oOleu-
&ng,var Topéyouy uToYPLI COUATIO YIo UXEOOXOTUXY| TERLYEOPY| TNG OXOTEWTS VAN xat TEAOG Vol
TOEEYOLY Lol €Y NOT SuVoXoL TOTOL Yiar TNV NhextpacVevn evepyetaxy| xAtpoxa. Tlpayporind,etvon
0VOXONO VoL PAVTACTOUPE EVay UTOYNPLO XOADTER MO TNV UTERCUUHETELOL Yiol THY (PUOLXT| TERAY TOU
xoMEPWUEVOU TPOTUTOU G TNV TERITTWOT EVOC Veuehionol cuuatidiou Xiyye.

X1V eAECOVO UTEROUUPETEIXY ETEXTUCT TOU XANEPWUEVOU TEOTUTOV, O Topgds XIyY¢ omoTe-
Aelton amd éva (evydpl unepnolanmiétwy H, xal Hy. Eivon ma xowvee anodextd 6tL onoladrinote
UTEQOUMMETEIXT] EMEXTAUOT) TOU XUNEPWUEVOL TPOTUTOU Vol TEPIEYEL AMUPAULTATNG XAl TA BUO LTEPTED{X
Xiyye. O Aoyog yio autod ebvan dimhog: Tlpotov duo Xiyyg medla ebvon anopaitnTa wote vo dlvouy
udlec ot up xan doun quark SLOTL 1) OAOUOEPIXOTNTO TOU UTEEOUVOULXO) BEV ETUTEETEL TNV ATl
TN oLleuln tumov Yukawa Gote vo mhpouv udla xon Twv duo TOTWV quark ue v yehon evog
xou povov unepnediov Xuyyg. Acltepoy, and amhr ueAETn *BavTinmy avwuahlony odnyel oty avdyxn
eloaywyhg xan 6evTepou Xiyyg unepnediou wote autég va e€aknpioly. Onote eite umopel xovelc va
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Yewprioet axplr) unepouuuetelo ue duo unepredia Xiyyg, elte evalhoxTnd,umopel yior Tapdderyua vo
ayvorioel TeEAelwe To BeUTEPO XIYYS, UE TO XOGTOC TOU OXANEOU OTUGIUUTOC TNG UTERCUUUETEINS , TO
omofo Yo TpogpyeTal amd TNV U OAOUoEGIXOTN T ToL Buvouxol. Mo duoxolia TéTolwy Yewplnv elvou
OTL Pe TNV amoucia Tou Bedtepou LUTEETESlOU XiYYS, TO UTEPOUUPETEXO (EUYdpL TOU XoeEpWUEVOU
medlov Xuyye Vo mapopeiver dualo péypet 1o ondowo tne nhextpacdevols cuyuetplac. Emmiéov n
OVAiPEDT) TV OVWHUOALGY, Ol OTIOEC TEOTYOUUEVKS EEOUBETERMVOVTAY amd To 6eUTEpO XUyYS, omouTel
NV eloaywyY| GAAWY VEOV TEdIwY 0 XATIAANAES avamopac Tdoels. Autd Tor VEo edla Yo meenel vo
elvo xait YELEohxd 1ot aEXETA Baptd (G TE VoL UNY AAAOLOYOUY TNV YVOO T QUOIXT YOUUNAGY EVEQYELDYV.
Avtr ebvan enione xan 1) mepintwon oe povtéha ye duo Xiyyg medio, 6mou to deltepo Xiyye elvon amAd
€VOIC TARTNENTAS, Y WEIC Vor Tadpvel pn UNBEVIXY) avoEVOUEVY) TYY) 0TO xeVO xou 0UTE €yel oOLeuln e
TOL (PEQULOVLAL.

‘Onwe mpoavapépaue 1 utepoUUPETEl TEETEL Vo elvon omaopévn , uTovvomvTag Ty UTapdn evog
peputoviou TOTou goldstone . Ye €va YEVIXO GeEVAQLO oTactuaTog TN UTEEoUPPETEloG To goldstino
€yet éva pryadod Baduwté medio yla utepolvTeoo To omolo yewixd Vo Eyel udlor Emeldy| xopud
ouuueTpla 0ev mpooTatelel aUTAY TNV Uala UTOpel Vo YIVEL YEVIXE TOAD UEYSAT), %ol TO owuaTidlo
auUT6 Vo amoculevylel and Y QUOLXY YauUNnA®y evepyelny. MeiethAdnxay povtéha uncpouupeTeiog
xou uTEEBaEYTNTAS OToU LUTdEYEL aOEUNTO OTIdoIO TNG LTEpoLUUeTelog. Beélnxe ot oTo dplo trg
dmelene palog yio To Bordunmto medio ol eEloMoElC Xivomng Tou UTEPTEDIOL TOU OTEEL TNV UTEPOUUUETE(O
ooy wetlovton og duo xoppdtio. To éva xouudtt apopd tnv anocleuln Tou utepPupéng Baduwton
COUITIOOU TOU EYEL WC ATOTEAECUN AUTO TO XOUUATL Vo YetoTpanel o€ oUVOEOUO Yio TO UTEETEDLO
Tou goldstino

X?=0. (1.25)

To unepnedio Tu goldstino cuveyilel va aAANAETIOEA UE T UTOAOLTAL UTEPTEDIO OUWE TP IXAVOTIOLEL
TOV TEOUVAPERVIEVTO GUVOEGUO %ot GLYYEOVKLE elvon UTEDHUVO Yot TNV PETABOCT) TOU OTAGIUATOS TNG
UTEPOUMUMETEIIC OTOV TOUEN TV UTEPTEDIWY TOU XIEPWUEVOU TEOTUTOU. XE TETOIEC TEPLTTWOELS 1)
eVeERYOG Vewplol YOUNAMY EVERYEWDY TEQLYRUPETOL TS UT) YRUUUIXY| UTEQOLUUETELA.

Trdpyouv otny BiBhoypagpio TAog uedddwy yio va meptypagel 1 oUlELEN Tou goldstino xou 1)
un yeouuxr) unepouppeteio. Meta€d autdv wio ToAd evilagépouoa pedodoloyla Eyxeiton oTny ¥efon
UTIEQTIEBIWY IOV LXAVOTIOLOUY CUYXEXRUEVOUS GuVOEouous. Eyouue pehethioer v oUlevén Tou un
Yool (goldstino ) topéa e 10 UTEPOUUUETES XOMEPWUEVO TEOTUTIO HEGE TEAEGTMV OVWTERPNS
oo Taone otov unepyweo. Tétoieg ouleliewc éyouy enlong pehetndel xou oc plar oelEd amd BLdpopeg
gpyaoiec yoo v oUleuln Tou medlou goldstino Ye 1O UNFYEOUUIXO UTEQCUUUETEIXO XoEPWUEVO
mpotunto. Tt TV YprioT TOU CUYXEXPUIEVOU QOPUAALOUOY TRETEL VoL UTOVEGOUNE OTL 1) UTEPCUUUETE(N
etvor auddppnTto oToopévn oe wa evepyeton| xhipoxa v/, 1 omtola Tpénel va Bploxeton oty evepyelond
Teployhy puepyv TeV. Edw® pehetrioaue Ty evepyeloxn TEployY| YOpw amd TNV eVERYELomy| xAlaxo
Msort (LALEC TWV UTEPOUVTEOPWY TWY GOUATIOIWY TOU XaepmUéVou TEOTUTOU) ahAd xdTw amd To
V[ 6mou n unepouppeTplo efvor un ypouxd Tearyuatwpévn oto nedio goldstino.

Yric Yewpleg mou Yag evdagpepouy to Tedio Hy dev Yo ypnoylonoiniel Ta yLot THY XATUOKEUT] OU-
Cev€ewv tinou Yukawa. ‘Ocov agopd tov unyavioud yévvnong ualog yia ta quarks (xou avtioTotya
Yo o Aemtoviar), 1) Yukawa ovlevén

/ d*0dQ - Hy (1.26)
oev etvan Stordéoun mot. 2Tol LOVTEAS TOU UEAETACOUUE 1) YEVYNOT) HACOC VIO TO (PEQULOVIOL ETLTUY Y AVETOU
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uéow Tng yenone tou goldstino unepmediov xou udvov Tou evog Xiyyg mediou Hy,,xon tng oLlevéng

m — _

Zeolt | 20426 X Hye” Qd (1.27)
fA

omou A ebvou 1 eve'pyeta anoxonrc tng Vewplag. Xenowonowwvtag T€Tolou eldoug aANAETIORIoELS

HOTUOKEVACOPE CUVETEIC 1) YOUUUIXES UTEQOUUHETOIXES EMEXTAOELS TOU XUHEPWUEVOU TROTVUTOU TTOU

TEQPLEYOLV:

o 'BEvo povadwd medlo Xiyye H, omou o dedtepo nedio Xiyye Hy €yel avuxotactodel and pa
ULOT) OLXOYEVELXL, o

o cva xadepwuévo nedto Xuyye H,, émou 1o deltepo nedio Xuyyg Hy elvon mar povo €vag mopatn-
™S,

YITIC CUYXEXPUIEVES UTIEQOUUPETEIXES ETEXTAGELS TOL XANEQOUEVOL TPOTUTIOL BEV UTIAEYEL TO GOV Ueg
U-TeOBANUa ool dev uTdpyet devTepo Xiyye medio. Ta cuyxexpuuévo HovTéra TEQUY TOU OTL XEYOUY
Yenon wovo evoc Xiyyc medlou €youv Tic axdrovdeg duo TOAD evdlagépouces WwLotnTeS: IlpdToy,
ovadleTan WLor uotxr tepapylar yior Tig Pdleg Twv Bagénv @epuloviny e Lopphc

Msoft

my. (1.28)

my ~ My ~

Ae0tepov,To duvauixd Tou Tediou Xiyyg el TNV Lopg

1 1
7 7
o TNV oTolol TOEATNEOVUE HTL GUVELGPEPOUY Xau BLopUNOCELS (#m§|Hu|4) Tou ogellovton UOVo xou Uo6-
VO GTNV U1 YRUUUIXY| TEUYUATOoN TNG UTEpoupUeTelog. MTo cuVAUY UTERCUUHETEXE XxadlEpmUEVL
HOVTEN UTdEYEL Evar Téve Opto oTny xhaoowxt| wala Tou mediou Xiyyc 1o omolo eivon 92GeV . Yto
CUYXEXPUIEVOL LOVTEAN OUMS AOYW TNG CUVELCPORASC GTO BUVOUIXO OO TNV U1 YEOUUXT| UTEQOUUME-
Tpla auT6 TO Gplo Umopel var avePel anoUnTd B16TL eCopTdTon MOl o A TNV EVERPYELXT| XALoXA TOU
OTAC{UOTOS TNG UTEPCUUUETElOC.

92+g2
V = fPmiH,)*+ mi!Hu!4+%|Hul4+O( ) (1.29)

1.4 Oceswpleg TreplBoapbtnrtoag Avwtépwy Ioapaywywy pe
Egapuoy? otnv Koopoloyia

H mo yevinr Yewplo mou meprypdper tny diddoor evée duaou Baduol eheudepiog 18106 T00Q0RUTS
oLo, %o evog Barduwtol Baduol eheudeplac Oev elvon 1 yevixr| Jewpla e oyeTindTnTac oLLELYUEVN
Ue Tov eEAAdoova TedTo pe éva Baduwté medio. Hpdyuat, o Horndeski anédeile otL Vewpieg ahhn-
Aemtidpaomg Paduwmtol tediou ue v Popdtnta oL €youy e€lonaotlg xivnorg pédet deltepnc TAENg OV
elvor TepLoplouéveg oTiC mpoavapepleioeg Yewpleg ehhdooucas oUlevéng. Méypl 6pouc TETPUYWVI-
%00¢ oTor Barduwtd medla xon Yo Técoepelc dlaoTdoelc , o Horndeski €deile 6TL oL To yevixég Vewpleg
TOL TEPLYPAPOUY TNV BLddooT Tou mediou BopltnTag xou evog BouuwTtol Tediou etval
1 1
EZEGRMi—EI :i:—

Lir+&Lmr (1.30)
M7 My
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61OV

1
Lorv = 3 [MER — 9,00%9] , (1.31)
Ly = (Mio+¢?) Rep, (1.32)
Lir = G™0,00,0, (1.33)
L = (M£H¢ + ¢2) R, (1.34)
xol
1
Gon = Romn — =9mnR, Rip = RpnsR™° — 4R, R™ + R? (1.35)

2

elvor ov Einstein xa Gauss — Bonnet tovnotée ,avtiotolla, Mz ), Mi’H elvon evepyeloxég xhlpo-
xee, € etvon o otadepd xan Mp etvan 1 evepyeton| xhipoxa IThavx. To 611 Aoryxpatliov muxvotnto
L odnyel oc edlonoeig xivnong devtepng Taing Qaiveton e0X0AA OO TO YEYOVOS OTL O GUVOUACUOS
Gauss — Bonnet clvar ohxr) mapdymyYog 6TIC TEGOERELS OLUC TACELS X Vol YRUUUIXOS OTIG Topo-
yYwyoug dedtepng tding. Avitiotoya etvan edxoho xavelg va det otL 1 AoryxpovtQavh muxvotnta Lir
odnyel enlong oe e€lOGOEC ®VNONG XEAVOVTOS TNV AVIAUCT) TwV ETPEPOUS CUVCTWOWY cTov ADM
(POPUANOUO.

H AoyxpatCiav tuxvotnta Lorm 0ev elvar mopd 1 xadiepwuévn Yewplo tng urepBapltntog. H
o0levin pe v umepPopltnta g Vewplag L €yel mporyuatomomdel and dhhouvg. H olleuvén tne
Yewploc L ye v teTRadIdo Tty LTEEBapUTNT Slapépel and TNy erhdoouca oOLedEn Lorm *oTd
evav Weyl yetaoynuotiond tne petpiaic. H povn howmdv dewpla mou dev elye uéypl mpdtivog ouleudiel
ue ™V Popvtnta Arav 1 L. H emdindh yog Arav 1 ouverrc oLlevén tng Vewplag L pe v
umepBoapuTNToL.

[Tépaty TOL TEOPAVOUE EVOLAPEROVTOG TIOL EYEL 1) LEAETT) XUATACKEVG TWV TILO YEVIXWY UTEQCUUUETOL-
%WV VEMPLOY TOU DEV UTOXEWVTOL O 0o TAVEIEC AOYw ghost Tediny efval oNUaVTIXG Vo TOEATNEHRCOUNE
OTL 1) Topomdve cuveTelc Vewpleg avmTépwy Topay®ywy eupaviCovial cuyvd oty Yewpla LTERY Op-
0wV. Xuyxexpéva o 6poc L eupavileton otny 10-dlactatn evepyd Yewplor Tne eTepoTXrC Y0pedTC.
Na emionudvoupe 61t Tétotol 6pot GuVEEovTL HETAEY TOUC GTIC EVERYEC VeEWplEC TwV UTERY0EOWY UECH
ETAVAUTEOCOLOPLOUOV TWV TEBLWV.

Ané o mo gouvopevoloyixr) oxomd 1 Vewpior L1 moilel tov xuplapyo pOAo GTOV AEYOUEVO U
yoviou6 “Evduvapwuévn Baputind Te3r’ (EBT). Adyw autod tou unyaviopot EBT éva andxenuvo
(h xon Oyt) Porduwtd Suvapixd, dOvatar €v YEVEL Vo TROXOAEGEL XOOUIXO TANIWEIOUS YLol Lol OYETIXE
uen) evepyetoncr| xhiponcor Mrr. Autd ogeihetan otnv dnutoupyior evog Gouvouévou TpUShc Tou TeoxXo-
Aelton amd TNV EMEXTACT, TOU GUUTAVTOS dPWVTAS 0TO Baduwtd nedio mou mpoxakel Tov TANUYWELOUS
(inflaton). Eivar mpogavéc 6Tt 1 vhomoinan evog tétolou unyoviopol otny Yewpio tne urepPopltn-
TOG TEOYHOTIXG EAVEL TNV BuvaTéTNTa Vo el xavele TAndwplotixd oevdpla yéoo otny Yewplio Tng
umepPBapiTnTog xon xat Enéxtact 6TV Yewpla UTERYOEOMY.

‘Oleg oL mpoomdieleg xataoxeL|c Yewpt®y UTEPRARUTNTAS AVWTEPWY TARUYWYWY CTIC TECCEQELS
oo tdoelg Bacilovta oe pedodoroyieg mou yeNowoToLY xou To Aeyoueva Bondntixd tedia. H dio-
popd Yewprwv urepBopiTnTag Ue BoninTnd medla ,amd aUTéC TOU BEV £YOUV TETOLN, EYXELTOL GTO OTL
oL TPWTES OV ebvan wovadég. Autd To gavouevo mapatneeiton enlong otic Yewpleg unepouuueteiog
OTIOL UTLEPYOLY TEPLOGOTEROL TOU EVOC TEOTOL VoL LOLpdoEL XavelS Toug amapaitnToug Bonintixoie Bod-
uoU¢ ehevlepiog oe dlapopeTnol eidoug umolovixd medio o Topdderyua elvon Yvewotdv 6Tl UTdEy oLV
TEPLOOOTEPES ATO Lol UTERTOAATAETES OL OTOlEC €Y 0LV TNV BuVITOTNTA Var TERLyeddouy Eva ehehiepo
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OLBOOUEVO ULy odind PorduwTo edio xon Eva eEAedlepo BLABLOOUEVO PEPULOVIO. AUTES Efval oL UTEPTIOA-
ANATAETES YVWO TEC (G YELRUALXY), TEOYHOTIXY| YROUULXT) XL LYo YRoUXY|, Ol OToleC Efval YVwoTo
OTL oUVBEOVTAL PETOEY TwV UE Buadxole petaoynuatiopols. Tlpogovoe autd ta utepnedio dtav elvou
ehelepa TautilovTan.

To {6l0 pouvouevo empével va TopoucLdleTon xon oTIC Vewpleg TOMXAC UTEPCUPPETEIOG 6o -
TEEYOLY TMEQIGOOTEQPOL TOU EVOC TEOTOL Va Uotpdioel xavelg Tolg amopaitntoug Bonintikois Boduoig
eheweplog o pn dtadwoueva edio. Trdpyel Aowmdv pia xdmoto mowxhior amd Yewpleg unepPouplTn-
TOC Ol OTOLEC BLUPECOUY UOVO GTOV U1 SLadLdoueEVO Topga. Eve xan mdh ehedepec autéc ol Vewpleg
towtiCovtar. Autd oupfBaiver Si6tt Tar unepnedion Tne N = 1 vnepoupuetpioc teptéyouy avaywyhot-
HES OVATUPAOC TAOELG TNG UTEPOUUMETEING ot TTRETEL XAVEIC VoL YENOWOTOW|OEL ETUTAEOY TEPLOPIGUOUG
OOTE Vo LEYWPIOEL TNV U1 VY OYLUT OVATUEAG TUCT) TOU TOV EVOLOPEREL.  LTNV Yewplor Aotmdv tng
umepPBaplTnTog oL TauTéTNTEG Bianchi oTov UTERYMEO AUYOVTOL UE TNV YPNOT| ETUTALOV TEQLOPLOUMY
0dNYWVTAC OE BLapopeTnés Vewpleg uTEPoaplTNTAC AOY W TNE dlapopdc Toug o ta BoninTnd medlo. Au-
Té¢ ot Yewpleg ebvon yior mopdderypa 1 12412 nahad-chhdoouca Yewpio utepPaupltnTog xou 1 12412
vea-eEAdoouca Vewmplo utepBapltnTag. TTdoyel 6TNV TEoYUOTIXOTNTA TOUASYIO TOV GAAT| Ud YVOO T
12412 eMdoouca Yewplo unepBupitnrag, 1 omolo onaviwg €yet yenowumomniel yiutl ta BoninTixd
¢ medla etvan Hodge duodixd pe autd tne mohandc-ehhdoovoag. T tov (Blo Adyo dev €xel yenot-
womotniel xou 1660 LY VA 1 VEo-eAAdcouca LTERBUEUTNTA BLOTL UTEEYEL SUUBIXOS UETACY NUATIOUOG
TOU Uag PETa@EpEL amd TNy wa Yewplor oty GAAT. Axdurn TeplocdTepo auTH| 1 BLABXOTNTO UTopEl Vol
EQUOUOOTEL avauESa OE aUTEC TIG VEWPIES oxOuT 1o arv auTEG etvan cLeUYEVES Pe VAN, Tloawtdy Tov
AOYO oLy Va xavels TeploplleTon oTNY UEAETN POVOY TN Tokaudc-ehhdcoucag unepBapltnTog, 1 otola
xou avoapépeTol X ¢ oLV urepBapltnTa. Eivaw duwme yvwoto otL auty| 1) duadixdTnTaL TAEL VoL
oy VEL UE TNV ELOAYOYT) UTERBAQUTIXWY OAANAETLORACEWY VW TERWY TapaydYwy. Tlpénel va avopep-
Vel 6Tl y1 qUTOV TOV AOYO UOVO Lol EX TV TARATAVE eAdcouca Yewplor uepBoupbTnTog TEoyUATIXG
dUvVaTan var TepLyeder TNV Quoxy| Tng eTepoTing yoedrc Auth Yewpeiton 6Tt elvan 1) Véa-eAAdoouca
umepPBoapiTnTaL.

O oxomdg pag howmodv ftay 1 oulevén tng Yewplog L1 pe v unepBapitnto . AuTo TEAYHATIXG
emtelOnxe ota mhalota TG Véoc- eldocoucag unepBopitntag xan 1 Aoryxpotllovy| TUXVOTNTO TOoU
TEPLYPAPEL Lol TETOLL Vewplol GTOV GUYXEXPUIEVO UTIEQYWRO Elvol

L= /d49 E{M}Vp + @0 + w® [iPEV, ® + h.c.]} (1.36)

1 omola GTaY YpaPel GE UOPPT] CUVIGTWOWY XAl APO) OAOXANEWOCOUNE TI¢ EELOWOELS TGV PorninTixdy
Tedlwv, Talpvel TNV Lopp

1
L = SR+ ADA 4w’ G 9, A" 0, A (1.37)

ITpénel var avagépoupe OTL To yewuAixd uncpnedio P mpénel va €yel oudétepo R-goptio yia tTnv -
TouYT) acTadeldv oty Yewpla. Autd cuvemdyeton 6Tl 1) R-cuguetpior amoryopelel TV ElCay WY
ureEdLVaUIX0) oY Yewplo pag dnhady| dev umdpyel F-tinou duvouxd. Erlong n ueiétn nou xd-
VoUE €0ELYE OTL TO YELpoAxd utepmedio @ mpemel eniong va elvon oLBETERY POPTIOUEVO XaL %dTw oo
afehavec 1) un oupuetpeleg dnhadr dev umdpyet oUTe D-T0mou duvouixd. Luverdyetan Aotmoy Ot ebvou
adLVaToV auTH 1 Vewpla Voo amoxTACEL UTUPCUUHETEXO SuVOXO. AuTO Oung Oev eTneedlel xadohou
NV YeNowoTnTa TNg Vewplog oTny xoopohoyia agol eivol Yvwo o 6Tl xoTd TNy didpxelo Tou TANUo-
etopoU 1 utepouuueTela elvon omtayouevr. Enione to ondowo tng unepouuueTolag cuvOEETL GUECH UE
10 ondotwo g R-ouppetplag oty vEo-eAdooouoa utepPapitnTa. OTOTE OTOLGOATOTE PNy UVIGUOG
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onoctuatog g unepouuueteiog Yo tapafidoet xan TNy R-cuuueTteio 00N Y®OVTAC E0X0AU GTNY BNULOVE-
yiow Buvaxol Yo To Baduwtd Tedio pog, To onolo ydew tou unyovionol N'EB evepyomnotél ue euxohio
ua teplodo TAndwpetouo.

‘Eyouv mpdogota avaxodugUel pla oelpd amd Pn-emovoxavovixorotionues Yewpleg Boduwmtov me-
Oleyv Ue TNV WOLOTNTA 1) EVEPYELOXT OXdha O TI¢ YapoxTneilel va mopouével otaldepr] EVEpYELaXd.
Emuniéov autéc ol Yewpleg otov eninedo yweo €youv wa ouuuetpio n omolo amoxakeiton Galileon
uetdieon

T =T+ c+bya™ (1.38)

OToU 8,byy,elvon o otardepd xon var oTadepd Btdvuopo avticTorya xaL T elvan To AeYOUEVO Tedlo
Galileon. H amoitnon auth n Yewpla va €yel povov dedtepne tdine edlonoeic xivnong, woTte va
amogeuyVoly actdieeg , teptopilel Tic Vewpleg Tétolou TOTOU XaTd TOAD.

Ané téte mou avorahdpUnxay auTég oL Yewpleg €youv YIVEL dpXETEC TPOOTAEIEC UTEQCUUUETRO-
moinoric Toug. Méypl mpdTivog xopuld tpoordiela dev elye TeTOYEL ,BLOTL To CUYXEXPUIEVOL LOVTEAX
Tou elyav mpotadel uovo ot cuyxexpéva utdBodpa poldlay va divouy Vewplieg TOTou Galileon ve
oty xavelc Yehetoloel Ty yevixr| Yewpla 1} E€peuye Arydoa amd ol ouyxexpLUEVa UTOBadpo XaTao TRO-
puéc aotdleieg epgaviCovtay. Eyel howmdv npotadel and xdmooug epeuvntéc 6Tt xufinég Vewpleg
Galileon tinou dev pumopolv vo culeLyYolV UE TNV UTEPCUUUETEO.

Yxomog pog ebvar ) HERETN XaTd TOCO E'VAL EPIXTO VoL XATAOXEVAOEL xavelg Yewpleg Galileon
ouleuyuéveg Ue TNV umepouppeTela.  Av xan Tor amotehéopatd pog emBefomvouy TNV euxaocia 6Tl
0ev undpyouv LTepoLUETEWES xUPIKEC Galileon Vewpleg, autd Bev umopel vo amodeyVel yevixd.
AxohovdovTog Ouwe Evay EUECO BEOUO XUTUPEQIUUE VO XATACKEVACOUNE TNV TEMT UTEQOUUUETOLXN
Galileon Yewplo Tng omolag 1 pop@t 6OV LTERYGEO elvor 1 e€AC

T 1 B T =G mnrs ES
£y = / A0(BD — - B(Da0, B35 Dy0,B)™ 0, ). (1.39)

O umolovixde topéag TéTolwy Yewptwv tautileton pe to pryadixd tetpanid Galileon
4
A6

£ga1 = 10%7 — (8[k8k7?) ((918l7r) (8<] (947?) (140)
emPeBarcyvovtag 6Tl TporyuaTixd €youpe oto yépl o Galileon Yewpla.

Toug yetaoynuotiopols (1.38) Toug EnEXTEVOUE GTOV UTERYMORO. LUYXEXPWUEVA, VL0l EVOL YELOOMXO
UTEPTEDLD TPOTEIVOUE OTL O CUVETY|C TEOTOG ETEXTACTC TOUG Efvan

d— D+a+by™. (1.41)
OOV
Y™ =™ +ifo™0 (1.42)

va onueiwdet 6t o Galileon,uetocy Nuatiopog Tou Tpotelvoupe TporyuaTxd avamapdyel wa Galileon
petdieon yio TNV PoduwTy| YUUNAWMTERT CUVIGTOON TOU YELRoAX0) Tedlov P, evdy cuyyEOVKS Bla-
neel Vv yepohxdtnTd Tou. H Vewplo (1.40) ebvor avodlholwtn xdtw amd tnyv petddeon (1.41), xou
mdhy emBefoucdvovtag OTL €youpe o Galileon Yewpla. Na onueiwidel 6L dheg oL mpoavagpepleioeg
TeoPAnuoTég Vewpleg Bev €youv auth Ty ouduetplo . H enéxtaon howndy tng Galileon odupetpiog
OTOV UTERY PO amoTeEAEl TparypoTixd va aflOTIGO XQLTHplo Tou unopel va yenowonoinel xateuieloy
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OTIC UTEPOUUHETEES Vewpleg YRUUUEVES CUVUPTACEL UTEPTEDIWY OO TE Vo BlEUXEVIcVEL €&V TEMX
meoxettan o o Galileon tomou Yewplo 1y oyt

H pédodoc mou axoroudficaue yior TNV ovoxdiudn Tou UTEQCUUUETEIXOU TETEUTAOD ULyadLXo
Galileon fitay OO TEOAVAPEQUUE EUEST]. LE TEOCPATY DOUAEL EVOC CUVERYUTN ElyE emonuaviel OTL
ot Galileon TOmou Yewpleg umopoLY Vo TepLypapoLY amd Vewpieg BaplTnTag UE AVOTEPES TUPAY MY OGS,
otay auTég uehetniolv oe cuyxexpéva opla. Luyxexpyéva 1 Yewpla Papbtntoag mou Yo énpene va
YenoomotnUel yiar Vol XATUOXEUAGOUNE TO TETEATAG Utyadixd Galileon eivon ) L. XenowonotwvTog
Aowmov Yeddodoug Tou umepyeou xou T L o oLleuén ue tnv umepPapitnTa emBeBoundoaue OTL M
uévodog autr Acttouvpyel xou oTNY LTERPUEVLTNTA EPOCOV TEMXE Uag UTESELCE TtoLd etval 1) Lop@Y| Tou
TeTpanhoU uryadxol Galileon cTov UTEEY®OEO.

Edv ou dwtapoyée xatd tny didpxeta Tou TAnioplouol tpoépyovial and To (dlo Tedlo mou odnyel
Tov TANYwelopd, To inflaton, To tpdoputa dedouéva amd Tov dopupodeo IThavx yia Tic avicotponieg
otV xoouxr axtvofohio utofBddpou €youv meptoploel xat” TOAY Tor oo TANYwWELS TINd poVTEAX
evog medlou. To povtedo mou elvon To TOAY cuPBatd Ue To DEBOUEVA EVOL TO AVOTEPWY THPAY YWY
TANYWEIe TIX6 povtélo Tou Ltapofvoxt . Autéd meptypdgeton and tnv Aayxpoatllavh

L=R+aR*, a>0 (1.43)

XOUL TIEPLEYEL EXTOC a6 TO Baputovio Evay emniéoy Badud eheviepiac. H otadepd olleudng o eivon e-
Tixr) Ko Te vo anogeuy Yol aotdieies. Tpaypatind, uropel xdmnolog va Eavarypdder tnv Aayxpoatliovi
¢

L = (1+2a¢) R — a¢? (1.44)

ond v omolo ohoxhnedvovtag to nedio @ UnopoUUE Vo TépoUUE Tiow TV oy Yewmplo (1.43).
Ipénel va mapatnencouue OTL auty| ebvan wa xhaoowr avaroyio. Mnropel howmdy tohpa xavelc vé
Yeder TV mapamdve Yewpla 0To Eivotely cUoTnUa Ue TNV YeNoT TOU UETACY NUATIOUOU

Gmn = (14 2a9) gimn (1.45)

7 4 7 4 4 7 4 4 4
xo vor otvoohOgeL OTL 1) avdhoy T Barduwtr-tavuo iy Yewplo e o opyixd poviého Ltopofvoxt lvor

N
L=+—g|R—60,00"¢ — %(1 — e 292 (1.46)

omou xau ylveton govepd yiutl mpénel 1 otadepd a vo ebvan Yetnr). O mAndwpioude AouPdver ywoay
omote 10 Podumped TEDID HVAGEL apYd XUTE Ux0g TNG TEBADUS TOU DUVOUIXO) TOU ETULTUY YAVETOL Yot
@>>1.

Yxomoc pag elvon vor ueretiooupe TNV ddhvatdtnta epfoantiogol g Yewplog Xtopolivoxt oty
ehdocouca tetpadidotaty N=1 unepfoapitnta. O tpdmog Vo Yivel autd dev elvon povadixos. O Adyog
YLt aUTO Efvon OTKC €YOUUE TEOUVAPEREL OTL UTdPY oLV 600 12412 eldocouces Vewpleg uepPoplTn-
tag. ‘Otav 0ev umdpyouv avmTEPES TUEdYwYOL oL Buo auTEC Vewpleg etvan (Bleg, xadoTL cuvdEOoVTOL UE
METUOY NUATIOUO BUUBIXOTNTOS UEGW TNE ouvarlolnTng Yewploag unepBapitnrag. H noiwud-ehdocouca
umepPBapltnTa TEoxUTTEL OTay Xuvelg xadoploel Ty Podulda tng cuvariolwtng Yewplog Yéow evog
Yeteohxol avtiotaduotind unepnediou. H véo ehdocouca Vewplo unepfopitntac mpoxinTtel 6toy
xavelc xodoploel Ty Podulda Tng ocuvarlointng Yewplag Yéow evOC TEUYUUTIXOU YEUUUIXO) avTL-
otaduoTixol unepnediou. ‘Otav GUKC ELOGYOUUE OVWTERES TOROYWYOUS 1) BUABIXOTNTA METOEY TWY
Yewplwv Todel va Loy UeL.
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Ye oyetxnt| gpyocio EpeUVACUUE TOV euBanTioud Tou MTupolvoxt Yoviéhou 6T duo 12412 e-
Aooouceg unepBaplTnTee xan YeAeThooe Tota ebvan 1 avdhoy T Boduntrh-tavuo iy Yewpla Tne xa-
Yepde. ‘Omwe ebvan avouevouevo, enetdr| 1 Yewplo Ltapofivoxt etvor Yewplo aveTépwy Topoy®ynY,
1 SuaddTNTa TadEL Vo Loy Vel xan Yo atd Tov AdYo ol duo eAdocouces Vewpieg £youv BlagopeTi-
xn) avéroyn Baduwthi-tovuotr Aaypatliovy| Teptypapr. Autd mou toylel i TNV TEPINTOON NS
Tohoudc-eAdocoucag unepPoupltnTog etvor 6Tl 1 avdhoyn Baduwth-tavuoTixg teptypapy|) Tng dldeTou
amd pa oLVl utepBapltnTa ot UCELn UE BUO YEWRUAXES UTEQTOANATAETES OL OTIOIEC €Y 0UV BoUY
TOEOUOLL PE TaL HOVTEAX TOTOL no — scale. e auTAV TNV TERITTWOT TEOXUTTEL F-TUTOU BUVUUIXO
v t0 inflaton. Avtictoyo, outéd ToU WOYVEL Yo TV TERIMTWOT NG Véag-eAdocovoag unepapi-
Tog ebvan 6Tl 1) avdhoyT PodunThA-Tavuo Tiny Teptypapy| Tng dideTan amd o cuvilr uepPouplTnTa
oe oUleudn pe éva TeaypaTixG LTEPTESio Slaviouatog e udlo. e aUTAY TNV TEPITTOOT TEOXUTTEL
D-70mou duvouxd Y to in flaton.

