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Περίληψη

Η διπλωματική αυτή εργασία εστιάζει στην υλοποίηση μίας βι-
βλιοθήκης ανοιχτού λογισμικού για τον πολλαπλασιασμό αραι-
ού πίνακα με διάνυσμα (SpMV) σε σύγχρονες πολυπύρηνες αρ-
χιτεκτονικές υπολογιστών, με χρήση της δομής αποθήκευσης
αραιών πινάκων Compressed Sparse eXtended (CSX). Προηγού-
μενη έρευνα έχει δείξει ότι η δομή CSX μπορεί να παράσχει
σημαντική βελτίωση της επίδοσης του πυρήνα SpMV σε μία
πληθώρα διαφορετικών πινάκων και πολυπύρηνων αρχιτεκτο-
νικών, διατηρώντας μία σημαντική σταθερότητα στην επίδοση.
Η μοναδική του αυτή ικανότητα το καθιστά εξαιρετικό υποψή-
φιο για HPC εφαρμογές και, συνεπώς, θεωρούμε ότι η ενσωμά-
τωσή του στην ιεραρχία λογισμικού επίλυσης υπολογιστικών
προβλημάτων θα έχει σημαντική επίδραση σε ένα μεγάλο εύ-
ρος επιστημονικών εφαρμογών. Με αυτό το σκοπό, παρουσιά-
ζουμε και αξιολογούμε την βιβλιοθήκη SparseX, μια συλλογή
από ρουτίνες για χρήση σε βιβλιοθήκες επίλυσης γραμμικών
συστημάτων αλλά και ανεξάρτητες εφαρμογές.

Λέξεις κλειδιά: high performance computing; sparse matrix-vector multi-
plication; multicore; SpMV; SpMV library; CSX; HPC
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Abstract

is thesis focuses on the implementation of an open-source
library for performing the Sparse Matrix-by-Vector Multiplica-
tion (SpMV) kernel onmodernmulticore architectures, using the
Compressed Sparse eXtended (CSX) format for storing sparse
matrices. Previous research has demonstrated that CSX achieves
significant improvements in the performance of this kernel on a
wide variety of matrices and multicore architectures, by dras-
tically reducing the memory footprint of the sparse matrix. Its
unique performance stability makes it an excellent candidate for
HPC applications and, thus, we believe CSX’s integration in the
numerical soware stackwill have an important impact onmany
scientific applications, that are sensitive to the performance of
the SpMV kernel. To this end, we present and evaluate SparseX,
a collection of low-level primitives for use by solver libraries and
standalone applications.

Keywords: high performance computing; sparse matrix-vector multiplica-
tion; multicore; SpMV; SpMV library; CSX; HPC
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Introduction

Research in sparse linear systems has been active since the early days of com-
puting systems, when a first realization was made that one can take advan-
tage of “sparsity” to design solution methods that can be quite economical.
is triggered the development of a wide variety of methods, both direct and
iterative, over the last decades, whose performance is vital, nowadays, to a
wide variety of HPC applications. Although the grand challenges of these
applications are diverse, they share an intersection in terms of sparse lin-
ear system solvers, spending, in many cases, most of the execution time on
solving such systems. In this chapter, we briefly present the different meth-
ods for solving large sparse linear systems and designate the importance of
the Sparse Matrix-Vector Multiplication kernel, which is the focus of this
diploma thesis.

1.1 Sparse matrices

A sparse matrix is defined as a matrix populated primarily by zeros. e
sparsity of a matrix is defined as the number of zero elements divided by the
total number of elements in the full matrix. For example, a sparsity value of
90% means that 90% of the elements in the matrix are zeros. In many cases
the sparsity value is a lile over 99%.

Sparse matrices arise in scientific applications that use finite difference,
finite element or finite volume discretizations of partial differential equa-
tions (PDEs) in problems with underlying 2D or 3D geometry coming from
computational fluid dynamics, electromagnetics, thermodynamics, materi-
als, semiconductor devices, model reduction and structural mechanics, but
also in other application domains where problems do not seem to have such
a geometry, as in electrical circuit simulation, chemical process simulation,
economic and financial modeling, power networks and graphs. For example,
in circuit simulation, the elements of a sparse matrix may represent circuit
voltages, currents, impedances and power sources; in model reduction the

1
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(a) boneS10 (b) offshore

Figure 1.1: A structured sparse matrix on the le and an unstructured sparse ma-
trix on the right from the University of Florida Sparse Matrix Collec-
tion [Davis and Hu, 2011]. In (a), boneS10 is part of a second order sys-
tem that results from applying a three-dimensional serial reconstruction
technique to model the porous bone micro-architecture and in (b), off-
shore is a finite-element system matrix derived from the 3D transient
electric field diffusion equation. e matrix results from the discretiza-
tion of offshore conductivity structures using tetrahedral elements.

elements of a sparse matrix may represent the porous micro-architecture of
a human bone, aer applying a finite element method; in web-related graph
problems the elements of the matrix may represent the existence of a hyper-
link between two webpages.

ere are two broad types of sparse matrices: structured and unstruc-
tured [Saad, 2003]. A structured matrix is one whose nonzero entries form
some sort of regular paern, oen along a small number of diagonals or block
diagonals. When the nonzero entries are confined exclusively to a diagonal
band, comprising the main diagonal and zero or more diagonals on either
side, the matrix is called a band or banded matrix. On the other hand, un-
structured matrices comprise of elements which are irregularly located. Fig-
ure 1.1 shows a matrix of each category. is distinction between the two
types of matrices is important to the performance of matrix-by-vector prod-
ucts, which are the focus of this diploma thesis. As will be shown later on,
their performance may significantly differ, depending on whether the matrix
is structured or not.

Even within the same category, matrices may vaslty differ in terms of
their structure. For example, matrices arising in circuit simulation (and other
network-related domains) differ greatly from matrices arising from the dis-
cretization of 2D and 3D physical domains. Computational fluid dynamics

2
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matrices differ from structural engineering matrices, and both are vastly dif-
ferent from matrices arising in linear programming or financial portfolio op-
timization. A sample set of sparse matrices from e University of Florida
Sparse Matrix Collection [Davis and Hu, 2011], that highlights the complex-
ity and diversity of matrices that arise in real-life applications is available in
Appendix A.

1.2 Sparse linear systems

Sparse matrices are usually involved in the solution of large linear systems
of the form

A · x = b
where A denotes the coefficient matrix, b is the right-hand side vector, and
x is the unknown vector. ere are two basic classes of methods for solving
linear systems of the above form.

e first class is represented by direct methods, which theoretically yield
an exact solution in a (predictable) finite number of steps. In practice, of
course, the solution obtainedwill be contaminated by the round-off error that
is involved with the arithmetic being used. Such methods include the Gaus-
sian Elimination Method, the LU Decomposition Method and the Cholesky
Method [Duff et al., 1989; Barre et al., 1987; Davis, 2006]. ese methods
rely on the factorization of the coefficient matrix as a product of three matri-
ces A = L ·D ·U, where L and U are lower and upper triangular respectively
and D is diagonal. en, the solution of the system comes down to solving
two easily invertible triangular systems L · y = b and U · x = D−1 ·y. For-
ward elimination followed by backward substitutions complete the solution
process.

Direct methods are important because of their generality and robustness.
Indeed, for “tough” linear systems arising in some applications (e.g., circuit
simulation) they are the only feasible solution. Furthermore, they provide an
effective means of solving multiple systems with the same coefficient matrix
A but different right-hand side vectors, because the factorization only needs
to be performed once. On the downside, the asymptotic time complexity of
all dense direct methods is O(n3) for the factorization and O(n2) for solving
the system based on the precomputed factorization. When the dimension of
the coefficient matrix is in the order on 105, 106 or more, the total cubic com-
plexity is prohibitive. Furthermore, the elimination process of these methods
may introduce fill-in, i.e., matrices L and Umay have nonzero elements in lo-
cations where the original matrix A has zeros, complicating the solution of
sparse systems as well; by necessitating a fill-in minimization step during the

3
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1. I

factorization process in order to increase the sparsity of matrices L and U and
by introducing the need for a storage format that supports the insertion of
new elements [Saad, 2003].

e second class of methods for solving linear systems includes iterative
techniques that try to find an approximate solution. ere are two broad
categories of iterative methods: stationary methods and projection methods.

Stationary methods begin with a given approximate solution of the sys-
tem and iteratively modify the components of the approximation, one or a
few at a time until convergence is reached. ese modifications, called re-
laxation steps, usually aim to annihilate some component(s) of the residual
vector b−A · x. e most common stationary methods are the Jacobi, Gauss-
Seidel and the Successive Overrelaxation (SOR) methods. e convergence
of these methods cannot be guaranteed for all matrices and therefore they
are rarely used separately [Saad, 2003].

Projection methods try to extract an approximate solution x of a linear
system from a subspace of Rn. If Km is this subspace of candidate approxi-
mants where m denotes its dimension, then, in general, m constraints must
be imposed on the residual vector b − A · x to be able to extract such an ap-
proximation. More specifically, the residual vector must be orthogonal to
m linear independent vectors, which form the subspace of constraints Lm.
At each step of a projection method a new pair of Km and Lm subspaces is
used with an initial guess xo equal to the approximation obtained from the
previous step.

Some of the most important iterative techniques for solving large linear
systems are the projection methods known as the Krylov subspace methods.
A Krylov subspace method is a method for which the subspace Km is the
Krylov subspace:

Km(A, r0) = span{r0, A · r0, A2 · r0, ..., Am−1 · r0}
where r0 = b−A ·x0, is the residual of the initial guess xo. Different versions
of Krylov subspace methods arise from different choices of the subspace Lm
and from different preconditioning techniques applied to the original sys-
tem. Preconditioning involves applying a transformation, called the precon-
ditioner (which is usually a direct solution method), on a system in order to
make it more suitable for numerical solution by improving its convergence
characteristics. It is the key ingredient to the success of Krylov subspace
methods when applied on systems derived from large “real-world” problems,
whose convergence ratio would otherwise be very low.

Preconditioned Krylov subspace methods, such as the Generalized Mini-
mum Residual (GMRES) method [Saad and Schultz, 1986] and the Conjugate
Gradient (CG) method [Hestenes and Stiefel, 1952], are widely used nowa-
days for solving large sparse linear systems. From a computational point

4
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Method Vector updates Dot products Matrix-by-Vector products
GMRES i+1 i+1 1
CG 3 2 1

Table 1.1: Summary of operations for iteration i of the GMRES method and the CG
method.

of view, and seing aside the preconditioning process, these methods rely
mainly on the following computational kernels:

Vector Updates. Operations of the form
y = y+ a · x

where a is a scalar and y and x are vectors, are known as vector updates
or SAXPY operations (Scalar Alpha X Plus Y according to the naming
conventions of the Basic Linear Algebra Subprograms package, or sim-
ply BLAS [Lawson et al., 1979]).

Dot Products. e dot product is the inner product of two vectors x and y :
t = xT · y

Matrix-by-Vector Products. is is the product of a sparse matrix A (the
coefficient matrix of the system) and a vector x :

y = A · x

Table 1.1 gives a summary of the above operations for each iteration of
the GMRES and the CG methods.

In order to obtain good performance of the iterative method, one must
efficiently implement the above computational kernels on the target archi-
tecture. When it comes to multicore architectures, which are of interest in
this thesis, the implementation of a vector update is prey straightforward,
since each processormay execute the operation on a specific range of the vec-
tors and all processors may work independently. A dot product, on the other
hand, is more complicated to implement, since the reduction step required
to calculate the final result has limited parallelism that may hinder perfor-
mance. Finally, a matrix-by-vector product, which we will henceforth call
a Sparse Matrix-Vector Multiplication kernel (SpMV), is probably the most
intriguing operation involved. e performance of this kernel is intimately
associated with the data structures used to store the sparse matrix. It seems
to be the most expensive operation involved in iterative solvers, as shown
in Figure 1.2, and, therefore, an efficient implementation is essential to their
acceleration.

5
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Figure 1.2: Execution time breakdown for the non-preconditioned CG iterative
method for different problem categories [Karakasis, 2012].

1.3 The SpMV kernel

e Sparse Matrix-Vector Multiplication kernel (SpMV) is considered to be
one of the most important computational kernels in science and engineering.
Since 1970s, plenty of researches have been dedicated to optimizing SpMV
performance for its fundamental importance. However, conventional imple-
mentations have historically been reported to perform poorly on modern mi-
croprocessors (e.g., 10% of peak performance [Vuduc and Moon, 2005]) due
to a number of issues concerning the algorithm itself, the storage formats,
and the sparsity paerns of the matrices. Each of the following sections will
address one of these issues.

1.3.1 The algorithmic nature of the kernel

A high level approach of the SpMV kernel is given in Algorithm 1.1. In
total, the algorithm performs O(n2) operations on O(n2) amount of data,
which means that the ratio of floating point operations to memory accesses
(flop:byte ratio, also known as arithmetic intensity [Harris, 2005; Williams
et al., 2009]) is O(1). Figure 1.3 shows the arithmetic intensity of a num-
ber of HPC kernels. Some of them have an arithmetic intensity that scales
with the problem size (FFTs, Dense Linear Algebra, Naive Particle Methods)
while others have a constant arithmetic intensity, including the SpMV ker-
nel. A constant flop:byte ratio designates a lack of temporal locality, which
subsequently suggests that if the memory subsystem cannot provide data to
the CPU in a comparable speed, then for large working sets (that do not fit
in the system’s cache hierarchy) the kernel will be memory bound. Even
in a multithreaded environment, where the algorithm exhibits ample paral-

6
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lelism [Buluc et al., 2011], due in particular to the lack of data dependencies
between different rows, the kernel doesn’t scale over a specific number of
threads depending on the system’s available memory bandwidth.

1: procedure S(A::in, x::in, y::out)
A: matrix
x: input vector
y: output vector

2: forea rowi in A do
3: yi ← rowi

T · x
4: end for

Algorithm 1.1: A high level approach of the SpMV kernel.

. ..O(1) O(log(N)) O(N)

..

..SpMV, BLAS1/2 . . ..FFTs. . .

. ..Stencil(PDEs) . . . ..Dense Linear Algebra .

. . . . . . ..Naive Particle Methods

. . ..Laice Methods . . . . .
.......

Figure 1.3: Arithmetic intensity of some representatative HPC kernels.

1.3.2 Conventional storage formats

When multiplying a large sparse matrix A by a dense vector x, the memory
bandwidth for reading A can limit overall performance [Goumas et al., 2009].
Consequently, most algorithms to compute A · x store A in a compressed for-
mat.

e simplest storage format that has been proposed is the so called Co-
ordinate (COO) format [Pooch and Nieder, 1973; Tewarson, 1973; Duff and
Reid, 1979; Saad, 1992]. It uses one floating-point array values[nnz] and
two integer arrays rowind[nnz] and colind[nnz], where nnz is the num-
ber of nonzero elements in the matrix. e first array stores the values of
the nonzero elements, while the rowind and colind arrays store the row

7
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and column indices respectively of each element in the values array. Figure
1.4 shows a typical implementation of the COO format, while Algorithm 1.2
shows an implementation of the SpMV kernel using this format.

..

..7.5 ..2.9 ..2.8 ..2.7 ..0 ..0

..6.8 ..5.7 ..3.8 ..0 ..0 ..0

..2.4 ..6.2 ..3.2 ..0 ..0 ..0

..9.7 ..0 ..0 ..2.3 ..0 ..0

..0 ..0 ..0 ..0 ..5.8 ..5.0

..0 ..0 ..0 ..0 ..6.6 ..8.1

.


.


.A = .

..rowind: ..( ..0 ..0 ..0 ..0 ..1 ..1 ..1 ..2 ..2 ..2 ..3 ..3 ..4 ..4 ..5 ..5 ..)

..colind: ..( ..0 ..1 ..2 ..3 ..0 ..1 ..2 ..0 ..1 ..2 ..0 ..3 ..4 ..5 ..4 ..5 ..)

..val: ..( ..7.5 ..2.9 ..2.8 ..2.7 ..6.8 ..5.7 ..3.8 ..2.4 ..6.2 ..3.2 ..9.7 ..2.3 ..5.8 ..5.0 ..6.6 ..8.1 ..)

Figure 1.4: e Coordinate (COO) sparse matrix storage format.

1: procedure SC(A::in, x::in, y::out)
A: matrix in COO format
x: input vector
y: output vector

2: for i← 0 to NNZ do
3: tempi ← rowind[i]
4: y[tempi]← y[tempi] + values[i] · x[colind[i]]
5: end for

Algorithm 1.2: SpMV implementation using the COO format.

e use of this format in the SpMV kernel yields a low performance due
to an unsatisfyingly large memory footprint. Assuming 4-byte integers for
indexing and 8-byte double precision floating point values, a typical layout
in iterative solvers, the COO format sums up to 4nnz+4nnz+8nnz = 16nnz
bytes. e corresponding flop:byte ratio of the SpMV kernel in this case can
be calculated as

2nnz
16nnz+ 16n

=
1

8+ 8 n
nnz

(1.1)

that leads to an arithmetic intensity of 0.125 when nnz ≫ n, which is the
case in most sparse matrices.

A more compact format that is widely used in scientific computing is the
Compressed Sparse Row (CSR) format [Tinney and Walker, 1967; Pooch and

8
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Nieder, 1973; Duff and Reid, 1979; Saad, 1992]. is format maintains the
values and colind arrays of the COO format but replaces the rowind array
with a new integer array rowptr[n+1], where n is the number of rows. In-
stead of explicity storing the row index of each nonzero element, this format
further reduces the indexing information by using pointers to the beginning
of each row, i.e., rowptr[i] contains the index of the first element of row i
inside the values and colind arrays. e last entry points to the end of the
values and colind arrays. Figure 1.5 gives an example of storing a sparse
matrix in the CSR format, while Algorithm 1.3 shows an implementation of
the SpMV kernel using this format.

..

..7.5 ..2.9 ..2.8 ..2.7 ..0 ..0

..6.8 ..5.7 ..3.8 ..0 ..0 ..0

..2.4 ..6.2 ..3.2 ..0 ..0 ..0

..9.7 ..0 ..0 ..2.3 ..0 ..0

..0 ..0 ..0 ..0 ..5.8 ..5.0

..0 ..0 ..0 ..0 ..6.6 ..8.1

.


.


.A = .

..rowptr: . . . . ..( ..0 ..4 ..7 ..10 ..12 ..14 ..16 ..) . . . . .

..colind: ..( ..0 ..1 ..2 ..3 ..0 ..1 ..2 ..0 ..1 ..2 ..0 ..3 ..4 ..5 ..4 ..5 ..)

..val: ..( ..7.5 ..2.9 ..2.8 ..2.7 ..6.8 ..5.7 ..3.8 ..2.4 ..6.2 ..3.2 ..9.7 ..2.3 ..5.8 ..5.0 ..6.6 ..8.1 ..)

Figure 1.5: e Compressed Sparse Row sparse matrix storage format.

