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ITepiAndm

H avohutint) emlAuon TOAUTAOXWY TEOBANUATOY TNG UNYOVIXNG OTIC UEPEC UG X0
YioToTon BUOYEPNE EWG ABLVUTY YWEIC TNV EQUEUOYT| aptdunTix®dy Hedodwy xaL T
Yenon nhexteovixol utohoytoth. H pedodog TV TETEQUOUEVGLY GTOLYELWY AMOTEAEL
OTUEPX EVOL LOYUPO EQYUAELD YLoL TNV ETAUGCT] TETOWWY TEOBANUATWY ot EEAIGOETOL
ME UEYOAN ToyLTNTO TOCO OE OXAUONUOUXO OCO XOL OF EMAYYEAUUTIXO eminedo. Ev-
OECTLING, OV YO ETWVONUNAE X0 EQUQUOCTNXE YLOL T1) O TUTLXT) AVAAUCT) POREWY, EYEL
%) ONXOTEQRT, EQUOUOYT) OF Ulol EVPUTEQRT XATNYOPLX TEOBANUATODY TOU UMY AVLXOU
OTWS OTN) PEUCTOUNYOVIXT), OTN METUPORA VEQUOTNTOC, GTNV AXOUCTIXY, GTOV T
Aextpouay vTiouo ot otny eyfopnyovixy. Emmieov, n e€ehén tov H/T pe tic
ONOEVAL O PUEYUAVTERES DUVATOTNTES OLOYELQLOTG OYXOU DEDOUEVV AAAL XOL UE TNV
ab&nom NG TaUTNTOS EXTEAEONC TWV APIUNTIXOY TEALEMY XATEGTNOE EQPW(TH TNV
emiluoT oLUVUETWY TEOBANUATWY To OTolo YEWEOLVTAUY ATPOCTEAUCTA TOLY UEELXY
YEOVLaL.

Xy xotnyoplor oauTH, TV TEOPANUATWY AUENUEVOL UTOAOYIOTIXOU XOGTOUC,
QVIXEL XOUL 1) XOTAO TAUTIXT) TIEQLY QUPT) TOAUGPACIXGY UAX®Y. Elvow yeyovog ot To ye-
YUAUTEQO UEQOC TOV TUPAYOUEVWY DOUXGY VALXMY CTUEQEN TOPOUGLALEL XATOLO ELBOC
OLVOUOLOYEVELAG, OLOXELTT) 1) U1 O TNV XALHOXA TV DOULXMY £0YWY. XopaxTNELo TiXd
TORUOELYHOLTAL ATOTEAOUY TOL XOUUOTO UETUAAWY, TO TOPMOT), TA TOAUXQUG TUAAXIL 1ol
Tor oUVUETA UAXG 0 Tat ool To PEYEVOC, TO GYNUA KoL OL IBLOTNTES TWV CUC TATIXGY
TOUC UEP®Y xoopl{ouY GUEGH TH GUVOMXT| TOUC UN)AVIXT) CUUTEQLPORAL.

AdOpES TEYVIXES £YOLY AVATTUYVEL Y10l TNV TEOCOUOIWOT) X0l TNV TERLY AT TNG
ATOXELOTG AVOUOLOYEV®Y UAoL. H moapolou epyacio emxeviphveton oTn uedodo o-
Hoyevomolnone ToAamhY xhudxwy (first-order computational homogenization) n
OTOloL GUVIGTOTOL GTNY ETIAUGT) BUO EUPWAEVUEVGY TEOBANUATLY GUVORLIXMY TGV,
YLOU TN MOXEOXAOnOL Xou TNV UixpoxAldoxo avTiotorya. To Boocixd yopaxtnelotixd
ulag TETolog Yedodou elvor OTL

o Acv amouTelTon 1) TEQLYPAPT| TWV XATACTATIXMY VOUWY TOU UAXPOPORE.

o Ilopeyel T BUVATOTNTO EVOWUATWONG UEYIAWY TUQUHUORPMOEWY X CTROPMDY
TOGO OTNV TPOCOUOLOCT TNG UXPOXALUAXIS OGO X0k TOU UUXQOPOEEM.

o Ilapeyel TN BUYATOTNTA AETTOUEPOUC TPOCOUOIWONG TWV CUCTUATIXMY UEQKDV

viil



NG ULXEOXAILAXOC.
o EmTEETEL OTOWONTOTE TEYVIXT) TEOCGOUOLWONG O TNV XAWAXO TOU ULXPOPOPEQ.

Avodutind, obugwva pe T Yedodo auTh), UTOAOYILETAL TO BIAVUOUA OVIYUEVWY
TORUUOPPRICENY GE XAUE VALXO OTUELD TOU UOXQOPOREN TO OTIOLO GT1 GUVEYELN YT
CLIOTIOLELTAL YL T1) LOPPWST] TWV GUYORLIXMY CUVINXOY TOU VTITPOCWTEUTIXOU [i-
xpogopta (RVE - Representative Volume Element) oto avtiototyo onuelo. Meta
TNV ETAUGT, TOU TROBATUUTOS GUVORLUXGY TGV TNG WXPOXAUOXIAS, TO OLUVUoUA
TWY TACEWY TOU HOXPOPOREN UTOAOYILETOL UECA OO T1) OLOOLXAGLY OPOYEVOTONONG
TOU TEOLOU TV TACEMV X0 XUTH TOV TPOTO AUTO UTOAOYW(ETOL 1) OYECT) TACEWV-
TORUUOPPACENY VLo XAVE UAXO OTUELD.

(261000, UTAEYOLY XATOLOL TEQLOPIOUOL OTNY EQPUPUOYT| TNS EV AOYw UTOAOYI-
OTXNG TEYVIXNG. MUYXEXQUIEVY, TR TO OTL XUTA TNV TEOCOHOLLOT AoufavovTo
UT OYNY OL BLAUPOPES TUPAUETEOL TN UXPOXALLAXAC OTIWE TO TOCOGTO OYXOU, 1) X0
TOVOUT) XAk 1) LOPPOROYLA TWV GUOTATIXMY UEEMY TOU UAXOU, To ATOTEAECUATO TNG
uedodou elvar avaldETNTA ATO TO ATOAUTO UEYEUVOC TOU AVTITPOCWTEUTIXOD OYXOU
e wxpoxhipaxac (RVE).

[Map” Ohot T, 1) TEYVIXT] OUOYEVOTIOINGNG OTA TAGLCLYL OVOAUCTC TOAAATAGY
HAPOAWY UTOTEAEL EVOL CTUAVTIXO EQYUAELO YO TOV UTOAOYLOUO TOV XAUTUC TUTIXGY
OYEOEWY TOAUPACIXGY UMXOV OTOL OTIOld EVOL AdUVOLTY| 1) EQUQUOYT) OTOLUCONTOTE
aAANG pedodou.
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Abstract

Nowadays, analysis of complicated problems in the domain of mechanics consti-
tutes a hard and even impossible task without the implementation of numerical
methods and the employment of computational machines. Finite element method
is a powerful tool for the solution of such problems and is rapidly developed in
an academic and professional sense. Even if it was developed and implemented
for structural analysis, it is widely employed in several domains such as in fluid
mechanics, heat transfer, acoustics and electromagnetism. Furthermore, the de-
velopment of computer hardware in terms of data processing, has significantly
contributed to the solution of problems that were considered inaccessible a few
years ago.

Most of the materials produced in industry are heterogeneous on one or another
spatial scale. Typical examples include metal alloy systems, porous media and
polycrystalline materials and composites. The overall response of these micro-
heterogeneous materials depends strongly on the size, shape properties and spatial
distribution of the microstructural components.

Several techniques have been developed for the prediction of the macroscopic
behavior of such materials. The present work is concentrated on the first order
homogenization technique in the framework of a multi-scale approach which con-
sists of the solution of two nested boundary value problems, for the macro-scale
and the micro-scale respectively. Methods of this type

e Do not require any constitutive assumption with respect to the overall ma-
terial behavior.

e Enable the incorporation of large deformations and rotations on both micro
and macrolevel.

e Provide the possibility to introduce detailed microstructural information.

e Allow the use of any modelling technique at the microlevel.

Concretely, according to this approach, the macroscopic deformation tensor is
calculated for every integration point of the macrostructure and then is used to



formulate the kinematic boundary conditions for the associated microstructural
representative volume element (RVE). After the solution of the microstructural
boundary value problem, the macroscopic stress tensor is computed by averaging
the resulting microstructural stress field over the volume of the RVE and as a
result, we obtain the stress-strain relation at every macroscopic point.

However, there is a major disadvantage of the existing first-order computa-
tional homogenization. More specifically, this technique can account for the vol-
ume fraction, distribution and morphology of the micro-components however, it
cannot take into account the absolute size of the microstructure making it thus
impossible to treat microstructural size effects.

Nevertheless, computational homogenization provides a significant strategy to
obtain micro-macro structure-property relations for materials for which the overall
macroscopic response cannot be computed by any other method.

x1






Chapter 1

Introduction

1.1 Multi-phase Materials

The heterogeneous nature of industrial and engineering materials has an important impact on
their macroscopic response. Several phenomena of the macrolevel derive from the mechanical
behavior of the underlying microstructure. In other words, the microstructural morphology,
that is size, shape, spatial distribution and properties of the microstructural components,
has a significant influence over the response of multi-phase materials. Consequently, these
microstructural influences are important for the life performance of the material and products
made thereof.

Determination of the macroscopic properties of heterogeneous materials is a require-
ment in many engineering problems. This relation between microstructural phenomena and
macroscopic response also enables the design of a material microstructure such that the ob-
tained macroscopic behavior presents the required characteristics. Furthermore, performing
straightforward experimental measurements on a number of material samples of different
sizes, for various geometrical and physical properties, volume fractions and loading paths is
a hardly feasible task in terms of time and costs. Consequently, there is a clear need for nu-
merical approaches that provide a better understanding of property relations between micro
and macro scales for multiphase materials.

Among several techniques for homogenization of engineering materials, a promising one,
namely the multiscale computational homogenization or also called global-local analysis,
has been developed in recents years, with its basic ideas presented in various papers as
mentioned in [2]. According to this approach, the constitutive equations are not obtained
in a closed-form but the stress-strain relationship is computed at every point of interest
of the macrostructure by detailed modelling of the microstructure assigned to that point.
Hence, such method (i) do not require any constitutive assumption with respect to the
overall material behavior, (ii) enable the incorporation of large deformations and rotations on
both micro and macrolevel, (iii) provide the possibility to introduce detailed microstructural
information, and (iv) allow the use of any modelling technique at the microlevel, sush as the
finite element method.

Although the fully nested multiscale method is still computationally expensive, it seems
that this can be overcome by parallel computation techniques. Moreover, a selective version
can be empolyed where non-critical regions are modelled by continuum closed-form homoge-



nized constitutive relations or by the constitutive tangents obtained from the microstructural
analysis but kept constant in the elastic domain, while in the critical regions the multi-scale
analysis of the microstructure is fully performed. Despite the required computational ef-
forts, the numerical homogenization approach seems to be a versatile tool to establish micro-
macro structure-property relations in materials, where the collective behaviour of an evolv-
ing multi-phase heterogeneous material is not yet possible to predict by any other method.
Furthermore, this technique can also be used to evaluate and verify other homogenization
methods and constitutive models.

Finally, it should be noted that there is a major disadvantage of the existing first-order
computational homogenization. More specifically, this technique can account for the volume
fraction, distribution and morphology of the micro-components but it cannot take into ac-
count the absolute size of the microstructure making it thus impossible to treat microstruc-
tural size effects. However, it still provides a significant strategy to obtain micro-macro
structure-property relations when other methods cannot be employed.

1.2 Scope and Outline

The aim of this thesis is the code developement of computational homogenization techniques
for the multi-scale modelling of non-linear deformation processes of evolving components. In
the framework of this purpose, MATLAB is used as the link element between mathematical
approach and numerical examples where the mathematical formulations of the following
chapters are entirely programmed in the aforementioned environment.

In Chapter 2 the first-order computational homogenization approach is introduced. The
basic assumptions of the technique are remarked and a detailed description of the formulation
using finite element method is given. The scale bridging theorems are discussed for the case
of kinematic boundary conditions and the nested solution scheme of a multiscale analysis
is presented. Finally, in the last part of this chapter, two different approaches, namely
lagrange multipliers and direct condensation, are illustrated and extensively described for
the incorporation of boundary conditions into the microscale problem.

Chapter 3 is concentrated on the fundamentals of non-linear solid mechanics and namely
in elasto-plastic model. A von-Mises criterion is employed in the framework of this work,
using two different schemes, and the integration procedures of the stress-strain relations are
presented in detail, through an incremental strain approach. Based on these formulations,
the developed algorithm is then illustrated and presented through tables and figures.

In Chapter 4 the non-linear analysis methods are developed. More specifically, the
first part of this chapter describes the load control version of the Newton-Raphson scheme,
including full, modified and initial methods, while in the second part, the displacement control
version is illustrated and a comparison of the two approaches is performed.

In Chapter 5 the modeling techniques of the performed analyses are explained, in the
framework of the finite element method. Emphasis is given on the simulation of the mi-
crostructural components of the investigated Representative Volume Element (RVE), con-
centrating thus on the surrounding polymer, the reinforcing fibers and their interfacial mech-
anism.

Chapter 6 contains the numerical results of the performed analyses. A nested procedure



is examined in the first part, where an L-shaped domain constitutes the macrostructural
model and a fiber reinforcing material is assigned to the microlevel. The same RVE is then
further investigated in terms of microstructural mechanics, where the influence of non-linear
effects is taken into account. Concretely, an elasto-plastic model is employed for the behavior
of the surrounding polymer and four different cases of interfacial mechanisms are examined
and the response of the microstructure is obtained for the imposed normal strains in x and
y directions.

Finally, Chapter 7 gives a brief summary of the conclusions of the present work and
remarks on some perspectives of future research.






Chapter 2

First-order Homogenization

2.1 Introduction

The description of the macroscopic overall response of a heterogeneous material with complex
microstructure in an averaged or homogenized sense, constitutes an important component of
continuum micromechanics. Analytical approaches are restricted in many cases, especially
with respect to the geometry of the representative microstructure and its constitutive re-
sponse. In this sense, various numerical methods have been developed in recent years which
produce fine-scale fields on the representative microstructure.

Computational homogenization is one of these multi-scale techniques, which is based
on the description of the local macroscopic constitutive response through the appropriate
definition and solution of a boundary value problem in the micro-scale. The fundamental
principles of the first-order homogenization can be included in the following four points: (i)
definition of the microstructural representative volume element (RVE), of which the consti-
tutive response of its components is assumed to be known; (ii) definition of the microscopic
boundary conditions through the macro-to-micro transition; (iii) calculation of the macro-
scopic output variables through the micro-to-macro transition; (iv) prevail the numerical and
constitutional relation between the macroscopic input and output variables.

