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Abstract 

Ice caps act as climate controllers, regulating temperature, ocean circulation and affecting 

global weather patterns. The disintegration of ice shelves and sea ice in recent years has 

gathered scientific attention as the stability of ice formations is being re-evaluated. The 

detrimental interaction between ice sheets and long waves has been recently advocated, 

showing the need for a thorough investigation of the phenomenon. Simultaneous 

technological advancements in marine engineering provide a different motivation for the 

study of the transient response of Very Large Floating Structures (VLFS) under long wave 

excitation.  

In the present thesis, the elastic Euler Bernoulli beam model and the shallow water 

equations are coupled in order to derive a 1-D hydroelastic system. Two specific problems 

are defined, the one of a floating cantilever, a fixed-edge plate, able to simulate an ice shelf 

or moored VLFS, and one of a freely floating plate approximating the configuration of an 

ice floe or a pontoon VLFS. 

Stability estimates of the variational form of the governing equations and the energy 

conservation principle are studied for both problems. The finite element method is 

employed for the solution of the problems in question. Special hydroelastic elements 

incorporating various polynomial degrees are developed in order to cater for the coupling 

in the hydroelasticity dominated regions of the problem. In addition, error estimates for the 

semi-discrete form are derived. The finite element solution is compared against the 

eigenfunction expansion method of Sturova (2009). 

Finally, two examples are explored for each of the problems along with a geophysical case 

study based on the Sulzberger Ice Shelf calving event in 2011. Additionally, results 

presented as collaboration, by the author, at the European Geosciences General Assembly 

2014 are given. The presence of the fixed boundary and its effect on the bending moment 

and shear force distributions are explored. Thickness variations are shown to have an effect 

on shear force distribution while the distance from the free edge of a cantilever plate where 

the maximum bending moment appears is relatively insensitive of the incoming tsunami 

wavelength. 
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Abstract in Greek 

Εκτεταμένη Περίληψη 

Οι συνέπειες της κλιματικής αλλαγής τόσο στο περιβάλλον, όσο και στην ανθρώπινη 

δραστηριότητα αποτελεί αντικείμενο εντατικής έρευνας. Με την αύξηση της 

θερμοκρασίας, το ενδιαφέρον στρέφεται στις Πολικές ζώνες και στην ευπαθή ισσορροπία 

τους. Ως ρυθμιστές του παγκόσμιου κλίματος, οι Αρκτικές ζώνες επηρεάζουν την 

θερμοκρασία και την ωκεάνια κυκλοφορία. Την ίδια στιγμή, ο καταγεγραμμένος 

‘κατακερματισμός’των στρωμάτων πάγου (ice shelves) ή παγετώνων στην Ανταρκτική και 

η σημαντική μείωση του θαλάσσιου πάγου στην Αρκτική, φαίνονται να επηρεάζουν άμεσα 

τις εμπορικές δραστηριότητες και να επιβεβαιώνουν την αρχή μιας σειράς κλιματικών 

διαταραχών. 

Η κυματική διέγερση των στρωμάτων πάγου έχει συνδεθεί με τα φαινομενα απόσχισης 

σωμάτων πάγων και το σχηματισμό ροών (ice floes). Η παλιρροιακή  δράση και η συνεχής 

καταπόνηση των κυμάτων, σε συνδιασμό με τις εγγενείς ατέλειες του πάγου οδηγεί σε 

καμπτική αστοχία και την τελική απόσχιση τμημάτων πάγου. Οι μεγάλες οριζόντιες 

διαστάσεις, σε σχέση με το πάχος των στρωμάτων πάγου, καθιστά τις ελαστικές 

παραμορφώσεις κυρίαρχες των κινήσεων στερεού σώματος. Επομένως, η μελέτη της 

απόκρισης στρωματών πάγων υπο κυματική καταπόνιση εμπίπτει στη περιοχή της 

υδροελαστικότητας. 

Ανθρώπινες κατασκευές που μοιράζονται τα ίδια χαρακτηριστικά με τα στρώματα πάγου, 

όπως οι Μεγάλες Πλώτες Κατασκευές (Very Large Floating Structures, VLFS) αποτελούν 

εφαρμογές της υδροελαστικότητας. Συνεπώς, η υδροελαστική ανάλυση πλωτών 

στρωμάτων υπο κυματική καταπόνιση είναι κοινό έδαφος για εφαρμογές τοσο στη 

γεωφυσική όσο και στη μηχανική κλίμακα.  

Ιδιαίτερο ενδιαφέρον παρουσιάζει η μελέτη των επιπτωσεων μακρών κυμάτων (long 

waves), σε στρώματα πάγου. Το κίνητρο της παρούσας εργασίας εντοπίζεται σε συμβάν 

αποσχισης σώματος πάγου απο το στρωμα Sulzberger στη θάλασσα Ross, έπειτα απο 

χτύπημα κύματος tsunami που δημιουργήθηκε απο σεισμο του 2011, με επικεντρο το 

Honshu της Ιαπωνίας. Απο το συμβαν δημιουργήθηκαν δύο νέα παγόβουνα με 

καταστροφικές συνέπειες για το μέχρι πρότινος ευσταθές στρώμα. 
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Η μελέτη της δράσης μακρών κυμάτων αφορα εξίσου και τις εφαρμογές των VLFS, καθώς 

οι πιο συνήθεις κατασκευές με ποντόνια εξυπηρετούν παράκτιες περιοχές όπου και το 

πλάτος των μακρών κυμάτων αυξάνεται δραματικά. 

Στην παρούσα εργασία εξετάζεται η απόκριση πλωτών στρωμάτων ύπο την καταπόνηση 

μακρών κυμάτων.  Για την ανάλυση, επιδιώκεται η μονοδιάστατη σύζευξη του μοντέλου 

λεπτής, ελαστικής δοκού Euler Bernoulli και των γραμμικοποιημένων εξισώσεων ρηχών 

υδάτων. Ορίζονται δύο ξεχωριστά προβλήματα. Το πρώτο πρόβλημα αφορά μια πλωτή 

πλάκα με ένα πακτωμέμο άκρο ενώ το δεύτερο εξετάζει μια ελεύθερη πλωτή πλάκα.  

Στη συνέχεια παρουσιάζεται η ανάλυση ευστάθειας της ισχυρής διατύπωσης των δύο 

προβλήματων και μελετάται η αρχή της διατήρησης της ενέργειας για κάθε σύστημα. Στη 

συνέχεια, για την επίλυση γίνεται χρήση της μεθόδου των πεπερασμένων στοιχείων. 

Ειδικά πεπερασμένα στοιχεία κατασκευάζονται με διαφορους πολυωνυμικούς βαθμούς, 

για την προσεγγιση της λύσης στις περιοχές της υδροελαστικής σύζευξης. Επιπλέον 

παρατίθεται και η εκτίμηση σφάλματος για την ημι-διακριτή μορφή στο χώρο. Στη 

συνέχεια η λύση των πεπερασμένων στοιχείων συγκρίνεται με διαφορετική μέθοδο 

(Sturova 2009) που βασίζεται στην ανάπτυξη της ανύψωσης ελεύθερης επιφάνειας σε 

ιδιοσυναρτήσεις της δοκού in vacuo. 

Τέλος, παρουσιάζονται δύο παραδείγματα για το κάθε ένα απο τα προβλήματα καθώς και 

το παράδειγμα του στρώματος Sulzberger. Επίσης, δίνονται αποτελέσματα που 

παρουσιάστηκαν στο European Geosciences Union Assembly 2014, με συμμετοχή της 

συγγραφέα. Η ανάλυση επιβεβαιώνει την επίδραση του πάχους της πλάκας στη διασπορά 

του υδροελαστικού κύματος καθώς και στην κατανομή των ροπών και τεμνουσών. Η 

απόσταση της μέγιστης ροπής φαίνεται να εξαρταται απο το πάχος αλλά όχι απο το μήκος 

κύματος της καταπόνησης.  
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Summary 

It is the scope of this study to examine the hydroelastic interaction between long waves and 

Very Large Floating Structures (VLFS) or Ice sheets. The conjunction link in the title is 

based on the similarity found in the response analysis techniques for all thin floating 

structures, either man-made or of geophysical origin. Six chapters constitute the present 

thesis. 

In Chapter 1 the motivation and the goals of the present work are given. A brief 

introduction on ice formations and VLFS is also provided in different sections. Finally a 

state of the art review in hydroelasticity is provided. 

Chapter 2 outlines basic theoretical concepts, essential for the analysis that follows. 

Serving a complementary role, chapter 2 can be entirely omitted.  

In Chapter 3 the governing equations of the hydroelastic problem for any number of 

floating bodies over shallow water are presented. In addition, two sub cases of significance 

for environmental and technological applications are analysed in detail. These cases are the 

floating cantilever and the single freely floating plate. The corresponding initial boundary 

value problems, are termed problem 
1

  and problem 
2

  respectively. 

In Chapter 4 the variational formulation of problems 
1

 , 
2

  is presented. The principle 

of energy conservation is examined for all three configurations and finally a priori stability 

estimates for the weak solutions are derived. 

In Chapter 5 the semi-discrete formulation of the aforementioned problems is given along 

with error estimates. The development of special hydroelastic elements and the finite 

element method implementation are discussed in subsequent sections of the chapter. 

Chapter 6 presents a series of results for selected examples. Discussion of the results, 

conclusion and future research goals are also included in the chapter. 
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CHAPTER 1 

Introduction 

 

Adverse climatic trends and modern technological advances in marine engineering have 

brought the study of large floating bodies under the spotlight. Polar researchers employ 

hydroelasticity in the study of ice shelf or ice floe dynamic response under ocean wave 

excitation, while marine engineers engage its principles in Very Large Floating Structures 

(VLFS) design. In this first chapter, an introduction to both bodies of work is given along 

with a survey of literature in hydroelasticity. The aims and objectives of the current thesis 

are given at the end of the chapter. 

 

 

 

 

 

 

 

 

1.1 Introduction and research motivation 

The effects of climate change are bound to influence human activity globally, an issue 

currently discernible at the Polar Regions.  

Polar Regions form a transient terrain, which is not only the ground for commercial human 

activities, but also the natural habitat of distinct fauna.  The climatic effects of the arctic 

zones are profound. For example, the annual formation and thawing of sea ice, along with 

its breaking and dispersion due to wave excitation, is a significant mechanism of natural 

climate control trough melt water circulation and temperature regulation. The scientific 

attention received by ice self ‘disintegration’, referring to sudden ice shelf retreat events 

during extended warm seasons, is indicative of the grave importance of the matter. In such 

occasions, ice shelves weakened by unusually long summer periods, finally broke off into 
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the sea. The calving, usually initiated by ocean wave excitation, results in a floating mass 

of ice with an area often reaching hundreds of square meters, drifting away due to currents 

and wind loads. Apart from the obvious environmental hazard, caused by ice cap depletion, 

the floating ice formations are also endangering commercial ship-routes and the presence 

of off-shore structures. 

 Hence, it is evident that accurate modelling of ice formations response to external forcing 

is valuable for future projections.  Moreover, as Arctic shipping routes are becoming 

accessible for longer periods during the year [1], there is a certain monetary end to accurate 

weather and sea forecasts, for the given region.  

Interestingly enough, motivation for the present thesis was found in the 2011 Sulzberger 

Ice shelf calving event, when the Tsunami succeeding the Honshu earthquake on March 

11
th

, reached the ice shelf and triggered the separation of two large icebergs.  At the given 

incident a total of 125 km² of ice was separated from Sulzberger Ice Self, with satellite 

pictures exposing the effect of events taking place as far as 13000 km away [2].  

 
Figure 1 Ice shelf schematic (source: http://earthobservatory.nasa.gov/NaturalHazards) 

 

On a related note, recent advances in marine technology have led to the emergence of Very 

Large Floating Structures (VLFS). Popular, current applications of VLFS span between 

floating bridges and oil storage facilities. Between the two areas of polar geophysics and 

marine engineering, there exists a certain link, the study of hydroelasticity. 

Ice floes and floating pontoon type VLFS, as will be discussed later, share certain 

properties, namely their large length compared to thickness and small flexural rigidity. Due 

to the above, hydroelastic effects are dominant under water wave excitation and their study 

preoccupies both bodies of work.  

http://earthobservatory.nasa.gov/NaturalHazards
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1.2 Sea Ice 

Ice physics and sea ice distribution has gathered scientific attention due to its direct 

association with global climate; large ice caps serve as climate controllers by affecting 

temperature and ocean current movement. Adding to the above geophysical reasoning 

behind the study of sea-ice interaction, other human activity related applications should be 

considered as drives for research. Such examples are the emergency landing and take-off 

of airplanes [3], ice floe impact with offshore structures and structural integrity of an ice 

floe when it comes to erecting a temporary base camp for polar expeditions. In the past 

decade acknowledgement of the adverse effects of climate change has enhanced scientific 

fervour in the field of ocean wave-ice interaction, as wave trains are bound to become 

rougher [4], while elevated temperatures weaken ice formations.  

 

 

Ice-ocean interaction is manifested through the break-up of pack ice. Calving of glaciers 

and ice shelves is a phenomenon endorsed by simultaneous processes, the primary factor 

being ice structure itself, along with local temperature. Tidal effects and wave excitations 

add to the inherent structural imperfections in the ice body, while oscillatory flexural 

bending caused by the excitation ultimately leads to the break off of ice shelves or the 

splitting of ice sheets. The detrimental effects of gravity wave forcing on Antarctic ice 

shelves, are explored in a recent work by Bromirski and Stephen [5], speculating a direct 

correlation between sea-level rise and ice shelf dynamics. 

 

Train waves reaching the tip of ice shelves traverse the Marginal ice zone (MIZ), a region 

covered with ice floes at the boundary of pack ice shoreline and the open ocean induced by 

 
                          (a) 

 
                            (b) 

Figure 2 (a) Ice floes in the MIZ,  (b) Ice shelf extending into the ocean  
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wave action. The ice floe sizes, found in the MIZ, decrease with increasing distance from 

the ice cap. Thus, the smallest fragments are to be found at the ocean front [6]. The size of 

the zone itself depends on both seasonal temperature and wave forcing.  The waves coming 

in the MIZ travel finite distances as energy is dissipated through additional floe cracking 

and scattering. Short waves are scattered at every imperfection found in their path, prone to 

the irregular geometry of the ice floes. As a result the zone acts as a dampener, shielding 

the ice shelf from further breaking. This ‘buffer’ zone suffers due to severe sea ice 

reduction observed the last decades [7]. As a general rule, less sea ice means that greater 

sums of wave energy, or simply waves of greater amplitude, reach the ice shelf leading to 

its disintegration. In addition, the disappearance of sea ice is linked to the rise in frequency 

of ocean surges. This coupling leads to the mutual catalysis of both phenomena 

Finally, it would be useful for the reader to consider that sea ice exhibits a highly complex 

material behaviour, often a place of disagreement in modelling attempts [51]. Due to the 

difficulty of access to samples, experimental testing is limited. As a quasi-brittle material, 

sea ice properties are dominated by the presence of a characteristic length which mandates 

the derivation of a scaling law in order to connect laboratory testing with the geophysical 

scales of interest [52]. The engineering properties of sea ice are summarised in a review 

paper by Timco & Weeks [8], while the reader could benefit from a recent review on the 

modern multiscale modelling techniques applied to ice deformation behaviour [9]. 

 

1.3 Very Large floating Structures (VLFS) 

Very large floating structures or VLFS begun as a futuristic vision a couple of decades 

back, inspired by population densification and the bitter realisation of its harmful impact 

on both social and environmental grounds.  

The population movement towards coastal regions and the subsequent increase in size of 

coastal cities is well documented, as is the need for proper shoreline protection measures 

and allowances in order to contain the damage of excessive urbanization [10]. Creating 

satellite floating structures to accommodate the need for space was considered an 

appealing alternative to its counterparts, expanding inland and costly land reclamation. The 

socio-economic drives behind the development of VLFS are thoroughly examined in the 

work of Wang, Watanabe and Utsunomiya [10]. 
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 Away from population relief, the VLFS idea was soon extended to fit military 

applications, civil infrastructure and industry. Typical examples of VLFS projects include 

bridges, breakwaters, solar and wind power plants, oil and gas drilling and storage 

facilities, military bases, emergency bases and industrial space. Notable examples of 

existing VLFS projects include the 1km long floating test runaway known as the Mega-

Float in Tokyo Bay, the floating oil storage bases in Shirashima and Kamigoto islands, the 

floating Washington bridge in Seattle and the floating piers in Ujina port [11].   