1: procedure SC(A::in, x::in, y::out)
A: matrix in CSR format
x: input vector
y: output vector

2: for i← 0 to N do
3: for j← rowptr[i] to rowptr[i+ 1] do
4: y[i]← y[i] + values[j] · x[colind[j]]
5: end for
6: end for

Algorithm 1.3: SpMV implementation using the CSR format.

Assuming, again, 4-byte integers for indexing and 8-byte double preci-
sion floating point values, the CSR format sums up to 4(n+1)+4nnz+8nnz =
4n + 12nnz + 4 bytes. In the case of most sparse matrices nnz ≫ n, which

9
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leads to a 12nnz footprint, a major improvement over the COO format. e
corresponding flop:byte ratio of the kernel can be calculated as

2nnz
12nnz+ 16n

=
1

6+ 8 n
nnz

(1.2)

which approximately equals to 0.167. is may surpass the arithmetic inte-
sity of the kernel implemented with the COO format, but the fact remains
that the flop:byte ratio is very low compared to other computational kernels
(again see Figure 1.3).

Using a more compact storage format, like the CSR format described pre-
viously, creates a number of additional performance issues. e indexing
structures (rowptr and colind in the case of CSR) introduce indirect mem-
ory references that increase the number of load operations, creating addi-
tional cache interference [Pinar and Heath, 1999]. Furthermore, access to the
right-hand-side vector x is no longer sequential and depends on the irregular-
ity of the matrix structure, limiting spatial locality. erefore, even though
the memory footprint of the matrix is reduced and, thus, the total memory
access time, the computational load of the processor seems to be increased.
is, however, does not pose a problem in a modern multicore system, where
the memory bandwidth boleneck allows a number of time-consuming op-
erations to take place without being exposed to the total execution time of
the kernel.

1.3.3 The effect of the sparsity paern

Many sparse matrices contain a large number of rows with a short length,
leading to a small average rowsize, nnzn . According to equations (1.1) and (1.2)
the flop:byte ratio of the kernel is proportional to the average rowsize, which
means that the smaller the average rowsize the lower the flop:byte ratio.
From a more practical point of view, by inspecting Algorithm 1.3 one can
observe that a small average rowsize means that the inner loop runs over
only a few iterations. is small trip count may introduce a significant loop
overhead [White and Sadayappan, 1997]. Furthermore, since the rows of
the matrix usually have variable lengths, the inner loop is almost impossible
to unroll as is, forcing the potential loop overhead to be performed for ev-
ery short row, further degrading performance (this problem can actually be
overcome by employing a register blocking technique; see Section 1.4 for an
example).

10
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1.4 Alternative storage formats

Even though the CSR format is the most popular format for storing sparse
matrices, it keeps a lot of redundant information. Usually, sparse matrices
arising in the solution of large linear systems consist of small dense substruc-
tures, e.g., horizontal,vertical or diagonal sequences, 2-D blocks etc. ere-
fore, one could take advantage of these dense substructures to further reduce
the matrix size, by using one column index for each one that is encountered
in the matrix. Many storage formats that focus on the minimization of the
indexing structures have been proposed in the past. For example, the Blocked
Compressed Sparse Row (BCSR) format [Im and Yelick, 2001] stores the matrix
as a sequence of fixed-size r × c dense blocks. It uses one column index per
block, reducing the indexing storage by a factor of 1

rc . Fixed-size blocks favor
loops optimizations, such as loop unrolling, and enable register-level tiling.
However, this format introduces zero-padding in order to create these fixed-
size blocks and, thus, its effectiveness depends on the structure of the matrix.
Other formats exploit different types of substructures, e.g., the Variable Block
Length (VBL) format detects 1-D variable sized horizontal blocks, the Variable
Block Row (VBR) format exploits variable sized blocks, theBlocked Compressed
Sparse Diagonal (BCSD) format uses fixed-size diagonal blocks etc [Pinar and
Heath, 1999; Saad, 1994; Agarwal et al., 1992]. e problem with the afore-
mentioned formats is that each of them accelerates the SpMVkernel over CSR
for matrices in which the detected substructure holds a sufficient number of
instances, while exhibiting a significant performance degradation otherwise.

e Compressed Sparse eXtended (CSX) format has been proposed as an
alternative storage format that offers a stable high performance across most
types of matrices and different platforms (including symmetric shared mem-
ory and NUMAmulticore architectures) [Kourtis et al., 2011; Karakasis et al.,
2013], by further reducing the memory footprint of the matrix with a se-
ries of compression techniques that will be explained in detail in the follow-
ing chapter. e implementation of a functional library interface that will
allow CSX to be easily exploited by the HPC community in the context of
solving sparse linear systems forms the contribution of this diploma thesis.
us, we introduce the SparseX library, an API wrien in the C program-
ming language that provides the means to developers of solver libraries and
of scientific and engineering applications to easily aain beer performance
in modern multicore architectures than the one exhibited by conventional
storage formats. In order to demonstrate SparseX’s advantage, it is com-
pared to other popular libraries providing the same functionality, including
Intel® Math Kernel Library (Intel® MKL) [Intel® Coorporation, 2013a], a
well established commercial product, and the parallel Optimized Sparse Ker-

11
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nel Interface (pOSKI) library [Vuduc et al., 2005; Ankit, 2008], which has been
developed by the Berkeley Benchmarking and Optimization (BeBOP) group
(http://bebop.cs.berkeley.edu/).

1.5 Outline

e remainder of this diploma thesis is organised as follows:

Chapter 2 introduces in detail the Compressed Sparse eXtended (CSX) for-
mat, which has been proposed as an alternative sparse matrix storage
format that improves the performance of the SpMV kernel on modern
multicore architectures.

Chapter 3 follows with a discussion on the design goals and decisions con-
cerning the SparseX library, accompanied by an overview of the pro-
vided functionality along with some use cases.

Chapter 4 continues with a performance evaluation of different aspects of
SparseX and a thorough comparison to other popular libraries that pro-
vide similar functionality.

Chapter 5 concludes this diploma thesis by summarizing its contribution
and giving some insight on future directions.

12
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The Compressed Sparse eXtended Format

As pointed out earlier, the key to the optimization of the SpMV kernel is
the minimization of the memory footprint for storing the sparse matrix. e
most successful format towards this direction is the Compressed Sparse eX-
tended (CSX) format [Kourtis et al., 2011]. e distinguishing feature of this
format is that it encodes the matrix into a multitude of substructure types,
unlike other CSR alternatives, which usually focus on a single type of sub-
structure. is feature, in conjunction with a number of aggressive compres-
sion techniques, allows CSX to accomplish a significant minimization of the
column index information, reaching in many cases the maximum possible
compression ratio [Karakasis et al., 2013].

2.1 The CSX data structures

eCSX format uses a single data structure to store all the required indexing
information. is structure is based on a variant of the CSR format, called
CSR with Delta Units (CSR-DU) [Kourtis et al., 2008b], which effectively com-
presses the colind array by applying delta indexing on the column indices,
thus minimizing the storage needs of each element. In order to fully under-
stand the CSX indexing scheme, one must first explore the CSR-DU format.

2.1.1 The CSR with Delta Units (CSR-DU) storage format

CSR-DU divides the matrix into areas, called delta units. Each delta unit
comprises of a variable number of (not necessarily contiguous) non-zero el-
ements, which form an horizontal regularity. e detection of these units is
based on the following delta-encoding scheme: first, we run through every
non-zero element of the matrix and calculate its delta value, i.e., the column
distance from the previous non-zero element in the same row. When all the
delta values have been calculated, the elements of each row are grouped in
sequences according to the number of bits needed to store their delta value

13



thesis July 10, 2014 16:51 Page 14 �
�	

�
�	 �
�	

�
�	

2. T C S X F

..1(nr),7(id). 8. variable
int

. fixed
{8,16,32}

. …. fixed
{8,16,32}

.ctl .

uflags

.

usize

.

ucol

.

deltas

...

Head

.

Body

Figure 2.1: e ctl structure employed by CSR-DU. Optional fields are denoted
with a doed bounding box.

..7. 6 …0. 7. 6 …0. ….

b7 = 1

.

b7 = 1

Figure 2.2: e variable-length integer encoding employed by both CSR-DU and
CSX. Only the seven lower bits are used for storing an integer; numbers
larger 127 are stored in 7-bit chunks with bit 8 serving as a continuation
marker.

(8, 16, 32, 64). Each storage size corresponds to a different unit type (d8, d16,
d32, d64). For example, consecutive elements whose delta value is less than
28 = 256 need 8 bits of storage and are therefore stored in a group of type d8.
e indexing information of each unit is stored in a single byte-array, called
ctl, while the corresponding values are stored in the values array, as usual.
us, the colind array of CSR is replaced by the ctl array.

In the implementation of CSR-DU presented in [Kourtis et al., 2011] each
unit is represented by a header and a body (see Figure 2.1). e header in-
cludes unit information in the form of two 1-byte fields, called usize and
uflags, and a variable-length integer, called ucol. A variable-length inte-
ger is essentially an integer stored in the minimum number of 7-bit chunks,
reserving the most significant bit of each chunk as a link to the next one, as
illustrated in Figure 2.2. e usize field represents the number of elements
in the unit, while the uflags field stores the unit type (d8, d16, d32 or d64)
and a 1-bit flag that indicates whether the unit is at the beginning of a new
row. e ucol field stores the distance of the unit’s column index from the
previous one. e body stores the delta values of the usize-1 last elements
of the group.

2.1.2 The CSX extension

e CSX format enriches the notion of units employed by CSR-DU, in or-
der to enable the encoding of other regularities that are usually encountered

14
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..1. 1. 6. 8. variable
int

. variable
int

. fixed
{8,16,32}

. …. fixed
{8,16,32}

.ctl .

nr

.

rjmp

.

id

.

size

.

ujmp

.

ucol

.

deltas

...

Head

.

Body

Figure 2.3: e CSX extension of the ctl structure. Optional fields are denoted
with a doed bounding box.

.......

d(2)

.

h(1)

.

ad(1)

.

v(1)

.

bc(4,2)

.

bc(4,2)

.

bc(3,2)

.

.. ..0 ..1 ..2 ..3 ..4 ..5 ..6 ..7 ..8 ..9

..0 ..1 ..2 ..3 ..4 .. .. .. .. ..5 ..

..1 .. .. .. .. .. .. .. ..6 .. ..

..2 ..7 ..8 .. .. .. .. ..9 .. .. ..10

..3 ..11 ..12 .. ..13 .. ..14 .. .. .. ..15

..4 ..16 ..17 .. .. .. .. .. .. .. ..18

..5 ..19 ..20 .. .. .. ..21 .. .. .. ..22

..6 .. .. ..23 ..24 .. .. .. .. .. ..

..7 .. .. ..25 ..26 ..27 ..28 .. ..29 .. ..

..8 .. .. ..30 ..31 ..32 ..33 .. .. .. ..

..9 .. .. ..34 ..35 ..36 ..37 .. .. .. ..38

..1. 0. 0. 4. 0..h(1) .

0

.

0

.

1

.

4

.

5

.

ad(1)

.

1

.

1

.

2

.

8

.

ujmp=1

.

0

.

bc(4,2)

.

0

.

0

.

3

.

4

.

9

.

v(1)

.

1

.

0

.

4

.

4

.

3

.

d(2)

.

1

.

1

.

2

.

8

.

ujmp=2

.

2

.

bc(4,2)

.

1

.

0

.

5

.

6

.

2

.

bc(3,2)

.

nr

.

rjmp

.

id

.

size

.

ucol

.

ctl:

....val: ..( ..1 ..2 ..3 ..4 ..5 ..6 ..9 ..14 ..7 ..8 ..11 ..12 ..16 ..17 ..19 ..20 ..10 ..15 ..18

. . ..22 ..13 ..21 ..29 ..38 ..23 ..24 ..25 ..26 ..30 ..31 ..34 ..35 ..27 ..28 ..32 ..33 ..36 ..37 ..)

Figure 2.4: Example of the CSX format.

in sparse matrices. In CSX’s terminology a unit can also be a substructure
unit, representing one of the multiple substructure types detected, includ-
ing horizontal, vertical, diagonal, anti-diagonal and two-dimensional blocks,
which will be described in detail in the following section. Figure 2.3 shows
the extended version of the ctl structure employed by CSX. Since CSX also
encodes non-horizontal substructures, it is possible for substructure units to
group together all the elements of subsequent rows, leaving them empty. In
order to be able to skip the empty rows when executing the multiplication,
CSX introduces the rjmp bit to indicate the existence of empty rows and
the ujmp field to store the number of empty rows that follow. e laer is
present only when the rjmp bit is set.

As for the values of the non-zero elements, CSX keeps the values ar-
ray of the CSR format, but changes the order in which the elements are
stored. Since the matrix is encoded in units, the ordering of the values must
agree with the unit ordering. Within a single unit the values are stored in a
substructure-dependent order, as illustrated in Figure 2.4.
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....col. indices: ..1 ..10 ..11 ..12 ..13 ..14 ..21 ..41 ..61 ..81 ..…
..delta values: ..1 ..9 ..1 ..1 ..1 ..1 ..7 ..20 ..20 ..20 ..…

..

d = 1

..

d = 20

Figure 2.5: Example of the run-length encoding process.

2.2 Detection and encoding of substructures

CSX encodes a wide variety of substructure types with the indexing scheme
described in the previous section. To facilitate the process of detecting and
encoding different substructures, CSX uses a special internal representation,
which is a hybrid of the COO and CSR formats. More specifically, CSX’s
internal representation stores generic elements; a generic element is either a
single non-zero element or a substructure, stored as a (i, j, v) tuple. In case of
a single element, (i, j) represent its coordinates and v its value, while in case
of a substructure, (i, j) correspond to the coordinates of the first element and
v to an array of values. e rowptr array of CSR is also kept for fast row
accessing. is internal representation is constructed during the loading of
the matrix.

CSX extends the notion of a sequence to include elements with a constant
distance greater than one, i.e., n consecutive elements with column indices
{a, a + d, a + 2d, a + 3d, ..., a + (n − 1)d}, where a is the column index of
the first element and d ∈ N, form a sequence. e detection of substructures
in CSX involves finding such sequences by applying run-length encoding on
the (sorted) column indices: first, the delta values (i.e. column distances) are
computed for every generic element of the internal representation that hasn’t
been already encoded and, aerwards, consecutive elements with identical
delta values are grouped together in runs, with each run forming a single unit.
To avoid the potential overhead of very small runs, only runs of size greater
or equal to 4 are recognised as CSX units. Also, since the maximum value
that can be stored in the usize field of the ctl structure is 255, large runs
are split into 255-chunks. An example of the run-length encoding process
is visualized in Figure 2.5 and described in Algorithm 2.1, while the whole
detection process of a specific substructure type is given in Algorithm 2.2.

2.2.1 Detecting one-dimensional substructures

e detection of horizontal substructures in CSX occurs by simply applying
Algorithm 2.2, since the elements are arranged in a row-wise manner and are
lexicographically sorted by default. In order to detect one-dimensional, non-
horizontal substructures, however, i.e., vertical, diagonal and anti-diagonal,
coordinate transformations are first applied on the elements of the internal

16
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1: function RLE(colind::in)
colind: sorted column indices

2: deltas← DE(colind)
3: d← deltas[0]
4: f← 1
5: rle← (d, f)
6: for i← 1 to N do
7: if deltas[i] = d then
8: f← f+ 1
9: else
10: if f ≥ min_run_legth then
11: rle← rle ∪ (d, f)
12: d← deltas[i]
13: f← 1

14: end for
15: return rle

Algorithm 2.1: Run-length encoding of the column indices. e DE()
function performs a delta encoding on the column indices and re-
turns the sequence of delta values. emin_run_length is currently
set to 4.

............................

(0, 0)

.

(0, 1)

.

(2, 0)

.....
…

.

…

.

…

(a)Original matrix.

............................

(0, 0)

.

(0, 2)

.(1, 0) .....

…

. ….

…

(b) Transformed matrix.

Figure 2.6: Detection of row-aligned blocks with 2-width bands (black dots denote
non-zero elements).

representation, so that vertical, diagonal or anti-diagonal sequences are con-
verted to horizontal ones. ese transformations are given in Table 2.1. Aer
sorting the indices in the transformed space, units of each substructure type
are detected in a similar manner.

17
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2.2.2 Detecting two-dimensional blocks

e process of detecting two-dimensional blocks is a lile more complicated,
since we need to ‘linearize’ the coordinates of the elements. First the matrix
is partitioned into fixed-width bands, either row- or column-aligned. at
is, if we are searching for row-aligned blocks of size k, a N × N matrix is
partitioned into N

k horizontal bands. Aerwards, a space-filling transforma-
tion is applied, so that every new line corresponds to a single band (giving
N
k lines in total) and every new column in a line corresponds to the posi-
tion of an element (taking into account both zero and non-zero ones) when
the band is run through in a column-wise order (giving k × N columns in
every new line). An example of this transformation for row-aligned bands
of size 2 is given in Figure 2.6. One must observe that even though the se-
quence {(0, 1), (0, 2), (0, 3), (0, 4), (0, 5)} seems to form a unit this is not ac-
tually true. For a unit to be a valid block, it must begin at a column index (in
the transformed space), which is a multiple of the band width. In this exam-
ple, (0, 1) has a column index which is not a multiple of 2, thus this element
is excluded. Regardless, aer the transformations have been applied, the re-
sulting sequence is passed to a variant of the RLE() function
(see Figure 2.1), which takes into account the restriction noted above. In a
similar manner, column-aligned blocks come from a vertical partitioning of
the matrix and an analogous space-filling transformation that runs through
the elements of each band in a row-wise instead of a column-wise order. e
CSX format currently supports segmentation bands with width k ∈ [2, 8] (see
Table 2.1), leading to seven block-row and seven block-column substructure
types.

An minor drawback of these transformations, is that they pose a restric-
tion on the blocks that can be detected by CSX. To be more specific, blocks
that cross over bands are not detected. In case of k-width bands, either row-
or column-aligned, a block whose first element has a column index (in the
transformed space) j ∈ {c× k+ r} where c ∈ N, r ∈ {1, ..., k− 1}, is le out.
However, this does not seem to limit CSX’s block-detecting capabilities. On
the contrary, its ability to encode block substructures without padding with
explicit zeros, gives CSX an important advantage over existing fixed block
formats, such as BCSR and its variants.

2.2.3 Selecting substructures for final encoding

e use of coordinate transformations has allowed CSX to support a total
of 18 different substructure types and allows a straightforward expansion to
other classes of substructures, e.g., diagonal blocks. We must note here, that
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Substructure Type Transformation
horizontal (i′, j′) = (i, j)
vertical (i′, j′) = (j, i)
diagonal (i′, j′) = (N+ j− i, min(i, j))

anti-diagonal (i′, j′) =

{
(i+ j+ 1, N− j), i+ j > N− 1

(i+ j, i), i+ j ≤ N− 1
block(row-aligned) (i′, j′) = (⌊ ik⌋, k · j+mod(i, k))
block(column-aligned) (i′, j′) = (⌊ jk⌋, k · i+mod(j, k))

Table 2.1: e coordinate transformations employed by CSX for the detection of
each substructure type (zero-based indexing assumed).

