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Evyapiotieg

Ba Mfera va evyapleTIo® OAOVG OGOV GUVEBNANY L€ OTOLOVONTOTE TPOTO GTNV
EMITUYNUEVN EKTTOVION OVTNG TS OIMA®UATIKNG epyaciag. O mpmdTog, 6tov omoio Ha
NnOera va ekppdow TiG Bepués evyaplotieg pov, givor o Kadnynme k. Mavoing
Homadpokdkng, 1060 yoo TV evkopiot TOV HOVL £OMGE VO AoYOANO® pe TNV
Iooyewperpikn Avaivon kot v €pguva oto EOvikd MetooPio I[Tolvteyveio, 660 kot
Yo TNV emiPAeYn TG CLYKEKPIUEVNS epyacioc. Ba ela va guyoploTiom Wwaitepa
tov Yrnoynoewo Awddaktopa k. Mavayidtn Kepakitowo yo v eEopetikn cuvepyacio
nmov eiyope to tehevtaio 600 ypoévia Ko EATIC® TPAYHOTIKG VO CLUVEYICOVLUE VO
&yovpe kol oto péAov. ‘Htav mhvta dabéoiog va acyoindel pe kabs amopio pov
OYETIKN L€ OKOOMUAIKG KOl EMOTNUOVIKA (nThApata, evtog Kot eKTOC TV TAULGIOV
¢ mapovoog epyaciag. Tov evyopiotd BEppa yio Tic 10€eg Kat TV KaBodnynon mov
LoV TPocéPepe Kab  OAN TN S1dpKEL EKTOVNONG OLTHG TG EPYOCTOG Kot Yio OAES TIg
ePELVNTIKEG GVINTNCELG TOL TTpaypaToTomOnkay péca oTo TAAIGLO TG EPEVVITIKNG
opadag GIGA Team. Ogpuéc evyaplotieg otovg epguvntéc Avidvio lakmpo, Xogia
Kopio¥, Agovtdpn ABavdacio, I'dpyo Kaepaioko kot Anpirpro Képpa yuo ™
GUVEIGQOPE TOVG OTNV EMUEAELN TOV KEWEVEOV KOl Y10 TOV TOAVTHO YPOVO OV
aplEpmoay, KoOMC Kot Yoo TV £€0¢ Tdpa cvvepyasio pag ota mAaiowa g GIGA
Team, n omoia eipon oiyovpog 61t Ba cvveylotel pe Tovg 1d10VG PLOUOVG Kot GTO
péadov. Evyopioted emiong tv Katepiva Anpntpiov ywo ™ onpovpyia tov
eEoevAhov. Evyapiotd tovg gilovg Kot Tig pIAEG TOV QOITNTIKOV OV YPOVOV, TOL
gkovay Ta xpovia avtd pio mpaypoatikd aEéyaotn eumepio. BéPara, to peyarvtepo
EVYOPLOTA TO OPEIA® GTOVG YOVEIG OV, TV OTOlMV 1) TGTN OTIS SVVATOTNTEG OV,
ATOTEAECE APWYO OTNV EMTELEN TOV GTOYWV KOl TOV OVEIP®V LLOV.



Abstract

The scope of this thesis is the investigation of static isogeometric analysis using a
new type of shape functions, the T-SPLines. Isogeometric analysis is an innovative
methodology of complete CAD — CAE integration introduced by J. Austin Cottrell,
Thomas J. R. Hughes and Yuri Bazilevs. T-SPLine models have been analyzed
assuming linear elastic behavior. T-SPLines and finite element analysis have been
examined separately, as the two components of the isogeometric method. The code
used to analyze T-SPLine models was programmed in MatLab, which allows easy
matrix manipulation and strong mathematical background. Comparison with NURBS
and geometrical representations were acquired through the first Greek IGA software,
Geomlso. In order to acquire T-SPLine shapes, “Autodesk T-SPLine plug-in for
Rhino” was utilized. The topics considered are T-SPLine formulation and properties,
refinement techniques, stiffness matrix formulation, result post-processing
(displacement, stress and strain field) and linear 2D applications investigating models
of various representations.
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Xovoyn