 

 
(a)  

 

 
(b) 

Figure 3 Pontoon type VLFS applications (a) Mega-Float-Tokyo Bay (b) floating oil storage base -Kamigoto 

island (source: [11]) 

 

 

VLFS are classified under two main categories; semi-submersible and pontoon (or mat-

like) type. The above figures (see figures 3(a) and 3(b)) illustrate pontoon applications 

exclusively. While the first type facilitates ballast structural elements in order to minimize 

wave impact and maintain a constant buoyancy force, the latter resembles a plate (or any 

box-like structure) laying on water surface. The semi-submersible type is suitable for open 

ocean applications, such as oil and gas platforms, as it can sustain large amplitude wave 

forcing. The pontoon type, on the other hand is suitable for applications on calm waters, 

relatively close to the shoreline. When horizontal dimension exceeds 60 meters, the 

pontoon VLFS is often referred to as Mega-float. In order to shield against harsh seas, a 

combination of a breakwater system and mooring facility accompanies pontoon type VLFS  

Both types have distinct hydrodynamic qualities, namely their large length and small 

bending rigidity which renders hydroelastic effects dominant. Thus, an elastic plate resting 

on water surface is an appropriate model for calculating the dynamic response of a mega-

float. 
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1.4 Hydroelasticity : a brief review 

Research on sea-ice interaction focuses on both the study of waves passing through the 

MIZ, sea ice formations and their resultant effect on the ice. Mathematical models are 

distinguished between those incorporating continuous ice shelves in the form of a 

constrained infinite or semi-infinite plate, extending into the ocean, and those dealing with 

solitary floes of finite dimensions, free to move in all directions. The response of solitary 

ice floes has been studied primarily in the frequency domain under harmonic excitation, 

while a number of works consider the time-domain response analysis of a compliant raft, 

thus accounting for irregular wave forcing [4]. Distinct hydrodynamic qualities, namely 

their large length and small bending rigidity, renders hydroelastic effects dominant when it 

comes to the study of the dynamic response of ice floes. Hence, ice floes are commonly 

modelled as floating thin plates with zero or non-zero draft. Some notable contributions in 

solitary ice floe models include those of Meylan and Squire [13] andAdrianov and 

Hermans [14] who consider a two-dimensional plate floating over arbitrary depth. Meylan 

[18] considers an ice floe of arbitrary geometry. While the majority of works are 

preoccupied with the freely floating ice sheet problem, a recent work of Bhattacharjee and 

Soares [15] considers the frequency domain problem of a floating semi-infinite plate near a 

vertical wall. A series of plate edge conditions are examined, including free, fixed and 

pinned at the vertical wall interface. An analytical solution to the problem of a clamped 

semi-infinite, homogeneous, elastic plate over flat seabed is presented by Brocklehurst et 

al. [16]. In Tkacheva, a modal expansion technique is performed in order to determine the 

response of either a free or a fixed, semi-infinite elastic plate over infinite depth [17]. 

Given recent technological advances in offshore engineering, it is very difficult to ignore 

the fact that a significant amount of work lends itself well when it comes to hydroelastic 

analysis of floating bodies. The study of VLFS emerged and evolved in parallel with 

marine geophysics and as thoroughly depicted by V.A. Squire [19], despite the common 

ground there has been little effort to unify the fields. Pontoon type VLFS share the same 

hydrodynamic qualities with ice floes and as a result the methodologies developed for their 

study bear a great resemblance. The foundation of both fields is set on hydroelasticity, the 

branch of science concerned with the response of deformable immersed bodies under sea 

excitation [20]. Applications of hydroelasticity span from ships [21] to VLFS [20], [22], 

[23], to floating ice bodies [12], [24]. Research on the hydroelastic response of floating 

bodies is primarily preoccupied with the frequency domain analysis of deformations, a 
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technique suitable for harmonic wave excitations. In the frequency domain, the methods 

incorporate either the mode expansion method or mesh methods [12], [14]. Modal 

expansion is based on the separation between the solid and the fluid part. The elastic 

deformation is deduced by the superposition of distinct modes of motion, while 

hydrodynamic forces are treated primarily through the employment of the Green function 

method or the eigenfunction expansion matching method [20]. Exemplary works in 

frequency domain analysis employing the modal expansion method are those of Kashiwagi 

[25], Taylor and Ohkusu [26], Kim and Ertekin [27] and Meylan and Squire [13]. 

A number of researchers have focused on the time dependant analysis of elastic floating 

bodies, allowing for irregularities in wave forcing and moving loads. Some of these studies 

incorporate direct time integration schemes [28], [29] and others employ Fourier transform 

[30], [31], [32], [33].  Sturova [34] employs a modal expansion technique, with respect to 

the beam ‘dry’ modes in order to solve for the transient response of a freely floating body 

over shallow waters. 

Variable bathymetry considerations are also apparent in the literature. Owing to the great 

length to thickness ratio, both VLFS and ice floes are expected to span over variable 

bathymetries. While a uniform and flat bottom is a common assumption among 

researchers, a few attempts have been made to incorporate the real-life topography of the 

seabed in calculation models. Sun et al [35] consider a sloping seabed while others account 

for a arbitrary bathymetry [36], [37], [38]. 

In the literature, attempts have been made to account for irregular waves and non-linear 

wave effects. These models may refer to tsunami wave impact, storm surges and wave 

breaking.  Masuda et a.l [39], [40] considered the effect of a tsunami wave on the response 

of a plate floating in shallow water. Wen and Shinozuka [41] and Wen [42] also consider 

tsunami and other as well as wind induced waves in their analysis. Finally, the work of 

Ohmatsu and Ohta account for irregular waves [32]. 

For the modelling of the floating body, the Kirchoff thin plate assumption is considered by 

the majority of studies [25], [27], [44] for both VLFS and ice floes. Thin plate models 

however are bound to become restrictive and unrealistic in the following decades [19], 

[11]. Chen [20] explores the shortcomings of linear plate models when incident waves are 

not normal to the plate and in subsequent works non-linear models like the von-Karman 

plate are employed [45]. Endo and Yoshida [36] apply the Timoshenko equation theory for 

a floating body, while a recent article by Hegarty and Squire [47] warns against the 
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application of the eigenfunction matching method in higher order models due to inherent 

singularities. The need for the successful incorporation of models accounting for large 

deflections is phrased in recent reviews [22]. 

Another focus of interest is in the fact that both ice floes and VLFS are heterogeneous 

bodies, the former on the grounds of intrinsic imperfections and naturally occurring 

thickness variations and the latter due to its complex interconnecting parts. Special models 

have been developed by polar modellers accounting for both inherent cracks [48], [49] and 

geometrical variations [50]. 

 

1.5 Research aim and objectives 

The literature review in hydroelacity, revealed that few works have focused on the 

transient response of floating bodies. Meanwhile, the need to successfully incorporate 

irregular wave forcing in the analysis is proven essential by documented cases of tsunami 

induced ice shelf disintegration and harsh seas projections. 

The aim of the present thesis is to employ the finite element method in the calculation of 

the transient response of floating bodies under long wave excitation. The objectives of this 

work include, 

 The mathematical formulation of the general, 1-D hydroelastic problem of a 

floating body over shallow water regions.  

 Derivation and study of the weak form of the aforementioned problem. 

 Development of a special hydroelastic element, able to approximate the coupling 

between the elastic body and the fluid layer. 

 Comparison and validation of the finite element solution. 

 Examination of several combinations of floating body and bathymetry 

configurations representing real-life applications. 
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CHAPTER 2  

Theoretical Background 

 

Shallow water theory, the study of long waves and the propagation of waves in elastic 

media constitute an essential foundation for the analysis in the following chapters of the 

present work. The sections below do not provide a full account of the topics but rather a 

brief introduction, drawing attention to significant notions that will be touched upon in the 

analysis and modelling of hydroelastic problems. 

 

  

 

 

 

 

 

 

 

 

 

2.1 Shallow water theory  

The swallow-water model is a simplistic geophysical model accounting for gravity 

wave propagation in swallow depth, extremely useful in coastal engineering. The theory is 

derived under the assumption that the horizontal length scale is significantly greater than 

the vertical one, which is the case for tidal waves and tsunamis.  Swallow water theory is 

considered valid over regions, where 
110kh   with k being the wave number and h the 

water depth, holds for wave propagation. 

A basic derivation of the swallow water equations is presented below (see also figure 4). 

Initially, the following 2-D boundary value problem is defined. 
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Figure 4 General vertical 2-D configuration 

 

For the fluid region depicted above the mass continuity equation holds, hence 

1
0

D u w

Dt x z
,                                                                                          (2.1) 

where 
D

Dt
 is the total derivative with respect to time, is the fluid density and ,u w  are 

the fluid velocity components as shown in the figure above. 

Now, by use of the common incompressibility assumption for water, equation (2.1) is 

reduced to, 

    0  u .                 

By incorporating the additional assumption of fluid irrotationality and introducing the 

scalar velocity potential function, the Laplace equation is satisfied within the fluid region, 

    
2 0 .                                                                                                           (2.2) 

In order to complete the formulation of the problem, the governing equation defined above 

needs to be complimented by certain physical conditions at the boundaries or interfaces.  

The velocity components need to satisfy certain kinematic conditions at any fluid 

boundary. Based on the straightforward assumption that no particle cross over (flow) 

should exist between the fluid region and any given interface (in order for the interface to 

exist), kinematic conditions are expressed as 0( , , ) /Df x z t Dt , where   0, ,f x z t   is 

the surface equation. 

Bottom boundary 

condition 

 

Dynamic and kinematic 

free surface conditions 

 

,x u  

 

z,w  

 

( , )x t  

 

( )h x  
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The free water surface is described by ( , , ) ( , )f x z t z x t , with ( , )x t being the water 

surface displacement. Hence applying the kinematic condition at ( , )z x t  results in, 

0
t xz z
u w .                                                                                  (2.3)                                                                 

Similarly, at the fixed bottom ( ( )z h x , see fig. 4), where the surface is given by 

( , ) ( )f x z z h x , the kinematic condition at, becomes 

0.
xz h z h

u h w                                                                                         (2.4)                                                                                                                                                                                                                      

In addition to the boundary conditions (2.3) and (2.4) another physical restriction is posed 

in the free water surface stemming from its inability to sustain pressure variations. Hence 

at ( , )z x t  the linearised Bernoulli equation provides the necessary dynamic condition, 

0( ) /
t atm w

P P g                                                                                (2.5)                                                                                    

where 
atm
P  is the atmospheric pressure,  is the acceleration of gravity and  is the 

water density. At the free water surface  and the pressure term is omitted from 

the dynamic condition (2.5.) .                                                           

Based on the 2-D problem posed, a few reasonable assumptions lead to shallow water 

theory or long wave theory.  

Derivation of the non-linear water theory begins by integrating equation (2.1) over depth,  

0
x z z hh
udz w w .                                                                            (2.6)                                                                        

Substituting (2.3) and (2.4) into (2.6) the following is derived 

  th
x

udz .                                                                                              (2.7)                                                                                                                                                                                            

It must be noted that up to equation (2.7), the mathematical manipulations carry no 

assumptions. In Swallow water theory the primary assumption is that the vertical 

acceleration of the fluid particles is negligible and has no effect on pressure, or 

equivalently that the pressure is given solely by its hydrostatic component ( )p g z . 

By differentiating with respect to x , it can be immediately observed that 
x x
p g    is 

independent of z . Hence horizontal acceleration is also independent of z , as is the 

horizontal velocity, which is now considered uniform. Hence the Euler equation of motion 

is reduced to the following form, 

g
w

atm
P P
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t x x
u u u g      .                                                                                               (2.8)                                                                                                                                                                                                                                                                                                             

Now returning to the derived relation (2.7), the integral calculation can be performed in 

view of the vertical component independency as, 

x t
u h .                                                                                          (2.9)                                                                                                                                                                                                                                                                                              

Equations (2.8) and (2.9) constitute the two dimensional, non-linear shallow water 

equations. Neglecting non-linear terms, thus implicitly considering small surface 

displacements and velocities, the system is reduced to the following form, 

                                                                                                      (2.10)      

 x t
uh                                                                                                      (2.11)    

By eliminating  from the above system the resulting equation is given as, 

 tt xx
u g uh                                                                                              (2.12)                                                                          

Equation (2.12) can finally be rewritten in terms of the velocity potential as, 

 tt x x
g h                                                                                                   (2.13)                                                                                                              

Systems (2.8)-(2.9) and (2.10)-(2.11) can be alternatively derived from the swallow water 

asymptotic forms of the hyperbolic functions that appear in the velocity potential and 

surface displacement equations for the propagating wave in 2-D.  For a more in depth 

analysis refer to the work of Stoker [2]. 

 

2.2 Long Waves 

Water waves propagating in swallow water are often referred to as long waves, typically 

with a wavelength several times larger than water depth,
120( )h L . The study of the 

transformations undergone by these waves while approaching the shore, are essential to 

coastal engineering design.  

The following analysis presents some key results in the study of progressive waves 

approaching shallow waters.  

As their amplitude decreases progressive waves can be considered sinusoid. After solving 

the velocity potential problem described by (2.2), modifying boundary conditions (2.3), 

t x
u g   
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(2.4) and (2.5) for a constant bathymetry h , and  assuming a periodic lateral boundary 

condition the vertical displacement of the free water surface is given by : 

2
( , ) cos( )

H
x t kx t   .                                                                                    (2.14)                                                                                     

Where  is the angular velocity of the progressive wave, defined as 2 /T , k  is the 

wave number, defined as 2 /L , H  is the vertical distance from crest to trough and L  is 

the wavelength. The velocity potential is given as: 

2

cosh ( )
sin( )

cosh

k h z
g kx t

kh

 
    .                                                               (2.15)                                                                                                                     

The horizontal and vertical particle velocities derived from eq. (2.14) are given by : 

2

cosh ( )
cos( )

cosh

H k h z
u gk kx t

kh


  ,                                                                (2.16)                                                                                                                           

2

sinh ( )
sin( )

cosh

H k h z
w gk kx t

kh


  .                                                                 (2.17)                                                                                                                           

Finally the dispersion relation is given as : 

2 tangk kh                                                                                                      (2.18) 

As previously stated, in shallow water theory, it holds that 
110kh  , hence equations 

(2.15)-(2.17) can be adapted for small kh  in the following sense: 

2
cos( )

s

H
u gk kx t  ,                                                                                     (2.19)                                                                                         

2

2 2
sin( )( )

s

H gHkz
w kx t gk h   ,                                                                  (2.20)                                                                    

2 2

s
gk h .                                                                                                            (2.21)           

The wave celerity defined as the ratio /C k is given from (2.21) as  

C gh .                                                                                                              (2.22)                                                                                                   

Equation (2.21) shows that celerity, the velocity of the propagating wave does not depend 

on the surface elevation. For more information on the engineering properties of long waves 

the reader is referred to [1]. 
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2.3 Flexural wave propagation in elastic media 

In this section, a brief review will be given on the propagation of transverse waves in 

elastic systems. The reader will be given a strength-of-materials viewpoint regarding the 

engineering models examined and the dispersion characteristics of the corresponding 

waves . A more in depth analysis can be found in [3] and [4]. 

 

2.3.1 Euler-Bernoulli beam theory 

Before detailing the specifics of the theory, assumptions must be explicitly stated for 

clarity. The reader unfamiliar with the classical beam theory must note that the material is 

assumed linear, elastic and under the small deformations assertion. A prismatic bar is 

considered with a vertical symmetry in its cross section. Transverse loads are assumed to 

act on the xz  plane only, while the normal remain straight and perpendicular to the 

centroidal axis after deformation (see figure 5). 

 

Figure 5 Schematic diagram of beam in bending 

 

The kinematic conditions of the theory ensure that the cross sections are infinitely rigid in 

their plane and remain plane after bending. The angle of rotation of a cross section is given 

by /dw dx , while the horizontal displacement u z   ,due to the small deformation 

consideration mentioned earlier,  ( )w w x  . 