Téhoc pehethooue xan mdoavée avetépas Tdéne dlopdwoelc oto in flaton duvauixd. H cuyxexpl-
uéveg dlopdwoelg mou Vewprooe avTioTolyoLy ot uTepPuplTNTES TUTOU

L=R+ R +R" (1.47)

Kot yia ti¢ duo untepPopitnteg oL dtopdnoelc 0dnyoly ot PatumTEC-TAVUO TIXEG AVAAOYES TEQLYQUPES
cuviifoug UTEEBUEVTNTAS TTOU TEPLEYOUY AVWTEPES TORUYWYOUS UTEPTEDILY X0 OIS EYOUUE TEOUVAL-
(PEPEL GLVELGPEEOLY GTO PodumTO duVoIXG® €0 ONAAdY 6To duvouxd Tou inflaton. Beélnxe 6Tt
UTIEPY 0LV TEQLOYEC TOU TEBIOL TYWV TV TapaUéTewy TN Yeplac 6T omoleg o TAnYwplouds amnheiton
amb QUTES TIC AvVTWEAS TEENS dloptwoelc. Trdpyel oune xou €va €0pog TWHY 6To omolo o TAne-
plouog dev amnieiton omoTE T LoVTERX TUTOU LToRoPvoxt TUEAUEVOLY TON) Xohd TEOTUTAL YioL TNV
TEQLY PUPY| AUTAG TNG TEPLOOOL TOU GUUTAVTOG.

1.5 Eniloyocg

"Eyouv mepdoel cappdvta ypdvia and Ty Te®Tn Yewentiny avagopd otny Yewpio Tng unepcuuueTpiog.
Ev toltowg péypet xan ofjucpa dev €xel Bpedel xavéva ofua mou va emBeforcdver Ty Uopdn auTtho TG
ouupetplag oty @lon. Acg un Blactolue dung vo Bydhouue cuuTepdoUoTa, axdun xot To UTol6vio
Xuyyg, o axpoywwiatog AMdog tou xadepwuévou tpotiTou, Tou eyl TeofBiegldel oyeddy o an’o Te-
VAVTOL YoVl , HOALG Twpeo emBefonwinxe tepapatind otov emitayuvth LHC. Eivor o endpevog y0pog
am6 dedopéva Tou emtayuvty) LHC mou Ya pllel meplocdtepo 9w otny avalATnor Ty UTERCUUME-
TEWOY CLUYTEOPOY TWV oWHATIOIWY Tou xadiepwuévou tpotitoou. Tlpénel duwe xaveic va €yet mdvTa
GTOV VOU TOU OTL av TEdyUoTt 1 LTepPoapUTNT elvor 1) Vewplol YUUNADY EVEPYELDY TWYV UTERKOEOMY,
TOTE BeV UTdEYEL Xavévac Aoyoc (TouldEioToy dev Eyel Bpedel uéypl Thhpa) yior Tov omolo 1 EvepyELd-
x1) xhipoxar onaoipotog g unepouppeTelag Yo énpene v ebvon younhy. H €peuva oty dewpla tng
umepouppETElag xon NG uTepBoplTnTac cuveylleTon, av xaL oL ONUAVTIXES VewENnTés avoxaAlpeLg
€youv yivel, utdpyouv Vepehiomd epwTANTA TOU ToEouévoLy avamdvtnTa. Tlporyuotind, véa dedouévar
TopaTnenotoxd dedopéva and tov dopupdpo PLANK géovouv tnv xocuohoyio oo mpooxivio.

e quThY TNV OWTE3Y| TUPOUCLAGUUE TNV TEO0D0 GTA O CNUAVTIXS VEpata TNG UTEpoUUUETEloG
xou TG untepPopnTog AVopUNnTO OTECUIO UTERCUUHETELNS, UTERCUUMETELN X o COUAUTLOWMNY QUOLXT),
umepPBapitnTa xou xoouohroylo. Autd ta Vépata Tor UEAETACOUE omd TNV PO Ut TOUC OXOTLd,
OVOUPEQOUEVOL OTIOU HTALY ATaEOUTNTO TNV Quoxt| Toug onuacio. Tlpwta Tapoucidoous véeg uetddoug
Ylot TO OTdOoWo TG UTEpouupeTeiog, ol ontoleg Bacilovton ot TehecTég avmTépag ddotaong. Totepa
TOPOUCIICHUE TPOTOTOLACELS GTO UTEPCUUUETEIXO XUDEPWUEVO TEOTUTO UE EVal xou ovo Xiyy¢ Tedlo
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omou xou Berxaue war tepopyla yior Tic udleg Twv Buplidv QEPUIOVILY EVK CUYYROVKS AOYW TNS Un
YEUUUIXNG UTEROUUMETEIAG oUTA To LOVTEAN TOREYOUY Lol EAACTIXOTNTA OGOV 0popd TNV TEOBAETO-
uevn pdlo Xuyye. Téhog xataoxcudooue ot HEAETHOUUE GUVETY| LOVTEAA UTEQBUEUTNTAUC AVOTERWY
TopAY YWY Tou oyetiCovtan Ue TNy olYypovn xocuohoyia. BéPoua moAAd epeTAMATA ToRAUUEVOUY
avolytd, ota onola va arevduviolue 6To UEAAOY.

Ev xatoocheldt, omoto xon var ebvon tor TELpoortind OEB0MEVA, 1) MO NUOTIXT AETIOTNTA TV VEWELDY
TN¢ unepoudueTelog xan Tng unepBapltnTag civar mou TEooeEAXVEL Evay VEWENTIXO PUOLXO, 1 UE To
Aoy Ttou P.ovan Nieuwenhuizen yw v urnepfopbtnto: "Eivon 1 mo wpata Yewplo forduldag mou
&épouye, 1600 wpala, ToU TEayUUTXd, Vo TEETeL xou 1 QUoT Vo TV yvwellel.
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Chapter 2

Introduction

Supersymmetry is a gauge symmetry that relates bosonic and fermionic degrees of freedom. It
is an extension to the Poincaré algebra with spinorial generators but manifests as an internal
symmetry in a field theory setup. For it’s mathematical elegance, it is often characterized as the
most beautiful symmetry of particle physics. It has been 40 years since it was first proposed as
an underlying symmetry of quantum field theory, in the early 70’s [80,192]. Since then there
has not been any direct evidence of the relevance of supersymmetry in particle physics. On top
of that, we have just entered a new era of theoretical high energy physics: the discovery of the
Higgs particle era, with a mass of 126 GeV. With the discovery of the long sought after scalar
boson all particles the standard model predicted have now been found. The particular mass of
the Higgs boson triggered a debate on if and how supersymmetry can solve the hierarchy problem,
and the question of a hierarchy problem inside the minimal supersymmetric standard model has
been raised. After all, the standard model of particle physics works extremely well; why try to fix
something that’s not broken?

The answer to this comes from many independent considerations [110]. Let us present some
simple arguments. It is well known that scalar particle masses are sensitive to quantum corrections
due to heavier particles. Therefore inside the standard model, there is a fine tuning problem: The
Higgs boson mass is extremely sensitive to physics beyond the standard model, and a great amount
of fine tuning is needed in order to have the present value of 126 GeV. If there is no new physics
nevertheless, then there is no fine-tuning problem, and no reason to question the validity of the
standard model up to infinite scales. In fact the need for new physics is most evident even from an
everyday life experience: Gravity [189]. No gravitational interaction has been introduced
within the standard model. The job of incorporating gravity into particle physics comes along
with fundamental open questions such as:

e quantum gravity
e cosmological constant
e dark matter

which are far from being solved. Thus new physics should exist, and should address these questions.
Moreover there is the long-standing hope of grand unification, which does not seem to have any
luck inside the standard model as it stands.

Accepting the fact that there is higher scales than that of the electroweak scale, brings us to
the standard model fine-tuning problem. The electroweak sector of the standard model contains
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within it the weak scale, a parameter with the dimensions of energy, namely
v ~ 246GeV (2.1)

where v/ V2 is the vacuum expectation value of the neutral Higgs field. The fact that the Higgs
field aquires a vev and spontaneously breaks the local gauge symmetry, gives rise to a natural
scale, which is connected with all the masses of the theory. For example, the tree level mass of the
W= gauge bosons is given by

My = % ~ 80GeV (2.2)

where g is the SU(2) coupling constant. The Higgs field is an SU(2) x U(1)y doublet

H:(%) (2.3)

where the h° is neutral under the unbroken electromagnetism U(1). The scalar potential has the
famous form

V=—u?H'H + 2(1{*1{)2 (2.4)

where A > 0 and g2 > 0 which leads to a mass for the neutral Higgs particle

A
M, = v\/; ~ 126GeV. (2.5)

Note that the negative sign —u? in (2.4) is crucial for the symmetry breaking mechanism to take
place, it should be, whatever the cost, preserved - the same goes for the magnitude of —p?. If
instead we had +u? there would be no symmetry breaking and the vacuum expectation value of
the Higgs boson would be at v = 0.

Until now we have been discussing only tree level physics. The fine tuning problem arises as
soon as we start taking into account radiative corrections [171]. It so happens that the standard
model of particle physics is a renormalizable theory, this meaning that finite results will be obtained
for all orders in loop corrections and for allowing the loop momenta go to infinity. This certainly
guaranties the validity of the results obtained and the fact that the theory is indeed well defined,
but does not exclude new physics, quite the contrary, this theory is suspiciously sensitive to new
physics as we will demonstrate.

In quantum field theory one generically encounters integrals of the form

A
/ d*k f(k, external momenta) (2.6)

where A is the cut-off, it is an energy scale indicating that our theory stops being predictive, and
it should be modified. Technically, the standard model in the presence of no new physics, is viable
for

A — . (2.7)
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Nevertheless we know of at least one scale where the standard model has to be modified, the
quantum gravity regime

Mp ~ 1.2 x 10"GeV. (2.8)
Moreover there is the indication for another energy scale, the grand unification scale
MGUT ~ 1016G6V (29)

where inside the standard model the running couplings tend to meet. Eventually this only happens
in the minimal supersymmetric standard model, giving another hint towards supersymmetry [5,
161].
In particular, the Higgs field self interaction term
A

Z(HTH)2 (2.10)

in (2.4) will give rise to a one-loop self interaction diagram proportional to

A . 1
)\/ N — (2.11)
k2 — 2,

which contributes to the HTH term. This gives a positive correction to the tree level potential
~AMHTH (2.12)
leading to the one-loop corrected quadratic term
— oy = —p AN (2.13)

In fact in order to take the quantum corrections into account one has to minimize the scalar
potential (2.4), but now using ,uf)hys instead of ©?. Let us recall that the Higgs mass is connected
tO fiphys Via

Mh = \/§,uphys. (214)

Let us now consider new physics indeed appearing in the Planck-scale 10'°GeV whereas the Higgs
mass has been measured to be 126 GeV. Thus the following miraculous cancellation must occur

—126GeV = —pu? + 10"GeV (2.15)

implying that the tree level p? is of the order of the Planck-scale and then they cancel with A2
up to a precision of a few GeV. This is the standard model fine-tuning problem. Note that the
standard model fine-tuning problem even though stems from the Higgs mass is not only related to
that; ultimately, all masses in the standard model are affected by this.

Let us mention in passing that the standard model fine-tuning problem is not only a matter
of taste, it is common in physics that considerations for academic theoretical problems have led
to breakthrough new predictions. For example, when Dirac proposed the theory of electrons and
positrons in order to solve the negative energy eigenvalue problem of the Klein-Gordon field, it was
inevitable not to double the spectrum of the observed matter particles. Antimatter was discovered
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only 10 years latter. Another example is the four-fermion interaction which even though worked
very well, it was realized by Heisenberg that its predictability breaks down at the, unimaginably
at that time, high energy scale of 300 GeV. Later this was traced to the non-renormalizability of
the theory, a pure theoretical problem at the time. Is the standard model fine-tuning problem
another example as the ones above, signaling the need for new physics?

It is widely believed that the most natural situation for solving the fine-tuning problem would
be the existence of a new scale, within an order of magnitude from the weak scale. Now we are
faced with the evident questions:

e What is this new physics?
e Does it have a fine-tuning problem of its own?
e Can we incorporate gravity?

There have been various proposals for the possible nature of new physics, but only few can provide
a deep physical insight.

Let us be optimistic and imagine the best situation for solving the fine-tuning problem: the
A? correction to the Higgs mass naturally cancels. This means our theory should contain specific
tree level interactions to guarantee this cancellation. The answer is not too far away, all one has
to realize is that this is exactly the loop contribution due to a Yukawa coupling type of interaction
of a fermion with the Higgs field. At zero external momentum it is given by

(—4%% /A d%m) H'H (2.16)

leading to a total contribution from both fermionic and bosonic loops
(A—g))N’H'H. (2.17)
One can now postulate
A=g7 (2.18)

such that the loop corrections exactly cancel. Can there be a deeper reason behind such a miracu-
lous cancellation? This is where supersymmetry steps in; these kind of relations between coupling
constants is characteristic for supersymmetric theories. Note that the bosonic loop correction could
only be canceled by a fermionic one, due to the opposite sign one has from the closed fermion loop.
Thus, this symmetry would also require the pairing of fermions and bosons. The topic of this
dissertation is to further study the aspects of this super gauge symmetry.

The first question that comes to a theorists mind is then: can supersymmetry be a local
symmetry as well? The answer is affirmative, this would be the theory of Supergravity [70,97].
Since supersymmetry is a closed algebra with the Poincaré group, making supersymmetry local
demands rigid space-time transformations to become local i.e. general coordinate transformations.
It is then inevitable if one wants to turn supersymmetry into a local symmetry not to introduce
gravity. The only thing remaning is to identify the gauge field of supersymmetry, this is the so-
called gravitino, it is the supersymmetric partner of the graviton. Indeed, from the work of Rarita
and Schwinger [173] we can see that the spin—% fermion has a gauge invariance of the form

5UE, = D (2.19)
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which is nothing but the gauging of a local supersymmetry. In fact the free pure supergravity theory
contains only the Einstein-Hilbert action and the action for the Rarita-Swinger field. Eventually,
the theory of supergravity is the super covariantization of the field theories we are interested in [60].

In the first years of supergravity it was believed that the non-renormalization properties of
supersymmetry could control the divergencies encountered in the quantum theory of general rela-
tivity [165]. Even though supergravity has a better quantum behavior than general relativity, still
it becomes divergent, at higher loops. The common belief in the present day is that supergravity is
the effective low energy incarnation of a more fundamental and quantum mechanically consistent
theory - the superstring theory. It is indeed possible by calculating superstring scattering ampli-
tudes to recover an effective theory in the language of particle physics and surprisingly enough: it
is exactly the spectrum of an on-shell 10 dimensional supergravity theory! Thus it is believed that
the study of supergravity theories indeed describes our world in energies far lower than the string
scale where quantum gravity and other effects become important.

In this dissertation we are concerned with modern subjects on supersymmetry and supergravity.
In order to do this, it is demanding that we use a formalism that allows us to built supersymmetric
Lagrangians. This formalism is the superspace [39,72,99,193]. A short introduction of superspace
techniques is given in the first chapter. We give the notion of superfields and how to read their
component form, which then is used to write down supersymmetric Lagrangians. It is important
that the Lagrangians we find from this method are off-shell, i.e., they contain all the auxiliary
field sector of the theory, which is eventually integrated out. Supersymmetry has a wide range of
supermultiplets, we mention here the ones we will employ in the body of the dissertation which
are in fact the ones commonly used. After presenting basic tools on supersymmetry we turn to
supergravity and extend our discussion. It is quite interesting that there exist two off-shell versions
of the minimal supergravity, both having their own interesting properties. The old minimal [95,183]
version was the one first to be discovered, along with the graviton and the gravitino it contains
as auxiliary fields a complex scalar and a real vector. The new minimal [98,179] supergravity was
later discovered and on top of the gravitino and the graviton it contains two more gauge fields, an
auxiliary vector that gauges the R-symmetry and a two form. Let us note that at the two derivative
level the two minimal off-shell supergravities are equivalent. When higher order corrections are
taken into account the duality breaks down [92].

Supersymmetry might be a beautifull theory, but it has not been observed so far in the collid-
ers. Thus, one of the most important subjects is supersymmetry breaking. In chapter 3 we discuss
new methods for supersymmetry breaking. We show that contrary to a common lore that wanted
supersymmetry broken only by leading terms, and preserved by higher order corrections [43], that
it is possible for the opposite to occur [89]. We have found specific examples where supersymmetry
indeed is broken by higher order correction when there was no supersymmetry breaking in the lead-
ing terms. Theories of this sort have two branches, a supersymmetric and a non-supersymmetric
one. It does not seem conceptually correct to consider these branches as two phases of the same
theory, rather they are two independent theories.

In chapter 4 we revisit the MSSM. The ultimate goal of supersymmetry is to be incorporated
within the standard model. Nevertheless, due to technical reasons, it is widely believed that
the minimal supersymmetric standard model should contain two Higgs doublet supermultiplets.
Moreover supersymmetry breaking is introduced as soft terms, which can be equivalently written in
the superspace language as contact terms of the hidden SUSY breaking sector with the standard
model sector. The low energy effective theories of broken supersymmetry can be described by
non-linear supersymmetry [40,155,174,188|, and models which incorporate non-linear realizations
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of supersymmetry into the MSSM have been built [11]. These models have some very interesting
properties. Our work was concerned with the fact that contrary to the common belief, it is equally
motivating to have a single-Higgs supersymmetric standard model [86]. We also point out that due
to introducing non-linear supersymmetry for the breaking sector some very interesting properties
have been found. We also discuss the decoupling limit of the sgoldstino and how it leads to
non-linear supersymmetry realizations, in a supergravity setup [85].

We then turn to cosmological applications of supergravity in chapter 5, and more specifically
we are interested in higher derivative theories. Introducing higher derivative theories in super-
symmetry and supergravity is highly non-trivial. In fact there exist very few known examples
of consistent supersymmetric and supergravitational higher derivative theories. In this part we
discuss how they are constructed and what is their relevance to inflationary cosmology. We discuss
the supersymmetrization of the non-minimal derivative coupling [84], the quartic galileon [87] and
finally the Starobinski model of inflation (R + R?) [88], which seems to be favored by the recent
PLANCK satellite data.

Finally, in chapter 6, short concluding remarks are given.
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Chapter 3

Techniques of 4D, N = 1 Superspace

3.1 Global Supersymmetry

We give a technical review of the basic formalism and tools concerning the 4D, N = 1 supersym-
metry algebra. We discuss the manifestation of supersymmetry on field theory via the superfield
method; a comonly used technique to study 4D, N' = 1 supersymmetric field theories. Superspace
is an elegant way to tidy up the properties of supersymmetric theories. More specificaly we present
the definition via projection method, and show how all the properties of a supersymmetric theory
are derived from this.

3.1.1 Supersymmetry Algebra
The 4D, N = 1 supersymmetry algebra is

{Qode} = 2Ugdpa

{Qa: @5} = {Qa,Qs} =0
[P Qo] = [P0, Qa] =0
[P(h Pb] = 0. (31>

The supersymmetry algebra is the coset of the super-Poincaré over the Lorentz algebra. Indeed,
this algebra can be viewed as a Lie algebra with anticommuting parameters, such that

{60,860} = 260°¢P,
{6Q,6Q} = {£Q,6Q} =0

P Q) = [P€Q)=0 (3.2)

with the summation convention
€Q = €Qa (3.3)
£Q = &Q° (3.4)

Thus we can define the corresponding group element

G(z,0,0) = H-raP"+0Q+0Q) (3.5)
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and with the use of the Hausdorfl formula

eAeB — 6A+B+§[A,B]+f—2[[A,B],BHI—;[[B,A],AH... (3.6)

we will identify the apropriate generators. For two group elements we find
G(0,£,6)G(2,6,0) = G(a* +i00°¢ —i€a®0,0 +&,0 +&). (3.7)

To find the differential operators one interprets (3.7) as a motion on the parameter space of the
group induced by the appropriate generators. By convention, in the case of left multiplication
(that is Eq. (3.7)) we find the supersymmetry generators

P, = —i0,
a s _a &
ro = % — zaaéﬁ aa
1] a c) =ado
Q = 67 - ZeaO' &1 (38)

which are a differential representation of (3.1). For the case of right multiplication one finds the
superspace derivatives

P, = —i0,
P .
D* O} ifa0500 (3.9)
= — 40,0 » .
004
These operators realize the following flat superspace geometry
{D.,Ds} = —2i0%.0,
{Dn,Ds} = 0
{Ds, Dy} = 0. (3.10)

In fact Eq. (3.10) describes torsion, this serves as a constraint when one solves the Bianchi identities
of the supergravity geometry. Moreover, the two sets of differential operators (3.8) and (3.9)
completely commute-anticommute with each other. Let us note that the AV = 1 supersymmetry
can be naturally enlarged by a chiral U(1) symmetry, refered to as R-symmetry, with the following
commutation relations

1
D, = —-D
R, Do) = 5D
_ 1_
R,Da] = 3Da. (3.11)

A conventional road to find representations of supersymmetry on fields is by the expansion in
the anticommuting variables. We are not going to follow this formalism here. Nevertheless, it is
important to first mention it, because it will give a good insight to the more formal “definition
via projection” which we are going to use throughout this dissertation. Since now we are working
with a superspace spanned by z%, 6, 0, a general field on this space will be

V(z®, 6%, 0%). (3.12)
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These fields (3.12) are called superfields. One can always expand (3.12) in the grassmann variables,
and the series will always terminate due to their anticommuting nature. This representation
nevertheless will be highly reducible. In order to extract a non-reducible representation constraints
are imposed. Let us now expand in the anticommuting space

V(z,0,0) = f(x)+0¢(x) + Ox(z)
+00m(z) + 00n(z) + 00 Gv,(z)
+000X(x) + 000 () + 0000d(x) (3.13)

and all higher powers of § and # vanish. Note that by simple dimensional analysis, not all the fields
inside (3.13) can be physical; some will be gauge degrees of freedom and some will be auxiliary
fields and some will be solved in terms of the physical ones. Auxiliary fields are components of
supermultiplets that guarantee the closure of the supersymmetry algebra of shell. This is needed
for a well defined symmetry in a quantum mechanical theory. Auxiliary fields are usualy gaussian
in the Lagrangian and non-propagating thus can be integrated out in terms of the other fields.
Their role in supersymmetry and supergravity is central. The transformation law of the superfield
is defined as follows

5V(5,0,0) = def(x) + 05cp(w) + Ioex(x)
+005em () + 005en(x) + 05°05¢v, ()
+0005:\(x) + 00051 (x) + 00005:d(x)
= (€Q+EQV. (3.14)

From Eq. (3.14) one reads the supersymmetry transformations of the components of this gen-
eral superfield. The discussion up to now gives us a good insight of the Grassmann nature of
supersymmetry, nevertheless, we will depart from the above considerations in two ways

e We will use the method of projections to define the component fields of (3.13)
e We will use specific supersymmetric conditions to reduce the degrees of freedom inside (3.13)

Let us now see how this comes about.

3.1.2 The Definition via Projection Method

It is easy to see that hitting the superfield (3.13) with the derivative D, of (3.9) and then setting
the thetas to zero all we find is the leading fermion component of (3.13). This observation will
be the guide to the definition via projection method. Let us note in advance that this method
of defining the component fields or the Grassmann expansion method are completelly equivalent,
up to irrelevant redefinitions. In fact by a correct definition of the projections no redefinition is
needed. We will also now present the basic multiplets of supersymmetric field theory, and at the
same time give their projection definitions.

Chiral Multiplet

We will now introduce the chiral superfield ®

Dy® = 0. (3.15)
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This multiplet is widelly used for the simple fact that it can accomondate chiral fermion, the only
fermion found so far in nature. The second reason for its wide use is its simplicity, in fact it was
the first supersymmetric multiplet discovered by J. Wess and B. Zumino. The degrees of freedom
inside the chiral multiplet are a physical complex scalar A with 2 degrees of freedom, a physical
complex Weyl spinor x, with 4 degrees of freedom and a complex auxiliary scalar field F' with 2
auxiliary degrees of freedom. Altogether 4 fermionic and 4 bosonic degrees of freedom. Note that
fermionic fields anticommute

X1 X2 = —X2X1 > XiXs = —X3Xi- (3.16)

The definition of the component fields is

o = A
Dy®| = V2xa
D?*®| = —4F (3.17)

In the same way one defines the anti-chiral multiplet as

Dy® =0 (3.18)
and components
B — 4
Dy®| = V24
D2®| = —4F. (3.19)

Chiral Projection

Let us now consider a generic superfield . From the anticommuting properties of the D’s

{D.,Dg} =0
we have that
D.(D’U) = 0.
This implies that
1
—-DU
4
is a chiral superfield. The operator
L2 (3.20)
1 .

is called chiral projection. In the same way one defines the anti-chiral projection as

1_
——D2 21
; (3.21)
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Real Linear Multiplet

A real linear superfield is defined to satisfy the following two conditions

D*L = 0
DL = 0
L = L. (3.22)
The component fields of this multiplet are defined as follows
L = ¢
DoL| = V29,
Dall = V2Ua
1 _
_i{Da’ Ds}L| = o2, h, (3.23)
with
1
he = 5e‘”’c‘i(&,bcd + Ocbap + Oabe) (3.24)
and
bap = —bpa (3.25)

a real two form field.

Abelian Field Strength Multiplet
Let us now consider the following real superfield
V=V. (3.26)

The superfield (3.26) is usualy reffered as vector superfield, since it contains a real vector, in the
following projection

1

2
Nevertheless the constraint (3.26) leads a reducible multiplet. There is two ways to reduce it. First
one can impose further constraint like (3.22) which will render the lower components physical while
the higher will be solved for the lower ones; this will lead to the real linear superfield (3.22), (3.23).
The second way is to build gauge invariant quantities out of V' and thus, reduce the degrees of
freedom it carries by gauging some of them away. Note that the degrees of freedom we will gauge

away are exactly the ones inside the real linear multiplet. It is easy to show that the following
chiral superfield

[Da, Da]V| = 0%, v, (3.27)

1._
W, = —ZDQDQV (3.28)

is invariant under the following transformation
VoV4+A+A (3.29)

where A is a chiral superfield (3.15) and A an anti-chiral (3.18). Note that the transformation
(3.29) has the following effects on the components of the vector superfield V/
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e [t acts as a field dependent shift on the components of V' lower than v,
e It acts as a U(1) gauge transformation on v,
e It does not affect the components of W,,.

The final effect is related to the fact that a U(1) group has a vanishing adjoint representation. We
will see later on how the situation changes in the case of non-abelian transformations on v,. Thus,
in a theory invariant under (3.29) we can set

V| =
D.V| =
DyV| =
D*V| =
D¥W| =

o o o o o

(3.30)

The higher components of V' are in fact expressed as the components of W,. This choise (3.30) is
called Wess-Zumino gauge. The components of W, are defined via projection as

Wal = —idg
Wil = iXs
D*W,| = DsW¢% = —-2D. (3.31)

Here A\, is a complex Weyl spinor and D is a real auxiliary scalar. Using the flat superspace
geometry (3.10), the definition (3.27) and the definitions (3.31) one finds for the rest of the W,
components

D Ws| = —ic® Ve 3F — gD
DaW5|+D5Wa| = —2ia“§7675Fab. (332)

We see that (3.28) contains the field strength of the gauge vector
Fab == 8&”!} - 8bva (333)
this is the reason it is called field strength multiplet.

Non-Abelian Field Strength Multiplet

The above vector multiplet will help us gauge the U(1) symmetry, but to gauge non-Abelian
symmetries we have to modify the fields strenght into something more general. We define the field
strenght chiral multiplet to have the form

1-
W, = —ZDz(e_VDaeV) (3.34)
where

vV =vy@r@ (3.35)
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and the T® are a matrix representation of the non-Abelian group we want to study. Here the
gauge transformation is defined as

eV — e7heV et (3.36)
and the W, transform as
W, — e MW, e (3.37)
with
A =AIT@ (3.38)

Turning to the Wess-Zumino gauge it is easy to show that

1
e V' Dye” = D,V — 5[v, D,V]. (3.39)

3.1.3 Supersymmetry Transformations and Lagrangians

A supersymmetry transformation on a unconstrained general superfield is defined as
Sl = €2 DU + E,D%U. (3.40)

The supersymmetry variations for the components of the supermultiplets are derived from this
formula. Supersymmetric Lagrangians are now easy to built, they are (hermitian) superfields
invariant under (3.40) up to a space-time derivative. The most general form of a supersymmetric
Lagrangian is

L=D*D*U+U)|. (3.41)
The variation reads

6L = EDD*D*U+U)+ED*D*D*(U +U)
0+ &ED*D*DD*(U +U)
£a(—21)5" 0, Do D*(U + U) —

2z§a e D DU +U)) + E4Do D*D*D*(U + U)

2i£45"** D D2 (U +U)) + ga Do(—20)5"0,D*(U +U) — £, Do D*DYD*(U +U)
4i€, -baaD DU +U)) + (3.42)

£aD*D*D D*(U + U)

Oy(—
— 9y
— Oy

In supersymmetric theories it is common to reformulate the general Lagrangian (3.41) into the
following two

1
Lp = / d*0d*OM = 6D2D2M| (3.43)
1
Ly +he = /d%\/ + h.c. = —ZD2N\ + h.c. (3.44)
with M a generic hermitian superfield and A a generic chiral superfield.
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Chiral models

The supersymmetry transformations for the chiral multiplet are found by using the definition
(3.40), the chiral condition (3.15), the component definition (3.17), and the superspace geometry
(3.10), to find

0eA = 0B = 9D, D| + E,DYD| = V26

1 1 « - B 1] . a FB
dexs = ﬁ(sgpﬁqn = Eg Do Dg®| +E§QD Dy®| = V24F +iv205,670,A
1 1 1. -, -
0 F = —155D2<I>| = —Zfo‘DaD2<I>| - ngDaDchy = V2645, X - (3.45)

The simplest supersymmetric Lagrangian that can be built is the following

_ 1 _ -
Ly = / d*0d*00d = 1—6D2D2c1>c1>|. (3.46)
To find the component form we have
S | L 1 L
Lo = —D?*D?*®®| = —D*DyDsD*(®P)| = — DD, (DD ®)|
16 16 16
1 I | | o
= 1—6(DaDa<I>)|(DdDa<I>)]+§D“<I>|DaDdDa<I>|+1—6<I>|D°‘DaDdD°‘<I>\. (3.47)

The various contributions in (3.47) are

D°D,®| = —AF
DyD*®| = —4F
D°®| = V2x°
DoDaDY®| = —4iv/20%,0,7° (3.48)
o = A
D?’D?*®| = 16 0°A. (3.49)

Some of the above component forms are just definitions while (3.48) and (3.49) have to be calcu-
lated. For example, for (3.48) we have

DoDeD*®| = —D3DoD*®| — 2i0%,0,D"9|
= D*DoDy®| — 2i0%,0, DD
= D*(—2i)02;0.®| — 2i0%,0,D"P|

= —4iV202,0,X°. (3.50)
The Lagrangian (3.47) then reads
Lo = APPA —ix*0%,0.X" + FF. (3.51)

The equations for the auxiliary field F' imply

F=0 (3.52)
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and the on-shell theory reads

Lo= APA —ix“0®,0,X" (3.53)
One can employ the following superspace Lagrangian in order to find the standard mass terms
Lo+ he. = T/d% O+ he = —%D2®2| +he.
= —mQ| D2<1>| - LDac1>| —D,®| + h.c.
" A A
— m(AF + AF) — %m(xaxa +YaxY). (3.54)

Now (3.46) together with (3.54) read
Lo+ (L + hc)=A0A —ix*0%,0.X" + FF +m(AF + AF) — %m(xaxa + YaXx®). (3.55)
The auxiliary equations of motion now give
F=—-mA (3.56)
and when (3.56) is inserted into (3.55) we find
Lo+ (L + hc) =ADA —ix*c%,0.,X" — m*AA — 1m(X Xa + XaX%) (3.57)
which describes a complex massive scalar and a complex massive fermion both with mass
ma = m, =m. (3.58)
The most general chiral Lagrangian has the form
L = / POPOK (D, D7) + [ / 200 (D7) +h.c.]
L o709 i Lo i
= 1_6D D K(®", )| + {—ZD W (dY)| —I—h.c} : (3.59)
Where we have introduced more than one chiral superfields, labeled as @, i = 1,..n. Note that
the Lagrangian (3.59) has a symmetry
K(®', &) - K(®, ) + H(®) + H(D) (3.60)
for a holomorphic function H(®?), as was first pointed out by B. Zumino. The component form of
the Lagrangian (3.59) is obtained using the methods described above, one finds
L = —Kz0,A0°A —iK55'5°D,x’

. 1
+K;; FUR 4 4Kzgkzxx od

1 [ Gk OW
—F {2K21F]kxx — (914’}

1 . O
F{QKZszxx— ——.}

oA
L o*w . 1 PW ;-
a0 XX T 2aagm X X (3.61)
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Where

Daxs = 0aXe + T3 0a A X (3.62)
the Kahler metric is
’K
K= — 3.63
Y 9AID AT ( )

and the Kéhler connections are defined as

Kjl'k = Ky F;"k (3.64)
K = Ky Fé;}- (3.65)
We stress that the Lagrangian (3.61) is invariant under the supersymmetry transformations derived
in (3.45), but now for the individual multiplets

S AT = Vg
dexly = V2 +iV209,870, A’
SeF' = V26,570, (3.66)

The final step is to integrate out the auxiliary field sector, from the equations of motion for Fi we
have

o1 . oW
KF' = SEGTid X" + -5 =" (3.67)

and when (3.67) is inserted into the Lagrangian (3.61) we find

R - | , -

L = —K;,A0"A —iK;\6"Dyx' + ZRW—X’X’W?

1 ] o e - = -
—§DiDjWX’XJ — §D;D3WX Y — KYD;WD;W. (3.68)

Where
ow
D,W = : 3.69
DA (3.69)
*W ow

D;D;W = rk (3.70)

DAIDAI U PAk
and K% is the inverse metric
KIK,; = 6. (3.71)

We emphasize that the Lagrangians (3.61) and (3.68) are by construction supersymmetric; they are
derived from (3.59) which can be written in the general form (3.41) and thus as we show in (3.42)
is invariant up to a total derivative under (3.40). In a sence, the supersymmetry transformations
are embedded inside (3.59).
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Gauge invariant models

The supersymmetry transformations for the components of W, are again found by applying the
general supersymmetry transformation rule. In fact we will create Lagrangians invariant under
the supersymmetry transformations by construction, since we will use the superfield method. For
the Abelian W, the supersymmetric Lagrangian reads

1 1
L= 1 /dQHW"‘Wa + h.c. = —ED2 WoW,| + h.c. (3.72)

Expanding (3.72) in component form by using the projection definitions (3.31) and (3.32) we find

1 - 1
L= —ZF“bFab — NGO\ + 5D2. (3.73)
The equations of motion for D are

D=0 (3.74)

and the on-shell theory becomes
1 _
L= —ZF‘”’Fab — iIAG O (3.75)

Let us now see how the vector multiplet is coupled to a chiral model in a gauge invariant way. The
superspace Lagrangian for a simple model is

- 1
Ly = / d*0d*0de*" o + Z( / d*OW Wy, + h.c.)
J 1
= ED?D?cpe?gvcpy — E(D2 WeW,| + h.c.). (3.76)

We have already defined a gauge transformation as
V =V —iA+iA (3.77)
for the vector multiplet where A is chiral. For the chiral multiplet we have
O — e 29Np (3.78)
and
d — *90Np (3.79)

where g is a coupling. It is easy to see that (3.76) is invariant under the combined transformations
(3.77), (3.78) and (3.79). Note that the lowest component of ® transforms as

A — 7994 (3.80)

exactly a gauge transformation. In fact this happens for all the components of ®, this stems from
the fact that ® transforms covariantly, as defined by (3.78). Here another magnificent property
of superspace is just revealed! Gauge invariance of the theory is easily seen from (3.76), without
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turning to component form calculations. We see that by implementing the desired symmetries in
superspace they are guaranteed to be preserved by the complicated component form Lagrangian
as well. To calculate the component form we turn to the Wess-Zumino gauge. Our Lagrangian
becomes

1 - 1
Lo = —ZF“bFab — INGON + 5D2
—D*“AD, A — ixaangaXd +FF
+V2ig(AxA — AYA) + gDAA. (3.81)
We have used the definitions
D,A = 0,A+igv,A (3.82)
DoXa = OaXa +19VaXa- (3.83)

An important comment is in order. The Wess-Zumino gauge choice will now break supersymmetry
in the sense that the supersymmetry transformations we derived earlier are not a symmetry of the
Lagrangian any more. The solution to this is implemented by the problem it-self

e Supersymmetry transformations are not gauge covariant - they need improvement.
e Our Lagrangian is gauge invariant, thus does not need improvement.