1: procedure DS(matrix::in,stats::inout)
matrix: CSX’s internal representation, lexicographically sorted
stats: substructure statistics

2: colind← ∅ ▷ Column indices that will be encoded
3: forea row in matrix do
4: forea generic element e(i, j, v) in row do
5: if e is not a substructure then
6: colind← colind ∪ e.j
7: continue
8: enc← RLE(colind)
9: US(stats,enc) ▷ Update statistics for this encoding
10: colind← ∅
11: end for
12: enc← RLE(colind)
13: US(stats, enc) ▷ Update statistics for this encoding
14: colind← ∅
15: end for

Algorithm 2.2: Detecting substructures in CSX’s internal representation. e U
S() function keeps track of the statistics for each substruc-
ture type, that will lead to the selection of the most suitable sub-
structure for encoding.
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in CSX there is a distinction between a substructure type and its actual in-
stantiation in the sparse matrix. For example, the horizontal substructures
with delta values d = 1 and d = 20 in Figure 2.5 belong to the same substruc-
ture type (horizontal), but are different instantiations. A single substructure
type, therefore, may have indefinitely many instantiations in a sparse matrix,
adding great flexibility to the CSX format.

Aer the detection process has collected statistics for all the supported
substructure types, a filtering process takes place that intends to discard in-
stantiations that fail to meet certain criteria (see Algorithm 2.2). In the cur-
rent implementation, if a substructure instantiation fails to encodemore than
5% of the total non-zero elements of the matrix, it is filtered out. Aerwards,
the most suitable type for encoding the matrix is selected and the algorithm
proceeds with the encoding. e whole procedure is repeated until no sub-
structure type can be selected for encoding (see Algorithm 2.3). Wemust note
here that the encoding that takes place in this phase is performed on CSX’s
internal representation. e final data structures of the CSX format (ctl and
values) are constructed aer the whole detection-selection-encoding phase
has ended.

e fitness metric for selecting the best substructure type for encoding in
each step of Algorithm 2.3 tries to maximize the gain in size when replacing
the original CSR’s colind structure with CSX’s ctl structure. Assuming
that we keep a single, full column index per detected substructure (ignoring
delta units), the size of the ctl structure when encoding a specific substruc-
ture type will be:

Sctl = Nunits + NNZ− NNZencoded (2.1)

whereNunits is the total number of encoded substructure units andNNZencoded
is the number of the non-zero elements encoded by the substructure type.
erefore, the gain in the CSR’s colind size will be roughly:

Gain = Scolind − Sctl
= NNZ− (Nunits + NNZ− NNZencoded)

= NNZencoded − Nunits (2.2)

is metric ensures that the substructure type that is chosen for encoding
in every step (ST()) of Algorithm 2.3 will be the one that achieves
the maximum compression of the matrix at that point. It represents a classic
greedy strategy that makes a locally optimal choice and, therefore, doesn’t
ensure that the final selection of substructure types will be the globally op-
timal one.
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1: procedure EM(matrix::inout)
matrix: CSX’s internal representation

2: repeat
3: stats← ∅
4: for all available substructure types t do
5: T(matrix, t)
6: LS(matrix)
7: DS(matrix, stats)
8: T−1(matrix, t)
9: end for
10: FS(stats) ▷ Filter out instantiations that encode less

than 5% of the non-zero elements
11: selected← ST(stats)
12: if selected ̸= NONE then
13: T(matrix, selected)
14: LS(matrix)
15: ES(matrix, selected) ▷ Encode the selected

substructure
16: until selected = NONE

Algorithm 2.3: Detection, selection and encoding of the substructures in CSX.
e process is divided into two phases: (a) gathering of statis-
tics and (b) selection and encoding. Each time the matrix is
transformed (T()) to a specific iteration order, a lexico-
graphic sort (LS()) of the non-zero elements is needed. e
T−1() function transforms the matrix back into the orig-
inal, horizontal iteration order.

Wemust note here that a selection based exclusively on the size of the fi-
nal matrix representation can be far from optimal in a number of cases. More
precisely, in systems where the matrix size is close to the last level cache size
or the number of threads selected for execution is small (1 or 2), the compu-
tational part of the kernel is more exposed and therefore, substructure types
that do not favor the SpMV execution (i.e. diagonal) may undermine its per-
formance. is phenomenon is even more pronounced in NUMA architec-
tures, where the increased memory bandwidth provided to a processor for
accesess to its local memory node, further exposes computationally inten-
sive loads.

e current implementation of the CSX format, does not favor computa-
tion friendly substructure types. It does, however, take into account the un-
derlying architecture; in SMP systems, the fitness metric depends solely on
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the prediction of the colind size reduction, as described previously, while
in NUMA systems it also tries to minimize the total number of encoded sub-
structure instantiations, which affects the computational part of the kernel
in a way that will become clear in the following section.

2.3 Generating the SpMV code

CSX uses a Just-In-Time (JIT) compilation framework in order to generate
at runtime the final SpMV code, according to the substructure instantiations
encoded in thematrix. is framework is based on the LLVM compiler infras-
tructure [Laner and Adve, 2004; Laner, 2011], a collection of modular and
reusable compiler and toolchain technologies, and Clang [Laner, 2011], a
“LLVMnative” C/C++/Objective-C compiler that works as a front-end for the
LLVM infrastructure. Clang can be used to parse normal C/C++/Objective-C
source code, convert it to the LLVM’s Intermediate Representation (IR) and
pass it to the LLVM back-end for the generation of the native code.

Figure 2.7 gives an overview of the code generation procedure followed
by CSX. Aer the encoding of the matrix, the compilation framework under-
takes the task to fill in the missing components, called hooks, of the top-level
template of the SpMV kernel, which can be viewed in Algorithm 2.4. e
___() is replaced by a switch statement, switching on the unit ID
and executing the corresponding SpMV routine. e ____()
is responsible for advancing the current position ycurr in the output vector.
We must note here that the switch statement introduces a performance over-
head (due to branch mispredictions) that increases with the number of en-
coded substructure instantiations. is overhead can be noticeable in a mul-
tithreaded environment with ample memory bandwidth per processor (e.g,
NUMA architectures) where the computational part of the kernel is more
exposed. is is the reason why, in NUMA architectures, the heuristic em-
ployed by CSX when selecting the substructure types to encode tries to min-
imize the number of switches.

2.4 Parallelization

e complete process of storing a sparse matrix with the CSX format can be
summed up to the following steps:

1. Loading of the matrix and conversion to CSX’s internal representation

2. Substructure detection and selection

3. Matrix encoding

22



thesis July 10, 2014 16:51 Page 23 �
�	

�
�	 �
�	

�
�	

2.4. Parallelization

..Encoded
matrix

. C code
generator

. Clang
front-end

. LLVM
module

. Native SpMV code.

Function
pointer

.....

SpMV
source templates

.
SpMV

.

source

. Emit.

LLVM

. Execution.

Engine

.

cal
l

(a)

Figure 2.7: e Just-In-Time compilation framework of CSX.

1: procedure CS(ctl::in, values::in, x::in, y::out)
2: ycurr ← y ▷ Current position in y vector
3: xcurr ← x ▷ Current position in x vector
4: yr← 0 ▷ Local accumulator
5: repeat
6: flags← ∗ctl
7: size← ∗(ctl+ 1)
8: ctl← ctl+ 2
9: if TB(flags, 7) then ▷ Check if nr bit is set
10: ycurr ← ycurr + yr
11: yr← 0
12: ____() ▷ Advance ycurr
13: xcurr ← x
14: xcurr ← xcurr + DC(ctl)
15: id← GID(flags) ▷ Retrieve the ID of the next unit
16: ___() ▷ Unit specific SpMV code
17: until ctl ends

Algorithm 2.4: e SpMV kernel template used by the CSX storage format. e
____() and ___() are filled at runtime, dur-
ing the code generation process described in Figure 2.7.

4. SpMV code generation

In order to accelerate both the preprocessing phase and the SpMV kernel
in a multithreaded environment, the original matrix is statically split into
sub-matrices, one for each available thread, during the construction of the
internal representation in step 1 (the actual number of threads employed is
user-defined). A naive approach would split the matrix into partitions of N

n
rows, where N is the dimension of the matrix and n is the number of threads.
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Figure 2.8: Spliing a sparse matrix into sub-matrices in a multithreaded environ-
ment. Figure (a) shows the naive one-dimensional row-wise partition-
ing and figure (b) gives the corresponding one-dimensional row-wise
partitioning employed by CSX.

However, this partitioning scheme can lead to a significant load imbalance
among threads, especially in matrices where the distribution of the non-zero
elements is rather irregular. is derives from the fact that the computa-
tional load of each thread is directly proportional to the number of non-zero
elements it contains and therefore, a significant divergence in the number of
non-zero elements assigned to each thread may lead to idle threads and an
increase in the overall execution time. For this reason, the actual partitioning
scheme is a one-dimensional row-wise decomposition that tries to maintain
the same number of non-zero elements per partition (≈ NNZ

n , where NNZ is
the total number of non-zero elements). Figure 2.8 exhibits the superiority
of this partitioning scheme over the naive approach.

Aer the sub-matrices have been created, each thread proceeds indepen-
dently with steps 2 and 3, producing its own CSX sub-matrix. Actually, CSX
offers a mechanism that uses statistical sampling to reduce the completion
time of step 2 and more specifically the detection of substructure types, with-
out sacrificing performance in the execution of the SpMV kernel [Kourtis
et al., 2011; Karakasis et al., 2013]. Finally, step 4 is executed in a single-
threaded mode concluding the preprocessing phase. e SpMV kernel may
subsequently be executed in a multithreaded manner.
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2.5 CSX for symmetric matrices

2.5.1 Exploiting symmetry in the SpMV kernel

Symmetric sparse matrices arise in a large number of real-life applications.
ese matrices introduce a great opportunity when it comes to reducing the
total matrix size, since only the lower (or upper) half of the matrix and its
main diagonal suffice to describe the whole matrix. Especially in the case
of the SpMV kernel, which is memory bound in most cases, one might be
tempted to grasp this opportunity in order to improve performance. is
might be the case in a single-threaded execution, but the nature of the sym-
metric SpMV kernel complicates things in a multithreaded environment.

e most common storage format for symmetric sparse matrices is the
Symmetric Sparse Skyline (SSS) format [Eisenstat et al., 1982; Saad, 1992]. SSS
stores the lower triangular matrix in the CSR format and introduces a new
n-size array for the elements of the main diagonal, called dvalues, where n
is the matrix dimension. Assuming 4-byte integers for indexing and 8-byte
double precision floating point values, the SSS format sums up to 4(n+ 1) +
4nnz−n

2 + 8nnz−n
2 + 8n = 6(nnz+ n) + 4 bytes. A serial implemetation of the

symmetric SpMV kernel using the SSS format is given in Algorithm 2.5.

1: procedure SSSSS(A::in, x::in, y::out)
A: matrix in SSS format
x: input vector
y: output vector

2: for r← 0 to N do
3: y[r]← dvalues[r] · x[r]
4: for j← rowptr[r] to rowptr[r+ 1] do
5: c← colind[j]
6: y[r]← y[r] + values[j] · x[c]
7: y[c]← y[c] + values[j] · x[r]
8: end for
9: end for

Algorithm 2.5: Symmetric SpMV implementation with the SSS format.

In order to parallelize this algorithm, one could split the lower triangu-
lar matrix in a row-wise manner as usual. However, each thread will no
longer write exclusively on the range of the output vector y correspond-
ing to the rows it contains, as was the case in the non-symmetric version,
but it will also contribute to the computations of its symmetric counterpart.
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us, each thread may write on any entry y[i] of the output vector where
i ∈ [0, last_rowthread]. is leads to race conditions in the output vector,
which are particularly increased in matrices with larbge bandwidths. ey
could be resolved either with the use of locks or with the use of local output
vectors per thread. e cost of locks is prohibitive in such a case, leaving us
with the local vectors approach as a more viable solution. In this approach,
each thread performs Algorithm 2.5 on its own partition writing the results
on a local buffer. A reduction step follows in order to compute the final
output vector, which can be easily parallelized by assigning each thread the
reduction of a specific range of the output vector. Figure 2.9b illustrates a
naive implementation of the local vectors method. e main problem with
this approach is that the working set of the kernel increases linearly with the
number of threads, since each thread produces a local vector of size n. As
the number of threads increases, the total size of the local vectors becomes
comparable to the matrix size, incurring a significant overhead. e method
of effective ranges proposed by [Batista et al., 2010] tries to overcome this
problem, by restricting the local vectors to “possibly conflicting” regions and
performing the rest of the updates directly on the final output vector. e
boudaries of these regions are defined based on the following observations:

• read i never performs updates below the endi row.

• read i may directly perform writes in the [starti, endi] range of the
final output vector.

In the example of Figure 2.9c, thread 2 (red color) can write the values
in positions (3, 2), (3, 5), (4, 5), (5, 1), (5, 2), (5, 3) and (5, 4) directly on the
final output vector, while those in (1, 5), (2, 3) and (2, 5) fall in the “possibly
conflicting” region of the thread and are, therefore, directed to its local vector.

e reduction overhead may be halved with this method, but the main
problems still remains: the working set continues to grow linearly to the
number of threads.

2.5.2 The CSX-Sym format

CSX-Sym is a variant of the CSX format that aims to optimize the symmetric
SpMV kernel [Gkountouvas et al., 2013]. e detection and encoding of sub-
matrices is performed in a similar manner to CSX, but only on the lower tri-
angular part of the matrix and with a restriction that all of the vector updates
of an encoded substructure must be directed either to the original output vec-
tor or the local vector; not to both of them. e values of the main diagonal
are stored in a new array, called dvalues, as in the SSS format. e CSX-Sym
format further refines the effective ranges of local vectors method, with the
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Figure 2.9: Local vector methods for the reduction phase of the symmetric SpMV
kernel. e naive method in (b) uses p = 3 local buffers that are reduced
to the final output vector. e effective ranges method in (c) uses p− 1
local vectors (y2 and y3) writing only to the possibly conflicting regions.

so called local vectors indexing scheme. In a nutshell, this scheme introduces
an indexing structure, called map, that points only to the really conflicting
elements of the local vectors. With this indexing scheme the working set of
the reduction phase is now dependent on the density of the effective regions
of the local vectors. Since the density of the effective regions decreases when
the thread count grows, the workload overhead of the reduction step tends
to stabilize aer a specific number of participating threads [Karakasis, 2012;
Gkountouvas et al., 2013]. An example of the CSX-Sym format is given in
Figure 2.10.
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(c) Encoded substructures.

Figure 2.10: Local vector method for the reduction phase of the symmetric SpMV
kernel in CSX-Sym. In (b), CSX-Sym’s indexing scheme uses p−1 local
vectors and a map pointing only to the actually conflicting elements.
In (c), notice that the horizontal substructure at row 6 is not encoded,
since its symmetric vertical substructure crosses the thread partition
boundary, i.e., values 7.2 and 1.9 are directed to the final output vector
while values 9.8 and 4.1 to the local vector. e symmetric counterpart
of the block on rows 7-8, on the other hand, is directed entirely to the
local vector, thus it is encoded. e actual map will store a pointer only
to the first element of this block.
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The SparseX library

In this chapter, we present the SparseX library, a collection of low-level prim-
itives that provide solver libraries and applications with an implementation
of the SpMV kernel using the CSX storage format under an open-source so-
ware license. We discuss basic elements of the library design and provide
some general implementation details. We also describe the exported BLAS-
like user API and illustrate its use with some examples.

3.1 Library design

3.1.1 Goals and motivation

Sparse iterative solver libraries for linear systems that focus on high perfor-
mance computing, such as the AztecOO and Belos packages of the Trilinos
project [Heroux et al., 2005], or lower-level soware frameworks that imple-
ment the Basic Linear Algebra Subprograms (BLAS) functionality for sparse
matrices, such as PSBLAS [Filippone and Colajanni, 2000], usually include
standard matrix storage formats, such as the CSR and COO formats, thus
exhibiting poor performance in many cases. However, some recent projects,
including the open-source Portable Extensible Toolkit for Scientific computa-
tion (PETSc) [Balay et al., 2013] and Intel’s commercial Math Kernel Library
(MKL) [Intel® Coorporation, 2013a], have expanded their suite of sparse ma-
trix representations with more elaborate formats, such as the BCSR format,
which are much more efficient for particular types of problems.

e CSX format, along with its symmetric variant, are currently among
themost highly-optimized sparsematrix storage formats for performingmat-
rix-by-vector multiplications on multicore architectures, especially in the
context of iterative methods for the solution of large-scale linear systems
[Kourtis et al., 2011; Karakasis et al., 2013]. Its unique performance stabil-
ity across a wide variety of problems makes CSX an excellent candidate for
HPC applications and, thus, we believe CSX’s integration in the numerical
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soware stack would have an important impact on several scientific applica-
tions whose overall performance is sensitive to that of the SpMV kernel. To
this end, we provide the means to facilitate this process through a low-level
interface. Key goals and aspects of our interface sum up to the following:

Provide simple and clear semantics. Every well-designed API should be
easy to use correctly and difficult to use incorrectly. A user-friendly syn-
tax reduces the time and intellectual overhead required to develop user
soware as well as making the development process less error prone.
Of course, this is a universal objective in interface design and achieving
it depends, to a significant degree, in minimizing the number of things
the user must remember in order to effectively use the interface. In the
present context, this implies:

• the number of function names the user must remember should be
small.

• to the extent possible, the information that functions require as in-
put parameters should be limited to information that the user would
necessarily know.

Our interface tries to reflect the above “guidelines” as well as being as
intuitive as possible; that is, usage of the interface should follow the user’s
natural train of thought on solving the problem. is objective is usually
complicated by the desire to serve users with different levels of expertise.

Facilitate integration to large scale sparse solver libraries. Even though
the library can be used directly in applications that involve sparsematrix-
by-vector multiplications, its ultimate goal is to integrate readily into
application-level libraries that provide high-level sparse kernel support
(including iterative solution methods of sparse linear systems), such as
the aforementioned PETSc library. Integration in such systems has a
number of advantages, including the ability to hide data structure de-
tails from the user and, of course, the large potential user base that will
assist in the beer dissemination of the CSX format.

Transparently adjust to the target platform. e CSX format currently
supports symmetric shared memory (SMP) and non-uniform memory
access (NUMA) multicore architectures. Any architecture specific op-
timization is performed transparently during the installation process of
the library, eliminating any need for the user to provide information on
the hardware platform.

Allow for user inspection and control of the tuning process. Tuning refers
to the preprocessing phase of the CSX format, i.e, converting the origi-
nal sparse matrix into CSX (see Chapter 2.2). A number of parameters
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can be explicitly set by the user in order to control different aspects of
this phase, such as the number of threads used, choosing between a full
or sampling-based detection of substructures, defining specific substruc-
ture types to search for in the matrix, selecting between CSX or CSX-Sym
as the target format and so on. is adds a lot of flexibility to the tuning
process and also affects performance in a direct manner. For example, if
the user is aware of the sparsity structure of the matrix (e.g, consisting
mainly of blocks) she can guide the detection process by selecting the
block substructure types, reducing the execution time of this phase. Of
course, a “poor” selection may result in a significant performance degra-
dation, thus the user is advised to rely on the autotuning capabilities of
CSX and only override an option when prior knowledge is available, as
in the example described previously.