Hence it can be easily derived that , 
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 xx x x xx
z w z w       ,                                                                                (2.23)                                                                                                                                                                                                                                                                                                                        

xx xx
Ez w    ,                                                                                                   (2.24)                                                                                                                                                                                                                                                              

xx xxA
M zdA EI w    ,                                                                                 (2.25)                                                                                                                                                                                                                                                                                                                              

Where M  is the bending moment and 
2

x A
I z dA   is the moment of inertia for a given 

plane. From the equation of motion in the vertical direction, 

( , )
x tt
V q x t A w    ,                                                                                       (2.26)                                                                                                                                                                                                                                                            

where   is the density. Since it holds that 
xx x
M V   , from moment equilibrium, the 

dynamic Euler-Bernoulli beam equation  is derived, 

  ( , )
xx xx tt
EI w A w q x t     .                                                                          (2.27)                                                                                                                                          

At this point it must be noted that material and geometrical homogeneity are not 

mathematical restrictions in the Euler-Bernoulli theory. Hence, beam cross section and 

material properties may be allowed to vary longitudinally. On the contrary, the small 

deflections assumption is imperative for the derivation of (2.27). The linear normal and 

shear stress distributions for a thin, elastic beam is shown in figure 6. 

 

 
Figure 6 Normal and Shear Stress distributions within a thin elastic beam 

 

For a freely vibrating, homogeneous, elastic beam of uniform cross section, equation (2.27) 

becomes, 

 
2

1
0

xxxx tt
w w
a

                                                                                             (2.28) 

where 
2 EI
a 
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In order to investigate the dispersive characteristics of the elastic wave within the beam, a 

harmonic wave of the form 
( )( , ) i kx tw x t Ae   is assumed to be the solution of equation 

(2.28), where A  is the wave amplitude. After substitutions,  

2
4

2
0k

a
      or     

2

2

4
( )

a
k                                                                    (2.29)                                                                              

The dispersion relation (2.30) is used for the determination of the phase velocity 

2( )k a
c

k
   and the group velocity 2

g
c ak

k


  


. The group velocity is twice the 

phase velocity. 
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CHAPTER 3  

Hydroelasticity: Governing Equations 

 

 

The governing equations for the general 2-D hydroelastic problem of a thin floating plate 

are presented. Due to the small amplitude, long wave, forcing assumption, the linear 

shallow water hydroelastic equations are employed. In addition, the Euler-Bernoulli beam 

theory is used for the determination of the thin floating structure deflection field and the 

corresponding bending moment and shear force. Several configurations corresponding to 

different hydroelastic problems are analysed. Among them, of most importance are the 

freely floating plate, simulating the response of VLFS and ice floes and the floating 

cantilever, more appropriate for the analysis of long wave – ice shelf interactions. 

 

 

 

 

 

 

 

 

3.1 Mathematical formulation of the general hydroelastic problem 

This introductory section is aimed to present the 2D problem of hydroelastic interaction 

between linear water waves of arbitrary wavelength and thin floating flexural strips. The 

configuration to be considered includes a floating cantilever and a freely floating plate as 

well. The corresponding initial boundary value problem in the xz  plane is shown in the 

schematic below, (figure 7). Assuming a two dimensional coordinate system, the x -axis 

spans horizontally while the z -axis spans vertically upwards. The fixed end is placed at 

0x   and the free, undisturbed water surface lays over 0 x   , 0z  .  The plates 

span horizontally along 0 x   , where 
1
L and 

2
L  are their lengths. The plates may be of 
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variable thickness described by the functions 
1
( )x  and 

2
( )x . Additionally the plates are 

assumed to extend infinitely in the y - direction (perpendicular to the page). The 

undisturbed, fluid of density 
w

, is enclosed within the domain 0: x    , 

0( )H x z   , where ( )H x  depicts the variable bathymetry of the problem .The fluid is 

assumed to be inviscid, incompressible and restrained by an impermeable seabed. 

 
Figure 7 Schematic of the general 2-D hydroelastic problem 

 

The velocity potential defined for the fluid region ( , , )x z t , satisfies the Laplace equation,  

2 0   in  .                                                                                                       (3.1)                                                                                                

At the seabed, the impermeable bottom assumption results to the following condition, 

0  n  on b
 ,                                                                                                  (3.2)                                                                                                                                          

where n is the outer vertical vector on the boundary.                                                                              

The following dynamic condition is valid for the free water surface after setting in equation 

(2.5), 
atm

P P  and differentiating with respect to time, 

0
tt z

g     on 
1
f

  and 
2
f

                                                                             (3.3)                                                                             

As the plate is considered thin compared to its length scale, the Euler-Bernoulli beam 

theory is adopted. Hence, at the plate boundary, the pressure exerted by the floating body 

prescribes the following condition, 

  

 

 b
  

 

 

 

0
p

  

 

 

 

1
f

  

 

 

 

 

 

l
  

 

 

 

 

 

2
( )x

 

 

 

 

( , )x t  

 

 

( )z H x   

 

 

 

1
( )x  

 

 

 

1
p

  

 

 

 

2
f
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( ) ( ( ) ) ( , )
tt xx xx i i atm

m x D x q x t p P   on 
ip

 ,  for 0 1,i                   (3.4)                                                     

,where ( ) ( )
p i

m x x  is the mass per unit length , with
p
being the plate density, 

while 
3

212 1

( )
( )

( )

iE x
D x 


is the flexural rigidity of the plates , ( , )i

q x t is the vertical variable 

load on the plates, ( , )x t is the free water surface elevation which coincides with the beam 

deflection and p  is the pressure on the fluid (see [3]). At the lateral boundary, the velocity 

potential is assumed to vanish, hence 

0
x
    x   on l

 .                                                                                        (3.5) 

The initial excitation is given by a free water surface disturbance caused by an incoming 

waveform, described as 

0
0( , ) ( )x x ,                                                                                                        (3.6) 

It is obvious that the above formulation of the potential BVP can be trivially extended in 

order to accommodate the presence of multiple freely floating plates.  

 

3.2 The Shallow Water Approximation 

In this section, the general one dimensional hydroelastic problem of a floating plate over 

shallow water will be formulated. Three reductions of the general configuration given will 

also be formulated. 

 

3.2.1 Multi-body configuration  

 Since long wave forcing is the subject of the present analysis, the shallow water 

approximation can be employed in order to achieve a reduction of the above problem, 

subject to realistic physical constraints. The linear shallow water equations are coupled 

with the dynamic equation of the plate, constructing a one-dimensional system in the 

domain 
0

 . The general problem will be initially formulated for N number of freely 

floating plates (in series). The problems that will be considered next are immediate 

reduction of the general problem. 
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The hydroelastic coupling takes place at the regions  
2n

 , while the linearised shallow 

water equations reduce to the wave equation in 
2 1n

 , for 0 1, ,...n N . The lengths of the 

one-dimensional domains are denoted as 
n
L , where 1,...n N . Hence it holds that, 

  0 1
0,L  ,  1 1 1 2

,L L L   , 

 
1

2 2 1 2 2 1 2
0 1 0 1

, ,
n n n n

n k k k k
k k k k

L L L L


 
   

 
    

 
    ,  

 
1

2 1 2 1 2 2 1 2
0 1 0 1

, ,
n n n n

n k k k k
k k k k

L L L L


  
   

 
    

 
     , for 1 2, ...n N . 

 

Figure 8 Schematic diagram of the reduced shallow water, hydroelastic problem 

 

Accounting for the plate draft in the regions of the hydroelastic coupling, the following 

bathymetry function is defined, 

2 2

2 1

( ) ( ),
( )

( ),
n n

n

H x d x in
b x

H x in




, for 0 1 2, , ,...n N                                            (3.7) 

Where, according to the Archimedes principle, the variable plate draft is 

2 2
( ) ( )p

n n
w

d x x    (see also [1] and [2])                                                             (3.8)                                                                                                                                           

Hence  again for 0 1, ,...n N it holds that, 

0
  

 

 

 

1


 

 

 

 

2
  

 

 

 

3
  

 

 

 

4
  

 

 

 

2 1n
  

 

 

 

2n
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2 2 2 2 2
( ) ( ( ) ) ( , )

tt n xx xx n w n w t n n
m x D x g q x t  in 2

0,
n

  
,           (3.9)    

2 2
0( ( ) )

t n x x n
b x   in 2

0,
n

T   
,          (3.10)                                                          

2 1 2 1
0( ( ) )

tt n x x n
g b x

 
       in 2 1

0,
n

T


  
.          (3.11) 

 

The velocity potentials 
2n

 correspond to the fluid under the plates, at the regions of the 

hydroelastic coupling, while 
2 1n

 with the rest of the fluid domain.  Similarly, 
2n

is the 

water surface elevation that coincides with plate deflection at the corresponding regions 

while 
2 1n

is the free surface water elevation. 

It must be noted that for the free fluid regions the upper surface elevation and the velocity 

potential are linked through the following relation, due to the validity of equation (2.12) 

under shallow water assumptions, 

1

2 1 2 1n t n
g                                                (3.12)                                                                                                          

At the fixed boundary 0( )x   the condition for the velocity potential corresponds to an 

impermeable boundary and is 

0
0 0( , )

x
t  ,                                                      (3.13) 

Additionally, as the one plate is considered fixed on one edge, the condition for the free 

surface elevation that coincides with plate deflection becomes, 

0 0
0 0 0( , ) ( , )

x
t t   .                                              (3.14) 

At the free edges of the plates
1

1 2 1( ), , ,...
j

j k
k

x L j N


   , the conditions of zero bending 

moment, denoted by 
2b n

m  and zero shear force denoted by 
2s n
f , are given by, 

2 2
0 ( , ) ( , )

b n j s n j
m x t f x t .                                            (3.15) 

Moreover, the conditions of pressure and mass continuity for the fluid at the same free 

edges, prescribe that (see also [1], [2]) 

2 2 1
( , ) ( , )
n j n j
x t x t 


 , 

2 2 1
( ) ( )
j x n j x n

b x b x 


   .                        (3.16)                                                                                                                               
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At initial time 0t  , the plates are considered to be at rest while and incoming long wave 

is generated as a free surface elevation ( )s x  in domain 
2 1N

 . The appropriate initial 

conditions read, 

 

2 2 2
0 0 0 0( , ) ( , ) ( , )

n t n n
x x x   in 

2n
 ,                      (3.17) 

2 1 2 1
0 0   0 0( , ) , ( , )

n t n
x x   in 

2 1n
  for 0 1 1, ,..n N  ,                  (3.18)                                                                                

2 1 2 1
0 0   0( , ) , ( , ) ( )

N t N
x x gs x , in 

2 1n
  for n N .                      (3.19)                                               

                                

The reduced one-dimensional system (3.9)-(3.11) with the boundary, interface  and initial 

conditions  (3.13)-(3.19), is a valid equivalent of the two-dimensional, potential IBVP 

described by (3.1)-(3.6) for incoming waves of considerable larger length compared to 

depth. 

Using a characteristic length
c
L , we introduce the non-dimensional variables: 

1

c
x L x , 1 2 1 2/ /

c
t g L t , 

1

2 2n c n
L , 1 2 3 2

2 1 2 1

/ /

n c n
g L  and 1

2 2
( ) ( , )

n w c n
Q gL q x t . 

After dropping tildes, eq. (3.9)-(3.11) are re-written in non-dimensional form as 

2 2 2 2 2 2 2
( ) ( ( ) ) ( , )
n tt n xx n xx n n t n n

M x K x Q x t  ,   in 
2

0( , ]
n

T         (3.20)                                                

2 2
0( ( ) )

t n x x n
B x  , in 

2
0( , ]

n
T         (3.21) 

2 1 2 1
0( ( ) )

tt n x x n
B x  , in 0( , ]T         (3.22) 

where 
1

2 2
( ) ( )
n n w c

M x m x L ,
1

4

2 2
( ) ( )
n n w c

K x D x gL , 1( ) ( )
c

B x b x L . 

The non-dimensional bending moment and shear force are given in the non-unifrom 

thickness case as, 

( , )
b xx
M x t K   and                                     (3.23) 

( , ) ( )
x xx

V x t K                                     (3.24) 

Hence the boundary conditions (3.13)-(3.14) are expressed in nondimensional form as, 
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0
0 0( , )

x
t ,                                                        (3.25) 

0 0
0 0 0( , ) ( , )

x
t t ,                                                    (3.26) 

1 1

2 2
0( , ) ( , )

b n c j n c j
M L x t V L x t .                                            (3.27) 

,while the interface conditions are, 

      1 1 1 1

2 2 1
( ) ( , ) ( ) ( , )
c j x n c j c j x n c j

B L x L x t B L x L x t ,                       (3.28)                           

1 1

2 2 1
( , ) ( , )

t n c j t n c j
L x t L x t .                                         (3.29) 

The initial conditions become,             

2 2
0 0 0( , ) ( , )

n n
x x , in 

2n
                                         (3.30) 

2 1 2 1
0 0   0 0( , ) , ( , )

x n t n
x x , in 

2 1n
  for  0 1 1, ,..n N               (3.31)                                           

2 1 2 1
0 0   0 0( , ) , ( , )

x n t n
x x , in 

2 1N
 ,                              (3.32) 

where 1( ) ( )
c

S x L s x . 

The non-dimensional IBVP is considered in the following sections describing the method 

of solution and results. 

 

3.2.2 Problem 
1

 (cantilever) 

Considering the aformentioned general case, it is possible to formulate an IBV problem 

that features a floating cantilever, extending into the ocean. This model may be used for 

the simulation of the hydroelastic response of ice shelf under long wave An application of 

this model in geophysics is found, in the study of the hydroelastic response of ice shelves 

under long wave excitation. Same analysis could be followed in the study of the dynamic 

response of a partially fixed pontoon type VLFS over shallow water. 

The hydroelastic coupling takes place only in region 
0

0( , )L  . The free surface fluid 

occupies the domain 
2
( , )L   .  The bathymetry function now has the form 

0

2

( ) ( ),
( )

( ),

H x d x in
b x

H x in




                                                                           (3.33)                                                                              

where the draft of the plate is given by,  
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1 ( )
p w

d x  .                                                                                                 (3.34)                                                                                                         

. 

 

Figure 9 Schematic diagram of problem 
1

  

 

It must be noted that the floating cantilever is assumed to be of great length, so that in 

regions away from the vicinity of the fixed end, the floating of the beam is characterized 

by the draft described in equation (3.34). 