2.2 Basic Assumptions

As mentioned in [2] we assume that the considered material configuration is macroscopically
homogeneous, or sufficiently homogeneous, but microscopically heterogeneous consisted of
several perceptible components. FEither we assume a statistical homogeneity or a spatial
periodicity for the employed materials, we need to define a subvolume Q C R? (d = 2,3),
of length [, the aforementioned representative volume element (RVE), which will describe
properly the material heterogeneities. This subvolume €2, in the context of the principle
of separation of scales, has to be small enough in order to be regarded as a point at the
coarse-scale level (I << [y where [) is the length of the macrocontinuum).

In the following homogenization scheme (first order homogenization), the macroscopic
deformation tensor €); is calculated for every material point of the macrostructure, that is
the integration points of the macroscopic mesh. From now on, the subscript “M” will denote



1<<Im

RVE

< >
< »
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Figure 2.1: Macrostructure and microstructure associated with the macroscopic position X,

macroscale while the subscript “m” will refer to the macroscale. Then the deformation tensor
en is employed to define the boundary conditions on the RVE that is assigned to this point
and through the boundary value problem solution of the RVE, the macrostress tensor o), is
calculated as the average stress field of the RVE. As a result, we obtain the stress-deformation
relationship at the macroscopic scale and the consistent tangent of the macroscale through
the microstructural stiffness.

l<<lm
D —
(input)
Macro-strains
Q
----------------------------------- RVE
Boundary Value Problem ‘
(BVP)
< > (output)
Im Macro-stress
oM

Figure 2.2: First-order homogenization

This formulation is called strain-driven since microstructural response is driven by the
macro-strains and the problem is defined as follows: given a macroscopic deformation tensor
e, calculate the macro stress o and the constitutive tangent, according to the response of



the associated microstructure.

2.3 The Microscale Problem

As already mentioned in Section 2.1, the constitutive behavior of the macrostructure is
not a priori defined, but it is computed through the averaged microstructural response.
Hence, the first step of a multiscale scheme is the definition of the microscale problem,
that is the description of the representative volume element (RVE). Such a task, requires
the geometrical properties and the constitutive laws for each micro-component, specifying a
stress deformation relatioship

ol = f(e), i=1,2,..n (2.1)

where i denotes the index of the microstructural components to be distinguished. A fur-
ther theoretical discussion over the employed constitutive laws for this thesis is presented in
Chapter 3, which deals with material non-linearity.

Once defined the representative volume element, the next step includes the imposition
of the macroscale output (deformation gradient tensor €,;) on the RVE. Various approaches
have been proposed for this task (including stress-driven formulations) however, in the present
project only the strain-driven boundary conditions will be implemented and concretely, the
prescribed displacements and the prescribed periodicity.

In the first case, where linear displacements are imposed as boundary conditions, the
displacements of a point A on the boundary are given by

u(z,t) =ey(t)x, z € 0N (2.2)

From the opposing point of view, prescribed periodicity on the boundary can be expressed
by the following relations

w(at t) —u(x t) =ey(t)(at —27), at,z” €9 (2.3)

Here, we need to declare that, for this type of conditions, the boundary 02 is decomposed
into two parts, 0Q" and 9Q~, so that 9Q = 9QT UOQ . Hence, the position vectors z and
2~ denote the position vectors of boundary points of parts 9Q" and 92~ respectively.

oY

oQr oY

oQr

Figure 2.3: Schematic decomposition of the boundary into 9Q and 9~ parts



2.4 The Scale Bridging

The scale bridging, that is the connection of the two scales, is completed through average
relations depending on the involved averaged quantities. In the present work, due to the
implemented coupling quantities, that is the strains, two of the averaging theorems, the de-
formation and the internal work, will be presented along with the consistency of the employed
boundary conditions. For the sake of generality, it should be noted that the stress averag-
ing relation can also be employed as a coupling theorem however, only in a stress-driven
formulation.

2.4.1 Deformation

This averaging relation is implemented for the connection of kinematic quantities between the
micro and macro structure. More specifically, according to this theorem the deformation gra-
dient tensor €;; of the macrostructure must equal to the volume average of the corresponding
deformation gradient tensor ¢, of the microstructure

1/ 1
e =~ | emdQd = — u(x)ndS 2.4
Uy T T0] " 24

where in order to transform the volume integral over €2 to a surface integral of the RVE
we use the divergence theorem. Now, if we substitute equation 2.2 into 2.4 we can easily
verificate that linear displacements, as boundary conditions, satisfy the previous averaging
relation

1 1
€y = — envx)ndS = —e /xﬁdS
M) o TS = pgpe |

- ﬁeM/Q(Vx)dQ = eur (2.5)

In the same way, the validation of the periodic boundary conditions can be verificated through
the substitution of equation 2.3 into 2.4

e = ﬁ( /a  ulayias + /a N u(x_)ﬁdS) _ ﬁ /a N (u(a*) — u(a™))*ds

1 1
= @EM/ (33+ - .I'i)T_LurdS = @6]\/]/ zndS = EM (26)
o+ oN

while this time the surface integral must be decomposed into the two parts concerning the
boundary Q" and 9Q~ respectively. Consequently, both the linear and periodic displace-
ments are formulated consistent with the deformation averaging theorem.



2.4.2 The Energy Averaging Theorem

The energy theorem, also know as the Hill-Mandel principle of macrohomogeneity, states that
the stress work at any point x,; of the macrostructure must equal to the volume average work
of the corresponding RVE, so that fine- and coarse-scale are energetically equivalent. The
variational statement of this principle is as follows: let ¢ be an admissible micro-scale stress
field and o, the associated macroscopic stress tensor, then the realtion

1
o10ey = @/Qagéemdﬁ (2.7)

must hold for any kinematically admissible strain change d¢,,. Now, if we transform the
right-hand side of equation 2.7 into a surface integral, we obtain

Wq = 1 / ol SendQ = 1 Féu(z)doQ (2.8)
9] Jo 9] Jae

where we take into account the equilibrium state of the microstructure and the relation

V(o) du(z)) = (Vor,)ou(z) + o, (Vou(z))

or

on (Véu(z)) = V(oL0u(z)) — (Vo) du(zx) (2.9)

Consequently, as already done for the deformation theorem, we need to verify that both the
kinematic boundary conditions satisfy the Hill-Mandel condition. In the first case, (linear
displacements) we work as in section 1.4.1 by substituting equation 2.2 into 2.8 which gives

1 T
Wao=— [ F(depyx)dS = 1 / FxdS ) ey = o1 0en (2.10)
€2 Joo 2\ Jag

Similarly, if we substitute equation 2.3 into 2.8 we take

Wq = i(/ Fou(x)dS +/ F&u(x_)dS)
2\ Joa+ o0~

= |_§12| - F(Su(z*) — du(z7))dS = ﬁ( /6 ) F(zt — :c)dS) T(SeM
= |—g12|(/m FmdS)T = or0€en (2.11)

and thus we prove that periodic boundary conditions also satisfy the energy averaging theo-
rem, where again the surface integral was decomposed into the parts Q" and 9.
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2.5 Nested Scheme

According to the above developed theory, the entire first-order homogenization process can
be described by a nested solution scheme consisted of a finite number of steps.

First of all, we need to declare that such a solution is approached through the imple-
mentation of the finite element method where both the micro and macro levels need to be
discretized. Once obtained this discretization, a representative volume element (RVE) must
be assigned to each integration point, that is a Gauss-point, and an incremental procedure
must be defined for the imposition of the external load. Hence, the non-linear system of
macro-equations is solved in an iterative manner through the employment of the Newton-
Raphson method.

The first step of this algorithm consists in the initialization of the tangent macrostruc-
tural stiffness matrix OF'/0d, required for the first load-increment. At this point, it should be
clear that load-increment may refer to either the external forces or the prescribed displace-
ments increment. Consequently, an infinitesimal micro-strain increment is produced for each
RVE and the computed consitutive tangent is obtained through the overall microstructural
response and then assigned to the corresponding integration point. As a result, the tan-
gent stiffness matrix for the macrostructure can be initialized and implemented for iterative
process.

Once initialized the stiffness matrix, the first load-increment, that is the first iteration
of the first step of the Newton-Raphson method, is produced on the macro level and the
nodal displacements are computed through the linearized equations. Now, the deformation
state within each finite element is obtained and hence, the deformation gradient tensor dej,
is calculated for each integration point through the deformation matrix Bj;. Thus, each
Gauss-point’s deformation gradient tensor is assigned to the corresponding RVE as an input
variable (called macro-to-micro transition) and the problem is then transferred to the micro
level.

Now, for each RVE, the obtained input quantities are trasformed into the equivalent dis-
placement values and imposed as boundary conditions, either linear or periodic. Thus, a
displacement control non-linear analysis takes place for the computation of the overall RVE’s
response until an equilibrium state is reached. Here, it should be noted that each macro-
iteration of the Newton-Raphson method equals to a micro-step for each Gauss-point. Hence,
each macro-to-micro transition requires a full step of the iterative process within the RVEs,
until a converged equilibrium state is achieved. The overall response of the microstructure
is then averaged and the required quantities, averaged stress and constitutive tangent, are
assigned to the corresponding integration point (micro-to-macro transition). When the com-
putation of all microstructural RVEs is obtained, the problem is again transferred to the
macro level.

At this point, the stress tensor and the constitutive tangent is available for every Gauss-
point and thus the internal forces of the macrostructure can be computed. The convergence
is then checked and if the external forces are in balance with the internal forces the next
increment is produced. From the opposing point of view, if convergence is not achieved,
the next iteration is produced in order to achieve an updated estimation of the macrostruc-
tural displacements and consequently, a new macro-to-micro transition is generated. The
procedure now returns to the micro level and continues until a converged state is obtained.
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Macro-scale

A. Initialization

* Initialize the macroscopic structure

* Define the microstructure and assign an

RVE to every integration point
* Loop over all integration points

impose an infinitesimal strain

assign the tangent moduli to the
integration point

* End integration point loop

B. Increment

* Apply increment of the macro load

C. Iteration

* Get the macroscopic tangent stiffness

* Solve the macroscopic system

* Loop over all integration points

Compute €M

assign the stress and the tangent
moduli to the integration point
* End integration point loop

» Compute the internal forces

D. Convergence
* If not converged = return to C

* Else go to B

&M

G t™M

&M

Cim

Micro-scale

RVE Analysis
* Impose boundary conditions
* Solve the Boundary Value Problem

* Compute the tangent moduli Cgm

RVE Analysis
* Impose boundary conditions

* Solve the Boundary Value Problem

* Compute the stress OM and the tangent

moduli Ciom

Table 2.1: Nested multi-scale scheme solution for the first-order homogenization
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2.6 The Microequilibrium State

This section is focused on the equilibrium state of the microstructure and the required pro-
cedures for the computation of the overall stress o5 and modular Cyy;; at the integration
points. In this sense, we consider a discretization of the RVE in terms of a mesh with N
nodal points and a partition into those of the surface 92 and those of the interior {2 where
B < N nodal points lie on the boundary. Now, the force vector

F; T;F
F= = (2.12)
E, T,F
and the displacement vector
d; T:d
D= = (2.13)
dy, Tyd

are partitioned according to this direction where T; and T}, are boolean matrices which define
the interior contributions and the contribution of the boundary, respectively. Similarly, we
need to decompose the total stiffness matrix into the contributions associated with the interior
and the boundary

T KT T, KT,
T KuT! T, KuTy

(2.14)

Kii Kib
K =
Kbi Kbb

so that the form of the equilibrium equations facilitate the imposition of the boundary con-
ditions. Once obtained this partition, the next step includes the solution of the boundary
value problem (BVP) and the computation of the averaged quantities.

2.6.1 Linear Displacements

According to this formulation, a linear mapping of the macrostrain ¢, into equivalent nodal
displacement is imposed as constraint for each node i of the boundary 052

where n = 1,2, ..., B denotes the identity of the supported nodes, that is the boundary nodes.
Now, if we express the above involved quantities in matrix form we obtain

6:21'
dy
€ = | €y and dn:[ ] (2.16)
Yy "

where we assume a plane stress problem and thus the strain quantities are reduced to €,,,
€yy and 7. Hence, a more compact form of equation 2.14 takes the following form

12



dy = P ey (2.17)

where P’ denotes the position matrix of the i-th node depending on the global node coordi-
nates and in the case of plane stress it is given by the relation

2%, 0
1
P, = 3 0 2Un (2.18)
Yn Tn

Then, the global form of matrix P associated with all, K in number, boundary nodes is
obtained through the assembled relation

207 0 229 0 20 0
1
P= [P1 P .. PB] = 5 0 200 0 2y -+ 0 2yp (2'19)
Y. 1 Y2 T2 - Yk TB

Consequently, a compact relation for the application of these constraints takes the following
form

dy— Pleyy =0 (2.20)

and they can be incorporated into the equilibrium equations through the implementation of
the Lagrange multiplier method or simply imposed as prescribed displacements if a displace-
ment control analysis is employed. Thus, the microequilibrium state is obtained from the set
of equations

F,=0 (2.21a)
Fy—M=0 (2.21b)
dy— Pley =0 (2.21c)

where the Lagrange multiplier A\; denotes the external forces on the nodes of the boundary.
The solution of the above set of equations is obtained within a Newton-Raphson iterative
solution through the linearized relations

F, + K;;0d; + Kypod, =0 (222&)
Fb - )\1 -+ KbZ(SdZ —+ Kbbddb - (5)\1 = O (222b)
db - PT€M + 5db - PT5€M =0 (222C)

In order to approach the solution, a number of finite steps is produced, starting from the
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displacement increment dd, on the boundary. Assuming an equilibrium state, we get from
2.22¢
5dy = PToe (2.23)

the displacement increments on the boundary and from 2.22a

the internal displacements increment. Then the increment of the internal forces is determined
by equation 2.22a in terms of the condensed stiffness matrix K bcb

oA = KGPTde,  with K = Ky — Kyl Ky, (2.25)

and the balance of internal and external forces is checked. If there is no convergence, a
next iteration is produced, the displacements in the interior of the domain are updated using
equation 2.22a

6d; « dd; + dd;,  where 6d, = —K;;'F (2.26)

and the iterative procedure is performed until a converged equilibrium state, in terms of
internal forces, that is || F;|| < tolerance. Now, using equation 2.22b, we compute the surface
forces of the RVE through

A\ = Fy(d) (2.27)

Finally, expressing the nodal forces and stress in a matrix form

0‘11

] , and stresses oy = |0y (2.28)

nr

F, =

ny

Ty
we obtain the overall macrostress of the representative volume in relation with the coordinate
matrix of the boundary nodes

1 <& 1 <&
= P\, = — P,F, 2.29
oM \Q\ ; 1 |Q| ; b ( )

or in a more compact form, by using the total coordinate matrix P of the boundary

1 1

Consequently, the stress sensitivity doys/0€ys is expressed through a differential form of the

equation 2.30 which gives
1 1
€ €
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and now if we substitute equation 2.25 into equation 2.31 we obtain

1 1 1
Soar = = PN = — P (K P ey) = o]

Ql TS] (PKGP")den (2.32)

and thus the tangent constitutive modular matrix is given by

1
Cure = @PKZgPT (2.33)

in terms of the condensed stiffness matrix K g In total, the above procedure is summarized
in the presented algorithm of table 2.2

1. For each RVE, get the corresponding macrostrain €;; and set the nodal displace-
ments on the boundary
db =P T€ M

2. Calculate the internal force vector F' and the stiffness matrix K according to the
partition of interior and boundary nodes

ol weB B -l

3. Update the interior displacements using equation 2.22a
6d; « dd; + od;,  where 6d, = —K;;'F
and check the convergence.
4. If | F;|| >tolerance, return to step 2, else go to 5.