In fact one replaces the partial derivatives in the old transformations with covariant derivatives and
curvatures with respect to the gauge theory and finds the new transformations. This procedure is
not at all ad hoc, it is rooted in the geometric nature of the gauge theories and can be derived from
a superspace formalism where one defines the D4 (A = a, «, &) supersymmetric derivatives to be
gauge covariant. Then following the same procedure of definition via projections, all derivatives
will be gauge covariant, thus supersymmetry transformations will be gauge covariant, and gauge
fixing will be straightforward. See for example [30,99, 156]. We can now integrate out D to find
that there is a potential due to the gauging. The equation for D is

D=—gAA (3.84)
for F' we have
F=0 (3.85)
and the on-shell theory is
Ly = —iF“”Fab —iAG O\ — D*AD,A — ix*c°, D, X"
+v2ig(Ax\ — A\YA) — %gQ(AA)z. (3.86)
Real linear models
The standard kinematic Lagrangian is
Lo=— / d*oL? (3.87)
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but one can consider more general models as well

L=— / d*0G(L). (3.88)
Using the definitions it is straightforward to find the component form of the linear multiplet kinetic
Lagrangian
7

Ly = %h‘lha - %8a¢3a¢ - §Ugd(¢a W%+ &d W) (3.89)

Note that the real linear multiplet is dual to the chiral only when there is an isometry, for example,
if the superspace Lagrangian for the chiral depends on (® + ®).

Complex linear models

The complex linear or nonminimal multiplet is defined as
D*Y. = 0. (3.90)

The constraint (3.90) above is just the field equation for a free chiral multiplet. Note that if the
further constraint ¥ = X is imposed, the complex linear multiplet turns into a linear one. The
standard kinetic Lagrangian for the complex linear superfield in superspace reads

Lo=— /d‘*@ )N (3.91)

Note the relative minus sign compared to the kinetic Lagrangian of a chiral multiplet. This is
necessary for the theory to contain no ghosts. The relative minus sign of the complex linear
multiplet ¥ compared to the standard kinetic term for a chiral multiplet ® can be understood in
terms of a duality transformation. Indeed, consider the action

Lp=— / 29(SS + 05 1 %), (3.92)

where @ is chiral and ¥ is unconstrained. Integrating out ® we get both eq. (3.91) and the
constraint (3.90). However, by integrating out %, we get ¥ = —®. Plugging back this equality
into (3.92), we get the standard kinetic term of a chiral multiplet

Ly= / d'0dd. (3.93)

As announced, the overall sign in Lagrangian (3.93) is opposite to that of (3.91).

To find the superspace equation of motion, we should express ¥ in terms of an unconstrained
superfield. This can be done by introducing a general spinor superfield U with gauge transfor-
mation

6V, = DP A (3.94)
where A, is arbitrary. It is easy to see that by defining

¥ = DU, (3.95)
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¥ satisfies the constraint (3.90). Then the field equation following from eq. (3.91) is
DS =0. (3.96)

Therefore, the field equation of a complex linear multiplet is just the constraint of a chiral multiplet
and, as noticed above, the constraint on a linear is the field equation of a chiral. This indicated
the duality between the two kind of multiplets, at least in the free case. The field content of the
complex linear multiplet ¥ is revealed via the projection over components as

A=1,
Yo = —=DaS)|
[0} \/§ o b
1
F=--D%,
4
N = D ]
o T \/§ « bl
P,;=DsD.Y|, Pop = —=DsDsX|,
1. . 1
Xa = §DdDaDaE| ) 9_(0'4 = §DQD0'¢D0¢Z" <397>

In other words, a complex linear multiplet contains a chiral multiplet (A, A,, ') and an antichiral
spinor superfield (Y, P, 3, Xa). Therefore, the complex linear multiplet is a reducible 12 + 12
dimensional representation of the N = 1 supersymmetry. It should be noted that since ¥ is
not chiral, there is no superpotential and there are no supersymmetric non-derivative interactions.
However, the complex linear multiplet can still be consistently coupled to ordinary vector multiplets
of the NV =1 theory.

The supersymmetry transformations of the fermionic components of X

P 1 s
_ a4 P _ _— ¢eBp .
0o = V2i0? 1670, A ﬁg P (3.98)
6Xa = 2007, 5P €30, Py +10%45" P €30, P, — 46,0° A + 2i0°  £%0, F (3.99)
1 .
o = V26, F — —=E°P ;. 3.100
5 \/55 af ( )
The transformation rulles of the bosonic sector of the complex linear multiplet is

SA = V26 + V2N, (3.101)

i - 1-
0F = —£3%0, )+ =£x, 3.102
0P,; = —2\/§i£70$36a)\a + \/52'5&0;68,1)\5 — Eahy — 2V/2i€500 00" (3.103)

In terms of the components of ¥, Lagrangian (3.91) is explicitly written as

_ _ _ 1 _ 1 _
Lo=A0A— FF +i0,45"¢Y + =P,P* + —=(xA + XA). 3.104
0 VoY + 5 5 ﬁ(x oy (3.104)
The complex vector P,, the complex scalar F' and the spinors A\, y are auxiliary fields. Note that
the minus sign in front of the superspace action (3.91) guarantees that the scalar A is a normal
field and not a ghost. However, this choice of sign has flipped the sign of the F'F relative to the
action for a chiral multiplet.
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3.1.4 Superfield Equations of Motion

The component field equations are easily derived from (3.61). Nevertheless, the superspace for-
mulation has again more to offer. One can use simple superfield variation methods to find the
equations of motion for the chiral superfields straight from (3.61). These superfield equations of
motion will contain in fact the individual equations of motion for the component fields. Let us
start with the simple example of the Lagrangian

Loy = / d*0d*00d. (3.105)
A variation for the superfield ® will read
1_
P+ 60 = — ZD2(5J) (3.106)

for 7 an infinitesimal generic superfield. Note that in (3.106) we have used the chiral projection
in order to maintain the superspace chirality of ®. Inserting (3.106) into (3.105) we find

1 _
6Ly = / d20d20(—1D2(6J)<I>) (3.107)
and via a superspace integration by parts we have

_ 1-.-
6Ly = / d29d29(5j(—ZD2c1>)). (3.108)
Now (3.108) describes a general superfield variation 7 in the full superspace measure [ d?6d26,
thus for the variation of the Lagrangian 6L, to vanish for all 6.7 we have

1. _
—ZDQ(P =0. (3.109)

Note that Eq. (3.109) is in fact a chiral superfield, and thus the only independent components of
(3.109) will be the ones equivalent to the standard definition via projection method. The lowest
component of (3.109) reads

1-.-
—ZD2¢| =0 (3.110)

which leads to

F=0. (3.111)
This is exactly the equation of motion (3.52) for the component F' as was found from (3.51). The
next component of (3.109) leads to the fermionic equation of motion

1 - .
———D,D*®| =0 — i0%,0,X" = 0. (3.112)
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Finally the highest component gives
1 - _
1—6D2D2c1>| =0 — 9*A=0. (3.113)

Equations (3.111), (3.112) and (3.113) are the equations of motion for the massless chiral super-
multiplet i.e., a vanishing auxiliary field, a massless complex scalar and a massless complex Weyl
spinor.
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3.2 Old-minimal Supergravity

We will not present here an introduction to N/ = 1 old-minimal supergravity, instead we will
demonstrate how Lagrangian densities invariant under local supergauge transformations can be
built. The approach we follow in doing so is based on the approach of J. Wess and B. Zumino in

the formulation of the A" = 1 local superspace. For an introduction and an extensive review we
refer to [193].

3.2.1 Simple old-minimal supergravity

The first off-shell supergravity theory discovered was the so-called old-minimal. The field spectrum
of this theory is

e The vielbein €)' with 6 propagating degrees of freedom

e The gravitino ¢2 with 12 (6 propagating) degrees of freedom

e The complex scalar auxiliary M with 2 auxiliary degrees of freedom
e The real vector auxiliary b,, with 4 auxiliary degrees of freedom

The transformation rules are

567’3 = i(wmaaf—fda@;m)

1 - 1
0, = —2D,C" + e, {gM(€UCC) + bLY + gbd(gadac)o‘}
M = —C(0°6"ap + iy — 10 e M)
3_ . 1 . 7 -
5bad = Cé {Z'@Z)avgﬁd + Zeda,’vb’wryd»y — §M¢ad6
7 . _ . _.
+Z(wappb5d + w(;p'pbao} — ’(,Dg dba/‘))} + h.c. (3114)

an the Lagrangian of this theory is

1 1 — 1 1
671£0M = —ER — MM + -b%b, +

3 3 §€klmn(&k5lﬁmwn — Yk Dpthy). (3.115)

It is interesting to note that the scalar auxiliary field M in this Lagrangian has opposite sign
compared to the scalar auxiliary of the chiral multiplet. This is connected to the chiral compensator
breaking the underlying superconformal theory. By the equation of motion for the auxiliary field
one finds

M =0 (3.116)
by = 0 (3.117)

and when thse are plugged back, we recover the on-shell A/ = 1 minimal supergravity
-1 1 1 klmn (7. = 79 » IR
e L= _ER + 56 <¢kJZDm¢n - ¢kUle¢n)' (3118)
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The supersymmetry variations of the component fields M and b, should vanish on-shell as well,
this is indeed the case since they are in fact the equations of motion of a free gravitino. Finally,
from the supersymmetry transformations of the gravitino one can observe one very interesting fact:
the gravitino is the gauge field of supersymmetry. Thus, when supersymmetry becomes local, all
derivatives are promoted into supercovariant derivatives much the same way as in other gauge
theories, but now the gauge field is the gravitino.

3.2.2 Old-minimal Superspace Geometry

The supergravity theory was first discovered by brute force calculation. Since then, the powerfull
formalism of superspace has been promoted to curved superspace as well, giving us deep insight and
huge calculational power. Let us now present the master formula for the old-minimal supergravity
geometry

(DcDp — (—1)*DpDe)VA = ~TEDpVa + (= 1) TIVIR (3.119)
where for fermions b = 1 and for bosons b = 0 and A = a, a, &«. Here we need to fix the notation.

e The Greek indices will refer to spinors while the Latin will refer to vectors.

e Letters from the start of the alphabet represent flat indices, while letters from the middle
refer to curved indices.

For example, p is a curved spinor index, « is a flat spinor index, m is a curved space vector index
and, a is a flat space vector index. Inside formula (3.119) there is three important quantities

e The superspace covariant derivatives D¢
e The super-torsion T2y

e The Riemman tensor of superspace Ropp -

It is interesting to note that when gravity decouples the torsion component T2, should become
d . d
Tae = 21054 (3.120)

since the generic formula (3.119) should reduce to supersymmetry. In fact the relation (3.120)
is used as a constraint on the torsions of superspace in order to reduce the many components to
those that are independent; constraints like (3.120) are refered to as conventional constraints. Thus,
along with the constraints that guarantee we will recover supersymmetry in the Mp — oo limit, one
also takes into account the self consistency of the supergravity algebra, i.e., the Bianchi identities.
Solving the Bianchi identities (with the conventional constraints) is not a trivial proceedure, in
fact there is a variety of solutions with only two representing a minimal supergravity. The solution
to the Bianchi identities first discovered was called Old-minimal supergravity, and it can be found
in [193].

After the prosedure of solving the Bianchi identities one can express all the superspace curva-
tures and torsions in terms of a small number of superfields. These are the curvature superfields of
old-minimal supergravity. Their components are again defined via projection but now one has to
use the superspace covariant derivatives. Thus, the gravitational curvature tensors, the gravitino
field strength and curvature and the auxiliary fields of supergravity all settle inside the curvature
superfields.
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The Ricci superfield R

This superfield plays the central role in old-minimal supergravity since it is used in order to
construct the simple N' = 1 supergravity action. The Ricci superfield R is a chiral superfield

DR =0 (3.121)
with lowest component the auxiliary field M
R|=—-=-M. (3.122)
The next component is
D, R| = —%(a“#zﬁab + by — 10 P M )4 (3.123)

while the highest component of this curvature chiral superfield is

14 2 2i 11 ,
D*R| = —ZR+-MM + 0", — =€, Dpb® + M — —th, 0™, 0"
| 3T MM Ty 3 ‘a g M = gnoty
21 - 1 _ _
+ SV b+ € PR + VkO1Pmn]- (3.124)

The superfield G,

The real vector auxiliary field b, of old-minimal supergravity resides inside the real superfield G,
as its lowest component

1
ga| = _gba- (3125)

This superfield satisfies the following Bianchi identities
D°G,; =D;R ., D°G,; = DyR. (3.126)

It is interesting to mention that in its vector component it contains the Riemann tensor, the
bosonic part is

o 111 2i 1 2
53" DaDalal = (R + MM + b — Rup — éDbba — €Dy~ by (3127)

The Weyl superfield W,z3,

The third basic superfield of Old-minimal supergravity is a curvature superfield which contains
the Weyl tensor in its lowest fermionic component. It is a chiral superfield

DWagy =0 (3.128)

which is also completely symmetric in its indices. Finally it satisfies the following identity

D*Wapy + (D6, + D.;G4) = 0. (3.129)
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3.2.3 Superfields in Curved Space

Superfields in curved space are defined essentially again via projection but using the curved su-
perspace covariant derivatives.

Chiral superfields

The chiral superfield satisfies the covariant constraint
D,P = 0. (3.130)

The definition of the components of the curved superspace chiral superfield is

d = A
D@ = V2xa
D*®| = —4F (3.131)

To find the transformation rules we proceed as in the global case and we have

A = V2x (3.132)
OXa = V2F(, +iV20°,(4D, A (3.133)
2 _ . . 2
oF = gMCX + Ca(é\/iDaan — %badxa) (3.134)
where we have made use of the supercovariant derivatives
. 1

D,A = e" | OnA — —=1U5Xa 3.135
e (3159

Daxa = e <8mxa —w 5)(5 — LwmaF — L”[E 5D -A) ) (3.136)

a mo \/5 \/§ m ~af

Chiral projection

The chiral projection in old-minimal supergravity differs from the one we encounter in supersymme-
try. This has to do with the structure of the theory. For a general superfield U it is straightforward
to prove that the superfield

1 _
—Z(DZ — 8R)U (3.137)
satisfies
_ 1 -
Dd[—Z(DQ — 8R)U] = 0. (3.138)

Gauge Superfields

The superfields that contain the gauge fields are defined as in global supersymmetry but with the
use of curved superspace derivatives. We again make use of the following chiral superfield

1 _
W, = _1(D2 —8R)D,V (3.139)
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which is invariant under the gauge transformation
VsV4+A+A (3.140)

where A is a chiral superfield and A an anti-chiral. For the non-Abelian case we similarly have

1 -
W, = —Z(D2 —8R)e V' Dye. (3.141)

3.2.4 Chiral Densities and Invariant Actions

Now that we have defined the covariant components of the superfields, it is convenient to introduce
new theta variables such that the grassmann expansion of a chiral superfield in these variables is
exactly the covariant components. This is simply postulating

d = A+ V20 + O*F (3.142)

where © are the so-called new theta variables. Superfields now transform covariantly, thus, in
order to built actions that are invariant up to a total derivative we have to introduce the notion
of superscace densities. Specifically, we will use the chiral density

2 — ¢ {1 + 00", — OO (M* + @Eaaabi}b)} (3.143)
which guaranties that quantities of the form
/ d*r 2€ [Something Chiral| (3.144)
are invariant under supersymmetry. For example, the Lagrangian of simple supergravity is

Loy = —6/d2@ 26 R + h.c. (3.145)

and by using the projection definition of R and the superspace geometry we recover the result
(3.115). The most general gauge invariant supergravity Lagrangian that can be built has the form

- : 1
Lot = /d2@ 2& {g(DD — 87?,> e K3 4 @H(ab)@)w@ww + P(fI))} + h.c(3.146)
where
K = K(®,3)+T(2,®,V), (3.147)
and
_ 1 . _
I(®,,V)=V@p@ 4 §gi7:X’(“)Xr(b)V(“)V(b). (3.148)

In addition, as usual, V(@ is the supersymmetric Yang-Mills vector multiplet and
1/ -
Wa = WOT® = -2 (DD - SR)e’VDaeV (3.149)
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is the gauge invariant chiral superfield containing the gauge field strength. The holomorphic func-
tion H 4 is included for generality, but in what follows we will consider H q5) = 0(4p). Expression
(3.148) is calculated in the Wess-Zumino gauge, D® are the so-called Killing potentials whereas
X and X™® are the components of the holomorphic Killing vectors that generate the isometries
of the Kéhler manifold. The Killing vectors and the Killing potential are connected via

gir X™ =i aa D), (3.150)
CL’L
: d
g X1 = 8__1)(00 (3.151)
aT’

where @’ and @ are the Kéhler space complex co-ordinates. We note that the D@ that correspond
to some U(1) gauged symmetry are only determined up to a constant &, which is the analog for
the Fayet-Iliopoulos D-term in supergravity. After following the standard procedure, the bosonic
part of the Lagrangian (3.146) turns out to be

L=~ GR gD AT %gzmpmw
(" DiPD;P ~ 3PP) ~ %gQ (D@)? (3.152)
where
D,P =P, + K,P. (3.153)
For the covariant derivative we have
DAY = 9,A7 — %B@X{a) (3.154)

and B is a vector field (belonging to the V(@ vector multiplet) that corresponds to the gauged
isometries, with field strength £l

3.3 New-minimal Supergravity

There exist another minimal off-shell version of the N' = 1 supergravity, the so-called new-minimal.

3.3.1 Simple new-minimal supergravity

In the new minimal supergravity instead, the multiplet consists of the vierbein e and its su-
persymmetric partner, the gravitino 2. In order to implement supersymmetry off-shell and the
propagation of the physical degrees of freedom only, one has to also add auxiliary fields, as in the
old minimal supergravity. However, in this case, the auxiliary fields are no longer a vector and a
scalar but a 2-form B,,, with gauge invariance (B-gauge)

and a gauge vector A,, with associated R gauge invariance

§Am = —Ond . (3.156)
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Thus, to wrap it up, the off-shell new minimal supergravity is based on the gravitational multiplet

€ms Ym, Am, Bmn . (3.157)

m

For more specific details on the structure of this theory the reader should consult [90].

It has been argued that the natural superspace geometry for four-dimensional N' = 1 heterotic
superstring corresponds to the new minimal formulation of the A/ = 1 supergravity [53,152,168].
This R symmetry is however anomalous (actually it is a mixed superconformal-Weyl-U (1) anomaly
[100]). Nevertheless, by using the Green-Schwarz mechanism, the symmetry is restored at one loop
thanks to the introduction of a matter linear multiplet together with supersymmetric Lorentz and
Chern-Simons terms [26, 157]. Note that this R symmetry has interesting implications on the
gravitino over-abundance problem [63,64].

In the new minimal supergravity, there exist three sets of chiral and Lorentz connections

+
Wobe = Wabe + Habc 3

AT = A, —H,, (3.158)
A~ = A, —3H,,

where the following notation has been used
Hmnl - am-Bnl + anBlm + aI-an
T - 7 - -
+§wm7nwl + gwn71¢m + g?ﬂﬁnﬂﬁn )

1
H™ = —gsm”lenkl. (3.159)

The covariant derivatives in this formulation are therefore defined as

D = d+6p(wa)+04a(A),
DY = d+0p(wh) +0a(AF), (3.160)

with
04(0)2 =ino®,
6 (N)® = %SabA“bCD :
wh =wh da™, AT = AEda™ . (3.161)

abm

For the gravitino, for example, we have S,, = 04/2 and n = —v5/2. Here da(¢), d.(A) denote
the U(1) R-symmetry and Lorentz transformations with parameters ¢ and A, respectively. Su-
percovariant derivatives D are defined as usual and it should be noted for future reference that
D *H, = D,H, and for any neutral vector D,V = D, V.

The transformations of the supergravity multiplet fields under supersymmetry are [90,179,180]

o’ = %Eyawm ,
5wm = _’Z)m—i_E >
i _
0B, = 1_16 (’men — ’anm) , (3.162)
— i — ab
5Am - 16’7m750- ¢ab 9
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these transformations form an algebra along with general coordinate, Lorentz, chiral and B-gauge
transformations. The supersymmetry parameter e transforms as d4¢ = —(i75/2)¢pe under chiral
transformations so that in two component notation ,,, €, have chiral weight % and 1, €, 0 have
chiral weight —%. The chiral weight of the other components follows by these rules. The gravitino
curvature used in (3.162) is defined in (3.164).

Throughout the work on new-minimal supergravity we use a Minkowski metric with signature
(-,4,+,+), and the fully antisymmetric tensor is taken as 9123 = +1. The Dirac matrix conventions
are {Ya, W} = —20avs V5 = —i7°7'7*73, while we use o4, = £[74, ), and ¥ = YTC.

In a Majorana representation C' = ~° and the Majorana condition is 1 = v¥*. The two-
component spinor formalism is derived from the following chiral representation of the Dirac ma-

trices,
(-1 0 (0 o,
=L o 1) T ls 0 )

0o =(L0), 0a=(1,-0),
o= (). 9= (i) 3163
The gravitino curvature is given by
Umn = Dty — Dy,  Yap = €€othmn (3.164)

and the Rarita-Schwinger operator is

1

rt = vabebadewde ) (3.165)

Finally, the Ricci scalar, the Ricci tensor and the Riemann curvature are given by

ca
R = n Rca )
_ b_m_n
RCG - ana € €
b b b c b c b
ana - anwma - anwna + WinaWne = Wna Wine - (3166>

The action for Poincaré supergravity is obtained by the Fayet-Iliopoulos term of the chiral
gauge multiplet (6.126) and reads
1 1 1 1 - " u
E‘CSug'fa = E[VR]D = E (& §R + 1/) Tq + 2AaH - 3HaH . (3167)

Variation of the action (3.167) with respect to A,, and B,,, gives
Hy =0 = ™59, A, . (3.168)

Thus the vector H,, vanish and A,, reduces to a pure gauge and can therefore be set to zero by
a gauge transformation. Finally then, the on-shell action of the new-minimal supergravity turns
out to be

1 1 -
S;);lg;zheu _ /d4a:e (53 + @D“Ta) 7 (3.169)

K2

which matches the on-shell ' = 1 old minimal supergravity [66,97].
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3.3.2 New-minimal Superspace Geometry and Multiplets

The superspace derivatives are defined in the usual way [90,99,113] and the very structure of the
new minimal supergravity is incarnated in their commutation and anti-commutation relations

{v.v} = 2iy",

1
V.,V] = 7 <§TbCSbC +Tn — z'%EV) , (3.170)
. -
v;.v;] = %SCdRc_dab +inFy, = 2BV + 5TuV -

Here F,,, = 0mA, — 0,A,, is the field strength of the gauge field A,,, E.pc = —capea2? and the
superfields F,, T,, and T" will be defined in a moment.
A general multiplet of new minimal supergravity is

V=(C,x,H K,V,,\,D). (3.171)

It is specified by the spin and the chiral weight
5,C = %AabS“”C, (3.172)
04C = ineC (3.173)

of its lowest component C', respectively. Frequently the two real scalars H, K are traded for a
complex H + iK one. The supersymmetry transformations of this multiplet are

1
(SC - _igX>
1 A F
ox = 5{@@ C’+75V+H—75K}€(_) )
1+ S
6(H £iK) = —ie—" A+ Py~ 2insliy — i£C}
i A - )
5‘/;1 — —ég{r)/a)\_f}%pa X_Z’YGHX} ? (3174>
S\ = _{Zo'abpab—i—%D} 6(—)]:—§f<€75X)7
]__ o a .
0D = —5&% {ZD A= YakV +%AX} :

We have used the following definitions

1 .
£ = iwabsab — Y57y TN,
i~ a
S i -
Pab = Da ‘/b — Db ‘/a - QHQbCVd + 5#&11)75)( Y

Rn, (3.175)

N | .

and the factor (—)” accounts for the Fermi or Bose statistics of the first component. Note that &
and A only involve the spin and chiral generators of the first component. The properties of the
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general multiplet can be encoded in the following superfield representation

_ 1_
V:C—Qx—ie{H—i%KJr%V}Q,

32’)/5

+i(60)0 {w - %zb_x — THX - z'gc} - i (66)° (D - %ﬂc) . (3.176)

Constrained multiplets may be obtained by imposing appropriate constraints on the general
multiplet V. Known representations include complex vector and real vector multiplets, gauge and
chiral multiplets and, linear and real linear multiplets. We discuss below the multiplets relevant
for our work.

The R-symmetry gauge superfield Vg

In new-minimal supergravity there exists the gauge multiplet of the supersymmetry algebra,
namely

1.
Vr = <Am, —Y5Y - T, —572) , (3.177)
with R~ = R + 6H,H*", which we will use in the following.

The Einstein superfield FE,

The Einstein multiplet is a real linear multiplet (with chiral weight zero), which means that
E,=FE', V?E,=V’E,=0, (3.178)
and moreover, it satisfies the Bianchi identity
V.E*=0, (3.179)

a property that only appears in the new minimal supergravity and it is of crucial importance for
our results. Indeed, one can see that the independent components of the Einstein multiplet contain
the Einstein tensor as the highest component. Specifically

. 1 - .
E, = (Ha,wg)ra, §(G:b — FC;)) , (3.180)
where G, — *F = G — *Fop — g HaH® — 2H, Hy, with *E7% the supercovariant dual of the field
strength defined as *F,,, = %Eman Kl Moreover, r,, is the Rarita-Schwinger operator and G, is

the supercovariant Einstein tensor [90].

The Riemann superfield T,

The irreducible pieces of the Riemann multiplet are the scalar curvature multiplet, T, and the
Weyl multiplet, W¢,. The Riemann multiplet is chiral (VdT;}) = O) with components

Tab = wab - (%O'Cdﬁ;ab + Zﬁ;) 0 =+ i@_&abez- (3181>
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The rest curvature multiplets are defined as
1

T = 5aabTab ,
1
Wab - 24 (3ch0ab + Jabacd) T° d

that is the scalar curvature multiplet and Weyl multiplet respectively.

3.3.3 Chiral superfields in new-minimal supergravity
Chiral superfields

A chiral multiplet ®(A, x, F) is defined by the constraint V4® = 0 and its embedding in the
general multiplet is given by

V(®) = (A, x1, F,—iF, —iD, A, —ifA, —iAA). (3.182)
The transformation rules are
1
0A = 26X 5
(—)76x = iP Ae+ Fe, (3.183)

1 _
F = 5E(ﬁp +2H)x + €A,
and its chiral superfield representation is
®=A+0x+0°F (3.184)

Up to field redefinitions one can always define the components of a superfield by projections. A
common projection which we use throughout this work is [99,113]

o = A,
Vo®| = Xa, (3.185)
1
—-V?®| = F,

4
where V2 = V2V, and similarly V? = V,V¢.

Chiral projection

From an arbitrary multiplet V' of weight n, one can form a chiral multiplet with weight n 4+ 1 by
the chiral projection operator

(V) = —EVQV, (3.186)
with components
(V) = F,
VI(V)| = <7“p’ wx A —i€C)q | (3.187)
—iVQH(V)\ = %{ —2H) - (V+iD"C)+iAC + é&ab5“bx+2§x} .
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3.3.4 Chiral Densities and Invariant Actions

Chiral multiplets with chiral weight n = 1 can be used to form invariant actions by the F-density
formula [180]

Xlr = {F + éXU -+ %A w“aabw”} : (3.188)
In superfield notation this can be written as
[X]r = /d29 EY, (3.189)
with
E=e {1 —ifo - + %02&aaab@b} . (3.190)
The restriction n = 1 follows as df has n = —% (df has n = %) Furthermore, one can also build

invariant actions from a multiplet with chiral weight zero, using the D-density formula
1- | —
Vip=e {D — 51/} Y5 A+ (Vm + %@/Jm%x) 5mml8nBrl} + surface terms. (3.191)

We mention here that the ' and D density formulas are related by [V]p = 2[II(V')] p+surface terms.
Since the kinetic term of a general chiral superfield is given by the F-term density formula
(3.189), we will have for example
1-
O — / PO ED [—ZV%T} +he. (3.192)
where —in is the chiral projection operator for the new minimal supergravity. In component

form, and recalling that ® has a zero chiral weight n = 0, the bosonic part of the Lagrangian
(3.192) is found to be

£(0)

kin

= 2¢ ADA* + 2eFF* — 2ieH® (AD,A* — A*0,A) . (3.193)

The most general chiral model coupled to new-minimal supergravity, in superspace is
1 _

Lehiral = 5[?(@, @)]D + QRG[P(CI))]F - [VR]D (3194)
and the pure bosonic sector reads
1 )
e_lﬁchiral == 5[1 - E(HA)J](R + 6H2>

+2 {A,; + %JFJ-D;LAJ' - %F;D,;A? } H™
~FiDpAD, A + FgF'F + PBF + Py (3.195)

What is then left to do is to integrate out the auxiliary sector, see for example [90]. Nevertheless,
this theory, is the two-derivative new-minimal supergravity, it is thus equivalent to the old-minimal.
Indeed, if one solves the auxiliary sector of (3.195) it is then a matter of redefinitions in order to
bring the theory in the standard form (3.152) (ignoring gauge interactions).
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Chapter 4

Supersymmetry Breaking by Higher
Dimensional Operators

By employing consistent supersymmetric higher derivative and higher dimensional terms, we show
that the supersymmetric theories may have a sector where the scalar potential does no longer have
the conventional form. The theories under consideration contain consistent higher-derivative terms
which do not give rise to instabilities and ghost states. The chiral auxiliaries are still not propagat-
ing and can be integrated out. Their elimination gives rise to emerging potentials even when there
is not a superpotential to start with. This novel feature of higher derivative supersymmetric chiral
models is also extended to vector multiplets both in global and local supersymmetry. We show
that such operators for real linear and chiral spinor superfields that break superymmetry reduce to
the Volkov-Akulov action. In these cases, there is no sgoldstino mode and thus the goldstino does
not have a superpartner. The sgoldstino is decoupled since the goldstino is one of the auxiliaries,
which is propagating only in the supersymmetry breaking vacuum. We also consider supersym-
metry breaking induced by a higher dimensional operator of a nonminimal scalar (complex linear)
multiplet. The latter differs from the standard chiral multiplet in its auxiliary sector, which con-
tains, in addition to the complex scalar auxiliary of a chiral superfield, a complex vector and two
spinors auxiliaries. By adding an appropriate higher dimension operator, the scalar auxiliary may
acquire a nonzero vev triggering spontaneous supersymmetry breaking. We find that the spectrum
of the theory in the supersymmetry breaking vacuum consists of a free chiral multiplet and a
constrained chiral superfield describing the goldstino. Interestingly, the latter turns out to be one
of the auxiliary fermions, which becomes dynamical in the supersymmetry breaking vacuum. We
also point out how higher dimension operators introduce a potential for the propagating scalar of
the theory. In particular, in supergravity, the emerging potentials give rise always to a de Sitter
vacuum signaling supersymmetry breaking.

4.1 Emergent Potentials

Supersymmetry is an extension of the Poincare spacetime symmetry with the inclusion of fermionic
generators. It has various remarkable properties concerning phenomenological and theoretical
aspects of particle physics. In particular, supersymmetry is one of the most appealing candidates
for new physics. It has not been observed so far and thus, it should be broken at some high energy
scale if it is realised at all. The central role on how supersymmetry is broken is played by the
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scalar potential of the supersymmetry breaking sector. Scalar potentials in supersymmetry and
supergravity have been extensively studied for theories with up to two derivatives. Even though
it is known that introducing higher derivatives will spoil the form of the scalar potential, the self-
consistency of the theory protects it from unconventional non-supersymmetric vacua [43]. Our
task here is to discuss how scalar potentials are modified when higher derivatives are introduced.
However, the higher derivatives we are interested in, are those which do not introduce instabilities
and/or ghost states. This is a known drawback of such kind of interactions, connected with the
so-called Ostrogradski [167] instability in classical physics. We will see that such “safe” higher
derivatives may consistently be introduced in supergravity and we will determine the form of the
potential for the scalars of the theory they produce. We will also see that such potentias are
sustained by background fluxes and have de Sitter vacua indicating that supersymmetry is broken.

In this work we are discussing the bosonic sector of supersymmetric interactions that belong
to a specific class of higher derivative theories with the following two properties

e they do not introduce ghost states
e they introduce a scalar potential without a superpotential or gauging.

These theories involve chiral and vector multiplets.

In N = 1 superspace there is a number of conventional methods to introduce a scalar potential
for a chiral superfield. The superpotential is the most widely used, in which case one employes a
holomorphic function of the chiral superfield and after integrating out the auxiliary sector, a scalar
potential appears. More specificaly, the free Wess-Zumino Lagrangian is given by [193]

Lo = AD*A + 00,056 hs + FF. (4.1)
It is straightforward to integrate out the auxiliary field via its equations of motion
F=0 (4.2)
which for the massless and free theory (4.1) vanishes, leading to
Lo = AD*A 400,945y, (4.3)
A standard mass term contribution is given by employing the following Lagrangian

Lo+ %(Lm the) = ADPA+i0,0a5" . + FF
+ mFA-— %mwawa +mFA— %m;@dd—}d. (4.4)
A naive inspection of (4.4) would tell us that there is massive fermions, but no mass for the scalar
fields has appeared. The equations of motion for the auxiliary field F' read
F=-mA (4.5)
and eventually, the on-shell form of (4.4) becomes

Lo+ %(Lm + h.c.) = AP A + 0,050y — m*AA — %mwa% — %mzﬁdwa (4.6)
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where now we can see that supersymmetric masses have been raised. The lesson from the above
discussion is that, until integrating out the auxiliary sector, it is not obvious if there exists a mass
term, and in a more general context, what is the form of the scalar potential.