The resulting non-dimensional system of equations reads, 

0
( ) ( ( ) ) ( , )

tt xx xx t
M x K x Q x t   in 

0
0( , ]T ,                      (3.35)                                                             

0
0( ( ) )

t x x
B x  in 

0
0( , ]T ,                      (3.36)                                                                               

2 2
0( ( ) )

tt x x
B x  in 

2
0( , ]T .                      (3.37)                                                                      

The boundary conditions at the edges of the plate are expressed as, 

0 0 0( , ) ( , )
x

t t ,                                                (3.38) 

1 1 0( , ) ( , )
b c c
M L L t V L L t .                                          (3.39) 

The interface conditions now become, 

1 1 1 1

0 2
( ) ( , ) ( ) ( , )
c x c c x c

B L L L L t B L L L L t ,                      (3.40)                                             

1 1

0 2
( , ) ( , )

t c t c
L L t L L t .                      (3.41) 

2
  

 

 

 

0
  

 

 

 

2
 

 

 

 

0
 

 

 

 

L  

 

 

 

( , )q x t
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At initial time, the plate and the fluid of region 
0

 are considered to be at rest  

0
0 0 0 0( , ) ( , ) ( , )

t x
x x x   in

0
 ,                     (3.42) 

2 2
0 0   0( , ) , ( , ) ( )

x t
x x S x  in 

2
 .                   (3.43) 

3.2.3 Problem 
2

 (freely floating) 

 By following the same line of work, the problem of the freely-floating plate, 

approximating the case of an unconstrained VLFS or ice floe, can be formulated. Again, 

the hydroelastic coupling takes place in the domain 
0

0( , )L  alone, (see figure (10)) 

while the wave equation under the assumptions described previously is defined in the 

regions 
1

0( , )   and 
2
( , )L   . The bathymetry is given by, 

1

0

2







( ),

( ) ( ),( )

( ),

H x in

H x d x inb x

H x in

                                                                         (3.44) 

 

 

 

Figure 10 Scematic diagram of Problem 
2

  

 

The plate draft is derived by the expression shown above. The resulting non-dimensional 

system of equations for the problem of a freely floating heterogeneous, thin, elastic plate 

over variable shallow water bathymetry reduces to, 

0
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1 1
0( ( ) )

tt x x
B x   in 

1
0( , ]T ,                     (3.45) 

0
( ) ( ( ) ) ( , )

tt xx xx t
M x K x Q x t   in 

0
0( , ]T ,                    (3.46)                    

0
0( ( ) )

t x x
B x in  

0
0( , ]T ,                    (3.47)                    

2 2
0( ( ) )

tt x x
B x   in 

2
0( , ]T .                     (3.48)         

 

The boundary conditions at the free edges of the plate are expressed as, 

0 0 0( , ) ( , )
b
M t V t ,                                             (3.49) 

  1 1 0( , ) ( , )
b c c
M L L t V L L t ,                                       (3.50) 

 

The interface conditions now become, 

0 1
0 0 0 0( ) ( , ) ( ) ( , )

x x
B t B t ,                              (3.51) 

  
0 1

0 0( , ) ( , )
t t

t t ,                                       (3.52) 

 1 1 1 1

0 2
( ) ( , ) ( ) ( , )
c x c c x c

B L L L L t B L L L L t ,                     (3.53) 

  1 1

0 2
( , ) ( , )

t c t c
L L t L L t .                                  (3.54) 

 

At initial time, the plate and the fluid of regions 
1

 and 
0

 are considered to be at rest, 

1 1
0 0   0 0( , ) , ( , )

x t
x x  in 

1
 ,                           (3.55)                                                                

0
0 0 0( , ) ( , )x x  in 

0
 ,                                (3.56) 

2 2
0 0   0( , ) , ( , ) ( )

x t
x x S x   in 

2
 .                   (3.57) 
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CHAPTER 4 

Variational formulations  

 

 

 

In the present chapter, the variational formulation of the previously defined problems will 

be derived. These weak forms are the starting point for the numerical solution of the 

aforementioned Initial-Boundary Value Problems (IBVPs) via the Finite Element Method. 

The energy conservation principle is derived for the continuous weak form and a priori 

stability estimates for the weak solutions in the physical energy norm and the maximum 

norm are proved. 

 

 

 

 

 

 

 

 

4.1 Preliminaries and Notation 

For every Hilbert space U , we denote by   ( , )
U  the corresponding inner product and 

  
U

,   
U

, the induced norm and seminorm respectively. The standard notation ( )kH   

is used for the classical Sobolev (Hilbert) spaces 2, ( )kW  , k . For 0T , we denote 

the Banach valued function spaces as 0( , ; )pL T U , 1 p  and the corresponding norm 

1

0 0

/

( , ; )p

p
T

L T U U
u u dt , 1 p  and 

0 0( , ; ) [ , ]
sup

L T U Ut T
u ess u . 

Finally use will be made of the following inequalities, 
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Young’s inequality: Let 0, , 1 p  and q  be the conjugate of p , i.e., 

1 1 1p q . Then, for every 0  it is 

1p q q

p q
 

 

Gronwall inequality: Let ( )u t , ( )f t  be continuous real functions with 0( )u t ,  and 

,c T . Assume that
0

( ) ( ) ( )
t

u t f t c u s ds , 0[ , ]t T . 

Then, ( ) ( )ctu t e f t , 0[ , ]t T . 

 

4.2 Variational formulation  

4.2.1 Problem 
1

 (floating cantilever) 

The following assumptions are introduced, 

(A1) 2 2

2
0( ) ( , ; ( ))S x L T L   

(A2) For the bathymetry function it is 
0 2

( )B L   . We denote, 
0 2

( )
( )

B L
C B x

 
 

and assume there exists positive constant B
c  such that 

0 2

 inf 0( )
Bx

ess B x c
 

. That is, the 

bathymetry attains only positive values so that the seabed never reaches the water free 

surface in 
2

  and the lower surface of the floating body in 
0

 . 

(A3) It is 
0

, ( )M K L   and there exists positive constants M
c , K

c  such that 

0

 inf 0( )
Mx

ess M x c


 and 
0

 inf 0( )
Kx

ess K x c


.  

 

The following functional space is defined, 

2

0 0
0 0( ) : ( )

x x
U u H u u  
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so as to account for the fixed end of the floating cantilever at 0x . In order to derive the 

variational formulation, equations (3.35), (3.36) and (3.37) are multiplied by 

1 1

0 0 2 2
, ( ), ( )u U w H w H   respectively. Assuming enough regularity for the 

proper definition of all integrals and the application of integration by parts we get , 

     
0

0 0 0 0
( ) ( , )

L L L L

tt xx xx t
Mu dx K u u dx u dx uQ x t dx             (4.1)                  

    
0 0 0 0 0

0 00
0

LL L

t z x x
w dx Bw B w dx                (4.2)                                                            

    
2 2 2 2 2 2

0
tt x x xLL L

w dx Bw B w dx                (4.3)                                  

Adding (4.1), (4.2), (4.3) and using the interface conditions (3.40)-(3.41) and boundary  

and initial conditions (3.38),(3.39),(3.43),(3.42), we have the following variational form of 

problem 
1

 .  

Find ( , )x t , 
0
( , )x t  and 

2
( , )x t  such that for every  u U ,  1

0 0
( )w H  , 

1

2 2
( )w H  it is, 

0 0 2 2
0 0 0

0 0 0 2 2 2
0

         ( , ) ( , ) ( , ) ( , )

L L L

tt t t ttL
L

uM dx u dx w dx w dx

a u b w b w uQ x t dx
,                 (4.4)                

a.e. in 0( , ]T  and with initial contitions, 

     2 2
0 0

0 0
0 0 0

( ) ( )
( ( , ), ) ( ( , ), )

L L
x v x w

 
,              (4.5) 

2 2 2
2 2 2

2 2 2 2 2
0 0   0

  ( ) ( ) ( )
( ( , ), ) , ( ( , ), ) ( ( ), )

tL L L
x w x w S x w  .            (4.6) 

The bilinear functionals :a V V , 1 1

0 0 0
: ( ) ( )b H H   and 

1 1

2 2 2
 : ( ) ( )b H H  are defined as, 

      
0

( , ) ( )
L

xx xx
a u K u u dx ,                                     (4.7) 

      
0 0 0 0 0

0
( , )

L

x x
b w B w dx ,                                     (4.8) 

 
2 2 2 2 2
( , )

x xL
b w B w dx .                                     (4.9) 
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4.2.2 Problem 
2

  

The assumptions stated in the previous section are modified as, 

(A4) 2 2

2
0( ) ( , ; ( ))S x L T L   

(A5) Set 
2

0
n

n
   .For the bathymetry function it is ( )B L X . We denote, 

( )
( )

B L X
C B x  and assume there exists positive constant B

c  such that 

 inf 0( )
Bx X

ess B x c . That is, the bathymetry attains only positive values so that the 

seabed never reaches the water free surface in 
1

 , 
2

 and the lower surface of the ice self 

in 
0

 . 

(A6) It is 
0

, ( )M K L   and there exists positive constants M
c , K

c  such that 

0

 inf 0( )
Mx

ess M x c


 and 
0

 inf 0( )
Kx

ess K x c


.  

In order to derive the variational formulation, equations (3.45), (3.46), (3.47) and (3.48) are 

multiplied by 1 1 1

0 0 1 1 2 2
, ( ), ( ), ( )v V w H w H w H    respectively. Assuming 

enough regularity for the proper definition of all integrals and the application of integration 

by parts we get  

0 00

1 1 1 1 1 1
0

tt x x x
w dx Bw B w dx        (4.10)                                                                   

0
0 0 0 0

( ) ( , )
L L L L

tt xx xx t
Mv dx K v v dx v dx vQ x t dx         (4.11)                           

 
0 0 0 0 0

0 00
0

LL L

t z x x
w dx Bw B w dx        (4.12)                                                          

  
2 2 2 2 2 2

0
tt x x xLL L

w dx Bw B w dx         (4.13)                                           

Adding (4.10), (4.11), (4.12),(4.13) and using the interface conditions (3.50)-(3.53) initial 

and boundary conditions (3.49),(3.50),(3.55)-(3.57) we have the following variational form 

of problem 
2

 . 
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Find ( , )x t ,
0
( , )x t ,

1
( , )x t  and 

2
( , )x t such that for every v V , 1

0 0
( )w H  ,

1

1 1
( )w H   and 1

2 2
( )w H  it holds that, 

0

0 0 2 2 1 1
0 0 0

0 0 0 1 1 1 2 2 2
0

         ( , ) ( , ) ( , ) ( , ) ( , )

L L L

tt t t tt ttL
L

vM dx v dx w dx w dx w dx

a v b w b w b w vQ x t dx
,     (4.14)           

a.e. in 0( , ]T  with  initial conditions, 

2 2
1 1

1 1 1 1
0 0 0

( ) ( )
( ( , ), ) ( ( , ), )

tL L
x w x w

 
,        (4.15) 

2 2 2
0 0 0

0 0
0 0 0 0

( ) ( ) ( )
( ( , ), ) ( ( , ), ) ( ( , ), )

tL L L
x v x v x w

  
,        (4.16) 

       2 2 2
2 2 2

2 2 2 2 2
0 0   0

( ) ( ) ( )
( ( , ), ) , ( ( , ), ) ( ( ), )

tL L L
x w x w S x w

  
.       (4.17) 

The bilinear functionals :a V V , 1 1

0 0 0
: ( ) ( )b H H   and 

1 1

1 1 1
: ( ) ( )b H H   are defined as 

0
( , ) ( )

L

xx xx
a v K v v dx ,                                           (4.18) 

 
0 0 0 0 0

0
( , )

L

x x
b w B w dx ,                                           (4.19) 

0

1 1 1 1 1
( , )

x x
b w B w dx ,                                           (4.20)  

 and   
2 2 2 2 2
( , )

x xL
b w B w dx .                                          (4.21) 

 

 

4.3 Energy conservation principle 

In this section, under the assumption of sufficient regularity for the weak solution of the 

variational problem presented above, an energy conservation principle will be derived.  

4.3.1 Problem 
1

  

Theorem 1.1 (Energy conservation principle). Assume that 2 0( , ; )
t
L T U , 

2 1

0 0
0( , ; ( ))

t
L T H   and 2 1

2 2
0 ( , ; ( ))

t
L T H . Further, let 0Q . Then, 

0( , ]t T  it is, 
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2 22
2 20

2 2 2
1 2

2 0 0 0 2 2 2 

/

( ) ( )( )
( , ) ( , ) ( , ) ( )

t t L LL
M a b b S x  (4.22) 

Proof. By setting 
0 0 2 2

, ,
t t t

v w w  in (4.1), (4.2), (4.3) the cancelation  

0 0
0 0

0
L L

t t t t
dx dx  

is directly achieved. In the same time all boundary terms appearing in those equations 

vanish due to the interface conditions (3.40), (3.41). Finally, the term 
0 0 0
( , )
t

b  attains 

positive sign. 

By invoking the assumed regularity, the following relations hold, 

2
0

2
1 2

0

1

2

/

( )

L

tt t t L

d
M dx M

dt 
,

2
2

2

2 2 2

1

2 ( )tt t t LL

d
dx

dt
(4.23)             

and  
0 0

1

2
( , ) ( , )

L L

t txx xx t

d
a K dx dx a

dt
.                            (4.24) 

Similarly it is, 

0 0 0 0 0 0

1

2
( , ) ( , )
t

d
b b

dt
 and 

2 2 2 2 2 2

1

2
( , ) ( , )
t

d
b b

dt
                  (4.25) 

Using (4.23), (4.24) and (4.25), equation (4.4) becomes, 

22
20

2 2
1 2

2 0 0 0 2 2 2

0
                                                                              2



/

( )( )
( , ) ( , ) ( , )

( , )

s s LL

L

s

d
M a b b

ds

Q x s dx
         (4.26) 

Setting 0Q , integrating (4.26) with respect to time from 0s  to s t  and enforcing 

initial conditions (4.5) and (4.6), we get (4.22). □                                                                                                              

Equation (4.22) in an energy conservation principle, which states that when no forcing is 

present, the total hydroelastic energy, i.e. the kinetic and strain energy of the beam along 

with the water free surface kinetic energy and the discharge flux energy of the water 

column remains constant in time and equals the energy of the initial water free surface 

elevation in the region outside the hydroelastic interaction. Apart from its theoretical 

significance and the insights in the physics of these hydroelastic phenomena, the energy 

conservation principle provides a useful means for the validation of the finite element 

models to be applied for any numerical solution. 
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Remark: The bathymetry function B , as defined through relations (3.33) possesses a 

discontinuity in the form of a finite jump at x L . Thus when defined as a function 

0 2
:B    the regularity 

0 2
( )B L    is appropriate in order to form a 

simple realistic model. However, the bathymetry function could be smoother when 

restricted to the interior of 
0

  and 
2

 . Similar considerations are valid for problem 
2

 . 

4.3.2 Problem 
2

 (freely floating plate) 

Theorem 1.2 (Energy conservation principle). Assume that 2 0( , ; )
t
L T V , 

2 1

0 0
0( , ; ( ))

t
L T H  , 2 1

1 1
0( , ; ( ))

t
L T H   and  2 1

2 2
0( , ; ( ))

t
L T H   

Further, let 0Q . Then, 0( , ]t T  it is, 

2 22
1 20

2
2

2 2 2
1 2

1 2 0 0 0 1 1 1

2

2 2 2
                                                                                         

/

( ) ( )( )

( )

( , ) ( , ) ( , )

( , ) ( )

t t tL LL

L

M a b b

b S x

 



,  (4.27)       

Proof. By setting 
0 0 1 1 2 2

, , ,
t t t t

v w w w  in (4.10), (4.11), (4.12) and 

(4.13) the cancelation , 

0 0
0 0

0
L L

t t t t
dx dx , 

is again directly achieved. In the same time all boundary terms appearing in those 

equations vanish due to the interface conditions (3.50),-(3.53). Finally, the term 

0 0 0
( , )
t

b  attains positive sign. 

By invoking the assumed regularity, the following relations hold 

22
10

2
2

02 2
1 2

1 1 1
0

2

2 2 2

1 1

2 2
1

                                
2

/

( )( )

( )

,
L

tt t t tt t t LL

tt t t LL

d d
M dx M dx

dt dt
d

dx
dt





, (4.28)          

and 
0 0

1

2
( , ) ( , )

L L

t txx xx t

d
a K dx dx a

dt
                     (4.29) 

Similarly it is, 
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0 0 0 0 0 0 1 1 1 1 1 1

2 2 1 2 2 2

1 1

2 2
1

                       
2

( , ) ( , ), ( , ) ( , )

( , ) ( , )

t t

t

d d
b b b b

dt dt
d

b b
dt

                 (4.30) 

Using (4.28), (4.29) and (4.30) equation (4.14) becomes 

2 22
1 20

2 2 2
1 2

1 2 0 0 0 1 1 1 2 2 2

0
                                                                         2

/

( ) ( )( )
( , ) ( , ) ( , ) ( , )

( , )

s s sL LL

L

s

d
M a b b b

ds

Q x s dx

 

(4.31) 

Setting 0Q , integrating (4.31) with respect to time from 0s  to s t  and by using 

initial conditions (4.15)-(4.17), we get (4.27). □                                                                                                               

  

4.4 Stability estimates for the weak solution  

Stability estimates, in the physical energy norm for the hydroelastic problem, will be 

derived. In addition, a priori estimates for the ice self deformation characteristics in the 

infinity norm will be proven. 

4.4.1 Problem 
1

  

Proposition 1.1 Let assumptions (A1), (A2), (A3) hold. Assume that 2 0( , ; )
t
L T U , 

2 1

0 0
0( , ; ( ))

t
L T H   and 2 1

2 2
0 ( , ; ( ))

t
L T H . Further let 2 2

0
0( , ; ( ))Q L T L  . 

Then there exist constants 0,
L
c C  such that 

2 2 2 1 2 1
0 0 0 0 2 2

1

2 2 2
2 2

2 2 2 2 2 2

0 2 2

2 2
1

0
                                                    

     

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( , ; ( ))

t tL H L H L H

C T

L L T L
C e S Q

,          (4.32) 

with 1min , , ,
M K L B

C c c c c . 