Useful feedback, such as the collected statistics of the detection pro-
cess and the actual substructures encoded, is provided to help the user
gain a beer insight into the preprocessing phase of CSX.

3.1.2 Design decisions

e SparseX library is implemented in layers, namely the core library and the
user API. e core library is wrien in the C++ language, while the user API
is wrien in C. C++ was selected as a programming language that facilitates
expressing and implementing an enormous variety of designs in a direct and
efficient manner. e decision to export a C API, on the other hand, was
driven by the fact that most widely-used iterative solvers for sparse linear
systems require APIs in C.

Following an object oriented approach

e library is wrien in an object-oriented fashion at both development lay-
ers. e core library is implemented in a language that by default embraces
the object-oriented paradigm, while the user interface makes use of handles,
the equivalent of an object instance in object-oriented programming termi-
nology.

An object-oriented design is usually defined by the following comple-
mentary principles: data encapsulation, polymorphism and inheritance.

Data encapsulation refers to creating objects (data structures) so that ap-
plication code cannot directly access underlying data in the object. Rather,
the application code can modify the data only through the public interface
of the object, which consists of a number of subroutine calls. SparseX uses
strong data encapsulation in both the sparse matrix and vector objects used
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to perform the SpMV kernel. us, application-level access to the matrix and
vector data is obtained through specific function calls. Encapsulation is vivid
throughout both development layers.

Polymorphism refers to techniques that allow the user to call the same
function to perform a specific operation regardless of the underlying data
structure used to store the data internally. Polymorphism (both runtime and
compile-time) exists in the core library of SparseX. For example, when con-
verting the input matrix into the CSX format, the same function is used either
the sparsematrix is loaded from a file or stored in the CSR format. is is pos-
sible by implementing the function with the use of templates (as a function
template) and instantiating it with a different template parameter, which in
this case represents the matrix input type. is forms an example of compile-
time polymorphism. Runtime polymorphism, on the other hand, exists, for
example, in the form of virtual functions in the custom memory allocator
employed throughout the core library for efficient data allocations.

Inheritance refers to the process of creating objects either by combining
properties of several different types of objects or adding properties to an ob-
ject that is already defined. is principle was employed in the design of the
logging interface of the library, in the context of defining different output
policies (logfile, console).

Using templates

When it comes to implementing a numerical library, using a language with
generic programming constructs, such as templates in C++, offers a signifi-
cant advantage: supporting multiple arithmetic types is straightforward and
occurs in a typesafe manner. Template classes and functions allow us to use
different data types with a single definition, thus reducing source code size.
At the same time, they are typesafe, because the data type of the template on
which it operates is known and, therefore, checked at compile time (this is
known as static or compile-time polymorphism). Also, templates enable code
inlining by nature, and thus, allow the compiler to eliminate function calls in
many cases, leading to performance benefits. Furthermore, templates can be
used instead of virtual functions inmany occasions, eliminating the overhead
of dynamic polymorphism. On the downside, templates expose their imple-
mentation in header files, which means that template code is being compiled
in each translation unit that uses it, leading to longer build times and larger
binaries. Especially during the development process, this can be particularly
“painful”, since a single change in a template source code requires a complete
rebuild of all project pieces that depend on it.
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Using the Boost library

From a programmer’s perspective, when it comes to implementing solutions
to common problems, one should avoid “reinventing the wheel” and, instead,
use existing (efficient and tested) libraries that provide the desired functional-
itywhenever possible. Use of such libraries speeds up initial development, re-
sults in fewer bugs and cuts long-term maintenance costs. e Boost library
project (http://www.boost.org) provides an elegant and efficient platform- and
compiler- independent open-source solution to a wide variety of needed ser-
vices. Being one of the most highly regarded C++ library projects, Boost
tends to become a de facto standard and many programmers are already fa-
miliar with it. us, using Boost when developing a number of features in
our project seemed appropriate.

API naming convention

e naming convention for the public interface routines of the SparseX li-
brary has the following form:

(return value type) spx_object_function(…)
Every routine starts with the spx prefix, which stands for SparseX, followed
by the name of the object it is associated with (usually in a condensed form)
and a name that describes its functionality.

3.1.3 Soware architecture

Implementing the user interface involved, for the most part, wrapping C
around object-oriented C++ code. e core functionality was exposed with
the use of the facade design paern. Specifically, the C++ code was built
into an internal library (hence the “core library” terminology), including a
single C++ module that acts as a facade to the API along with a header file.
Access to the core library is, therefore, gained exclusively through the func-
tions declared in this header file. We must note here that since the core li-
brary uses templates to support multiple indexing and value types, the facade
module must provide explicit template instantiations for the desired template
parameters. Currently, the interface is generated for a single combination of
indexing and value types, which is chosen at library build-time. A simplified
overview of the entire soware architecture is given in Figure 3.1.

33

http://www.boost.org


thesis July 10, 2014 16:51 Page 34 �
�	

�
�	 �
�	

�
�	

3. T SX 

...

SparseX

..

C++ Core Library

..

C API

.........

SparseMatrix

..
+SparseMatrix(rowptr, colind, …)
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Figure 3.1: An simplified view of the soware architecture of SparseX. e facade
design paern is not actually implemented as a class, but as a simple
C++ module including all the desired core functionality along with a
C/C++ header file that exposes the defined wrapper functions.

3.2 API overview

e API primitives of the SparseX library fall into two broad categories: the
auxiliary routines and the computational routines. e auxiliary routine set
includes

• sparse matrix and vector creation and update;

• sparse matrix tuning into the CSX format;

• sparse matrix and vector reordering;

• CSX update;

• CSX I/O.

e computational routine set follows the “look-and-feel” of the BLAS, in-
cluding

• sparse matrix-by-vector product;

• vector operations (scale, add, subtract, multiply).
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e following sections proceed with a thorough presentation of the avail-
able routines, both auxiliary and computational, and describe essential ingre-
dients of the user API, including the major objects that are intergal parts of
it. Some source code examples are provided to give a more practical view of
how the API may be used. e complete C bindings appear in Appendix B.

3.2.1 Auxiliary routines

Creating input matrices and vectors

Matrices and vectors are represented by handles in the SparseX interface. e
use of handles complements the object-oriented approach of the core library
and enables information hiding. Once created, a matrix or vector is refer-
enced only by its handle. e available handles for manipulating matrices
and vectors are defined by the following data types:

• spx_input_t, which represents a handle to the input matrix;

• spx_matrix_t, which represents a handle to the matrix in the CSX
format;

• spx_vector_t, which represents a handle to a dense vector object.

We must note here that since our API aims at exporting utilities for the CSX
format alone, matrices stored in different formats are only treated as “in-
put” matrix representations, hence the distinction between the input_t and
matrix_t handles.

e interface currently supports loading a sparse matrix from the follow-
ing formats:

Matrix Market File (MMF) format. In dealing with issues of I/O, SparseX
is currently designed to support reading a sparse matrix from a file in the
MMF format [Boisvert et al., 1996]. File input is embedded as another
form of a sparse matrix constructor. A MMF file consists of four parts:

1. Header line: this is the first line in the file and contains an identifier
and four text fields in the following form

%%MatrixMarket object format field symmetry
where object is eithermatrix (this is the case we will consider here)
or vector, format can be either coordinate for sparse matrices or
array for dense matrices, field is either real, double, complex, inte-
ger or pattern and, finally, symmetry is either general, symmetric,
skew-symmetric or hermitian.

2. Comment lines: begin with a percent sign and allow a user to store
information and comments.
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3. Size line: specifies the number of rows, columns and nonzero ele-
ments in the matrix.

4. Data lines: specify the location of the matrix entries and their val-
ues. When the matrix is sparse, the location of the matrix entries is
given in the coordinate format using one-base indexing in a column-
wise ordering.

Since CSX operates on the elements of a sparse matrix in a row-wise
order, the column-wise ordering of the MMF format creates the need to
sort the elements when loading the matrix. us, the format has been
extended in order to also support row-wise ordering of the elements and
zero-base indexing by introducing two optional fields in the header line
called indexing which can be either 0-base or 1-base and ordering which
can be either column or row. Furthermore, a simplified version of the
MMF format is supported, which drops the header line and includes only
the size line and data lines. In this case, however, the data must be ar-
ranged in a row-wise order.

Compressed Sparse Row (CSR). An input handle can also be created from
an existing user-allocated, pre-assembled matrix in the CSR format. e
CSR data structures (rowptr, colind and values) are “shared” in this
case with the library, thus the user must guarantee they will not be freed
or reallocated before the destruction of the input handle. Both zero-based
and one-based indexing is supported by seing the appropriate argument
in the corresponding routine.

Dense vector objects of type vector_t can be either wrappers of user-
defined arrays or they can be created and initialized explicitly by the user.
Partitioning a vector among threads is performed transparently during the
creation process and, thus, cannot be controlled by the user. e only respon-
sibility of the user is to provide the split points to the vector creation routine
through an object of type spx_partition_t, which is constructed either im-
plicitly during the tuning phase of CSX and subsequently extracted with the
spx_mat_get_partition() routine or explicitly through the spx_parti-
tion_csr() routine. is will become more clear in the following section.

Table 3.1 summarizes the available routines for input matrix and vector
creation.

Tuning

e user may convert the input matrix into the CSX format simply by calling
the spx_mat_tune() routine. However, in order to fully exploit the capa-
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Routine Description
spx_input_load_mmf Creates an input object from a

file on disk in the MMF format.
spx_input_load_csr Creates an input object from a

matrix in the CSR format.
spx_input_destroy Frees an input object.
spx_vec_create Creates a vector object.
spx_vec_create_from_buff Creates a vector object as a

wrapper of a user-defined array.
spx_vec_create_random Creates a randomly filled vector

object.
spx_vec_destroy Destroys a vector object.

Table 3.1: Available routines for creating and destroying input and vector objects.

bilities of CSX and achieve the best performance, the user is advised to make
use of the spx_set_option() routine. ere are options for controlling:
(a) the runtime environment, (b) the preprocessing phase of CSX and (c) the
CSX format itself. e available options with their default values for every
category are given in Table 3.2.

e options for seing the runtime environment include the number
of participating threads (spx.rt.nr_threads) and the processor affinity
(spx.rt.cpu_affinity). If these options are not explicitly set by the user
the library automatically detects the optimal configuration, i.e., the num-
ber of threads is set to the number of available cores and the CPU affinity
is adjusted according to a ‘share-nothing’ core-filling policy, which assigns
threads to cores so that the least resource sharing is achieved.

e user can also control different aspects of the preprocessing phase.
For one, she may select specific substructure types to be encoded through the
spx.preproc.xform option. She can also enable/disable the use of statisti-
cal sampling in the detection process (spx.preproc.sampling). As pointed
out in the previous chapter, the preprocessing cost of CSX can be signifi-
cantly halved by enabling the use of sampling. e default values for the
portion of the matrix that will be sampled and the number of sampling win-
dows used per thread can be overridden with the spx.preproc.sampling.
portion and spx.preproc.sampling.nr_samples options respectively.
e last two parameters are used to compute the window size according to
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Option Default value
spx.rt.nr_threads 1
spx.rt.cpu_affinity 0
spx.preproc.xform none
spx.preproc.sampling none
spx.preproc.sampling.nr_samples 10
spx.preproc.sampling.portion 0.01
spx.matrix.symmetric false
spx.matrix.split_blocks true
spx.matrix.full_colind true (NUMA)

false (SMP)
spx.matrix.min_unit_size 4
spx.matrix.max_unit_size 255
spx.matrix.max_coverage 0.1

Table 3.2: Available options for configuring the preprocessing phase of CSX.

the following equation:

window_size =
sampling_portion · nr_nzerosper_thread

nr_samples

=
sampling_portion · nr_nzerostotal

nr_samples · nr_threads
(3.1)

e above equation designates that the window size has an inverse relation
to the number of threads for fixed values of the sampling portion and the
number of samples. As the number of threads increases it is possible that the
sampling window will become too small and limit/constrain the detection
capabilities of CSX. For example, if the window contains only a single row
then only horizontal and delta units can be detected. us, when the number
of participating threads is large, the user is advised to set a smaller number
of samples, especially in case of small matrices. e user might of course
achieve a similar effect by increasing the sampling portion. We plan to ad-
dress this issue by further refining the heuristic employed for computing the
window size.

From the last group of options, the most important for the user is the
spx.matrix.symmetric option which enables the use of the symmetric
variant of the CSX format. e rest of the options are configured by de-
fault according to a ‘best practice’ policy, which also takes into account the
underlying architecture. For a description of these options refer to Appendix
B.
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Reordering

When the matrix structure is very irregular, resulting in an equally irregular
access paern in the right-hand side vector, a significant amount of cache
misses is introduced. Additionally, when the matrix suffers from an hetero-
geneous sparsity paern (see G3_circuit in Appendix A) a varying flop:byte
ratio is exhibited among the participating threads, due to fluctuations in the
nonzero density across the matrix, leading to significant load imbalances.
Reordering the matrix using a bandwidth-reduction technique has been pro-
posed as a solution to the aforementioned problems. is involves applying
row and column permutations in order to bring the nonzero elements of the
matrix as close as possible to the main diagonal. is is beneficial to a typical
SpMV implementation, since the homogenization of the nonzero element dis-
tribution leads to a beer access paern and load balance. For the symmet-
ric version of the kernel (using SparseX with the spx.matrix.symmetric
option enabled), the obvious effect of this nonzero rearrangement in a mut-
lithreaded execution is the minimization of the reduction phase overhead.

Our user API currently provides an option for applying the Reverse Cut-
hill McKee (RCM) reordering algorithm that has been proposed for struc-
turally symmetric matrices [Cuthill and McKee, 1969]. Reordering is defined
as an optional argument of the spx_mat_tune() routine, but it can also
be performed explicitly with the spx_input_reorder() routine, while the
spx_mat_get_perm() and spx_vec_reorder() routines allow the user to
extract and apply the corresponding permutation on vector objects.

Changing matrix nonzero values

e nonzero paern of the input matrix determines the nonzero paern of
the spx_matrix_t handle, i.e., the CSX-tuned matrix, but the nonzero val-
ues can be modified by the user. If the input matrix contains explicit zeros,
the library treats them as “logical nonzeros” whose values can be modified
later. To change individual entries in the tuned matrix, the user may call the
spx_mat_set_entry() routine. e corresponding routine for obtaining a
single value is the spx_mat_get_entry(). Both routines assume one-base
indexing in the supplied coordinates of the matrix entry.

Storing and retrieving CSX

Although significantly optimized, the preprocessing cost of CSX is still non-
negligible. is motivated us to implement an I/O feature that will allow
the user to avoid tuning a matrix that has already been converted to the
CSX format in a previous session. is feature involves serializing the tuned
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matrix handle and storing it in a binary file, so it can be used in a future
session to reconstruct an equivalent handle and directly perform the SpMV
kernel. is achieves a considerable speedup over the optimized preprocess-
ing phase of CSX (a detailed evaluation is available in Chapter 4). Our user
API provides the spx_mat_save() routine for storing the matrix and the
spx_mat_restore() routine for loading it from the binary file.

3.2.2 Computational routines

is module includes two routines, shown in Table 3.3, to perform the sparse
matrix-by-vector multiplication. e most generic version of the kernel was
implemented, i.e. y ← alpha ·A · x + beta · y, where A is the sparse ma-
trix, x and y are vectors and alpha and beta are scalars. e first routine is
equivalent to the BLAS Level 2 routine for matrix-by-vector multiplication.
Parameter ordering follows the BLAS convention. e second routine, on the
other hand, is a higher-level implementation of the kernel that hides the pre-
processing phase of CSX. is last routine can be efficiently used in a loop,
since only the first call will convert the matrix into the CSX format and every
subsequent call will use the previously tuned matrix handle.

Use of the aforementioned multiplication routines is illustrated with a
couple of examples, that also highlight different aspects of our API. e se-
quence of operations in a minimal application, that simply performs a loop of
multithreadedmatrix-by-vectormultiplicationswith the use of the spx_mat-
vec_mult_from_csr() routine, is shown in Listing 3.1, while Listing 3.2
gives an example that includes reordering and exposes the tuning phase.

Routine Description
spx_matvec_mult Performs the SpMV kernel

y← alpha ·A · x+ beta · y
with a tuned matrix handle as input.

spx_matvec_mult_from_csr Performs the SpMV kernel
y← alpha ·A · x+ beta · y
with the CSR format as input.

Table 3.3: Available routines for sparse matrix-by-vector multiply.
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Listing 3.1: A usage example the hides tuning and executes in a multithreaded
mode. In this example the higher-level multiplication routine is se-
lected for executing 128 iterations of the SpMV kernel in a multi-
threaded mode. Specifically, 2 threads will be used with the selected
CPU affinity (0,1). All the substructure types are selected for detection,
but tuning is performed without the use of sampling. e matrix in the
CSR format is first split into partitions, the x and y vectors are created
from user-defined arrays and finally the loop is executed.

1 /* Define CSR data structures */
2 spx_index_t rowptr[] = {0,5,6,10,15,18,22,24,29,33,38};
3 spx_index_t colind[] = {0,1,2,3,8,7,0,1,6,9,0,1,3,5,9,0,1,
4 9,0,1,5,9,2,3,2,3,4,5,7,2,3,4,5,2,
5 3,4,5,9};
6 spx_value_t values[] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,
7 15,16,17,18,19,20,21,22,23,24,25,
8 26,26.1,26.2,27,28,29,29.1,29.2,
9 30,31,31.1,31.2,32};

11 /* Define vector arrays */
12 spx_value_t x[] = {1,2,3,4,5,6,7,8,9,10};
13 spx_value_t y[] = {0.19,0.28,0.31,0.42,1.32,
14 2.64,0.75,2.36,0.91,1};

16 spx_index_t nrows, ncols;
17 spx_scalar_t alpha, beta;

19 nrows = 10; ncols = 10;
20 alpha = 0.42; beta = 0.10;

22 /* Initialize library */
23 spx_init();

25 /* Set tuning options */
26 spx_option_set("spx.rt.nr_threads", "2");
27 spx_option_set("spx.rt.cpu_affinity", "0,1");
28 spx_option_set("spx.preproc.xform", "all");

30 /* Partition matrix */
31 spx_partition_t *parts = spx_partition_csr(rowptr, nrows,

2);

33 /* Create vectors from arrays */
34 spx_vector_t *x_view = spx_vec_create_from_buff(x, ncols,

parts);
35 spx_vector_t *y_view = spx_vec_create_from_buff(y, nrows,

parts);

37 /* Declare a tuned matrix handle */
38 spx_matrix_t *A = INVALID_MAT;
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40 /* Run 128 iterations of the SpMV kernel:
41 y <- alpha*A*x + beta*y */
42 int i;
43 for (i = 0; i < 128; i++) {
44 spx_csr_matvec_mult(A, nrows, ncols, rowptr, colind,
45 values, alpha, x_view, beta, y_view

);
46 }

48 /* Cleanup interface objects */
49 spx_mat_destroy(A);
50 spx_vec_destroy(x_view);
51 spx_vec_destroy(y_view);
52 spx_partition_destroy(parts);

54 /* Shutdown library */
55 spx_finalize();

Listing 3.2: A usage example with reordering and sampling enabled. e matrix
in this example is loaded from a file in the MMF format. e tuning
is performed explicitly with sampling enabled, using 48 sampling win-
dows and detecting all substructure types. Reordering is enabled with
the OP_REORDER option of the spx_mat_tune() routine. We must ob-
serve that the x and y vectors must be explicitly reordered before exe-
cuting the kernel and inverse-reordered aer the execution.

