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Περίληψη

Το Single-Chip Cloud Computer(SCC) είναι μία πειραματική πλατφόρμα, των
εργαστηρίων της Intel, αποτελούμενη από 48 P54C Πέντιουμ πυρήνες. Η
διπλωματική εργασία αυτή ασχολείται με την μεταφορά στην πλατφόρμα
του προσομοιωτή δικτύων των εγκεφαλικών κυττάρων πυρήνα κάτω ελαίας,
δίνοντας έμφαση στην επικοινωνία μεταξύ των πυρήνων κατά την εκτέλεση
της εφαρμογής. Η συγγεκριμένη εφαρμογή ασχολείται με ένα πολύ σημαντικό
σύνολο εγκεφαλικών κυττάρων, τα κύτταρα πυρήνα της κάτω ελαίας. Διαφέρει
από τα συνήθη νευρωνικά δίκτυα, καθώς προσομοιώνει ένα βιολογικά ακριβές
μοντέλο, με τέτοιο τρόπο ώστε να αποτυπώνεται όλα τα βιολογικά
χαρακτηριστικά των κυττάρων κατά την διάρκεια της προσομοίωσης.

Η εργασία αυτή εστιάζει στα παρακάτω. Αρχικά εξετάζεται σε βάθος η
συνδετικότητα μεταξύ των νευρώνων της Κάτω Ελαίας. Έπειτα εφαρμόζονται
βελτιώσεις στον αρχικό κώδικα του προσομοιωτή. Τέλος εφαρμόζονται
βελτιώσεις σχετικές με την επικοινωνία μεταξύ των πυρήνων της πλατφόρμας.

Ένα μοναδικό χαρακτηριστικό του SCC είναι ο Message Passing Buffer (MPB),
ο οποίος αποτελείται από μικρές SRAM caches, μία για κάθε πυρήνα, για
την επικοινωνία μεταξύ των πυρήνων. Με την χρήση αυτής της προσθήκης
καταφέραμε να επιταχύνουμε την προσομοίωση.

Λέξεις κλειδιά: SCC, Intel, RCCE, HPC, Επιτάχυνση, Επικοινωνία, Κύτταρα
Κάτω Ελαίας, Εγκέφαλος, Δίκτυο Κυττάρων, Προσομοιωτής
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Abstract

The Single-Chip Cloud Computer (SCC) is an experimental platform, created
by Intel labs, with 48 P54C cores. This thesis covers the optimized porting
of the Inferior Olive Cell Simulator on the SCC, especially from an inter-core
communication perspective. The targeted application involves a very important
set of brain cells, namely the Inferior Olive Cells. It differs from usual neural
networks, in a way that a biologically acurate model is used, thus exploitting
full biological information concerning the cells.

The contributions of this Thesis lie in the following domains. First neuron cell
interconnectivity of the Inferior Olive Model (InfOli) is explored. Then source
Code optimizations of the original InfOli Model are achieved. Finally inter-core
communication optimizations, regarding the application, are introduced.

One of the distinguishing features of the SCC is the Message Passing Buffer
(MPB), whereby small SRAM caches are assigned to each core for communi-
cation purposes. With the use of this feature, thus impressive speedups are
achieved.

Keywords: SCC, Intel, RCCE, HPC, , Acceleration, Communication, Inferior
Olive, Power, Brain, Cell Network, Simulator

ii



Contents

Contents ii

List of Figures v

1 Introduction 1

2 State of The Art and Platform Description 3
2.1 Prior Art Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Biological Aspects . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Engineering Aspects . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 FPGAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.4 GPUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.5 HPC platforms . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.6 Manycore / Multicore Platforms . . . . . . . . . . . . . . . 7

2.2 Single-Chip Cloud Computer Platform description . . . . . . . . 9
2.2.1 Chip description . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Tile description . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Memory organization and basic I/O . . . . . . . . . . . . 10
2.2.4 Programming Model of the SCC . . . . . . . . . . . . . . 11

2.2.4.1 Programming Model . . . . . . . . . . . . . . . . 11
2.2.4.2 Underlying message passing mechanisms . . . . 12

3 Model Description 15
3.1 Application and Porting . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Application Description . . . . . . . . . . . . . . . . . . . 15
3.1.2 Application Porting . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Inter-Connectitity . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.1 Normal Distribution . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Stochastic Neuron Connectivity . . . . . . . . . . . . . . . 20
3.2.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Code optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.1 Major Structures . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.2 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Asynchronous Communication 26

iii



iv

4.1 Communication Overhead in InfOli . . . . . . . . . . . . . . . . . 26
4.2 Collective allocation programming model . . . . . . . . . . . . . 29
4.3 Non-collective allocation communication model . . . . . . . . . . 31

4.3.1 Initilization phase . . . . . . . . . . . . . . . . . . . . . . 31
4.3.2 Necessary data structures . . . . . . . . . . . . . . . . . . 35
4.3.3 Communication phase . . . . . . . . . . . . . . . . . . . . 37

4.4 Experimental Setup Description . . . . . . . . . . . . . . . . . . . 38
4.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Thesis Conclusion 42
5.1 General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



List of Figures

2.1 Single Cloud Chip layout from [1] . . . . . . . . . . . . . . . . . 10
2.2 Programmer’s point of view from [1] . . . . . . . . . . . . . . . 12
2.3 Collective allocation calls from [1] . . . . . . . . . . . . . . . . . . 14
2.4 Message Passing through MPBs from [1] . . . . . . . . . . . . . 14

3.1 Illustrates an InfOli Cell, from [2] . . . . . . . . . . . . . . . . . 16
3.2 Simulator Runtime from [3] . . . . . . . . . . . . . . . . . . . . . 17
3.3 Data partitioning, from [3] . . . . . . . . . . . . . . . . . . . . . 18
3.4 Task and Data Patitioning, from [3] . . . . . . . . . . . . . . . . 18
3.5 Connection Probability according to equation 3.1 . . . . . . . . . 21
3.6 Average number of connections for various parameters . . . . . 21

4.1 Communication overhead for sample grid sizes . . . . . . . . . . 27
4.2 Collective allocation calls from [1] . . . . . . . . . . . . . . . . . . 30
4.3 MPBs prior to any memory allocation . . . . . . . . . . . . . . . 34
4.4 MPBs after the proper memory allocations . . . . . . . . . . . . 34
4.5 Communication phase . . . . . . . . . . . . . . . . . . . . . . . . 38
4.6 Power pulse for a simulation involved in Infoli . . . . . . . . . . 39
4.7 CPU times before the communication optimization . . . . . . . . 40
4.8 CPU times after the communication optimization . . . . . . . . . 40
4.9 Energy consumption before the communication optimization . . 40
4.10 Energy consumption after the communication optimization . . . 40
4.11 CPU speedup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.12 Total Energy Gain . . . . . . . . . . . . . . . . . . . . . . . . . . 40

v



Chapter 1

Introduction

Current thesis focuses on the optimized porting of the Inferior Olive (InfOli)
Simulator on the experimental Intel Single-Chip Cloud Computer. The target
application simulates a very important set of brain cells, the InfOli cells. The
InfOli cells are associated with brain functions involving motor skills and
space perception. In this work a biologically accurate neuron simulation is
utilized, thus full biological functionality of the neurons is exposed. Different
communication schemes and connectivity schemes on existing porting options
have been explored, and great emphasis is given in reducing CPU times and
measuring the platform power consumption.