Proof. Integrating (4.26) with respect to time from 0s  to s t  and using initial 

conditions (4.5) and (4.6), we get, 

22
20

2
2

2 2
1 2

2 0 0 0 2 2 2

2

0 0
                                              2





/

( )( )

( )

( , ) ( , ) ( , )

( , )

t t LL

t L

sL

M a b b

S Q x s dxds
                 (4.33) 
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From Young’s inequality 

2 2
0 0

2 2
2 2

0 0

1 1 1

2 2 2( ) ( )
( )

L L

s s s L L
Qdx Q dx Q

 
                 (4.34) 

Invoking (A3) it is 

22
00

2 2
1 2/

( )( )t M t LL
M c


and  

2 2
0 0

2 2 2
2

0 0 ( ) ( )
( , )

L L

xx K H L
a K dx dx c

 
.                   (4.35) 

From the equivalence of norm and semi-norm in U , there exist 0
L
c  such that 

2 2
0 0

2 2

 ( ) ( )
( , )

L K L L
a c c                                                                   (4.36) 

Similarly, we have
1

0

2

0 0 0 0 ( )
( , )

B H
b c


 and 

1
2

2

2 2 2 2 ( )
( , )

B H
b c . From relations 

(4.33)-(4.36) it is, 

2 2 2 1 2 1
0 0 0 0 2 2

2 2 2
2 0 0

2 2 2 2 2 2

0 2 2

2 2 2

0 0
                                              

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( , )

t tL L L H L H

t t

sL L L

C

S ds Q x s ds

     

  

(4.37) 

where 1min , , ,
M K L B

C c c c c  

Application of Gronwall’s lemma in (4.37) and setting t T , yields the desired result.               

With the use of Proposition 1.1 one may easily prove the following result for the plate 

deflection solution. 

Theorem 2.1 Let all assumptions stated in Proposition 1.1 hold. Then it is 

1

2 2 2 2 2 2 2
0 0 2 0

1

0 0 0
2

                                                    

   ( , ; ( )) ( , ; ( )) ( ) ( , ; ( ))

C T

t L T L L T H L L T L
C Te S Q

 ,       (4.38) 

with 1min , , ,
M K L B

C c c c c  

 

Proof. From Proposition 1.1 we get 

 

1

2 2 2 2 2
0 0 2 0

2 2 2 2
1

0
  

   ( ) ( ) ( ) ( , ; ( ))

C T
t L L L L T L

C e S Q              (4.39) 
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where 1min , , ,
M K L B

C c c c c . Integrating with respect to time 0[ , ]T , 

1

2 2 2 2 2 2 2
0 0 2 0

2 2 2 2
1

0 0 0

                                                    

   ( , ; ( )) ( , ; ( )) ( ) ( , ; ( ))

C T

t L T L L T H L L T L
C Te S Q

.       (4.40) 

Taking square roots using the norm equivalence in 
2

, equation (4.40) yields (4.38). □ 

For applications, it is of interest to derive a bound on the maximum value of the flexible 

strip deflection and slope. For this purpose, the following classic embedding result will be 

used. 

 

Lemma 1 Let 
n  be a Lipschitz domain. It is , ( )k pW   ( )C    if  1k np . 

 

Using Theorem 2.1 and lemma 1, we get 

Theorem 3.1 Let all assumptions stated in Theorem 2.1 hold. Then 
0 1

0
0([ , ]; ( ))C T C   and there exists 

0
C  

0 1 2 2 2
0 2 0

0 0([ , ]; ( )) ( ) ( , ; ( ))C T C L L T L
S Q

  
 ,                             (4.41) 

where 
11 1

0

C TC C e . 

Proof . The first part follows directly from lemma 1 assumed regularity for the solution.. 

From (4.39), and Lemma 1, it is  

1

1 2 2 2
0 2 0

2 2 2
2 1

0 0( ) ( ) ( , ; ( ))

C T

C L L T L
C C e S Q

  
,                       (4.42) 

Thus it holds  

1

1 2 2 2
0 2 0

2 2 2
2 1

0 00 ( ) ( ) ( , ; ( ))[ , ]
max C T

C L L T Lt T
C C e S Q

  
,                  (4.43) 

and (4.41) follows by taking square roots. □                                                                                         

 

4.4.2 Problem 
2

  

Proposition 1.2 Let assumptions (A4), (A5), (A6) hold. Assume that 2 0( , ; )
t
L T V , 

2 1

0 0
0( , ; ( ))

t
L T H  , 2 1

1 1
0( , ; ( ))

t
L T H   and 2 1

2 2
0( , ; ( ))

t
L T H  . 

Further let 2 2

0
0( , ; ( ))Q L T L  . Then there exist constants 0C  such that 

2 2 2 1 2 1
0 0 0 0 1 1

1

2 1 2 2 2
2 2 2 1

2 2 2 2 2 2

0 1 1

2 2 2 2
1

2 2 0
            

     

   

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( , ; ( ))

t tL H L H L H

C T

t L H L L T L
C e S Q

,           (4.44) 
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with 1min , , ,
M K B

C c c c . 

Proof. Integrating (4.31) with respect to time from 0s  to s t  and using initial 

conditions (4.15)-(4.17), we get, 

2 22
1 20

2
2

2 2 2
1 2

1 2 0 0 0 1 1 1 2 2 2

2

0 0
                                              2

/

( ) ( )( )

( )

( , ) ( , ) ( , ) ( , )

( , )

t t tL LL

t L

sL

M a b b b

S Q x s dxds

 



(4.45) 

From Young’s inequality, 

2 2
0 0

2 2
2 2

0 0

1 1 1

2 2 2( ) ( )
( )

L L

s s s L L
Qdx Q dx Q

 
                 (4.46) 

Invoking (A3) it is, 

22

2 2
1 2/

( )( )t M t LL
M c


and  

2 2

2 2 2
2

0 0 ( ) ( )
( , )

L L

xx K H L
a K dx dx c

 
.                    (4.47)                                 

Similarly, we have
1

0

2

0 0 0 0 ( )
( , )

B H
b c


, 

1
1

2

1 1 1 1 ( )
( , )

B H
b c


 and 

1
2

2

2 2 2 2 ( )
( , )

B H
b c


. 

 From relations (4.45)-(4.47) it is, 

2 2 2 1 2 1
0 0 0 0 1 1

2 1 2 2 2
2 2 2 0 0

2 2 2 2 2 2

0 1 1

2 2 2 2 2

2 2
0 0

       

     

    

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( , )

t tL H L H L H

t t

t sL H L L L

C

C S ds Q x s ds

(4.48) 

where 1min , , ,
M K B

C c c c  

Application of Gronwall’s lemma in (4.48) and setting t T , yields the desired result. □         

Similarly to the analysis of problem 
1

 , the following stability result for the beam 

deflection in the energy norm holds, 

Theorem 2.2 Let all assumptions stated in Proposition 2.1 hold. Then it is 

1

2 2 2 2 2 2 2
0 0 2 0

2 2 2
1

0 0 0
2

                                                    

   ( , ; ( )) ( , ; ( )) ( ) ( , ; ( ))

C T

t L T L H T H L L T L
C Te S Q

      (4.49) 
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with 1min , , ,
M K B

C c c c  

 

Proof. From Proposition 2.1 we get, 

1

2 2 2 2 2
0 0 2 0

2 2 2 2
1

0
  

   ( ) ( ) ( ) ( , ; ( ))

C T
t L H L L T L

C e S Q (4.50) 

where 1min , , ,
M K B

C c c c . Integrating with respect to time 0[ , ]T , 

1

2 2 2 2 2 2 2
0 0 2 0

2 2 2
1

0 0 0

                                                    

   ( , ; ( )) ( , ; ( )) ( ) ( , ; ( ))

C T

t L T L H T H L L T L
C Te S Q

.   (4.51) 

 

The respective stability estimate in the maximum norm is 

 

Theorem 3.2 Let all assumptions stated in Theorem 2.2 hold. Then 
0 1

0
0([ , ]; ( ))C T C   and there exists 

0
C  such that 

0 1 2 2 2
0 2 0

0 0([ , ]; ( )) ( ) ( , ; ( ))C T C L L T L
S Q

  
 ,                             (4.52) 

where 
11 1

0

C TC C e . 

 

Proof . The first part follows directly from lemma 1 and assumed regularity for the 

solution. From (4.15), and Lemma 1, it is  

1

1 2 2 2
0 2 0

2 2 2
2 1

0 0( ) ( ) ( , ; ( ))

C T

C L L T L
C C e S Q

  
,                       (4.53) 

 

Thus, taking square roots it holds  

  

 
1

1 2 2 2
0 1 0

1 1

0 00 ( ) ( ) ( , ; ( ))[ , ]
max C T

C L L T Lt T
C C e S Q

  
,                  (4.54) 

 

which is (4.49).                                                                                                                      □                                                                                                                       
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CHAPTER 5 

 Hydroelastic Finite Elements 

 

 

 

Based on the variational formulations presented in the previous chapter, the semi-

discretization, by means of the finite element method, for hydroelastic problems
1

 (floating 

cantilever) and 
2

  (freely floating plate) will be pursued. As an application of the vertical 

method of lines, the spatial discretization with finite elements leads to a system of ordinary 

differential (ODE) equations to be integrated with respect to time with the use of a suitable 

numerical ODE integration time-stepping procedure. Hydroelastic elements of various 

polynomial degrees will be constructed and error estimates for the semi-discrete form will 

be derived. 

 

 

 

 

5.1 Semi-discrete formulation 

The variational problems defined in section 4.2, will be approximated by the use of finite 

elements.  The semi-discrete formulation of the problems 
1

 and 
2

 can be derived from 

the previous sections in a straight forward manner.  Using the super-script h , linked with 

the discrete length scale, the spatially discrete functions are presented.  

In order to carry out the analysis the following subspaces of the respective function spaces 

defined in Chapter 4 need to be introduced. Let 
1 2
, ,

e
k k u  denote the restriction of 

the function u  inside finite element e  and 
i
H  , 

1
1,..,i k ,  

i
L  , 

2
1,..,i k  be 

Hermite and Lagrange basis function inside e respectively. 
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1

1

  ( ) ( )
k

h h h h

i ie
i

U u U and u H x u t ,                                                   

1

2

0
1

( )  ( ) ( )
k

h h h h

i ie
i

V v H and v H x v t  and

2

1
1

(Ω )  ( ) ( )
k

h h h h h

j j i ie
i

W w H and w L x w t  for 0 1 2, ,j  . 

,along with the discrete weight functions
0 0 1 1

, , , ,h h h h h h h hu U v V w W w W
2 2

h hw W .   

So for 
1

 , the fixed –edge plate problem , the variational problem is reformulated as, 

1
:  Find ( , )h x t , 

0
( , )h x t  and 

2
( , )h x t such that for every  

h hu U U ,  
0 0

hw W , 

2 1

hw W  it is, 

0 0 0 1

0

0 0 2 2

0 0 0 2 2 2
         

   


( , ) ( , ) ( , ) ( , )

h h h h

h

h h h h h h h h

tt t t tt

h h h h h h h h h h h

u M dx u dx w dx w dx

a u b w b w u Q x t dx
                       (5.1) 

With initial conditions, 

       
2 2

0 0
0 0

0 0 0
( ) ( )

( ( , ), ) ( ( , ), )h h

h h h h

L L
x v x w

 
         

2 2 2
2 2 2

2 2 2 2 2
0 0   0

  ( ) ( ) ( )
( ( , ), ) , ( ( , ), ) ( ( ), )h h h

h h h h h

tL L L
x w x w S x w              (5.2) 

The semi-discrete formulation of problems 
2

  is given below,  

2
: Find ( , )h x t , 

0
( , )h x t , 

1
( , )h x t and 

2
( , )h x t such that for every 

2

h hv H , 
0 0

h hw W

, 
1 1

h hw W  and 
2 2

h hw W it holds that, 

0 0 2 2
0 0 0

0

1 1 0 0 0 1 1 1 2 2 2
 +

                                                                             

( , ) ( , ) ( , ) ( , )

L L L
h h h h h h h h

tt t t ttL

h h h h h h h h h h h h h h

tt

v M dx v dx w dx w dx

w dx a v b w b w b w

v
0

( , )
L
h hQ x t dx

            (5.3)  

with initial conditions, 
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2 2

1 1
1 1 1 1

0 0 0
( ) ( )

( ( , ), ) ( ( , ), )h h h h

tL L
x w x w

 
 

2 2
0 0

0 0
0 0 0

( ) ( )
( ( , ), ) ( ( , ), )h h h h

L L
x v x w

 
                                               (5.4) 

       
2 2 2

2 2 2
2 2 2 2 2

0 0   0
( ) ( ) ( )

( ( , ), ) , ( ( , ), ) ( ( ), )h h h h h

tL L L
x w x w S x w

  
 

 

The central idea behind the finite element approximation of the solution to the previously 

defined variational problems, is the representation of the domain as a collection of disjoint 

subdomains connected by nodes. The solutions are then approximated within a single 

element or subdomain as interpolations of nodal values. 

Hence, the approximate free surface/plate deflection within each element of the 

hydroelasticity dominated regions, is expressed as 
1

1

( ) ( )
k

h h

i ie
i

H x t while the velocity 

potential for the fluid in both hydroelasticity dominated and free-water surface regions, as 

2

1

( ) ( )
k

h h h

j i i je
i

L x t W  for 0 1 2 , ,j , where ,h h

i i
are the nodal unknowns.  

The use of 
1
C  Hermite shape functions is required the interpolation of 

h
 due to the 

continuity requirement posed on its first derivative. Additionally, it must be noted that 

h h

e
U for 

1
  and 

h h

e
V  for 

2
 . The reader is reminded that Dirichlet boundary 

condition in problem 
1

  is included in the definition of space U and in extent hU . 

Thus, in terms of the problems in question, the approximation using  Hermite shape 

functions is to be applied  in the domain 
0

 ( ) of the problems 
1

 and 
2

 . The velocity 

potential is represented by 
h

j
  and interpolated using Lagrange shape functions. In the 

hydroelasticity dominated regions, the coupling between the unknown plate 

deflection/surface elevation and the unknown velocity potential underneath the plate, 

mandates the development of a special hydroelastic element featuring a superposition of 

the resulting DOFs. 
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5.2 Special Hydroelastic Elements 

In the previous section the semi-discrete formulation of the weak problems 
1

 ,
2

 and 
3



were presented. As pointed out the velocity potential and the plate deflection in the 

hydroelasticity dominated regions of the problems have different continuity requirements 

for their derivatives. Namely, 
1

h C  while
0

h C , meaning that h needs to be 

continuously differentiable in the aforementioned regions while h does not. It is evident 

that within a single hydroelastic element two different interpolations take place. A series of 

special hydroelastic elements will be presented ranging from the lowest to the highest 

degree of interpolation incorporated. This family of elements are denoted as HELFEM 

(a,b), i.e. Hydroelastic Finite Element Method with polynomial approximation of degree a 

for the beam deflection and degree b for the velocity potential. 

5.2.1 HELFEM (3,1) and HELFEM (3,2) 

HELFEM (3,1) is a hydroelastic element featuring two nodes and 6 DOFs. Cubic Hermite 

Shape functions are used for the interpolation of h while linear Lagrange shape functions 

are used for h , in the sense, 

4

1

( ) ( )h h

i ie
i

H x t  and 
2

1

( ) ( )h h h

j i i je
i

L x t W                                      (5.5) 

 

In HELFEM (3,2) the degree of interpolation  of  
h

is increased, while cubic Hermite 

shae functions are used again for h . Hence, the element features 3 nodes with 7 DOFs.  