5. Calculate the condensed stiffness matrix of the surface 9f2
K = Ky, — KyK; ' Ky,

6. Compute the overall stress and tangent constitutive matrix

1 1

7. Assign the averaged quantities to the corresponding integration point of the
macrostructure.

Table 2.2: Linear displacements’ scheme
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2.6.2 Periodic Displacements

In the case of periodic displacements, a kinematic constraint is also imposed on the boundary
nodes, only this time a pair discretization of the surface need to be generated. Thus, the
boundary is decomposed into nodes z* belonging to 9Q" and = of 9Q~ as illustraded in
figure 2.3 and the macro-to-micro transition is obtained through

dt —d. =ey(zt —a7) (2.34)

where now index n = 1,2, ..., P denotes the identity of the supported pair of nodes. Working
in the same way as in the linear displacement formulation, we can rewrite equation 2.34 in a
more compact form, using matrix notations

df —d, = (Pf" =P ")em, or Qudy=Pley (2.35)

n

where @, is a topology matrix consited of (0,1,-1) values which expresses the connection
between the n-th pair of nodes and hence we obtain constraint relation

Qdy — Plepr =0 (2.36)

where again the assembled form of matrix P = PT — P~ is constructed. Then, the method
of Lagrange multipliers is adopted for the incorporation of the constraint equations into the
equilibrium

Fi=0 (2.37a)
F,—Q")\ =0 (2.37b)
Qdy, — PTeyy =0 (2.37¢)

where the multiplier Ay expresses the force acting on the node pairs of the surface. Now
the solution is produced through an iterative procedure within the Newton-Raphson method
from the following set of equations

Fy — QT Ny + Kyidd; + Kyddy + Q70N =0 (2.38b)
Qdy, — PTepr 4+ Qody, — PTéep; =0 (2.38¢)

however, this time the final equations need to be transformed in terms of the condensed
stiffness matrix. Thus, we eliminate the internal displacements dd; through equation 2.38a

od; = —K;;' (F; + Kuddy) (2.39)
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and we substitute 2.39 into equation 2.38b in order to obtain the reduced set of equations

FC = Q™A+ KSody + Q76X = 0 (2.40a)
de — PTGM + Q(Sdb — PT(5€M =0 (240b)

in terms of condensed force vector and stiffness matrix

FC = F — KyK;'F;, K =Ky — KuK;" Ky (2.41)

Following the same direction as presented in Section 1.6.1, we obtain the solution of system
2.40 through an iterative process. Concretely, as a first step we compute from equation 2.40a
the displacement increment

ody = —(KG) ™ (FE = Q"X+ Qo) (2.42)

and substituting into 2.40b we obtain the change of Lagrange multiplier

0Ny = <Q(K£)*1QT) -1 <de — PTey — Q(Kbcg)*l (Fbc B QT)\Q) _ PT(5€M> (2.43)

Now, in the framework of the Newton-Raphson method, the invloved quantities are updated
into a typical iteration step according to the relations

Ao Ao +0Xy, and dp < d, + ddp (2.44)
and hence, the update of the internal displacement field is performed through

where dd; is obtained after the calculation of dd, through equation 2.39. When a converged
state is reached, the averaged values must be produced and starting from the stress, we take

1 P 1 -
==Y PAp=1:=Y P.F, 24
OM |Q| 2 2 | | 2 b ( 6)

or using a global notation instead of the sum of the nodal quantities

1 1
Pl — PFE 24
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The tangent constitutive matrix is then expressed as the sensitivity of the macro-stress with
respect to the macro-deformation. In other words, it is given through a differential form of

equation 2.47

1 1
E— & — — P6F 24

where the change of Lagrange multiplier d\s or §F; is taken from equation 2.43, written in
an equilibrium point, and substituted in the previous formula

1. Calculate the current internal force vector F' and the stiffness matrix K according
to the partition of interior and boundary nodes

F; Ky Ky d;
Aol k) =il

2. Compute the condensed force vector and stiffness matrix from equation 2.41
FY =F,— KuyK;'F;, Ky=Ky— KyK;'Ky
3. Get the update of the Lagrange parameter using equations 2.43 and 2.44

Ao < Ay + )9, where

5 = (QEG) Q) (Qdy— PTenQ(KG) ™ (FE — Q7h) — Proeny)
4. Get the displacement increments and their update using 2.39 and 2.42
d < d+dd, where
0d; = —K;;' (F, + Kuddy), and ddy = —(KG) ™ (FF — Q" + QToN,)
5. Check convergence, if || F;|| >tolerance, return to step 1, else go to 6.

6. Compute the overall stress and tangent constitutive matrix

_i _L o117\ pr
ot = 1oy PP OtM_|Q|P<Q(Kbb) Q) P

7. Assign the averaged quantities to the corresponding integration point of the
macrostructure.

Table 2.3: Periodic displacements’ scheme
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5h = (QIKG) Q7)) PToen (2.49)

and thus the sensitivity of o, is given from

iP(Q(Kg)lQT> T Py (2.50)

50‘]\/[ =
2]

where the overall constitutive relation is

1 IR
CtM:@P<Q(Kbe) Q") " (2.51)

In total, the summarized steps for the periodic displacements formulation are presented in
table 2.3 according to the developed theory and the proposed matrix representations.

2.7 A Computational Approach

The previous developed procedure, employs the relation between the forces acting on the
RVE boundary and the associated boundary displacements in order to compute the averaged
stress and tangent moduli. Furthermore, the incorporation of the invloved constraints into
the equations of equilibrium is realized through the Lagrange multipliers method. On the
contrary, in this section an alternative procedure which employs the direct condensation
of the constrained degrees of freedom will be developed, in order to take into account the
boundary constraints. For this purpose, the following scheme will be partitioned into two
directions. The first one consists in the computation of the overall stress of the RVE while
the second approaches the calculation of the macroscopic tangent moduli.

2.7.1 Macroscopic Stress

As already discussed and developed in Section 2.4 and according to the averaging theorems,
the macroscale quantities are obtained through the corresponding volume averaged values of
the RVE. Consequently, the overall RVE stress is extracted from the surface integral

i)
oy = — | 0,d 2.52
V=17 g (2:52)

which for linear prescribed displacements is simply transformed into a surface integral and
finally computed as

B
1
o =17 > P,F, (2.53)
n=1

where n = 1,2, ..., B denotes the boundary nodes, while F,, and P, express the force and
coordinate vector of the n-th node respectively. On the other hand, when the periodic
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boundary conditions are implemented, the macrostress is in a similar way obtained from the
relation

3
1
N =g > BFY (2.54)
k=1

where now k£ = 1,2,3 denotes the three independent corner nodes and Ff;: expresses the
external forces at these nodes, in terms of the condensed force vector.

2.7.2 Macroscopic Moduli

According to this approach, the extract of the constitutive matrix is achieved by the con-
densation of the constrained degrees of freedom. Then, a transformation is necessary for the
derivation of the expression relating macroscopic stress and deformation tensors. Thus, in
tha case of linear displacements, the linearized equations are partitioned as

Kss st 5ds _ 5Fs
[Kfs Kff} LWJ N [5FJ (259)
where indices s and f denote the boundary and the inernal degrees of freedom respectively.

Next, the internal displacement vector ddy is eliminated from 2.55 and the condensed equation
is obtained

K%d, = 6F, where K¢ = K,, — Ksf(K;;) ™ K, (2.56)

which will then be employed for the formation of the overall tangent moduli.At this point, it
should be noted that the above notation corresponds to the previous developed one, where
indices b and ¢ were used instead of s and f respectively. However, in the following formulation
index ¢ will be employed to denote the independent degrees of freedom and hence it is replaced
in order to avoid any confusion. Now, a similar procedure is followed in the case of periodic
displacements, only this time an additional condensation must be produced for the treatment
of periodicity.

More specifically, apart from the equilibrium equations, a constraint relation is imposed
through

dT = dB + d4 — dl (257&)
dp = dp + dy — d (2.57D)

where the bottom and the left side nodes are considered to be independent as illustrated in
figure 2.4. A more compact form of equations 2.57 is obtained through the relation

Cdy =0 (2.58)

where C' is a matrix containing the coefficients of the involved degrees of freedom.
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- 0Qsp
Figure 2.4: Schematic representation of the RVE discretization

Equation 2.58 is then partitioned according to

(Ci C4] [SJ =0 (2.59)

where d; and dy are the vectors of the independent and dependent degrees of freedom respec-
tively. In order to eliminate the latter, we take from 2.59

dg = Cyd; where Cy = —Cd_lCi (2.60)

or in more compact form, equation 2.59 can be written as

Bﬁl] = {cﬂ d; = Td, (2.61)

where T' is a transformation matrix which is employed for the transformation of the linear
system Kd = F into K'd' = F’. This is achieved through the common relations K’ = TT KT,
d =T7d and F' = TTF and hence, the transformation is applied in the partitioned system

Kiz‘ Kid 5dz - 5E 1S3 !
6 S [84] [OE] g~ o

Once applied the transformation, equation 2.62 can be expanded as
[Kii + KidCdi + Cdini + CdindCdi} (5dZ = [5FZ + Cdi(SFd] or K’édz = 5F/ (263)

where the nodes of the boundary 90" are considered as independent in the present work.
Noting that the boundary conditions will be imposed on the corner nodes of the RVE, a
further elimination of 2.63 is necessary according to
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K, K'][6d] [6F,
[K/fs K/ff} Lsdf} N [5F /f] (2.64)

where condensation of dd; leads to

K'°6d, = 6F'y where K'C = Ky, — K'yy(K'y;) "K' (2.65)

which constitutes a [6x6] system concerning the corner degrees of freedom in a two-dimensional
case. Now, the overall moduli will be produced using equations 2.56 and 2.65 for linear and
periodic displacements respectively or generaly from the relation

K®sd, = 6F, (2.66)

which expresses a NxN system of equations where N denotes the supported or boundary
degrees of freedom and to equals to nodes 1,2 and 4 in the case of periodic displacements.
Next, the expression of stress related to the displacements is obtained from the expression

| | .
S = 10y POF, = @P<K 6ds> (2.67)

after the substitution of 0 F; from equation 2.66. Finally, substitution of the equation dds =
PT§eys into 2.67 gives

1 1
Son = @PKC(SdS = ﬁPKCPTaeM (2.68)

and thus we obtain the expression relating the variation of the macroscopic stress and macro-
scopic strain. Consequently, the consistent constitutive tangent is identified as

1
Cin = @PKCPT (2.69)

for both linear and periodic displacements with matrices P and K¢ refering to the corre-
sponding degrees of freedom. That is, in the first case, P and K¢ are expressed in terms
of all the boundary degrees of freedom while in the case of periodicity only the three corner
degrees of freedom are involved in their computation. In conclusion, comparing the above
developed formulations we observe that this second approach expresses the micro-to-macro
transition, and hence the averaged quantities, for both cases of BC, in a more compact form
through equations 2.53 and 2.69.
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Chapter 3

Theory of Plasticity

3.1 Introduction

The main objective of this chapter is to concentrate on the numerical formulation of theory
of plasticity through the implementation of elasto-plastic von Mises materials. In mathemat-
ical terms, the concept of plasticity is defined through a function ¥, called yield function or
yield criterion, whose interior describes the elastic domain and its boundary is the yield limit:

U(o,0,) = Oeff — 0 (3.1)

In this sense, an admissible stress may lie either on the elastic domain where ¥ < 0 or on
the yield limit where ¥ = 0.

U(o,0,) <0 (32)

Consequently, it should be noted that for stresses within the elastic domain, only elastic
straining may occur while for stresses on the boundary either plastic loading or elastic un-
loading may be produced.

Concerning the von Mises materials, the yield function takes the following form for three
dimensional elasticity:

1
U = \/5[(%:5 —0yy)?+ (Oyy —0:2)2 + (022 — 000)? + 6(T§y + 72 + 2.)] — 0, (3.3)
and
1
\I/:\/ﬁ[ggm—axxgyy—‘—ggy‘{‘sTgy]—O‘O:geff_o-o (34)

for plain stress problems, where o.;s and o, denote the von Mises stress and the yield
stress respectively. In the context of the present thesis both the aforementioned cases are
developed however, the following theory will be expressed in terms of plain stress due to the
fewer involved components.
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Furthermore, in this direction, a range of algorithms is developed in order to incorporate
the material non-linearities into the first order homogenization scheme (FE?) where the
fundamental concepts are summarized in the folowing points:

e the construction of the standard tangent modular matrix in order to be used in the
incremental tangent stiffness matrix.

e the integration of the stress/strains laws.

e the formation of a “consistent” tangent modular matrix appropriate for the Newton-
Raphson iterations.

3.2 Iterative and Incremental Strains

For the employment of an iterative scheme, two different procedures, the iterative and the
incremental strains, are proposed in the framework of multiscale simulation and for the sake
of completeness, they are both presented and described in the following steps:

Iterative strains algorithm:
1. The iterative displacements dp are computed.
2. The iterative strains de are obtained, through ép, where de = f(op).

3. The iterative stresses are calculated using the relation o =Cy(o)de or by the integration
of the rate equations.

4. The stresses are updated, o, = 0, + do where o, are the old stresses.

Incremental strains procedure:
1. The iterative displacements dp are computed.

2. The incremental displacements are updated through the relation Ap,, = Ap,+dp where
Ap, is the incremental displacement vector at the end of the last iteration.

3. The incremental strains Ae are obtained, through Ap, where Ae = f(Ap).

4. The incremental stresses are calculated using Ao = Cy(o) or by the integration of the
rate equations.

5. The stresses are updated, o, = 0, + Ao where o, are the old stresses.

As illustraded in the example of figure 3.1, both the procedures will take the stress from
point A, expressing an equilibrium state, to B when a positive displacement occurs. How-
ever, if at this stage a negative displacement and hence a negative strain is produced, the
incremental argorithm will take the stress to point C, as shown in figure 3.1, using the total
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Figure 3.1: Description of the (a) Iterative and (b) Incremental algorithms

strain increment while the iterative algorithm will produce an elastic unloading at this point
and will take the stress to point C, as shown in figure 3.1. This misleading unloading which
constitutes the main disadvantage of the iterative algorithm and may lead to entirely different
results, acted as a catalyst for the developement and the implementation of the incremental
solution, as also recommended in [4].

3.3 The Standard Tangent Modular Matrix

According to the main assumption of the small strain theory of plasticity, the total strain € is
decomposed into the sum of a fully reversible elastic component €, and a plastic non-reversible
(permanent) component e,

e=¢€c+¢ (3.5)
where the elastic component €, is defined as:
€c = €— € (3.6)

Consequently, through the latter and taking into account the constitutive law which relates
the elastic strain with the stress we obtain:

o=FEe =FE(e—¢p) (3.7)

Now, in order to calculate the permanent component ¢, also known as flow rules, the Prandtl-
Reuss law is implemented:

Epa A\ 20, — 0y
&= | €&y | =Xa= 5 20, — 0, (3.8)
Epay Oett 672y



where, as shown in figure 3.2 , « is the normal vector to the yield surface and A is a constant
also referred to as the plastic strain-rate multiplier.