The motivation behind this thesis, was the writers interest in understanding
part of the human brain functionallity, through the perspective of a com-
puter scientist. The Cerebullum is one of the most important human brain
parts, and one of the most complex. Time demanding simulations were al-
ready performed for the targeted simulator, but there were needs for further
acceleration, such as the ones achieved in this thesis. After the study of the
platform and the application involved, we managed to harvest the best out of
the SCC board, while adding novelty to brain related research.

Chapter 2 holds a state-of-the-art analysis regarding the modelling and engi-
neering aspects of the simulation, as well as an overview of the SCC platform.
Related work is explored, with emphasis on alternative hardware targets used
in the modelling of the InfOli Neurons, comparing them to our contribution.
Different hierarchical models regarding neuron simulations are also discussed.
Afterwards, the SCC board is explored in depth, along with the utilities that

1



Chapter 1. Introduction 2

are provided by Intel to facilitate programming of the chip. Special emphasis
is given to unique memory characteristics of the chip, that enabled impres-
sive simulation times, reducing the inter-core communication overhead of the
simulator.

Chapter 3 examines closer the InfOli simulator. The biological model is intro-
duced here, and InfOli neurons are analysed. Simulation runtime and porting
options are described, allong with various connectivity schemes between the
neurons. Optimizations are inroduced, on the basis of previous code versions
of the InfOli simulator. Connectivity schemes are examined with respect to
CPU time and Power Consumption. Related work results are also outlined.

Chapter 4 explores the applicability of unique memory mechanisms of the
SCC platform on the optimization of the InfOli runtime. Having used those
underlying mechanisms and the unique on-chip RAM of the platform, this
thesis presents an efficient asynchronous communication scheme based on
memory polling between the SCC cores. Libraries provided by Intel developers
were efficiently used towards this direction. Thus, it was feasible to exploit
in depth software/hardware specific mechanisms of the SCC, while achieving
impressive simulation speedups, which are also presented at the end of this
Chapter.

This thesis concludes in Chapter 5 which summarizes results and respective
observations. Remarks about the application and the platform are made, in
addition to future work references.



Chapter 2

State of The Art and Platform
Description

2.1 Prior Art Overview

2.1.1 Biological Aspects

The understanding of human brain mechanisms and functions is of a great
importance. Scientists strive to map the human brain for years. Such explo-
rations would lead to great achievements, including the understanding of the
human cognition and behaviour, as well treat many brain-related diseases.
Several large scale projects focus on those goals today [4], untreatable diseases
are also believed to connect with the brain functions and mechanisms [5].

The Cerebullum, is involved in the learning and timing of movements, and
comparing intended movement decisions with achieved movements [6]. The
olivary nucleus has been proved to interact with the above functions of the
human brain [7]. As the functionality of the Cerebellum becomes increasingly
clearer, targeted experiments and models can be produced, in order to further
understand the mechanisms of human movement and control.

Brain modelling is distinguished from other model procedures, due to its com-
plexity. Construction and refinement of qualitative and quantitative models
for the brain observed phenomena, is the standard in neuroscience, and other
scientfic fields. However the building of neural models consists of different

3



Chapter 2. State of The Art/Platform 4

hierarchical levels of analysis [8], in contrast to usual modelling techniques.
Several threads of neural modelling have arrised in the past years. The dif-
ferences between them relate to the different abstraction maintained towards
brain simulation.

As we can see in [8], neural modelling is is divided in two main threads :

• Conventional Reductive Models

This type consists of the traditional reductive modeling. These types
of models are usefull in describing the neural phenomena as well as
providing explanations of them, with the use of mechanisms that may
generate them. Those mechanisms are also described in terms of models,
so the whole process is recursive. It is common for those models to
be expressed with a set of mathematical equations, which provide the
formulation needed for quantifying the phenomena involved.

• Computational Interpretive Models

The idea behind these models resides in the interpreting of the brain
mechanisms in terms of the underlying computations that are involved
in order for a particular task to be completed. The main aspects of such
modelling, is the representation, storage and transformation of informa-
tion in the neural network [9]. Since the above models involve computa-
tional and algorithmic planes, they can be represented with the help of
traditional programming languages. Those models offer a high degree
of detail and simulations conducted with them are very computation-
ally intensive. That is why HPC architectures prove extremelly usefull in
neural modelling. The level of analysis of Computational Models may
vary in terms of abstraction. Further classification is possible, exposing
Conductance-based, Integrate-and-fire models and Firing-rate models.
The InfOli Model falls under this category, as full biological informa-
tion is exposed during the simulation, due to the full modelling of the
underlying mechanisms.

The InfOli model that has been used in the contect of this thesis, is an extended
version of the Hodgkin-Huxley classical neuron model [10]. Other approaches
in neuron simulations, like neural networks [11] involve methods from the
Artificial Intelligence field. They are really abstract in terms of the underlying
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actual mechanisms, thus no biological information of the neurons states during
the simulation is extracted.

The Hodgin-Huxley model treats each cell component as an electrical element,
which is described with a set of non-linear differential equations. The differ-
ences in the compartment’s voltages result in current flowing through cells,
thus producing output for Purkinje-Cell (PC) through the so-called Climbing
Fibers (CF) [2]. In this thesis, we focus on the InfOli neurons, rather than the
other parts of the Cerebullum.

Biological parameters are described in terms of the electrical characteristics
of the cell compartments, and the conductive channels associated with them.
The model falls under the Spiking-Neural Network class of models , since each
simulation step is driven by spike inputs flowing in the cell network.

2.1.2 Engineering Aspects

In order for the brain models to prove usefull, they have to be easily portable to
platforms, thus enabling simulations of sufficient detail and duration. This way,
a subset of the brain’s functionallity could be simulated, in some level of detail,
providing usefull results. Simulations also give neuro scientists the alternative
needed to partially avoid in-vitro and in-vivo experiments, which are costly,
time-consuming and may require testing on animals, [3]. In general, simulating
brain parts consisting of large cell inventories calls for significant computational
resources. Applications like these prove also to be of high inherent parallelism,
but consist of elaborate communication schemes, since neurons are usually
inter-connected in non-regular ways.

Exposing parallelism and reducing communication is critical in every neuron
simulation, thus using the appropriate platform is of paramount importance.
Platforms with different characteristics have been used for neuron simula-
tions, such as Field-Programmable Gate Arrays (FPGA), Graphical Processor
Units (GPU), multiprocessors, Network-on-Chip’s, High Performance Comput-
ing (HPC) platforms and more. The advantages and drawbacks of each plat-
form play a major role in the usability and the results that neuro-scientists
will gain. Simulations can be devided in real-time simulations and large-scale
simulations. Real-time simulations usually involve low-populated networks of
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cells, in order to reach real time speeds, while large-scale simulations sacrifice
real-time characteristics in favor of larger cell populations. Both approaches
play a major role in understanding the human brain.The challenge here for en-
gineers is to achieve hybrid solutions in order to achieve near optimal platform
utillization, conducting real-time simulations of large-scale networks. Contri-
butions toward the above direction would be very useful in biological appli-
cations running on robots [12] and other embedded approaches [13].

2.1.3 FPGAs

FPGAs are typically used to speed up applications that exhibit bit-level inher-
ent parallelism [14], and accelerate HPC applications [15]. A typical drawback
of this is the need to design a differenct coprocessor for each application in-
volved. Neuron modelling simulations, are considered to be fine grained paral-
lelized applications, thus hardware implementations seem to fit those models.
It is true that impressive simulation speedups are achieved with FPGA im-
plementations [16]. Those implementations offer a compromise between the
hardware efficiency of ASICs and the flexibility of software-based solutions.
Especially in real-time simulations, and on-chip solutions, FPGAs could be
really usefull for creating specific devices such as those used in robots. How-
ever, FPGAs show some limitations in neural modelling. For one, FPGAs are
not easilly programmable implementations, so they provide limited flexibility,
while neural modelling is a constantly evolving field with changing require-
ments. This results in design complexity exceeding that of other platforms
[14]. Ideally one should only manipulate the software aspects of the simula-
tion, while achieving high performance.