4

1

( ) ( )h h

i ie
i

H x t  and 
3

1

( ) ( )h h h

j i i je
i

L x t W                               (5.6) 

The shape functions for the two types of element are shown in the figure below, 

5.2.2 HELFEM (5,2) and HELFEM(5,4) 

HELFEM (5,2) features 3 nodes and 9 DOFs. A quantic Hermite interpolation is used for 

the approximation of 
h

while a quadratic Lagrange interpolation is used for 
h

 

   
6

1

( ) ( )h h

i ie
i

H x t  and 
3

1

( ) ( )h h h

j i i je
i

L x t W .                                    (5.7) 
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HELFEM (5,4) has 5 nodes and 11 DOFs. The same quantic Hermite interpolation is used 

for h and a fourth-order Lagrange interpolation for h , 

6

1

( ) ( )h h

i ie
i

H x t  and 
5

1

( ) ( )h h h

j i i je
i

L x t W .                                      (5.8) 

 

 

 

 

Figure 11 Shape functions for HELFEM (3,1), HELFEM (3,2) and HELFEM (5,2), HELFEM (5,4) 

 

In the following analysis, only elements HELFEM(3,2) and HELFEM(5,4) will be 

considered, as they appear to exhibit the best balance between simplicity in programming 

and robustness in the approximation of solutions. 
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5.2.3 Error Estimates for the Semi-discrete form 

In this subsection, error estimates in the energy norm for the semi-discrete form will be 

derived. To achieve a more compact presentation of the analysis, the error estimate will be 

proved in for both problems 
1

  and 
2

  in a single result. For this purpose, we introduce 

the parameter  such that 0  for problem 
1

 and 1 for problem 
2

 . The forcing 

wave is assumed, in both cases, to be generated by a free surface elevation at domain 
2

 . 

Finally, for simplicity, the notation 
, , ,

( , ) , ,
k k k

 

 will be used for the inner product, 

norm and seminorm of ( )kH   respectively. 

 

Assume that hV  is a finite dimensional space of V  or 2

0
( )H   such that for some integer 

3r  and 
0

1h  it is, 

00 0 0

2

0 0 00 1 2 ,, , ,
inf
h h

h h h s

su V
u u h u u h u u Ch u

  
,for 2 s r  

when ( ) Vsu H  . Constant r is the order of accuracy of hV . 

 

Similarly we assume that h

i
W  is a finite dimensional subspace of 1 0 1 2( ), , ,

i
H i  and 

0
2r  such that for 1

i
h  it is, 

0

0
00 1

inf
h h

i

sh h

i su W
u u h u u Ch u , 

0 0
1 s r  when 0( )s

i
u H  . 

For the solution of the problem let the following assumption hold, 
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(A7) Assume that the solution functions of problem  
1

  and 
2

   satisfy the following: 

For problem 
1

   it is, 

0 1 2 2

0
0 0 0 *([ , ]; ) ([ , ]; ( )) ([ , ]; )C T V C T L H T V  , 

0 1

0 0
0([ , ]; ( ))C T H  , 

0 1 1 2 2 1

1 1 1 1
0 0 0 *([ , ]; ( )) ([ , ]; ( )) ([ , ]; ( ) )C T H C T L H T H    and in addition, 

2 2

0
0( , ; ( ))

tt
L T L   and 

0
0 3( ) ( ) , ( , ],st H V t T s , 

2 2

0 0
0( , ; ( ))

t
L T L   and 0

0 0
0 2( ) ( ), ( , ],st H t T s , 

2 2

1 1
0( , ; ( ))

tt
L T L   and 0

1 1 0
0 2( ) ( ), ( , ],st H t T s . 

Finally it is 
0

( )h s hH V , 0( )sh

i i
H  , 0 1,i  , 0( , ]t T .  

For problem 
2

  it is, 

0 2 1 2 2 2

0 0 0
0 0 0 *([ , ]; ( )) ([ , ]; ( )) ([ , ]; ( ) )C T H C T L H T H    , 

0 1

0 0
0([ , ]; ( ))C T H  , 

0 1 1 2 2 1

1 1 1 1
0 0 0 *([ , ]; ( )) ([ , ]; ( )) ([ , ]; ( ) )C T H C T L H T H    

0 1 1 2 2 1

2 2 2 2
0 0 0 *([ , ]; ( )) ([ , ]; ( )) ([ , ]; ( ) )C T H C T L H T H    and in addition, 

2 2

0
0( , ; ( ))

tt
L T L   and 

0
0 3( ) ( ) , ( , ],st H V t T s , 

2 2

0 0
0( , ; ( ))

t
L T L   and 0

0 0
0 2( ) ( ), ( , ],st H t T s , 

2 2

1 1
0( , ; ( ))

tt
L T L   and 0

1 1 0
0 2( ) ( ), ( , ],st H t T s , 

2 2

2 2
0( , ; ( ))

tt
L T L   and 0

2 2 0
0 2( ) ( ), ( , ],st H t T s . 

Further assume that 
0

( )h s hH V , 0( )sh h

i i i
H W , 0 1,i  , 0( , ]t T . 

Let us introduce the quotient space  

1 1

0 0
( )\ | ( ),W H u v z v H z   
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endowed  with the quotient norm  

1
0

( )
inf

W Hz
u u z , 

The following result (see for example [6]) establishes the equivalence of the 1

0
( )H   semi-

norm and the quotient space norm. 

Lemma 2 For every u W , the quantity
1

0
( )H

u


 is a norm onW , equivalent to the 

quotient norm
W
u , i.e. there exist a positive constant 

W
c  such that 

1 1
0 0

( ) ( )
inf

WH Hr
u r c u

 
, u W ,                               (5.9) 

 

For the error of the semi-discrete form we have the following estimate, 

 

Theorem 5.1 Let assumption (A7) hold and further assume that 
0
( )t W , 0( , ].t T . 

Finally, the real parameter  attains the values 0  and 1 for problems 
1

   and  

2
  respectively. Then, for 1

i
h , 0 1 2, ,i , there exists c , 0 1 2, ,i , 

independent of 
0

, ,
i
h s s  and

0 1 2
, , ,  such that, 

0 9 0 0

1 2

1 2

01 2

0 1 1 2 2 0 02

1

0 1 1

2

0 0 0 00 0 2 1

1 1 2 20 0

1 1 1 2 2 21 1

0 1 1 2 2 0 00

0 1 1

, , , ,

, ,

, ,

, , , ,,

, ,

( )

( ) ( )

h h h h

t

h h

t t

h h

ss sh h s

s s s s

ss

s s

h h

h h

c S R S c h h h h

c h h

   

 

 

   

 

2

2 2 0

01 2

1 2 0

2

2 2 0 00

2 2 2

1 1 2 2 0 00 0 00 0

, ,

, , ,

t
s s

s

t t ss s

h ch d

ch d ch d ch d

 

  

.  (5.10) 

Proof. Use the Ritz projection 
hR  to write the error as 

h y ,                                               (5.11) 

where 
hy R  and  

h hR .                               (5.12) 
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In the same manner it is  

h

i i i i
y  , 0 1 2, ,i .                                    (5.13) 

From the regularity hypotheses and standard elliptic estimates regarding the Ritz projection 

(see for example [5], [7]) it is 

0 0 0 0

2

0 00 1 1, , , ,

s

s
y h y h y Ch

   
 ,C               (5.14) 

0

0
00 1, , ,i i i

s

i i i i i s
y h y C h

  
.                      (5.15) 

 

Similarly we get 

0
00, , i

s
tt tt s
y Ch

 
, 0

0
00, ,i i

s

t i i i t s
y C h

 
and 

1
10, ,i i

s
tt i i tt s
y C h

 
. 

(5.16) 

Setting hv v  , h

i i
w w  in the variational forms of problems 

1
  and 

2
  and subtracting 

from the respective continuous variational forms, as presented in Chapter 4, we have due 

to linearity, 

0 0 0

1 2

0 0 00 0 0

1 1 1 2 2 20 0

0 0 0 0 1 1 1 1 2 2 2 2
0

, , ,

, ,

( ), ( ), ( ),

( ), ( ),

( , ) ( , ) ( , ) ( , )

h h h h h h

tt t t

h h h h

tt tt

h h h h h h h h

M v w v

w w

a v b w b w b w

  

 
      (5.17) 

Using the definition of the Ritz projection 

( , ) ( , ) ( , )h h h h h ha v a R v a v  ,                         (5.18) 

                      ( , ) ( , )h h h

i i i i i i i
b w b w ,  0 1 2, ,i .                         (5.19) 

From (5.17), using (5.18), (5.19) and the error decomposition (5.11) and (5.13)  

0 1 2

0 0 0

1 2

1 1 2 20 0 0

0 0 0 1 1 1 2 2 2

0 00 0 0

1 1 2 20 0

, , ,

, , ,

, ,

, , ,

( , ) ( , ) ( , ) ( , )

, , ,

, ,

tt t tt t tt t

t t t t

tt t t t t t

tt t tt t

M

a b b b

M y y y

y y

  

  

 

                               (5.20) 

Similarly to the proof of the energy conservation principle (see Chapter 4) it is, 
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1 20

0 0 0

1 2

2 2 2
1 2

1 20 00

0 0 0 1 1 1 2 2 2

0 00 0 0

1 1 2 20 0

1

2
1

2

/

, ,,

, , ,

, ,

( , ) ( , ) ( , ) ( , )

, , ,

, ,

tt t t t t t

tt t tt t

d
M

d
d
a b b b

d
M y y y

y y

 

  

 

                        (5.21) 

From Young’s inequality applied in the 2L   inner products in the right hand side of (5.21) 

1 20

0
0 00

1 1 2 2

2 2 2
1 2

1 20 00

0 0 0 1 1 1 2 2 2

2 2 2
1 2

0 0 00 00

2 2 2 2

1 1 2 20 0 0 0

1

2
1

2

2 2

/

, ,,

/

,, ,,

, , , ,

( , ) ( , ) ( , ) ( , )

( , )

d
M

d
d
a b b b

d

M y y y

y y

 

 

   

                      (5.22) 

Integrating (5.22) with respect to  from 0   to t , using initial conditions () and 

since ( )M L   . 

0 1 2

1

0 1 2 0

0 1 2

2 2 2

1 20 0 0

2

0 0 0 1 1 1 2 2 2 0

2 2 2 2

1 2 00 0 0 00

2 2 2

1 20 0 00 0
2 2

, , ,

,

, , , ,

, , ,

( , ) ( , ) ( , ) ( , )

( , )

M t t t

h h

t

M

t t

c

a b b b S R S

C y y y y d

dt y y d

  



   

  

,          (5.23) 

where, as in Chapter 4,
0[ ,L]

inf
M

x

c ess M  . 

In order to eliminate  
0
  form the last term in the rhs of (5.23) so as to employ 

Gronwall’s lemma, we write for z . 

0

0 0

0 0
0 0

0 0 0
0

0 0

( , ) ( )

( ) ( ( ) ( )( ( ) ))

t t

t

y d y z d dx

y z d dx y z y z dx



 

     (5.24) 

Select 
t
y  such that 

0
0

t t
y . Finally, interchanging integral signs in (5.24) we have 

0 0 0

2 2

0 0 00 00 0

1

2 , ,
( , ) ( )
t t

y d y z dt y z dx
  

  ( 5.25) 
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Using the modified Young’s inequality with 2p q  , 0   

0 0 0 0

0
0

2 2 2 2

0 00 0 0 00

1 1
      

2 2 2, , , ,

( , )

inf inf

t

t

z z

y d

y z dt y z
   

.      (5.26) 

From inequality (5.26), and the norm definition in the quotient space W inequality (5.23) 

becomes 

0 1 2

0 1 1 2 1

0 1 2 0

0 1 2

0 2

2 2 2

1 20 0 0

22 2 2 2

1 22 0 1 1 0

2 2 2 2

1 2 00 0 0 00

2 2 2

1 20 0 00

2 2 2
1

00 00

2

, , ,

, , , , ,

, , , ,

, , ,

, ,

M t t t

h h

K B B

t

M

t

t

W

c

c c c S R S

C y y y y d

dt

y dt y

  

    

   

  

 

2

0 W

.                       (5.27) 

From lemma 2 it is 

0 1 2

0 1 1 2 1

0 1 2 0

0 1 2

0

2 2 2

1 20 0 0

22 2 2 2 2

0 1 22 0 1 1 0

2 2 2 2

1 2 00 0 0 00

2 2 2

1 20 0 00

2 2
1

000

2

, , ,

, , , , ,

, , , ,

, , ,

,

M t t t

h h

K W B B BW

t

M

t

t

W

c

c c c c c S R S

C y y y y d

dt

y dt

  

    

   

  


2

2 2

00, W
y



. (5.28) 

Select now 
W B
c c  to get 

0 1 2

0 1 1 2 1

0 0 1 2 0

0 1

2 2 2

1 20 0 0

22 2 2 2 2

0 1 22 0 1 1 0

2 2 2 2 2

1 2 00 0 0 0 00

2 2

1 20 0 0

, , ,

, , , , ,

, , , , ,

, , ,

a t t t

h h

a bW

t

b

b

C

C C S R S

C y y y y y d

C

  

    

    

 
2

2 2

0
0 0

t t

W
d dt



,      (5.29) 

where 1min( , , , )
a B W B K
C c c c c  and 12 1max( , , )

b M
C C   

Application of Gronwall’s lemma yields 
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0 1 2

0 1 1 2

1

0 0 1 2 0

2 2 2

1 20 0 0

2 2 2 2 2

0 1 22 0 1 1

2

0

2 2 2 2 2

1 2 00 0 0 0 00

, , ,

, , , ,

,

, , , , ,

t t t

W

h h

t

C S R S

C y y y y y d

  

   



    

, (5.30) 

where 
1

1 a bC C T

a b
C C C e .  

Using again the equivalence of the quotient norm and the 1H  semi-norm in the quotient 

space W , inequality (5.30) becomes 

0 1 2

0 9 0 1 2

1

0 0 1 2 0

2 2 2

1 20 0 0

2 2 2 2 2

1 0 1 22 0 1 1 1

2

0

2 2 2 2 2

1 2 00 0 0 0 00

, , ,

, , , , ,

,

, , , , ,

t t t

h h

t

C

C S R S

C y y y y y d

  

    



    

.  (5.31) 

From the norm equivalence in 6 2 , it is 

0 1 2

0 9 0 1 2

1

0 0 1 2 0

1 20 0 0

0 1 22 0 1 1 1

0

2 2 2 2

1 2 00 0 0 0 00

, , ,

, , , , ,

,

, , , , ,

t t t

h h

t

c S R S

c y y y y y d

  

    



    

, (5.32) 

with 
1

1

1
6 2 1( )min( , ) a bC C T

a b
c C C C e . 

 

Now, add the appropriate terms from the elliptic projection estimates, defined through 

relations (5.16), into both sides of inequality (5.32). In this way, both the terms, in which 

the error was decomposed, appear in the left hand side of inequality (5.32).  Using the 

triangle inequality, the fact that 1
i
h , 0 1 2, ,i  and the standard elliptic estimates for the 

Ritz projection error, we finally derive 
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1 2 0

2

1 2 2 2 0 00

2 2 2

1 1 2 2 0 00 0 00 0

, , ,

, , ,

t
s s

s s

t t ss s

C h ch d

ch d ch d ch d

  

  

(5.33) 

and the theorem is proven.                                                                                                    □ 

A more exhaustive analysis on error estimate procedures can be found in [5], [6] and [7]. 

 

5.3 Finite element implementation  

The semi-descrite formulations of the problems (5.1) and (5.3) will be revisited. The 

approximations employed for HELFEM (3,1) will be substituted into the above in order to 

derive the corresponding system of differential equations. Linear Lagrange shape functions 

will be employed for the approximation of the velocity potential in the free-surface water 

regions. First degree polynomials are merely chosen to match with HELFEM (3,1) 

approximation of the velocity potential for the hydroelastic regions, any other degree can 

be easily incorporated. Hence by direct substitution of (5.5) and (5.6) in (5.1) the following 

is deduced,  
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L
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Now, by arranging the vector of element unknowns as,

1 2 1 2

1 1 2 2 0 0 2 2



 
 

x , the above is reduced to  the form, 

loc loc loc
x x x  M C K F ,                                                                                    (5.34)                                                                                                     

    where 
loc

M ,
loc

C and 
loc

K stand for the element mass, damping and stiffness matrices.  It 

is important to observe that the element mass matrices are singular in every case. By 

enforcing a global numbering on the nodes the local element matrices are used in order to 

assembly the global equation, 

 
glob glob glob glob
x x x  M C K F                                                                            (5.35)  

The technical aspects of the global matrices assembly are left out from the present work. 