02

Yield Surface

o1

Figure 3.2: Plastic flow illustration in terms of principal stresses

Substituting the plastic strain into equation 3.7, we obtain the relation between the small
strain changes and the small changes in stress:

Oy €x — Gpm
o=|o, | =C| ¢ —¢€y | =C(e—¢,) =Ce— A\) (3.9)
Oy €y — Cpry

where C denotes the isotropic elastic modular matrix:

1 v 0
E
C=rr| ¥ 1 19@ (3.10)
0 0
2

Now, for plastic flow to occur, we need to assure that the stress remain on the yield surface,
and consequently the inner product of the normal vector to the surface a and the stress
vector must be zero:

\IJT
50 = Y 50 — aTso — 0 (3.11)
do

This equation is scematically presented in the figure 3.2 and shows that when plastic flow
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occurs the stress changes o must move tangentially to the yield surface and hence the stress
changes vector must be orthogonal to the vector a. In order to calculate the plastic strain-
rate multiplier )\, equation 3.9 is substituted into equation 3.11 and the following expression
is obtained in terms of strain changes:

B al'Cée

and hence, using equation 3.9 the stress changes are expressed through the relation:

aT'Ca

T
0o = Cide = C’(I _ o 0)56 (3.13)

where C; denotes the tangential modular matrix and consitutes a function of the material
properties, F and v, but also of the normal vector «.

3.4 Isotropic Strain Hardening

In the case of hardening, the fixed yield stress o, need to be expressed as a function of the
plastic strain so that equation 3.1 takes the form

V(0,0,) = Teff — 0,(€p) (3.14)

where €, denotes the total plastic strain

=) 0e,= /ep (3.15)

Ep = pr

A
Y
>

Ex

Oo

v

Figure 3.3: One-dimensional
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and in the case of plane stress, the total plastic strain is given from

2 7/, 9 1
o 1 .
Now, for uniaxial stress, €,, = €,, = ——¢€p, so that no plastic volume occurs and €, = €,,

while 0.y = 0, = 0,. As a result, the form relating o, and €,, can be obtained from the
uniaxial stress/plastic strain relationship where

do, do, E,
=H= = 3.17
Oep Oepe 1 —E/E (8:17)
as illustrated in figure 3.3. Then, the plastic flow relation 3.11 is modified to
ovt oV do,
oV = a—o_ oo + 8—0_08—6175617 = OéT(SO' — H(SGP =0 (318)
and substitution from 3.8 into equation 3.18 gives
6V = a’'éc — Haol = o600 — A6\ = 0. (3.19)
Solving now for A we obtain
al'Cée
N=——— 2
alCa+ A (3:20)
and equation 3.13 is also modified to
aalC

For linear hardening, as shown in figure 3.3, A’ is a single measurable constant while for
non-linear hardening, A’ constitutes a function of €, or more generally, of o, which vary with

€p-

3.5 Integration of the Stress-strain Relation

In order to apply the previous tangential formulation for the calculation of the strain and
stress in a structure, we should require that the strain increments are infinitesimally small, so
such a procedure would be computationally inefficient since it would lead to an accumulative
error. Consequently, we need to advance to the integration of the flow rules through the
loading path, a procedure that requires some additional steps in order to assure that the
final stress do not lie outside the yield surface. In this sense, a more precise expression of
the yield function change should be achieved and is obtained if we add a high-order term in
the von-Mises criterion
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6V = oo + %5UT + 2—350 (3.22)

where differentiation of the normal vector a gives

2 -1 0

B 1 1 1 1

g _ -1 2 0 |-—ad"= A— —aa” (3.23)
0o 207 | o o 6 Ocff 20e;s Oefy

It becomes now evident that the omission of the second order terms in the expression of the
yield function change will lead to error. Now, in this direction we need to adopt a scheme
whose aim is to update the stress at a Gauss point given (i) the old stress, strains and (ii)
the new strains. Such a scheme includes as a first step the elastic prediction for the updated
stresses and secondly the verification of the predicted position. That is, if the stresses lie
within the yield surface, which means that the Gauss-point remained in the elastic domain,
or that it was elastically unloaded, there is no need for integration. On the other hand, if the
stresses are found outside the yield limit we need to adopt one of the following procedures:

e Implementation of a return to the “forward-Euler” scheme.
e Employment of a form of “backward-Euler” scheme.

In the context of the present project, both the aforementioned algorithms were developed
and tested however, only the backward-Euler scheme was adopted in the framework of the
Newton-Raphson method, for the solution of the non-linear equilibrium equations. A more
schematical view of this method can be found at the final part of this chapter which refers to
the algorithmic formulation of the material non-linearity. Though, for the sake of generality,
it should be mentioned that the implementation of sub-increments throughout the integration
procedure could also be an alternative approach for the preservation of the stress within the
yield surface.

3.5.1 A forward-Euler Scheme

According to a forward integration scheme, the location of the intersection of the stress vector
with the yield surface is required and it is obtained through the following equation:

U(og+alAo) =0 (3.24)

where «a is a constant expressing the required part of the elastic stress increments Ao in
order to reach the yield surface and o4 is the initial stress such that

V(o) <0 (3.25)
In addition, with o = 1 the elastic predicted stress o4 + aAo give

U(op) =¥(oa+ Ac) >0 (3.26)
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which means that the elastic predicted stress lies outside the yield limit.

For some yield functions, like von Mises, we can easily obtain the solution of equation
3.24 through an analytical expression. Concretely, re-expressing equation 3.4 in squared form
and substituting the effective stress with o4 + Ao gives

02

AO

Yield Surface / (-aao

aAO

v

o1

Figure 3.4: The forward Euler procedure

U = a0, (Ac)? + Ao Aoa + oepp(oa)’ — 02 =0 (3.27)

where matrix A is obtained through the derivative of the normal vector o and as shown
before, it takes the following form for plane stress problems:

A= |- (3.28)

O~ N
SN =
o O o

Finally, the positive root of 3.27 produces the intersection point M as illustrated in figure
3.4. Alternatively, a more computational approach could be adopted when a general yield
criterion is used and the analytical solution is unfeasible. More specifically, we can use a
short Taylor series of 3.27, with a as the only variable, to set up the iterative scheme and the
initial estimate

(3.20)



Then, the Taylor series takes the form

U, =V, +———0a=",+a" Ac.séa =0 (3.30)

and gives the first change da, where the “old” yield function W, is computed from the stress
0 = 04+ a,Ac.ss and the scalar a is updated according to a; = a, + da,. Next, a second
iteration would give

_\Ijl

= 3.31
OzTAO'eff ( )

50[1

where the normal vector a and the yield function value are computed at a;. Thus, having
computed the intersection point, the stress is updated by the portion o4 + Ao to point
M using the elastic properties and by the portion (1 — a)Ac to point C in an elasto-plastic
manner. More specifically, the forward-Euler scheme is equivalent to a forward elastic step
from point A to point B and a return from point B to C through the normal vector of point
M

oc =04+ A0 —ANCay =0 — ANCay (3.32)

A schematic representation of this process and equation 3.32 is presented and explained in
figure 3.4.

An alternative procedure could avoid the necessity of computing the intersection point M
and as a result the return step could be produced through the normal vector at the elastic
point B. Thus, a Taylor expansion of yield function about point B produces

T
\I/:\IIB—i-a—\P Ao—i-a—\PAep:\I/B—A/\agCozB—A)\Al (3.33)
Jdo Oep

As a result, if the new yield-function value ¥ equals to zero, equation 3.33 gives

Vg

AN = 3.34
abCap+ A'p (3:34)

and hence the final stress o¢ is given by
oc =04+ Ac— ANCag = o — ANCagp (3.35)

At this point, it should be noted that both of the previous algorithms produce stresses that
lie outside the yield surface and hence it is necessary to apply a return technique in order to
approach the yield surface and minimize the generated error.
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3.5.2 The forward-Euler Return to the Yield Surface

As an extension of the previous return process we can produce an iterative loop using equation
3.35, this time starting from point C:

Op = 0¢ — 5)\00&0 (336)
where
o= —JC (3.37)
abCac + A’

If the obtained stress at point D lies outside the yield limit, further relaxation can be applied
until a sufficiently small divergence. Consequently, the general procedure can be expressed
by the following relation either for the forward or the bacward prediction:

Ao = CAc — ANCa, — SAgCag — SAcCac (3.38)

In this general form, «, denotes the normal vector at the intersection point M when the
forward-Euler scheme is employed while for the backward-Euler it denotes the normal vector
at point B.

3.5.3 The backward-Euler Return to the Yield Surface

From the opposing point of view, the backward-Euler scheme derives from the following
equation

O =0 — A)\CO./C (339)

where an estimate for oo must be obtained in order to produce an iterative loop able to
approach the yield surface. Hence, the whole process is based on the reduction of a vector v
which represents the difference between the current stress and the backward-Euler stress

v=0—(op — AXCac) (3.40)

Now, if we express this equation in a short Taylor form we obtain

V=V, + 00 + 0ACo + A)\Cg—a&f (3.41)
o

where we require that the vector v is equal to zero and solving for the stress change do we
take

-1
do = — <I + AA(Jg—a) (Vo + 0ACa) = —P v, — AP ' Ca (3.42)
g
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In the same way, we obtain a Taylor form for the yield function of point C, which should
satisfy the yield criterion ¥ =0

T
U=, + 2 54 e —w, 1 aloo + Ao — 0 (3.43)
do Oep

where solving for the change o\ in A\ gives

U, —al P,

0A= aTP-1Ca + A’

(3.44)

As a result, the iterative stress change do is calculated through equation 3.42 and the final
stress is updated until a sufficiently small value of the yield function is reached.

3.6 The Consistent Tangent Modular Matrix

For the efficient implementation of Newton-Raphson method, a consistent tangent modular
matrix needs to be produced in order to be employed along with the backward-Euler scheme
of Section 2.4.3. In this sense, the characteristics of the overall equilibrium iterations will be
improved and a faster convergence rate will be achieved.

As expressed in Section 2.4.2, the backward-Euler scheme is described by equation 3.36
and hence, differentiation produces

S0 = Cde — 6ACar — AAC‘S—O‘&; (3.45)
o
and solving for do we obtain
da\ " 1
bo= |1+ A)\C’ﬁ— C(de — 0Aa) = P C(de — dAa) (3.46)
o

Again, for plastic flow to occur, we need to assure that the stress remain on the yield
surface, and hence, as in Section 2.3, we obtain

a’dc =0 = o' P7'Cfe — X’ P ' Ca+ A5N =0 (3.47)

and solving for do gives

P~ 1Cad®(P7IC)T
ol P-1Ca + A’

do = (P_IC - )56 = C.0¢€ (3.48)

Consequently, in contrast to the standard modular matrix, the consistent modular matrix
constitutes a function not only of the material properties and the normal vector o but also
of the plastic strain-rate multiplier A\.
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3.7 The Algorithmic Formulation

As already mentioned in the previous development, theory of plasticity is mathematically
incorporated into the Newton-Raphson method through a total langrangian scheme, since
the incremental strains are employed in the framework of the solution process. Taking into
account this incremental form, the stress-strain relation is considered to be

Aoc; = Cy(o-1)Ae  or Ao; = f(oi_1,A€) (3.49)

where C} is not only a function of the material properties, but also of the current stress. As a
result, the Gauss-point stress is obtained at the end of each iteration within an incremental
step however, it is only updated at a converged equilibrium state, that is at the end of the
step. In mathematical terms,

0, = 0,1+ AO’KAQ) (350)

where o; and o0;_; denote the final stress at the end of the incremental steps ¢ and ¢ — 1
respectively and Ao; and Ae; express the incremental stress and strain within the step 1.
Then, in order to obtain the incremental stress Ao;, the incremental displacements AD;
must be calculated as

Ad; = ddy + 0d? + ... + od? (3.51)
so that incremental strains are finally obtained through

Ae; = b¢; + d€t + ... + Oel! (3.52)
where 56{ denotes the strain change within the iteration j of the incremental step i.
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Figure 3.5: Schematic representation of the incremental displacements
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In the following table, the summarized steps of the iterative total Lagrange process within
a Newton-Raphson increment are schematically presented, according to the self developed
program.

1. Enter with

(a) d, : old displacement vector at the end of last increment
(b) d, : new displacement vector

(c) o, : old stress vector at the end of last increment

(d) €, : old strain vector at the end of last increment

2. Loop over all elements and for every integration point

(a) compute €, = f(d,)

(b) compute Ao = f(0,, €, — €)
)
)

(c

(d) update the tangent costitutive matrix C,, = f(o,)

update the stress o, = 0, + Ao

3. Compute the internal forces f;,; and the tangent stiffness K;
4. Assemble f;,; and K; for all the elements
5. Check convergence

(a) if || fint — fext]] > tolerance, go to 5
(b) else go to 7

6. Solve for the residual forces || fint — fext|| and compute the displacement change dd
7. Update the displacement vector d,, < d,, + dd and return to 2
8. Update the stress, the strain and the tangent constitutive matrix

(a) 0, < op
(b) € < €,
(c) Cy <+ C,y,

9. Get the next increment and go to 1

Table 3.1: Algorithm for elasto-plastic update
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At this point, it should be noted that the computation of Ao constitutes a quite delicate
task since it does not simply arise through f(o,, €, — €,), as simply mentioned in step 2(b).
Consequently, once obtained the strain increment Ae = ¢, — €,, an elastic prediction for the
stress change is produced according to

Ao = EAe (3.53)

and as a result, the elastically predicted final stress is obtained as

o =0,+ Ac? (3.54)

where four cases are distinguished, depending on the relation between o, and o;” with the
yield stress o,. These are presented in the following points in terms of uniaxial stress, so
that thay can be easily illustrated and schematically comprehensible.

A. Elastic Loading
o, <oy, & oFf<o, = 0,=0)"
B. Elasto-plastic Loading

o, <oy, & of>0, = On:0y+ET(en—ey)

O a O a
(0790 S '
____________ Eq On el s E1

OY i Oy i i AGep
(05N ; I Oo [ \
P I AocP 5
0o |t . o
i E i

E:
80 811 Sy 8 80 8}’ Sn 8
(a) (b)

Figure 3.6: Elastic Loading (a) and Elasto-plastic Loading (b)
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C. Plastic Loading

o, >0y & o0 >0, = an:ao—l—ET(en—eo)

D. Elastic Unloading

o,>0, & o <0, = o,=07

O a O a
........................... AGeP
Gnep '
O, :::::::::::::::::::::::::"; Er Op |[rrmrmmmmmmmmmrmmem e i Er
O' ............ I '
Y Oy Ao
OpP f------- ...J: .......... /
On E
E
Sy 80811 8 Sy en 80
(a) (b)

Figure 3.7: Plastic Loading (a) and Elastic Unloading (b)

Apart from the new stress o, the constitutive matrix must also be updated according to
the final stress position. This task includes some similar steps which are distinguished this
time in two cases. If the final stress lies within the elastic domain, the constitutive matrix
equals to the elastic mudular matrix otherwise, the tangent matrix must be implemented, as
developed in the previous section, for the production of the next increment.
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Chapter 4

Non-linear Finite Element Analysis

In order to incorporate the non-linear constitutve relations into the finite element analysis, a
pure displacement version is employed in the framework of this project, since it constitutes
the most convenient discretization method. Furthermore, its formulation is simple and allows
for a straightforward implementation of complicated constitutive relations. Consequently, in
the following sections, the solution procedure will be developed according to the Newton-
Raphson method, including its full, modified and initial versions. However, due to the multi-
scale requirements which demand the solution of a strain-driven boundary value problem, not
only the load-control but also the displacement-control formulation will be developed for the
case of quasi-static problems. Hence, the present chapter is divided into two parts. The first
one is concentrated on the load-control formulation of the full Newton-Raphson method and
the modified and the initial versions while the second part, is dedicated to the displacement
control formulation.