O oKOmOG TNG OGLYKEKPIUEVNC OIMAMUOTIKNG €pyaciag €lval mn dlepedvnon g
ICOYEMUETPIKNG OTOTIKNG avAALONG, 0E0MOIOVTOS £€va. VEO TOUMO GLVUPTHCEWV
oyfquatog, T T-SPLines. H 1coyempetpikny avéivon eivar pio  KovoTopog
pebodoroyia, n omoia mpotdOnke amd tovg J. Austin Cottrell, Thomas J. R. Hughes
ka1 Yuri Bazilevs kot mpocs@épetl v mAnpn ovvoeon CAD - CAE. Xtoyog sivon 1
YPOUUIKTY EAaoTiKn avddlvon eopéwv pe T-SPLines. E&gtdotnkav 160 ot T-SPLines
Kol Ol 1O10TNTEG TOVG OCO KO 1) OVAALGTY| LLE YPNOT| TEMEPACUEVOV GTOLXEIMV, KOOMDC
ot 800 OTEG EVOTNTEG OMOTEAOVV TIC 000 POCIKEC GUVIGTMGES TNG LGOYEMUETPIKNG
uebodov. O kmdikag, o omoiog ypnolwomodnke vy v ovdivon T-SPLine
Hovtédwv, &xel mpoypaupatiotel oe MatLab, to omoio Oievkolvvel TG TPAEELG
mvlkov kol dtabétel 1oyvupo padnpatikd vroPadpo. H cdykpion pe NURBS kot ot
YEMUETPIKES AVATOPOCTAGELS TPOYLOTOTOMONKAV LE TO TPAOTO EAANVIKO AOYIGHIKO
100YEMUETPIKNG avaivong, To Geomlso. Idwitepn Eupaocn 660nke otig T-SPLiNes kot
TG 1010 TéC TOVG, of tTEYVikEG refinement, otn dSwtdmOoN TOL  UNTPOOV
otfapotntag, omv emefepyacio TV amoteAecpdtov  (medio  pETATOMIGEWV,
AVNYUEVOV  TOPAUOPPOCEDY Kot TAcE®V) kor o  gpapuoyés 2D tumkov
TpoPAnpdTwv.

Vi



Prologue

My involvement with isogeometric analysis began in June 2012, when | visited the
office of PhD candidate Panagiotis Karakitsios to deliver the theme semester of the
course Statics 11 and saw in his computer IGA shapes and asked what they are related
to. He explained to me, and asked me if | was interested in the subject and after
discussion with Professor Manolis Papadrakakis, he suggested the beginning of a
collaboration that led to the formulation of my thesis.

Thus, began my collaboration with PhD candidate Panagiotis Karakitsios and join
the research group GiGA Team, consisting of very talented researchers with
remarkable intelligence and excellent teamwork. So, | was given the opportunity to
become acquainted to a modern and innovative environment and start as a researcher
in National Technical University of Athens. At a time, when our country losses most
of its highly educated scientist, our team decided to give its own fight in research in
one of the best institutions worldwide like NTUA and contribute to the international
classification of the School of Civil Engineering at even higher levels of what it holds.

Dimitrios Tsapetis

Athens, May 2014
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The evolution of Isogeometric Analysis

1. The Evolution of Isogeometric
Analysis

1.1. Finite Element Analysis

The finite element analysis (FEA) is a numerical method (computational mechanics)
for calculating approximate solutions to boundary value problems, which can be
expressed by partial differential equations. Apart from the problems of solid
mechanics, it applies to other fields like fluid mechanics, fluid dynamics, structure-
fluid interaction, biomechanics, bioengineering, electromagnetism, heat transfer,
acoustics and numerous other applications.

1.1.1. Historical Overview

FEA has its roots in ancient times, when mathematicians tried to approach the value
of rt using circumscribed polygons. It was until 1909 when the German mathematician
Ritz conceived the initial principles of this method. In 1915, the Russian
mathematician Galerkin developed further the theory of finite elements.