However, in the FPGA case, the alterations are constrained by the synthesis
feasibility. In many cases, complex and elaborate data structures that are re-
quired from a neuroscientific standpoint, may not be synthsizable on an FPGA.
Hence, FPGAs come with the optional overhead of data type refinement.

2.1.4 GPUs

Simulations on Graphical Processor Units (GPUs) seem to have gained con-
siderable attention in the recent years. Graphic cards are cheapper and easier
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maintained in comparison to clusters, while prove to be more software recon-
figurable than FPGA implementations [17] involving lower time-to-solution
implementations. However, producing code for GPUs could be a tricky pro-
cedure. All GPU implementations should take into account the memory bot-
tleneck rather than pure computation speed [18]. However for neural models
like the one implemented in this thesis, which includes managing structures of
linked lists in a non-uniform manner, GPUs would not be efficient. The reason
behind this is that linked lists are not comprised by consecutive memory, thus
GPU acceleration is inefficient. Another drawback in GPU implementations
is the lack of communication mechanisms between the majority of running
threads. In the InfOli model, the communication phase inititating each sim-
ulation step, would involve calling seperate GPU kernels, rather calling one
kernel for the entire simulation, thus resulting in major performance draw-
backs.

2.1.5 HPC platforms

Since the brain consists of very large neuron inventories, it is only natural for
super-computer architectures to play a major role in neural simulations. Super-
computers come at a high cost, and with demanding adminsitration issues.
Nowadays, it is possible to simulate parts of the brain on supercomputers, and
supra-linear speedups are achieved [19]. Recently, the largest brain simulation
ever achieved was performed in Japan, with the use of K Computer, which
lasted 40 minutes and completed a simulation of 1 second of brain activity
[20]. It is widely believed that exascale super-computers, that are likely to be
manufactured in the next decades [21], will manage to simualte the whole brain
in logical CPU times. However, large-scale simulations with super-computers,
may not be quite usefull for real-time applications or devices, which should
interact constantly with the patient, or the system, and of course be portable.

2.1.6 Manycore / Multicore Platforms

In the recent years there has been an outburst in multiprocessor desktops.
While their pure computing capabilities are significantly lower to that of the
GPUs, they are easily programmable and maintainable, and they require no
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time consuming Peripheral Compnent Interconnect (PCI) transfers [22]. The
use of multichip processors lead to increasing research and production of
many-core chips. Those many-core chips are currently used as accelerators,
connected on the PCI bus, resembling GPUs, but research is being conducted
towards the production of many-core CPUs. The cores of those chips are
superior of GPU cores in terms of logical complexity and branch-prediction
mechanisms, and are programmed like cores on a Desktop. We can deduct
from the Intel Roadmap [23] that in the recent years, all architectures will
include a significant amount of cores and threads for use.

Although the work in this thesis involves non-real time large scale simulation,
the research in the field will make feasible for more accurate and real time
simulations to be achieved by single many-core chips, like the SCC. This will
make possible the produce of implantable devices, that will maybe diagnose
brain problems, or even correct them at real-time, while being easily reconfig-
urable [24]. Progress towards this scope is already achieved in small animals
[25].

Usually single multicore chips, consist of network of cores residing close to
each other, withe their own unique characteristics. This results to low inter-
core communication times. As a result, the production of low-latency commu-
nication schemes and the speeding communication demanding applications
such as neuron modelling is fully enabled. One major drawback of many-core
chips is that there is no available core expansion, since all cores reside on the
same chip, thus the platform is restrictrive from any application scaling.

A distinction among many-core chips is the location of the memory. They
are divided mainly in two categories : shared memory chips, and distributed
memory chips. In fact most platforms implement a hybrid memory model,
combining both approaches. A platform like this is the SCC board, since it
both has off-chip shared memory, as well distributed memory residing on
every tile.

While each target platform has its advantages and disadvantages, none is the
ideal for neuron modelling. It is possible that hybrid solutions will emerge in
the future years [26] [27], targetted in neural simulation, which will combine



Chapter 2. State of The Art/Platform 9

characteristics from various platforms. Research on the field of brain mod-
elling and brain exploration is constantly expanding, as organizations fund
researchers all over the world towards this scope [28].

2.2 Single-Chip Cloud Computer Platform descrip-
tion

2.2.1 Chip description

The Single Cloud Chip is a second generation processor design developed by
Intel in order to advance research on multi-core chip architectures. It is the
predecessor of a 80-core chip, Teraflops Research Chip [29].

The Intel SCC chip consists of 24 tiles, each tile containing two cores. The SCC
core is a full IA-P54C core, thus it can support the compilers and Operating
Systems technology required for full application development. The 24 tiles
create a 6× 4 mesh network.

The SCC platform is connected over a PCIe bus with the Management Console
PC (MCPC). The MCPC runs a Linux distribution and is used for easily man-
aging the SCC chip and porting applications. The MCPC directory /shared is
NFS-mounted on the cores. Interraction with the SCC is done through this
shared directory

2.2.2 Tile description

Each individual core uses an L1 Instruction cache and an L1 Data cache, with
16 KB capacity each. Every core also has an L2 cache of 256 KB capacity.
Both the L1 caches are on the core, while the L2 caches are placed on the tile
next to the cores.

Located next to the cores is the Mesh Interface Unit (MIU), which connects
the tile to the mesh. It is responsible for packetizing/depacketizing the data in
and out from the mesh. It is the component controlling the flow of data on
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the mesh with a credit-based protocol, while using a round-robin scheme to
serve core requests.

A small 16KB SRAM buffer is also located on each tile, namely the Message
Passing Buffer (MPB). This buffer is shared between two cores residing on the
same tile. The MPB serves as the only on-die inter-core communication aid.
The MPB is accessible by all SCC cores, thus with the right software libraries
message passing mechanisms can be produced. A more detailed elaboration
of the MPB and its use will be performed in the next subsection. Finally, a
traffic generator is located on the tile, used to test the performance capabilities
of the mesh.

Platform layout is illustrated at figure 2.1

F 2.1: Single Cloud Chip layout from [1]

2.2.3 Memory organization and basic I/O

The SCC memory consists of the global off-chip DRAM and on-chip SRAM per
tile. The off-chip DRAM is accessed through four on-die memory controllers.
The DRAM has a capacity of 64GB, which is in the default setting, divided
or shared between all cores. The physical memory assignment is perfomed at
boot, and can be changed by the programmer by modified the Lookup Tables
(LUT) for each core.

The platform is divided into four distinct regions. Each memory controller is
responsible for a particular region, serving requests from and to the memory.
Memory controllers also support shared memory between the cores, thus access
to shared memory region may pass through any memory controller. Since the
core addresses are 32-bit and total memory of the chip is 64GB, a translation
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occurs in order for a core to access the off-chip memory. This translation is
made possible with the use of look up tables, private for each core, mapping
each virtual address of a process running on a core, to a physical address at
the off-chip DRAM. The MIU performs this translation, before issuing core
requests at the mesh.