1 /* Initialize library */
2 spx_init();

4 /* Load matrix from file */
5 spx_input_t *input = spx_input_load_mmf(file);

7 /* Set some tuning options */
8 spx_option_set("spx.preproc.xform", "all");
9 spx_option_set("spx.preproc.sampling", "portion");
10 spx_option_set("spx.preproc.sampling.nr_samples", "48");

12 /* Transform to CSX */
13 spx_matrix_t *A = spx_mat_tune(input, OP_REORDER);

15 /* Create randomly filled vectors */
16 spx_index_t ncols = spx_mat_get_ncols(A);
17 spx_index_t nrows = spx_mat_get_nrows(A);
18 spx_partition_t *parts = spx_mat_get_partition(A);
19 spx_vector_t *x = spx_vec_create_random(ncols, parts);
20 spx_vector_t *y = spx_vec_create_random(nrows, parts);

22 /* Reorder vectors */
23 spx_perm_t *p = spx_mat_get_perm(A);
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24 spx_vec_reorder(x, p);
25 spx_vec_reorder(y, p);

27 /* Run the SpMV kernel:
28 y <- alpha*A*x + beta*y */
29 spx_matvec_mult(alpha, A, x, beta, y);

31 /* Inverse-reorder the output vector */
32 spx_vec_inv_reorder(y, p);

34 /* Cleanup interface objects */
35 spx_input_destroy(input);
36 spx_mat_destroy(A);
37 spx_vec_destroy(x);
38 spx_vec_destroy(y);
39 spx_partition_destroy(parts);

41 /* Shutdown library */
42 spx_finalize();

3.3 Logging

Logging is a critical technique for troubleshooting and maintaining soware
systems. e logging framework of SparseX was designed to be typesafe,
threadsafe (at line level), flexible and as light-weight as possible. It adopts the
look-and-feel of C++ streams and can be enabled or disabled both at compile
time and runtime.

e architecture of the framework has three parts: (a) the front-end
(b) the core and (c) the back-end.

e front-end is the top of the framework providing the actual logging
functions and a number of utilities to determine how the framework will
operate.

e core consists of a “logging handler”, responsible for enabling or dis-
abling specific logging levels and formaing the data of each level, thus, fully
controlling the verbosity of the outpued data. e available logging levels
are Error, Warning, Info and Debug. e actual redirection of the data to
the back-end is performed by another entity, that implements the stream-like
behavior available in the front-end.

e back-end defines an output device for the logged data, called a sink.
Currently, the logging framework implements three sinks, namely Console,
File and Null. e first two redirect the data to stderr and a file respectively,
while Null forms a special sink used for deactivation of the logging process
at runtime. e back-end can be easily extended to support additional sinks.
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Figure 3.2: Data flow through the logging framework of the SparseX library.

Conceptually, data flows through the logging framework as shown in
Figure 3.2.

By default, only the Error and Warning logging levels are enabled. How-
ever, the user may find the Info level particularly helpful in understanding
the preprocessing phase of CSX while evaluating program performance. For
example, Info activates the printing of statistics about the detected and en-
coded substructures during the conversion to the CSX format. Additionally,
in case of NUMA architectures, where the performance of the SpMV kernel is
sensitive to the correct placement of the involved data on the system’s mem-
ory nodes, information is given on the success or failure of the corresponding
memory allocations. Table 3.4 gives an overview of the available routines for
configuring the logging process.

Routine Description
spx_log_enable_all_console Activates all logging levels and redi-

rects output to stderr.
spx_log_enable_all_file Activates all logging levels and redi-

rects output to a logfile.
spx_log_disable_all Disables logging.
spx_log_disable_error Disables the Error logging level.
spx_log_disable_warning Disables the Warning logging level.
spx_log_disable_info Disables the Info logging level.

Table 3.4: Available routines to control logging.

3.4 Error handling

In general, the SparseX interface distinguishes three types of errors: (a) fatal
errors generated by the operating system, (b) logical errors (i.e., created by
the user) that are fatal to the program execution and (c) logical errors that
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do not lead to program failure e first category may include memory- and
file-related errors. e second category may include errors due to invalid ar-
guments supplied to one of the interface’s routines. Finally, non-fatal logical
errors may occur, for example, when trying to set an option to an invalid
value.

e interface handles errors with the use of error handling routines and
error codes or invalid handle returns. When an error condition is detected
within a SparseX routine, it is treated as following:

• e routine calls the current error handler.

• Regardless of what action the error handler performs, the routine re-
turns an error code or an invalid handle depending on the routine.

e default error handler uses the logging framework described in the
previous section to output messages of the following form

[prefix]: message [sourcefile:lineno:function]
where prefix can be either ERROR or WARNING depending on the error type.
When an error of the first category occurs, the default error handler also out-
puts the error message generated by the operating system and subsequently
exits the program with a nonzero exit code. In case of logical errors, on the
other hand, returning error codes instead of exiting seemed more appropri-
ate, sincemost routinesmake requests on available resources and their failure
needs to be recoverable.

If the user wishes to handle errors in a different manner, she may set her
own error handling routine by calling spx_err_set_handler(), as long
as it conforms to the signature set by our interface. For more details see
Appendix B.

A couple of macros are used to make the error handling a bit more conve-
nient. ese macros are used throughout the interface and can be employed
by the application programmer as well. When an error is first detected, one
should set it by calling

SETERROR_0(error_code) or
SETERROR_1(error_code, message)

Both macros call the current error handler, while the second also supplies a
custom message.
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Evaluating the performance of SparseX

In this chapter, we assess the potential benefit of using SparseX in solver
libraries or standalone applications by running tests on representative data
and a variety of advanced multicore architectures. A performance evaluation
of the CSX file feature indicates that the cost of tuning can be amortized in
future runs of the same matrix, while comparison to other popular libraries
substantiates previous claims on CSX’s (and CSX-Sym’s) improved perfor-
mance over alternative sparse matrix storage formats [Kourtis et al., 2011;
Karakasis et al., 2013; Gkountouvas et al., 2013].

4.1 Experimental setup

Before proceeding with our quantitative evaluation of the SparseX library, it
is essential to present the matrices, the hardware platforms and the experi-
mental methodology we used for our benchmarking.

4.1.1 Matrix suite

In order to evaluate the performance of our library, we have selected 30 ma-
trices from the University of Florida Sparse Matrix Collection [Davis and Hu,
2011], covering a wide variety of application domains. is diverse set of ma-
trices exhibits varying properties relevant to SpMV performance, including
matrix dimension, sparsity, average number of nonzeros per row, the exis-
tence of dense block substructures and symmetry, allowing us to examine
different aspects of the kernel. Appendix A provides images that depict the
sparsity structure of each matrix in our suite.

Table 4.1 gives the properties of the selected matrices. Two thirds of the
matrices are derived from problems with an underlying 2D/3D geometry,
since these are more frequently encountered in the solution of sparse linear
systems. Nine matrices have rather short rows, exhibiting a very low arith-
metic intensity with a flop:byte ratio ranging below 1.5. e most sparse
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matrix is Hamrle3, which has only four non-zeros per row on average, while
the denser is TSOPF_RS_b2383 with 424 elements per row. We must note
that every matrix in our suite does not fit in the last level cache of each of
our test platforms. is choice was made in order to highlight the effect of
compression on the resulting memory traffic.

Matrix Dimension Nonzeros Size
(MiB)

f:b
ratio

Problem domain 2D/3D

xenon2 157,464 3,866,688 44.85 0.156 Materials Yes
ASIC_680k 682,862 3,871,773 46.91 0.129 Circuit Sim. No
torso3 259,156 4,429,042 51.67 0.152 Other Yes
Chebyshev4 68,121 5,377,761 61.80 0.163 Structural Yes
Hamrle3 1,447,360 5,514,242 68.63 0.116 Circuit Sim. No
pre2 659,033 5,959,282 70.71 0.141 Circuit Sim. No
cage13 445,315 7,479,343 87.29 0.152 Graph No
atmosmodj 1,270,432 8,814,880 105.72 0.135 C.F.D. Yes
ohne2 181,343 11,063,545 127.30 0.162 Semiconductor Yes
kkt_power 2,063,494 14,612,663 175.10 0.135 Optimization No
TSOPF_RS_b2383 38,120 16,171,169 185.21 0.166 Power No
Ga41As41H72 268,096 18,488,476 212.61 0.163 Chemistry No
Freescale1 3,428,755 18,920,347 229.61 0.128 Circuit Sim. No
rajat31 4,690,002 20,316,253 250.39 0.120 Circuit Sim. No
F1 3,428,755 26,837,113 308.44 0.163 Structural Yes
parabolic_fem 525,825 3,674,625 44.06 0.135 C.F.D. Yes
offshore 259,789 4,242,673 49.54 0.151 Electromagnetics Yes
consph 83,334 6,010,480 69.10 0.163 F.E.M. Yes
bmw7st_1 141,347 7,339,667 85.54 0.161 Structural Yes
G3_circuit 1,585,478 7,660,826 93.72 0.124 Circuit Sim. No
thermal2 1,228,045 8,580,313 102.88 0.135 ermal Yes
m_t1 97,578 9,753,570 111.99 0.164 Structural Yes
bwmcra_1 148,770 10,644,002 122.38 0.163 Structural Yes
hood 220,542 10,768,436 124.08 0.161 Structural Yes
crankseg_2 63,838 14,148,858 162.16 0.165 Structural Yes
nd12k 36,000 14,220,946 162.88 0.166 Other Yes
af_5_k101 503,625 17,550,675 202.77 0.159 Structural Yes
inline_1 503,712 36,816,342 423.25 0.163 Structural Yes
ldoor 952,203 46,522,475 536.04 0.161 Structural Yes
boneS10 914,898 55,468,422 638.28 0.162 Model Reduction Yes

Table 4.1: e matrix suite used for experimental evaluation. For each matrix,
we provide the matrix dimension (square matrices only), the number of
nonzero elements, the size and the arithmetic intensity (flop:byte ratio)
in the CSR format, the problem domain and whether it is derived from a
problem with an underlying 2D/3D geometry.
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Dunnington Gainestown Westmere-EP Sandy Bridge-EP
Model Intel Xeon X7460 Intel Xeon X5560 Intel Xeon X5650 Intel Xeon E5-4620

Microaritecture Intel Core Intel Nehalem Intel Westmere Intel Sandy Bridge
Clo frequency 2.66 GHz 2.8 GHz 2.66 GHz 2.26 GHz
L1 cae (D/I) 32 KiB/32 KiB 32 KiB/32 KiB 32 KiB/32 KiB 32KiB/32 KiB

L2 cae 3 MiB (per 2 cores) 256 KiB (per core) 256 KiB (per core) 256 KiB (per core)
L3 cae 16MiB 8MiB 12MiB 16MiB

Cores/reads 6/6 4/8 6/12 8/16
Sustained memory b/w 8.1 GiB/s 2×15.5 GiB/s 2×15.7 GiB/s 4×13.5 GiB/s

Multiprocessor configurations
Sockets 4 2 2 4

Cores/reads 24/24 8/16 12/24 32/64

Table 4.2: Technical characteristics of the hardware platforms used for the exper-
imental evaluations. e sustained memory bandwidth figures are ob-
tained with the STREAM benchmark [McCalpin, 1995] utilizing the full
system.

4.1.2 Hardware platforms

e hardware platforms we use for our quantitative analysis comprise of
one symmetric sharedmemory (SMP) and three cache-coherent non-uniform
memory access (cc-NUMA) multiprocessor systems. e SMP system is a
four-way six-core Intel Xeon X7460 (codename Dunnington) multiproces-
sors. e NUMA systems are a two-way quad-core Intel Xeon X5560 (co-
dename Gainestown) multiprocessor, a two-way six-core Intel Xeon X5650
(codename Westmere-EP) and a four-way six-core Intel Xeon E5-4620 (code-
name Sandy Bridge-EP). In the following, wewill refer to each platform using
its codename. Table 4.2 lists the technical specifications of our test platforms.

In our SMP system, Dunnington, all four sockets use the common bus
to communicate with the main memory and with each other, a layout that
can become a serious boleneck for very memory-intensive multithreaded
applications, like the SpMV kernel.

eGainestown,Westmere-EP and Sandy Bridge-EP systems depart from
the centralized SMP logic by moving the memory controller inside the socket
and spliing, as a result, the physical memory into per-processor banks.
Each memory controller can provide a sustained memory bandwidth almost
2× faster than the one offered by our SMP architecture. is means that
accesses addressed to a processor’s local memory are cheaper in terms of
memory latency. Interprocessor communication, as well as remote mem-
ory accesses, are routed through a dedicated interconnection network (In-
tel® ick-Path Interconnect – QPI [Kurd et al., 2008]) with a bandwidth
much smaller than the available memory bandwidth. erefore, the inter-
connection link is likely to become a boleneck if a significant amount of
main memory traffic is routed through it due to remote memory accesses
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[Goumas et al., 2009]. We expect this layout to alleviate the SpMV kernel in
terms of memory intensity, assuming correct data placement is performed
among the processors.

Soware setup

All systems run a 64-bit version of the Linux OS (kernel version 3.7.10) and
the GNU Compiler Collection (gcc, g++ etc.), version 4.6, is used for the
compilation of every project, unless stated otherwise. Multithreaded ver-
sions of the SparseX code (including the SpMV kernel) are wrien using ex-
plicit, native threading with the Pthreads userspace library (NPTL, version
2.11.3), while NUMA-aware versions are built with the numactl library (ver-
sion 2.0.8), which is a wrapper userspace library of the low-level memory
allocation system call interface of the Linux kernel. Finally, the LLVM/Clang
compiler framework, version 3.0, is used for the runtime code generation of
CSX.

4.1.3 Measurement policies

Thread placement

In modern multicore processors, a core is not an independent processing el-
ement, but rather a part of a larger on-chip system and, hence, shares re-
sources (pipeline, cache hierarchy, bus/memory interfaces) with other cores.
For example, in our Gainestown platform, two threads may share all the pre-
processor resources from the pipeline up to the memory controller, if they
are placed on the same logical core (this technology is known as Simultane-
ous Multithreading (SMT) [Tullsen et al., 1995] and has been initially com-
mercialized as Hyper-reading (HT) by Intel in its Netburst microarchitec-
ture [Koufaty and Marr, 2003]), but they may also share nothing, if they are
placed on different sockets. It has been documented that the execution time
of a thread can vary greatly depending on which threads are running on the
other cores of the same chip [Lin et al., 2008]. erefore, the way threads are
assigned to different hardware contexts, denoted as thread placement, has a
significant impact on overall system performance, depending on the appli-
cation’s workload. It is therefore essential to pin threads to specific cores
during measurements following a specific resource sharing control scheme.
In CSX, thread pinning is performed with the sched_setaffinity() Linux
kernel system call, which allows to assign the calling thread to an arbitrary
set of logical CPUs. For the assignment of threads to cores, we define two
different policies:

50



thesis July 10, 2014 16:51 Page 51 �
�	

�
�	 �
�	

�
�	

4.2. CSX file evaluation

• share-all: is policy assigns threads to cores so that the maximum
sharing of resources is achieved, with the exception of pipeline re-
sources (Hyper-reading feature). In Dunnington, for example, the
cores sharing the L2 cache will be filled first, followed by the cores
sharing the L3, and so forth for the rest of the sockets. e advan-
tage of this policy is that it provides more insight of the performance
behavior as we scale a system by adding more sockets.

• share-nothing: is policy assigns threads to cores so that the least
resource sharing is achieved. Taking on the example of Dunnington,
the threads will be first spread across the sockets, then across the L2
caches, and finally start to share. e advantage of this policy is that it
utilizes the full system’s potential right from the configurations with a
small number of threads.

Data types

To simulate the typical sparse matrix storage case, we use 32-bit integers for
indexing and 64-bit, double precision floating point values for the nonzero
elements.

4.2 CSX file evaluation

In this section we perform an evaluation of the CSX file feature provided by
the SparseX library. As mentioned in the previous chapter, the user may save
a sparse matrix already tuned in the CSX format with the spx_mat_save()
routine. In a future session, she may retrieve the disk-cached CSX matrix
with the spx_mat_restore() routine and perform amultiplication as usual.
is eliminates the need to load the original matrix and go through the en-
tire preprocessing phase of CSX (actually, only the step that involves the
SpMV code generation is repeated, see Section 2.4). If the user also wishes
to change some values in the freshly loaded matrix, she can make use of the
spx_set_entry() routine. e only (obvious) limitation is that the same
number of threads will be used. us, from the available runtime options
(see Table 3.2), only the CPU affinity may be overridden. Listing 4.1, gives an
example of how this feature may be used.

Listing 4.1: A usage example that loads CSX from a file.
1 spx_scalar_t alpha, beta;
2 alpha = 0.42; beta = 0.10;

4 /* Initialize library */
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5 spx_init();

7 /* Retrieve matrix from binary file */
8 spx_matrix_t *A = spx_mat_restore(file);

10 /* Create randomly filled vectors */
11 spx_index_t ncols = spx_mat_get_ncols(A);
12 spx_index_t nrows = spx_mat_get_nrows(A);
13 spx_partition_t *parts = spx_mat_get_partition(A);
14 spx_vector_t *x = spx_vec_create_random(ncols, parts);
15 spx_vector_t *y = spx_vec_create_random(nrows, parts);

17 /* Run the SpMV kernel:
18 y <- alpha*A*x + beta*y */
19 spx_matvec_mult(alpha, A, x, beta, y);

21 /* Cleanup interface objects */
22 spx_mat_destroy(A);
23 spx_vec_destroy(x);
24 spx_vec_destroy(y);
25 spx_partition_destroy(parts);

27 /* Shutdown library */
28 spx_finalize();

In order to measure the performance gain in terms of preprocessing cost,
the following benchmark scenario was executed:

1. A first session tunes a sparse matrix into the CSX format and subse-
quently stores it in a file. In this session, we time the spx_mat_tune()
routine. Note be taken that this doesn’t include the cost of loading the
matrix from either CSR or MMF.

2. Since the file rests in the file-system cache aer the first session, we
hint the OS, through a call to posix_fadvise(), to free the associated
cached pages. is beer simulates potential use of this feature, where
the matrix is freshly loaded from the disk.