Figure 1.1.
(a) Ritz (b) Galerkin

FEA evolved along with the rapid advances of computers and soon became quite
popular among computational mechanics community. The method was firstly used by
the academic community and researchers, who supplied professional engineers with
relevant software.
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The idea of FEA was born in aeronautics. It was used to design inclined wings for jet
fighter aircrafts able to fly in higher speeds. In 1941, Henrikoff introduced the so
called framework method. In 1943, the German mathematician Courant solved the
problem of torsion using triangular elements by taking advantage of the principle of
minimum potential energy (Rayleigh-Ritz method). Courant's theory was soon
forgotten as it could not be applied, but only until the time of computer invention.

Figure 1.2. Richard Courant (1888-1972).
German mathematician.

In 1944, John Argyris, who worked as a researcher at the Royal Aeronautical
Society in Britain, grappled with this problem, as all known methods of analysis were
unable to reliably simulate the inclined geometry wings. After painstaking efforts, he
coined the use of triangular element and held its first implementation in
electromechanical computers season with maximum algebraic systems capable of
handling up to 64 unknowns. This was the time of the birth of the finite element
method. In 1955, Argyris wrote a book entitled “Energy theorems” and the method of
registers and evolved the method of FEA.

Figure 1.3. John Argyris (1913-2004).
Greek civil engineer.
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BRIEF HISTORICAL OVERVIEW

DATE SUBJECT AUTHOR

1779 Lagrange polynomials

1864 Hermite polynomials

1943 Linear triangle Courant
1954-1955 Articles Argyris and Kelsey

1956 Articles Turner

1960 Finite element method Argyris and Kelsey

1960 Term finite elements Clough

1961 Bilinear quadrilateral Taig

1962 Linear tetrahedron Gallagher
1965-1968 C1-continuous triangles and quadrilaterals Claugh, Tocher

1966 Isoparametric elements Irons

1968 Isoparametric elements Zienkiewicz and Cheung

1969 Constant pressure bilinear quadrilateral element Hughes and Allik

1970 Variable-number-of-nodes elements Zienkiewicz

1971 The eight-node serendipity quadrilateral Zienkiewicz et al.

1972 Variable-number-of-nodes Taylor

1974 Constant pressure bilinear quadrilateral element Nagtegaal et al

1977 Constant pressure bilinear quadrilateral element Hughes

1977 Effective one point integration Quadrilateral bending elements Hughes et al

1978 Constant pressure bilinear quadrilateral element Malkus and Hughes

1981 Quadrilateral bending elements Hughes and Liu

1978 Scaled Lumbed rotatoty Inertia mass matrices Hughes et al

1980 Constant pressure bilinear quadrilateral element Hughes

1981 Effective one point integration Quadrilateral bending elements Flanagan and Belytschko

1981 Effective one point integration Quadrilateral bending elements Belytschko and Tsay

1982 Stabilized methods Brooks and Hughes

1984 Effective one point integration Quadrilateral bending elements Belytschko et al
1992-1996 Meshless methods

2000 Selective integration Hughes

2000 Lagrange and Hermite polynomials widely utilized Hughes

2000 Nodes Hughes

2000 Inertia mass matrices Hughes

2004 Stabilized methods Hughes

Table 1.1. Brief historical overview.
Finite element method.

In 1956, American scientists Turner, Clough, Martin and Top calculated the stiffness
matrix of various elements, such as beam elements. In 1960, John H. Argyris and
Kelsey published their work that was based on the principles of finite elements. In
1960, Clough (University of California Berkley) used first the name finite elements in
his work and soon the term became the one that defined the method among scientists.
In 1967, Zienkiewicz and Chung wrote the first book of finite elements. FEA’s
utilization to solve real engineering problems is tightly connected with the progress in
computer technology. A large number of publications and books followed, which
allowed engineers to become acquainted to the method, to handle more degrees of
freedom and finally to apply it to numerous applications overdrawing their own
scientific field.
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1.1.2. Basic ldea

FEA introduces a system of algebraic equations, whose number coincides with the
number of degrees of freedom. The unknown quantities are displacements at element
nodal points. In order to solve complex engineering problems with a large number of
degrees of freedom, the structure is divided into small parts that compose the analyzed
geometry. FEA is able to provide reliable results, even though an approximate
method, for a wide range of applications. However, as the geometry’s complexity
increases, the results prove to be less accurate and require quite more computational
effort. This drawback lies on the inability to utilize the exact geometry mesh, as FEA
uses an approximate one.