In addition to the off-chip memory, each tile has an on-chip SRAM, which is
accesible by all other cores and is called Message Passing Buffer (MPB). This
memory is also addressed with the help of the translation process mentioned
above. The size of the MPB per core is 8KB, thus resulting in a 384KB message
passing buffer available for all the cores. This buffer is mapped on the virtuall
adress space of some process running on a core, thus every process running
can modify its contents by simple read/write memory operations. Typically,
users do not modify directly this memory, instead libraries provided by Intel
Labs are used. That way users do not need to concern with cache invalidation
and other memory specific issues.

As mentioned before, the MCPC local /shared directory is NFS-mounted on
the cores. All files in that directory are directly accesible by all the SCC cores.
There reside all usefull configuration files needed for the applications (for
example simulation parameters for the Inferior Olive simulator) as well as all
output files created by the cores.

2.2.4 Programming Model of the SCC

2.2.4.1 Programming Model

Application developers usually work on the MCPC, where the SCC is connected
via PCIe bus. Residing there are all the utilities and developing tools needed
to compile, port and execute applications on the SCC. Users develope source
code according to SCC standards, compile it using the cross-compiling tools
provided by Intel and port it on the chip.

All cores of the SCC are accesible through TCP/IP protocolls and thus can be
reached with ssh sessions. Intel Labs provide developers with a bash script,
namely rccerun, which has the role to port applications on the board. Devel-
opers make use of this in order to conduct experiments on the platform.
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The proccess of porting an application is the following :

• Develop code for the application at the MCPC.

• Cross-compile code for the P54C architecture.

• Port application on the SCC, using rccerun, with the appropriate arguments

• Retrieve output files, residing at the local mounted directory

F 2.2: Programmer’s point of view from [1]

2.2.4.2 Underlying message passing mechanisms

Communication between the SCC cores is achieved with the use of the Message
Passing Buffer (MPB). In order for a core to pass a message , it has to write
that message in the target core’s MPB, and the target core has to read it
accordingly. Since the MPBs reside on the chip, communication overhead is
very small [30].

Intel has developed the RCCE library, which consists of a set of functions in
C langugage. These functions take care of the internal mechanisms of mes-
sage passing, and also help configure the platform. Thus the user need not
explicitely write to the MPBs in order to achieve communication, but use the
RCCE library functions.

RCCE library has two main modes, gory and non-gory mode. The main dif-
ference between those two modes is the level of detail that is provided to the
developer concerning message passing. The RCCE library was mainly used for
message parsing between the cores. The gory mode will be covered in more
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detail, since extensive use of it was necesary in order to perform the asyn-
chronous communication, described in Chapter 4. Both versions provide a
runtime similar to that of the MPI runtime system. Each core is assigned a
unique ID, distinct from all other cores running and defines Communicators
in order to communicate with other SCC cores. This programming model is
similar to the classic model provided by MPI runtime system, which is used
in most parallel platforms.

• Non-gory RCCE library

Non-gory library mode provides two basic synchronous functions for
Message Passing, RCCE_send() and RCCE_receive(). These two library
functions preserve the usuall semantics of the MPI send() and receive().
They involve sender and receiver cores, as well as pointers to the virtual
source and target memory. The library also provides functions for col-
lective communication between the cores such as RCCE_scatter() and
RCCE_gather(), as well as the alternative asynchronous send and receive
functions. Barriers are also provided with the function RCCE_barrier(),
in order for synchronization to be achieved between running cores. The
Message Passing interface is straightforward to any user with prior ex-
perience with MPI runtime system [31]

• Gory RCCE library

Gory library mode provides explicit detail of the underlying hardware
and message passing mechanisms of the platform. It allows the user to
allocate and deallocate memory on the MPBs, as read and write data
from every MPB on the platform. Using this, an experienced platform
user is able to further accelerate a ported application, as also reduce
communication overheads. Each core uses functions RCCE_malloc() and
RCCE_free() in order to allocate and de-allocate memory in its MPB. In
addition, data can be written to an MPB by a core with the use of the
RCCE_put() and RCCE_get() library functions accordingly. This function
receive as an argument the core’s ID that will access its memory. [32]
The Gory communication model adopts a shared name space or sym-
metric memory model. This programming model allows a programmer
to reference data structures stored within the MPBs of every core.
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This model makes the assumption that RCCE calls are encountered jointly
by all cores of the platform. This way, all cores would call RCCE_malloc()
jointly, thus reciveing memory at the same offset of their MPBs. Consider
an example where each core RCCE_malloc() memory for an object X.
Since all cores malloc the same object X jointly, all will receive memory
for this object at the same offset in their MPBs. Thus since each core can
access other core’s MPBs it can access this object using this offset. When
Non-Gory library mode is used all the above details concerning the MPB
memory operations remain hidden.

In figure 2.3 the above collective logic is illustrated :

F 2.3: Collective allocation calls from [1]

After the collective memory allocation, cores use RCCE_put() and RCCE_get()
in order to manipulate data in the MPBs. Figure 2.4 illustrates this con-
cept:

F 2.4: Message Passing through MPBs from [1]

The collective communication model is restrictive, in a way that memory
should be allocated in every MPB of the chip, while only a subset of the
cores will communicate. This restriction was avoided in the communication
scheme presented in Chapter 4.



Chapter 3

Model Description

3.1 Application and Porting

3.1.1 Application Description

InfOli Neurons provide a major input to the cerebulum. They receive their
input from Deep-Cerebellar-Nuclei (DCN) cells and transmit their output to
Purkinje-Cells [7]. Each InfOli cell is divided in three compartments, the den-
drite, the soma and the axon. Each compartment has its own unique char-
acteristics and serves a different biological role. In the contect of this thesis,
InfOli simulation proceeds in descrete time steps equal to 50ms. At every step
the biological behaviour of the three compartments is simulated, as well as the
communication between InfOli cells.

• Dendrite

Dendrite represents the input connections to the cell’s body . They receive
input current from DCN cells as well as neighbouring InfOli cells and
forward their output signal to the soma compartment.The interfaces with
neighbouring InfOli cells are called gap-junctions. In general, dendrites
is the compartment that deals with cell communication.

• Soma

Soma is the neuron cell’s body. Through electrochemical reactions, the
soma transforms the input signal from the dendrite into a response signal

15
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through the axon. It is the most elaborate and time consuming compart-
ment that deals with inter-cell communication.

• Axon

Axon can be considered as the output connection of the IO cell. It trans-
mits the electrochemical output signal to other brain cells, Purkinje-Cells,
through the so called Climbing Fiber.

F 3.1: Illustrates an InfOli Cell, from [2]

In the context of this thesis the network of InfOli cells can be viewed as a two-
dimensional mesh. Every mesh node (cell) is fed with an electric current from
DCN and, in turn, signals an output value through its axon compartment and
the CF. The computational model works in a synchronous way, in every step:
all mesh nodes compute their output and their new state based on the current
inputs and their previous internal state. The time flow of the simulation is
illustrated in Figure 3.2.

3.1.2 Application Porting

Prior to the simulation step loop the application allocates memory for all
the structures involving the neurons information as well as all the structures
participating in the communication between InfOli cells. Structures involving
the biological data of the neurons are initialized with random data.

Axons are fed input currents in every simulation step. Those currents may
be derived from user-defined files, or alternatively a hard-coded spike can be
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F 3.2: Simulator Runtime from [3]

simulated.Throughout the work presented herein, the second method is used
for debugging and experimental purposes. Originally, 8-way connectivity was
assumed as the inter-connectivity scheme of the InfOli cells, meaning that only
neighbouring cells were forming gap junctions. In the context of this work,
a different model o fcell inter-connectivity has beed devised, which is more
realistic, being of a more stochastic nature. This will be covered extensively
later on the chapter.