3. A second session restores the matrix. In this session, we time the
spx_mat_restore() routine.

is scenario was run for both the full and sampled versions of CSX’s pre-
processing phase. Figures 4.1 and 4.2 show the average performance gain
achieved in both cases in Gainestown and Sandy Bridge-EP respectively. In
both cases, we notice that the benefit margin tightens when the number of
threads grows, but this comes to no surprise since the spx_mat_restore()
routine is a serial operation, (consisting mainly of I/O operations, data allo-
cations and runtime code generation), while the tuning phase is performed
in parallel and, thus, benefits from a multithreaded configuration. For com-
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(b) Sampled preprocessing

Figure 4.1: Performance gains from using a disk-cached CSXmatrix in Gainestown.
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(b) Sampled preprocessing

Figure 4.2: Performance gains from using a disk-cached CSX matrix in Sandy
Bridge-EP.

pleteness, the scalability of the preprocessing phase in Sandy Bridge-EP is
depicted in Figure 4.3. Nonetheless, a minimum 36% performance benefit
is guaranteed against the sampled preprocessing and a 70% against the full
preprocessing in Sandy Bridge-EP, while in Gainestown the corresponding
values climb up to 46% and 87%, pinpointing the importance of this feature
when working on a specific matrix.
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(b)Optimized preprocessing

Figure 4.3: Scalability of the preprocessing phase of CSX in Sandy Bridge-EP.
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4.3 SparseX versus other high performance libraries

In order to establish our library’s high performance on multicore architec-
tures, we decided to carry out a thorough comparison to other popular li-
braries that provide parallel implementations of the SpMV kernel, namely
the widely-used commercial Math Kernel Library (MKL) by Intel® [Intel®
Coorporation, 2013a] and the open-source parallel implementation of the
Optimized Sparse Kernel Interface (pOSKI) [Vuduc et al., 2005; Ankit, 2008],
which has been developed by the Berkeley Benchmarking and Optimization
(BeBOP) group.

4.3.1 Intel® MKL

e Intel® Math Kernel Library (Intel® MKL) enables the improvement of
performance of scientific, engineering, and financial soware that solves
large computational problems. It provides a set of linear algebra routines,
fast Fourier transforms, as well as vectorized math and random number gen-
eration functions, all optimized for the latest Intel® processors, including
processors with multiple cores, such as those in our experimental platforms.
It fully implements and extends the BLAS interface, providing, among oth-
ers, routines for running the SpMV kernel using a variety of sparse matrix
storage formats, namely the COO, CSR, CSC and BCSR formats. When de-
ciding on which version of the kernel to benchmark, the BCSR variation was
rejected since it only supportsm×k block sparse matrices, wherem and k are
explicit, thus limiting its use in our diverse matrix suite. It would also require
some kind of auto-tuning phase, in order to detect the optimal block dimen-
sions, followed by a conversion of the input matrix into the BCSR format.
Since the COO and CSC formats are generally less efficient, the CSR version
of the kernel was finally selected, namely the mkl_dcsrmv() routine. e
library actually supports a 3-array variation of the CSR format (3 refers to the
number of indexing structures), where the usual rowptr and colind arrays
are backed by a third array that contains pointers to the end of each row.
e interface also provides a similar routine for symmetric matrices, namely
mkl_cspblas_dcsrsymv(), that was also tested, but exhibited much lower
performance in comparison to the non-symmetric routine and, thus, its ex-
perimental results will not be provided. Listing 4.2 provides part of the source
code employed to execute the SpMV kernel using the aforementioned CSR
variant (non-symmetric version).

Since Intel®MKL doesn’t explicitly support NUMAplatforms, in order to
aain optimal performancewith this library, wemade use of the numactl util-
ity of Linux, that runs processes with a specific NUMA scheduling or mem-
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ory placement policy. More precisely, we employed the --interleave=all
option to set a memory interleave policy that will force the application to al-
locate memory using round robin on all nodes in the current cpuset. is is
also suggested in many articles of the Intel® Developer Zone as a way to im-
prove MKL’s performance on NUMA-based systems [Henry, 2012]. Finally,
thread affinity inMKL is internally set to the optimal configuration by default
(it tries to use what it considers to be the best number of threads, up to maxi-
mum number specified by the user [Intel® Coorporation, 2013b]), and, there-
fore, it was not explicitly controlled through environment variables. Only the
number of threads was provided through the OMP_NUM_THREADS variable.

Listing 4.2: Sample of the source code used to perform a doubly nested loop of
SpMV operations with Intel® MKL.

1 // ...

3 MKL_INT *pointerB, *pointerE;
4 char transa;
5 char matdescra[6];

7 transa = 'n';
8 matdescra[0] = 'g';
9 matdescra[1] = '-';
10 matdescra[2] = '-';
11 matdescra[3] = 'c';

13 pointerB = (MKL_INT *) malloc(sizeof(MKL_INT) * nrows);
14 pointerE = (MKL_INT *) malloc(sizeof(MKL_INT) * nrows);
15 for (int i = 0; i < nrows; i++) {
16 pointerB[i] = rowptr[i];
17 pointerE[i] = rowptr[i+1];
18 }

20 mkl_set_num_threads(NR_THREADS);

22 // SpMV doubly nested loop
23 for (size_t i = 0; i < OUTER_LOOPS; i++) {
24 for (size_t j = 0; j < LOOPS; j++) {
25 mkl_dcsrmv(&transa, &nrows, &ncols, &ALPHA,
26 matdescra , values, colind, pointerB,
27 pointerE, x, &BETA, y);
28 }
29 }

31 // ...

56



thesis July 10, 2014 16:51 Page 57 �
�	

�
�	 �
�	

�
�	

4.3. SparseX versus other high performance libraries

4.3.2 BeBOP pOSKI

e parallel Optimized Sparse Kernel Interface (pOSKI) library is a parallel
autotuner for SpMV, built on top of the highly-praised OSKI package. Its au-
totuning capabilities rely on extensive offline benchmarking of different ker-
nel implementations and a number of heuristics that dynamically select the
best storage format and implementation for a specificmatrix at runtime. Sup-
ported sparse matrix storage formats include CSR, BCSR and BCSR-variants.
During the installation process, pOSKI identifies the fastest implementations
based on empirical search and creates optimized routines for the target ma-
chine’s hardware. ese static kernels become the defaults that are called
when runtime tuning is not used. To use the most efficient kernel, however,
the matrix storage format may need to be reorganized. is can be achieved
at runtime if the user explicitly asks for the matrix to be tuned for a specific
kernel by selecting either the moderate or aggressive tuning option.

On all of our test platforms, the library was built with explicit compiler
flags, since the auto-detect code of the library is currently out-of-date. More
specifically, we used the -m64 flag, to generate code for the x86_64 archi-
tecture, the -march=native flag, which enables all instruction subsets sup-
ported by the local machine, and the -O3 optimization flag. On our NUMA
platforms, we also set the --with-numa installation option to enable NUMA-
awareness. Finally, in order to beer evaluate pOSKI’s performance, both
offline and runtime tuning capabilities were enforced. Offline tuning was
enabled during the installation process with the --with-tune option, while
full runtime tuningwas enforced through the ALWAYS_TUNE_AGGRESSIVELY
option of the tuning routine. A sample of the source code used when bench-
marking the pOSKI library is given in Listing 4.3.

Listing 4.3: Sample of the source code used to perform a doubly nested loop of
SpMV operations with pOSKI.

1 // ...

3 // Matrix loading
4 poski_threadarg_t *poski_thread = poski_InitThreads();
5 poski_ThreadHints(poski_thread , NULL, POSKI_THREADPOOL ,
6 NR_THREADS);
7 poski_partitionarg_t *partitionMat =

poski_partitionMatHints(OneD, NR_THREADS ,
KERNEL_MatMult , OP_NORMAL);

8 poski_mat_t A_tunable = poski_CreateMatCSR(...);

10 // Vector loading
11 poski_partitionvec_t *partitionVecX =

poski_PartitionVecHints(...);
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12 poski_vec_t x_view = poski_CreateVec(..., partitionVecX);
13 poski_partitionvec_t *partitionVecY =

poski_PartitionVecHints(...);
14 poski_vec_t y_view = poski_CreateVec(..., partitionVecY);

16 // Matrix tuning
17 poski_TuneHint_MatMult(A_tunable , OP_NORMAL , ALPHA, x_view,

BETA, y_view, ALWAYS_TUNE_AGGRESSIVELY);
18 poski_TuneMat(A_tunable);

20 // SpMV doubly nested loop
21 for (size_t i = 0; i < OUTER_LOOPS; i++) {
22 for (size_t j = 0; j < LOOPS; j++) {
23 poski_MatMult(A_tunable , OP_NORMAL , ALPHA, x_view,
24 BETA, y_view);
25 }
26 }

28 // ...

4.3.3 SparseX vs MKL vs pOSKI performance analysis

If a library wishes to be competitive in terms of SpMV performance, it should
limit resource sharing among running threads. Since this is the default policy
for SparseX, we will only look upon the “share-nothing” results for compar-
ison purposes. Measurements of the “share-all” core-filling policy are only
provided to gain beer insight into the performance of the SpMV kernel on
our experimental platforms.

For all libraries, we measure the total time it takes to calculate 128 con-
secutive iterations of the SpMV kernel (y← alpha ·A · x+ beta · y) with ran-
domly created x and y vectors, a randomly generated alpha and beta = 1.
ese seings beer simulate use of the kernel in the CG iterative method
(see Section 1.2). Each reported result is the median value from 5 runs with
a warm cache.

SMP architectures

In Dunnington, our four-way SMP architecture, the SpMV kernel is expected
to fully expose its memory-intensive nature by stressing the common bus
used by all sockets to communicate with the main memory. Indeed, in Fig-
ure 4.4 we observe that under a “share-all” core filling policy, in all mul-
tithreaded configurations that use a single socket (i.e., 2- and 6-threaded),
memory contention prohibits performance scaling. However, whenever an
additional socket comes into play (e.g., in the 12- and 24-threaded configura-
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Figure 4.4: Speedup over the serial naive CSR implementation of SpMV in Dun-
nington. For SparseX, the average speedup is depicted using both core-
filling policies.

tion), a major performance improvement is achieved, confirming the kernel’s
“craving” for memory bandwidth. e same conclusion can be drawn by sim-
ply comparing the two core-filling policies in SparseX. When moving, for
example, from 2 to 6 threads, use of a second socket in the “share-nothing”
policy alleviates the common bus, leading to a 2.4× speedup (with reference
to the 2-threaded configuration) over a mere 1.18× in the “share-all” case.

As expected from previous studies of the CSX format [Karakasis et al.,
2013; Gkountouvas et al., 2013], the large compression capabilities of CSX
give our library a unique advantage in SMP architectures, where the mem-
ory boleneck is more prominent. As shown in Figures 4.5 and 4.6, SparseX
outperforms MKL and pOSKI in the majority of matrices. It reaches a 17.5%
average performance improvement over pOSKI and 53.9% over MKL for the
12-threaded configuration. It is important to note here that the slowdown
in the 24-threaded configuration is due to the non-optimal thread manage-
ment currently implemented in SparseX. Specifically, in every SpMV itera-
tion our main thread internally creates the corresponding number of threads
using pthread_create() and waits for each one of them with a call to
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pthread_join(). is means that we spawn and destroy threads in ev-
ery iteration. is, of course, is an expensive process in terms of time, which
turns out to be a performance hindering factor as the number of threads
grows, particularly in small matrices with low execution times (e.g., xenon2).
In order to overcome this problem, we are currently redesigning thread man-
agement in SparseX to make use of a thread pool, which eliminates the need
to continuously create and destroy threads. is is actually, the threading
model employed by pOSKI. For the aforementioned reason, we will examine
the 12-threaded configuration in Dunnington, which is more representative
of CSX’s actual performance capabilities.

Examining Figure 4.5, we notice that SparseX achieves exceptional per-
formance improvements in matrices dominated by diagonal paerns (e.g.,
cage13, atmosmodj, rajat31, k_power), which cannot be efficiently exploited
by the storage formats employed by our rival libraries. pOSKI becomes com-
petitive mainly in block-dominated matrices (xenon2, F1, consph, bmw7st_1,
m_t1, bmwcra_1, crankseg_2, af_5_k101, inline_1, ldoor, bones10), which fa-
vor the BCSR format, but manages to surpass SparseX’s performance only
in xenon2. is is the result of the improved computational characteristics
of the BCSR implementation of pOSKI, which applies vectorization at the
block-level. is optimization pays off in case of xenon2, due to the fact that
this matrix fits in the aggregate cache of Dunnington and the corresponding
source vectors fit in the L2 cache. Finally, in most low-performing matri-
ces, mainly characterized by an irregular nonzero element structure and very
short rows (e.g., Hamrle3, Freescale1, parabolic_fem, G3_circuit, thermal2), all
libraries stay close. In these matrices, SpMV’s performance is hindered by
a number of factors not related to the memory bandwidth saturation, such
as irregular accesses in the input vector, increased loop overheads and load
imbalance.

NUMA architectures

In NUMA architectures, where the available memory bandwidth is consider-
ably higher, the performance landscape changes for the majority of matrices,
but the fact remains that our library stays ahead of both MKL and pOSKI in
NUMA platforms as well. A first glance at Figures 4.7 and 4.8 indicates that
pOSKI’s NUMA-aware optimizations do not pay off at all on these platforms.
Performance ceases to improve for more than 4 threads in Gainestown and
Sandy Bridge-EP and 6 threads in Westmere-EP, while exhibiting a minor
slowdown in some cases. MKL, on the other hand, is more performant, even
though it isn’t explicitly tuned for NUMA platforms. It even manages to
slightly improve its performance in the 24- and 64-threaded (HT-enabled)
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Figure 4.5: Per-matrix performance in Dunnington using 12 threads for SparseX,
MKLand pOSKI. SparseX outperforms both MKL and pOSKI in the ma-
jority of the selectedmatrices. is configuration is more representative
of CSX’s performance capabilities (see text).

configurations in Westmere-EP and Sandy Bridge-EP, which comes to a sur-
prise, since SMT technology is not suited for the SpMV kernel. SMT, in gen-
eral, is usually effective when each thread is performing different types of
operations and there are under-utilized resources on the processor, which is
definitely not the case in SpMV. erefore, even though it seems that MKL
benefits fromHT, this is not actually true. If the requested number of threads
exceeds the number of physical cores, MKL will dynamically scale down the
number of threads to the number of physical cores. us, in Sandy Bridge-EP,

61



thesis July 10, 2014 16:51 Page 62 �
�	

�
�	 �
�	

�
�	

4. E    SX

at
m

os
m

od
j

co
ns

ph
af

_5
_k

10
1

F
re

es
ca

le
1

to
rs

o3
th

er
m

al
2

G
3_

ci
rc

ui
t

T
S

O
P

F
_R

S
_b

23
83

ho
od

in
lin

e_
1

G
a4

1A
s4

1H
72

of
fs

ho
re

ra
ja

t3
1

m
_t

1
bm

w
cr

a_
1

C
he

by
sh

ev
4

pa
ra

bo
lic

_f
em

A
S

IC
_6

80
k

bm
w

7s
t_

1
oh

ne
2

ca
ge

13 F
1

xe
no

n2
bo

ne
S

10
nd

12
k

cr
an

ks
eg

_2
ld

oo
r

kk
t_

po
w

er
H

am
rle

3
pr

e2

0

1000

2000

3000

4000

5000

6000

7000

8000

9000
M

flo
p/

s

 MKL
 POSKI
 SparseX

Figure 4.6: Per-matrix performance in Dunnington using 24 threads for SparseX,
MKL and pOSKI. SparseX outperforms both MKL and pOSKI in 19 out
of the 30 selected matrices, while exhibiting poor performance only in
4 matrices, namely consph, offshore, parabolic_fem and xenon2.

for example, MKL’s 64-threaded performance should actually be compared
to the 32-threaded performance of SparseX and pOSKI. Nonetheless, out li-
brary holds a major average performance lead of 65% over MKL and 114%
over pOSKI in the 8-threaded configuration in Gainestown, 76% and 140%
respectively in the 12-threaded configuration in Westmere-EP and 30% and
154% in the 32-threaded configuration in Sandy Bridge-EP.

Observing the per-matrix performance results in Figure 4.9, in compari-
son to those of 4.5, one should notice an important change in the set of high-
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(b)Westmere-EP

Figure 4.7: SpMV kernel speedup in Gainestown and Westmere-EP. For SparseX,
the average speedup is depicted using both core-filling policies in the
CSX format. e 16- and 24-threaded configurations in Gainestown and
Westmere-EP respectively make use of Hyper-reading, which does
not benefit the SpMV kernel (see text). 63
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(a) Sandy Bridge-EP

Figure 4.8: SpMV kernel speedup Sandy Bridge-EP. For SparseX, the average
speedup is depicted using both core-filling policies in the CSX format.
Slowdown in the 32- and 64-threaded configuration is mainly due to the
non-optimal thread management model employed by SparseX (see text
for more details), while the 64-threaded configuration also makes use of
Hyper-reading, which does not benefit the SpMV kernel (again, see
text). MKL does not actually make use of the Hyper-reading technol-
ogy.

performing matrices. All large matrices of our test suite, including boneS10,
ldoor, af_5_k101, F1, rajat31, Freescale1 and TSOPF_RS_b2383, have signifi-
cantly improved there performance due to the ample memory bandwidth
(almost three times faster in case of Sandy Bridge-EP) available in our NUMA
platforms.

4.3.4 SparseX on symmetric matrices

Symmetric matrices comprise a large subcategory of sparse matrices that
arise in real-life applications. ese matrices introduce a great opportunity
when it comes to reducing the total matrix size, since only the lower (or up-
per) half of the matrix and its main diagonal suffice to describe the whole
matrix. us, when the matrix is symmetric, the user can benefit from the
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Figure 4.9: e SpMV performance in Sandy Bridge-EP for every sparse matrix in
our suite using 16 threads in a NUMA-aware configuration. For Spar-
seX performance is depicted using a “share-nothing” core-filling policy.
SparseX manages to surpass both MKL and pOSKI in the majority of
matrices, with astonishing performance gains in most high-performing
matrices.

symmetric variant of the CSX format by seing the appropriate tuning op-
tion (spx.matrix.symmetric). is format reduces the overall matrix size
almost to half in comparison to the non-symmetric version of CSX, thus at-
taining even higher performance. As mentioned earlier on, the symmetric
variant of MKL performed very poorly and is, therefore, not presented in our
experimental results. As for pOSKI, despite the fact that symmetry could be
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Figure 4.10: SpMV kernel speedup in Sandy Bridge-EP on the subset of symmetric
matrices of our test suite. For SparseX, the average speedup is depicted
using both formats, i.e., CSX and CSX-Sym.

provided as an input matrix property in OSKI, this option is not available in
the parallel autotuner.