The application of FEA requires the following steps.
1. Geometry design in a CAD program.

2. Mesh generation. In the early stages of the method, this process was performed
by hand, requiring a lot of time. Nowadays, this laborious task is replaced by
computer algorithms called mesh generators.

3. Definition of analysis data. Pre-processor defines constitutive law, external
loads, boundary conditions and other analysis parameters, such as shape
function polynomial degree and number of Gauss points.

4. Calculation of the unknown nodal displacements by the solver as the numerical
solution of the corresponding partial differential equations (Gauss elimination).

5. Depiction of the results by post processing algorithms, which provide
displacement, strain and stress contour.

FEA approximates the solution with piecewise polynomial functions, called shape
functions N, which calculate the displacement value {d} at any internal point
(x,y,z) of the element by interpolation of the nodal displacements {D}.

{d(x,y),z)}:[N((x, ),z)]«([D:)}

(3, 3x3n, 3nexL
where ne is the number of finite elements.
The larger the number of elements (nodes, degrees of freedom, Gauss points) the

more accurate the numerical solution is, especially when it refers to complex
geometries.
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The next step is to define strain and stress vectors, which are connected through the
elasticity matrix (constitutive law).

.
<({é)'l})>:[O'X oy O, Oy Oy, 0, (3Dcase)

.
{5}—[‘9 S &7 Vxyv YVwz 72)(] (3D case)

6xl

Deformation matrix [B] evaluates strains anywhere (X,y,z) in the model from nodal
displacements.

[B(xy.2)]=[B(x¥.2)}[ B (x.3.2)]

(6x3ng) (9x3ng)

fe(x.v.2)}=[B(x.%.2)} (D}

(6x1) (6x3n,) (3nex1)
where ne is the number of nodes per element.

The local stiffness matrix [k] of each model’s element is given by the following
integral.

[k] =I[B(x,y,z)]T-[(E -[B(x, y,z)]dv

(3nex3ne) Vv (3neX6) 6x6) (6x3n,)

Distributed loads can be transformed into equivalent nodal loads, according to the
next equation.

{1} | NG Gy

(3nex3)

The local stiffness matrix [k] of each element is added to the total stiffness
matrix [K] of the structure. The displacement vector is calculated with Gauss
elimination by the system:

{R}-[<]{o}

(3nx1)  (3nx3n) (3nx1)

where n is the model’s total node number.
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1.1.3. Method Development

A variety of complex problems was until recently considered unsolved, as it relied
on the large computational effort needed. This fact made their solution practically
impossible. The first application of finite element method was the triangulation of
airplane wings, in order to determine how they are overworked by wind forces. It was
the requirement of numerous calculations done by hand that made the process
inapplicable. The progress of computer technology and computational methods
(computational mechanics & geometry) enabled the programming of finite element
method and thus made scientists able to solve such issues in short amount of time.

The main reasons why FEA is so widely spread and accepted by the scientific
community are the following. FEA can be used in problems that require numerical
approximation, as analytical solution is not attainable. In addition, the enforcement of
complex geometries, physical loads and material properties to the simulated model is
possible, without arising any significant difficulties. It also enables the connection of
complex composite materials, while it can be easily refined and altered to approach
the accuracy requirements of each problem. Finally, the introduction of dynamic
analysis and non-linear material and geometry behavior enables the approximation of
real materials.

The need to apply this innovative technique in industrial scale encouraged the
development of finite element software. These programs needed to adopt a double
nature by supporting both design and analysis process, which is a very difficult task.
The combination of graphical representation and numerical analysis with finite
elements would simplify the tasks of engineers, as it would call them to focus only on
the essential aspects of each problem, neglecting the need of complex calculations.