After the communication of input currents and neighbouring IO voltages, the
compartments share the voltage levels of the previous simulation step. Every
compartment then has aquired all the information it needs, and compartment
simulation begins. Specifically for the axon compartment, it’s new voltage level
is recorded to output files and the simulation proceeds to the next step.

This process is repeated until the input current file ends, or 120.000 steps of
the hard-coded input spike are performed.

Previous work [33] involved two major porting options of the simulator.

• Data Partitioning

This porting option distributes InfOli cells to the cores. We refer to data
as the cells that make up the neuron mesh. Each core simulates all three
compartments of all InfOli cells that are distributed to it. This is the
most intuitive mapping on the SCC. Simulations involve grid sizes that
are multiple of 48, in order to avoid unballanced workloads accross the
SCC cores. Each core will simulate a total of N ÷ 48 InfOli cells, where
N is the number of InfOli cells in the grid.
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F 3.3: Data partitioning, from [3]

•Task and Data Partitioning

This porting option differs from the previous in the way that each core
simulates a specific compartment for many InfOli cells. We consider a
single task to be the simulation of a cell compartment. Since SCC consists
of 48 cores then we can assign every compartment to a total 16 cores.
Each core simulates a total of N÷ 16 InfOli cells.

F 3.4: Task and Data Patitioning, from [3]

The evaluation of the above porting options in [3] showed that the first port-
ing option is the most efficient, in terms of energy and CPU time. Since SCC
cores are of the same nature it is not natural to enforce unballance between
their workloads. Also increasing communication overhead decreases the in-
herit parallelism of the application, thus resulting in higher simulation time
[34].
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3.2 Inter-Connectitity

In general, networks of neurons for a specific brain part, do not receive solely
input from other brain parts, but in addition have a constant interaction with
each other. They receive signals from thousand other neighbouring neurons,
that are propagated through the dendrite and integrated in the soma.

As mentioned before, the InfOli cells can be represented as a 2D mesh, where
each node is a cell. Cells form connections between them, which are named
gap-junctions. A gap junction between two cells represents a voltage ecxhange
in the communication phase of the simulation. To be more specific, for a given
gap-junction between two cells, current will flow from one to another because
of the voltage difference betweem them. This results in neighbour current
flowing through the dendrites, apart from the usual current channels that are
specific for each cell compartment.

3.2.1 Normal Distribution

Considering how important the interaction between neurons in the same net-
work is, it seems crucial to devise a stochastic connectivity model which de-
scribes the actual connectivity schemes of the neurons. While we can not
always specify how two distinct neurons will interact, we can impose general
models that will give the probability of two neurons forming a gap junction.

The nature of the connectivity between cells, plays a major role in the appli-
cation behaviour and the CPU times of the simulation. In the previous work
[33], cells were connected in an 8-way scheme. This meant that each cell in-
teracted only with the neighbouring cells directly and no other, thus imposing
a maximum of 8 connections per cell. This communication scheme does not
fully comply with the neuron nature. It appears that neurons can form var-
ious connections with non-neighbouring cells. In fact, it is likely that nearby
neurons will share more common inputs than distant neurons, so interaction
is expected to decrease with interneuronal distance [35].
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3.2.2 Stochastic Neuron Connectivity

Consider two neurons, at a distance r between them. The probability to form
a gap-junction is given in Equation 3.1

P (x) =
1

σ
√
2π

e−(r)2/2σ2 (3.1)

This equation represents the stochastic connectivity model, and the Normal
distribution of the connection probability. The connections file is generated
before the simulation, and is given as an input to the program running at
the platform. This connectivity file is parsed before the main simulation loop,
and the according structures that are specific for communication are initialized
accordingly. We should note here that the creation of the connectivity file is
generic. This means that the user can create connectivity schemes with different
probability equations easilly.

The distance r can be any distance metric the user finds appropriate e.g.
Manhattan, Euclidean, Euclidean Squared etc. The simulation time varies de-
pending on the above parameters, since different gap-junctions will be formed
every time. It is important to note that simuation with stochastic communi-
cation schemes are more time elaborate than simulations conducted with the
previous 8-way connectivity scheme, due to the larger average number of gap
junctions formed, thus larger communication simulation steps.

3.2.3 Analysis

In order to have a high-level view of the connections per cell, as well as a
time estimation per simulation, 3D plots were generated. Furthermore, since
probability values, derived from equation 3.1 will determine the number of
connections per cell, a 3D diagram has been plotted, representing the pos-
sibility of two cells to form a gap-junction for various for various network
sizes.

Figures 3.5 and 3.6 from [3] illustrate the above :

In figure 3.5 we see that probability is highest, when inter-neuron distance is
small. This is only natural, since the Normal distribution is used in determining
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F 3.5: Connection Probability according to equation 3.1

F 3.6: Average number of connections for various parameters

the connections between the neurons. In figure 3.5 we notice that increasing
network sizes the peak of average connections change accordingly. It is also
noted that for a specific network size, average connections per cell does not
increase with the σ

of the distribution equation.

We can also see that for a specific value, average connections per cell increases,
however after a specific point the number of connections decreases. This is
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happening because the neuron mesh is finite, while the connection spread
advances, [3].

Up to a specific point, the connection spread overcomes the max distance
between two neurons, thus average connection per cells is decreasing. Plots like
the above are of a major significance, since the CPU time of the simulation can
be evaluated, as far as the user-defined simulations parameters are concerned.
For different probability equations similar plots could be extracted
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3.3 Code optimizations

In this thesis major optimizations concerning the original implementation of
the Infoli Simulator were performed, that resulted in larger simulated IO net-
works, as well as speedups in the CPU time, which resulted in more power
friendly simulations. In this section will we present the basic structrues in-
volved in the simulation, and the general optimizations that were imposed on
the original porting.

3.3.1 Major Structures

Before the start of the simulation, each SCC core determines the count of cells
that will simulate.

int cellCount : Holds the total number of cells simulated by each core.

cellPtr : Array with pointers to cellState arrays. Different array is used
in each simulation step. For example, if cellParams[0] has the values of the
previous simulation step, then in cellParams[1] will be stored the next step’s
values. In the next step, cellParams[0] will store the new voltage values.

cellParamsPtr : Array with structures involving cell information, currrents
flowing, and neighbour voltages. It stores pointers to cellPtr structure for de-
termining next and previous cell states for each cell simulating. Before each
compartmental simuation this structure is filled with appropriate values.

communication_list_head : Pointer to a linked-list containing a node for
each cell that this core will communicate with.

cores_table : Array of pointers to intra-core communication structures. A
NULL pointer indicates that no communication is performed with a specific
core. This array is filled according to the communicating cells from the above
linked list.

conFile : Filename of the connectivity file. Parsed from all cores in order
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to determine the neurons connections throughout the grid.

After the initilization of the above strutures, cores engage the simulation loop,
perform the following two tasks until the end of the simulation :

• Communication : Communication is performed here.

Function Pefrorm_Gory_Communication handles all core communication,
through the on-tile Message Passing Buffers.

• Compartments Simulation : Functions CompDend, CompSoma and CompAxon
handle the compartmental simulation for each core cell. They receive as
parameters a cell specific cell structure from cellParamsPtr.

3.3.2 Optimizations

Original structures concerning the states of the InfOli cells were arrays. Those
arrays were changed with linked lists, thus better memory management of the
application was achieved. Original porting could simulate a maximum 96.000
InfOli cells. After that network size applications running on the cores were
excessive in memory demanding, resulting in being terminated by the Linux
operating system running on each core.