4.1 Load Control

The general equilibrium equation takes the form
fext - fint =0 (41)

for quasi-static processes, where time plays no role. Yet, also then we need a parameter to
order the sequence of events. For this reason the concept of time will also be used in static
mechanical processes to form the loading sequence. In particular, the concept of time can be
employed to apply the external load in a number of loading steps (or increments). It would
be possible to impose the entire external load f.,; in a single step, but this is not a sensible
approach due to:

1. The fact that the system of equations produced from the discretization of a non-linear
continuum model is non-linear and as a result, the solution must be obtained through
an iterative procedure. For very large loading steps, it is usually difficult to obtain
a properly converged solution, if a solution can be obtained at all. Indeed, the con-
vergence radius is limited for most commonly used iterative procedures, including the
NewtonRaphson method.
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2. As shown by experiments, most materials exhibit a path-dependent behaviour. In other
words, the obtained stress values are dependending on the followed strain path. For
instance, the resulting stress can be different when we first apply tension on a panel
followed by a shear strain increment or when the same strain increments are imposed
in the reverse order. Consequently, the strain increments must be relatively small, in
order to obtain the correct structural behaviour, so that the strain path is followed as
closely as possible.

In this sense, the vector of unknow stress components is decomposed into o'™* and o

instead of using the “new” and “old” notation respectively. Hence, the stress components
are related through

oA = ol Ao (4.2)

where again Ao denotes the unknown change within the incremental step. Now, substituting
into 4.1, we obtain

FEA =0 / BT AV =0 (4.3)
e=1 Ve
and expanding according to 4.2
FEA =0k / BTo'dv —> " QF / BTAgdV =0 (4.4)
e=1 Ve e=1 Ve
or
R = T =001 [ B Ay (15
e=1 Ve

where (); is the location matrix. Then, if we relate the stress change Ao in a linearized form
with the displacement change Ad, as shown in Chapter 3, we obtain the following linearized
set of equations

Fat = flu = QL (/ BTCBdV) QeAd (4.6)
e=1 Ve

where

— S T TC . )
K ;Qe(/veB BdV)Q (4.7)

is the tangential stiffness matrix of the structure upon a small increment of the loading. As
a result, equation 4.6 obtains the simplified form
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fHEAT _fl = KAd (4.8)

ext nt

Due to the above linearization of the constitutive equations, a drift-away from the true
solution will be produced, especially if relatively large loading steps are employed. A graphical
illustration of this tendancy is provided in figure 4.1.

External Force

True equilibrium path

-------- Numerical solution

>
>

Displacement

Figure 4.1: Purely incremental solution scheme

In order to prevent this gradual departure of the numerical solution from the true solution,
or at least make it smaller, we need to add equilibrium iterations within each loading step.
Now, we obtain an incremental-iterative procedure instead of a pure incremental procedure.
In such a procedure, a first estimate for the displacement increment Ad is made through

Ady = Ky'rg (4.9)

where
ro = fiby — finto (4.10)

is the residual vector at the beginning of the load increment and the subscript 1 of Ad denotes
the estimate in the first iteration for the incremental displacement vector. In the same way,
the subscript 0 of the internal force vector relates to the fact that this vector is calculated
using the stresses at the beginning of the loading step, i.e. that are left behind at the end of
the previous iteration (o9 = oy)

fint,O = Z QZ ( Z (0 (detJl)BlTO'Z,()> (411)
e=1 =1

From the incremental displacement vector Ad; a first estimate for the strain increment Ae;1
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can be calculated, whereupon, using the stressstrain law, the stress increment do; can be
computed. The stresses after the first iteration are then given by

01 200+A01 (412)

where a more extensive discussion over this update can be found in Chapter 3, concerning
the material non-linearity.

External Force

True equilibrium path

"""""" Numerical solution

\4

Displacement

Figure 4.2: Incremental-iterative solution scheme

Generally, the first estimation of the internal force vector f;,;1 that is computed on the
basis of the stress o; is not in equilibrium with the external force vector fe;:1 that have been
added up to and including this loading step. As a result, a correction to the displacement
vector is necessary and is obtained through

(5d2 = Kflrl where r = f;lgt — fint,l (413)

and K7 is the updated tangential stiffness matrix. After the second iteration in the loading
step, the displacement increment follows from

Ady = Ady + 8d, (4.14)

Then, the stress and strain increments Aoy and A€,y are calculated in a similar fashion and
hence a better approximation for the internal forces can be produced so that

Ty = fet;t — fintj
(5dj+1 = Kj_lT’j
Adj_|_1 - Ad] + 5dj+1
Aéiji1 = Aei(Adjia)
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Aciji1 = Aoy (Aei i1, 040) (4.15)

Oij+1 = 0io + A0 i1
Ne g
T T
fint j+1 = E Q. E w; (detJ;) B} 0541
e=1 i=1

where index ¢ denotes that the operations have to be done for every integration point and
the above procedure is continued until a converged equilibrium state.

Table 4.1: Non-linear finite element analysis procedure

For each loading step
1. Initialize the data, set Ady=0
2. Get the new external force vector fiFA¢

ext

3. Get the tangential stiffness matrix
Ne n;
K=Y QI ( > wi(det.J;) Bf Ci,j&») Qe
e=1 i=1
4. Solve the linear system of equations
K;odjy, = fgitm — Jfintj
5. Compute the incremental displacement vector
Adj+1 - Adj + 6dj+1
6. Compute the incremental strain vector for each integration point
A€ jr1 = Ag; (Adj—i-l)
7. Compute the final the incremental stress vector for each integration point

Oij+1 = Tio + Aoy ji1

8. Compute the internal force vector

fintj+1 = Z Q. ( Z Wi (detJi)BiTUi,jJrl)
e=1 =1

9. Check convergence, if || f5A1

o2t — fintj41]| <tolerance, go to the next loading step, else
return to 3.
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An issue that has not been discussed yet, is the implicit assumption that the tangential
stiffness matrix K is updated after each iteration. Indeed, it is not necessary to update and
decompose the stiffness matrix in every iteration, as is being done within the full Newton-
Raphson process, since alternative methods that obviate the need to construct a tangential
stiffness matrix in every iteration have been developed.

Consequently, we could adopt a scheme where tha stiffness matrix is obtained simply by
setting up a new tangential stiffness only every few iterations, or only once within a loading
step. The stiffness matrix is assumed to vary so slowly that its set up in an iteration serves
as a reasonably accurate approximation of the tangential stiffness for a couple of subsequent
iterations. Hence, it is estimated that the slowing down of the convergence speed is off set
by the gain in computer time within each iteration.

A first method along this direction is the modified Newton-Raphson, which sets up and
decomposes the stiffness matrix only once within every loading step and usually at the
beginning of the loading step. An advantage of this process is that all state variables are
computed on the basis of an equilibrium state (presuming of course that a converged solution
has been obtained in the preceding load increment). The alternative approach in which the
stiffness matrix is only updated at the beginning of the second iteration of each load increment
lacks in this advantage, but also does no suffer from the drawback of the first variant, namely
that none of the non-linearities that arise during the loading step are incorporated in the stif-
fness matrix that is being used in the majority of the iterations. However, it should be noted
that the implementation of the modified Newton-Rapshon method can cause convergence dif-
ficulties, since it cannot cope well with either local or global stiffening of structural behaviour

External Force

——  True equilibrium path

"""""" Numerical solution

v

Displacement

Figure 4.3: Modified Newtion-Rapshon

A more simple variant of this iterative procedures, is the initial stiffness method, as il-
lustrated in 4.4. According to this method, the stiffness matrix is set up and decomposed
only at the beginning of the first loading step. It is evident that, when the failure load is
approached and the current stiffness matrix remains at the same initial value, convergence
becomes slow and a large number of iterations are required to obtain a reasonable accuracy.
As a result, a less tight convergence tolerance must be adopted in order to achieve a sutis-
factory number of iterations and thus, the failure load will be overestimated. However, by
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continuing the calculation beyond the limit point of the loaddeflection curve the proper fail-
ure load can sometimes be obtained, since the additional iterations that are added in these
post-peak increments result in a levelling out of the loaddeflection path until the true failure
load has been reached.

External Force

True equilibrium path

-------- Numerical solution

v

Displacement

Figure 4.4: Initial stiffness method

For the sake of generality, it should be mentioned that a second class of method could
be used, including the so-called Quasi-Newton methods or Secant-Newton methods. These
methods apply updates on existing tangential stiffness matrices such that the stiffness in the
subsequent iteration is computed using a multi-dimensional secant approximation.

4.2 Displacement Control

Unlike the previous section where the load is applied to the structure, in the present section,
the so-called displacement control procedure will be developed where prescribed displace-
ments are imposed on the structure. Thus, a stress is produced within the specimen which
in turn results in nodal forces at the nodes where the displacements are prescribed. The sum
of these forces produces the total reaction force which describes the equivalent external load
that would be caused by the prescribed displacements.

Concerning the comparison, when the physics do not explicitly dictate which type of solu-
tion is the most appropriate, the displacement control procedure is often preferred according
to the following reasons

1. The tangential stiffness matrix is better conditioned for displacement control than for
load control. This tends to result in a faster convergence behaviour of the iterative
procedure.

2. Under load control, the tangential stiffness matrix becomes singular at a limit point in
the loaddeflection diagram, not only when global failure occurs, but also when we have
a local maximum along this curve. The tangential stiffness matrix of the displacement
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controlled problem, on the other hand, does not become singular. An illustration of
this phenomenon is presented in figure 4.5.

Failure load

(singularity of the stiffness matrix)

External Force

——  True equilibrium path

"""" Numerical solution

\4

Displacement

Figure 4.5: Singularity of tangential stiffness matrix at limit point and divergence of iterative
procedure

The above statements are best clarified from equation 4.8 which has been produced for
load control and the prescribed external load is contained explicitly in the vector f..;. Now,
instead of the external forces, a number of non-zero displacements are imposed in an incre-
mental procedure. Thus, we decompose the incremental displacement and force vectors Ad
and into a vector that contains only degrees of freedom that are free Ad; and displacement
increments that have been assigned a certain non-zero value Ad,, so that

Ad .
Ad = | and  fiuo = s )mtvo (4.16)
Adp (fp) int,0
In a similar fashion the stiffness matrix is partitioned as
K;t K
K=\ 17w (4.17)
Kpf Kpp

and finally the equilibrium equation 4.8 receives the following form

Kyp Kpp (ff)mt 0] 41
= — : 18
[Kpf Kopp [(fp)mt,o ( )

where it has been assumed that, apart from the prescribed displacements, no other forces act
on the structure.

Then, the free displacement increments can be computed by eliminating Ad,,. Consequently,
from 4.17 we obtain the elimination formula for the first iteration

Ad;
Ad,
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Adpy = =K} (KpAdy + (£1) ) (4.19)
while for the next iterations the formula changes to
dda = ~K57 (ff) i (4.20)

since the increment dd,, is imposed only on the first iteration. Comparison of 4.8 and 4.19,
shows that for the first iteration the external load f2" must be replaced by the equivalent
force vector Ky,Ad, when switching from load to displacement control. In the next iterations

this contribution vanishes altogether for displacement control.

47






Chapter 5

Modeling of the Microstructure

This chapter is concentrated on the microstructural simulation within a multiscale approach,
using the finite element method. A fiber-reinforced material, and concretely a carbon nan-
otube composite, is investigated in the present work and as a result the following development
will be directed according to this approach. For this purpose, the present chapter is divided
into three parts concerning the components of the polymer and their mechanical interaction.
In the first section, the isoparametric formulation of the quadrilateral element, which is used
for the discretization of the surrounding matrix, is extensively presented, while the second
section is concentrated on the finite element simulation of the carbon nanotubes. The first
part of this section presents the carbon fibers random geometries which are dirived from
processing scanning electron microscope images according to [7]. Finally, in the third section
the interaction of these components is further discussed and presented in mathematical and
computational terms.

5.1 Polymer Simulation

The first step for the discretization of the microstructure concerns the polymer simulation,
which is achieved through the employment of the linear quadrilateral element. Furthermore,
for the production of the stiffness matrix the isoparametric formulation is adopted.

5.1.1 Isoparametric Formulation

The isoparametric elements were invented by Taig and Irons for the purpose of the simula-
tion of curved boundaries using non-rectangular elements. According to this approach, the
production of isoparametric elements is based on two coordinate systems

1. The Cartesian Coordinate System and

2. The Natural Coordinate System which constitutes a mapping of the Cartesian Coordi-
nate System

The bridging of these systems is achieved through the transformation matrix [J], the so-called
Jacobian matrix which, in general, relates the partial derivatives of a function f expressed
in two coordinate systems, (z,y, z) and (&, 7, () respectively.
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The transformation formula is expressed as
[Of ] [0x Oy 0z [Of]

¢ ot 0t 0| |ox
of Jr Oy 0z| |Of

e IR et A S 5.1
n dn on On| |y (5:1)
or | |ox oy o:| |os
| OC L0¢ 9¢ o¢] Loz
where the 3x3 matrix denotes the Jacobian matrix
o0& 06 0
Jdr 0Oy 0z
or oy 0:
LO¢C  O¢C  IC

It should be noted that the term “Isoparametric” derives from the fact that both the dis-
placements u, v, w and the coordinates x, y, z are interpolated through the same rule, namely
the interpolation or shape functions.

As a first step for the computation of the stiffness matrix, we need to obtain the trans-
formation of the cartesian system as

x:x(§7n7<) ng(l’,y,Z)
y=y(&n¢) o n=n(zyz2) (5.3)
ZZZ(&?UJC) C:C(ZL’,y,Z)

Then for the integration of the stiffness matrix relations, we obtain the following formula,
using equation 5.1

0r 0y 0:
o6 0§ ¢
_|0x Oy Oz B
dV = o o dédnd¢ = det(J)d&dnd( (5.4)
0r 0y 0:
¢ 9¢ ¢

which relates the infinitesimal volume dV of the cartesian coordinate system with the natural
coordinate system. A more simplified form is obtained for the transformation of the inf-
initesimal area dA into the natural system
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or Oy

o6 O¢

dA = dédn = det(J)déd 5.5
a_x@fn et(J)dédn (5.5)
on On

Similarly, for the case of the one-dimensional mapping, the above relation is further simplified
by eliminating the corresponding rows and columns of the initial formula 5.1.