Figure 4.10 shows the average speedup over the symmetric matrices of
our suite. SparseX achieves a 99% performance improvement over MKL and
a 213% over POSKI in the 16-threaded configuration. Again, in 32 threads,
the non-optimal thread management of our library, in conjunction with the
additional synchronization point required before the reduction phase of the
symmetric SpMV kernel, burdens total execution time in many matrices.
Nonetheless, SparseX still manages to stay ahead of MKL and pOSKI.

For high-bandwidth matrices, reordering may yield considerable perfor-
mance improvements, as depicted in Figure 4.11 and explained in Section
3.2.1. It comes with a non-negligible cost, if performed entirely at runtime,
as it involves finding a suitable permutation, applying it to the input vec-
tors of the SpMV kernel and, finally, applying the inverse permutation to
the output vector in order to receive the correct result [Liu and Sherman,
1976]. However, this cost can be amortized if the user expects a large num-
ber of SpMV operations to be performed, which is usually the case in iter-
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Figure 4.11: e effect of reordering on the SpMV performance using the symmet-
ric variant of CSX in a 16-threaded configuration in Sandy Bridge-EP.
Experimental results are provided only on the subset of symmetric ma-
trices in our test suite that benefit from applying the Reverse Cuthill
McKee bandwidth-reduction algorithm, which is provided by our API.

ative solvers. Usually though, the input matrix is already reordered, thus,
reordering at runtime only involves applying the permutations, making it
much more lightweight.

4.3.5 Performance issues

Thread management

Even though SparseX outperforms both MKL and pOSKI in all multithreaded
configurations, it exhibits a noticeable performance degradation on Dun-
nington and Sandy Bridge-EP, when using 24 and 32 cores respectively under
a share-nothing core-filling policy (approximately 10% on average of all ma-
trices on Dunnington and 3.4% on Sandy Bridge-EP). Our measurements in-
dicate that this is due to the current thread management model employed by
SparseX, as mentioned earlier in our performance analysis. We believe that
creating and destroying threads in every SpMV iteration incurs a significant
overhead for a large number of threads, which tends to dominate total exe-
cution time in small high-performing matrices. As a proof of point, we per-
formed a benchmark that simulates use of a thread pool, which we consider to
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Figure 4.12: SpMV kernel speedup in Dunnington as a result of the thread pool
simulation benchmark.

be a viable solution to this problem. In this benchmark, threads are created
once at library initialization (instead of every SpMV iteration), while syn-
chronization is performed at the end of each SpMV iteration, with the use of
explicit barriers (instead of a thread join). Figure 4.12 shows the results of this
benchmark on Dunnington. For more than 6 threads, CSX slightly improves
its performance, while it no longer encounters a performance slowdown at
the 24-threaded configuration, where the system is completely saturated, as
expected.

Load imbalance

In matrices with a very irregular nonzero element structure, our static matrix
partitioning scheme (see Section 2.4) cannot guarantee a fair distribution of
the work among the threads. is is due to the fact that our scheme does
not take into account the sparsity paern within a thread partition. For ex-
ample, two partitions may have the same number of nonzero elements, but
different access paerns in the input vector; SpMV will be rather slow in the
partition with the most irregular paern, hindering the entire multithreaded
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execution. e most typical example of this situation is the Hamrle3 ma-
trix (see Appendix A). A closer inspection at Hamrle3’s structure reveals that
the upper half of the matrix is quite regular, while the rest is very irregular
with large and variable distances between the nonzero elements of a row.
In another case, some parts of the matrix may have extremely short rows,
while others may have rows with a row length close to the matrix dimension.
reads assigned to the parts with very short rows are slower because they
are burdened by more loop overheads. A typical matrix of such a behavior
is the ASIC_680k. It is worth mentioning that in a 2-threaded configuration
Hamrle3 exhibits a 127% load imbalance, which climbs up to 368% using 32
threads, while ASIC_680k has a 20% and 388% load imbalance respectively.
As the number of participating threads increases, it is more likely to have
some partitions with very different row lengths or memory access paerns
from others, amplifying the effect of load imbalance on performance.
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Conclusions

In this thesis, we have thoroughly presented SparseX, a high performance
open-source library for performing efficient Sparse Matrix-Vector Multipli-
cations on modern multicore architectures. We provided some implementa-
tions details on the core library and gave a detailed overview of the user API,
accompanied by a number of examples that exhibit its ease of use. Next, we
evaluated the disk-cached CSX matrix feature, which significantly reduces
the preprocessing cost of CSX when the same (or a structurally equivalent)
matrix needs to be used inmultiple sessions. Finally, we performed a compar-
ison of SparseX to other popular libraries that provide the same functionality
on a wide variety of hardware platforms, establishing our library’s potential
for improving the sparse linear algebra soware stack. In the following sec-
tion we provide some future research prospects and directions.

5.1 Future work

We are currently working on modifying thread management in SparseX. As
a first step, we are planning to evaluate the use of a thread pool, which we
believe to be more appropriate for executing a large number of SpMV itera-
tions, especially as the number of threads grows. Our current model spawns
and destroys threads in every SpMV iteration. is process can become ex-
pensive for a large number of threads and dominate total execution time in
small high-performing matrices. We are also considering implementing a
custom static memory barrier, that will make use of spinlocks, as a viable
approach to reducing synchronization costs. With spinlocks, we can avoid
wasting time on constantly puing threads, that have completed their com-
putations, to sleep and waking them up again. Instead, threads will remain in
a busy waiting state for a short time period, leading, eventually, to a higher
processing throughput.

Another issue, that becomes significant to SpMV performance as the
number of cores increases, is the matrix partitioning method employed. Al-
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though our static partitioning scheme is widely used in many SpMV imple-
mentations on multicore processors, and leads to good performance for most
matrices, for a large number of cores (e.g., in a many-core system) it is more
likely to create partitions with very different row lengths and memory access
paerns, resulting in significant load imbalance among the threads. us, if
we ever consider porting CSX to many-core architectures, implementation
of an adaptive load balancing technique will have to be considered.

By alleviating the memory pressure, CSX leaves more space for optimiza-
tions targeting the computational part of the kernel, such as vectorization.
Even though the effect of vectorization diminishes as the problem becomes
more memory bound (i.e., completely saturate the system), it can achieve sig-
nificant speedups when the working set of the matrix fits in the aggregate
cache of the system [Karakasis et al., 2009]. We also expect vectorization to
boost performance in NUMA platforms, which mitigate the memory bole-
neck and further expose computations. To this end, we are looking into In-
tel®’s Advanced Vector Extensions (AVX), that provide 256-bit integer SIMD
extensions that claim to accelerate computation across integer and floating-
point domains using 256-bit vector registers.

Finally, in order for SparseX to be of essential practical value to the HPC
community, it is important to intergate it into higher-level sparse solver li-
braries, such as PETSc or the Trilinos project [Balay et al., 2013; Heroux et al.,
2005]. Integration with such systems has the unique advantage of a large
potential user base, that would contribute, in our case, to the beer dissemi-
nation of the CSX format.
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Matrix suite

Our experimental matrix suite includes 30 matrices from the University of
Florida Sparse Matrix Collection [Davis and Hu, 2011]. is collection con-
tains thousands of sparse matrices that arise in real applications from a vari-
ety of scientific domains. It has become the standard source for matrices in
the numerical linear algebra community for the performance evaluation of
sparse matrix algorithms. We have selected matrices with an underlying 2D
or 3D geometry coming from computational fluid dynamics, electromagnet-
ics, thermodynamics, materials, structural mechanics and model reduction,
as well as matrices without such a geometry from electrical circuit simula-
tion, chemical process simulation, power networks and graphs.

(1) xenon2 (2) ASIC_680k (3) torso3

(4) Chebyshev4 (5) Hamrle3 (6) pre2
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(7) cage13 (8) atmosmodj (9) ohne2

(10) kkt_power (11) TSOPF_RS_b2383 (12) Ga41As41H72

(13) Freescale1 (14) rajat31 (15) F1

(16) parabolic_fem (17) offshore (18) consph
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(19) bmw7st_1 (20) G3_circuit (21) thermal2

(22)m_t1 (23) bmwcra_1 (24) hood

(25) crankseg_2 (26) nd12k (27) af_5_k101

(28) inline_1 (29) ldoor (30) boneS10
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C bindings reference

Generated by Doxygen 1.8.6

77



thesis July 10, 2014 16:51 Page 78 �
�	

�
�	 �
�	

�
�	

A.1 Available routines

• void spx_init ()
• void spx_�nalize ()
• spx_input_t ∗ spx_input_load_csr (spx_index_t ∗rowptr, spx_index_t ∗colind,

spx_value_t ∗values, spx_index_t nr_rows, spx_index_t nr_cols,...)
• spx_input_t ∗ spx_input_load_mmf (const char ∗�lename)
• spx_error_t spx_input_destroy (spx_input_t ∗input)
• spx_matrix_t ∗ spx_mat_tune (spx_input_t ∗input,...)
• spx_error_t spx_mat_get_entry (const spx_matrix_t ∗A, spx_index_t row,

spx_index_t column, spx_value_t ∗value,...)
• spx_error_t spx_mat_set_entry (spx_matrix_t ∗A, spx_index_t row, spx_←↩

index_t column, spx_value_t value,...)
• spx_error_t spx_mat_save (const spx_matrix_t ∗A, const char ∗�lename)
• spx_matrix_t ∗ spx_mat_restore (const char ∗�lename)
• spx_index_t spx_mat_get_nrows (const spx_matrix_t ∗A)
• spx_index_t spx_mat_get_ncols (const spx_matrix_t ∗A)
• spx_index_t spx_mat_get_nnz (const spx_matrix_t ∗A)
• spx_partition_t ∗ spx_mat_get_partition (spx_matrix_t ∗A)
• spx_perm_t ∗ spx_mat_get_perm (const spx_matrix_t ∗A)
• spx_error_t spx_matvec_mult (spx_scalar_t alpha, const spx_matrix_t ∗A,

spx_vector_t ∗x, spx_vector_t ∗y)
• spx_error_t spx_matvec_kernel (spx_scalar_t alpha, const spx_matrix_t ∗A,

spx_vector_t ∗x, spx_scalar_t beta, spx_vector_t ∗y)
• spx_error_t spx_matvec_kernel_csr (spx_matrix_t ∗A, spx_index_t nr_rows,

spx_index_t nr_cols, spx_index_t ∗rowptr, spx_index_t ∗colind, spx_value←↩
_t ∗values, spx_scalar_t alpha, spx_vector_t ∗x, spx_scalar_t beta, spx_←↩
vector_t ∗y)

• spx_error_t spx_mat_destroy (spx_matrix_t ∗A)
• spx_partition_t ∗ spx_partition_csr (spx_index_t ∗rowptr, spx_index_t nr←↩

_rows, unsigned int nr_threads)
• spx_error_t spx_partition_destroy (spx_partition_t ∗p)
• void spx_option_set (const char ∗option, const char ∗string)
• void spx_options_set_from_env ()
• spx_vector_t ∗ spx_vec_create (unsigned long size, spx_partition_t ∗p)
• spx_vector_t ∗ spx_vec_create_from_bu� (spx_value_t ∗bu�, unsigned long

size, spx_partition_t ∗p, spx_copymode_t mode)
• spx_vector_t ∗ spx_vec_create_random (unsigned long size, spx_partition←↩

_t ∗p)
• void spx_vec_init (spx_vector_t ∗v, spx_value_t val)
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• void spx_vec_init_part (spx_vector_t ∗v, spx_value_t val, spx_index_t start,
spx_index_t end)

• void spx_vec_init_rand_range (spx_vector_t ∗v, spx_value_t max, spx_value←↩
_t min)

• spx_error_t spx_vec_set_entry (spx_vector_t ∗v, spx_index_t idx, spx_value←↩
_t val)

• void spx_vec_scale (spx_vector_t ∗v1, spx_vector_t ∗v2, spx_scalar_t num)
• void spx_vec_scale_add (spx_vector_t ∗v1, spx_vector_t ∗v2, spx_vector_t
∗v3, spx_scalar_t num)

• void spx_vec_scale_add_part (spx_vector_t ∗v1, spx_vector_t ∗v2, spx_←↩
vector_t ∗v3, spx_scalar_t num, spx_index_t start, spx_index_t end)

• void spx_vec_add (spx_vector_t ∗v1, spx_vector_t ∗v2, spx_vector_t ∗v3)
• void spx_vec_add_part (spx_vector_t ∗v1, spx_vector_t ∗v2, spx_vector_←↩

t ∗v3, spx_index_t start, spx_index_t end)
• void spx_vec_sub (spx_vector_t ∗v1, spx_vector_t ∗v2, spx_vector_t ∗v3)
• void spx_vec_sub_part (spx_vector_t ∗v1, spx_vector_t ∗v2, spx_vector_←↩

t ∗v3, spx_index_t start, spx_index_t end)
• spx_value_t spx_vec_mul (const spx_vector_t ∗v1, const spx_vector_t ∗v2)
• spx_value_t spx_vec_mul_part (const spx_vector_t ∗v1, const spx_vector_t
∗v2, spx_index_t start, spx_index_t end)

• spx_error_t spx_vec_reorder (spx_vector_t ∗v, spx_perm_t ∗p)
• spx_error_t spx_vec_inv_reorder (spx_vector_t ∗v, spx_perm_t ∗p)
• void spx_vec_copy (const spx_vector_t ∗v1, spx_vector_t ∗v2)
• int spx_vec_compare (const spx_vector_t ∗v1, const spx_vector_t ∗v2)
• void spx_vec_print (const spx_vector_t ∗v)
• void spx_vec_destroy (spx_vector_t ∗v)
• void spx_timer_clear (spx_timer_t ∗t)
• void spx_timer_start (spx_timer_t ∗t)
• void spx_timer_pause (spx_timer_t ∗t)
• double spx_timer_get_secs (spx_timer_t ∗t)
• void spx_log_disable_all ()
• void spx_log_error_console ()
• void spx_log_warning_console ()
• void spx_log_info_console ()
• void spx_log_verbose_console ()
• void spx_log_debug_console ()
• void spx_log_error_�le ()
• void spx_log_warning_�le ()
• void spx_log_info_�le ()
• void spx_log_verbose_�le ()
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• void spx_log_debug_�le ()
• void spx_log_all_console ()
• void spx_log_all_�le (const char ∗�le)
• void spx_log_set_�le (const char ∗�le)
• spx_errhandler_t spx_err_get_handler ()
• void spx_err_set_handler (spx_errhandler_t new_handler)

80



thesis July 10, 2014 16:51 Page 81 �
�	

�
�	 �
�	

�
�	

A.2 Routine documentation

A.2.1 void spx_init ( )

Library initialization routine.

A.2.2 void spx_�nalize ( )

Library shutdown routine.

A.2.3 spx_input_t∗ spx_input_load_csr ( spx_index_t ∗ rowptr,
spx_index_t ∗ colind, spx_value_t ∗ values, spx_index_t nr_rows,
spx_index_t nr_cols, ... )

Creates and returns a valid tunable matrix object from a Compressed Sparse Row
(CSR) representation.

Parameters

in rowptr array rowptr of the CSR format.
in colind array colind of the CSR format.
in values array values of the CSR format.
in nr_rows number of rows of the matrix.
in nr_cols number of columns of the matrix.
in optional argument that speci�es the indexing (either INDEXI←↩

NG_ZERO_BASED or INDEXING_ONE_BASED).

Returns
a handle to the input matrix or INVALID_INPUT in case an error occurs.

Possible error conditions

1. SPX_ERR_ARG_INVALID: any of the input arguments are invalid.

2. SPX_ERR_INPUT_MAT: the input data arrays do not correspond to a valid
CSR representation.

A.2.4 spx_input_t∗ spx_input_load_mmf ( const char ∗ �lename )

Creates and returns a valid tunable matrix object from a �le in the Matrix Market
File Format (MMF).
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Parameters

in �lename name of the �le where the matrix is stored.

Returns
a handle to the input matrix or INVALID_INPUT in case an error occurs.

Possible error conditions

1. SPX_ERR_FILE: the �le does not exist or an error occured while trying to
read it (possibly not in valid MMF format).

A.2.5 spx_error_t spx_input_destroy ( spx_input_t ∗ input )

Releases any memory internally used by the sparse matrix input handle input.

Parameters

in input the input matrix handle.

Returns
an error code (SPX_SUCCESS or SPX_FAILURE).

Possible error conditions

1. SPX_ERR_ARG_INVALID: the input matrix handle is invalid.

A.2.6 spx_matrix_t∗ spx_mat_tune ( spx_input_t ∗ input, ... )

Converts the input matrix into the CSX format by applying all the options previ-
ously set with the spx_option_set() routine. In case no options have been explicitly
set, the default values are used (see Table 3.2 of the User’s Guide).

Parameters

in input the input matrix handle.
in optional optional �ag that indicates whether the matrix should

be reordered by applying the Reverse Cuthill McKee al-
gorithm (OP_REORDER).

Returns
a handle to the tuned matrix or INVALID_MAT in case an error occurs.

Possible error conditions

1. SPX_ERR_ARG_INVALID: the input matrix handle is invalid.
2. SPX_ERR_TUNED_MAT: conversion to the CSX format failed.
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A.2.7 spx_error_t spx_mat_get_entry ( const spx_matrix_t ∗ A,
spx_index_t row, spx_index_t column, spx_value_t ∗ value, ... )

Returns the value of the corresponding nonzero element in (row, column), where
row and column can be either zero- or one-based indexes. Default indexing is zero-
based, but it can be overidden through the optional �ag. If the element exists, its
value is returned in value.

Parameters

in A the tuned matrix handle.
in row the a row of the element to be retrieved.
in column the column of the element to be retrieved.
out value the value of the element in (row, column).
in optional argument that speci�es the indexing (either INDEXI←↩

NG_ZERO_BASED or INDEXING_ONE_BASED).

Returns
an error code (SPX_SUCCESS or SPX_FAILURE).

Possible error conditions

1. SPX_ERR_ARG_INVALID: any of the input arguments is invalid.
2. SPX_OUT_OF_BOUNDS: the element is out of range.
3. SPX_ERR_ENTRY_NOT_FOUND: the element doesn’t exist (i.e. is not nonzero).

A.2.8 spx_error_t spx_mat_set_entry ( spx_matrix_t ∗ A, spx_index_t
row, spx_index_t column, spx_value_t value, ... )

Sets the value of the corresponding element in (row, column), where row and column
can be either zero- or one-based indexes. Default indexing is zero-based, but it can
be overidden through the optional �ag.

Parameters

in A the tuned matrix handle.
in row the row of the element to be set.
in column the column of the element to be set.
in value the new value of the element in (row, column).
in optional argument that speci�es the indexing (either INDEXI←↩

NG_ZERO_BASED or INDEXING_ONE_BASED).

Returns
an error code (SPX_SUCCESS or SPX_FAILURE).

Possible error conditions
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1. SPX_ERR_ARG_INVALID: any of the input arguments is invalid.
2. SPX_OUT_OF_BOUNDS: the element is out of range.
3. SPX_ERR_ENTRY_NOT_FOUND: the element doesn’t exist (i.e. is not nonzero).