After the changes in the data structures, applications were running with no
problem for network sizes up to 500.000 InfOli cells. No obsollete memory
allocations were performed. In addition, algorithmic changes were also in-
troduced in the handling of all above structures. The connectivity file was
changed in a way, that it was parsed twice as fast, than before.

Originally, for each cell, connectivity file contained the cells that would transmit
voltages to this cell, and the cells that that would receive voltage from this
cell. This was obsollete, and instead, for each cell communicating we placed
a character representing the type of communication in the connectivity file.
Those characters are used in the communication schemes described later. Since
for large sizes connectivity files are relatively large and are located in the local
mounted file system, parsing them required a lot of CPU time, as well as
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excessive data transfer through the memory controllers of the board. Changing
them enabled us the reduce of the pre-simulation CPU time.

With all the above optimizations the InfOli simulator performed 30% better
than before and larger cell sizes could also be simulated, figure The major
optimizations are introduced in Chapter 4 though, were the MPBs are used.



Chapter 4

Asynchronous Communication

4.1 Communication Overhead in InfOli

In parallel applications, communication overhead plays a major role in the de-
sign and the application porting. The higher the communication needs of the
application the less speedup we can achieve through concurrent labour [34].
The inherent parallelism in the Infoli simulator in a specific simulation step is
obvious, since in each simulation step InfOli cells perform arithmetic compu-
tations independently. However, InfOli cells need their neighbours’ previous
values in order to simulate next cell states, through the interactions formed
between them (gap junctions). SCC cores simulating a specific part of the cell
inventory must determine their neighbours and communicate through high
level functions provided by RCCE library [32].

It is obvious that the higher the average connections per cell, the higher the
impact of communication overhead for the InfOli simulation will be. This
is heavily dependent of the distribution that the user will choose in order
to spread the connection probability across the network. Every core must
transmit to participating cores all InfOli voltages from cells that form gap
junctions, before proceeding to the computation part of the simulation step.

Originally, each core participating transmitted messages that consisted of the
voltage (type modrprec) value as well the source cell (sender_cell_id) and
the target cell (receiver_cell_id). Cores created linked lists of type struct

26
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communication_list that contained all the required inofrmation. A major op-
timization implemented here was the reduction of the message size to contain
only the participating voltage that was transmitted. That was made possible
due to the sorting of the linked lists for each core, that in turn enabled com-
munications with the blocking RCCE calls in a proper manner.

Figure 4.1 presents measurements for various grid sizes, concerning commu-
nication and computation CPU times, for fixed σ = 10. This figure concerns
the InfOli simulator before any communication related optimizations.
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F 4.1: Communication overhead for sample grid sizes

We measured time with the UNIX function gettimeoftheday(), before and
after each RCCE_send() and RCCE_receive(). It is important to note that com-
munication times were not measured while performing dynamic voltage fre-
quency scaling (dvfs) for the application on the fly, since gettimeoftheday()
would not work correctly in that case. For this reason, we kept voltage and fre-
quency constant throughout our simulation, and we presented the normalized
values in our figure.

We can see that 50% of the cpu time is spent for the communication involved
through interacting cells for small network sizes. While we increase the net-
work size total communicatoin overhead seems to decrease. This is happening
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because the max value of the average connections per cell is achieved for dif-
ferent σ for various network sizes, thus the point of highest communication
cost is not the same while we sweep the network size. For example, if we mea-
sured communication time for large network sizes with higher σ values , we
would see that this would still acount for the 50% and more of the simulation
time.

Communication costs are high even though the high speed interconnection net-
work of the SCC. That indicates that more elaborate communication schemes
should be created, using platform low-level mechanisms, and specifically the
Message Passing Buffer (MPB). It is true that fine tuned parallelisation can be
achieved in platforms like this, which are highly experimental.

In reality, communication overhead could be even higher than the one il-
lustrated in our figure. In the way communication scheme was original im-
plemented in InfOli, in order for blocking communications to work without
deadlocks, cores communicated from higher to lower core ids.

For example, suppose core with id 0, wants to send a voltage to cores with
ids 1,2,3. Core with id 0 will execute RCCE_send(voltage) for every other core
and the other cores will execute RCCE_receive(voltage) from core with id
0. We see here that cores 2 and 3 will wait for core 0 to send the voltage
to core 1 and so on. Supposing asynchronous communication between cores,
core 0 would send asynchronously the voltages to the other cores, and would
proceed to the computation phase.
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4.2 Collective allocation programming model

As mentioned in Chapter 2, in order to have full control and utilization of the
platform developers can use RCCE_gory mode of the RCCE library. In addition,
in Chapter 2 the on-tile Message Passing Buffers (MPB) were described in
detail. Functions of RCCE_gory use the MPBs in order to convey messages
asyncrhonously from one core to another.

Ideally we would like cores to communicate in an asyncrhonous non-blocking
manner. This way subsets of cores communicating only with each other will
be able to proceed further to the simulation, since no cell voltage is exchanged.
Each SCC core has an on-chip RAM, the MPB. All the MPBs in the SCC plat-
form are accessible for read and write operations from every SCC core. Though
all cores can access the MPBs, only the core on which the MPB resides can
allocate memory on them for use. This implies that before the use of memory
allocations the ”owner core” should perform the proper allocations, resulting
in an allocation phase before every simulation. All MPBs are mapped in the
virtual memory of processes running on the cores, with the use of the trans-
lation that is performed with the Mesh Interface Unit (MIU), which happens
before a memory request leaves the tile. Requests concernning a memory op-
eration for a specific MPB will be routed through the mesh interface to the
tile in which the MPB resides.

Assume that a core allocates memory on its MPB for others core to use. The
question arrises : How will the other cores know the start and end of the allocated
addreses in order to use them? The SCC developers solved this obstacle by assum-
ing collective memory allocation calls, through the symmetric name space of
the MPBs. In this way, programming model assumes that each RCCE_malloc()
function call will be performed collectively by all SCC cores. For example, if
i-th SCC core allocates memory of 1 byte in its MPB, all cores in the platform
will allocate 1 byte memory in their MPBs accordingly, and that applies for
every SCC core.

In this way, cores will be aware of memory boundaries across the MPBs,
without having to explicitely transmit them to the cores participating in the
communication. This is happening since all the cores allocate the same objects
at the same order in time, thus they receive the same absolute memory offsets
in their MPBs. SCC developers claim that gory and non-gory versions of the
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libraries should work together, but throughout our experience with the board
we could not achieve the above.

For example, assume j-core wants to transmit object A to i-core. Both cores
would perform the RCCE_malloc( sizeof(A) ) function call and they would
receive the same start and end memory relative offsets for this object in their
MPBs, since no prior memory allocation has been performed. Now j-core
knows the absolute offset of the memory that i-core has allocated in its MPB,
and it can explicitely write to it the value of A.

F 4.2: Collective allocation calls from [1]

The use of this model is reflected in the functions of the RCCE_gory library,
RCCE_get() and RCCE_put() which we use in our work. Internally those func-
tions contain the following line :

final_address = target_address - RCCE_comm[x] + RCCE_comm[j] ,

where RCCE_comm[48] is a table holding the start addresses of all the MPBs,
RCCE_comm[i] holds the start address of the MPB of i-core. Variable x is the
id of the core performing the call and j is the id of the core that holds the
target MPB. This line of code translates a local MPB address to a remote MPB
address, with the same absolute offset value in the buffers.