Turning to supergravity, the above discussion is straightforwardly generalised and the same
prosedure is followed. The most general (two-derivative) superspace Lagrangian of chiral super-
fields coupled to supergravity is in superspace formalism *

Lo=—~ [ @626 |2(DD - 8R) e 5 K@) L 2p(@)| 41 47

0= "3 8( )e + Kk“P(®)| + h.c. (4.7)

The hermitian function K (&%, ®7) is the Kahler potential, P(®") is the superpotential (a holomor-
phic function of the chiral superfields ®*) and & is proportional to the Planck length, which from
now on will be set equal to 1. From the supergravity multiplet sector, 2€ is the usual chiral density
employed to create supersymmetric Lagrangians, which in the new © variables has the expansion

2 = ¢ {1 + 00, — @@(M* + @Zaaab@z}bﬂ (4.8)

in terms of the vielbein (e%), the gravitino (1,,) and the complex scalar auxiliary field M. In
addition, R, the superspace curvature, is a chiral superfield which contains the Ricci scalar in
its highest component. In the matter sector, ®* and ®’ denote a set on chiral and anti-chiral
superfields (D ®’ = 0, D,®’ = 0) whose components are defined via projection

Ai = (I)i|0:§=07

. 1 .

o= —D,Py_i_0, 4.9
Xa \/5 |0 =0 ( )

. 1 .
= —ZDDC]?“]Q:@:O.

After calculating the component form of (4.7), integrating out the auxiliary fields and performing
a Weyl rescaling of the gravitational field (accompanied by a redefinition of the fermionic fields),
the pure bosonic Lagrangian reads

1 R - _ _
e 'Ly = —5R— 950,40 A — e |¢”(D;P)(D;P) — 3PP| . (4.10)
Further details maybe found for example in [193]. Here
D’K (A, A)
= 4.11
I T AoAT (4.11)

is the positive definite Kihler metric, on the manifold parametrized by A’ and A7. Moreover, the
Kahler space covariant derivatives are defined as follows

D,P=PF,+ K;P (4.12)
where in general we denote f; = %. The Lagrangian (4.10) is Ké&hler invariant as long as the
superpotential scales as

P(AY) — e SAI p(AY (4.13)

1Our framework and conventions are those of Wess and Bagger [193].
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under a Kéahler transformation
K(A, A) = K(A, A7) 4+ S(A%) + S(47). (4.14)

S(A?) and S(A7) are holomorphic functions of the complex coordinates.
Equaly important conventional methods for introducing scalar potentials is by gauging the
chiral models or by D-terms, the interested reader should consult [187].

4.1.1 F-Emergent Potential

The idea of the emergent potentials is essentialy a generalization of the standard methods discused
above. The theory we are interested in, has a superspace Lagrangian of the form

L=Ly+ Lyp (4.15)

where L is the standard superspace supergravity Lagrangian given in eq.(4.7) and [82,135,136]
1/- T _ .
Lyp = /d2@ 28 {g (DD o 8R> AT [’DdKi’DQKF’DQKjDO‘Kﬁ] } + h.c. (4.16)

This Lagrangian was initially studied in global supersymmetry in [133]. It is important that £
is manifestly both Kéhler and (independently) super-Weyl invariant as has been shown in [82].
These two symmetry properties, although obviously they do not specify the form of the action,
they are essential in the consistency of the model as well as for the supergravity theory that it
describes. As we will see, (4.16) does not involve derivatives of the auxiliary fields, which are not
propagating and can be integrated out. Equivalently, (4.16) can be expressed in terms of the chiral
superfields ®° as

1/7- _ o o .
Lyp = / 4?0 28 {g (DD - 8R) Airjn [Da@Da@Da@”D“@J} } + h.c. (4.17)
where
2K (D, D)
K.——~1"7 4.1
T 0DioPT (4.18)

is the Kéahler metric on the complex space spanned by the chiral and anti-chiral superfields and
Ai7;jn represents a Kahler tensor. For example, one may choose

Airjn = G(®, @) Kis K5 + H(P, P)Rirjn (4.19)

with G(®, ®) and H(®, d) being some Kihler invariant hermitian functions and Rz the Kéhler
space Riemann tensor defined as

odi oPpi~ H 9% ™) \ o

The form (4.19) implies some symmetries for the Kéahler indices which, without loss of further
generality, we will assume to be possessed by all the A7z to be considered in this work. Our next

69



task is to extract the component field expression for the Lagrangian (4.17), which after superspace
integration turns out to be

e 'Lyp = —16 Uirjn (FiFﬂ'FfFﬁ + 0, AT0" AT, ATOP A"
P9, AV AT FiﬁﬁaaAjaaAf>. (4.21)
for the pure bosonic sector. In (4.21) we have used the notation

0=0=0

Again it is easy to see that (4.21) is manifestly Kéhler invariant.

In order to make the effect of the new coupling (4.16) more transparent we will consider now
a theory with only one chiral multiplet and no superpotential. In this case, the Lagrangian (4.15)
is explicitly written as

r / 76 26 { (PP —5R) [geéK +gA quma@pd@m@] } e (4.23)

with A being an abbreviation for Agses, a hermitian and Kahler invariant function of ® and ®.
In component form, the bosonic sector of the Lagrangian (4.23) turns out to be (after integrating
out the auxiliary fields of the supergravity sector and subsequently appropriately rescaling)

1 _ .
¢ Lo = —5R—aa0hA0" At gaz e FF
16U {625 (FF)? + 0,A0°A9,AD" A — 2¢s FF9,A9" A } (4.24)

where U is a hermitian Kéhler invariant function of the scalar field (it is the lowest component of
A, eq.(4.22)). The equation of motion for F' is

F(gA = 32USFF 432 uaaAaaA) —0 (4.25)

which can be easily solved for

e Standard solution:

F =0, (4.26)
e New solution:
o =K gaa a A
FF=e3 <32u+8aA8 A). (4.27)

Here we should discuss the difference between the two solutions. To make the point clear we first
stress that the stability of the theory demands

Gaz > 0 (428)
U <0. (4.29)
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Thus the standard solution (4.26) can always be realized, while the new solution (4.27) can only
be realized in the presence of fluxes so that

i % gaA a A
FF=c (32u+aaAa A) > 0. (4.30)

The on-shell Lagrangian for the conventional branch is
1 - o
e Lo = —§R — G140, A0"A — 16 U 0,A0" A0, AD" A (4.31)

where there is no scalar potential, as expected, since no superpotential was introduced. The
on-shell Lagrangian for the new branch is

1 0)? - _ §
e % — 16 U, AD* ADAD" A + 16 U, AD* Ad, AS A. (4.32)

What has happened here has completely changed the dynamics of the theory. The minimal kine-
matic term for the scalar is lost and a scalar potential has emerged

1 (gan)”
= —— . 4.33
v 64 U (4:33)
From (4.29) we see that the potential (4.33) is positive defined
V>0 (4.34)

and therefore the theory may only have de Sitter vacua. Another important property of the
emerging potential is that it is not built from a holomorphic function. Moreover, the function U
governs now the kinetic terms and in fact it was shown in [135] that it has to be negative to avoid
tachionic states. In the framework of new-minimal supergravity, consistent higher derivative terms
which satsify the above restrictions have been considered [84], but no scalar potential emerged in
that case.

Super-Weyl Invariance

At this point its is crucial to make a comment on a subtlety concerning the hermitian vector
superfield

V = NizjnDa® D, ' D" D* P (4.35)

namely, its scaling properties under super-Weyl transformations. We emphasize that V' is defined
through its components. For example, its lowest component will be

VI = A Ui XXX XY (4.36)

0=0=0

Moreover, all components of V' should be understood as those of a hermitian vector superfield

defined via projection and will eventually be related to (6.22). This definition will gives Weyl

weight —2 to the vector superfield V', as is required so that (4.17) is indeed Kéhler and super-

Weyl invariant. These symmetries are crucial for consistency of the supergravity Lagrangian
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on curved superspace. Under a super-Weyl transformation, the superspace covariant derivatives
change as [72]

65Dy = (X = 22)D, — (DY),
65Dg = (X — 2X)Dy — (D'Y)lay (4.37)

where the [, and I, stand for the (anti)self-dual parts of infinitesimal Lorentz transformations.
Moreover, by choosing ®' and the tensor A;z; to have vanishing Weyl weights, i.e.

SsNirjn = 0@’ = 05®" = 0, (4.38)

and by using (4.37), one may straightforwardly check that under a super-Weyl transformation, the
vector superfield (4.35), scales as

65 (MNirjn Da® Dy @ DY@ D*®7) = —2(5 + X)(AjjnDa® Dy @ D" D). (4.39)

Of course, when we perform the super-Weyl rescaling to our Lagrangian (4.17), we have to consider
the variation of the involved superfields in the new © variables [193].

4.1.2 Gauge Invariant F-Emergent Potential

The Lagrangian (4.23) can be straightforwardly be generalized to include gauge invariant interac-
tions [24]. In this case, the gauge invariant superspace Lagrangian is

3/ _ _
_ 2 e _ —K/3 (a)117(b)
Lio / 426 28 {8 (DD 8R>e + g2 M @WEOW 4 (o)

+é (ﬁzz_) . 8R> [Afiﬁj ﬁdKiDa ~77'Z_)dkj’DOé Nﬁ,:| } —+ h.C. (440)

where
K =K(®,®)+T(®,0,V), (4.41)
and
_ 1 . _
I(®,®,V)=Vv@p@ 4 égi;XZ(“)XT(b)V(“)V(b). (4.42)

In addition, as usual, V(@ is the supersymmetric Yang-Mills vector multiplet and
1/ _
Wa = WOT® = -2 (DD - 872) e VD,V (4.43)

is the gauge invariant chiral superfield containing the gauge field strength. The holomorphic func-
tion H4p) is included for generality, but in what follows we will consider H q5) = 0(4p). Expression
(4.42) is calculated in the Wess-Zumino gauge, D@ are the so-called Killing potentials whereas
X% and X™® are the components of the holomorphic Killing vectors that generate the isometries
of the Kahler manifold. The Killing vectors and the Killing potential are connected via

_ %)

gir X =g WD(CL), (4.44)
. )

gir X' = —io =D (4.45)
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where @’ and @ are the Kéhler space complex co-ordinates. We note that the D@ that correspond
to some U(1) gauged symmetry are only determined up to a constant &, which is the analog for
the Fayet-Iliopoulos D-term in supergravity. Now A" has to respect all the isometries of the
Kéhler manifold. Again, following the standard procedure, the bosonic part of the Lagrangian
(4.40) turns out to be

1 ~ S~ P
eilﬁtot = §R - gifDmAZDmAT + GggﬁFZFT
1

1 2
— = pla) pmn(a) _ Z 2(pla)
16g2 mn 29( )

_ X (FZD,-P + FFD,:P> 3K pp (4.46)
—16 Uirjn (%FiFijFﬁ + D, Al D A7 D, AT DV AT
—eS FIFTD, A DA™ — e%pipﬁﬁambw).
We note that

- 1 A
DAY = 9,A7 — §B§“)X(Ja) (4.47)

is the covariant derivative and B is a vector field (belonging to the V(®) vector multiplet) that

corresponds to the gauged isometries, with field strength Gy

In order to illustrate the properties of the emergent potential in the case of gauged models, our
example will be a single chiral multiplet with no superpotential. In this case the Lagrangian (4.46)
is

1 N N _
e Ly = 57— 942DnAD" A+ e5 g aFF
1 1 2
——— @ pmnle) _ _g2(pla) 4.48

16 a(e%wﬁy + D ADAD,ADYA — 2 &% FFDGAD“fl).

The single auxiliary field F' can now be eliminated from (4.48) by its equations of motion, leading
to

FF =e5 (gLfE + DGADGA> . (4.49)
32 U

Plugging (4.49) back in (4.48), we can easily read-off the potential for the gauged model which
turns out to be
1

\2
v Lo pany? _ (942)° 4.50
20 (P) = (4.50)

with i = U 1iai, a Kéahler-space tensor that respects all the isometries of the gauged group. For
a first example we will take a flat model with Kéhler potential

K=aa+d (4.51)
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which leads to
9oz =1, Ragaa =0 (4.52)
The U(1) Killing potential is
DW = qa + ¢ (4.53)

where the parameter § corresponds to the aforementioned freedom to shift the U (1) Killing poten-
tial. When we promote a and a to the superfields ® and ®, our Kahler potential K together with
the counter term I'" become

~ _ — 1 -
Kygy = 0D+ VP + 5v2<1><1> +d+VE. (4.54)

The bosonic part of our Lagrangian in component form then turns out to be

1 1
-1 _ cd
e EU(l) = —§R — 1692 chF
—16 UD,AD*AD,AD"A + 16 UD,AD*“AD,AD" A (4.55)

1,, .« o 1
——g° (AA —

with D,,A = 9,,A + 1B, A. Then the scalar potential is
V=-g(DW)* - —. (4.56)

A simple choice for U could be

U=mgyi9az=m <0, (4.57)

where m is a negative constant. It is again important to emphasise that m now governs the
kinematics of the scalar fields, and that the condition

FF=¢3 ( Jad | DQADGA> >0 (4.58)
32U
has to hold for the theory to be consistent.

4.1.3 D-Emergent Potential

Higher derivative interactions are not restricted only to scalar fields. In fact we will show that
an equivalent method as before can be followed which again leads to a scalar potential. Now the
auxiliary fields that are integrated out are the ones of the vector multiplet, the “D” fields.

The higher derivative term we want to discuss is (in superspace)

Lonp = / d*0 2& (1523 - 8R>(—ijab(q>, QYW AWOY (d, BYWOW D) £ he.  (4.59)
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The superfields Jo,(®, ®) and V.q(®, @) are functions of the various chiral superfields that are
present in our theory, the only restriction is that they should transform correctly under the gauge
group. The bosonic sector of Lagrangian (4.59) after performing the superspace integration is

eilﬁgHD = [JapYea + JapYed] X
( 411 Fie(@ pl®) pad(e) p(@ ; Fae@ p0) p@ p@ _ % D& p®) probte) )
1 a C
+D@DO DDy — cabed ) pOectah O Pl 3, (4.60)

16

Here Ju, = Jw| and Yy, = Ve|. Moreover for the gauge sector we will consider a more general
coupling allowing for a kinetic gauge function as well. The standard kinetic term for the gauge
fields is

Lo = / d*0 2EH () ()W DWW  hc. (4.61)
and the bosonic sector in components reads

e Lo = [Hiw) +H<ab>1{——FdC VEL !

'+ %e“bch?Fc(g) + D@ PO (4.62)
with Hy, = Hap|- Up to now the most general Lagrangian in superspace reads
Lot = / 4’0 2& { (DD 8R) “EB LUy (@YW QWO 1 P()
+é (1515 - 8R> [A”’” Dy KD K, DK, D°K } (4.63)
(DD — §R) Tus(®, B)W WOV, (@, BT ]} +he.
Finally, in order to study the properties of this new term, let us consider a very simple example

of a single U(1) group and a single uncharged (under this U(1)) chiral multiplet. The higher
derivative terms will be only for the gauge sector. Our Lagrangian, in component form reads

1 _
L= SR gaaOnAD" A+ [H(A) + (A )]{__chp ot s Leabedp g 2
1
Te 2K/3[JY 4 YJ]{4 (chch> FdCFdCD2 T ( adeFachd) D4} (464)

Here J and Y are positive definite gauge invariant functions of A and A. Now we can easily solve
the auxiliary D equations of motion to find two solutions

e Standard solution:

D=0, (4.65)

e New solution:

D 1chF 1 2K/3 H+H

. 4.66
2 2° JY +YJ (4.66)
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The first one is the standard supersymmetric solution and has been also studied in [43] in the
presence of higher derivatives. The new solution can only be consistently realized in the presence
of magnetic fluxes so that

s 1 1 ogy H+H

D?=_F¥*F, — ¢

i+H _, 467
5 2 Vv (4.67)

Eventually the on-shell theory will be

_ 1 | H+H)? i e
e Loy = 51— 94200 AO" A — ZezK/:Sf]Y—f——Y)j + Z[H(A) + H(A) e F, Froy
1 _ _
T [JY + Y (e FyFLq)?
1 ogps(H+H)* i HiA

1 B
— SR— g0, A0MA — - ) 4t
5= 9420m A0 A Y yvJ

_ o1
+[JY + YJ]{—§(FdCFdC)2 + Fy F*FgF%Y. (4.68)

_|_

It is easy to see that there is a positive definite emergent potential due to integrating out of the
D auxiliary field

V(A A) = %MB%. (4.69)
A simple example can be given by a gauge kinetic function
H=A? (4.70)
with a, b two real positive constants
J=a>0, Y=0>0.
The potential will be
V(A A) = e2K/3M. (4.71)

Sab

This novel feature of gauge fields higher derivatives has not been studied before and deserves
further investigation.

4.2 Supersymmetry Breaking by Higher Dimension Oper-
ators and Non-Linear Realizations

Supersymmetry is one of the most appealing candidates for new physics. It has not been observed so
far; thus, it should be broken at some high energy scale if it is realised at all. The central role on how
supersymmetry is broken is usually played by the scalar potential of the supersymmetry breaking
sector. Scalar potentials in supersymmetry and supergravity have extensively been studied for two-
derivative theories. Even though it is known that introducing higher dimension operators spoils the
form of the scalar potential, it seems that the theory somehow protects itself from unconventional
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non-supersymmetric vacua [43]. Our task here is to discuss how scalar potentials are modified
and may lead to supersymmetry breaking when higher dimension operators are introduced. The
goldstone fermion associated with the supersymmetry breaking, the goldstino, is described by
the Volkov-Akulov action [188], in which supersymmetry is non-linearly realized. In particular,
the goldstino dynamics has been related in [139] to the superconformal anomaly multiplet X
corresponding to the FZ supercurrent [94]. The multiplet of anomalies X, defined in the UV flows
in the IR, under renormalization group, to a chiral superfield Xy which obeys the constraint
X%, = 0. This constrained superfield is the realization of the goldstino given in [40]. Since the
dynamics of the goldstino is universal, the IR action in [139] is the same as in [40]. Constrained
superfields have been used before to accomodate the goldstino. Indeed, there are alternative
formulations in which the goldstino sits in a constrained superfield, such as a constrained chiral
multiplet [174], a constrained vector multiplet [155], a spinor superfield [111], or a complex linear
superfield [148,149]. Constrained superfields have also been used recently in the MSSM context
[11, 18, 29, 85, 86, 172| and in inflationary cosmology, where the inflaton is identified with the
sgoldstino [8-10]. In addition their interaction with matter has been worked out in [19].

Supersymmetric theories that contains higher dimension operators (derivative or non-derivative
ones) have some novel features [45,48-52,82,83,135]. Among these, an interesting aspect is that
higher dimension operators can contribute to the scalar potential. This has been discussed earlier
in [43] where a few examples have been given. In particular, theories with no potential at the
leading two-derivative level, may develop a nontrivial potential when higher dimension operators
are taken into account and may even lead to supersymmetry breaking, as already mentioned above.
At this point there are however, two dangerous aspects. The first one concerns the appearance of
ghost instabilities. In the type of theories we are discussing, this instability is not present as the
theory does not have those higher derivatives terms which might give rise to such dangerous states.
The second issue concerns the auxiliary fields. Here, we are still able to eliminate the auxiliaries
of the multiplet since they appeared algebraically in the supersymmetric Lagrangian.

We will consider various theories exhibiting supersymmetry breaking in the presence of higher
dimension operators. Special attention will be devoted to a globally supersymmetric model for
a complex linear multiplet. As we will explain in one of the following sections, the complex
linear multiplet, or nonminimal multiplet, contains the degrees of freedom of a chiral multiplet
and in addition, two fermions and a complex vector. At the two derivative level, both the extra
fermions and the complex vector are auxiliaries and can be integrated out, giving on-shell just a
free complex scalar and a fermion. Due to the constraints the complex linear satisfies, there is no
superpotential one can write down and the introduction of an F-term for non-derivative interactions
is not possible. So, one relies on modifying the D-term in order to get some non-trivial interactions
and an emerging potential induced by higher dimension operators [43,82,83,135]. Under certain
conditions, it may happen that the new potential develops another extremum for the auxiliaries
which break supersymmetry. In this case, new phases will emerge, only one of which will be realized
when the higher dimension operators interactions are turned off. It should be noted however,
that these new phases are not different phases of the same theory, but rather different theories.
The examples studied in [43] were not successful in this respect, basically because the auxiliaries
appeared in the higher derivative terms with the same sign as in the leading two-derivative term.
This has the effect that the minimum of the potential is stable with respect to the addition of the
higher dimension term. However, in the case of the complex linear multiplet, the auxiliary in the
two derivative term and in the higher derivative term appear with opposite sign. This has the
effect of introducing now a new minimum for a non zero value of the auxiliary, thereby breaking
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supersymmetry. The interesting phenomenon that appears here is that the goldstino turns out to
be one of the auxiliary fermions of the multiplet, which in the new vacuum acquires a kinetic term,
but vanishes in the supersymmetric vacuum of the theory. After integrating out the auxiliaries,
we are left with a complex scalar, a fermion and a goldstino without supersymmetric partner,
as supersymmetry is broken. Therefore, there is a mismatch of bosonic and fermion degrees of
freedom as for example in Volkov-Akulov type of models where supersymmetry is non-linearly
realised [188].

This part is organized as follows. In the next section we present theories with higher dimensional
operators that exhibit susy breaking and the corresponding Volkov-Akulov actions. In section 3 we
describe the complex linear multiplet. In section 4 we show how higher dimensional operators of
the complex linear multiplet may lead to susy breaking and we prove the equivalence to non-linear
realizations. Finally, we conclude in the last section 5.

4.2.1 SUSY Breaking and Volkov-Akulov Actions

One of the explicit examples considered in [43] to demonstrate that the scalar potential is sensi-
tive to the addition of higher dimension terms, is a supersymmetric o-model with four-derivative
coupling. Its standard Lagrangian is?

.- / JOK (D, D), (4.72)

where K (®, ®) is the Kéhler potential. The latter can be considered as a composite vector multiplet
possessing an effective gauge (Kéahler) invariance

K — K +i(A—A), (4.73)

where A is a chiral superfield. As we are going to keep this invariance for the higher dimension
operators as well, we will construct the latter in terms of the superfield field strength

W, — —iDDDaK (4.74)

for the composite vector K (®, ®). Then, clearly, the most general Kéhler invariant Lagrangian up
to four-derivative terms is

L, = /d49 K(®,®) + (/ d?60 g(®) +/\/d20 W2(K) +h.c.,) (4.75)

where ¢g(®) is the superpotential and A > 0. Without loss of generality, let us consider the simplest
case of a single chiral multiplet with K = ®® and g(®) = 0. Then eq. (4.75) turns out to be

IS o
L, = / d*0 <<I><I> + §Daq>Daq>Dd<1>Da<b> (4.76)

and the scalar potential turns out to be [43]

—Vi = |F|* + 8\ F|*. (4.77)

2Qur superspace conventions can be found in [193].
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The minimum of the potential is at F' = 0, which is also the minimum of the theory in the
A — 0 limit. Nevertheless there exists another vacuum supported by a background flux for the
scalar component of the chiral multiplet leading to F' ~ |0A| which may lead to supersymmetry
breaking [83, 135] and is not continuously connected to the standard branch F' = 0 as we saw
earlier. This vacuum nevertheless breaks Lorentz invariance.

Chiral Spinor Superfield

There are other possibilities one may wish to consider which do not lead to Lorentz symmetry
breaking. For example, let us consider the Lagrangian [cfr. [40,139]]

1 1 o
Ly = 1 (/ d*OWW,, + h.c) + /d49 WoW W W, (4.78)

where
Wo = Aa+0uD+0°F5+60*xa, (4.79)

so that W, is chiral but otherwise unconstrained and F,3 = Fj,.
The component form of the Lagrangian (4.78) is

1 1
Ly = Z—1(172 + 2%\ + 5F&BFaﬁ + h.c.)

1 - 1 _ - 1.
+ F[A%‘)W + (D? + 2x\ + 5F2)(D2 + 2¥\ + 5F?)]
. 1 a e} m N afBy
— ZF()\ D — F*°\3)000m(X*D — F*P ;) (4.80)
where
PP = 7 PrE, (4.81)

In the particular case that W, is the field-strength superfield and satisfies D*W,, = D, 2W¢,
the Lagrangian has been worked out in [43,83]. The Lagrangian (4.78) is of the form [40, 139]

_A*

where X = W*W, satisfies

X?=0. (4.83)
The explicit form of X is
1
X = WoW, =N +20° (e D — Fo)A\* + (iFaﬂFaﬁ + D? + 2y \)6? (4.84)
with F*% = €2 F, . By defining
Gp = 20D — 2F3,\° (4.85)
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and noticing that, because A2\, = 0,

G? = N2(4D? + 2F“PF,5) = N2(4D? + 2F°PF5 + 8x\) = 4\*F, (4.86)

we get the parametrization of X in chiral coordinates [40,139]

2 ~
X = % +V20G + 6* F. (4.87)

Here we have rescaled G = v/2G. In a sense, W, is the square root of the goldstino. If the above
form of X is plugged back in eq. (4.82), the Volkov-Akulov Lagrangian for the goldstino G is
obtained [40, 139].

We should note here that the resulting Lagrangian is written entirely in terms of the goldstino
G,. One would expect the theory to propagate also its supersymmetric partner, the sgoldstino
to fill together a multiplet of the (broken) susy. However, it seems that the sgoldstino has been
integrated out from the theory. This is due to the fact that the original multiplet didn’t have any
propagating fields as both fermions x, A and bosons D, F,, 3 were auxiliaries. In a sense, the original
theory can be considered as the zero-momentum limit (or infinite mass limit) of a theory were all
fields were propagating. This is equivalent to sgoldstino decoupling [11,18, 19,40, 85,86, 139] and
we correctly find here that the goldstino is the only propagating mode in the susy broken branch.

A way to find the vev of F is from the bosonic part of (4.78), which turns out to be

1 1 1 1 U
LE = =F*F,s+ -D?+ h. — ( D*+ =F*’F, D?> 4+ —F%F. . ). 4.88
(8 5+4 + h.c +A4 + 5 3 + 5 v (4.88)
The are now two solutions for D,
i) D=0, (4.89)
1 At 1. s A*
i) D* = ——F*F,3——, D*=—_FYF ,— —. 4.

The first solution is the supersymmetric Lorentz-invariant vacuum, provided £,z = 0, whereas the
second solution gives

A4
F--2 1.91

. (4.91)
Then (F,3) # 0 clearly breaks supersymmetry but also Lorentz invariance at the same time.
However, it is possible to preserve Lorentz invariance if (F,5) = 0 and (F*°F,3) # 0 as required
by (4.90).

In the particular case in which W, is the field strength superfield, the bosonic part of (4.78)

turns out to be [83]

1 1 1

LE = _Zlanan — gemnlemanz + §D2
1 (1 1

+ 27 {Z(Fm"anP = P Fpn D? 4 1o ("™ P Fia)? + D4} : (4.92)
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There are two solutions for D,
i) D=0, (4.93)

1 At

ii) D* = 5F’“”F,,m - (4.94)

The first solution corresponds to the supersymmetric branch, whereas the second solution gives
the possibility < D? >+ 0 and may break supersymmetry. However, this is not a Lorentz-invariant
vacuum, since (4.94) requires a non-vanishing F™"F,,, for supsersymmetry breaking. In particular,
since D? is positive, this vacuum can only be sustained with a non-zero background magnetic field.

Real Linear Multiplet

Another interesting example is provided by the Lagrangian

1 .
L= / d*o (—L2 + WDQLDQLDQLDQL) : (4.95)

where L is a real linear multiplet. The grassmann expansion of the latter may be written as
L=¢+00+0yp—00,0H™ — %9255—’” )+ %é%m i) — 392523% (4.96)
and satisfies
L=L, D?’L=0. (4.97)
This implies that the vector H,, is divergeneless
J0"H,, = 0. (4.98)

The action (4.95) can be written as

1 1 1
_ an( _r2 _ 4 1 2
L_/de( L +64A4XX> /d0<64A4XX) +(4/d 9X+h.c.), (4.99)

_ 1
X =D*LD,L = §D2L2. (4.100)

with

Note that X is antichiral, so X is chiral and obeys X2 = 0. Then the Lagrangian (4.99) is the
same as in [40,139] (modulo normalization factors). In particular, X is explicitly written in chiral
coordinates as

X = Dy LD*L = 4* — 200,00 (i0™¢ + H™) + 0*[2i0™po,1p + (i0™¢ + H™)?] (4.101)
therefore, it is chiral with auxiliary field F

F = (i0mo + Hy)(i0™ + H™). (4.102)
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The goldstino now is given by
Go = —20macV™(i0™¢ + H™). (4.103)
It is easy to see that the bosonic part of (4.99) is

1 1 1
B _ ~ m m (4 212
L8 = SHyH™ = 50060"6 + o (106 + Hy) (4.104)

There is a supersymmetric vacuum H,, = 0, ¢ = const. and a supersymmetry breaking one (with
¢ = const. )

H,H™ = —16A*, (4.105)

In this case, supersymmetry is broken and the theory reduces to the standard Volkov-Akulov for
the goldstino G. In spite of appearances, the vacuum solution (4.105) does not breaks Lorentz
invariance, since the divergenceless vector H,, and 0,,¢ combine into the unconstrained vector
A,,, which does not propagate, because it has algebraic equations of motion. Therefore, a nonzero
constant vev for A,, does not affect the dynamics since it either disappears from the Lagrangian
or it arranges itself into Lorentz-invariant composite quantitites. We also note that, after using
(4.101), the action (4.99) is written entirely in terms of the goldstino field G,. Again here, similarly
to the spinor superfield case above, there is no superpartner of the goldstino. The sgoldstino is
decoupled as all fields before susy breaking were auxiliaries and therefore (4.99) may be consider
as the zero-momentum limit of a theory were these were propagating. In this limit, the sgoldstino
decouples and the theory describes a Volkov-Akulov model.

Validity of the Volkov-Akulov Description

The theories above, as well as the one we will examine later, must be understood as effective IR
theories. If a supersymmetric UV completion existed, then the sgoldstino ¢ would have a large
but finite mass m,. It would interact with the goldstino through terms of the schematic form

KG oG + (Mm2/2)* + ..., (4.106)

with a coupling constant x = O(m?2/f). At energies below m,, the sgoldstino fields can be
integrated out, producing additional irrelevant operators weighted by inverse powers of the new
scale A’ = f/myg. Curiously, these additional interactions become negligible when the sgoldstino is
massive but lighter than \/f: A > /f — m, < v/ f. We will explicitly demonstrate this in the
case of supersymmetric theories with chiral multiplets.

Let us recall that in globally supersymmetry theory with n+ 1 chiral multiplets ®¢, the Yukawa
couplings arise from the term

E D W/L](gb)xzxj —"_ h‘c7 /[/7.] - 07 17 M n’ (4~107>
where ¢', x* are the scalars and fermions of the chirals and W;; = 8*W/0¢'0¢’. The potential is

VvV =W,W, (4.108)
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where the notation W% = (W;)" is used and let us assume for the moment that the Kihler metric
is flat. The values of the fields in the ground state are (¢*) = a’, (F') = fi, (¢;) = 0 and the
equation of motions give

fi=—wi, wyfl =0, (4.109)
where
w; = Wi(a'), wy;=Wi(a), .. (4.110)
The term (4.107) gives then rise to the interaction
L D wirdd"x'x’ + h.c, (4.111)

where d¢' = ¢* — a'. Since supersymmetry is broken, the fermionic shifts will not vanish in the
vacuum

By an appropriate rotation of y;, we can define new fermionic fields y;
% = Rix;, (4.113)

where R;7 is an appropriate matrix such that the non-zero fermionic shift are along a specific
direction, which we will call it (“07)

<Oxo>=—fe, <doxo>=0, a=1,...,n, (4.114)
with |f|?> = fif%. Clearly X is the goldstino, which is defined then as
Xo = Ro'dxi (4.115)
and the rest of the modes are given by
0Xa = Ra'6xi. (4.116)
The matrix R;; is orthogonal and chosen to satisfy
R,/ fi=0. (4.117)
When this equation is satisfied, then Ry" = f;/|f| so that the goldstino is

oXo = ii|§Xi- (4.118)

f

Note that instead of rotating x;’s, we could have rotated the original superfields ® so that the
goldstino belongs to the ®Y goldstino superfield, which is a linear combination of the original fields.
According to (4.118), ® is

Dy = Jigi (4.119)

A
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The rest of the superfields are given by

(ia = Ralq)z7
therefore, the sgoldstino is
qu — £ 72‘
/]

The interaction (4.111) is written then in terms of the new fields as
LD R R RN windd" X" X
The possible Yukawa coupling of the golstino are

L1 D RoRGREqwijd X0 = | £ 72 £ 1 frwindd® 00 = [ )% 5 00°X°%°

L2 D R R R ywijd ' XY,
where
S = fifjfkwijk, Sk = fifjwijk-
We will show now that

S:O, s; =0

(4.120)

(4.121)

(4.122)

(4.123)

Ly D RiaRjoRkowijk&gaf(Of(O = |f’72Riafjfkwijk5$a)~<o)~<0 =|f| Ry si 50" °X° (4.124)

(4.125)

(4.126)

(4.127)

so that a globally supersymmetric theory the only trilinear Yukawa coupling is the one that contains
only one goldstino or one sgoldstino. For this, we need to recall that the fermionic mass matrix

mp = w;; has a zero eigenvalue

mFijfj =0,
and the bosonic mass matrix
T
myrmg o k
M2 = F 5 T;; = wi i
B < ot mFm} ) i ikt
is positive definite
(U|ME|T) > 0.

For

we get, since mp annihilates f?,
Re(fifjsij) Z 0.
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(4.130)

(4.131)
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Moreover, since mp annihilates also € f?, where ¢ is an arbitrary phase, we get in general
Re(e*? f' floi;) > 0 (4.133)
which leads to
s=["floy = ff ffwg, = 0. (4.134)

Therefore, the coupling £; vanishes and there is no (goldstino? sgoldstino) coupling.
We can also prove that there is no (goldstino® scalar) Yukawa coupling by showing that s; = 0,
which means that £, vanishes as well. By using (4.134), it is easy to see that in fact

(U|ME|T) =0 (4.135)
and since M3 is positive definite, M} annihilates |¥)
MZ|¥) = 0. (4.136)
Then, by using (4.128,4.134), we find
oii ! = w1 f¥ = 0. (4.137)

Therefore, s; = 0 and the interaction £, similarly vanish. As a result, in a globally supersymmetric
theory, the only Yukawa coupling that is allowed, is only L3, i.e., a single goldstino interacting
with a scalar and a fermion of the matter scalar multiplet or a single sgoldstino interacting with
two fermions of the matter scalar multiplet. In particular, this means that there is no way to break
supersymmetry just with a single chiral multiplet.