The reader is directed to the relevant literature [1], [2].                                                                                              

                                                         

5.4 Time integration schemes 

The general form (5.12) represents a system of N unknowns, which is the number of the 

finite elements used for the analysis times the number of dofs per element. The 

computational problem at hand, rises from the fact that the nodal unknowns at every point 

in time need to be calculated given their values at some initial time.   
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As already mentioned the peculiar form of the global mass matrix does not allow the direct 

inversion of 
glob

M , hence the use of implicit integration schemes is essential. In this study, 

time marching techniques like implicit Euler, Crank Nicolson and the Newmark method 

were used. Some introductory comments on the above methods are provided for 

completeness. The reader is again directed to the relevant bibliography, provided at the end 

of the chapter. 

Implicit Euler, Crank Nicolson and Radau II are all members of the Runge-Kutta family, 

for the integration of 1
st
 order ODEs. Equation (5.35) is transformed into a first order 

system by assuming y x . 

      A BU U f                                                                                                  (5.36) 

where glob
 

  
  

Μ 0
A

0 I
, glob globB

 
   

  

C K

Ι 0
and [ ]U x y .  

The implicit Euler method can be derived through the integration of (5.13) and the use of 

the left hand rectangle method for derivative approximation, 

               
1 1 1

1 1

1 1

  
 

        
i i i

i i i

t t t

i i i

t t t

A U dt B U dt f dt U U A B U dt A f dt  

which yields, 

          
1

1



   i iU A B dt A U f dt                                             (5.37) 

The method is 1
st
 degree accurate and L-stable. 

The Crank-Nicolson scheme is accordingly derived through the use of the trapezoidal rule

               
1 1 1

1 1

1 1( )
2

  
 

         
i i i

i i i

t t t

i i i i

t t t

dt
A U dt B U dt f dt U U A B U U A f dt

hence,  

         
1

1
2 2





    
       
    

i i

dt dt
U A B A B U f dt                                   (5.38) 

Crank-Nicolson is an A-stable, 2
nd

 degree accurate method. 

The second order system (5.35) can be directly integrated using an algorithm from the 

Newmark family of methods.   The unknowns at step 1n   are given by, 
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2

1 1 1( ) (1 1/ 2 )      n n n n nx x x dt x dt x   ,                       (5.39) 

2

1 1( ) ( 1) ( / 2 1)      n n n n nx x x dt x dtx      .                   (5.40) 

Parameters  and  define the specific method. For values, 2 1 2/β γ  the methods 

are implicit and A-stable. 

Substituting (5.39), (5.40) into   
1 1 1g lob n glob n glob n glob

x x x
  
  M C K F , the unknown 

displacement 
1n

x  can be calculated at a given timestep. 

5.5 Validation of the finite element code 

In the present section a procedure exploiting the eigenfunction expansion technique 

presented by Sturova [3], will attempt to validate the developed finite element code. The 

author considers that the account of Sturova’s method in the first section of the chapter is 

essential for reader’s comprehension. Using the presented technique as a benchmark 

solution a comparison will follow  

5.5.1 Eigenfunction expansion method for a freely floating heterogeneous plate. 

Sturova [3] presents a problem tailored technique for the calculation of the time-dependent 

response of a heterogeneous, thin floating plate under long wave excitation. The floating 

plate is considered to expand infinitely in the y direction, hence a vertical two-

dimensional reduction is possible. 

The plate is considered to be neutrally buoyant. The bottom is assumed flat for the free 

water surface regions while bathymetry is given by ( ) ( ) ( )h x H x d x  . The schematic of 

the configuration is shown below, 
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Figure 12 Schematic diagram of the hydroelastic problem solved in [3]. 

 

Under the shallow water assumption the system of equations reduce to the presented case 

of
1

  (see 3.2.2). For reference the non-dimensional system becomes, 

in a subsequent section.  

1

1 1 1
0

tt xx
H L  , in 

1
0( , ]T                                                               (5.41)                                                  

0
( ) ( ( ) ) ( , )

tt xx xx t
M x K x Q x t  ,   in 

0
0( , ]T                    (5.42)                    

0
0( ( ) )

t x x
h x  , in 

0
0( , ]T                                                             (5.43)                    

1

2 2 2
0

tt x
H L  , in 

2
0( , ]T                                                               (5.44)         

            

The boundary conditions at the free edges of the plate are expressed as, 

1 1 0( , ) ( , )
xx xxx

t t ,                                                                             (5.45)                                                                       

1 1 0( , ) ( , )
xx xxx

t t .                                                                                   (5.46) 

 

The interface conditions now become, 

0 1 1
1 1 1( ) ( , ) ( , )

x x
h t H t ,                                                                     (5.47) 

0 1
1 1( , ) ( , )

t t
t t         and                                                             (5.48) 

0 2 2
1 1 1( ) ( , ) ( , )

x x
h t H t ,                                                                               (5.49) 

0 2
1 1( , ) ( , )

t t
t t                                                                                 (5.50) 

 

The method of solution seeks the response of the plate as an expansion in the 

eigenfunctions of the free- free beam in vacuum . Hence , 
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0

( , ) ( ) ( )
n n

n

x t T tW x




 .                                                                                       (5.51)                                                                                       

The eigenfunctions 
n
W are calculated in the domain 1 1[ , ]  in a standard mathematical 

procedure. The reader is directed to [4]. 

By substituting (5.51) in the beam equation (5.42) and by integrating over length, the 

following is derived, 

1 1

1 1
0

1 1

01 1

( ) ( )

( , )

n xx m xx n nm n m n

t m m

T K x W W dx T M xW W dx

W Q x tW



 

 

               

   

  

 

 .                     (5.52)    

The velocity potential in the coupling region must satisfy equation (5.43), hence an 

acceptable form for 
0

is, 

0
0

( , ) ( ) ( ) ( )
t n n

x t T Q x u t v t


    .                                                                (5.53) 

where 
0

( )

( )

x
n

n

V
d

h
   or equivalently 

( )

( )
n

n

V

h
   , 

0

1
( )

( )

x
Q x d

h
   and 

n t n
V W  . 

The excitation if provided by an initial disturbance of the free water surface in region
2

 . 

The disturbance is divided into two propagating waves in opposite directions, featuring 

zero dispersion. Ultimately, the wave propagating along the x direction towards the plate 

will have a velocity potential of the form 
0 2
( )x H t while the free surface displacement 

will be 
0 2
( )x H t . It also holds that 

0 2 0x
H   

Given the above, the solution for 
2
( , )x t is given by, 

2 0 2
( , ) ( ) ( , )x t x H t x t                                                                         (5.54) 

,where 
0 2
( )x H t is the velocity potential of the propagating wave and ( , )x t  is the 

velocity potential of the  reflected wave 

2

2

2

1
1 1

0 1

,
( , )

,

x
A t x H t

x t H

x H t

  
     

    


 

.                                                  (5.55) 
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In region 
1

 the velocity potential of the transmitted wave is given as , 

1

1 1

1

1
1 1

0 1

, ( )
( , )

, ( )

x
B t H t x

x t H

x H t

  
       

    


  

                                            (5.56)                                                  

Equations (5.54), (5.55), (5.56) and (5.53) are used in order to reconstruct the interface 

conditions (5.47) - (5.50). It holds that, 

1
0

1( ) ( )
t n n x
TV u t H B                                                                     (5.57) 

0

1 1( ) ( ) ( ) ( )
tt n n t t t
T Q u t v t B                                                (5.58) 

2 0
0

1( ) ( )
t n n x
TV u t H A                                                            (5.59)                           

0
0

1 1( ) ( ) ( ) ( )
tt n n t t t
T Q u t v t                                               (5.60)                                                           

In compliance with the above the third term of the left hand side of (5.) can be rewritten as,  

1 1
0

1 1
0

( ) ( ) ( )
m tt n n t t m
W T Q x u t v t W
t



 

  
      

  
                                        (5.61) 

 

Equations (5.57)-(5.60) can be solved for 
t
v , resulting in 

1 2

2 0
0 0

1 1 1 2/( ) ( ) ( )
t t n n tt n n
v TV u H T Q u

 
 

        
 
  .                           (5.62) 

Equation (5.62) can be substituted in (5.61) and in turn in (5.52). One will immediately 

realise that finding the response of the plate in now subject to the calculation of ( )u t and
n
T . 

When a vector of unknowns is defined as 
0 1
...

T

n
x T T u


 
 

, the problem is reduced 

to a form identical to ( 5.35) and any of the  time marching techniques mentioned can be 

utilised in the calculation of the plate response. 

 

5.5.2 Comparison of the finite element solution and the eigenfunction expansion 

method [3] . 

The technique developed by Sturova can be used to validate the finite element solution. A 

freely floating plate with 500 m length, which correspondes to the length of domain 
0

  in 
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problem 
2

 , is examined. The plate has variable thickness given by the function

1 0 5 1( ) . ( )F x x    and floats over a flat shallow bottom.. An initial disturbance in the 

plate, of the form 
0

0 5 0 5 5. . cos( )x , is assumed. As time progresses, the initial 

disturbance dissipates through the elastic plate and into to the adjacent fluid layer regions. 

A total of 40 modes is used for the modal expansion technique in order to ensure 

convergence A total of 20 HELFEM (5,4) elements were used for the FE solution. Figure 

13 shows the excellent agreement between the two methods. 

 

 

Figure 13 Comparison between the FE solution and the eigenfunction expansion method presented in 

[3] 
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CHAPTER 6 

Results and Discussion 

 

In this section the results of the finite element model will be presented.  Two examples will 

be used in the study of t problems 
1

  and 
2

 . In addition the results presented at the 

European Geosciences Union Assembly will be discussed and finally, a case study of the 

Sulzberger Ice Shelf will be investigated in order to illustrate the geophysical application 

of the model. 

 

 

 

 

 

 

 

 

6.1 Initial conditions  

The initial conditions in the following examples are provided in the form of an initial 

Heaviside pulse. A Heaviside pulse provides a reasonable mathematical expression of the 

physical phenomena like sea bottom dislocation [1] or a storm surge [3]. In the first case, a 

section of the sea bottom is uplifted due to a seismic event; the sudden uplift, produces the 

same form of disturbance on the surface, (see figure 14) In the case of storm surges, low 

pressure weather systems cause the ocean surface to rise. Both phenomena are identified as 

causes of long wave generation. The ocean surface disturbance generates waves 

propagating in all directions, which are considered long. The solution to the one 

dimensional wave equation, valid for the fluid layer under shallow water theory 

assumptions (refer to section 2.1), will form two linear waves propagating in opposite 
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directions. Since their superposition must provide the initial pulse, the amplitude of each of 

the generated waves is half of the one initially provided.  

 

Figure 14 Sea bottom dislocation generating an ocean surface disturbance 

However, a mollified Heaviside function is used in the following examples in order to ease 

the computational demands of the problem and provide more realistic initial conditions for 

the hydroelastic problem. The initial upper surface elevation (see figure 15) is given as, 

   
2

0 0 0

0

( ) ( )( )x w x x w x x w
x xe e   ,                                                                    (6.1) 

where 
0
x  is the location and w is the half wavelength of the heaviside pulse. The positive 

constant is a parameter controlling the smoothness of the function. With a decreasing 

the pulse assumes a bell-like shape, while as the parameter increases the step function is 

generated.  

 

Figure 15 Initial upper surface elevation. 
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6.2 Example 
1

   

The finite element solution of the problem 
1

 , for a given configuration is examined 

below. A length of 1 km is chosen for the cantilever. The bathymetry is assumed to vary 

linearly underneath the plate, beginning from as shallow as 10 m and reaching 20 m. The 

bathymetry in the free water region,
2

  is considered flat. The thickness of the cantilever 

decreases from 4 m at the fixed end to 2 m at the free end. The configuration is shown in 

the figure 16. 

 

Figure 16 Configuration for example 
1

  

  

The initial excitation was given by (6.1), with 50 , 100w and 0 2 m,A . 

 For the calculation of the plate transient response, 100 HELFEM (5,4) were employed. 

Time integration was performed by means of the Crank-Nicolson scheme. A total of 8000 

time increments was used. 

Figure 17 provides a visual representation of the upper surface elevation against time. The 

snapshots in figure 18 picturing a time-series of upper surface elevation, shows important 

details of the solution. The initial pulse, generated in region
2

 , is separated into two 

propagating waves in opposite directions. Each wave, propagating in constant speed, 

features half the amplitude of the initial disturbance. The form of the linear wave 

propagating to the left, remains intact as no dispersive effects apply, as depicted by the 

linear trail left by the compilation of snapshots in figure 17. Hence, any noticeable 

deviation in wave amplitude is attributed to computational error. The formation of the 
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travelling waves is also visible in the first three snapshots 1 2 and 3( , )t  of figure 18.The 

wave that impacts the freely-floating plate is partially reflected. Reflected waves are 

visible as smaller trails travelling to the right in figure 17 while they are less noticeable in 

figure 18 due to their small amplitude compared to the main wave. After the impact, wave 

passes under the plate and the hydroelastic wave begins to propagate. 

 

 

 

 

 

Figure 17 Space-time plot of the wave propagation, for example 
1

  (floating cantilever) 

 

Signs of dispersion are immediately visible, as smaller amplitude waves precede the main 

pulse within the solid. Dispersive effects are particularly visible in  4 17t of figure 

18. 
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Figure 18 Solution for the upper surface elevation/displacement at distinct moments in time 

 

In figure 17 shorter waves seem to generate and propagate at a different speed as soon as 

the wave impacts the plate, i.e. enters domain 
0

 .  

When the, hydroelastic wave reaches the fixed boundary, it is fully reflected and 

propagates away from plate.  Due to the dispersion of the wave, smaller amplitude waves 

have reached the boundary and reflected before the main pulse.  The impact of the main 

pulse with the fixed boundary is visible in 16 17,t  of fig. 18. The train of smaller waves 

propagating away from the plate into the fluid region are clearly visible in both figures. 

Three of the snapshots in figure 18, namely 8 12 and17,t  are accompanied by the 

distributions of bending moment and shear force along the length of the plate at the given 

moments in time, shown in figure 19.  The excitation is seen to propagate in the plate, 

towards the fixed boundary from (a) to (c).  At (a) the pulse impacts the plate, causing the 

propagation of flexural waves.  Flexural waves carry a shift in curvature resulting in 

variations in bending moment and shear force distributions. In (b) the main pulse has 

traversed approximately half the length of the plate, while the dispersed waves preceding it 

have almost reached the fixed-edge. In (c) the main pulse is seen to impact the boundary.   
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(a) 

 

(b) 

 

(c) 

Figure 19 Deflection, bending moment and shear force profiles at 8 12 and17,t  
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Figure 20 Maximum bending moment and hear force values and their location, against time 

 

Both the maximum bending moment and shear force values seem to increase as the 

flexural wave propagates. 

Figure 20 provides additional information by showing the spatial distributions of the non-

dimensional bending moment and shear force extreme values against time. The non-

dimensionalisation was carried out to the maximum bending moment and shear force value 

accordingly.  The extrema location is given as a function of the non-dimensional variable 

 denoted by the black line. The figure clearly shows that the maximum values in both 

shear force and bending moment occur at the fixed end, where 0 . Positive or hogging 

moment effects are seen to be dominant, while the maximum shear force is negative. 

The energy conservation principle, presented in Chapter 4, is illustrated in figure 21. Prior 

to the impact with the free edge of the cantileaver plate, the non-dimentional energy is 

solely comprised by the energy of the waves propagating in domain  
2

 and is given by the 

quantity (blue, dash-dotted line), 

2
2

2

2 2 2 2( )
( , )

t L
b


                                                         (6.2) 
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Figure 21 The energy conservation principle for problem 
1

  (floating cantilever) 

 

After the impact, the non-dimensional energy is equally divided between domains 
0

 and 

2
 . In the fluid region, the linear wave propagating to the positive of the x axis gives rise 

to the quantity in (6.1). As the second wave enters 
0

 , the energy inflow is divided 

between the energy of the hydroelastic wave (green, continuous line) given by the 

quantity, 

2 2
0 0

2 2

( ) ( )
( , )

t L L
a

 
                                           (6.3) 

and the energy of the wave propagating in the fluid underneath the plate in 
0

  (green 

dashed line) which is identified as, 

0 0 0
( , )b                                                          (6.4) 

The superposition of the two curves gives the total non-dimensional energy in 
0

  (red 

continuous line). The symmetrical oscillations of the quantities (6.3) and (6.4), seen in 

figure (3) are due to the impact of the preceding dispersed waves and the main pulse. Close 

to the fixed edge, the maximum bending moment increases which in turn increases the 
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hydroelastic energy. Simultaneously an increase in elastic energy is translated into a 

reduction on wave energy. The phenomenon is observed with every impact at the fixed 

boundary. 