It is obvious that this collective model results in non-optimal communication
schemes in terms of memory footprint. The reason is that all cores must per-
form allocations, even though they are not necessarily participating in the
communication.
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4.3 Non-collective allocation communication model

In our work we avoid the use of collective memory allocations. The reason
behind this is that we want to maximize the utilization of the platform target-
ing our application. We would like sets of communicating cores to progress
independently from other disjoint sets of cores, with on-tile memory resources
not shared between them.

4.3.1 Initilization phase

Consider i-core which communicates with a subset S of the SCC cores. The
nature of communication comes from the formed gap junctions between In-
fOli cells, thus communication between cores in this set with i-core will be
bidirectional. SCC i-core will split its MPB in equal slots for every communi-
cating core, with length L bytes. Each j-core, j ∈ S will put data in this slot
located in i-core’s MPB, and i-core will eventually read them at some point
asyncrhonously.

The same operation will be performed for every core in the platform. The
smaller the number of communicating cores in S the bigger the slots in the
MPBs that will be allocated for them, which results in high throughput com-
munication.

The slot of each core will be splitted in struct message subslots, and will have
a specific number of subslots, specifically :

length =
L bytes

sizeof (struct message)
(4.1)

Struct message will be defined later on this chapter, and its fields will be
explained in detail. Cores will transmit struct messages to other cores in order
to exchange the appropriate voltages.

Since we now broke the collective model and i-core allocates memory inde-
pendently for communicating cores in S, how will those cores know the exact
possition of their slots in other cores MPBs ?
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Each core will write to a file located in the mounted filesystem at the shared
directory which is accessible by all the cores. This file will consist of 48 lines,
one for each platform core. If i-core is not communicating with j-core, then the
according lines will be empty in both files concerning those cores, otherwise
they will contain the absolute start address of the memory in the MPB and
the length of the MPB slot length. For example assume core with id = 5 needs
to communicate with core with id = 6. In 5-th core’s file, at the sixth line,
will be stored the offset reserved for the 6-th core as well as the length of
the slot. This will be the same in the 6-th core’s file, with the difference that
information for 5-th core will be stored in 5-th line. All cores will read from
the filesystem the files concerning communicating cores and determine their
slots in the platform MPBs.

Suppose that we have four cores participating in the simulation, cores 0,1,2,3.
Connectivity file indicates that core 0 communicates with cores 1,2,3. Core 1
communicates with 0,2 and 3, core 2 communicates with 0 and 1, and finally
core 3 communicates with 0 and 1.

The initilization phase of those cores would be the following :

Initialization phase

• Before the initilization phase, the MPBs are empty and without parti-
tions. This is illustrated in Figure 4.3. We can see that the MPBs are
empty and no memory allocation has been performed at this point.

• Each core determines communicating cores through parsing the connec-
tivity file. This information is used afterwards in order to allocate the
slots.

• Allocate memory for communicating cores with RCCE_malloc(). Figure
4.4 illustrates this step. We can see that the MPBs are partitioned in
slots according to the number of the communicating cores, for each core.
We should mention here that slots need not to be consecutive memory
segments, as shown in the figure.

• Write to a special file the memory addresses and the length of the slots
in the MPB.
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For example a snapshot of the file created by 0-th core would be the
following:

1
2 Address for slot−1 length of slot
3 Address for slot−2 length of slot
4 Address for slot−3 length of slot
5

The file created by 3th-core would contain:
1 Address for slot−0 length of slot
2 Address for slot−1 length of slot
3

This step also is illustrated in 4.4, where we see the transmission of the
appropriate values through the MCPC.

• Barrier for all SCC cores. We should wait until all cores allocate and
transmit the information through the
shared directory.

• Read absolute offsets for slots created in other MPBs for this core.

• Store adresses relative to the own core MPB, in order for RCCE_put()
and RCCE_get() to work correctly.

• Barrier for all SCC cores. Wait until all cores finish the initilization phase
before procceeding to the simulation steps.
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F 4.3: MPBs prior to any memory allocation

F 4.4: MPBs after the proper memory allocations
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4.3.2 Necessary data structures

We examine here the basic structures that play major role in the InfOli com-
munication :

1 struct message {
2 bool flag ;
3 int cell ;
4 mod_prec voltage ;
5 }
6 struct core_packet {
7
8 int bidirectional_cells ;
9 int receive_only_cells ;
10 int send_only_cells ;
11
12 int offset ;
13
14 int counter_B_send ;
15 int counter_B_receive ;
16 int counter_R ;
17 int counter_S ;
18
19 int communicating_core_slot_length ;
20
21 volatile message *same_core_slot_address ;
22 int same_core_slot_length ;
23
24 couple_cells *bidirectional_list ;
25 couple_cells *receive_list ;
26 couple_cells *send_list ;
27
28 }

Struct message is the basic message that cores transmit to each other in order
to exchange voltages. int cell represents the cell to the receiver core and
mod_prec voltage is the voltage of a neighbour of this cell. We must mention
here that receiver cores do not concern with the cell that transmits the voltage
(the neighbour) since we are only concerned with the difference in the voltage
between two neighbouring cells.

Bool flag is a field that makes sense only for the first subslot of the slot
reserved in an MPB. Bool flag = false indicates that data in the MPB slot
have been read by the owner core, and the slot is available for use. Bool flag
= true indicates that the owner of the MPB slot has not yet read all the data
in the slot, so the core that wants to write to it must wait. Since only the fist
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subslot is used for controlling the access to the slot, Bool flag is concerned
only for this subslot.

Since each core splits its MPB in slots for the other communicating cores, every
MPB slot is a pool of voltages that foreign cores(producers) write in, and the
MPB owner (consumer) read those votlages at some point. This results in
an one-to-one producer-consumer scheme, and thus synchronization is not
needed between the consumer and the producer.

Struct core_packet is the structure holding all the logistic information con-
cerning information with other SCC cores. Each core maintains an array of
pointers to core_packet structs. If an array ellement has the NULL value
then no communication is performed with this core. For example if in i-core
core_packet[j] == NULL then no communication is performed with j-core.
Bidirectional_cells, receive_only_cells and send_only_cells variables
hold the number of different connections with cells simulated by the other
core.

The counter variables count how many cells have been transmitted with
the other core at the current communication phase of the simulation step.
Couple_cells lists hold the specific cells that must be sent or received by this
core. The struct also holds information regarding the MPB address of the slot
reserved for the communicating core, as well as the slot reserved for this core
in the foreign’s core MPB.
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4.3.3 Communication phase

Having defined the above the following communication scheme emerges :

Consider i-core which communicates with a subset S of the platform cores.
Platform’s i-core will repeat the following process until all communication is
finished for the simulation step.

1 Communication algorithm executed in every simulation step , for every core
2
3 communication phase
4 For every j in [0..47] :
5 if communication with j is not marked as finished:
6 Try to read data from j−core , lcoated in i−core's MPB.
7 Try to write data to the slot reserved in the MPB of j−core.
8 If i−core has no more voltages to send or receive from j−core , mark communication as finiished.
9 Proceed to examine communication with next core in the list.
10 end procedure

The above algorithm uses information contained in struct core_packet. We
should note here the asynchronous nature of the communication. A core de-
siring to put data in a full MPB slot owned by another core, will not block
waiting for the previous data to be read. Instead it will try to write to other
MPB slots, concerning other communicating cores, or read from its own slots
and eventually will try again to write data to the previous slot, when the loop
above reaches again the desired core.