5.1.2 Shape Functions

In the following figure, the four-node quadrilateral element is illustrated in both the cartesian
and the natural systems.

E=0 E=1/2 ‘g,:l

Cartesian System Natural System

Figure 5.1: Four-node isoparametric quadrilateral element

Now, in order to obtain the transformation, the cartesian coordinates are given as

x = ay + ax€ + azn + asén
y = as + ag§ + arn + agdn

or using a matrix notation

aq as
e=[t w2 y=0 € ol (5.6)
ay as
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In the same fashion, and according to the isoparametric formulation, the displacement field
is obtained through the same interpolation functions

b1 b5
by be
u=1[1 ¢ n &) e v=[1 ¢ n & ; (5.7)
3 7
b4 b8
where now, applying the boundary conditions we take
T1=a1 — Qg — a3 + a4 (52—1,77:—1)
To = Q1 + Qo2 — A3 — Q4 (521,77:—1)
T3 =a; + as +az + as (521,77:1) (5.8)
Tzy=ay—ag+az—a; (§=—-1n=1)
or using matrix notation
) 1 -1 -1 1 a
x 1 1 -1 -1 a
| = ? (5.9)
T3 11 1 1 as
T4 1 -1 1 -1 a4
and solving for the coefficients a; we obtain
a 11 1 1 1
a -1 1 1 -1 x
| = 2 (5.10)
as -1 -1 1 1 T3
a4 1 -1 1 -1 T4

Substituting equation 5.10 into 5.6, we take the formula relating the natural coordinates of
any point with the cartesian system. Similarly, if we repeat the above procedure for y we
obtain

L1 1
x Y
ZE:[Nl N2 N3 N4] 2 s y:[Nl N2 N3 N4j| 2 (511)
3 Y3
L4 Ya
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where

Ny = (1= 6)(1-n)
1

Ny = 11+ 61— )
Ny = 3(1+6)(1+7)
Ny = 3(1-6)(1-n)

(5.12)

are the shape functions of the element. Now, writting 5.11 in a more compact form we take

,

0 NQ 0 N3 0 N4 0 Y2

_ M
- 0 N1 0 N2 0 N3

X
Y1
X2

o wl e (5.13)

Y3
Ty

| Y4

the transformation of the natural coordinate system into the cartesian. In a similar manner,
and taking into account the isoparametric formulation, in order to obtain the displacement
field, we use the above shape functions and hence we take

|

u

v

|-

Ny 0
0 M

Ny 0
0 N,

Uy
U1
U2
N3 0 N4 0 (%)

0 N3 0 N4 Uus
U3
Uy
(1

or {u} = [N{d} (5.14)

where u;, v; denote the nodal displacements in direction x and y respectively. Consequently,
in order to calculate the coordinates x,y or the displacements u,v of any point, we simply
substitute the coordinates £ and 7 into equations 5.13 and 5.14 respectively.

5.1.3 Deformation Matrix

Once obtained the deformation field and the coordinate transformation, the next step includes
the computation of the deformation matrix B which relates the strain at any point with the
nodal displacements u and v. According to the continuum mechanics, the strain vector for
plane stress problems is obtained through
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- o
€xx %
ov
Cyy | = 3_y
ey ou  Ov
9y " o]

| dy

ay
9

Iz |

§

(5.15)

However, the displacement field u, v is expressed in the natural coordinate system and as a
result the above derivatives cannot be directly computed through equation 5.14. Generally,
in such a case, where a function f, defined in two coordinate systems (z,y) and (£,n), is not
possible to be expressed in terms of (z,y), we obtain first the expression

of _ofor  of oy

¢ 0x0E By o€ (5.16)
or
0f1 [ v rof
o |  |oe ol |ox
of | oz oy| |of (5.17)
ond  Lon onl Loy
or ﬁ g
o8| ox
of = [J] of (5.18)
an Jy

where [J} denotes the Jacobian matrix and derives from equation 5.13 and as a result, it
takes the following form

T1 W T1 W
ng Nzg N3g N4g} T Y2 T2 Y2
J| = ’ ’ ’ ’ =|\D 5.19
[ } [Nlm N2m N3m N4,n T3 Y3 [ N] T3 Y3 ( )
Ty Y4 Ty Ya

where matrix Dy is obtained through the shape functions expressed by equations 5.12

_ 1 —(1+n)
o =3 |05 (1-¢)

Now, in order to produce the strain vector, we need to compute the derivatives of the dis-
placement field. Thus, equation 5.18 gives

(1+n)

14 (5.20)

of of
890 - -1 85
ar| = 7] of (5.21)
dy an
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where the inverse of the Jacobian matrix is obtained through the relation

_ Ji o Jf 1 Jon —J
I P Tl I (522
Ty ) det() | =Jw
where
det(J) = J11J22 — J21J12 (523)

Jij denotes the elements of the Jacobian matrix [J} and Ji*j denotes the elements of the

inverse Jacobian matrix [J ] - Through equation 5.21, the strain expression leads to

_%_

[ Ou ] 23

oz ou

Cax Jag  —Ji2 0 0 on
Eyy | = % = ! 0 0 —J21 JH " (524)

v Y det(J) —Ja Ji Jao  —J12 @

W o o o

|0y Oz ov

1 |

or

{e} = [Bi[{ue} (5.25)

where the partial derivatives of the displacement field are computed, using equation 5.14,

through
[Ou] _
a¢ U1
U1
ul TNy 0 Nog O Nog 0 Nig 07 |u
on Ny, 0 Ny, 0 Nz 0 Ny 0 | |vg (5.26)
v 0 Nig 0 Nog 0 Nge 0 Nygl |us '
o€ 0 Ny 0 Ny 0 N 0 Nyl |vs
ov Zi
01 ] )
or
{ue} = [Bx]{d} (5.27)

Then, combining equations 5.25 and 5.27 we obtain the expression of the strain vector

{e} = [B:][B:]{d}
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where the second component B, of the deformation matrix is

~(1=n) 0 1-m 0  (I+m) 0 —(1+n) 0
By = | —(1-¢ 0 —(14+& 0 (14 0 1-¢ 0
T4 0 —1-m 0 (1—=m) 0 (147 0  —(1+n)

0 —(1-¢) 0 -(1+5 0 (149 0 (1-¢)

Consequently, the deformation matrix B is expressed as the product of the two components
B1 and B2, so that

[B] = [Bi][B2] and {e} = [B]{d} (5.29)

5.1.4 Stiffness Matrix

Once obtained the formula of the deformation matrix in the natural coordinate system, the
expression of the stiffness matrix can now be transformed. In the general case, the stiffness
matrix derives from the following form

(k] = / e [B]" [E] [B]aV. (5.30)

while for the four-node quadrilateral element, the integration is reduced to the plane of the
element and thus 5.30 gives

k] = / B]" [E] [B]tdA. (5.31)

€

where ¢ denotes the thickness of the element and [E} is the constitutive matrix which for
plane stress problems is

1 v 0
FE
E]=—5|¥v 1 0 (5.32)
1—v (1 . V)
0 O
2

Now, using equations 5.5 and 5.29, we obtain the transformed expression of 5.31 in the
natural coordinate system

W=/ 11 / 11 (B(e.n)]” [E] [B(e, n) | tdet (7) ded (5.33)

where the integration limits are also adapted according to the natural coordinate system, as
illustrated in figure 5.1. From equations 5.25 and 5.29 we notice that det(.J), constituting
the denominator of By, contains a polynomial a; + a2€ + asn + a4€n, so in order to compute
the integral of 5.33 we will employ a numerical method, namely the Gauss method.
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5.1.5 Numerical Integration

The Gaussian integration will be used for the computation of the stiffness integrals of 5.33
instead of a closed form integration. This quadrature rule produces an approximation of a
definite integral of a function as the weighted sum of function values at specified points within
the domain of integration. In general, a n-point Gaussian quadrature rule is a quadrature
rule constructed to yield an exact result for polynomials of degree 2n-1 or less by a suitable
choice of the points x; , the so-called Gauss-points, and weights a; for ¢« = 1,2,....n. The
domain of integration for such a rule is conventionally taken as [—1, 1], so the rule is stated
as

n

/1 F(@)dn ~ af(0r) + asf(2) + ot anf(m) = 3 anf () (5.34)

=1

where z; and a; constitute a suitable choice of points, the so-called Gauss-points, and weights
respectively for i = 1,...,n. Now, in order to expand this rule for a function of two variables,

we take
/_11 /_zﬂx’y)dxdy - /_119(3/>dy (5.35)

n

/ f(z,y)dzedy = Zazf(xz,y) (5.36)

=1

where

or in a more compact form

1 1 n n
/_1 /_1 flz,y)dzdy = Zaj Zaif($i>yj)
=2 aia;f(ziy) (5.37)

=1 i=1

Similarly, this quadrature rule can be expanded for functions of three or more variables.
Depending on the degree of the polynomial, an adequate order rule must be adopted for
solving the integration problem. In particular, for a linear quadrilateral element a 2x2-point
rule has to be employed for the accurate computation of the stiffness matrix. Now, using
5.37 we take the stiffness matrix expression

/ / (56 n)][B(6n)]rdet (1) ded
—ZZ% (& m)]" [E(& )] [B(& ;)] tdet(J(&,n))) (5.38)

Jj=1 =1
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where the constitutive matrix [E} is also considered to be a function of £ and 7 in the
framework of a non-linear material.

Number of Points, n Points, x; Weights, a;
1 0 2
2 +4/1/3 1
3 0 8/9
++/3/5 5/9

18 4+ v/30
jE\/(3_2\/%)/7 —15

4
i\/(?) +24/6/5)/7 %

5 j:%\/(5 —24/10/7) 322 1+ 1570 gggm
L1 Gravion | 21D

Table 5.1: Order rules for solving the integration problem

5.2 Fiber Simulation

5.2.1 Geometry

According to [7], random fiber waviness is modeled as a non-homogeneous stochastic field
using the spectral representation method in conjunction with evolutionary power spectra.
The statistical properties of this spectra are derived from processing a number of carbon
nanotube geometries from scanning electron microscope images. The evolutionary power
spectra depend not only on the frequency w but also on spatial state variables. Consequently,
it can be expressed as the product of a homogeneous power spectrum Sp,(x) and a spatial
envelope function g, () as follows:

S(w, z) = Sp(w)gn(w) (5.39)

where an estimate of the first term in 5.39 can be obtained by averaging the periodograms
over the ensemble:
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Sp(w) = E l%LL /0 C ) 2} (5.40)

with f(i)(x) being the wavy geometry of the ¢th fiber and £ denoting the mathematical
expectation.

Figure 5.2: Image of wavy geometry of fibers

An estimate of the spatial envelope function can be obtained from the distribution of the
mean square over the samples as

2
ol
9n(w) = QfOOO Sh(w)dw (5.
and an estimate of the evolutionary power spectra is given by
_ ) S (w)
S = E||fO )| —2 5.42
h(ona) = Bl | 57 T (5.42)

Now, samples of wavy carbon nanotubes can be generated using equation 5.40 according to

N-1
f9(z) =2 Z A, cos(wpx + qﬁg)) (5.43)
n=0

A, =1/2S (W, 2)Aw, n=1,2,..,N—1

wp, =nAw, n=12...N-1

where

_ Ywp
Aw = N (5.44)
Ao =0
Sp(wo, z) =0

The parameter w,, refers to an upper limit of the frequency, beyond which the autocorrelation
function is supposed to be zero. Parameter (bﬁf ) stands for random phase angles in the range
0, 27], for the jth sample realization.
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5.2.2 Beam Element

Once obtained the geometry, according to the previous development, the fibers are then dis-
cretized using plane beam elements. The evaluation of the mechanical properties of the fibers,
namely the young modulus and the stiffness properties, is achieved through the equivalent
beam element for carbon nanotubes.

i

CNT Beam element

Figure 5.3: Schematic representation of the multiscale modeling

According to this approach, the carbon nanotube is first simulated as a space frame
structure with the covalent bond between the atoms being represented by continuum beams.
However, such a simulation is an extremely computationally demanding task and it is only
used for the production of the equivalent beam properties. More specifically, the space frame
model is subjected to different loading conditions in order to produce the stiffness indices,
and the fibers are then simulated using beam elements with equivalent mechanical properties.
Consequently, the local stiffness matrix of a fiber element is

- AE 0 . AE . 0
L L
12EI  6EI 12EI  6EI
L3 JE 0 - L3 L2
6EI  4AEI 0 6EI 2EI
2 L 2L
[kLocal} - AE AE (545)
= 0 0 - 0 0
L L
12EI  6EI 12E1 6E1
I3 L2 0 3 L2
0 6EI  2EI 0 6EI  4EI
L L2 L L2 L

where the area A and the inertia I are obtained from the assumed profile section for the
equivalent beam element and the elastic moduli derives by equating the space frame results
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with the corresponding stiffness indices of 5.45. An extensive development for the modeling of
carbon nanotubes with equivalent beam element can be found in [7] along with the produced
fiber geometry.

Now, in order to incorporate the beam element in the surrounding polymer for the f-
inite element analysis, the embedded element technique is used. At first, the global stiffness
matrix of the beam element is computed as

[kctobat] = [TI]T[kLocal] 1] (5.46)

where [Tl} is a transformation matrix according to

[cos —sinf 0 0 0 0
sinf cosb 0 0 0 0
0 0 1 0 0 0
[Tl] o 0 0 0 cosl —sinb 0 (5.47)
0 0 0 sind cosf 0
| 0 0 0 0 0 1]

with 6 the angle between the local axis, that is the beam axis, and the global coordinate
system. The global stiffness matrix can be now embedded in the quadrilateral element of the
discretized polymer through a similar transformation of the global matrix given by

[k Embedded) = [T2]T[kGlobal] 1] (5.48)

where [Tﬂ is the transformation matrix containing the kinematic constraint relations. In
order to obtain [TQ], we need first to relate the kinematic quantities of the corresponding
degrees of freedom for the involved elements.

A
A4
A

Y, v v

—> Xx,u

Figure 5.4: Composite element, consisted of a quadrilateral and a beam element
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As illustrated in figure 5.4, the kinematic quantities of node 5 (us,vs,05) need to be
depended on the master degrees of freedom, namely those of nodes 1,2,3 and 4. Let subscript
b and g denote the quantities of the beam and the quadrilateral element respectively. We
impose now that both node 5 of the beam element and point 5 of the surrounding matrix
have the same displacement components

o] — [ .0
Usp Usq

where uz, and vs, are related with the nodal displacements through the shape functions
according to equation 5.14

Uy
U1
U2
|:u5q:| _ |:N1 0 N2 0 N3 0 N4 0 (%) (5 50)

0 N1 0 N2 0 Ng 0 N4 us '
U3
Ugq
Uy

U5q

with NN; being the shape functions at point 5, N; = N;(&5, 15). Now, in order to relate rotation
05, with the degrees of freedom of nodes 1,2, 3,4 we perform the following decomposition

Osp = Osp(u) + Osp(v) (5.51)
with
lmZ lml lwl lm2
(95b(u) = — Uy — Ug + Us + Uy (552)
L1, L1, L1, L1,
and
Ly Ly Ly Ly
Osp(u) = v — ~-vg — ¥ 5.53
() = 70 v T et (5:53)

or finally, in a more compact form, equation 5.51 is substituted by

U
U1
U2

[z [ Ly l I, l L, l
951): o 2 y2 o 1 o y2 1 _Ll 2 yl () (554)

U3
Uy
Uy
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where quantities [, [, l; and [,; are illustrated in figure 5.4. Combining equations 5.50 and
5.54 we form the global formula for the imposition of the required kinematic constraints in
order to “embed” the beam into the 4-node plane stress element.