Let us now turn to the general case of a non-flat Kahler metric g;;. In this case, the bosonic
mass matrix is

— K, f J
M2 = +mpme)'; o R (4.138)
O'Jr —KZ’] + (TTLFTTLF)Z
where
K’; = Kj; = Kjipn S f* (4.139)

and KGim, = Rjimy, in normal coordinates. Now, the corresponding relation (4.130) for the posi-
tivity of M% does not lead to any conclusive relation. The Yukawa couplings originate from the
term

Lo (Wij . rfjwk) X+ hee. (4.140)
which gives rise to
£ (Wige = 04T4 Wy = T4 ) 3657 + hec.. (4.141)

Rotating the fields such that again the goldstino is in the 0-direction as before, we get the inter-
action

L2 55¢°%°X° + h.c. (4.142)
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where
§ = (Wijp — 0I5, Wy — DLW £ 7 . (4.143)

Clearly now s # 0 as can easily be checked for the simplest case of a linear superpotential W = f®.
In fact it is easy to see that if the scale of the Kahler manifold is A then the sgoldstino mass is

Mg ~ % (4.144)
and s is of the order of
2
5~ é ~ m? (4.145)

Therefore, the effective coupling in the IR will be schematically of the form

M2 500 1 oo
fSX X ¢ —§m3¢0+~-~+h.c (4.146)
which gives rise to a term of the form
M2 o _oy2
£oH (x"x") (4.147)

after integrating out the sgoldstino. Such a term is supressed by the scale A’ = f/m and therefore
it can be ignored as long as it is much larger than the Volkov-Akulov scale /f (A" >> /f).
In this case, interactions like (4.147) can safely be ignored and the theory will be described by
Volkov-Akulov for

AN VT (4.148)
ms
In other words, the Volkov-Akulov description is valid for

ms <</ f << A. (4.149)

This limit is the one considered in the models with constraint superfields in which the sgoldstino can
be safely integrated out resulting in a non-linearly realized supersymmetric Volkov-Akulov theory
for the goldstino mode. The V-A description is then valid only up to a UV cutoff equal to the
mass Mygntest Of the lightest particle mixing with the goldstino. This particle can be the sgoldstino
or one of the fermions orthogonal to the goldstino. Of course, as in all effective Lagrangians, the
V-A scale f must obey f > mjpeq-

4.2.2 The Complex Linear Multiplet

We have explicitly demonstrated in the previous section that higher dimensional operators con-
tribute to the vacuum structure and may lead to supersymmetry breaking.

Here we will see that it is possible to break supersymmetry without intorducing any Lorentz
non-invariant vev.
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The reason that the potential (4.77) cannot break superymmetry is that the two terms in (4.77),
coming from the two- and four- derivative terms of (4.76) have the same sign. Clearly, new extrema
can emerge only if these terms have opposite sign, i.e. if the first contribution coming form the
leading term in (4.76) flips sign. This can happen for the complex linear multiplet [99,101].

The complex linear or nonminimal multiplet is defined as

D?Y = 0. (4.150)

The constraint (4.150) above is just the field equation for a free chiral multiplet. Note that if the
further constraint ¥ = ¥ is imposed, the complex linear multiplet turns into a linear one. The
standard kinetic Lagrangian for the complex linear superfield in superspace reads

Ly = —/d49 PHI (4.151)

Note the relative minus sign compared to the kinetic Lagrangian of a chiral multiplet. This is
necessary for the theory to contain no ghosts. The relative minus sign of the complex linear
multiplet ¥ compared to the standard kinetic term for a chiral multiplet ® can be understood in
terms of a duality transformation. Indeed, consider the action

Lp=— / d*0(35 + O¥ + OX), (4.152)

where @ is chiral and ¥ is unconstrained. Integrating out ® we get both eq. (4.151) and the
constraint (4.150). However, by integrating out ¥, we get ¥ = —®. Plugging back this equality
into (4.152), we get the standard kinetic term of a chiral multiplet

Ly = / d*0dd. (4.153)

As announced, the overall sign in Lagrangian (4.153) is opposite to that of (4.151).

To find the superspace equation of motion, we should express ¥ in terms of an unconstrained
superfield. This can be done by introducing a general spinor superfield U with gauge transfor-
mation

5y = DPA(ap) (4.154)
where A, is arbitrary. It is easy to see that by defining
Y = Dy 0, (4.155)
¥ satisfies the constraint (4.150). Then the field equation following from eq. (4.151) is
DY =0. (4.156)

Therefore, the field equation of a complex linear multiplet is just the constraint of a chiral multiplet
and, as noticed above, the constraint on a linear is the field equation of a chiral. This indicated
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the duality between the two kind of multiplets, at least in the free case. The field content of the
complex linear multiplet Y is revealed via the projection over components as

A=Y,
o= LD,5
[0 \/§ « b
1
F=—--D?%
4 ;
A\, = 1 D.Y|
o \/§ « )
P,;=DgD.Y, P 5= —DgDsX,
1 _ _ 1 _
Xa = §DdDo¢Da2| ) Xd = §DaDdDOéE|‘ (4157>

In other words, a complex linear multiplet contains a chiral multiplet (A, A,, ) and an antichiral
spinor superfield (Y, P, 3, Xa). Therefore, the complex linear multiplet is a reducible 12 + 12
dimensional representation of the N = 1 supersymmetry. It should be noted that since ¥ is
not chiral, there is no superpotential and there are no supersymmetric non-derivative interactions.
However, the complex linear multiplet can still be consistently coupled to ordinary vector multiplets
of the N' =1 theory.

We give for later use the supersymmetry transformations of the fermionic components of X

s 7 L
0o = V2007670, A — Egﬁpaﬁ- (4.158)
§Xa = 200", 5P E40, Py + 0™ 5" P50, P,y — 46,0° A + 200,90, F (4.159)
1 .
Ay = V2L F — —E°P .. 4.160
5 \/55 afs ( )

The transformation rules of the bosonic sector of the complex linear multiplet are

0A = V2 + V2N, (4.161)
i 1.

5F = 50" 0n + 58X, (4.162)

0P = —2V2€0" Onda + V2i€a0Ts0mNs — Eakg — 2V2iE50050,07. (4.163)

In terms of the components of ¥, Lagrangian (4.151) is explicitly written as

_ _ _ 1 _ 1 _
Lo = A0?A — FF +i0,0™ + 5Pum + NG (XA + XA). (4.164)
The complex vector P,,, the complex scalar F' and the spinors A\, x are auxiliary fields. Note that
the minus sign in front of the superspace action (4.151) guarantees that the scalar A is a normal
field and not a ghost. However, this choice of sign has flipped the sign of the F'F relative to the
action for a chiral multiplet. This flip of sign is of fundamental importance for what follows and
leads to supersymmetry breaking.
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4.2.3 SUSY Breaking by Complex Linear Multiplets

As we have noticed before, although one can couple the linear multiplet to gauge fields [67,112,
169, 170, 184], one cannot write down mass terms or non-derivative interactions as in the chiral
multiplet case by means of a superpotential. So, the best we can hope for is to introduce a
potential indirectly by using the higher dimensional operators first discussed in [43]. The idea
of [43] has been recently revisited and the emergent potential for chiral and vector multiplets has
been discussed in [82,83,135].

To achieve this, we introduce the following Lagrangian in superspace

1 .
= 4 DYDY D.SDY. 4.1
Lpp / d'0 WEDg , (4.165)

where A is a mass scale. Then, the theory is described by

_ 1 o
— 4 - « ) & ) 4.
/d 0 ( Y + GIAT D*YD,¥Ds¥D E) (4.166)
By using the unconstrained superfield ®,, we find that the field equations are
1 _ _
B & _
D>+ mDaDa (D YDg¥D E) =0. (4.167)

Clearly, the above equation always admits the supersummetry preserving solution
D> =0. (4.168)

We are interested to investigate if another, supersymmetry breaking solution to (4.167) exists.

The component form of the bosonic part of eq. (4.165) is
1 _ _ _ _
hp= e <PumP"Pn 4P, PTFF 4 16F2F2>, (4.169)

so that the bosonic part of the full Lagrangian (4.166) turns out to be

_ _ 1 _
LB = FF+ A9*A + 5Pum

n (PumP”Pn V4P, P"FF + 16F2F2). (4.170)

64A4
From the equations of motion for the complex auxiliary vector we find that
P, =0, (4.171)

whereas the equations of motion for the auxiliary scalar turns out to be

1 -
F (1 — WFF> = 0. (4.172)
There are now two solutions:
(1) F=0, (4.173)
(1) FF = 2A* (4.174)



Clearly, as it follows from eqgs. (4.158,4.159,4.160), the first vacuum F' = 0 is the supersymmetric
one, where supersymmetry is exact. However, the second vacuum, described by the solution
(4.174), explicitly breaks supersymmetry. We note that the theories with F' = 0 and F' # 0
should not be thought as phases of the same theory but rather as two different theories. This
can be illustrated by the following example. Consider a scalar A and an auxiliary field Y with
Lagrangian:

1 1 1
Solving for Y we get two solutions: Y = 0, which gives the free scalar Lagrangian
1
La= —§amAamA, (4.176)

and
Y2 =aA®+b, (4.177)

which gives the interacting Lagrangian
! 1 m 1 2 2
Ly = —58,”148 A— Z(CLA +b)~. (4.178)

No transition either perturbative or nonperturbative can occur between the two, precisely because
the equations for Y are algebraic, so they are truly two different theories.

It should also be noted that the susy-breaking vacuum is specified by the modulus of the
auxiliary field F'. So, F itself is specified only up to a phase. This is expected due to the invariance
of Lagrangian (4.166) under the global U(1) transformation

Y — ey, (4.179)

For completeness, we give the component form of Lagrangian (4.166)
_ _ _ 1 _ 1 _
Ly, = AO*A — FF +i0,05™) + =P, P™ + ——(x\ + Y\
> Yo"+ o e (XA + X))

o {4(%@%@? + 2V2i(0,, XN A2 (4.180)

— 16F0*AN? + 8iFO™ P, \*

+ 80? ANGF AP, + 4iMa* 0" AP0, P,

+ 8NGO F Py — 160,006 ™ N0y X + 4i0,,105™ A\ P?

1 . . <

+ SV, \* — 8IN PR O
+ V2P A"y, Py + 4i P20, 00\ + P2P?
— 8V2FYAF — 8FFP,P" — 2v/2yo™\P,,F
+ 4iF P A" 0" Ou N — 16iNd" NF O, F
+2v2P,6" P05 A F — 255 XPNIXY + 2200, 0567 5 AN
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— 8i, 0" GNPy F — \V2A6™ 5"\ Py Py — 2iAc* 5" 6" O NP, P,
— 8\0" AP, 0*A — 8iA\c" \P,0,, P™
+ 16 F2F? — 8V2 A\ FF — 16iAc"O,\FF
—16A2FO%A — 16iN2F8,, P™ — )\QEZ},
where
Q%% = —2/2i5" P9, A — V2PN, — X Qe = €pespe0a?T (4.181)
and
s = X5 + V2070, (4.182)

We should note that Lagrangian (4.180) contains also first derivatives of the auxiliaries F, P,,, x.
Therefore, one may question if these fields are really auxiliaries. However, it can easily be checked
that these derivative terms are always multiplied by fermions. Therefore their equations of motion
can be integrated by iteration in a power series of the fermions, which terminates due to the
nilpotent nature of the latter.

To identify the goldstino mode, one should look at the supersymmetry transformations and, in
particular, to the fermion shifts. It is then easy to recognize that since

o =26 N2+ ..., (4.183)

the goldstino of the broken supersymmetry is proportional to A, i.e., one of the auxiliary fermions.
Here something unusual has happened; namely, an auxiliary fermion has turned into a goldstino
mode in the susy breaking vacuum. However, the latter is propagating and the vacuum (4.174)
should definitely give rise to a kinetic term for A. Indeed, it is straightforward to see that the higher
dimensional operator Lagrangian gives rise to the following coupling for the auxiliary fermion A

1 _ _
Lep D (57 FF) 020" (4.184)

In the susy breaking vacuum obtained from eq. (4.172) we have
< FF >=2A%, (4.185)

leading to a standard fermionic kinetic term with the correct sign
Lpp O %amXamA. (4.186)

Therefore, on the susy breaking vacuum (4.174), the auxiliary fermion A is propagating and it

is proportional to the goldstino mode of broken susy. Note that due to the model independent

relation (4.185), the kinetic term (4.186) for the goldstino is also model independent. In fact what

has happened here is that the susy breaking phase is a realization of non-linear supersymmetry.
We should also mention that the fermion bilinears yA and YA appear in the action as

1 FF _
— (1 - — XA ). 4.1
Ls D G ( 2A4> (x)\+x)\) (4.187)
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Such terms vanish on the non-supersymmetric vacuum and protect the theory from unwanted,
dangerous terms. Moreover, as in the spinor superfield and real multiplet case, there is no su-
perpartner of the goldstino. In fact, the propagating modes are the real scalar A, the fermion
¥ and the golstino A, which definitely do not form a multiplet of the (broken) susy. The reason
again is that the rest of the fields of the complex linear multiplet are auxiliaries and therefore the
sgoldstino decouples.

One could proceed and solve the field equations for the auxiliaries in (4.180). Although this is
a formidable task, there is an indirect way to proceed in superspace. We will show below that the
theory (4.180) describes a free chiral multiplet and a constraint chiral superfield which describes
a Volkov-Akulov mode. To see how this happens, let us remind briefly some aspects of non-linear
supersymmetry realizations. It is well known that the following Lagrangian [40]

L= / d*0 Xy Xnp + V2A? < / d*0 Xnp, + h.c> - ( / 0V X3, + h.c) (4.188)

is on-shell equivalent to the Akulov-Volkov theory. In fact, the Lagrange multiplier chiral superfield
¥ imposes the constraint

Xy =0 (4.189)

on the chiral superfield Xy, leads to the non-linear realization of supersymmetry [40, 139, 174]
and reproduces the Volkov-Akulov model. The Lagrangian (4.188) gives rise to the following two
equations of motion in superspace

1 _.
—ZDzXNL +V2A2 420Xy, = 0, (4.190)
X3, =0. (4.191)

The theory we consider here is described by the Lagrangian

_ 1 o
_ 4 4 o . «
L= /d 6’22+/d6’ GIAd DD ¥Dg>DY (4.192)

and the superfield equations of motion are written as

1 _ o
DY+ ——D,D, (D’XDs>D%%) = 0. 4.1
+ gopaPaDa (D"EDEDY) = 0 (4.193)

These equations can equivalently be expressed as

Y=

~ o D, (D°£DgxDE) + @ (4.194)

where ® is a chiral superfield. Hitting the above equation with D? leads to a consistency condition
D*® =0, (4.195)
which implies that ® is a free chiral superfield. In fact, > can be written as

Y =H+ o, (4.196)
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where H satisfies the equations of motion

1 - L
— B &
H = —wa (D HDgHD H) . (4.197)

It is now straightforward to solve equation (4.197) in terms of a constrained chiral superfield subject
to (4.190) and (4.191) by identifying H (up to a phase) with the goldstino chiral superfield Xy,

H=Xyr. (4.198)

Let us verify that (4.198) indeed solves (4.197). From (4.191) one finds

DP Xn1Dg Xy = —XnD* Xy, (4.199)

whereas, (4.190) gives
XnD*Xnp = 4V2M° Xy, (4.200)
XniD*Xy, = 4V2N*Xnp + 8X N X V. (4.201)

For the right part of (4.197), by using (4.198) we have

Dy (DﬂXNLDﬁXNLDdXNL)

32A4
= 32A4 Da (XNLDZXNLDO.[XNL)
= 32A4Da{(4\/§A2XNL+8XNLXNL\I[>DOCXNL}
- e { (v

= ~uD*X
4\/_A2 NL
= XNL7

where we have used the identities (4.191), (4.199), (4.200) and (4.201). Thus, the equations of
motion for the superfield ¥ are solved in terms of a free chiral multiplet (D?*® = 0), and a
constrained chiral superfield (H = Xyp,). Therefore, ¥ describes on-shell a free chiral multiplet
and a goldstino superfield. We should note however, that although (4.198) is a solution, we have
not proven that it is unique.

The component fields of the ¥ multiplet can be deduced from the relation

From eq. (4.202) the fields F' and A, of ¥ are identified as the appropriate component fields of the
constrained chiral superfield Xy since

1 1

Ao = —=Do¥| = —
V2

DX 4.203
\/5 NL| ( )
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and

F= —}lD22| = —iDQXNL]. (4.204)
Thus, we can deduce their equations of motion just from the Xy. On-shell we have
Xnp = % + V20 + 6*F (4.205)
with [139]
F = —V2A? (1 + X P LI )\25\282)\2825\2) , (4.206)
16A8 256A16
1O Ao L5\““82)\2 — ;5\‘5‘)\282)\2825\2 - ;5\6‘82()\25\282)\2). (4.207)

4A4 64A12 64A12

Equation (4.207) is the equation of motion for the goldstino and eq.(4.206) is the solution for F
in terms of the goldstino as anticipated. From the chiral multiplet we can easily identify v, as the
fermion of the chiral multiplet ®, since

Vo = %Dai\ = %Da@. (4.208)
On-shell, @ is a free chiral superfield so that
= Ag + V200 + 0°Fy (4.209)
with
PAs = 0 (4.210)
"0 = 0 (4.211)
Fe = 0. (4.212)
Thus, 1, is a free massless fermion. From (4.202) we have, for the scalar component A of ¥
B )2
A=As + o (4.213)

so that this component of ¥ is solved in terms of the free scalar of the chiral multiplet and the
goldstino. The last two auxiliary fields P,, and Y, can be specified similarly. For the complex
vector auxiliary P,, we have

_ _ A2
Pos = DaDoE| = Dy Do X1 | = —2i0,0m (ﬁ) (4.214)
whereas for y, we find
1= _ 1~ _ -
Xa = 5DaDaD"8| = 5D Do D*Xn1| = 10050mA%. (4.215)

Such a model of SUSY breaking can be considered as a hidden sector. Then, couplings to the
visible sector can be introduced through the interactions
my
4A*
where ®! are chiral matter in the visible sector and W, is the supersymmetric field strength of

vectors. In the susy breaking vacuum, m;, m, are just soft masses for the scalars of the chiral
multiplets of the visible sector and the gauginos, respectively.

m% 4NN Fi 4 v o T TG
Lo = —W/d IES Bid' — /d % (W W, + WaW ) (4.216)
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4.2.4 >-Emergent potential

Instead of (4.165), one could consider the following more general Lagrangian

1 S o I3 hy
o= /d4«9 G U(E.5) D*EDEDEDS, (4.217)

where, U is a real, strictly positive, but otherwise arbitrary function of ¥ and ¥ with mass di-
mension (—4). As we will see in the moment, a potential emerges for the complex scalar A of the
complex linear multiplet ¥. The component form of the bosonic part of eq. (4.217) is

1 R R _ 1 _
L, = 5iY P PP Put+ 1o PuP"UFF + - UF?F?, (4.218)

where U = U(A, A) = U(Z, i)‘ Then, the bosonic part of the Lagrangian
v = Lo+ Lpp

_ 1 _ .
- /d49 (—22+ 6—41/1(2,2) DQZDQZDdZD“E> , (4.219)
is

L7 =~ FF 4 AP A~ P, P"
1

+64

_ 1 _ _ 1 -
U P"P,P"P, + 1—61377113’%umv +7 UF*F?, (4.220)
From the equations of motion for the complex auxiliary vector we find again that
P, =0, (4.221)

whereas the equations of motion for the auxiliary scalar are now

F (1 — %FF) =0. (4.222)

There are again two solutions:
(1) F=0, (4.223)
(ii) FF = 7, (/i ik (4.224)

The first is the supersymmetric one while the second breaks supersymmetry. Plugging back
egs. (4.221) and (4.222) into (4.220) we find

- 1
L8 = A?A —. 4.225
U(A,A) ( )
We see now that a potential has emerged
Vep = ! (4.226)
PP U(A, A) ‘
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For example one can have

- 1
UAA) = ———— 4.227
(A4 = =y (1.227)
where A is a mass scale. This case leads to a scalar potential
V=A"+miAA (4.228)

i.e to a mass for the scalar A. The minimum of potential (4.228) is at A = 0, which is a super-
symmetry breaking vacuum since

< FF >=2A\*#£0. (4.229)

Another example is provided by

(4.230)

which gives rise to a potential

A

__ A4
V=A S

(AA —m?)%. (4.231)
In this case, the U(1) global symmetry A — ¢®A is broken at the vacuum AA = m? where susy
is also broken because

< FF >=2\"#0. (4.232)

In general, the complex scalar multiplet can have an arbitrary potential in the susy breaking
vacuum, specified by the arbitrary real positive function U(A, A).

4.3 Summary

It has been advocated in [43] that the addition of higher dimension operators to a supersymmetric
theory may lead to the appearance of new vacua, where only one of them is continuously connected
to the standard theory in the limit of removing the higher dimension operators. This is possible,
if the equations of motion for the auxiliaries have more than one solutions which satisfy the
appropriate conditions. In [43], some examples were discussed, none of which however realized that
proposal. Here we have provided an example, where the proposal works. The well-known standard
form of the N = 1 scalar potential is restricted to the two-derivative level. Higher derivative
interaction modify its form. In fact, when higher-derivatives are introduced, an emerging scalar
potential appears even if there is no superpotential to start with. There are various types of
emerging potential, F- ¥- and D-type. F-emerging potentials result by integrating out auxiliaries
of chiral multiplets whereas, D-emerging potentials come from the integration of auxiliaries in
vector multiplets. The Y-emerging potential is obtained by integrating out the scalar auxiliary
of the complex linear multiplet. As a general rule, emerging potentials are positive defined with
de Sitter ground state, indicating supersymmetry breaking. In particular, for the complex linear
multiplet, the quadratic term of its scalar auxiliary fields has opposite sign of the corresponding
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term in a chiral multiplet action. Therefore, by adding an appropriate ghost-free higher dimension
operator, a potential is induced according to [43,82,83,135]. This potential, has a second non-
supersymmetric vacuum at a non-zero value of the scalar auxiliary besides the supersymmetric
one. In the susy breaking vacuum, the propagating fields are the scalar and the fermion of the
complex linear multiplet and the goldstino mode of the broken supersymmetry. Interesting enough,
the goldstino mode turns out to be one of the auxiliary fermions of the complex linear multiplet,
which now propagates in the new non-supersymmetric vacuum.
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Chapter 5

Supersymmetry Breaking and Particle
Physics

We present a non-linear MSSM with non-standard Higgs sector and goldstino field. Non-linear
supersymmetry for the goldstino couplings is described by the constrained chiral superfield and, as
usual, the Standard Model sector is encompassed in suitable chiral and vector supermultiplets. Two
models are presented. In the first model (non-linear MSSM?)%), the second Higgs is replaced by a
new supermultiplet of half-family with only a new generation of leptons (or quarks). In the second
model, for anomaly cancellation purposes, the second Higgs is retained as a spectator superfield by
imposing a discrete symmetry. Both models do not have a u-problem as a u-term is forbidden by
the discrete symmetry in the case of a spectator second Higgs or not existing at all in the case of a
single Higgs. Moreover, the tree level relation between the Higgs mass and the hidden sector SUSY
breaking scale v/ is derived. We also point out a relative suppression by mg,; /A of the bottom and
tau Yukawa couplings with respect to those of the top quark. We then study the decoupling limit of
a superheavy sgoldstino field in spontaneously broken N' = 1 supergravity. Our approach is based
on Kahler superspace, which, among others, allows direct formulation of N’ = 1 supergravity in the
Einstein frame and correct identifications of mass parameters. Allowing for a non-renormalizable
Kahler potential in the hidden sector, the decoupling limit of a superheavy sgoldstino is identified
with an infinite negative Kéahler curvature. Constraints that lead to non-linear realizations of
supersymmetry emerge as consequence of the equations of motion of the goldstino superfield when
considering the decoupling limit. Finally, by employing superspace Bianchi identities, we identify
the real chiral superfield, which will be the superconformal symmetry breaking chiral superfield
that enters the conservation of the Ferrra-Zumino multiplet in the field theory limit of N = 1
supergravity.

5.1 Non-Linear Single-Higgs MSSM

Since the invention of supersymmetry, the question of determing the supersymmetric theory that
describes the Standard Model (SM) interactions has been at the forefront of High Energy Physics.
Strong evidence of a new particle found at LHC, the Higgs boson, has renewed interest, since,
the mass of this particle and its couplings to the rest SM particles will reveal where new physics
might be hidden [71]. Supersymmetric extensions of the SM, have, among others, the potential to
stabilize the weak scale, to allow gauge coupling unification, to provide dark matter candidates and
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to dynamically explain the hierarchy of weak and Planck scale. In fact, it is difficult to imagine a
candidate better than supersymmetry for the physics beyond the SM in the case of a fundamental
Higgs particle.

In the Minimal extension of the SM (MSSM), the Higgs sector is composed of a pair of multiplets
H, and Hy. It is by now a common belief that any supersymmetric extension of the Standard Model
will necessarily include both Higgs fields. The reason is twofold: first two Higgs fields are required in
order to give masses to up- and down quarks as holomorphicity of the superpotential does not allow
appropriate Yukawa couplings for giving mass to both up- and down-type quarks by a single Higgs
superfield. Second, simple anomaly arguments lead to an additional Higgs multiplet if quarks and
leptons are organized in usual families. Therefore, either one considers exact supersymmetry with
two Higgs multiplets, or, alternatively he gets rid of the down-type Higgs for example, at the cost
of introducing hard supersymmetry breaking terms (arising basically from the non-holomorphicity
of the superpotential) [123]. A difficulty with a chiral Higgs sector is that in the absence of Hy, the
Higgsino is massless until electroweak symmetry breaking. Moreover, the cancellation of anomalies,
previously canceled by Hy, requires the introduction of many new fields in various representations.
These new fields should be chiral as well as heavy enough so that they do not mess low energy
phenomenology. This is also the case in models with two Higgs fields and exact supersymmetry,
where H, is just a spectator with no vev and no coupling to fermions [65]. Such models, although
challenging from the model building point of view, have a variety of new fields, which are needed
to be introduced in order to take over the role of H;, making the models less appealing.

When now gravity is taken into account, supersymmetry turns out to be a local symmetry
with corresponding gauge field no other than the gravitino, a spin—% massless Majorana fermion
[70,97]. If supersymmetry is a fundamental symmetry of nature, it should be broken. In fact the
spontaneous breaking of the N' = 1 supersymmetry implies the existence of a pseudo-Goldstone
fermion, the goldstino. The latter will serve as the longitudinal component of the gravitino when
local SUSY is broken [68]. This is the super-Higgs mechanism which gives mass to gravitino.
In a linearly realized supersymmetry, the superpartner of the goldstino is a complex scalar, the
sgoldstino. As it is not protected by any symmetry, it gets a mass. If this mass is much larger
than an energy scale, it can be integrated out. In this case, the spin—% components of the gravitino
are highly suppressed, and the phenomenological interesting part is the spin—% [41,42,81], namely
the goldstino, which possesses non-linear supersymmetry [16,17,23,29,40, 120, 122,138, 153, 155,
159,174,186, 188]. In the opposite case of a light sgoldstino, the latter should be included in the
low-energy effective theory.

There exist various formulations for goldstino couplings and non-linear supersymmetry. Among
them, an interesting framework to discuss non-linear supersymmetry is the constrained superfield
formalism [139]. We will consider couplings of the non-linear goldstino sector to the MSSM with
the use of higher dimensional superspace operators. In fact, these couplings of the goldstino to the
MSSM have been computed by Antoniadis et. all in a series of papers [11,12] (see also [13-15] for
higher dimensional effective operators in the MSSM). In the constrained superfield formulation we
will employ here, we will assume that supersymmetry is spontaneously broken at a SUSY breaking
scale v/ f, which will be taken to be at the multi-TeV region. Then at energy scales above /f, we
have MSSM and the goldstino superfield. At lower scales below SUSY breaking scale v/f but above
Msoft We have again MSSM but the goldstino now is non-linear (in the sense that supersymmetry
transformations on goldstino are non-linear). Then at low energies below my,; only the goldstino
fermion couples to SM fields. Here, we will discuss energy regions around mg,p; and below +/f
where supersymmetry is non-linearly realized on the goldstino mode. We will see how the latter
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can be implemented such that to reduce the Higgs sector in non-linear MSSM.
As far as the mass generating mechanism for quarks (and appropriately for leptons) is con-
cerned, the Yukawa couplings of Hy

/d29dQ - H, (5.1)

are not available any more. In the models we will present here, mass generation is achieved by
employing the constrained superfield X and the single Higgs H,, through the interaction

Msoft / POd20X eV Qd. (5.2)
fA

The above coupling emerges from the coupling of the MSSM fields to the goldstino superfield
(suppressed by the cutoff A) and originates from the replacement of the spurion Y — (moz/f)X,

where Y is the spurion Y = HQmSOft and mg.p is a generic soft mass. For more details on this one

may consult [139]. In particular, we will present consistent non-linear supersymmetric extensions

to the SM that involve:

e A single Higgs field H, where the second Higgs H,; has been replaced by a half family, and
e A standard Higgs H, where the second Higgs H; has been turned into a spectator.
We note that in these SUSY extensions of the SM there is no u-problem due to symmetries or to

the spectrum of the theory.

5.1.1 Non-Linear MSSM

By coupling the non-linear constrained superfield X to the MSSM [139], we get the “non-linear
MSSM?”, details of which has been worked out in [11]. Here we will briefly recall its basic features.
The chiral superfields spectrum of (the two-Higgs) non-linear MSSM is summarized in the following
table

spin 0 spin 1/2  SU(3)., SU(2)r, U(1)y

(3}

Q (X3) (}NLL,CZL) (UL,dL) :}, 2, 1/3
u (x3) g ar 3,1, —4/3
d (x3) dg dp, 3,1, 2/3
L (X3> (fleL,éL> (neL,eL) 1, 2, —1
e (XB) éL €r, 1, 1, 2
H, (Hf,H®) (H;}, HY) 1, 2, 1
H, (HY, Hy) (HY, Hy) 1, 2, —1
X o G 1,1, 0

Table 5.1: MSSM chiral superfields spectrum
The theory is described by the superspace Lagrangian®

L="Lo+ L, (5.3)

1Our superspace conventions are those of Wess and Bagger [193].
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where
Lo=Lx+ Lyy+ Lyqg++L, (5.4)
is the MSSM superspace Lagrangian and
Lo=Lx+Ls+ Ly +Lig+Lp (5.5)

describes collectively all the dynamics of the constrained superfield X. Note that £, contains
higher dimensional operators and hence it is defined with a cut off [11,139]. The Lagrangian (5.4)
contains the kinematic terms Lg, Yukawa couplings Ly, , Ly, as well as the u- and B-terms £, and
L, respectively. In particular we have, in standard notation, the superspace form [5,161]

L= / d9deV d + / d*0HzeV Hy + / d*0H eV H, + { > 16;% / d2OTeW W, +h.c.} (5.6)
[ gauge
where ® = Q;, @;, d;, L;, €, denotes collectively the usual quark and lepton chiral superfields with
t = 1,...3 enumerating the three families. In the gauge sector, the sum is over the gauge group of
the SM while « is a constant to cancel the trace factor. The Yukawa couplings are described in
superspace as

and
Loy — /d29< Qs Hy— yiel; Hy) + he (5.8)

where y, (s=e,u,d) are the Yukawa matrices of the SM. The dot symbol above refers to the
SU(2) invariant product of two doublets 2. Finally, the last term of Ly is the p-term, which
describes a pure interaction between the two Higgses

Note that £, involves the new parameter ; which does not have an analog in SM theory and no
obvious origin. This term always appears even if it excluded at tree level as it will emerge through
quantum corrections, except if a symmetry forbids it.

The constrained superfield (goldstino) Lagrangian has also various contributions. The first contri-
bution £, has the usual form [139]

Lx = /d49)_(X + {/dZOfX + h.c.} (5.10)

with v/f the hidden sector SUSY breaking scale. The superfield X satisfies the constraint

X?=0, (5.11)

2For example, if A and B are two SU(2) doublets, A - B = €7 A; B;.
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and more on this can be found in the appendix. Soft masses are produced by the following
Lagrangian [11]

L, = / dOX X <cHuh_TueVHu + cHdeeVHd) +3 e / dOX XDe" D
[

1 2
- (Y N 2oX YW W, + hec, (5.12)
16¢%k f
gauge
where
2
My, mg
CHu,d = - f2 = Y Cq) = _f_;b (513)
Moreover, the triple scalar coupling terms are given below in superspace form [5, 11]
ij
Lo = “f 20X 0Q; - Hy + h.c. (5.14)
and
ij Z]
Lig = %[ poxd, Q- Hy — 7 /d2(9XelL - Hy+ h.c. (5.15)
The dimensionfull constants a¥, a’d 79 a? are usually taken to be
al = Aoy, al = Agyl, a = Ay yY (5.16)
where A is a mass parameter. The final contribution to £, is the B-term
B
Lp= 7 /dzeXHu -Hy+ h.c. (5.17)

We may proceed by integrating out the auxiliary fields, and in particular the auxiliary field of the
constrained superfield X, which we will call it F. The resulting theory is the non-linear MSSM. Of
course, to solve the equations of motion for F, an expansion in powers of the hidden sector SUSY
breaking scale f is needed. The full Higgs potential then reads [11]

V o= P4 (lul+md)|Hd?* + (|ul + md)|Ha|* + (BH,, - Hy + h.c.) <5 18)

7

One exceptional property of any supersymmetric extension of the SM is that it can actually be
used to make predictions for the Higgs mass. Given My, due to supersymmetry, the otherwise
free Higgs self-coupling A is now related to the U(1) and SU(2) couplings g1, g2 by the relation

A ~ g? + g3 as can be seen from (5.18). Note that the Yukawa couplings in this theory are the
same as in the MSSM

I 2 2 2 2 9%‘*‘95 2 2 92 frr 12
leulﬂu! +mg|Hal” + BH, - Hal” + == [[Hu|” = |Hal"| + 5 |Hy Hal” + O

. HO
EYuk:awa = — yfju%i(uijdLja) ( H+ )
7 Jou Hi
+ yidii(urja, drja) ( _ﬁg )
ij Hy
+ Ye €1 (nELjaa eLjOé) HO + h.c. (519)
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5.1.2 Non-Linear MSSM31

Let us recall at this point the two basic reasons for which a second Higgs field is needed in MSSM
and in fact in most (if not all) of the supersymmetric extensions of the SM:

e A second Higgs is needed to cancel the gauge anomaly introduced by a single Higgs super-
multiplet.

e Due to the holomorphicity of the superpotential, a second Higgs is necessary in order to write
down Yukawa couplings and give masses to those fermions the first Higgs cannot.

Therefore, a theory with a single Higgs should be anomaly free and give masses to fermions. Mass
generation by Yukawa couplings is crucial but before discussing this issue, we should make sure
that the theory with a single Higgs makes sense, i.e., it is anomaly free. Therefore, the chiral
spectrum should be such so there is no gauge anomaly. Anomaly cancellation can be achieved
with an additional new “half-family“ and deviate from standard MSSM. The resulting MSSMB%
deviations we will present here are presented in the following table

Higgs Multiplet: | Replaced with:
u, d, S
i, Q, u: , S (or)
L, e S
or
Hd Q? u? d7 S:(Or)
L,e S

Table 5.2: Possible Higgs superfields replacements

where S is a superfield that has the quantum numbers of € but no lepton number and it is necessary
for anomaly cancellation. Here we will focus on the last possibility in the above table and replace Hy
by a leptonic generation and S. We can equally adopt a half-family with only a quark generation,
at least at the theoretical level, which, nevertheless will lead to different phenomenology.