A.2.9 spx_error_t spx_mat_save ( const spx_matrix_t ∗ A, const char ∗
�lename )

Stores the matrix in the CSX format into a binary �le.

Parameters

in A the tuned matrix handle.
in �lename the name of the binary �le where the matrix will be

dumped.

Returns
an error code (SPX_SUCCESS or SPX_FAILURE).

Possible error conditions

1. SPX_ERR_ARG_INVALID: the matrix handle is invalid.

Possible warnings

1. SPX_WARN_CSXFILE: a �lename hasn’t been supplied so the default csx_�le.bin
will be used.

A.2.10 spx_matrix_t∗ spx_mat_restore ( const char ∗ �lename )

Reconstructs the matrix in the CSX format from a binary �le.

Parameters

in �lename the name of the �le where the matrix is stored.

Returns
a handle to the tuned matrix or INVALID_MAT in case an error occurs.

Possible error conditions

1. SPX_ERR_FILE: invalid �lename argument or �le read error.
2. SPX_ERR_TUNED_MAT: reproducing the matrix failed.

A.2.11 spx_index_t spx_mat_get_nrows ( const spx_matrix_t ∗ A )

Returns the number of rows of the matrix.
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Parameters

in A the tuned matrix handle.

Returns
the number of rows.

Possible error conditions

1. SPX_ERR_ARG_INVALID: the matrix handle is invalid.

A.2.12 spx_index_t spx_mat_get_ncols ( const spx_matrix_t ∗ A )

Returns the number of columns of the matrix.

Parameters

in A the tuned matrix handle.

Returns
the number of columns.

Possible error conditions

1. SPX_ERR_ARG_INVALID: the matrix handle is invalid.

A.2.13 spx_index_t spx_mat_get_nnz ( const spx_matrix_t ∗ A )

Returns the number of nonzero elements of the matrix.

Parameters

in A the tuned matrix handle.

Returns
the number of nonzeros.

Possible error conditions

1. SPX_ERR_ARG_INVALID: the matrix handle is invalid.

A.2.14 spx_partition_t∗ spx_mat_get_partition ( spx_matrix_t ∗ A )

Returns a partitioning object for the supplied matrix.
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Parameters

in A the tuned matrix handle.

Returns
a valid partitioning object or INVALID_PART in case an error occurs.

A.2.15 spx_perm_t∗ spx_mat_get_perm ( const spx_matrix_t ∗ A )

Returns the permutation computed for the supplied matrix by applying the Reverse
Cuthill-McKee algorithm.

Parameters

in A the tuned matrix handle.

Returns
a handle to the permutation object or INVALID_PERM in case an error occurs.

Possible error conditions

1. SPX_ERR_ARG_INVALID: the matrix handle is invalid or the matrix has not
been reordered.

A.2.16 spx_error_t spx_matvec_mult ( spx_value_t alpha, const
spx_matrix_t ∗ A, spx_vector_t ∗ x, spx_vector_t ∗ y )

Performs a matrix-vector multiplication of the following form:

y = alpha ·A · x (A.1)

where alpha is a scalar, x and y are vectors and A is a sparse matrix in the CSX
format.

Parameters

in A the tuned matrix handle.
in alpha a scalar.
in x the input vector.

in,out y the output vector.

Returns
an error code (SPX_SUCCESS or SPX_FAILURE).

Possible error conditions

1. SPX_ERR_ARG_INVALID: any of the input arguments is invalid.
2. SPX_ERR_DIM: matrix and vector dimensions are not compatible.
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A.2.17 spx_error_t spx_matvec_kernel ( spx_value_t alpha, const
spx_matrix_t ∗ A, spx_vector_t ∗ x, spx_value_t beta,
spx_vector_t ∗ y )

Performs a matrix-vector multiplication of the following form:

y = alpha ·A · x+ beta · y (A.2)

where alpha and beta are scalars, x and y are vectors and A is a sparse matrix in
the CSX format.

Parameters

in A the tuned matrix handle.
in alpha a scalar.
in x the input vector.
in beta a scalar.

in,out y the output vector.

Returns
an error code.

Possible error conditions

1. SPX_ERR_ARG_INVALID: any of the input arguments is invalid.

2. SPX_ERR_DIM: matrix and vector dimensions are not compatible.

A.2.18 spx_error_t spx_matvec_kernel_csr ( spx_matrix_t ∗ A,
spx_index_t nr_rows, spx_index_t nr_cols, spx_index_t ∗ rowptr,
spx_index_t ∗ colind, spx_value_t ∗ values, spx_value_t alpha,
spx_vector_t ∗ x, spx_value_t beta, spx_vector_t ∗ y )

Performs a matrix-vector multiplication of the following form:

y = alpha ·A · x+ beta · y (A.3)

where alpha and beta are scalars, x and y are vectors and A is a sparse matrix. The
matrix is originally given in the CSR format and converted internally into the CSX
format. This higher-level routine hides the preprocessing phase of CSX. It can be
e�ciently used in a loop, since only the �rst call will convert the matrix into the
CSX format and every subsequent call will use the previously tuned matrix handle.
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Parameters

in A either an invalid matrix handle or a tuned matrix han-
dle. If A is equal to an INVALID_MAT then the matrix
in the CSR format is �rst converted to CSX. Otherwise,
the valid (previously) tuned matrix handle is used to per-
form the multiplication.

in nr_rows number of rows of the matrix A.
in nr_cols number of columns of the matrix A.
in rowptr array rowptr of the CSR format.
in colind array colind of the CSR format.
in values array values of the CSR format.
in alpha a scalar.
in x the input vector.
in beta a scalar.

in,out y the output vector.

Returns
an error code.

Possible error conditions

1. SPX_ERR_ARG_INVALID: any of the input arguments is invalid.

2. SPX_ERR_INPUT_MAT: the input data arrays do not correspond to a valid
CSR representation.

3. SPX_ERR_DIM: matrix and vector dimensions are not compatible.

A.2.19 spx_error_t spx_mat_destroy ( spx_matrix_t ∗ A )

Releases any memory internally used by the tuned matrix handle A.

Parameters

in A the tuned matrix handle.

Returns
an error code (SPX_SUCCESS or SPX_FAILURE).

Possible error conditions

1. SPX_ERR_ARG_INVALID: the matrix handle is invalid.

2. SPX_ERR_MEM_FREE: deallocation failed.
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A.2.20 spx_partition_t∗ spx_partition_csr ( spx_index_t ∗ rowptr,
spx_index_t nr_rows, size_t nr_threads )

Creates a partitioning object for the matrix in the Compressed Sparse Row (CSR)
format. This routine should be used in conjunction with the spx_matvec_kernel_csr()
multiplication routine.

Parameters

in rowptr array rowptr of the CSR format.
in nr_rows number of rows of the matrix.
in nr_threads number of partitions of the matrix.

Returns
a partitioning object or INVALID_PART in case an error occurs.

A.2.21 spx_error_t spx_partition_destroy ( spx_partition_t ∗ p )

Releases any memory internally used by the partitioning handle p.

Parameters

in p the partitioning handle.

Returns
an error code (SPX_SUCCESS or SPX_FAILURE).

Possible error conditions

1. SPX_ERR_ARG_INVALID: the partitioning handle is invalid.

2. SPX_ERR_MEM_FREE: deallocation failed.

A.2.22 spx_error_t spx_option_set ( const char ∗ option, const char ∗
string )

Sets the option according to the description in string for the tuning process to follow.
For available tuning options and how to set them refer to Table 3.2 of the User’s
Guide.

Parameters

in option the option to be set.
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in string a description of how to set the option.

Returns
an error code (SPX_SUCCESS or SPX_FAILURE).

Possible error conditions

1. SPX_ERR_MEM_FREE: deallocation failed.

A.2.23 void spx_options_set_from_env ( )

Sets the tuning options according to the environmental variables set on the com-
mand line. The available environmental variables include:

• NR_THREADS, for setting the number of threads
• MT_CONF, for setting the thread a�nity
• XFORM_CONF, for selecting the substructure types that will be detected
• SAMPLES, for de�ning the number of samples
• SAMPLING_PORTION, for de�ning the portion of the matrix that will be

sampled
• WINDOW_SIZE, for de�ning the size of the windows that will be used dur-

ing th sampling process

Refer to Table 3.2 of the User’s Guide for instructions on how to set each of the
aforementioned variables.

A.2.24 spx_vector_t∗ spx_vec_create ( size_t size, spx_partition_t ∗ p )

Creates and returns a vector object, whose values must be explicitly initialized.

Parameters

in size the size of the vector to be created.
in p a partitioning handle.

Returns
a valid vector object or INVALID_VEC in case of an error.

A.2.25 spx_vector_t∗ spx_vec_create_from_bu� ( spx_value_t ∗ bu�,
size_t size, spx_partition_t ∗ p, spx_copymode_t mode )

Creates and returns a vector object, whose values are mapped to a user-de�ned
array. If OP_SHARE is set, then the input bu�er will be shared with the user and
modi�cations will directly apply to it. If OP_COPY is selected, a copy of the input
vector will be created and no modi�cation of the original bu�er will occur.
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Parameters

in bu� the user-supplied bu�er.
in size the size of the bu�er.
in p a partitioning handle.
in mode the copy mode (either OP_SHARE or OP_COPY).

Returns
a valid vector object or INVALID_VEC in case of an error.

A.2.26 spx_vector_t∗ spx_vec_create_random ( unsigned long size,
spx_partition_t ∗ p )

Creates and returns a vector object, whose values are randomly �lled.

Parameters

in size the size of the vector to be created.
in p a partitioning handle.

Returns
a valid vector object or INVALID_VEC in case of an error.

A.2.27 void spx_vec_init ( spx_vector_t ∗ v, spx_value_t val )

Initializes the vector object v with val.

Parameters

in v a valid vector object.
in val the value to �ll the vector with.

A.2.28 void spx_vec_init_part ( spx_vector_t ∗ v, spx_value_t val,
spx_index_t start, spx_index_t end )

Initializes the [start, end) range of the vector object v with val.

Parameters

in v a valid vector object.
in val the value to �ll the vector with.
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in start starting index.
in end ending index.

A.2.29 void spx_vec_init_rand_range ( spx_vector_t ∗ v, spx_value_t
max, spx_value_t min )

Initializes the vector object v with random values in the range [min, max].

Parameters

in v a valid vector object.
in max maximum value of initializing range.
in min minimum value of initializing range.

A.2.30 spx_error_t spx_vec_set_entry ( spx_vector_t ∗ v, spx_index_t idx,
spx_value_t val )

Sets the element at index idx of vector v to be equal to val. idx is assumed to be
one-based.

Parameters

in v a valid vector object.
in idx an index inside the vector.
in val the value to be set.

A.2.31 void spx_vec_scale ( spx_vector_t ∗ v1, spx_vector_t ∗ v2,
spx_scalar_t num )

Scales the input vector v1 by a constant value num and places the result in vector
v2, i.e. v2 = num ∗ v1.

Parameters

in v1 a valid vector object.
in v2 a valid vector object.
in num the constant by which to scale v1.

A.2.32 void spx_vec_scale_add ( spx_vector_t ∗ v1, spx_vector_t ∗ v2,
spx_vector_t ∗ v3, spx_scalar_t num )

Scales the input vector v2 by a constant value num, adds the result to vector v1 and
places the result in vector v3, i.e. v3 = v1 + num ∗ v2.
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Parameters

in v1 a valid vector object.
in v2 a valid vector object.
in v3 a valid vector object.
in num the scalar by which to scale v1.

A.2.33 void spx_vec_scale_add_part ( spx_vector_t ∗ v1, spx_vector_t ∗
v2, spx_vector_t ∗ v3, spx_scalar_t num, spx_index_t start,
spx_index_t end )

v3[start...end) = v1[start...end) + num ∗ v2[start...end)

Parameters

in v1 a valid vector object.
in v2 a valid vector object.
in v3 a valid vector object.
in num the scalar by which to scale v1.
in start starting index.
in end ending index.

A.2.34 void spx_vec_add ( spx_vector_t ∗ v1, spx_vector_t ∗ v2,
spx_vector_t ∗ v3 )

Adds the input vectors v1 and v2 and places the result in v3, i.e. v3 = v1 + v2.

Parameters

in v1 a valid vector object.
in v2 a valid vector object.
in v3 a valid vector object.

A.2.35 void spx_vec_sub ( spx_vector_t ∗ v1, spx_vector_t ∗ v2,
spx_vector_t ∗ v3 )

Subtracts the input vector v2 from v1 and places the result in v3, i.e. v3 = v1 - v2.

Parameters

in v1 a valid vector object.
in v2 a valid vector object.
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in v3 a valid vector object.

A.2.36 spx_value_t spx_vec_mul ( const spx_vector_t ∗ v1, const
spx_vector_t ∗ v2 )

Returns the product of the input vectors v1 and v2.

Parameters

in v1 a valid vector object.
in v2 a valid vector object.

Returns
the product of the input vectors.

A.2.37 void spx_vec_add_part ( spx_vector_t ∗ v1, spx_vector_t ∗ v2,
spx_vector_t ∗ v3, spx_index_t start, spx_index_t end )

Adds the range [start...end) of the input vectors v1 and v2 and places the result in
v3, i.e. v3[start...end) = v1[start...end) + v2[start...end).

Parameters

in v1 a valid vector object.
in v2 a valid vector object.
in v3 a valid vector object.
in start starting index.
in end ending index.

A.2.38 void spx_vec_sub_part ( spx_vector_t ∗ v1, spx_vector_t ∗ v2,
spx_vector_t ∗ v3, spx_index_t start, spx_index_t end )

Subtracts the input vector v2 from v1 in the range [start...end) and places the result
in v3, i.e. v3[start...end-1] = v1[start...end-1] - v2[start...end-1].

Parameters

in v1 a valid vector object.
in v2 a valid vector object.
in v3 a valid vector object.
in start starting index.
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in end ending index.

A.2.39 spx_value_t spx_vec_mul_part ( const spx_vector_t ∗ v1, const
spx_vector_t ∗ v2, spx_index_t start, spx_index_t end )

Returns the product of the range [start, end) of the input vectors v1 and v2.

Parameters

in v1 a valid vector object.
in v2 a valid vector object.
in start starting index.
in end ending index.

Returns
the product of the input vectors.

A.2.40 spx_error_t spx_vec_reorder ( spx_vector_t ∗ v, spx_perm_t ∗ p )

Reorders the input vector v according to the permutation p, leaving the original
vector intact.

Parameters

in v a valid vector object.
in p a permutation.

Returns
the permuted input vector or INVALID_VEC in case an error occurs.

Possible error conditions

1. SPX_ERR_ARG_INVALID: any of the input arguments is invalid.

A.2.41 spx_error_t spx_vec_inv_reorder ( spx_vector_t ∗ v, spx_perm_t ∗
p )

Inverse-reorders the permuted input vector v, according to the permutation p.

Parameters
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in,out v the vector object to be inverse-reordered.
in p a permutation.

Returns
an error code (SPX_SUCCESS or SPX_FAILURE).

Possible error conditions

1. SPX_ERR_ARG_INVALID: any of the input arguments is invalid.

A.2.42 void spx_vec_copy ( const spx_vector_t ∗ v1, spx_vector_t ∗ v2 )

Copies the values of v1 to v2.

Parameters

in v1 a valid vector object.
in v2 a valid vector object.

A.2.43 int spx_vec_compare ( const spx_vector_t ∗ v1, const spx_vector_t
∗ v2 )

Compares the values of v1 and v2. If they are equal it returns 0, else -1.

Parameters

in v1 a valid vector object.
in v2 a valid vector object.

A.2.44 void spx_vec_print ( const spx_vector_t ∗ v )

Prints the input vector v.

Parameters

in v a valid vector object.

A.2.45 spx_error_t spx_vec_destroy ( spx_vector_t ∗ v )

Destroys the input vector v.

Parameters
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in v a valid vector object.

Returns
an error code (SPX_SUCCESS or SPX_FAILURE).

A.2.46 void spx_timer_clear ( spx_timer_t ∗ t )

Initialises a timer object.

Parameters

in t timer object to be initialized.

A.2.47 void spx_timer_start ( spx_timer_t ∗ t )

Starts a timer object.

Parameters

in t timer object to be launched.

A.2.48 void spx_timer_pause ( spx_timer_t ∗ t )

Pauses a timer object.

Parameters

in t timer object to be paused.

A.2.49 double spx_timer_get_secs ( spx_timer_t ∗ t )

Returns the elapsed time in seconds.

Parameters

in t a timer object.

Returns
the elapsed seconds.

A.2.50 void spx_log_disable_all ( )

Disables logging in SparseX.

A.2.51 void spx_log_error_console ( )

Activates logging of the Error level on stderr.
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A.2.52 void spx_log_warning_console ( )

Activates logging of the Warning level on stderr.

A.2.53 void spx_log_info_console ( )

Activates logging of the Info level on stderr.

A.2.54 void spx_log_verbose_console ( )

Activates logging of the Verbose level on stderr.

A.2.55 void spx_log_debug_console ( )

Activates logging of the Debug level on stderr.

A.2.56 void spx_log_error_�le ( )

Activates logging of the Error level on a �le. The �le name should be previously
provided through the spx_log_set_�le() routine. If not, a default "sparsex.log" �le
will be created.

A.2.57 void spx_log_warning_�le ( )

Activates logging of the Warning level on a �le. The �le name must be previously
provided through the spx_log_set_�le() routine. If not, a default "sparsex.log" �le
will be created.

A.2.58 void spx_log_info_�le ( )

Activates logging of the Info level on a �le. The �le name must be previously
provided through the spx_log_set_�le() routine. If not, a default "sparsex.log" �le
will be created.

A.2.59 void spx_log_verbose_�le ( )

Activates logging of the Verbose level on a �le. The �le name must be previously
provided through the spx_log_set_�le() routine. If not, a default "sparsex.log" �le
will be created.

A.2.60 void spx_log_debug_�le ( )

Activates logging of the Debug level on a �le. The �le name must be previously
provided through the spx_log_set_�le() routine. If not, a default "sparsex.log" �le
will be created.
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A.2.61 void spx_log_all_console ( )

Activates all logging levels and redirects output to stderr.

A.2.62 void spx_log_all_�le ( const char ∗ �le )

Activates all logging levels and redirects output to a �le. The �le name must be pre-
viously provided through the spx_log_set_�le() routine. If not, a default "sparsex.←↩
log" �le will be created. If the �le already exists it will be overwritten.

Parameters

in �le a �lename.

A.2.63 void spx_log_set_�le ( const char ∗ �le )

Sets the �le that will be used when logging is redirected to a �le. If the �le already
exists it will be overwritten.

Parameters

in �le a �lename.

A.2.64 spx_errhandler_t spx_err_get_handler ( )

Returns a pointer to the current error handler (either default or user-de�ned).

Returns
the current error handling routine.

A.2.65 void spx_err_set_handler ( spx_errhandler_t handler )

This function allows the user to change the default error handling policy with a
new one, which must conform to the signature provided above.

Parameters

in handler user-de�ned routine.
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