Uy

U1

- NN 0 N, 0O Ny 0O Ny 0 s
vey | = 0 N1 0 N2 0 N3 0 N4 (%) (555)

95b N lmQ ly2 _l:r_l N ly2 l:vl N lyl lm2 lyl u3

Ll, Ll Ll Ll Ll Ll Ll Ll U3

Uy

L U4 -
or

{dsp} = [Toi){d,} (5.56)

and taking into account the degrees of freedom of node 6, equation 5.56 is transformed into

Uy
_ - _ - U1
Usp } Us
Usb T i v2
I u
I I | v, (5.57)
Ugh } 1 Uy
Ueb i 1 Vg
Ocb | 1 Ug
) ) ) " | veb
Osp
or
{dv} = [T2]{d,} (5.58)

where [Tg} is the requested transformation matrix. In order to perform the above transfor-

mation, we take into account that [T2:| is an orthogonal matrix so that [Tg]T = [T 2} ' and

we obtain the stiffness matrix through

[k Embedded] = [TZ]T{kGlobal] 1] (5.59)
and using equation 5.46

[k Embedded) = [TﬂT[Tl]T[k‘Locaz} (T3] [T3] (5.60)

which now can be assembled to the stiffness matrix of the sourrounding element, that is the
quadrilateral element.
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5.3 The Interfacial Mechanism

5.3.1 Bond Behavior

Bond is the interaction between reinforcing fiber and surrounding material. As discussed in
the previous section, the interaction of the reinforcing fiber and the surrounding polymer is
assured through a perfect bond model, since we assume a complete compatibility of strains
between the two components. However, a more realistic approach should be taken into
account where the produced bond stress is related to the relative displacement between the
fiber and the polymer. In other words, we have to consider a nonlinear bond-slip model
and more specifically, a stick slip behaviour for the discription of the interfacial load transfer
mechanism between the lateral surface of the carbon nanotube and the surrounding matrix.
Figure 5.5 illustrates the requested stress-slip relation between the involved components.

T A
T [ T >
; Eno
Ebr |
'dsl :
ds < H > dS
H dsl
' Ep
Eh?
€« -T1
Y oL

Figure 5.5: Bond stress-slip relation

If a fiber is in slip state, this means that its corresponding interface bond has failed,
leading to its inability for further load-transferring. The condition of slip for a beam element
is simulated by reducing its axial stiffness to a very small value. Notice that bending and
shear rigidities are not affected allowing the element in slip to resist against bending and
shear. In mathematical terms, it is expressed as

< 71 fully bonded
T = Eblds

5.61
> slip ( )

where 71 denotes the interfacial shear strength, Ej,; is the initial slip modulus and is replaced
by Epa, which is almost zero, when the bond-slip d, exceeds the value dg (Figure 5.5).
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5.3.2 Bond-Slip Model

For including the bond-slip in the finite element analysis of carbon reinforced structures,
a bond link element will be used, consisted of an axial spring element which connect and
transmit shear forces between the fiber node and the adjacent polymer node. Since the link
element has no physical dimensions, the two connected nodes originally occupy the same
location in the finite element mesh of the undeformed structure.

Vb

L.

Fiber node

Vq

Polymer node
u

q

Figure 5.6: Bond link element

The element stiffness matrix relates shear force to the corresponding nodal displacements
by the following relation

where Ks is the shear stiffness of the interface and can be derived from the measured bond
stress-slip relation according to the following equation

ks = Epn A, (5.63)

with Ejp; the initial slip modulus and A is the bar circumferential area tributary to one bond
link element.

A reinforcing fiber element which is embedded in a polymer element is shown in figure
5.7. The corresponding degrees of freedom of the reinforcing fiber and the polymer at each
end are connected by the bond link element whose stiffness depends on the relative dis-
placement between fiber and polymer. Since the finite element model only includes the
concrete displacement degrees of freedom, the degrees of freedom which are associated with
the reinforcing beam need to be condensed out from the element stiffness matrix, before it
is assembled into the structure stiffness matrix.
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Fiber Element

(a) Embedded Fiber Element

Polymer Element

I (b) Before Deformation

Fiber Element

. .

2)
(1)

2)
d\/\N\/\J W (c) After Deformation
O 3) 1.3 Potymer Nodes
\

Bond Element

Figure 5.7: Discrete reinforcing fiber element with bond-slip

With this assumption the stiffness matrix which relates the end displacements along the
axis of the reinforcing bar with the corresponding forces is given by

[ ks —k, 0 0 0 0 0 0
AFE AE
—ky = 4k, 0 0 0o = 0 0
I " L
o 12E1  6EI 12E1  6EI | 1 /1
Fy 0 — — 0 0 —— — ||
I L L L L u
F, 6EI  AEI 6EI 2EI | |v
0 0 — = 0 0 =
My L2 L L2 L o1
Iy 0 0 0 0 ks K, 0 0 ul
Fg U2
F4 AFE AFE ()
= —k, 4k
1, 0 7 0 0 s ks 0 0 6, |
12EI  6EI 12E1 6E1
0 0 5 5 0 0 el
6EI  2EI 6EI  AEI
0 0 - 1 0 0 ~Z 1
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which is rearranged in order to eliminate u; and vy, according to
F@ KCE Kec de
_ (5.64)
FC KCG KCC dC

where subscript e denotes the eliminated and ¢ the condensated degrees of freedom. Conse-
quently, equation 5.64 is expanded as

{F.} = [Kee|{de} + [Kec|{dc} (5.65a)
{F.} = [Kee]{de} + [Ke]{d.} (5.65b)

Now, solving 5.65a for d. and substituting in 5.65b gives

[F} = K [Kee] (1R} = [Ke{de}) + [Ke] {de) (5.662)
N ({Fc} — [Kee] [Kee) ‘I{Fe}) = ([ch] — [Ke] [Kee] ™ [Kec]){dc} (5.66b)

or

{Fcc} = [KEqual] {dc} (566C>

where K,guq is the condensed stiffness matrix and F,. the condensed load vector according
to equation 5.66b. As already expained in the beginning of this section, only the axial stif-
fness of the beam element is linked with the bond element. Hence, the remaining degrees of
freedom in equation 5.66¢ are u}, vy, 6, and uh, ve, 65 for nodes 7 and j respectively.

Once obtained the above static condensation, stiffness matrix of equation 5.66¢ can be
assembled together with the polymer element stiffness matrix to form the total stiffness of
the structure. Using 5.60 we compute the transformed stiffness matrix in terms of the equal
beam element

[k Embedded] = [T2}T[T1}T[k7£}qual] T [13] (5.67)

where matrices [TI} and [TQ} are the transformation matrices as developed in the previous
section, only this time, the transformation is performed on the equal stiffness matrix which
includes the bond-slip effect.
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Chapter 6

Numerical Examples

In the present chapter, the performance of the formulations outlined above is demonstrated
by using some representative numerical examples. The first part is concentrated on the nested
solution scheme in the context of the multi-scale analysis, as presented in table 2.1. An L-
shaped domain is employed as macro-specimen while a fiber-reinforced matrix is assigned
as representative volume element to every integration point. The overall microstructure
response is computed for both types of boundary conditions, namely linear and periodic
displacements, and their influence is examined at the level of the RVE and the macroscale
as well. In the second part, the numerical analyses are tranfered to the micro level where
a microstructure cell is examined in terms of micromechanics, introducing bond-slip effect
and material non-linearity. Their influence over the RVE’s behavior is tested in different
deformation modes and presented in comperative figures and numerical results.

6.1 Nested Solution Scheme

We consider an L-shaped domain for macro-scale (Figure 6.1) where both the length and
the height of the sample equal 20m and the thickness is taken 1m. At the bottom side, the
nodes are fixed in vertical direction while the horizontal displacement is free. In contrast,
the vertical displacements of the left side are free while the horizontal degrees of freedom are
fixed.

6.1.1 Macrostructural Model

The implementation of the nested solution procedure for the L-shaped domain, will be per-
formed according to the algorithm of table 2.1. Hence, the first step consists in the ini-
tialization of the macrostructure where the aforementioned L-shaped domain of plane stress
type, is discretized with 4-node quadrilateral elements. Figure 6.1 illustrates the performed
finite element mesh, consisted of 1200 elements and 2562 degrees of freedom, along with the
applied boundary conditions and the macro load.

As already mentioned, according to this computational homogenization approach there
is no explicit form of the constitutive behaviour on the macrolevel assumed a priori. Con-
sequently, the stiffness matrix and the overall mechanical properties of the macro-specimen
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have to be determined numerically from the relation between variations of the macroscopic
stress and variations of the macroscopic deformation at every integration point.

GICIOIOIOIOIOIOION®)

OICICIOIOIOIOIOION0

Figure 6.1: Schematic representation of the undeformed configuration of the macro-specimen.

6.1.2 Microstructural Model

Once initialized the macroscopic model, we need now to define the representative volume
element and assign it to the integration points. A fiber-reinforced matrix is studied in the
present work as micro-model, consisted of non-aligned fiber elements. A volume fraction of
5% is adopted for the fibers, with random geometry and distribution into the RVE. The
stochastic modeling of the fiber geometry is produced after processing a number of CNT
geometries from scanning electron microscope images according to [7]. The produced fibers
are then placed in the micro-specimen at random position and direction. More specifically,
a random point is generated as starting point and an angle denoting the fiber axis. If the
generated fiber lies within the micro-specimen the procedure continues with the next location
step or else a number of specified attempts is performed until the produced fiber is completely
surrounded by the representative volume. If the process surpasses the prescribed number of
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attempts, a new set of random point and angle is generated and so forth. The following
figure constitutes a schematic representation of the produced RVE, containing 5% volume
fraction of reinforcing fibers, and the finite element discretization.
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Figure 6.2: Microstructural cell.

The matrix behavior is discribed by a linear elastic material with Young’s modulus and
Poisson’s ration being 3 MPa and 0.35 respectively while a full-bond model is implemented
for the interaction between fiber and polymer. Fibers are discretized with beam elements of
hollow cylindrical cross section with equivalent section properties given by

Ay = 7d+7 = (d—1)?]

™

Leq 32

[(d+1)* = (d—t)?]

with d being the equivalent diameter, where a value of 18 nm is adopted in the framework
of the present work, and is calculated according to [7] for wall thickness ¢ equal to 0.35 nm.

Now the procedure is transfered to the micro level where the above microstructural cell
(figure 6.2) is initialized for both linear and periodic displacements and the computed tangent
moduli is the assigned to every integration point for the initialization of the macroscopic stif-
fness matrix. As depicted in the following results, a stiffer response is obtained in the case
of linear displacements in comparison with periodic deformation with the difference though
being indiscernible.
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Figure 6.3: Macroscopic stress-strain curves (0., — €, ) for analyses with linear and periodic
displacements.

This difference in the calculated macroscopic stiffness for the two schemes of boundary con-
ditions is better depicted in figure 6.3 in terms of strain-stress curves. Now, the above consti-
tutive matrices are assigned to the integration-points in order to complete the initialization
of the macro-model and the procedure returns to the macro-level.
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6.1.3 Macroscopic Response
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Figure 6.4: Schematic representation of the deformed configuration of the macro-specimen.

Due to the imperceptible difference between the computed macro-stiffness, the obtained
deformed configurations for the load illustrated in figure 6.1 are almost identical for both

types of boundary conditions according to figure 6.4.

Figure 6.5: Deformed element of the inside corner.
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Figure 6.6: Deformed microstructural cell of Gauss-point (1).
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Figure 6.7: Deformed microstructural cell of Gauss-point (2).
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Figure 6.8: Deformed microstructural cell of Gauss-point (3).
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Figure 6.9: Deformed microstructural cell of Gauss-point (4).
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Figure 6.5 depicts the deformation state of the element located at the inside corner of the
macroscopic domain along with its integration points. In the next figures (6.6 - 6.9), the de-
formed configuration of each Gauss-point is schematically represented and the corresponding
strain and stress vectors are given respectively.

It is now obvious from the above figures, and the stress and strain tensors as well, that
the RVEs in the upper part of the examined element are mainly subjected to tension in
the direction of x-axis, while for the RVEs of the lower part, the tension along the y-axis
is dominant. Furthermore, combining the deformed configuration of figures 6.5 and 6.6 we
verify the expected deformation which is mainly consisted in shear stress, according to the
biggest strain value of v,, for the Gauss-point (3). This confirms the conclusion that the
method realistically describes the deformation modes of the microstructure.

The following figures represent the boundary nodal tractions for two of the faces of the
RVE, namely the left and bottom faces, for linear displacements as boundary conditions.

10f g 10f -
8t 3 .l
6 L
6 L
4 L
4 L
2 L
0t 2
-2 0 4
_6,
1 1 1 1 1 1 1 _4 1 1 1 1 1 1 1
-4 -2 0 2 4 6 8 10 -4 -2 0 2 4 6 8 10

Figure 6.10: Normal nodal forces - RVE (1)  Figure 6.11: Shear nodal forces - RVE (1)
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Figure 6.12: Normal nodal forces - RVE (2)  Figure 6.13: Shear nodal forces - RVE (2)
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Figure 6.14: Normal nodal forces - RVE (3)  Figure 6.15: Shear nodal forces - RVE (3)
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Figure 6.16: Normal nodal forces - RVE (4)  Figure 6.17: Shear nodal forces - RVE (4)

A significant observation of the above figures consists in the influence of the fiber over
the stiffness and its distribution within the representative volume element. More specifically,
the charts of the nodal forces, placed at the left side of the previous figures, present a peak
in both the bottom and the left side in the same boundary points for all the microstructures.
Combining now these representations with the microstructural cell, as illustrated in figure
6.2, it becomes evident that the influence of the fibers placed on the left-bottom corner is
schematically verified through these graphs for both examined sides of the RVE.