Nowadays, commercial software partially incorporates both graphic design and finite
element analysis. State of the art programs are now able to solve a wide range of
problems from soil mechanics and structural analysis to thermodynamics and solid
fluid interaction, covering practically most problems an engineer can encounter. The
additional combination of non—linear behavior and dynamic analysis transforms FEA
programs into the proper tool every engineer needs to have in his hands to face
sufficiently even the most difficult problems.

Finally, the method of finite elements is not only used by engineers. All scientific
fields have become acquainted to this method and use it constantly. For instance,
doctors with aid of engineers analyze blood flow in vessels to determine weak points
of the walls and diagnose and prevent heart diseases (thoracic and abdominal aortic
aneurysm). At the same time, all mechanical tools and substitutes used in surgeries to
replace human parts could be designed via FEA. In general, FEA tends to be the
widest utilized tool for all fields of science.
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1.1.4. Drawbacks

Even though the evolution of finite element method has been rapid since its birth,
main drawbacks have not been overcome yet. For example, exact geometrical
representation of the model with any mesh is almost impossible. Even isoparametric
elements can only produce a more precise but still approximate mesh of the
geometry. The most challenging tasks, that engineers face today, often require exact
geometrical representation in order to achieve the desired accuracy. Except of mesh
generation of CAD design, the initial geometry plays no more role in the analysis.
This seems to be wrong, as the accurate geometry is replaced with an approximate
one. As expected, it produces a vast number of issues. The inevitable geometrical
approximation means there will be convergence errors by definition, regardless of the
solution methods and the available computational power. This affects the efficiency of
the solution.

In case a better approximation is required, refinement algorithms will return to the
initial geometry and produce a different more precise one. The new, fine mesh cannot
be directly produced from the previous. This means that procedures already
completed have to be repeated in order to create the new mesh. Precious analysis time
is required and the geometrical differences between the coarse and fine mesh make it
difficult to compare the result. It is obvious that a new approach is needed that will
integrate CAD programs and FEA software. Unfortunately, computational geometry
and numerical analysis have been developed in different eras. Computer aided design
has evolved greatly since its birth. On the other hand, finite element design
geometries are unable to follow the rapid CAD evolution. These problems were
always present throughout the history of FEM. Complicated geometries used in
mechanics led to the development of algorithms and computational methods to
minimize this effect. The problem is that the definition of finite elements does not
facilitate the progress towards the full cooperation of design and analysis.

The solution to the drawback of geometric approach mentioned above is to embrace
the development of IsoGeometric Analysis (IGA) using T-SPLines and subdivision
surfaces, taking advantage of the method’s main idea, which suggests that any shaped
geometry remains intact and the analysis is performed on the exact geometric model.
Shape functions that are used in isogeometric analysis are in fact those used for
design. This breakthrough of IGA allows the analysis of structures with complex
shape, without making approximations. In addition, a designer is able to draft any
object using less control points. When the object is about to undergo analysis, the
engineer can effortless obtain the suitable mesh. Even when refinement procedure is
needed, the engineer does not have to go back to the initial geometry. Refinement is
performed always directly on the imported geometry, following the rules of design.
Consequently, geometry does not change, leading to important time economy by
procedures that will not be performed again.
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1.2. Computer Aided Design

BRIEF HISTORICAL OVERVIEW

DATE SUBJECT AUTHOR
1912 Bernstein polynomials Bernstein
1946 Schoenberg coins the name **spline* Schoenberg
1956 Subdivision seminal ideas Rham
1959 de Casteljau algorithm De Casteljau

1966-1972 Bezier curves and surfaces Bezier-Faget

1971-1972 Cox de Boor recursion Cox-de Boor
1972 B-SPLines Riesenfeld
1974 Subdivision seminal ideas Chaikin
1975 NURBS Versprille
1978 Subdivision surfaces Catmull-Clark and Doo-Sabin
1980 Olso knot insertion algorithm Oslo
1987 Loop subdivision Loop

1987, 1989 Polar forms, blossoms Ramshaw

1996-present Triangular and tetrahedral B-SPLines Lai-Schumaker

1997 SPLine finite elements Sabin
2003 T-SPLines Sederberg

Replace trimmed NURBS surface with

2008 untrimmed T-SPLines

Sederberg et al.