The number of families is constrained by precision electroweak data [79]. Direct searches by CDF
and DO set strong limits my > 335GeV [2] and my > 385GeV at the 95% confidence level for a
fourth generation of new ¢, quarks. LHC also puts more severe constraints in direct searches
for extra quarks like short-lived ' quarks in the signature of trileptons and same-sign dileptons.
CMS for example has ruled out my < 611GeV at 95% confidence level by assuming exclusive
decay of b’ — t W [58]. Similarly, no excess over the SM expectations has been observed in CMS
search for pair production of top-like quarks ¢’, excluding a fourth generation ¢’ quark with a mass
my < 557GeV [59]. Also for pair production of a bottom-like new quark ¢, ATLAS collaboration
reported the exclusion at 95% confidence level of b’ quarks with mass my < 400GeV decaying via
the channel & — Z + b [1].

Extra quarks and leptons are also severely constrained by Higgs production at LHC. For example,
the dominant source of Higgs production is a single Higgs produced by gluon fusion through a
heavy quark loop. The gg — h production cross section o(gg — h) is proportional to the Higgs
to gluon decay width I'(h — gg) which is dominated by heavy quarks with the largest Yukawa
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couplings. This decay width is for example increased by a factor of 5 to 6 relative to SM in fourth
generation models [37,116].

As far as a fourth generation of leptons is concerned, the LEP reported the lower bound for new
heavy charged lepton 7/, m,» > 100GeV [3]. Similarly, the Z invisible width and the assumption
of Dirac masses, set m,, > myz/2 for new heavy stable neutrinos [119]. On the other hand, if such
new neutral leptons are lighter than half the Higgs boson mass, a new invisible channel H — n'n’
is open up increasing the total Higgs width and overtakes the H — ff rates for example with a
significant branching ratio in the low mass region.

Returning to our model, the chiral superfields spectrum is

spin 0 spin 1/2  SU(3)., SU(2)r, U(1)y

o

Q (X3) (NfLL,dL) (UL,dL) ?, 2, 1/3
u (x3) g ur, 3,1, —4/3
d (x3) dg dp, 3,1, 2/3
L (X4> (ﬁeL;éL> (neL,eL) 1, 2, —1
e <X4) éL er, 1,1, 2
H, (Hf, H®) (H}, HY) 1, 2, 1

S 5 5 1,1, -2
X o G 1,1, 0

Table 5.3: Single Higgs Non-Linear MSSMB%
Even if the theory is anomaly free, we are still facing the problem of how to give masses to quarks
and leptons while maintaining SUSY as the second Higgs H, is missing. For this reason, we may
introduce higher dimensional operators to replace the Yukawa couplings (5.8). The Lagrangian
that will replace Ly4 in (5.8) is

Lyy = Msoft /d20d20)_( <yéj[:1ueVQjJi + yéJI:[uevLJ@) + h.c.

.
_ _TGSTOJX D2D2X (yyﬁueVQch 4yl e L Jé,> ‘ +he. (5.20)

where now I, J = 1,...4 run over the fourth lepton generation. We recall again that the factor
Msosi/ f emerges by the replacement of the spurion Y = 60*mg, s by (msori/f)X as we have pointed
out already in the introduction [139]. In component form (5.20) turns out to be

Mso ij (T [ ug; 7 (17 [ Ur;
cra = et ros ) (), - pez ) (50)
Lj
mso — — na _ — i /fle
vttt { s ) (M ) ewso - P ()
e+ 7oy [ Ly =
- F(H;, 1)) ( I >eu} + h.c. (5.21)
erJ
where we recall that F' is the auxiliary field of the goldstino superfield. In the above equation
(5.21) we have kept only the terms with no goldstino couplings. In the appendix, the higher

dimensional operator that serves as a building block for the full Lagrangian is given in terms
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of the goldstino and its lowest component ¢, which is integrated out to obtain the non-linear
supersymmetric Lagrangian. In this framework a natural explanation of the scale f is proposed
and our non-renormalizable operators (5.20) fit well to the general picture [11,12,139]. The Higgs
triple scalar couplings Lagrangian to replace L4 in (5.15) is, in superspace form

2

m _ _ L — _
Loy = — f;;f; / PO’0X X {aj H.e" Q;d; + al’H,e" Lyjer } + h.c.
m2
= _ 16;;JXQDZD2XX {azl]H e’ Q;d; + al’ H,e" Lyér} ‘ + h.c. (5.22)
After performing the superspace integration we get
Lo = f;XZ FF{ (1Y) ( g ) dyi -+ al? (D) ( T ) } the  (5.23)
J

where goldstino couplings have been ignored. Then, it is clear that the replacements

Lyq— Lya
Etd — Etd’ (524)

in (5.4) and (5.5) respectively give rise to (non-linear) MSSM with only one Higgs (the H,,).

We may proceed further and integrate out the auxiliary sector of the goldstino superfield. This will
uncover the on-shell Lagrangian with Yukawa and triple scalar couplings. Since in this work we
are only interested in the standard model sector, we will not write down any goldstino couplings
when solving the equations of motion of the auxiliary fields. This greatly simplifies the results
without spoiling the final answer. Nevertheless it is important to study the implications of these
new terms that include the goldstino as well, but this is left for future work. The relevant terms
in our total Lagrangian (5.3) are therefore

1 1 , 1 o
Lp = SFF+fF+ ey, FF|H,| +§ZCZFF|(I>Z»|

i

+ P ) ( o )Jm— P ) ( i )de
J

A Lj A
. Msort yz‘jp(ﬁJr HO) ( Fum’ ) :L, _ Misoft yIJF(H+ HO) < FneLJ ) gu
fA d w oty FdLj ? fA e u ) ttu FeLJ
Msoft 175/ 5+ 70 n?LJ _ Mesoft [J 770 NeLg
F(H , H o F(HM H - E;
- SR O e i D () Fs
soft ij + 0 aLj = soft IJ + 0 neLJ =
— FFa(H' H i — FF Hf H
o s ) () = 53 prat s ()
+ +Z2—?‘FA3+h.c. (5.25)

where by ®; we denote the lowest components of the various chiral superfields (the sparticles in
our case). Assuming that f is large, we may use the expansion

m?, m2 - 2 - -1
9 Mg,z 19 Mgt Gt goy [ W\ g, - Msort ra e oy [ Perd \ g
(1 et bl - T s i () = o i (T >€“>
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2

St H® +

m2

My, =
22‘@”2

F2A2 Aq Li

in order to eliminate F' from (4.2) so that

LF,on—shell -

1 1 1 ~
§f2 - §m§1u|Hu|2 — Eméi|‘1>i|2

) sza

Msoft

v (H;, 0D

U ~ m2 _ _
et gt ) (1) s "t s )

'ﬁeLJ éLI
F2A2 €Ly

Msoft ij 7+ 70y [ ULj )
A (H H)<dLj>FdLi

A 2 ( di;
- gt (g5 25 ()
- Mty g (" )* " B () P
B mE(;ft G (F, A0 ( fﬁZ ) 1, — X;ft al?(HT, HY) ( Z@LLJJ )éu
N %mA A2+ hec. +O(fi) o

Note that the larger the SUSY breaking scale the better the approximation. For a smaller SUSY
breaking scale one has to include higher orders in the % expansion, which leads to new interesting
results as in the two-Higgs scenario [11].

Therefore, the Yukawa couplings in our theory (5.3) with the replacements (5.24) are

HO

)

yy(ﬁ'jvﬁg) ( uéj )JLia
Ly

- m;;’ft ng(FIJ, FIS) ( ,r;eaLJ ) €Lla T h.c.
LJ

1) —Q
LYukawa = - yujuLi(uLJQ’ dLja) (

Msoft

(5.27)

Let us note that an interesting hierarchy has emerged. Namely, assuming the same order for
Y yfij .y’ we see that the effective Yukawa couplings for the bottom and tau are suppressed by
a factor mg,p/A. Thus, the bottom quark and 7 lepton masses my, and m,, respectively, should
be of the same order and suppressed by mg,f:/A with respect to the top quark mass m,

Msoft

my ~ M, ~ my (5.28)
This is indeed the case for a cutoff A of the order A ~ 100 mg,p. With A ~ /f we get that
V[ ~ 100mg,s:, whereas a cutoff A ~ f/m,p: gives rise to the \/f ~ mg,p estimate.

The Higgs potential is given by

u|H|4 gl+gQ‘H|4+O(

YV = f2+m3|Hu\2+ —=)- (5.29)

f? S
Radiative corrections to the Higgs potential are expected to drive the quadratic term negative and
trigger electroweak symmetry breaking. Moreover, this effect is strengthened by the extra Yukawa
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coupling due to the new half-family. The explicit calculation of the 1-loop effective potential can
place strong upper and lower bounds to the new leptonic family mass. The tree level prediction
for the Higgs mass however is

8M3E,m: 1
— — 5.30
93f? ) (>:30)

Thus, as f — oo we have My, — Mjy. Therefore, for very large SUSY breaking scale v/f, the
Higgs mass saturates the MSSM inequality My, < M. This saturation within MSSM corresponds
to large tan 8. By adjusting \/f, we may increase the tree-level Higgs mass so that quantum
corrections may shift it to the measured value of around 126.5GeV. We plot below the dependence
of the tree level Higgs mass to the supersymmetry breaking scale v/f, for the single Higgs models.

Mp =M+

130 T —T T T - T T T
. Higgs Soft Mass=500(GeV) ——
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120
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Figure 5.1: The dependence of the Higgs mass (My,) on the hidden sector SUSY breaking scale
Vf, with the Higgs soft mass as a parameter.

5.1.3 Spectator H,

As we have seen, Yukawa couplings of H; can be replaced by the higher dimensional operators
of the form (5.20) with the help of the constrained superfield X. Therefore, we can keep in the
spectrum H, just to cancel the anomalies but use (5.20) to generate fermion masses. This is
possible as long as we can avoid couplings of Hy to matter. This can be achieved by imposing
a Zs symmetry. This symmetry will forbid interactions like (5.9) and (5.17). At the same time
standard MSSM Yukawa couplings (5.7) of Hy will not be allowed as well, again due to the same
Zy symmetry. Of course this is different from the case of wrong Higgs couplings of the MSSM
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where SUSY is hardly broken [117]. The chiral superfields spectrum and its Z, assignment is

spin 0 spin 1/2 SU(3)., SU(2)., U()y Zs

9}

Q (X?)) (ﬂL,dL) (uL,dL) 3, 2, 1/3 +1
U (XS) ﬁL ur, 3, 1, —4/3 +1
CZ (X?)) CZL CZL 3, 1, 2/3 +1
L (X3) (TNLeL,éL) (neL,eL) 1, 2, —1 +1
e (X3) éL er, 1, ]_7 2 +1
H, (H HY) (H;, H°) 1,2, 1 +1
H, (HY, H;) (HY, Hy) 1, 2, —1 —1
X & G 1,1, 0 +1

Table 5.4: Single-Higgs MSSM with a second spectator Higgs
We see that we keep here the second Higgs just for anomaly cancellation reasons and we have
excluded any couplings to the MSSM, by imposing a Zs symmetry. In other words, H; is just a
spectator and only H, has Yukawa and triple scalar couplings. The Lagrangian that will take the
place of Ly4 in (5.8) is then

EYd” = _M /d20d20X (y;]ﬁuerjdz + yéjﬁuevl)]él> + h.C.

fA
= — Msoft DQDQX <yzljl_{u€VQjCZi + yéjﬁuevLjéi> + h.c. (531)
16f A
which in component form turns out to be
o Msoft ij | B+ 0 ug; \ 7wt goy [ UL _
ACYd fA Ya { F<Hu )Hu) ( d%j )sza F(Hu 7Hu) ( dLj ) FdLi

_ P(H ) ( B ) }
Fy,

et e, gy (0 Yew — Poz A (70 )

fA Lj €Lj
_ P(AT ) ( Foess ) éLi} the (5.32)
FeLj

In the above equation (5.32) we have kept only the terms with no goldstino couplings. The one-
Higgs triple scalar couplings Lagrangian to replace L4 in (5.15) is, in superspace form

2

m __ - - -
Liar = — f;j{; /dz@dz@XX {a H,e" Q;d; + a? H,eV Lje;} + h.c.
2
— Msoft N2 g Vg i Vo=
- 16 £2 A2 D*D’XX {adeue Q;d; +al Hye Ljei} ‘ + h.c. (5.33)

After performing the superspace integration we get

2
o msoft = ij 7+ 170 Uy 7 ij( g+ 10 NeLj =
‘Ctd” = _f2 A2 FF {CLdJ(Hu s Hu) JLJ dLi + aej(Hu 7Hu) éij €ri + h.c. (534)
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where we have ignored any goldstino couplings. Then, it is clear that the replacements

Lyq— Lyar
»Ctd — »Ctd” (535)

in (5.4) give rise to (non-linear) MSSM with only one Higgs (the H,,). For completeness, the Higgs
potential of this theory is again

1 2 2 1
Vo= P mlH 4 [ H [ DR g o) (5.36)
/ 8 /
while the Yukawa couplings are
e HO
EYukawa = - yujuLi(uLjoﬂdLja) < _[—;‘f’ )
_ Msoft i HT g° U%j dr
A yd( w u) ( d%j Lic
 Meott i o) ( s ) et + hc. (5.37)
A €Lj

Note also that the Z,; symmetry does not allow p- and B-terms.

5.1.4 Constrained Chiral Superfield
The constrained superfield (goldstino) Lagrangian has the usual form [139]

Ly = / dOX X + { / POfX + h.c.} (5.38)
with f the hidden sector SUSY breaking scale. The superfield X satisfies the constraint
X?2=0 (5.39)

This constraint gives a relation among the component fields allowing to integrate out the sgoldstino
in terms of the goldstino and the auxiliary field F', as

6=22 (5.40)

so that the component Lagrangian is written as

G? _, [ G?
EX—ZaGaG—l—FF—i—ﬁ@ (QF) —|—{fF+h.c.}. (5.41)
The equations of motion for the auxiliary field F' (and F') read
e
F+f—ﬁ8 (QF) = 0,
. G? G?
F — —p? = 42
iyt (55) = 0 (542
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which are solved by

_ G 2 3 2A202 202 A
F = f(1+—4f48G —16f8GG8G8G ,
I G 242 B A2A202 4202 A2
F = f(1+—4f48G —16f8GG3G8G (5.43)

Inserting (5.43) back into (5.41) the on-shell Lagrangian

= 1 - 1 ~ _
Ly =—[f*+i0GoG + 4—JC2G282G2 — FfﬁG“"GQ&PG?&)?G?. (5.44)

is recovered. Note that (5.44) is equivalent to the well known Akulov-Volkov Lagrangian [188].

5.1.5 Higher Dimensional Operators

We present the higher dimensional operators that serve as the building block for the component
form of the Lagrangians (5.20) and (5.22). The component Lagrangian for the Yukawa couplings
is

Mo N 17 7
Ly = —f—/{”t 020X He¥ Qd

vioga,e oy
_Gd(z-‘rd,zod) FuL :L G’d(z'*'d?z%‘) uL JLa
FdL d%

_|_
+iG% [0, (hT, )] < UL ) 7o @d<z+a’floa> ( zlfL
L

dL ) F‘iL
_ 59 Z(Ft+ 10Vya ﬂNL :_L’f._'*‘ 70\ Y & ﬂNL 3
0.3 ROV (dL) L = Gall ) <dL>dL
1 .~ - - = 1 .~ - - U -
+_5aaaGd(h+7 hO)Va Ula L + _5_aaaGd(h+’ hO)Va lﬁL dLa
2 dLa 2 L

ro0 ) (5 ) du+ svomeion i i) () d
Yo )i

110

(SN <

o0, RY) (



V2
+ %gb(h*,h”))\“ ( ZL ) dro — —¢(h+ KO [V*V, — 2D] ( Zj ) dr } (5.45)

where the gauge vector V¢, the gaugino spinor A* and the auxiliary scalar D of the gauge vector
multiplet are Lie algebra valued. The component Lagrangian for the triple scalar couplings is

2

mso _ _ _
L= ~% v / d*0d*0X X He" Qd
1 soft - TT 7 U
— aly + 730

4\/_f2AQG { ip(h ,h))\a<dL )dL

—4V2F (h*, h°) ( ULa ) d, — 4V2F(h*, h°) ( ur )d‘La
dLa dL
+4iV/2605(0,G)5°7 (IF, 1°) ( d >5L—4M 02 0a0 (% h0%) ( i )d
L L
—4iv/2G%0° D, (hF, BY) d, — 2GR R (Y ) 4,
ax dL (0% (0% dLa

—4V2GS (hE, ) dro — 2V20° . GE(R, OV, [ 5F ) d,,
@ dL dL

F4iV/26" Ge50u(hE, 1Y) ( dr ) dy — 4V2(F T, F°) ( YLe ) q,

9
PP dy dra

) da = 2B, aG 2o (G ) i)
dr

K

—4V29(F*, F°) ( ok
dr
2

et p{ = pen i) (5 ) dur Gl a3 ) ot ) (3 )

msoft
f A ¢ Ly (5.46)

In (5.45) and (5.46) the sgoldstino has not yet been integrated out. When this is done (by using

o= gg) a number of further goldstino couplings will appear.

5.2 sGoldstino Decoupling

Supersymmetry is one of the most appealing cadidates for new physics. It has not been observed
so far and thus, it should be broken at some high energy scale if it is realised at all. However,
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supersymmetry breaking is not an easy task. In the MSSM for example, supersymmetry breaking is
employed by introducing soft breaking terms. These terms are ad hoc masses for the superpartners
of the SM particles, which nevertheless do not spoil the UV properties of the theory. In fact the
MSSM includes all these soft breaking terms and one has to fit them into the observations. From a
more theoretical point of view, the origin of these soft terms should be explored. The common lore
is that supersymmetry should be broken in a sector of the theory, not directly connected to the
SM particles, the hidden sector. For a review on soft terms, and other supersymmetry breaking
mediation scenarios we refer to [96,161,191].

Whatever the nature of the mediation, the hidden sector should be studied on its own right.
If it is a chiral multiplet that breaks supersymmetry, its highest component F will acquire a
non-vanishing vev. There is a number of different scenarios for the origin of the supersym-
metry breaking [96, 161]. Let us note that higher derivative operators [43,82, 135, 137] may
play an important role in hidden sector supersymmetry breaking. One of the most efficient
methods for studying the phenomenology of the hidden sector is through the dynamics of the
goldstino [16, 17,23, 29, 40, 120, 122, 138, 148, 149, 153, 155, 159, 174, 186, 188]. The latter is the
fermionic component of the superfield that breaks supersymmetry. If the supersymmetry break-
ing scale is low, goldstino dynamics become increasingly important for low energy phenomenol-
ogy [8-12,21,27,55,62,86,139,172]. In fact, if the SUSY breaking scale /f is low with respect to
Planck mass Mp (v/f < Mp) as in gauge mediation, transverse gravitino couplings are of order
Mgy ! and therefore are suppressed with respect to longitudinal gravitino couplings, which are of or-
der £~1/2. In this case, in the gravity decoupling limit, only the longitudinal gravitino component,
i.e., the goldstino survives. Moreover, the highest component of the superfield to which the gold-
stino belongs, acquires a vev and breaks spontaneous the supersymmetry giving also mass to the
sgoldstino (goldstino’s superpartner). Therefore, at low energies, supersymmetry is spontaneous
broken and after decoupling the sgoldstino (by making the latter superheavy) we are left with only
the goldstino in the spectrum and a non-linear realised SUSY. In the case of local supersymmetry,
non-linear realizations are less studied in the supergravity context [22,99,155].

Recently new methods have been proposed in order to study goldstino couplings, and MSSM
extensions that incorporate them have been constructed [11,12, 18,19, 73,74, 86, 139]. All this
framework is based on the idea of constrained superfields [40,155,174] that introduce a non-linear
supersymmetry representation for the goldstino when its massive scalar superpartner is heavy
and can be integrated out. Moreover, when one studies physics much lower than the MSSM soft
masses scale, non-linear supersymmetry is realized on the SM particles as well, via the appropriate
constraints. The constraint that enforces a non-linear supersymmetry realization for the goldstino
reads

@2, =0. (5.47)

In addition, it has been proven in [139] that in fact @y is proportional in the IR limit to the chiral
superfield X that sources the violation of the conservation of the Ferrara-Zumino supercurrent
Joe [61,94]

D% Jpa = Do X. (5.48)

We extend this to the case of N = 1 supergravity by identifying the superfield, which turns out to
be the chiral superfield X of (5.48) in the gravity decoupling limit. Here, the conservation of the
Ferrara-Zumino multiplet J,4 in (5.48) is replaced by the consistency conditions of the Bianchi
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identities [30]
Xy =DyR — D Goy (5.49)

where GG,4 and R are the usual supergravity superfields and X, = —é(l_y —8R)D, K is the matter
sector contribution.

5.2.1 Supergravity in Einstein frame

In the standard A/ = 1 superspace forlmulation of supergravity, one is forced to perform a Weyl
rescaling to the action in order to write the theory in the Einstein frame. Here, we should write
the superspace action directly in the Einstein frame since we want to correctly identify the masses
to be send to infinity. This will provide the superfield equations of motion in the correct frame as
well. The appropriate framework for this is the Kahler superspace formalism which we will briefly
present below. For a detailed description, one may consult for example [30,31,114]. An alternative
method would be a super-Weyl invariant reformulation of the old minimal formulation for N=1
SUGRA [146].

In the conventional superspace approach to supergravity, the Lagrangian describing gravity coupled
to matter would be (ignoring superpotential for the moment)

Lp = / d*028 {g(m) - SR)eéK@@)} + h.c. (5.50)

where 2€ is the superspace chiral density and the new © variables span only the chiral superspace.
An equivalent way to write the action (5.50) is

Lp=—3 / d*0Ee 3K (®®) (5.51)

where now E is the full superspace density and # are to be integrated over the full superspace.
Both actions (5.50,5.51) can equavalently be used in order to build invariant theories in superspace.
Note that £ and E, both have the vierbein determinant in their lowest component. As usual R
represents the supergravity chiral superfield which contains the Ricci scalar in its highest compo-
nent. Direct calculation of (5.51) in component form shows that the theory is actually expressed in
an unconventional Jordan frame. Of course a Weyl rescaling may be performed in order to bring
the theory in the standard Einstein frame. Nevertheless, it is possible to perform this rescaling at
the superspace level by considering

B = cWONEY B = e B0 B - LR (o), DR (8,9)].

By, = e 1K@®2) EMC-,—IZ—QEM@,);DQK(@@)}

where E} is the superspace frame, containing the gravitino and the vierbein in the appropriate
lowest components. This redefinition will change the structure of the whole superspace including
the Bianchi identity solutions and the superspace derivatives. Most importantly, the superspace
geometry will receive contributions at the same time from the matter and supergravity fields in a
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unified way. The Lagrangian (5.51) now becomes in the new superspace frame (erasing the primes
for convenience)

Lbnew = —3 / d*0E. (5.52)

This form now contains the properly normalized supergravity action coupled to matter. The
interested reader should consult an extensive review on the subject [30]. Since we also wish
to include a superpotential, the appropriate contribution will be given by adding to (5.52) the
appropriatelly rescaled superpotential W so that the full Lagrangian will be given by

E
£superpotentz’al = _3/d40E + {/d49ﬁ€K/2W + hC} . (55?))

In this new framework, Kéhler transformations, generated by holomorphic functions F', are ex-
pressed as field dependent transformations gauged by a composite Uk (1) vector B4. The respective
charge now is referred to as “chiral weight” and a superfield @ of chiral weight w(®) transforms as

P — Pe 2V (@)mF (5.54)
Gauge covariant superspace derivatives are defined as
Dad = EMOyd + w(P)Bs® (5.55)

where the composite connection superfields are

B, = 1DQK, BY = —lf)dK
4 4
1 1 - 3 i I

All component fields are understood to be defined appropriately via projection as usual but now
with the use of these Kahler-superspace derivatives. It turns out that the invariant Lagrangian
containing both (5.52) and (5.53) depends only on the generalized Kéhler potential

& = K@DOW (D)W (D). (5.56)

By taking into account the chiral weights of the gravity sector and performing a Kahler transfor-
mation with parameter 7 = InWW, we find that the final expression for the most general coupling
of matter to supergravity is

1 1
It sould be stressed that this form of the action is completely equivalent to the standard N/ = 1
superspace formulation (5.50) to which is related by appropriate redefinitions of the superspace
frames.
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5.2.2 Sgoldstino decoupling

We are interested in those classes of models where the sgoldstino may become superheavy and
decouples from the spectrum. In this case, it plays no role in the low energy effective theory, and
its dynamics can be integrated out by its equations of motion. Essentialy, in order to be able to
decouple consistently the sgoldstino degrees of freedom, one has to

e consider the sgoldstino mass as the heavier scale in the problem, and
e find consistent solutions for the equations of motion in that limit.

This is equivalent to taking the limit of infinitely heavy sgolstino and integrate its equations of
motion, if possible, in this limit. This work has been done in component form earlier [40] and
extended recently [19,73]. We will implement the above procedure in superspace, where as we will
see it is quite straightforward.
To study sgoldstino decoupling in supergravity, it is helpful to consider the corresponding decou-
pling in global supersymmetry.

Sgoldstino decoupling in global supersymmetry

The most general single chiral globally supersymmetric superfield Lagrangian is given by

L— / 10K (@) + { / POW (D) + h.c.} (5.58)

where, K(®,®) is the Kihler potential, a hermitian function of the chiral superfield, and W (®)
is the superpotential, a holomorphic function of the chiral superfield. From the above action, the
superspace equations of motion

1_
— DDKy + Wy = 0, (5.59)

with K¢ = 0K, W = 0pW easily follow. For a general, non-renormalizable supersymmetric
model where supersymmetry is spontaneously broken, the supertrace mass formula reads [99]

StrM® =Y (1) (27 + )Mj = 2R, 5f f (5.60)
J

where f = (F) and Ryz (= g*R4144) is the Ricci tensor of the scalar Kihler manifold evaluated
at the vacuum expactation values of the scalars. Eq.(5.60) describes the mass splitting between
the components of the supermultiplet. In the case of a single chiral superfield we are discussing,
since the goldstino is always massless, the supertrace of the goldstino multiplet is just the square
of the sgoldstino mass

M2 = —Raaff (5.61)

We see that necessarily the scalar manifold should be a space of negative curvature in order to
have non-tachyonic scalar excitations. In addition, the limit of the infinitely heavy sgoldstino

2Ms29:StrM2—>oo or Rjiaz— —o0. (5.62)
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Since
Rygas = 03040304K — 030405 K0,040°K (5.63)

in normal coordinates for the Kéhler space in which ga5 = 044 and 9,0;0,K = 0 (for any i,j =
A, A), we have that the infinitely heavy sgoldstino is obtained in the limit

—07040504 K — 00 (5.64)

By assuming that the vacuum expectation value of A = <I>| vanish?®, the general form of the Kéhler
potential

K(®,®) =) cpp®"®" (5.65)
will have the following expansion in normal coordinates
K(®,®) = &P + cpo®?P* + - - (5.66)
It is easy to see that in fact
1 1
Cog = ZRAAAA = ZRAA (5.67)

in normal coordinates. By using then (5.60,5.62), we get that the K&hler potential may be expressed
in terms of the sgoldstino mass as
_ M2
K(®,®)=0d — rfs‘gcb?cb? + e (5.68)
where the dots stands for M,,-independed terms and f =< F' > is the vev of the auxiliary field
in the chiral multiplet. From the superspace equations of motion (5.59), one can easily isolate the
contribution proportional to M, 529' Indeed, (5.59) is written as

2
7 Jj’gcbDDciﬂ v (Msg—independed terms) —0. (5.69)
Therefore, in the My, — oo limit, the M ,-dependent part of the field equations is turned into the
superspace constraint

®DDP? = 0. (5.70)
To explicitly solve (5.70), we note that it leads to three component equations
®DD®?*| =0, D,(PDD®?*)| =0, DD(@DDd?)| = 0. (5.71)
The non-trivial solution to the above equations is [139,174]
Dnp = 3%+ V20X + 6°F (5.72)
which can be easily checked that it satisfies
%, = 0. (5.73)

As a result, the sgoldstino can be safely decoupled in the M, — oo limit as long as P satisfies
(5.70), or equivalently (5.73).

3if not we may shift appropriately A so that (4) =0
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Sgoldstino decoupling in supergravity

As in the case of global supersymmetry, we are interested in the equations of motion and the mass
supertrace. The superfield equations of motion as follow from the action (5.57) are [31]

1
R = 56%7 (574>
1 . _
ga + quDé&ga’Daqud@ - O, (575)
(DD — 8R)Ggy = 0. (5.76)

On the other hand, for a general supergravity model with only one chiral multiplet the supertrace
is given by [193]

StrM? = —2R if f. (5.77)

which means that in the limit of infinite negative Kahler curvature the sgoldstino will become
superheavy and can consistently be integrated out. Indeed, (5.77) is explicitly written as

M;, = 2m§/2 —Raaff. (5.78)
Therefore, for finite gravitino mass ms/,, the infinite curvature limit
Razaz — —o0 (5.79)

is equivalent to superheavy sgoldstinos. Again, in normal coordinates

Ryzai = 07040304 K = 05040704G (5.80)
and therefore with
2m?2 ., — M? _
Go Sff’f'Q CP2P% 4. (5.81)

the decoupling limit we are after is again M 529 — oo. Taking into account that the Kahler curvature
M2, /4| f? will dominate the equations of motion and following the same reasoning as in the global
supersymmetric case, we get from (5.76)

®(DD — 8R)®* = 0. (5.82)

This constraint is the curved superspace analogue of (5.70). In order to solve it, we take into
account that ®(DD — 8R)®? is a chiral superfield, and we will once again start from its lowest
component, namely

®(DD — 8R)®?*| = 0. (5.83)

This is written, for

1
d=A+V20y+0OF, R|= —M (5.84)
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as
AMA? — 24AAF 4+ 12Axx = 0. (5.85)
This equation has three solutions

XX 24F xx
Yo Ay = . (5.86)

AOIO, Al M 2F

The first solution Ay is the trivial and we will not consider it. The second solution A; is the ®? =0
we already encounter in the global susy case. The third solution As corresponds to ®* # 0 and
can only be realized as long as the auxiliary field of supergravity M is non vanishing (M # 0).
However, from the equation (5.74) we get

R = %eg = %e Slfs\g2¢.2¢2+ , (587)

where only the dominant term was explicitly written in the exponent in the right hand side. Now,
in the M, ng — 0o limit, the right hand side goes to zero exponentialy fast so that for ®2 # 0

R=0 for M} — oo (5.88)

Therefore also M = —6R| = 0 and the third solution (As) cannot consistently be realized. As a

result, the only solution to the constraint (5.82) is the A; = X, or in other words the familiar

* = 0. (5.89)
This constraint leads to

2
MSQ 252

ST g2y = 1 (5.90)

and thus, the divergent part of (5.74) completely decouples! Moreover, ®* = () also satisfies
D, ®DsP* =0 (5.91)

which is the field equation (5.75) in the M, ng — 00 limit. As a result, we have again arrived to the
constraint (5.89) as the only viable and consistent condition for the decoupling of the sgoldstino.

Supercurrent and sgoldstino decoupling

In order to discuss the relation of supersymmetry breaking to conservation laws, let us explore
the decoupling limit of the supergravity sector. The supergravity equations of motion (5.74) and
(5.75) in superspace, after restoring dimensions with compensating powers of Mp and returning
to the Kahler frame where everything is expressed in terms of K and W, are written as

11
R=1m5We 2M2 (5.92)
P
1 I
Gat —5 7 SgU‘a“D 2D d’ = 0. (5.93)
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Gravity decouples in the limit Mp — oo, and from (5.92) and (5.93) we have
R—0, G,—0. (5.94)

We note that this is the limit even when W/Mp = finite, which is another possible limit [22]
for gauge mediated SUSY breaking scenarios. The fact that these supergravity superfields should
vanish can be also understood from the algebra of supergravity when compared to supersymmetry.
For example, the global commutation relation (for w(®*) = 0)

[Dg4, D,)®" = 0, (5.95)
in supergravity becomes
[De, Do) @' = —iRo 0 D*P (5.96)

thus in order to recover the global supersymmetry algebra the superfield R should vanish.
Let us now derive the analog of the conservation equation of the Ferrara-Zumino multiplet (5.48)
in curved superspace. By using the consistency conditions of the Bianchi identities [30]

X, = MED,R — MpD*Gog (5.97)
with
1 _
X, = —g(DQ — 8R)D. K (5.98)

and the equations of motion, we find

_ . 16 2 _ .
D Jaie = Do = 5 RDLK + 6o DK (5.99)
with
R Koo
Jai = 29;5Da @ D P’ — g[Da, DK, X =4We*Mr — §DDK- (5.100)

The extra terms compared to (5.48) arise due to commutation relations like (5.96), and should
vanish when supergravity is decoupled.

Now we take the decoupling limit of supergravity (Mp — oo) with (R — 0, G, — 0) and find
exactly the same formula as the global case. As a final comment let us note that now, after the
decoupling of supergravity, the superfield X is

1_
X = X =4W - S DDK. (5.101)

5.3 Summary

The main purpose of this work was to show that in the non-linear MSSM framework, a one
Higgs doublet is possible and equally motivating with the two-Higgs scenario. In fact, even when
dealing with a two-Higgs MSSM, unavoidably, non-linear goldstino dynamics should be considered
as a possibility for the physics beyond MSSM. In this context, higher dimensional operators are
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introduced in order to study the consequences of the non-linearities of the underlying theory.
However, higher dimensional operators is what is needed for a single Higgs MSSM. In this sense,
a single Higgs MSSM is quite interesting, as it turns out that it is intrinsically connected to
the underlying supergravity theory, as it cannot be constructed without the use of the higher
dimensional operators.

In this approach, we have constructed two consistent supersymmetric extensions of the SM where
only one scalar field is required to have a non-trivial vacuum expectation value. The energy
regime of both models is comparable or above the soft masses. In the first model, the second Higgs
superfield is completely missing from the MSSM spectrum and a new leptonic generation has
taken its place for anomaly cancellation purposes. This introduction of a new leptonic generation
would have significant effects in the Higgs production rates and eventually will change the SM
expectations. In the second model, the second Higgs superfield of the MSSM is turned into a
spectator. In both cases, mass generation can be implemented by the use of H, and the constrained
superfield X. It should be noted that in both cases the y problem of the MSSM does not exist, in
the first model by construction (as there is no Hy) and in the second case by the employment of
a discrete symmetry.

Thus, one can have a non-linear MSSM where there is only one field with the “Higgs” property (i.e.,
of getting a vacuum expectation value). The constrained superfield framework we used, especially
the goldstino, which should be interpreted as the surviving longitudinal low energy component of
the gravitino, gives an insight to the connection of the more fundamental supergravity theory with
the low energy phenomenology. We stress again that, it is in this sense that the supersymmetric
single-Higgs Yukawa couplings are fundamentally connected to the low energy limit of supergravity,
rather than being completely unattached to this underlying theory.