At this point, it should be noted that for the sake of completeness, all numerical analyses
are performed for linear and periodic displacements as well. A comparison of their obtained
results is performed in this section in order to highlight the influence of the boundary con-
ditions in the framework of a multiscale approach. However, according to the scope of the
present work, only the case of linear displacements will be discussed in the following sections
since the attention is not concentrated on the solution techniques but most in the influence
of the microstructural effects upon the macroscopic quantities.
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6.2 Deformation Modes

This section is concentrated on the overall behavior of the representative volume element and
the influence of the microstructural effects over the averaged macroscopic quantities. The
response of the previously presented microstructural cell is examined for the three deforma-
tion modes, that is for €,, ¢, and ~,,, taking into account the interfacial shear strength model
of fiber elements and incorporating the elastoplastic constitutive model of the surrounding
matrix. The following tables present the implemented values of the microstructural problem
for both the polymer

Properties of Polymer

Young’s Modulus 3 MPa
Poisson’s Ratio 0.35

Table 6.1: Properties of Polymer

and the fiber elements

Properties of Fibers

Length 0.5-0.7 pm
Diameter 18 nm
Wall Thickness 0.35 nm
Cross Section Pipe Profile
Number of Fibers 16
Volume Fraction 5%
Young’s Modulus 1 TPa

0 MPa
Interfacial Shear Strength 20 MPa

50 and co MPa

Table 6.2: Properties of Fibers

As denoted in table 6.2, the influence of the interfacial shear strength over the RVE’s
overall response is investigated using two different values, namely 20 and 50 MPa, as well
as the fully bonded model (Shear Strength — oo) and the neat surrounding polymer (Shear
Strength — 0).
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6.2.1 Normal Strain in X-direction
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Figure 6.18: Deformed configuration of the RVE for €.,

Linear Elastic Polymer
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Figure 6.20: Stress-strain curves (oy, — €,,) and (7., — €,,) considering linear elastic polymer
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Figure 6.21: Variation of ('j; component considering linear elastic polymer
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As depicted in figures 6.19 - 6.21, the obtained strength of the RVE varies between the two
extreme values, namely those of the neat polymer (Shear Strength — 0) and the fully bonded
fibers (Shear Strength — oo). The bond slip effect offers thus a significant contribution to
the RVE’s overall strength. More specifically, a meagre interfacial shear strength leads to an
averaged normal stress o, of 166.2 MPa where the reinforcing fibers are unable to tranfer
axial forces and as a result only through the bending and shear rigidies are considered to
contribute to final strength. On the other hand, a fully bonded model gives almost the double
averaged stress o,, that is 320.1 MPa, and an also significant contribution to the other stress
components o, and 7, (figure 6.20).
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Figure 6.22: Variation of Cy and C33 components considering linear elastic polymer

Figures 6.21 and 6.22 represent the variation of the constitutive components in relation
with the strain increment €,. In combination with the corresponding stress-strain curves, it
becomes evident the both the neat polymer and the fully bonded model constitute the lower
and upper strength limits respectively, caracterized by linear elastic response of the entire
microstructure.

Furthermore, we observe that even a low value of shear strength, that is 20 MPa, does
not cause a failure to all the embedded fibers, but only to a part of them. Their random
geometry and direction contribute to the activation of the bending and shear strengths apart
from the axial, and hence a group of fibers, namely those having a vertical or better a
non-horizontal direction, remains fully bonded and provides the remaining strength to the
microstructural cell. However, the insignificant contribution of the bending and shear rigidies
is better illustrated in figure 6.22 where the constitutive component C; for shear strength
of 20 MPa has almost reached its lower value of 3.32 GPa.

81



Elasto-Plastic Polymer

Similarly, the following figures depict the stress-strain curves and the variation of the con-
stitutive components of the RVE only this time the behavior of the surrounding material is
described by an elasto-plastic model.
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Figure 6.23: Stress-strain curve (o, — €,,) considering elasto-plastic polymer

In the case of the neat polymer, an almost linear behavior is obtained and the (0., —
€zz) curve seems to be identical with the corresponding curve of the linear elastic polymer.
However, a plastic region is developed in the front end of the cell, causing thus a reduction
of the overall strength which is better illustrated from the variation of the C';; component in
figure 6.25. Combining now the curves of shear strength of 20 MPa, we notice that in both
cases, a part of fibers enters the slip state at a strain value of 0.75 %. Moreover, a further
loss of strength occurs for the elasto-plastic model which becomes noticeable at strain values
above 1.5 %. A similar behavior is obtained for shear strength of 50 MPa where the influence
of the slip coincides with the plastification of the boundary regions of the RVE. Nonetheless,
the influence of the plastic regions is the determinant factor for the overall strength and
consequently, the slip effect is not fully performed. This can be better demonstrated through
the comparison of yellow and red curves which represent the shear strength of 50 MPa and
the fully bonded model. It is thus illustrated that the polymer non-linearity constitutes a
significant factor even in a fully bonded reinforced material.
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Figure 6.25: Variation of (';; component considering elasto-plastic polymer
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This can be batter demonstrated through figure 6.25, in terms of variation of the C7; compo-
nent. More specifically, the constitutive element C; appears to be mainly influenced by the

non-linear behavior of the polymer leading thus to widely lower values in comparison with
the neat polume response.
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Figures 6.27 and 6.28 depict the stiffness distribution over the boundary of the RVE, in
terms of normal and shear nodal forces. The developed plastic region in the case of elasto-
plastic polymer behavior becomes noticeable through the normal forces distribution. The
reinforcing fibers generate a nonuniform displacement field leading thus to the plastification
of non-reinforced regions and consequenlty to the limitation of the boundary stiffness and

the overall strength.

6.2.2 Normal Strain in Y-direction

Figure 6.29: Deformed configuration of the RVE for ¢,
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Linear Elastic Polymer

As depicted in the following stress-strain curve, an identical behavior with the strain mode
in x-direction is obtained for the neat polymer, leading to a final strength of 166 MPa while
for the other cases a significant difference is noticed in the overall response. More specif-
ically, a full bond model of the reinforcing fibers leads to a strength of 532 MPa for normal
strain in y-direction versus 320 MPa for normal strain in x-direction. It becomes now evident
that the fiber distribution and especially the direction of their axes is a determinant factor
for the distribution of the overall stiffness and consequently for the strength of the RVE.
Furthermore, the fact that the major part of the fibers is placed along the y axis, means a
more noticeable influence of the slip effect over the RVE’s response.
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Figure 6.30: Stress-strain curve (o, — €,,) considering linear elastic polymer

Concretely, the model of 20 MPa shear strength reaches a normal stress of 272 MPa while
for the first mode, the corresponding stress is 226 MPa. Thus, we observe a loss factor of
0.48 for the mode of y-direction and 0.29 for the mode of x-direction. Almost half of the
full bond model strength is lost due to the slip effect making thus clear the contribution of
random geometry and direction of the reinforcing fibers to the overall response. Figure 6.30
illustrates clearly this loss of strength in terms of stress-strain curves, namely between red
and green curve.
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Figure 6.31: Stress-strain curves (0, —€,,) and (7., —€,,) considering linear elastic polymer.
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Figure 6.32: Variation of Co component considering linear elastic polymer
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Figure 6.33: Variation of C; and (33 components considering linear elastic polymer

Elasto-plastic Polymer

As demonstrated through the previous modal analysis, a plastic region is expected to be
generated along the direction of the imposed strain, namely at the bottom and the top of
the RVE for the case of normal strain in y-direction. The following stress-strain curve, in
terms of oy, and ¢, respectively, depicts this behavior and hence the contribution of the
fibers. A full bond model and even those of shear strength of 20 and 50 MPa lead to a
reduction of the strength due to the fact that the reinforcement is concentrated in the center
of the RVE generating thus a nonuniform distribution of the stiffness. As a result, the
imposed displacement field has a greater effect on non-reinforced regions and specifically on
the displaced boundaries. In terms of loss of strength, for the full bond model the strength
is reduced from 532 MPa to 262.8 MPa or 50.6 % while for a slight bond model, that is shear
strength of 20 MPa, the correspoding loss percentage is 25.1 %, namely from 272 MPa to
203.7 MPa.

Consequently, not only the random shape but mainly the spatial distribution of the
reinforcing fibers is the determinant factor of the RVE’s strength and overall response. In
addition, a more uniform distribution of the reinforcing components and hence of the total
stiffness, leads to a more effective performance of the representative volume. Now, a similar
conclusion can be drawn for the other stress components whose variation is illustrated in the
following figures (6.34 and 6.35).
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Figure 6.34: Stress-strain curve (o, — €,,) considering elasto-plastic polymer
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Figure 6.35: Stress-strain curves (0., —€,,) and (74, —€,,) considering elasto-plastic polymer
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Figure 6.36: Variation of Cy3 component considering elasto-plastic polymer
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Figure 6.37: Variation of C; and C33 components considering elasto-plastic polymer
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Figure 6.38: Normal nodal forces - Fully bonded model for linear elastic and elasto-plastic
polymer behavior respectively.

Figure 6.39: Shear nodal forces - Fully bonded model for linear elastic and elasto-plastic
polymer behavior respectively.

It becomes evident through figure 6.39 that elasto-plastic behavior of the polymer leads
to the plastification of the entire boundary of the bottom side, making thus unnoticeable the
contribution of the fibers, even if they are in a full-bond state. Furthermore, only the corner
regions of the bottom side remain in the elastic domain, since there is no reinforcement at the
left and right sides, along y-axis. Hence, the higher percentage of fibers along y-axis leads to
this limitation of the strength, as also illustrated in figure 6.34.
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6.2.3 Numerical Results

The results of the above performed analyses are presented in the following tables in terms
of normal and shear stresses. They are dived in two parts, one for the case of linear elastic
model of the surrounding polymer and one for elasto-plastic behaviour. Each part presents
the stress components 0., 0,, and 7., for the four cases of shear strength and for normal
strains in both x and y directions.

Linear Elastic Polymer

Normal Stress Normal Stress Shear Stress

Opa (MPa) Oyy (MPa) Tay (MPa)

Normal Strain in x-direction

Shear Strength — 0 166.169 48.116 0.026
Shear Strength 20 MPa 226.493 83.738 -0.100
Shear Strength 50 MPa 280.263 98.558 -0.702
Shear Strength — oo 320.107 111.864 4.697
Normal Strain in y-direction

Shear Strength — 0 48.116 116.169 -0.026
Shear Strength 20 MPa 82.018 272.628 4.569
Shear Strength 50 MPa 92.458 375.462 15.529
Shear Strength — oo 111.864 532.953 23.011

Table 6.3: Numerical Results for Linear Elastic Polymer

It becomes now clear, in numerical terms, that the RVE’s response varies significantly
under the influence of non-linear effects concerning the microstructural components and their
mechanical interaction. Apart from the loss of strength due to the interfacial mechanism,
the microstructural behavior is directly dependent on the random nature of its model. As
already mentioned, and illustrated in figures of nodal forces, the non-reinforced faces of
the representative volume are intensively stressed compared to the interior of the structure,
leading thus to the inability of further loading, since the boundary nodes define the overall
moduli. On the other hand, a face reinforced cell, or even a more uniform reinforcement,
would lead to a significantly higher strength, preventing the plastification of the faces.
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Elasto-plastic Polymer

Normal Stress

Normal Stress

Shear Stress

Oy (MPa) Tyy (MPa) Tay (MPa)

Normal Strain in x-direction

Shear Strength — 0 165.589 48.108 0.019
Shear Strength 20 MPa 181.775 78.557 -1.605
Shear Strength 50 MPa 186.701 82.207 -0.428
Shear Strength — oo 195.394 84.096 -1.524
Normal Strain in y-direction

Shear Strength — 0 48.116 165.514 -0.025
Shear Strength 20 MPa 63.797 203.764 2.960
Shear Strength 50 MPa 60.589 233.976 4.657
Shear Strength — oo 55.941 262.853 5.298

Table 6.4: Numerical Results for Elasto-plastic Polymer
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Chapter 7

Conclusions and Recommendations

This chapter summarizes the conclusions with regard to the investigated first-order homoge-
nization method in the framework of the multi-scale approach and concurrently recommends
some future reasearch perspectives and directions.

7.1 Conclusions

The objective of this thesis was the code development of a multi-scale modelling technique,
a necessity that derives from the complex property relations of heterogeneous materials.
It is evident that performing straightforward parametric experimental measurements on a
number of material samples is a hardly feasible task. Furthermore, it is also impossible to
follow a brute force approach and generate a finite element mesh that accurately represents
the microstructure and enables the numerical computation of the response of a macroscopic
structural component within a reasonable amount of time on todays computational systems.
Consequently, the examined first-order homogenization scheme constitutes a powerful strat-
egy which can adequately serve the above purposes.

The most significant points of this technique, according to the developments of the present
work, can be summarized in the following observations:

i. There is no need for constitutive assumption on the macrolevel of the structure but
only the mechanical properties of the microscopic components are required. According
to the assumptions of the method, the macroscopic constitutive behavior is computed
through the microscale boundary value problem. Moreover, this can be easily achieved
in the framework of the finite element analysis, in terms of boundary stiffness and nodal
forces, as illustrated in Chapter 2.

ii. The formulation of the method enables the incorporation of all kinds of non-linear
effects. The separated and concurrently nested nature of the scales allows the mod-
elling of heterogeneous structures under large deformations, in contrast with other ho-
mogenization approaches and techniques, where various difficulties derive from their
incorporation.
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1il.

1v.

7.2

In this thesis the developed multi-scale method was implemented in a finite element
analysis however, any appropriate solution technique may be applied. In addition,
this technique is not limited to the continuum mechanics field since it enables the
non-continuum modelling of the microstructure.

The solution of a microscale boundary value problem for every integration point of the
macroscale constitutes a demanding computational task, in terms of volume data and
time, leading thus to the necessity of reduction techniques.

The randomness concerning geometry, orientation and distribution of the reinforcing
fibers is a significant and determinant component of the microstructural and mate-
rial properties as well, and should be taken into account for the sake of modelling
completeness.

Future Reasearch Proposals

According to the investigated matters in the framework of this thesis, the recommended
directions of a future expansion of this work can be divided into two classes, namely those
concerning some solution techniques and those concentrated on the microstructural mod-

elling.

The proposals of the first class are summarized in the following points:

1.

11.

1i1.

The implementation of a fully nested multi-scale solution scheme in the case of complex
and large-scale structures constitutes a forbidden method in terms of computational
cost and time. The solution of a non-linear boundary value problem for every inte-
gration point is obviously a rather expensive computational task and as a result the
implementation of reduction techniques becomes a necessity. Concretely, a selective
usage, where non-critical regions are modelled by continuum closed-form homogenized
constitutive relations (or by the constitutive tangents derived from the microstructure
in case an incremental update of these tangents can be omitted, e.g. if the mate-
rial hardly evolves or unloads) while in critical regions a multi-scale analysis of the
microstructure is fully performed, could lead to a remarkable time-reduced solution
scheme.

Similarly, the time reduction of the solution procedure can be achieved with the im-
plementation of parallel computation techniques. The RVE boundary value problems
can be separately solved using parallel programming procedures.

A completetely different solution technique can be employed, not only at the level
of the cell but also at the macrostructure. Techniques that take into account cracks
and crack propagation (X-FEM) or the implementation of the Element Free Galerkin
(EFG) method would be also interesting research topics.
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On the other hand, the microstructural modelling proposals include:

1.

ii.

The investigation of nonlinear phenomena, such as buckling of the reinforcing fibers.
Incorporation of the nonlinear behavior of the equivalent beam elements, combined
with the already examined bond-stress nonlinear model would lead to notable obser-
vations concerning the effectiveness of the reinforcement.

The randomness at the level of the integration point. In the present work the inves-
tigated RVE is common for all integration points and takes into account the random
geometry, distribution and length of the reinforcing fibers for a given volume fraction.
A future work could include a totally random microstructure for every Gauss-point
where furthermore, the volume fraction and the diameter of the fibers are also arbitrary
variables.
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