Table 1.2. Brief historical overview.
Computer Aided Design.

Computer Aided Design (CAD) is a drafting procedure using the aid of computer. It
was invented and developed to help designers make more effective and accurate
blueprints, requiring less effort. Drawing tools used to draw by hand were replaced by
digital ones. Designers were able to manipulate, erase or correct the drawing without
having to start it over again. The technology of polynomial B-SPLines and NURBS
allows them to create any type of surface. These technologies are used for design of
structures and common objects to Computer Aided Engineering (CAE).
Advancements in mathematics and the parallel computer development have created
new types of design tools. Subdivision surfaces is a 3D computer graphics tool, that
creates smooth surfaces with the use of piecewise polynomial meshes. This
technology is “rival” to T-SPLines (a generalization of NURBS). They allow rows of
control points to terminate at any junction (no full tensor product nature), so their
needed number is the less possible. Designers can create exactly the same geometry
with NURBS using much less control points. Most of the previously mentioned
technologies are used in Computer Aided Engineering to depict real objects. NURBS
and T-SPLines are a mighty tool for isogeometric analysis, because their properties
are suitable both for analysis and design.
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1.2.1. Historical Overview

Despite the fact that SPLines in mathematical terms stand for smooth polynomial
lines, their inspiration came from aircraft and ship hulls design. Before computer and
computer aided design, draftsmen had to use flexible wooden or metal stripes in order
to design the curves they needed. These stripes were fixed to the curvature of the
curve using lead weights called ducks (the name ducks derives from their duck like
shape).

. i
L
| ‘l

@ (b)

Figure 1.4.
(a) Sergei Natanovich Bernstein was a Russian mathematician,
who contributed to partial differential equations.
(b) Pierre Etienne Bézier was a French engineer of Renault,
who was the founder of physical modelling.

Figure 1.5. SPLines.
Metal or wooden elastic strip used for design.
(duckworksmagazine)
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In 1946, mathematicians started studying the duck shape and eventually formulated
the functions that form those polynomial curves. After the computer breakthrough,
SPLines were widely embraced by the designing community, as CAD programs made
it easy for draftsmen to create curves, overcoming the previous laborious “ducking”
procedure. It is of major importance that these curves can approximate any
polynomial degree p. Thus, they are C* continuous functions, means they have p-1
smooth derivatives.

The introduction of SPLines into computer created the so called B-SPLines and their
generalization NURBS. Their development was enforced by the need of precise
representation of freeform surfaces. At first, they were only a tool of the automotive
industry, but gradually were integrated into all commercial CAD programs. These
new types of SPLines enable the designers to easily manipulate the geometry even
more locally, only by moving control points. This was a milestone for CAD
community.

(b)

Figure 1.6. NURBS objects.
(a) Airplane (Cadalyst).
(b) Motorcycle (seraphinacorazza.wordpress.com).
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Finally, T-SPLines can be thought as NURBS for which a row or a column of
control points can be terminated at any junction, not obligatory at the end of the
corresponding parametric axis. This means that the mesh is now allowed to have T-,
L-, I-, point-junctions, and not only cross ones.

Figure 1.7. T-SPLines.
Ship hull designed with Rhinoceros.
(tsplines.com)

Modelling with T-SPLines drastically reduces the number of control points needed.
This property is crucial to designers who want to define a surface at the lowest
possible computational cost. In addition, all T-SPLine surfaces can be converted into
B-SPLines by knot insertion and vice versa.

NURBS surfaces
1168 control points

T-Splines surface
321 control points

Figure 1.8. T-SPLines and NURBS.
Car hood designed with both technologies.
(tsplines.com)

11
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1.3. Isogeometric Analysis

Isogeometric analysis (IGA) is a methodology first emerged at 2003, when Thomas
J. R. Hughes (professor at the University of Austin Texas) expressed the need to
integrate computer aided geometry design (CAGD) and finite element analysis (FEA),
in order to overcome difficulties that arise in analysis. As a result, IGA was born.