The above communication implementation is both asynchronous and blocking-
free. In addition no deadlock can be achieved since we have a one-to-one
consumer-producer scheme. This is happening because every reader updates
Bool flag only when it has aquired all the data from the MPB slot, and every
writer only after it has written all the desired data in the core.

The proof of correctness is performed by running the InfOli simulator and
comparing results of axon potentials at every step of the simulation with results
of previous versions of the source code.

Figure 4.5 illustrates the communication phase between the SCC cores.
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F 4.5: Communication phase

4.4 Experimental Setup Description

The frequency of all cores throughout the board was kept at 800MHz, while
the voltage was kept at 1.1 V. We were not interested for on the fly adjustement
of those parameters, because we would like to measure the performance gain
of our implementation.

Simulations for the InfOli network have been performed for a variety of the
parameters involved : σ and grid size. The average of the Normal distribution
(which models neuron inter-connectivity) was kept in zero for all the simu-
lations. We increased the size of those parameters with a logarithmic sweep.
We performed experiments with every possible combination deriving from the
following values and created respected figures for the measurements involved.

Simulations for higher cell inventories were performed, however energy gains
as well cpu speedups are presented for network size up to 48000. This happens
because simulations higher than that point are very time demanding.

We measured CPU time of the total simulation and the energy consumption
of the SCC board during the simulations. CPU time was measured with the
linux program time, which measured the platform occupation throughout the
simulation. The command line program time was executed in the MCPC plat-
formm, that initiated the simulation, through proper scripts provided by Intel
developers. In order to measure energy consumption, we initiated a thread
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reading appropriate values from configuration files, at specific time intervals,
throughout the whole simulation.

The management of the threads and the initiation of the simulation was
achieved through Python scripts. The power monitoring thread was not ter-
minated exactly after the end of the simulation, rather than kept monitoring
for 5 more seconds.

Figure 4.6 demonstrates a power pulse. We should note that we measured the
power during the initilization and de-initilization of the cores that would run
each simulation.
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F 4.6: Power pulse for a simulation involved in Infoli

The total energy of the simulation is calculated as the integral of the power
pulse regardng the total simulation time.
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4.5 Results and Discussion

Plots have been created regarding the measurements involved. Those figures
are presented below :
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F 4.7: CPU times before the
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communication optimization
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F 4.11: CPU speedup
10

0

10
1

10
2

10
0

10
2

10
4
0

5

10

15

σ (p.u.)No. of Neurons (p.u.)

E
ne

rg
y 

G
ai

n
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The above figures represent the absolute values of the measurements involved,
as well the gains of communication optimizations for those measurements.
Figures 4.7 and 4.8 illustrate overall simulation times before and after the
optimizations. Figures 4.9 and 4.10 illustrate the total energy consumption
before and after the optimization. We can see at those figures that CPU time
and total energy dropped significantly. We impose the same scale on the Z
axis on those figures, in order to best compare the experiments.

However, in order to have a clearer view of the benefits of communication
optimizations in our work, we created Figures 4.11 and 4.12. Equation 4.2
and 4.3 define the metrics used:

CPU speedup =
CPU before

CPU after
(4.2)

Energy Gain =
Energy before

Energy after
(4.3)

The values before our implementation refer to previous parallel implementa-
tions of InfOli simulator. The performance gains of our implementation are
obvious. The maximun cpu speedup achieved is 11, while the maximun en-
ergy gain is near to 15. Those are the absolute values of our performance
improvements. The interesting fact here is that in 4.11, speedup is increasing
with network size. From that we deduce that the communication scheme per-
forms better for bigger network sizes. That is happening due to the increase
in the average connections per cell for each size. More connections introduce
bulk loading in the communication scheme, so we observe higher speedups in
comparison to previous code versions.

The total energy is also very important. In long lasting simulations like those
performed, energy is a major simulation factor. While the platform is not of
an HPC nature, since all cores reside on the same chip, energy gains should
be noted. One major benefit is that we reduced the total use of the platform.
Core failures often happen on many-cores chips, and by conducting the same
simulations in less CPU time, we decrease the risk of platform failure.
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Thesis Conclusion

5.1 General Remarks

The current thesis aims at further accelerating very time consuming applica-
tions, such as the InfOli simulator. We could see how that was made possible,
through the understanding and utilization of the SCC platform. Indeed, the
InfOli application was accelerated, and bigger neuron simulations were con-
ducted in less time, reducing the platform usage, and thus reducing the risk
of platform failures. Core failure on experimental platforms like the SCC is a
major consideration, since cores can not be replaced, beacuse they reside on
the same chip.

The fact that the SCC is a highly experimental platform, was reflected on the
use of it. In fact, SCC never meant to be an original product, in contrast with
the next many-core Intel platform, the Xeon Phi co-processor. This meant
more difficult application porting on the platform, since many tools were not
available. Another remark that must be made is that the platform’s hardware
is out of date, in contrast with a modern desktop.

However, the experimental nature of the platform, enabled the SCC designers
to include unique characteristics, like the MPBs, which were a hybrid im-
plementation of shared and distributed memory. This gave us the chance to
further experiment with communication schemes, and finally accelerate the
application. We should note here that the SCC designers choice for uniform
RCCE_malloc() calls should have been avoided, as it is constraining for the

42
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developer, and is resource demanding. The designers should provide non-
uniform allocation calls for the distributed memory, as well a mechanism for
cores to determine the memory boundaries in the MPBs.

Though the SCC enabled us to perform large-scale simulations, we should
make clear that it is not an HPC platform in any way. HPC platforms de-
mand higher communication costs, since computing units are inter-connected
through typical networks, in contrast with the SCC, where computing units
reside on the same chip. For applications like InfOli, an HPC platform may be
a better fit.

The uniformity of the SCC cores indicates that the platform does not fit appli-
cations that require load unballancing between the computing units involved.
InfOli portings that involved unbalanced loads between SCC cores, like the
one presented in [3], proved to be the most inefficient. Also voltage and fre-
quency adjustment on the fly, seemed to hamper the simulation performance.
Indeed, applications involving load inballance do not fit the SCC board and
thus porting them reduces the gains of parallelization.

5.2 Future Work

As for future work, an interesting approach would be to develop an rcce-style
library for asynchronous communication, that would exploit the MPB buffers
in the most efficient way. This way applications would take full advantage
of the MPBs, and developers would achieve near to optimal solutions, with-
out being concerned for the underlying mechanisms of the platform. That
would drastically reduce the time-to-solution, which is a factor of paramount
importance, concerning parallel applications.

Regarding the InfOli application, an interesting scenario would be to explore
different connectivity schemes, like the one described in this thesis. Those
schemes could be a result of different probability distributions, or could derive
from brain-related research that would shed light on the actual nature of the
neurons. Simulation times and energy consumption could be measured, while
changing on the fly the neuron connections, as well the impact of those changes
on the overall simulation. In addition, those changes could be triggered by an
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external event, like some input from other brain parts, or an event on the
enviroment of the subject. The development of combined models that would
interact between them and dynamically adjust their behaviour would be very
interesting.

In this thesis, we developed an asynchronous communication scheme on top
of distributed memory buffers, that were accessed through a common address
space by the application running on the cores. Another approach would be to
test models like the above, in pure shared memory architectures, where the
memory access is uniform for sets of cores, or all the platform cores.

Finally, since the InfOli applications is very time-demanding, a way forward
would be to port it on an pure HPC platform, like a cluster. This way a bigger
neuron network could be simulated, for longer brain time, and would provide
more usefull input for neuro scientists towards the understanding of the brain
functionallity. In addition the scaling of the InfOli application could be studied,
and new communication schemes could emerge from these results.
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