We would like to make a final comment in the case of a half quark generation. Electroweak sym-
metry breaking in the single Higgs non-linear MSSM should happen again radiatively. Quantum
corrections drive the initially positive soft mass of the Higgs field to negative values near the
electroweak scale and thus triggers symmetry breaking. This happens due to the large Yukawa
couplings of the Higgs field to matter, especially the heavy quarks. It will be the new generation
heavy quarks that will dominate radiative corrections and will make this effect quite stronger.

In the second section we explored the decoupling limit of sgoldstinos in spontaneously broken SUSY
theories. This decoupling was implemented by considering large mass values for the sgoldstino
(in fact the infinite mass limit). We used superspace techniques as they allowed for a unified
treatment of the spontaneous breaking of SUSY both in local and global supersymmetric cases.
The motivation of this study was twofold: first to check if the constraint superfield formalism
employed in the global supersummetry still works in supergravity as well and second, to correctly
identify in supergavity the chiral superfield that enters in the conservation of the Ferrara-Zumino
multiplet and which accomodates the goldstino in global supersymmetry.

The way to approach these targets was to reformulate the goldstino dynamics in global supersym-
metry but now in a language appropriate for supergravity. First we have identified the sgoldstino
mass in both cases, and found the decoupling limit (supermassive sgoldstino) to be the limit of
infinite negative Kahler curvature. Then we impose this limit to the superfield equations of mo-
tion and in the case of supersymmetry we found the constraint (®D?®2? = () which is solved by
®2 = 0 as expected. In the case of supergravity, the super-covariant form of the more general
constraint emerges, but again with the same single consistent solution. Thus, the superspace con-
straint ®2 = 0 for the goldstino, when the sgoldstino is supermassive, holds for supergravity as
well. However, we should mention a potential problem here. Namely, the expansion of the Kahler
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potential in (5.68) is written in powers of M,,/f, from where it follows that actually M, ~ f/A
where A is the effective cutoff of the theory. The infinite sgoldstino mass seems therefore to be in
conflict with the removal of the cutoff (A — oc), which is needed to identify the goldstino super-
field with the infrared limit of the superconformal symmetry breaking superfield that enters the
Ferrara-Zumino current conservation. This issue is further complicated by the presence of extra
light fields. The problem has been pointed out in [18] where conditions for the effective expansion
of the supersymmetric Lagrangian in terms of the inverse cuttoff to not be in conflict with a small
sgoldstino mass ~ f/A were given. Note that we have not faced this problem, as we have taken
the formal infinite large sgoldstino mass limit.
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Chapter 6

Higher Derivative Supergravity and
Cosmology

In this chapter we discuss the construction and important technical aspects of highly motivated
inflationary and cosmological models in supergravity.

In the A/ = 1 four-dimensional new-minimal supergravity framework, we supersymmetrise the
coupling of the scalar kinetic term to the Einstein tensor. This coupling, although introduces a
non-minimal derivative interaction of curvature to matter, it does not introduce harmful higher-
derivatives. For this construction, we employ off-shell chiral and real linear multiplets. Physical
scalars are accommodated in the chiral multiplet whereas curvature resides in a linear one. We then
present consistent supersymmetric theories invariant under the generalization of the Galilean shift
symmetry to N' = 1 superspace. These theories are constructed via the decoupling limit of certain
non-minimally derivative coupled supergravities, thus they correspond to the supersymmetrization
of the so-called covariant Galileon. Specifically, these theories are constructed in the linearized
N = 1 new-minimal supergravity set-up where the chiral supermultiplet is minimally coupled to
gravity via the standard R-current contact term, and, at the same time, non-minimally derivatively
coupled to the Einstein superfield.

We then turn to the higher-derivative Starobinsky model of inflation and discuss how it originates
from N = 1 supergravity. It is known that, in the old-minimal supergravity description written
by employing a chiral compensator in the superconformal framework, the Starobinsky model is
equivalent to a no-scale model with F-term potential. We show that the Starobinsky model can also
be originated within the so-called new-minimal supergravity, where a linear compensator superfield
is employed. In this formulation, the Starobinsky model is equivalent to standard supergravity
coupled to a massive vector multiplet whose lowest scalar component plays the role of the inflaton
and the vacuum energy is provided by a D-term potential. We also point out that higher-order
corrections to the supergravity Lagrangian represent a threat to the Starobinsky model as they
can destroy the flatness of the inflaton potential in its scalar field equivalent description.

6.1 Supersymmetric Galileons

It has been recently discovered [118,158] that there is a set of, non-renormalizable, scalar field
self-interactions having the interesting property that their suppression scale do not run at any
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energies. In addition, these same theories enjoy, in flat space, the following Galilean shift
T = T+ c+bypa™ (6.1)

where ¢, b,, are respectively a constant and a constant four-vector, ™ are Cartesian coordinates
in a Minkowski spacetime and 7 is the so-called Galilean field [166]. The additional requirement
to have only up to second order differential equations, in order to avoid possible Ostrogradski
instabilities, restrict the Galilean Lagrangians to contain only a product of up to five scalars [166].
The transformation (6.1) may be extended to superspace. In particular, for a chiral superfield (),
we propose that the only consistent supersymmetric extension of (6.1) is

S — &+ c+byy™ (6.2)
where
Y™ =™ +io™0 . (6.3)

Note that the super-Galilean shift (6.2), when projected to the real space, only shifts the lowest
component of ® as the complex extension of (6.1) while it maintains its superspace chirality.

It has been shown in [140], by brute-force calculation, that the supersymmetrization of a cubic
Galileon out of a chiral field [134], is not possible without the appearance of ghosts. The same
Authors however, could not exclude the quartic supersymmetric Galilean theories, although their
constructions only led to ghost-propagating field theories. Those theories, although invariant under
(6.1), were not invariant under the superspace Galilean shift (6.2) introduced here. We believe,
that this was the main issue that led the Authors of [140] to conclude that no supersymmetric
Galileons can be found without propagating ghosts states.

In this work we indeed show that a ghost-free quartic Galilean theory does exist and is invari-
ant under (6.2). In other words, we will construct the supersymmetric version of the so-called
“quadratic” and “quartic” Galileons

1
£2 = —§4m7‘r8m7r,
Lo = 500" T) (020 m)(90°7) | (6.4)

where 7 is the complex conjugated of 7 and A is a suppression scale.

The easiest way to find our quartic Galilean theory passes through a decoupling limit of certain
supergravities. To appreciate this, let us go back to the non-supersymmetric case.

In Minkowski space, the shift b, 2™ = b, [ £%da™, where £% = 6% is a set of Killing vectors (the
four related to translations and labelled by a) such that V,,,% = 0 (i.e. integrable), and b, = §"b,,.
One may then ask the question of whether generalized “Galilean” theories, i.e. with the property
that they are invariant under the shift

7T—>7T+c+ba/£f‘nda:m, (6.5)

exist in non-trivial spacetimes with integrable Killing vectors.
This question has been answered in [102]. In particular, up to quadratic order in 7 one has
1 1

A2 = _§gmn mﬂanﬁ+2M2

G0,y 0T (6.6)

123



where M is a mass scale and G™" is the Einstein tensor. The sign of the terms in Ay are chosen
in such a way that, whenever energy conditions are satisfied, the effective propagator of 7 is never
ghost-like [103].

Again the theories of [102] enjoy a non-renormalization theorem (up to the Planck scale) of their
coupling/suppression constants [102]. Finally the theory A; has been dubbed Slotheonic theory
in [102] (and so 7 the “Slotheon™) for its property of a “slow” scalar evolution with respect to
the minimal case M — oo. This property, turned out to be the key issue to produce successful
inflationary scenarios even in the case of steep scalar field potentials [103-106].

Thanks to the equivalence principle, locally, any spacetime is approximately flat. Another way to
see this is to notice that, in Riemanian coordinates, for any theory where graviton self-interaction
is suppressed by the Planck scale,

Vabs = O (67

p
where 0,,§, = 0 and M, is the Planck scale. Therefore, there must exist “decoupling limits”
involving M, — oo, such that (6.6), endowed with the Einstein-Hilbert Lagrangian

1

2
ﬁgrav = 5 p

R, (6.8)
reproduces (6.4).

These limits have been found in [107] showing an intimate relation between the theories (6.4) and
(6.6), i.e. between Galileons and Slotheons. In particular, in [107], it has been shown that the

Lagrangian

1

£=3

1 mn
in the limit M, — oo but A = M?M, — finite, reproduces the quartic Galileon £,. In the non-
decoupling limit instead, with the help of the gravity equations, the equation of motion for 7 are
nothing else than the covariant Galileon of [69].

6.1.1 Non-minimally kinetically coupled Supergravity

Following [84], we will work in the A/ = 1 new-minimal supergravity framework [6,38,90, 98,99,
179,180]. Apart from [84], higher derivative extensions of new-minimal supergravity have been also
studied in [44,91], whereas consistent higher derivative theories have been discussed in [82,83,135].
As we will only be interested in the decoupling limit of gravity, we will only consider Lagrangians
at linearized level in the graviton [54]. The non-minimal derivative coupling of a chiral superfield
to the linearized new-minimal supergravity, is found by considering the supersymmetric lagrangian
[34]

2
Ly= d%W@E O ® (6.10)

where E™ is the Einstein superfield. We recall that the Einstein superfield is defined in terms of
the real superfield ¢,, as

1 _ .
B = 2" D30, Dby (6.11)
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where the covariant derivatives with respect to the Grassman co-ordinates of the superspace are
defined as usual
0 . _ 0
D,=—+i0"0%0,, , Dsy=———1i0%"" 0. 6.12
aea —"_ ZO-OCOC 80‘)‘ ? O—OCOL ( )
The real superfield ¢,, is invariant under the following gauge symmetry (needed in order to contain
the 12 + 12 degrees of freedom of new-minimal supergravity)

8hm = 0V + Sy + Sy (6.13)

with V' a real superfield and S,, a chiral superfield.

Obviously, the superfield FE,, is also invariant under this gauge transformation. In fact, £, is
nothing else than the “field strength“ of ¢,,.

In the appropriate Wess-Zumino (WZ) gauge, ¢, contains the graviton h,,,, the gravitino ¢,,, a
two-form auxiliary B,,, and a vector auxiliary A,,. The latter, gauges the continuous R-symmetry
in supergravity.

The #-expansion of ¢,, is explicitly written as

Smlvy = —00"0 (P + Bum) + 10200 — 10 02)y, + %9252Am (6.14)

and it is useful to define the components of ¢,, in terms of projections as *

1

_i[DaaDd]¢m| = haam + Baam (615)
i
—=D*D =
4 a¢m| ¢ma
%DQDd¢m| = %Emd
1
—gDaDQDa@n\ = Apm. (6.16)

Using (6.14) in (6.11), we find that E,, can be expanded as

E,, = —2H,, — 2i0R,, + 2i0R,, — 00"0(G ym + 0" Hypry — *Frm)

+ 020570, Ryy, — 0°00™0, Ry, — %ez’@?amm (6.17)
where
= L,
H,ps = (0nBys + 0, Bsn + 05 Buy)
= (0,4, — .A,)
and

Ry = =00, h 4 0" 0B, 4 0" O by — 0Py

1 As standard we use the notation to mean 6 = 6 = 0. For our superspace conventions see [193].

“‘77
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1

are the linearized Ricci and Einstein tensors respectively.
The components of E™ can be found using the definitions (6.16) and the supersymmetry algebra

1 m m o 1 mnrs
_iE | =H" = 56 Hm"s )
ZD Em|_Rm_ 1mnrs azzd
9 a = 4, = 26 OnaaOr¥g
1 _
—§[Da, D&]Em| = 0" 4(Enm + 0" Hyp — *Foum). (6.19)

Note that E™ is a real linear superfield as it satisfies the conditions
Em™=E™, D*E™=0 (6.20)
as well as the superspace Bianchi identity

O E™ = 0. (6.21)

The components of the chiral superfield are defined as usual

¢ = 7
L p.a| =
\/§ « XO(
1
—ZD2<I>| = F (6.22)

Taking into account the standard coupling of the Einstein superfield E™ with the graviton multiplet
Om, we can write the leading terms of a chiral superfield ® coupled to the new-minimal linearized
supergravity as

L) = / d*0 (MI%E%m + &P + ¢"R,, — %@Emamé) + O (Mip) : (6.23)
In addition, R, is the supersymmetric R-current (see for example [143,147]) which is defined as
Ry = —62“D,®Dy® (6.24)
and satisfies (on-shell)
D%Rus = Xa (6.25)
with
Xa = D*D,(®®). (6.26)

Note that, in the spirit of the already mentioned decoupling limit, we have silently assumed that
M is not proportional to Mp (in which case we could have omitted the term (6.10) from (6.23))
but rather, as we will see later, proportional to 1/M 113/ 2,

Concerning dimensions, we have assigned mass dimension zero to the graviton but the graviton
multiplet has [¢,,] = —1. For the chiral superfield [®] = 1 and for the superspace derivatives

([Dal[Dal) ~ [On] = 1.
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6.1.2 Linearized Lagrangian for the non-minimal derivative coupling

The linearized Lagrangian invariant under global supersymmetry reads

1 1- .
L= Gh™ R+ 08 a0 05, — (A" + H")H,

+ +

ADPA 400, Xa0" " Yo + FF
w?[~2i0° AH™ 9, A + 17207 0, X R™ 0 A + 207 0,05 H™ 0 X

—V2FR™ 0, Xa + V2Xa RO F — 2iFH™0,,F
+(E™ — 2i0"H™ + 8,H™™ 4+ *F™)d,,Ad, A
+iV2¢4G 0, R™ 0 A — iv/26"%0, ART' 0, X o

2

where

Emn

Rmn
Rmnrl

Rm

(67

70
TS

Hm
Hnrs
* an

1
+—Xd0'n

(E™ — 250" H™ + 0, H™ + *F"™™),,Xa + h.c]

1
Rmn - §nmn (nkl Rkl)

Rmrnlnﬂ
_8marhnl + anarhml + amalhm" - analhmr

- Z emnrso—nad@zsés
O — Oy
1

gemnm(anBrs + arBsn + asB'rw")

a?'LB’I’S + arBsn + 6S‘B’I’LT

1
S0 A 0.A,)

the field Ay, is the graviton, B,,, is a two form, 7,,, is mostly plus.

Let us now do the redefinition

2A" + H" = 20"

then the Lagrangian (6.27) will schematically take the form

L= Lreduced + HmnTKmnr + Uan

(6.36)

(6.37)

due to the fact that the redefined auxiliary fields now appear only linearly coupled. It is clear then
that the equations of motion will be

Kmnrzo
Im =0

(6.38)

and the higher derivatives disappear from the Lagrangian. What is very important to note is
that the higher derivatives will survive inside the supersymmetry transformations, this is because
equations (6.38) will be solved in terms of U™ and H™.
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Our Lagrangian then becomes

Lycquced = %hmannﬂL %lzﬁg”emmsamaawg
AP A + 00,00 + FF
[—H\/_aW OnX R™ 0 A — 2\/_0 R0, X0 A
—2V2F R™ 8, Xa — 2V 20, Xa R F
+2E™0,, ADp A + iX6G E™ 0 Xa
+iV2X 40" 0y R O A — iV/20, RT 6" X 00 A
—iV26"0, ART Oy X o + 1V 2640, AD, Yo R,

+ +

and after integrating out the auxiliary F' we have

Lyeduced = %hmann + iwg‘emmsandaﬁrwj + AP A + 00, x40 Ya
+w?[2E™ 0, A A + iX G E™ O Xa — 80mXaR™ R0 Xa
+iV207. 0, X R™ 0 A — V207 R™0, X" 0, A
FiV2%66 0, RO A — iV 20, R X o O A
—iV/26" 0, ART O X o + 1V 250, A0 X o R

6.1.3 Decoupling limit

We now proceed to the decoupling of gravity as in the previous discussions and [107].
The (gravity) equations of motion for ¢, are

R* + ———— D30, ®5%* D0, D™ = 0

ES
2M2 2M2M2

and for ® we have
N2 ( F a6} m 1) F . 1 m ES
D*(® — 5Dy (¢ Dg®) — 2iam P O ®) = 0.

Solving for E™ in (6.41) and plugging into (6.42) we find

?

N2 ( H PXeYe" m ) h m F
D (q) — 0, Da(¢ Dd(b) - MQ—]M—IQJR 0m<I>
1 Qo mnrs T
M2M4(D O P4 D, 0, D)™™ 50, P) = 0.

Now, in the limit
Mp — oo, such that M?Mp =A% is finite
gravity decouples

E,=0 — ¢, = pure gauge
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(6.40)

(6.41)

(6.42)

(6.43)

(6.44)

(6.45)



and

= 1 - - _
D*(® — F(Ddaméﬁgo‘Da&(I))em””EL@) =0 (6.46)

where in (6.46), using the fact that ¢, is a pure gauge, we have set it to zero.
The component form of (6.46) (ignoring all fermions and auxiliary fields) are

Pr — 4 00" (0,0 ) (070°T) = 0 6.47
A6 [ ¢]

which is just the complex Galilean equation of motion coming from the variation of the action

(6.4), as anticipated.

6.1.4 Supersymmetric Galileon

Now that we learned the structure of the quartic supersymmetric Galileon as a decoupling limit of
the new non-minimally coupled N' = 1 supergravity of [84], we can infer the superspace Lagrangian
that gives rise to the superspace equations of motion (6.46).

After a straightforward calculation one then finds that the Lagrangian describing the super-galileon
is given by

T 1 a T = mnrs T
L= / d'0(ed — F(D(Ddc‘)m@an D, 0, D)™ 0,®). (6.48)

The Lagrangian (6.48), on top of the standard supersymmetries, enjoys the galilean symmetry
extended to superspace, i.e.

®— P+ cH+byy™ (6.49)
where c is a complex constant, b, is a complex constant vector and
y" = 2" +i0o™0. (6.50)
The latter satisfies the relations
Deyn =0, Doyn = 2i000a0%, D*yn =0, OunlYn = Nn. (6.51)
The super-galilean symmetry (6.49) is defined in a way such that:

e it preserves the chirality of the superfield ® (Dy® = 0)

e it induces the following galileon transformations for the scalar (7), its fermionic super-partner
(Xo) and the auxiliary field (F')

T — T4+c+byx™,

XOL_)XOC7
F — F.
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The component form of (6.48) is
L = n0*7+i0, X"y + FF

%(47r(8[k('3k7r)(6l@l7r)(8<]8c7r) — 8F 0,y F O, XG0 ™"

mnrs

— 410, X0 O XOs XTnOp XE™™™® — 200, XT 0" D XE™™ D X Oy X
140Dy 50X €™M0,y FORT + 410, F O, Xm0 0, xe™™ Ot

+40,, TOPTE™ DX GOy X + 20 XTn0' GO €™ 0, w0 0T

+40. X6 0 G0, X €™ 0, 0RO + 2X 0" G D XE™ S 0y Oy WO, O T

420, XG0 G €™ 0,0, T Ok Op — 201X0" G0 DX €™ 0, Op 7O TT). (6.52)

In order to find the final Lagrangian, one should integrate out the auxiliary field F' in (6.52). The
way to do that closely resemble the case studied in [138].
Variation of (6.52) with respect to F' gives schematically an equation of type

a™ B
F+ FamF + N 0, (6.53)
where o™ and [ are functions of the scalar field 7 but most importantly of the fermionic field
x. Finally, the scale A has been explicitly extracted. To solve (6.53) one can use an iterative

procedure. The first step is to invert this equation as

a™ B

The second step would be to substitute again the inversion, i.e.,
a™ a” Io) I}
F= —Fam (—FﬁnF — F) 6 (6.55)

and so on. Thanks to the Grassmanian properties of the fermions x this recursion eventually
ends as soon as more than two equal fermions are multiplied (this is typical in supersymmetric
theories, see for example [139]). The final Lagrangian is very involved and not very enlightening,
for this reason we leave the interested reader to do the full inversion. Nevertheless, as the cut-off
of the theory is A, which also corresponds to the suppression scale of the pure Galilean term, it is
interesting to consider the supersymmetric action (6.52) up to O(A~'?). Equation (6.53) is solved
for

F=0(\"%. (6.56)

Therefore the supersymmetric Galilean action to leading order in the cut-off scale A reads

1
LY = Lz + 5 [Lon L] (6.57)

where

Lz = 10T +i0,x0"x (6.58)
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is the Wess-Zumino action,
Lor = —4m (00" ) (0,0'T) (090 ) (6.59)

is the scalar Galilean self-interaction, and finally the mix fermion-scalar interaction Lagrangian is

mnrs

LY) = — 400,07 0- X5 X5nOr XE™ — 2i0,n XG0 DsXE™™ * DX Or X
+ 40, TOPTE™ DX GOy X + 20 XGn0' GF O €™ 0, w0y 0T (6.60)
+ 40, X5 "G 0, Y €™ 0, TOROsT + 20 5,0 Dy €™ 040, TO, 00T
+ 20, XT 0 T €™ 0,0, T 0RO T — 20,X0 T 0l Dy Y™V O, OpTO, T

Note that, from (6.53), the full Ly, i.e. at all orders in A, would only involve extra 7, x interaction

terms suppressed by higher powers of the cut-off scale A. In other words, the full Galilean action
would only modify eq. (6.60) by additional O(A~%) terms. Explicitly

1
['gal = EWZ + F [Eww + wa]

where

1
Loy =LY)+0 (F) .

6.2 Non-minimal Derivative Coupling in New Minimal Su-
pergravity

The most generic theory propagating a massless spin-2 and a scalar degree of freedom is not General
Relativity minimally coupled to a scalar field (GRM). Indeed, Horndeski [121] proved that tensor-
scalar theories with only second order differential equations are not restricted to GRM. Up to
quadratic terms in matter fields and in four-dimensions, Horndeski showed that the most generic
theories propagating a massless spin-2 and a spin-0 are

1 1

,C = »CGRM + —[,[ + ﬁ[[ + S,CH[ s (661)
M7 M7
where
1 2 a
Lorm = 3 [MER — 0,00%9] , (6.62)
Ly = (Mjo+¢*)Rep, (6.63)
L1 = G™8,¢0,0, (6.64)
L = (Mé”gb + ¢2) R, (6.65)
and
1

Gin = Bon = 5 mn R Rip = Ropnys R™™° — AR,,,R™ + R* (6.66)

are the Einstein and Gauss-Bonnet tensors, respectively, M rry, M, ;’H are mass scales, £ a constant
and finally Mp is the Planck constant. That £; leads to second order evolution equation follows
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easily from the fact that the Gauss-Bonnet combination is a total derivative in four-dimensions
and it is linear in second order derivatives. Instead, L£;; leads to second order equations as, in
Hamiltonian ADM formalism [163], Gy, and G, contain only first time derivatives, since Gy and
Gy; are the Hamiltonian and momentum constraints.

While the supersymmetrization of £; has been worked out in [44,45] and L;;; for the N' =1 case
in an arbitrary Jordan frame in [93], to our knowledge, the supersymmetric theory containing £;;
was never found. It is the purpose of this work to construct the supersymmetric version of L;;.
Apart from the obvious interest of studying the most generic supersymmetric theories avoiding
Ostrogradski (higher derivatives) instabilities [167,195], we note that the interaction (6.64) effec-
tively describe part of the cubic graviton-dilaton-dilaton vertex in heterotic superstring theory
and therefore appear in the low-energy 10D heterotic string effective action [115].2 Moreover, it
has also been shown in [162], that there exists a field redefinition up to ' corrections, such as to
generate the terms L, L;; out of a stringy effective action.

From a more phenomenological point of view, the theory L£;; plays a fundamental role in the so
called “Gravitationally Enhanced Friction” (GEF) mechanism developed in [103—-106,108]. There,
thanks to the GEF, any steep (or not) scalar potential, can in principle produce a cosmic inflation
for (relatively) small mass scale M. This is due to an enhanced friction produced by the Universe
expansion acting on the (slow) rolling scalar field. Obviously then, the supersymmetrization of
the GEF may notably enlarge the possibilities to find inflationary scenarios in supergravity and/or
string theory. An additional motivation for studying supergravities with higher derivative terms, is
related to the well known fact that they appear in the effective field theory action for the massless
states of the superstring theory, after integrating out all superstring massive states.

All efforts to build higher-derivative supergravities in 4D are based on off-shell formulations. The
latter are drastically different from the on-shell ones and, most importantly, they are not unique.
This also happens in global supersymmetry where there are more than one off-shell formulations
of an on-shell theory. We may recall for example the NV = 1 4D theory where a scalar and a
pseudoscalar may be completed off-shell by an auxiliary scalar field resulting in a chiral multiplet.
Replacing the pseudoscalar by an antisymmetric two-form, a linear multiplet arises. In this case,
there is no need of extra auxiliary fields as the off-shell degrees of freedom of an antisymmetric
form field are more than those of a scalar. These degree of freedom are the exact number needed
to complete the off-shell content of the linear multiplet. On-shell, of course, the two multiplets are
the same.

This feature persists also in local supersymmetry where at least for the minimal N° = 1 4D
supergravity we are interested in, many off-shell formulations exist. The reason is that N' = 1
superfields carry highly reducible supersymmetry multiplets and additional constraints should be
implemented for their truncation. Then the constraints together with the torsion and Bianchi
identities are used to solve for the independent fields. As there are various ways implementing
this procedure, there are also various off-shell formulations. Known examples are the off-shell
supergravity formulation based on the 12 4+ 12 multiplet [95,183] and the new minimal 12 + 12
multiplet [6,32,98,179,180]. There are also other non-minimal formulations like the one based
on the non-minimally 20 4+ 20 [33,34,177] or 16 + 16 [111, 178] multiplets. Nevertheless, these
formulations may be considered reducible in the sense that they can be mapped to the minimal
N = 1 supergravities coupled with extra multiplets. What is important to know though, is that it

2However, it should also be noted that this term has not been found in the heterotic quartic effective supergravity
action constructed in [28].
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has been proven [92] that when no higher derivative terms are present, the off-shell formulations of
minimal supergravities are equivalent. For example old-minimal and new minimal supergravities
at the two-derivative level are connected by a duality transformation, where the chiral compensator
of the former is mapped to a linear compensator of the latter. When higher derivatives are present,
the duality transformation does not work any more due to derivatives of the compensator and the
two formulations are not equivalent [54,92].

In this work we will construct the supersymmetrization of £;; in the new-minimal supergravity
framework of [6,98,179,180]. Our attempts in the old minimal supergravity setup have so far failed
to reproduce L;;. In particular, consideration of corresponding higher-derivative supergravity
terms, like the ones we employ here, in old minimal formulation does not seem to give rise to
such a term [25]. Whether or not one might nevertheless find a way of obtaining £;; in the old
minimal supergravity formalism is an interesting open question that will not be discussed here but
postponed for future research.

New Minimal N =1 4D Supergravity

The simplest example of NV = 1 four-dimensional Poincaré supergravity is based on 12 bosonic
and 12 fermionic off-shell degrees of freedom. These can be arranged into a multiplet in two ways.
In the first one, the gravitational multiplet consists of

€ms Ym, bm, M (6.67)

and describes the dynamics of the so-called old minimal (standard) supergravity. Here, e, is the
vierbein, 1, is the gravitino, b,, is a vector, and M a scalar. As usual the vierbein should be used
to convert tangent space indices (a, b, ...) to world space indices (m, n,..) and throughout this work
the tangent space metric is mostly plus (more on conventions can be found in the introduction).
In the new minimal supergravity instead, the multiplet consists of the vierbein e?  and its su-
persymmetric partner, the gravitino 0. In order to implement supersymmetry off-shell and the
propagation of the physical degrees of freedom only, one has to also add auxiliary fields, as in the
old minimal supergravity. However, in this case, the auxiliary fields are no longer a vector and a
scalar but a 2-form B,,, with gauge invariance (B-gauge)

0Bin = Omén — Onm, (6.68)

and a gauge vector A, with associated R gauge invariance
0A, = —0no . (6.69)
Thus, to wrap it up, the off-shell new minimal supergravity is based on the gravitational multiplet
€ms Ym, Am, Ban (6.70)

For more specific details on the structure of this theory the reader should consult [90].

It has been argued that the natural superspace geometry for four-dimensional AN/ = 1 heterotic
superstring corresponds to the new minimal formulation of the N' = 1 supergravity [53,152,168].
This R symmetry is however anomalous (actually it is a mixed superconformal-Weyl-U (1) anomaly
[100]). Nevertheless, by using the Green-Schwarz mechanism, the symmetry is restored at one loop
thanks to the introduction of a matter linear multiplet together with supersymmetric Lorentz and
Chern-Simons terms [26,157]. Note that this R symmetry has interesting implications on the
gravitino over-abundance problem [63,64].
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Supersymmetric Actions

Chiral multiplets with chiral weight n = 1 can be used to form invariant actions by the F-density
formula [180]

(Z]r = {F + %xo )+ %A &“oam/?b} : (6.71)
In superfield notation this can be written as
Yr = /d2952, (6.72)
with
E=e {1 —ifo - + %ewaaabwb} . (6.73)
The restriction n = 1 follows as dfl has n = —% (df has n = 3). Furthermore, one can also build

invariant actions from a multiplet with chiral weight zero, using the D-density formula
1- -
Vip=e {D — 51/} Y5 A+ (Vm + %@/Jm%x) 5mnrl8nBrl} + surface terms. (6.74)
We mention here that the F' and D density formulas are related by [V]p = 2[II(V')] p+surface terms.

Non-Minimal Derivative Couplings

In order to construct non-minimal derivative couplings, we will introduce a chiral superfield ® with
chiral weight n = 0. Since the kinetic term of a general chiral superfield is given by the F-term
density formula (6.72), we will have in our case

1.
£ — / A0 ED {—ZV%T] +he., (6.75)
where —iW is the chiral projection operator for the new minimal supergravity. In component

form, and recalling that ® has a zero chiral weight n = 0, the bosonic part of the Lagrangian
(6.75) is found to be

5(0)

kin

= 2e¢ AOA* 4+ 2¢FF* — 2ieH® (A 0. A" — A*0.A) . (6.76)
We should couple now the chiral multiplet ® to some curvature multiplet in order to get the the
desired non-minimal derivative coupling (6.64). As both ® and FE, have zero chiral weight, the

term ®TE*V_ ® is a general superfield with zero chiral weight as well. Therefore V2 [®TE*V @]
is a chiral superfield with chiral weight n = 1 and thus the superspace Lagrangian

i o
£0 = /d295 {—ZVQ (@t E*V, @] } +he. . (6.77)
is supersymmetric. Now, (6.77) can be expanded as
int 1

L) = 1eV*V [O1E°V, @] |+ he. = A+ B+ C. (6.78)
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where
A= e [(V2VR) B°V; @] | + e,

B= %e [(V200) B (VV;0)] | + he.
i

(
O = e [4(V,V501) (VIV'E) (V; )] | + he. . (6.79)

Keeping only bosonic fields, after a straightforward calculation we find
A =2eH"D,A* H*D,A + ie0A* H*D,A + h.c.
B= —ie F*H" (8iFH, — 4D, F) + h.c.

1
C=ge DA 0°A(Gye — MacH H, — 2H4H,) + ie O,A* 0., AD H® + h.c. . (6.80)

In the above formulas we used that D, F' = 0,F — 1A, F with A, = A, — 3H,, since F has a
chiral weight np = —1. Additionally, in the above derivation one should use the helpful splitting
VIWVIE® =1 [V, V] E* 4+ 1 {V",V} E“.

We see that the desired nonminimal derivative coupling with the Einstein tensor indeed appears
in C'. Thus, the bosonic part of the interaction reads

L0 = eG™®0,A8,A* + 2eFF*H"A, — 2FF*H"H, + icH* (F*0,F — F9,F*)
eO,bAA*H,H® + 2e H0, A H O, A* — ieH, (DpA* DO"A — 0,A DcabA*) . (6.81)
In summary, assembling the Lagrangians (3.167,6.75,6.77) we find that the bosonic sector of the
theory is
1 1

Lo = FLsugrat 551(3% +wLl)
1|1
= — |=eR +2eH"A, —3eH"H,
k2|2

+eAOA* + eFF* —ieH (A0 A" — A*0,.A)
+w? [e G*O,A* 0,A + 2eFF*H*A, — 2 FF*H"H,
+ieH* (F*0,F — FO,F*) — e0,AO"A*H, H"
+2e H*9,A H'O,A* — ieH, (0,A* D" A — 9,AD 9" A*)] (6.82)
where we have introduced the dimensionful parameter w? = £M 1_12 and k? = Mp 2
We may now integrate out the auxiliary fields to find the on-shell action. For w? > 0 we may

define
2

a a 2.2 * H_ - ¥ Qa
1% —A<1+/@wFF>+2<zA8A
—iADA* — i FO°F* + iw?F*0°F

w0y AP DA + w9y A D“a"A*), (6.83)
in terms of which (6.82) is written as
1 [1
e 'Ly = = {573 +2V*H, — 3H“Ha} + AOA* + FF*
K
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+w? [ G*0,A* 0,A — 2FF*H"H,
—0,AA* H,H" + 2H"9,A H"9,A*] . (6.84)

It is important to notice here that since A, F' have chiral weights n = 0, —1, respectively, V,,
transforms under the U(1) symmetry as it should, i.e.,

SV = D) (6.85)

and thus it is physically equivalent to A,,.

To find the on-shell action, we should eliminate the auxiliary fields V,,, B, F'. This can be done
exactly in the same way as in the pure supergravity case (3.167) where we find V,, = H,, = 0.
Similarly, the elimination of the auxiliary F' of the chiral superfield is straightforward and the
bosonic part of the supersymmetric Lagrangian (6.77) turns out to be

1
e 1Ly = 53 R+ ADA" + w? G 9, A% DA . (6.86)
K
There is a difference when w? < 0. Variation with respect to A, gives the following equation
1 2 *
?—{—’(UFF HaZO (687)

For w? > 0 the only solution is H, = 0 and we may define V* in (6.83) as described above.
However, for w? < 0, there are two solutions: i) a supersymmetric solution H, = 0 and ii) a
non-supersymmetric one FF* = KQ—IWQ For the supersymmetric solution, we arrive at the bosonic
part (6.86) of our supersymmetric theory. On the other hand for the no-supersymmetric solution,
A% cannot anymore be traded for V. Moreover, it generates a cosmological constant as expected,
introducing at the same time higher derivatives. Indeed, in this case, the last term of (6.82) would
not vanish leading to harmful higher-derivative interactions.

The properties of the theory (6.86) have been studied in [102,175]. In particular, in [102] the scalar
A has been dubbed as the Slotheon for the reason that, generically, for a given kinetic energy, its
time derivative is smaller than the same calculated for a canonical scalar field. This again proves
the usefulness of this theory for Inflation, where, in order to get an accelerated expansion of the
primordial Universe, the scalar field should have a very small time derivative. In [102] it has also
been proven that spherically symmetric Black Holes cannot have slotheonic hairs and, finally, it
has been conjectured that this theory does not violate the no-hair theorem generically.