As seen in figure 21, the total energy is divided equally between  
0

 and 
1

 , a fact that is 

easily explained through the formation of identical linear waves, after the initial pulse. 

Moments after the impact with the free-edge of the plate and the inflow of energy in the 

hydroelasticity dominated region, discrepancies are visible and the total energy in not 

equally divided. An increase of the total energy in 
1

  is shown due to the reflected wave 

re-entering the domain.  In fact, as it is observed in figure 21, the total energy in 
0

  is 

slowly decreasing up to the impact of the main hydroelastic pulse with the fixed boundary. 

This decrease is attributed to the initial reflected wave at the free end and the reflection of 

the smaller, dispersed waves. After the impact, as the larger dispersed waves preceding 

closely the main pulse are propagating away, into 
1

  the drop in energy is sharper. 

6.3 Example 
2

  

In this section an example of a freely floating plate over variable bathymetry will be 

examined. Domains 
1

 and 
2

 are taken as 3000 m and 6000 m long, respectively. The 

length of the floating plate is assumed to be 1000 m. The water depth in 
1

 is considered 

constant at 10 m, while in 
0

 the depth increases linearly from 10 to 20 m which is taken 

as the constant depth in 
2

 . The thickness of the plate is taken as constant at 4 m. The 

configuration is shown in the figure below, 

 

Figure 22 Configuration for example 
2
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 The initial excitation was given by (6.1), with 50 , 100w and 0 2 m,A . 

The response was approximated by the use of 300, 100 and 600 finite elements in the 

regions 
1

 ,
0

 and 
2

 . HELFEM (5,4) was employed for the hydroelasticity-dominated 

region 
2

 while 4
th

 order Lagrange elements were used in the free water surface regions.  

As seen in the previous example, the initial surface excitation forms two travelling waves. 

The wave propagating to the right, impacts the freely floating plate and then exits into a 

second free surface water region. The same visual representation of the upper surface 

elevation against time given for 
1

 , is provided in figure 23.Snapshots of the surface 

elevation in various moments in time are shown in figure 24. In figure 23, the same linear 

trail is observed for the wave propagation in the positive x axis away from. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23 Space-time plot of the wave propagation, for example 
2

  (floating plate) 

 

Upon impact with the free edge of the plate, the incoming wave is partially reflected. As it 

was before, the reflected waves are visible in figure 23 propagating away from the plate 

and into  
2

 . As the hydroelastic wave propagates in the plate it becomes dispersed. Signs 

of dispersion are visible in both figures. In figure 23, there are clear signs of waves 

propagating in a different speed, preceding the main excitation inside the plate. These 

smaller waves exit 
0

 as the larger wave follows. The dispersion of the hydroelastic wave 

is clearly visible in 4 16t of figure 24. 
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It is observed that the wave train in 
1

 propagates at a smaller speed, exhibited by the 

sharply inclined trajectory, compared with the one propagating in 
2

 . 

 

Figure 24 Solution for the upper surface elevation/displacement at distinct moments in time 

 

Distributions of the bending moment and shear force for 7 12 and17,t  are shown in 

figure 25. Once again the wave is seen to impact the plate at (a). In (b) the wave has 

traversed half of the plate length and is finally seen to exit the plate at (c).The change in 

curvature due to the flexural wave propagation gives the corresponding bending moment 

and shear force profiles. Maximum values for both quantities seem to occur at the vicinity 

of 12t .  A more complete picture regarding the bending moment and shear force 

extrema are given in figure 26. 
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(a) 

 

(b) 

 

(c) 

Figure 25 Elevation, bending moment and shear force profiles at 7 12 and17,t  
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Figure 26 Maximum bending moment and hear force values and their location, against time 

 

Once again the extrema location is given as a function of the non-dimensional variable  

denoted by the black line. Both bending moment and shear force maximum values seem to 

occur at 12 13t .  

It can be observed that positive and negative bending moment values are of the same 

magnitude, as is the case for the shear force.  

The energy conservation principle presented in a previous section is illustrated, for the 

given example, in figure 27. The non-dimensional energy shown in the y axis initially 

amounts to the energy of the propagating waves in region 
2

 (blue dot-dashed line) 

represented by the quantity  

                
2

2

2

2 2 2( )
( , )

t L
b


   .                                         (6.5)                                                                    

After the impact on the floating strip at 3 5 ,t , the total non-dimensional energy is given 

by the equal sum of the wave energy still propagating in 
2

  the energy of the hydroelastic 

wave in the elastic plate and the fluid in 
2

 (continuous red line) given by the quantity  
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Figure 27 The energy conservation principle for problem 
2

  (floating plate) 

 

2 2
0 0

2 2

0 0 0( ) ( )
( , ) ( , )

t L L
a b

 
     .                                                                     (6.6) 

 A few seconds after the impact, the wave passes into 
1

 . The first of the dispersed waves 

travelling at a greater speed enter 
1

  at approximately 7 5.t . The inflow of energy in 

the domain is given by the blue dashed line, showing an increase of the quantity  

2
1

2

1 1 1( )
( , )

t L
b


                                                                                                        (6.7) 

,against time. Thus, the non-dimensional energy is now given by the sum of the energies of 

the propagating waves within the fluid layers 
1

 ,
2

 and the energy of the hydroelastic 

wave and the fluid in domain 
0

 . When the elastic strip is finally at rest ( 16 t ), the 

total energy is given by the sum of (6.5) and (6.7). In figure 8 the energy contributions of 

the fluid and the elastic strip in
0

 , are also shown against time. The superposition of the 

curves representing the quantities 
2 2

0 0

2 2

( ) ( )
( , )

t L L
a

 
   and 

0 0 0
( , )b generates the 

energy quantity (6.6). 
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6.4 Analysis of two floating cantilever configurations 

The following results were presented at the European Geoscience Union Assembly in May 

2014, as collaboration between Dr Papathanasiou, Professors Theotokoglou and 

Belibassakis and the author [2]. The scope of the given work was the hydroelastic analysis 

of ice shelves under long wave excitation. The effects of variable plate thickness and 

variable bathymetry were examined. The two separate configurations used for the analysis 

are shown in figure 28. Configuration A features a plate with constant thickness over 

linearly varying bathymetry, while configuration B shows a plate with stepped thickness 

over the same topography. 

 

 

Figure 28 Configurations A and B 

 

 Configuration A  

The length of the plate is taken as 100 km. The smallest depth, denoted bya , located 

underneath the fixed edge as shown in figure 29 is 200 m. The largest depthb , underneath 

the free edge, is 400 m. The initial upper surface disturbance is a step pulse with a 

wavelength of 20 km and amplitude of 2 m. 

Figure 30 shows a series of snapshots of the upper surface elevation at different moments 

in time, illustrating the evolution of the phenomenon. Figure 31 shows the bending 

moment and shear force distributions at selected moments in time ( 8 34 and 30,t ). As 

seen in the previous examples, the initial upper surface displacement forms two identical 

travelling waves, propagating in opposite directions, with constant speed. The wave that 

impacts the free end of the plate is partially reflected while it continues to propagate, 
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passing under the plate and providing the initial flexural excitation. The hydroelastic wave 

shows dispersive characteristics, visible in figure 30 as smaller waves preceding the main 

excitation. When reaching the fixed edge (x=0), the wave is fully reflected and 

subsequently propagates away from the plate origin. At approximately 8t , the 

hydroelastic wave begins to propagate in the plate, at 30t it impacts the fixed boundary 

and at 34t , upon reflection, it is seen propagating towards the free end.  

A parametric study of the effects of bottom topography was carried out. The maximum and 

minimum non-dimensional bending moment and shear force as well as the maximum 

absolute deflection of the plate were plotted for various ratios /a b  (see figure 28). Figure 

29 shows a direct link between the depth underneath the plate and the observed quantities. 

Maximum absolute values seem to increase as the depth decreases. 

 

Figure 29 Parametric study of the bottom topography variation 
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Figure 30 Solution for the upper surface elevation/displacement at distinct moments in time 
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(a) 

 

(b) 

 

(c) 

Figure 31 Deflection, bending moment and shear force profiles at 8 30 and 34,t  
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 Configuration B 

Configuration B is examined in order to establish the effects of cross sectional variation. 

While the same bathymetry and initial excitation profiles as in configuration A are 

selected, a stepped thickness is used for the plate. A constant thickness of 150 m is 

assumed from the fixed end to the plate midpoint and a thickness of 100 m from that point 

to the free edge. 

Figure 32 shows the upper surface elevation at different moments in time, while figure 33 

shows bending moment and shear force distributions in selected moments. 

 

 

Figure 32 Solution for the upper surface elevation/displacement at distinct moments in time 

 

Kinks can be observed in all bending moment and shear force distributions at point P2, due 

to the variation in thickness. 

Figure 34 shows a comparison between the bending moment and shear force values against 

time for configurations A and B. 
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(a) 

 

(b) 

 

(c) 

Figure 33 Deflection, bending moment and shear force profiles at 16 18 and 20,t  
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Figure 34 Comparison of the maximum/minimum bending moment and shear force values between 

configurations A and B. 

 

At point P1 (fixed edge), the positive bending moment is greater for configuration B. In all 

cases, it is evident that the hydroelastic dispersion of the main pulse is intensified for 

configuration B, after point P2. The dispersion of the hydroelastic wave manifest itself  

through the formation of escalating peaks, regarding the bending moment and shear force 

values at P1, preceding the arrival of the main pulse at the same point. Due to the cross-

sectional variation, configuration B features a sudden increase of maximum shear force at 

point P2 for t15.5.  
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6.5 Case study- Honshu Tsunami 

In this section the Sulzberger Ice shelf calving event of 2011 will be studied. The 

developed numerical tool will be utilized in order to calculate and interpret the response of 

the ice shelf under tsunami excitation.  

Brunt et al. [4] documents the calving event and offers observational data reinforcing the 

theory of calving due to tsunami impact. The tsunami generated by the Honshu earthquake 

on the 11
th

 of March, reached the Sulzberger Ice Shelf tip, located East of the Ross Ice 

shelf. The dimensions of the ice shelf are documented as 160 km wide and 100 km long 

from the continent to the ocean front. The front on the Eastern front of the ice shelf, 

between Vollmer island and Guest Peninsula (see figure 35) is thin, under 80 m. Decades 

before the event, rifts on that front had created a rectangular region 10 and 6 km in 

dimensions. 

 

 

Figure 35 The Sulzberger Ice Shelf (source: Brunt et al. [3]) 
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European Space Agency Envisat images reveal that the Sulzberger Ice shelf eastern front 

was intact on the 11
th

 of March. The projected arrival time, factoring ocean depth and 

reflections was calculated as 18.3 hours after origin time on 6.45 UTC on 11
th

 of March. 

Satellite images verified the projections and a few days later the separation of two large 

icebergs is clearly seen.   

The Sulzberger Ice shelf is simulated by a fixed edge plate spanning over 100 km. The 

depth in front of the ice shelf tip is taken as 150 m, varying linearly until 800 m over a 

distance of 100 km (see figure 37) 

 

Figure 37 Configuration for the simulation of  the Sulzberger Ice Shelf and Honshu  Tsunami. 

 

The initial excitation is given by (6.1), with 100 , 2000w and 0 4 m,A . 

The present example is a geophysical application of the developed hydroelastic model. As 

seen in the first example for problem
1

  (see section 6.2) the maximum bending moment 

and shear force values appear at the fixed boundary of the plate. Calving  

 
                          (a) 

 
                            (b) 

Figure 36 Envisat ASAR images of the Sulzberg ice Shelf (a) 11 March 2011 (b) 16 March 2011 
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Figure 38 Space-time plot of the wave propagation, for the Sulzberger Ice shelf case study. 

 

events, however are bound to happen at a values significantly lower than the maximum. 

Hence, it is of interest to examine in detail the hydroelastic wave propagation before its 

reflection at the fixed edge. 

As shown in figure 38 the form of the linear wave propagating to the left, remains intact as 

no dispersive effects apply, as depicted by the linear trail left by the compilation of 

snapshots in figure 39.The formation of the travelling waves from the initial pulse is in the 

first three snapshots 0 0 5 ,1,1.5 and 5( , . )t  of figure 39. The wave that propagates 

towards the plate, enters the region of linearly varying bathymetry, resulting in a 

decreasing velocity. The phenomenon is visible through the trail curve of the propagating 

wave. The reflected wave upon impact with the free edge is shown in both figures. As the 

reflected wave traverses the variable bathymetry region, it follows the same curved trail.  

After the impact, wave passes under the plate and the hydroelastic wave begins to 

propagate. Signs of dispersion are discernible in figure 39. 27 30 and 40( , )t . 
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Figure 39 Solution for the upper surface/displacement at distinct moments in time 
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Figure 40 Distance ( ) from the ice shelf free edge, where maximum absolute value of the bending 

moment appears as a function of the tsunami wavelength.  

 

The effects of the plate thickness and the wavelength of the incoming tsunami, on the 

location of the bending moment maximum absolute value are examined. The distance of 

the location of the extreme value from the free edge, is plotted against the various 

wavelengths in figure 40. It is seen that for either short or long wavelengths, the distance is 

relatively irrelevant of the wavelength, while there is a dependency on plate thickness. The 

location of the extreme bending moment value is closer to the free edge for thicker plates. 

The above assertion seems to agree with the observations of Squire [5] who noticed, while 

performing parametric studies on a semi-infinite ice sheet that the location of maximum 

strain is insensitive to wave period but dependent on the ice sheet thickness. 

However, in figure 40 a sudden drop in distance  is visible and consistent for all 

thicknesses, linking shorter with greater wavelengths. When examining the maximum 

bending moment and shear force values against time for thickness 80 m  and 90 m

for short non-dimensional wavelength like 0.04 as shown in figure 41 the maximum 

bending moment is negative. As the wavelength increases, as shown in figure 42 the 

maximum bending moment value is now positive. 
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(a) 

 

(b) 

Figure 41 Maximum bending moment and hear force values and their location, against time. (a) 

80 m and 2000w ,(b) 90 m and 2000w  
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(a)  

 

(b) 

Figure 42 Maximum bending moment and hear force values and their location, against time. (a) 80 m

and 4000w ,(b) 90 m and 4000w  



Results and Discussion 

103 

 

6.6 Conclusions 

Two examples were studied for problems 
1

  and 
2

 . The dispersive characteristics of the 

hydroealastic wave were verified in both occasions along with the principle of energy 

conservation. The Finite Element solution was given the necessary physical interpretation 

Additionally, the results presented at the European Geosciences Union Assembly revealed 

a direct link between plate thickness variation and bending moment and shear force 

distributions for the floating cantilever problem. Shear force increases at the point of 

variation. 

Finally, the Honshu Tsunami case study revealed that the maximum bending moment 

remains insensitive to the wavelength of the incoming tsunami while it displays a 

correlation with plate thickness. 

The aim of the present thesis was to employ the finite element method in the study of the 

hydroelastic response of elastic floating bodies under long wave excitation. Due the course 

of this work, 

 The 1-D general hydroelastic problem of a floating body, under shallow water 

assumptions was formulated. The problems of a cantilever plate 
1

 and a freely 

floating plate
2

  were studied. 

 The variational form of problems 
1

 and 
2

 was derived. The solution stability 

estimates and the energy conservation principle were studied for both problems. 

 The variational form was used in the development of special hydroelastic elements, 

featuring various degrees of interpolation. Error estimates of the semi-discrete form 

are also presented. 

 The finite element solution is compared against the eigenfunction expansion method 

presented by Sturova. The solutions were found in excellent agreement. Additional 

validation of the finite element solution is provided by the energy conservation 

principle. 

 Two examples in realistic scales were examined along with a geophysical case study. 
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6.7 Future research 

With the objectives of the present thesis achieved, future directions of the present work 

may include, 

 Introduction of non-linearities in the 1-D model either for the fluid and/or the solid 

components. The non-linear shallow water equations can be used as the fluid model 

and/or the non-linear Euler-Bernoulli for the floating body. 

 Expansion of the thin plate/ shallow water model in 2-D. 

 Study of additional configurations. Development of a 1-D multi-body model, 

suitable for the simulation of the Marginal Ice Zone or connected VLFSs. 
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