We should note that the Lagrangian (6.77) can easily be generalized to describe more general
non-minimal couplings of the form V (A, A*)G""0,,Ad, A*. Indeed, we may employ a holomorphic
function W(®) as follows

£ = / *0E {—%?2 [W(CDT)E“VQW(@)]} +he. . (6.88)

The computation of (6.88) goes straightforward as in the previous case and the result, after com-
bining with (3.167,6.75,6.77) and by doing an appropriate shifting of the U(1) vector, turns out to
be

1 [1
e 'L = — {573 +2V* H, — 3HaHa1 + AOA* + FF*
K
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aW 2 ab * * 1170
91 (G WA 0,A—2FF*HH,

+w?

—0yAO"A*H, H® + 2H"H"0, AD,A*) | (6.89)

where W is the lowest component of .

Again, field equations for V"™ and H™ force the latter to vanish and the former to be a pure gauge.
With this in mind, the bosonic part of the Lagrangian, after elimination of the auxiliary fields is
oW |2

l gmm g, A" 9,A . (6.90)

1
“1pWw) _ _— ACA* 2
e L 2&2R + +w A

An obvious question concerns possible potential terms. Due to the requirement of R-invariance,
one cannot use the F-density formula (6.72) to write general Lagrangians, unless the F-density
has a total chiral weight of n = 1. For the neutral chiral multiplet we have used to construct
our theory, it is not possible to write an R-symmetric potential term, unless new chiral fields are
introduced. However, one can introduce explicit soft supersymmetry breaking terms of the form
m2AA*, as potential for the neutral scalar.

A second question is why the neutral n = 0 prescription in (6.77) is fundamental to avoid higher-
derivatives. An R-charged multiplet with n # 0 would give charge to the scalar A. In this
case, A would be minimally coupled to the U(1) gauge field A,, inducing quadratic terms for the
gauge field. Moreover, kinetic terms for both A,, and H,, will appear. In this case, A,, and
H,, could not be eliminated algebraically anymore. Specifically, the equation for A,, would read
H,, ~ 0,A+.... Itisthen clear that the elimination of H,, would produce quartic derivatives of
the scalar A and consequently a higher derivative theory from, for example, the last term of (6.82).
Therefore, only for a neutral n = 0 chiral field a theory with no harmful higher derivatives can be
obtained. However, for completeness, we present later the bosonic sector of a general R-charged
chiral multiplet of chiral weight n.

Finally, we note that in the fermionic sector of the theory, among the various fermionic interactions
that arise, the term

L, =—w? eié“bxabb;)z — iw?eDgA* D, x0T | (6.91)

is the direct supersymmetric partner of the Einstein coupling in (6.86) needed to cancel scalar
supersymmetry variations of L7y . The first term in (6.91) was for first time introduced in non
supersymmetric models in [109]. In [109] it has been shown that each time couplings of the form
(6.91) or (6.86) are introduced, dependently upon the scale w, fields get dynamically localized
around domain walls.

Lagrangian for non-zero chiral weight

The bosonic part of the Lagrangian for a general chiral weight n reads:

1 [1
e 'L, = = {—R +2H"A, —3H"H,
K= |2
1
FADTA" + FF* = on AA* (R + 6H"H,) —iH® (AD, A" — A"D, A)

+w? {iHb [O°A*Dy A— DO AD; A*] + %ng (R+6H"H,) (AD, A* — A*D; A)
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+4HD; A*H"D, A+ iD; A*D, A (D"H* — D"H")
+D; A*D,; A[G™ — g™ H"H, — 2H"H"|
+iH* (F*D, F — FD, F*) + 4FF*H"H,
+5nH'R (AD; A" = A*D A) + 3in H'H,H'(AD; A" = A"D; A)
+in *FYH,(AD; A* — A*D; A) + in H,(D,Hy)e" " (AD; A* — A*D; A)
1
—5nHo "Fy e (AD; A* + A*D; A) — nH'(DH?) (AD; A* + A*D; A)
+nH" (D H,)(AD; A* + A*D; A)
1 1
—nAA (R + 6H"H,)” — SAAT " Fye *Fl —nAA ke * By DyH,
+nAA*(DyH.) (D'H® — D°H?)} . (6.92)

It is clear that, for n # 0, the vector A, of field strength F% becomes dynamical and therefore,
as discussed in the text, cannot be removed by a gauge transformation.

6.3 Starobinski Model of Inflation in Supergravity

If the perturbations during inflation [160] are originated by the same field driving inflation, the
inflaton, then the recent Planck data on the cosmic microwave background radiation anisotropies
have severely constrained the models of single-field inflation [4]. Indeed, successful models have to
predict a significant red tilt in the two-point correlator of the scalar curvature perturbation, mea-
sured by the spectral index ng = 0.960 4+ 0.007, and a low enough amount of tensor perturbations
quantified by the current bound on the tensor-to-scalar ratio, » < 0.08. One of the models which
better passes these constraints is the higher-derivative R? Starobinsky model [164,181,182]. It is
described by the Lagrangian (we set from now on the reduced Planckian mass to unity)

Loar =vV—9 (R+XR?), X >0 (6.93)

and it contains, besides the graviton, one additional degree of freedom. The coupling constant g
is positive in order to avoid instabilities. Indeed, one can rewrite the Lagrangian (6.93) as [194]

Lo == (Rt daft0 — o) (6.99

and, upon integrating out ¢, one gets back the original theory (6.93). Note that this is a classical
equivalence. After writing the expression (6.94) in the Einstein frame by means of the conformal
transformation

Grm — €2 Grn = (1+ )\O@Z))fl Irmns (6.95)

we get the equivalent scalar field version of the Starobinsky model

1
Ltar = /—g | R — 60,00 ¢ — 4—%(1 —e 22|, (6.96)
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and the positivity of Ay is now obvious. Inflation takes place when the scalar field is slowly-rolling
along its potential plateau obtained for ¢ > 1 and in order to achieve a sufficient number of e-folds
the plateau must be at least as wide as O(5) in Planckian units.

In this work we investigate the possibility of embedding the Starobinsky model into superconformal
theory and V' = 1 supergravity. This extension is not unique. The reason is that there are two ways
for the graviton, sitting along with the gravitino, to fill a supergravity multiplet and one needs
a set of auxiliary fields to define the off-shell supergravity multiplet. The minimal case should
contain only the gravitino as fermionic content. This means that we need a total of 12 bosonic
degrees of freedom to match the 12 degrees of freedom of the gravitino. This is the so-called
(12412) supergravity theories and there are two of them [39,99]: the old-minimal supergravity
and the new-minimal one. The auxiliary fields of the old-minimal supergravity are a complex
scalar and a vector, whereas the new-minimal supergravity has a gauge one-form (gauging an R-
symmetry) and a gauge two-form field. In particular, at the two derivative level, these two minimal
supergravities are the same as they are related by some duality transformation of their auxiliary
sectors. However, when higher derivatives appear, this duality does not work and the two theories
are different. Earlier [47,129-131] and recent [36,78,127] embeddings of the Starobinsky model
have been all based on the old-minimal formulation of A" = 1 supergravity. There have also been
attempts to interpret gravitino condensate as the inflaton [77,132].

An appropriate framework to discuss minimal supergravities is the superconformal calculus [35,
39,99, 144, 145] which we employ here. To go to the desired Poincaré supergravity one fixes
the appropriate compensator field and breaks the conformal symmetry. This framework offers a
connection between the different auxiliary field structure of the minimal Poincaré supergravities
[92]. Depending on the compensator, after gauge fixing the superconformal symmetry, one recovers
either old or new-minimal supergravity: with a chiral compensator, the old-minimal supergravity
is obtained whereas with a real linear compensator superfield the new-minimal one is recovered.
The goal of this section is two-fold [88]: on one side, we wish to show that the Starobinsky model
can be derived also from the new-minimal formulation of supergravity in such a way that the
vacuum energy driving inflation can be identified with a D-term; on the other hand we want to
point out that the embedding of the Starobinsky model both in old- and new-minimal supergravity
suffers of a potential problem deriving from the presence of higher-order corrections which may
spoil the plateau of the potential of the scalar field driving inflation. This is reminiscent of the
so-called n-problem [160] which arises when a model of inflation is embedded in supersymmetry
and the flatness of the potential is usually spoiled by supergravity corrections [160)].

This section is organized as follows. We describe the embedding of the Starobinsky model within
the old-minimal supergravity formulation in section 2 and within the new-minimal supergravity
formulation in section 3. In section 4 we describe the potential danger represented by higher-order
corrections in both formulations. Finally, we conclude in section 5.

6.3.1 Starobinsky model in the old-minimal supergravity

We start by writing the Lagrangian that is appropriate to reproduce the supergravity version of
the Starobinsky model in the old-minimal framework

L = —3[SS0]p + 3M[RR]p, (6.97)

139



with
1 =25

Here Sy is the compensator chiral superfield, with scaling weight equal to 1 and chiral weight
2/3, the curvature chiral superfield R has scaling weight equal to 1 and chiral weight 2/3 as well,
and [O]p is the standard D-term density formula of conformal supergravity [35], where O is a real
superfield with scaling weight 2 and vanishing chiral weight. After gauge fixing the superconformal
symmetry and choosing

So =1, (6.99)

the superspace geometry is described by the old-minimal formulation, see for example Ref. [193].
Then Eq. (6.97) becomes

L= —3/d2® 2 {R + %(ﬁ - 8R> <Rﬁ) } +hee (6.100)

It is easy to verify that the bosonic part of Eq. (6.100) contains the Lagrangian (6.93)
LD R+ MR (6.101)

and therefore is a good candidate for the supergravity theory we are after [154,185,190]. The next
step is to write the expression (6.97) as standard supergravity with additional degrees of freedom
in the same way we have traded the R? term in non-supersymmetric case (6.93) by a scalar field
coupled to Einstein gravity in (6.94). This can be implemented by using appropriate Lagrange
multipliers. Hence, we introduce a chiral superfield J with scaling weight 1 (chiral weight 2/3)
and a chiral Lagrange multiplier A with scaling weight 2 (chiral weight 4/3) and the equivalent
Lagrangian to (6.97) is [47]

L = —3[SeSo]p + 3\ [JT|p + 3([A(J — R)]r + h.c.) (6.102)

where [O]p is the standard F-term density formula of conformal supergravity [35], with O a
chiral superfield having scaling weight 3 and chiral weight 2. Indeed, integrating out the Lagrange
multiplier chiral superfield A from Eq. (6.102) we get

J=TR (6.103)
and Eq. (6.97) is reproduced by Eq. (6.102). By using the identity
[AR]r = [ASoSy '], (6.104)
Eq. (6.102) can be recast in the form
£ = —3[S0Solp + 3M[T 7] — 3[AS5S: Y — 3[AS6S, b + 3([AJ]r + hoc.), (6.105)

and will lead to standard Poincaré supergravity. By defining new chiral superfields C and T defined
in terms of our original J and A as

C=vVNS;Y, T= % + 552, (6.106)
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Eq. (6.105) turns out to be

L=-3 [SOEO(T +T - cE)} e ([c (T - %) 53] + h.c.) . (6.107)
F

We recognize in Eq. (6.107) the characteristic form of a no-scale model [47,151]. T n particular,
the fields C and 7 parametrize the scalar manifold SU(2,1)/U(2). Note that the theory is not
gauged and the potential is due to an F-term, the second term in (6.107). We now gauge fix
the superconformal symmetry in order for the superspace to be described by the old-minimal
formulation. Then Eq. (6.107) turns out to be the standard old-minimal supergravity Lagrangian
coupled to chiral superfields

3/,
L= /d2® 28 {g (DD — SR) e K3 4 W} +h.c. (6.108)
with Kéahler potential
K=-3In(T+T-cC) (6.109)
and superpotential
3 1
W=—=CI|T—-=). 6.110
e(m3) o-10)
The bosonic sector of the final Lagrangian is
1 . -
e 'L = 5B = KgOn2'0"7 — Vi (6.111)
with
Vi = |KT(DW)(D;W) = 3WW |, 4,5 =1,2, (6.112)

where 2! = T and 22 = C the scalar lowest components of the chiral superfields 7 and C. We have
used the standard notation
oK B PK(z,2) ow

. DW =W+ KW, W= (6.113)

T 0 T gigw
The superpotential (6.110) belongs to a specific class of supergravity theories studied in [124-126],
where together with a Kéhler potential invariant under C' — —C, a local extremum at C' = 0
appears. This also happens in our case as there is a local extremum at C' = Im T = 0 where we

have the inflationary potential. Indeed, by parametrizing the complex scalar T' by two real scalar
¢7 b7 a"S

K;

1 =2
T = §eﬁ¢’ +ib, (6.114)

we find that there is an extremum at C' = b = 0, where the effective bosonic theory turns out to
be

1 3 _24\2
-1p _ "D m 2 _ 3¢
e L= 2R Om®0™ @ W (1 e V3 ) : (6.115)
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This is just the Starobinsky theory formulated in terms of the extra scalar degree of freedom.
However, there is a possibility of a tachyonic instability for excitations along the inflationary
trajectory C' = 0. Indeed, the mass of such excitations are [124-126]

mi = — (Kccee + [Kooee — Kecl) [P+ |0r f? (6.116)

for a general superpotential W = C'f(T) and a Kéhler potential invariant under C' — —C. Tt
is easy to check that in our case we have in fact a tachyonic instability during the inflationary
phase. A remedy can be modifying the Kéhler potential appropriately [127]. We may consider,
for example, instead of (6.97) the theory

L = =3[SoSo]p + 3M[RR]p + 3¢ [RR F (RR(S650)")]p- (6.117)

After writing this theory as standard supergravity as we have done for (6.97) and gauge fixing
So = 1, the new term does not change the superpotential and changes only the corresponding
Kahler potential, which turns out to be

K=-3In(T+T —CC[L+ AN "F(CCAT)]). (6.118)
As suggested in Ref. [127], the choice
F=-=MCC+--- (6.119)

will stabilize the inflationary trajectory and give rise to a consistent theory for appropriate values
of . Theories similar to this have been discussed also in Ref. [129-131].

Let us now turn to the alternative derivation of the same Lagrangian in the new-minimal super-
gravity formulation.

6.3.2 Starobinsky model in new-minimal supergravity

In this section we want to show that there is another way to write a supergravity which contains
the Lagrangian (6.93) in its bosonic sector. The appropriate compensator for the new-minimal
supergravity gauging is a real linear multiplet (L) with scaling weight 2 and vanishing weight
under chiral rotations. We employ now the following Lagrangian

;C = [LQVR]D + AQ([W“(VR)WQ(VR)]F + h.C.), (6120)

where

Ve = ln< Lo ) (6.121)
YoYo

W (Vi) = —EVQ Vo (Va) (6.122)

and Y} a chiral superfield with scaling weight 1. After gauge fixing the superconformal symmetry
and choosing

Lo=1 (6.123)

the superspace geometry is described by the new-minimal formulation, see for example Refs. [90,
180]. Indeed, fixing the superconformal symmetry by Ly = 1, we get that the graviton multiplet
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contains four fields, the physical graviton e?,, the gravitino v, and two auxiliary gauge fields A4,,,
and B,,, with corresponding gauge invariances

§Am = O0nd. by = Oy — Onbp. (6.124)

In fact, A,, gauges the U(1)r R-symmetry of the superconformal algebra, which survives after the
gauge fixing (6.123). Then, the desired theory is described by the following new-minimal Poincaré
superspace density

L= /dz@ 28 {—%WVR + Ao W“(VR)Wa(VR)} +h.c., (6.125)

where now Vg turns out to be the gauge multiplet of the supersymmetry algebra, namely

Vi = (—Hm + 1Am, —1757%” s HmH’") , (6.126)
3 3 6

where r,, is the supercovariant gravitino field strength, R is the (supercovariant) Ricci scalar and
H™ the Hodge dual of the (supercovariant) field strength for the auxiliary two-form [90]. The
first terms in Eq. (6.125) is easily recognized as the Fayet-Iliopoulos term for the gauge multiplet,
whereas the second is its standard kinetic term. Since the highest component Dy of the gauge
multiplet contains the Ricci scalar (Dg ~ R), clearly we will get the desired Dp+ Xy D% ~ R+ Xy R?
from the terms in Eq. (6.125). See Ref. [54] for a thorough discussion.

As a first step to write Eq. (6.120) as standard Poincaré supergravity, we consider L, as an
unconstrained real superfield (note that by employing the equation of motion for Y, we can make
Ly real linear again). Then one can check that the following Lagrangian

L =[LoVr]p + X([W*(V)W,(V)]r + h.c.) + [L'(V = Vr)]D (6.127)

reproduces Eq. (6.120) when we integrate out the real linear superfield L’ to find

L —
Vzln( i)—ln@—ln@+c (6.128)
OYO

and plug it back into Eq. (6.127). Now, in order to write the theory as standard supergravity, we
go in the opposite direction. We again perform a variation with respect to L', but now we interpret
the equation of motion as

L —
ln( i):V—Hn(I)—kln(I)qLc, (6.129)
0Y 0

which can be solved for L by

Lo
YoYo

= Oe' 1. (6.130)

The final step is to plug back Eq. (6.130) (or (6.129)) into Eq. (6.127) to get

L = [YoYo(®e" T In (®eV @) p + o ([WHV)W,o (V)] + h.c.). (6.131)
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The action (6.131) is the dual action to (6.120) [46,54]. Since c¢ is just an integration constant
we can take ¢ = 0. Note that our theory here is gauged and that the potential is thus due to
the standard D-term, in contrast to the expression (6.107). Again gauge fixing superconformal

invariance and setting
Yo =1,

we recover the following standard N = 1 supergravity
L= /d2@25{§(ﬁ—87z)eK/3+A2 W“Wa} +h.c, (6.132)
with the Kahler potential
K =-3In {—%Eevéln(aevfb)] : (6.133)
In component form the expression (6.132) reads

1 1 _
€L = JR-KgDnADmA+ o (KsA+ KzA) D

X .
— 2\ (ianan - iemm‘SanFm - D2> (6.134)

with
DA = 0 A+ iAnA, (6.135)

and after integrating out the auxiliary D we get

1 1 i 3 ~ 9 17
e 1L =-R—-2\ (anan — emmSanFm> -—— D, AD"A — — {1 + — ] .
2 “\2 4 AZA [In(AA)]? 8)2 In(AA)
(6.136)
With the redefinition
1 L(b .
InA= —56\/3 +ia, (6.137)
the expression (6.136) is finally written as (with Ay = 1/4¢?)
L= R- L, LR B 3¢V (Oa + Ay)?
9 5 N2
— 000" — 5¢° <1 _e 55¢) . (6.138)

This describes a massive vector with mass
ma = V6 e 23 (6.139)

in Planck units, and a singlet scalar ¢. The latter can be considered as the inflaton field with a
D-term potential

9 2 _ng 2
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Therefore, the R? new-minimal supergravity is described by standard supergravity coupled to a
massive vector superfield. The latter contains a real scalar in its lowest component (the ¢ field
here) and a massive U(1) vector in its bosonic sector. Thus, the Starobinsky model stems from
the new-minimal supergravity constructed by means of a massless vector multiplet and a chiral
multiplet. The vector eats one of the scalars of the chiral multiplet and becomes massive, whereas
the other scalar of the chiral acquires a D-term potential. All together, the massless vector and
the two scalars of the chiral, rearrange themselves such that to form standard supergravity coupled
to a massive vector multiplet. Note that the scalar ¢ is what is usually fixed to zero by imposing
the Wess-Zumino gauge in exact gauge invariance.

6.3.3 The issue of higher-order corrections

Before concluding, we would like to discuss a relevant issue that might represent a potential danger
to the embedding of the the Starobinsky model into supergravity: higher order corrections. As we
shall see, both in the old- and new-minimal supergravity formulation of the Starobinsky model,
one can add non-renormalizable higher-order corrections which are admitted by the symmetries
and might spoil the plateau of the inflaton potential necessary to drive inflation.

Corrections in new-minimal supergravity

Let us first discuss the possible corrections to the inflaton potential (6.140) obtained in the new-
minimal version. These corrections are generated as corrections to the superconformal action
(6.120). However, all possible non-renormalizable terms are restricted by gauge invariance. Possible
corrections could arise from higher-order D-terms of the supersymmetric field strength W,. In
conformal superspace we may consider

L = [L()VR]D + AQ([WQ(VR)WQ(VR)]F + hC)
+ W (VR Wo(VR)W 4 (V)W (Vr))(Lo) % p- (6.141)

In the Ly = 1 gauge, this theory will contain in it bosonic sector terms of the form
LD R+ MR*+ (R, (6.142)

which represent corrections to Starobinsky theory in the new-minimal supergravity framework. To
recover the dual theory, we write Eq. (6.141) as

L = [L()VR]D + AQ([WQ<V)WQ<V)]F + hC)

+ LW (V)W (VW a(VIW (V) (Lo) ] + [L'(V = Vi)]p. (6.143)

Again we perform a variation with respect to L', and we interpret the equation of motion as

L _
ln( £>zv+1n<1>+1n<1>+c, (6.144)
OYO

which can be solved for Lg

L _
2 — 3V . (6.145)
YoYo
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We have also set ¢ = 0 here. The final step is to plug back (6.145) (or (6.144)) into (6.143), which
gives

L = [YoYo(®e"® In (P ®))|p + Ao ((WEVIYWo(V)]F + hec.)
+ E[(WEWW(VIW (VYW (V) (YoY o) 2(PeV @) 72 p. (6.146)

We now gauge fix the conformal symmetry and set Yy = 1 to recover the standard supergravity
theory that corresponds to (6.146)

3/
L = /d2@28{§(DD—8R>6_K/3+)\2W“Wa

1/—— & — —G
- - (DD - s W . h.c. 14
4( 8R) {2@6‘/@)21/1/ W,V 4T ]}+ c., (6.147)
with
K = -3 [—%5@‘/@ 1n(5evq>)}. (6.148)

Importantly, the Kéhler potential is the same as in Eq. (6.133) and thus there are no corrections to
the Kahler potential. In addition, the theory (6.147) has been studied in Refs. [43,83], where now
the general functions in the higher derivative gauge sector are fixed by the form of the integrated
out Lg. The component form reads

1 -1 _
e IL = 3= KyaDmAD™ A+ o (KaA+ KzA) D

X .
— W FTE,, — Lemmsp B D2
2 1
v b g e pep pry Lemep g2y pil o (61a9)
(AA)? 1 16

To find the scalar potential we have to integrate over D. Since we are interested only in the scalar
potential in what follows we ignore all other contributions to D, but those from A. For a more
complete discussion, one may consult [43,83]. By defining the functions

1 .
a = —5[KaA+ KA, (6.150)
b = 2\, (6.151)
¢ = 8 (6.152)
(AA)?

the equation of motion for D turns out to be
0 =a+2bD + 4cD?. (6.153)

The solution to Eq. (6.153) was found in Ref. [43] and is given by

2b
D =4/ 3% sinhn, (6.154)

146



with

1 3a |6
n=g arcsinh (—4—2\ / ?C) . (6.155)

4AXob
Vp = 32 cosh(2n)(sinh n)?. (6.156)
c

The scalar potential reads

5\ 32

Figure 6.1: The scalar potential for three different values of s = % ( >\2> : i) s = 1072 (continuous

line), ii) s = 10~% (long dashed line) and iii) s = 10~% (short dashed line). The horizontal line corresponds
to £ =0.
To find the corrections to the inflaton potential (6.140), we rewrite n as
1 :
n=3 arcsinh w, (6.157)

where
wo V& (3)3 (1 - e%¢> . (6.158)

For w < 1, the potential is written as

9 _2 2 95 ,iqg l¢ 4
V%—(l— f)—— f(1—f>, 1. 6.159
PRV T ) Taosea v v (6.159)

On the other side, if |w| > 1 (¢ > 1), the potential is approximately given by

A2 s
Vp ~ 3—26 30, > 1. (6.160)

1\
s =0 (i.e.,, £ = 0), the potential has a plateau for large positive values of ¢ and one recovers the

3/2
We have plotted the potential in Fig. 1 for various values of the parameter s = Ve <i> It
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nice feature of the Starobinsky model formulated in terms of the extra scalar degree of freedom.
However, for non-zero values of s, the plateau is restricted to smaller regions and it disappears

for larger values of s with a fall-off V ~ eiﬁ‘ﬁ after the plateau. Therefore, the higher-order
corrections pose a problem to the Starobinsky model: we know that successful inflation is achieved
when the number of e-folds is about 60. This requires the field plateau to be as large as O(5)
in Planckian units. This imposes the parameter s to be smaller than about 10~%. Even so, one
should explain why the initial value field is positioned on the plateau, instead of being on the
fall-off region.

Corrections in old-minimal supergravity

Higher-order corrections are also expected in the old-minimal supergravity case. It is straightfor-
ward to verify that the following superspace Lagrangian

L = —3[SoSo|p + 3M[RR]p + €[(S6S0) 2V RV.RVLRV Rl p (6.161)
reproduces (6.142) after gauge fixing Sy = 1. We can rewrite (6.161) as
L = —3[SySo]p + 3\ [JJ]p + 5[(SO§0)’2V°‘JVQJVQW&7]D + 3([A(J — R)]r + h.c.). (6.162)

Now, making the redefinitions (6.106), the theory (6.162) becomes

L = =3[SoSo(T +T —CC)lp +3(v ) ([C(T - %)SS’]F +h.c.)
+ %[(Soﬁo)QV“(SOC)va(SOC)%(EOEW@(EOE)]D. (6.163)

Again, by gauge fixing Sy = 1 we go to the old-minimal supergravity, and the Lagrangian (6.163)
is written as

L = /d2@28{§<ﬁ—8R)e‘K/3+W}+h.c.

1\ e s
+ % d2e2¢ { (—§> (DD - 8R) D*CD,CDC D c} +he,, (6.164)
1

with Kahler potential

K=-3n(T+T —CC) (6.165)
and superpotential
3 1
W =—2C ——. 6.166
xe(7-3) (0160

Theories of the form (6.164) have been discussed in Ref. [43] and more recently extensivelly studied
in [82,83,133,135,136,176]. After integrating out the auxiliary fields (except F, the auxiliary field
of the C superfield), and performing the rescalings, the Lagrangian becomes

1

4 - 1
e IL = —R—Kﬁ@mzlﬁm?ﬂL 68

> 2

0, CO™CO,CO"C — Vi + L, (6.167)
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with

Lp, = AF.+AF.+BF.F.+ S(F.F.), (6.168)
Vi = e ——DrWDzW —3e"WW (6.169)
KTT
and
A = e2K/3ﬁDTW—e2K/BDCW, (6.170)
KTT
B = eK/chg—eK/B’%—%em?’@m(f&n@, (6.171)
KTT )\1
16¢
S = A—%eﬂ(/?’ (6.172)

The equations of motion for F, are

2

0=A+BF.+2SF.F, , 0=A+BF.+2SF.F?, (6.173)

which can be combined into the single equation

a=X(1+BX)3 (6.174)
where
a = “Z—“j, (6.175)
28
p = = (6.176)
= F.F.. (6.177)

The solution to the above equation is then easily found to be

2
X = %(Coshm - 1), (6.178)
with
1 27
m= g arccosh <5aﬁ + 1). (6.179)

The final scalar potential will have the following compact form
Vi = BX + 38X+ Vp. (6.180)

To study the implications of the corrections on the inflaton potential we look again at the minimum
C' = C = b =0 with the redefinition (6.114). The inflaton field ¢ will now have a potential

3e—10/V3 2
Vi = * cosh g (sinh 2) ,
8s 3

(6.181)
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with

N2
u:arccosh{1+36<—1+62¢/ﬁ> s}, s:%. (6.182)
1
The potential (6.181) has been plotted in Fig. 2 for various values of the parameter s. If s = 0
(i.e, £ = 0), the potential has a plateau for large positive values of ¢. For non-zero values of s, the
plateau is restricted to smaller regions of the scalar field and, like for the new-minimal version, it
disappears for larger values of s with a fall-off Vi ~ e=4¢/ V3 after the plateau.

Ao Ve

15F

Figure 6.2: The scalar potential for three different values of s = %: i) s = 10~* (long dashed line),
1

~— >

ii) s = 1078 (continuous line) and iii) s = 10712 (short dashed line

€=0.

. The horizontal line corresponds to

6.4 Summary

Galilean invariant theories have attracted a huge attention lately. One of the most striking prop-
erties is that their suppression scales do not (quantum mechanically) run with energy. Using the
superspace formalism, one would already guess that, if the projected theory onto the real space
should be Galilean invariant, in superspace, this symmetry must be incorporated into a larger sym-
metry. Indeed, we showed that a Galilean theory must be embedded into a super-space Lagrangian
(i.e. before projection to real space) enjoying the super-space Galilean shift symmetry

® — 4 ¢+ bpy™ (6.183)
where
Y™ =™ +i0o™0 (6.184)

and where ® is the Galilean chiral superfield. Note that the super-Galilean shift (6.183), in
components, only shifts the scalar 7.
The way we found our supersymmetric Galilean Lagrangian was however somehow indirect.
Inspired by the result of [107] showing that the complex Galilean Lagrangians may be found as a
decoupling limit (M, — oo but A = M?M,, finite) of

1 Gmr

£slotheon = 5 MZR - Wamﬂ-anﬁ- , (6185)
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we used the supergravity extension of the theory (6.185) found in [84] to obtain our supersymmetric
Galilean Lagrangian (6.52). Thus, the theory [84] is the supergravity extension of Galilean theories,
i.e. the covariant super-Galilean theory.

We would like to conclude by noticing that the theory [84] could only be found in the new-minimal
supergravity formalism which requires a conservation of R-charge. In particular it turned out that
the chiral superfield could only have vanishing R-charge. In the decoupling limit this is perfectly
consistent with the Galilean shift (6.183). In fact, the super Galilean shift has vanishing R-charge
and therefore it can only be applied to superfields with vanishing R-charge as well. Thus, in
order to have a consistent R-invariant theory, the super-Galileon must have vanishing R-charge,
as required by the supergravity extension.

This observation may also be related to the statement of [140] that cubic super-Galilean theories
cannot be constructed out of chiral superfields. It seems, as already stated, that super-Galilean
theories should be R-symmetry invariant. If the chiral superfield has non-zero charge under the
R-symmetry, then, the cubic (and the quintic) Galilean theory cannot exist [196]. Therefore,
the only possibility for the existence of a cubic and quintic super-Galilean theory out of a chiral
superfield, is that the chiral superfield has vanishing chiral weight. In [107], it has been shown
that the cubic Galilean theory can be obtained as a decoupling limit of a theory containing both
the “Slotheonic door” G*?9,mdsm and the conformal coupling 7 R. However, it turns out that the
two terms cannot coexist in the new-minimal supergravity formalism, as, the first would requires
a vanishing R-charge contrary to the second. Thus, the cubic super-Galilean cannot be obtained
as a decoupling limit of a supergravity theory coupled to chiral superfields.

The quintic Galileon is instead more mysterious. In [107] no consistent decoupling limit has
been found such to lead to the quintic Galileon. Although this is not a proof it is tempting
to conjecture that no super-Galilean theories exist for odd number of chiral superfields in the
Lagrangian. However, we leave the proof of this conjecture for the future.

We then turn to the full theory of supergravity. The supergravity extension of the non-derivatively
coupled theories such as L7 has been already constructed in the literature [93]. However, non-
minimal derivative coupled supergravities to matter fields, without extra propagating modes, are
restricted to the Gauss-Bonnet interactions £;. Here we focused on the supersymmetrization
of the non-minimal derivative coupled Lagrangian, £;;. This was achieved in the framework of
new-minimal supergravity by employing a chiral multiplet and the linear curvature multiplet.

A theory described by (6.86) or, more generically, (6.90), may have many phenomenological in-
teresting properties. The first one is that, each time a domain wall is present in the theory,
dependently upon the scale w, the scalar field gets dynamically localized around the domain wall
itself [109]. In fact, one may consider L as a field theoretical realization of the quasi-localization
mechanism of [75]. A second, perhaps more important, phenomenological aspect is related to Infla-
tion. Whenever the background Einstein tensor is larger than the mass scale w2, no matter what
potential is driving A, Inflation is naturally produced without exceeding the perturbative cut-off
scale of the theory, which is below the Planck scale as it should be for a ghost-free theory [76].
This is due to an enhanced gravitational friction acting on the evolving scalar field and sourced by
the Universe expansion itself [103-106, 108]. We therefore believe that the supersymmetrization
of the £;; might open new possibilities for exploring inflation in supergravity/string theory. For
more applications of the non-minimal derivative coupling in cosmology, black hole physics and
condenced matter physics see for example [7,56,57,141,142,150].

In the final section we have discussed the embedding of the Starobinsky model of inflation within
N = 1 supergravity. We have shown that the Starobinsky model can be derived from the new-
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minimal supergravity, where a linear compensator superfield is employed. The Starobinsky model
becomes equivalent to standard supergravity coupled to a massive vector multiplet whose lowest
scalar component plays the role of the inflaton and the vacuum energy is provided by a D-term
potential. We have subsequently investigated the robustness of the model against higher-order
corrections allowed by the symmetries and concluded that they may represent a threat to the
success of the model as they may destroy the flatness of the potential. This is true both in the old-
and in the new-minimal formulation. In this sense, the Starobinsky model suffers from the same
difficulty one encounters when trying to embed a model of inflation in supersymmetry where the
flatness of the potential is easily destroyed by supergravity corrections [160].
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Chapter 7

Concluding Remarks

It has been 40 years since the discovery of supersymmetry. Nevertheless, no experimental evidence
has been found until now. But let us be patient, even the Higgs scalar, the fundamental constituent
of the standard model, predicted some 50 years ago, was just discovered at the LHC. It is the next
round of LHC data that will shed further light in the quest for finding the supersymmetric partners
of the standard model particles. One has to be alerted though: If indeed supergravity is the low
energy limit of the superstring, then there is no reason found until now (from the string point of
view) to have a low SUSY breaking scale. Research on supersymmetry and supergravity has to be
carried out, the major discoveries have been made, but there is still many open questions waiting
to be answered. Indeed, new observational data from the PLANCK satellite bring inflationary
cosmology to the forefront.

In this dissertation we have presented progress on the most important subjects in supersymmetry
and supergravity: Supersymmetry breaking, supersymmetry and particle physics, supergravity
and cosmology. These subjects where treated rather technically, but stimulating phenomenological
input was given when needed. We have first presented new methods for supersymmetry breaking
which rely on higher dimensional operators, contrary to the common known models of SUSY
breaking used as a hidden sector. We discussed the possibility of a single-Higgs MSSM, where we
found an emergent hierarchy for the heavy fermion masses and moreover an intriguing modification
to the Higgs potential allowing better fitting to the observed Higgs particle mass. We have worked
out consistent models of higher derivative supersymmetry and supergravity, and pointed out their
relevance to inflationary cosmology. Of course many questions are left open which we hope to
address in the future.

Finally, whatever the experimental evidence, the theoretical elegance of supergravity is definitely a
reason behind the fact that theorists are not willing yet to give up hope of its relevance to nature;
or in the words of P. van Nieuwenhuizen on Supergravity: ”It is the most beautiful gauge theory
known, so beautiful, in fact, that Nature should be aware of it!”
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