Figure 1.9. Thomas J. R. Hughes.
Professor of Aerospace Engineering and Engineering Mechanics.
Initiator of Isogeometric Analysis (IGA).

The main idea behind IGA is to use the same mesh for the geometric design and the
analysis process. Until then, it was inevitable for the finite element practitioner to take
the design and approximate it with a new mesh, applying algorithms, the so-called
mesh generators. In the case that meshing was inappropriate for analysis, the
procedure had to be repeated, until reaching a certain convergence. In counter to how
obvious and necessary was the transition to isogeometric analysis in order to reduce
the computational time, the task was not so easy. Since CAD and CAE technologies
appeared at discrete periods, they evolved individually. Different technologies apply
to each of them, such as Lagrange polynomials for CAE and NURBS and T-SPLines
for CAD. Isogeometric analysis is now present to bridge the gap between these two
separate technologies, by using the design polynomials for analysis as well. This
advancement will enable industries to easily design objects while using the same
design for analysis purposes too. Many polynomial technologies have appeared, such
as B-SPLines, NURBS, T-SPLines, polycube SPLines and subdivision surfaces. Their
variety is without a doubt eligible to satisfy all types of problems that an engineer
might encounter. Due to its important features, IGA has recently received great
attention in the computational mechanics community and more and more CAE
researchers are starting to study it.

12
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(@ (b)

© (f)

Figure 1.10. B-SPLine and NURBS objects.

(a) B-SPLine curve (1D). (b) NURBS curve (1D).
(c) B-SPLine surface (2D). (d) NURBS surface (2D).
(e) B-SPLine solid (3D). (f) NURBS solid (3D).
(Created by GiGA Team)
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1.3.1. Basic ldea

IGA’s main idea is to use the same mathematical description for the geometry in the
design (CAD) and the analysis (FEA). This implies to use SPLines, functions
commonly used in computer-aided design to describe the geometry, as the basis
functions for the analysis mesh.

While CAD community uses NURBS, T-SPLines and subdivision surfaces, the CAE
one generally uses Lagrange polynomials to approximate the geometry. FEA’s
approximate mesh necessitates a re-parameterization of the CAD geometry, which
makes labor cost quite intensive and introduces automatically geometrical error. The
basic idea of isogeometric analysis is to use the same shape functions and mesh both
for design and analysis. In 2003, the research on isogeometric analysis started to focus
on the question if finite element analysis could be done with Non-Uniform Rational
B-SPLines (NURBS), the most widely used computational geometry tool in
commercial CAD programs.

Recent research on isogeometric analysis uses Non-Uniform Rational B-Splines
(NURBS) as shape functions, because they are extremely popular in engineering
design systems. It has been shown that NURBS-based finite elements are very well
suited for computational analysis, leading to more accurate results in comparison with
standard finite elements based on Lagrange polynomials. It was the need for reduced
computational time that initially motivated the isogeometric analysis concept in order
to merge geometry design and mesh generation. In FEA software, practically around
80% of the overall analysis time is consumed in efforts to acquire a satisfactory
approximate mesh, which has to be quite close to the accurate mesh of the geometry
and suitable for analysis purposes.

NURBS were until lately the main shape functions used in isogeometric analysis. In
2008, T-SPLines were introduced as a worthy “opponent” that holds all the benefits of
NURBS and at the same time permits local refinement. The scope of this thesis is to
present the main properties of T-SPLines and make a comparison with NURBS.
Water tightness, less control points, more design capabilities, but also sophisticated
nature and complex implementation are its main features, which will be analyzed in
the following chapters.

As a conclusion, isogeometric analysis is a methodology that has come to bridge the
gap between computer aided design and finite element analysis. The utilization of the
exact geometry mesh for analysis eliminates the approximation geometric error, while
reduces significantly the analysis time. In addition, there is no need to repeat the
geometry design for refinement purposes, which simplifies (more efficient and
applicable) the whole refinement procedure. In contrast, remeshing with more and
smaller elements is the standard technique in FEA, as it cannot utilize 100% the
available data of the exact geometry mesh. All the above conclude that IGA has a
bright future ahead.

14
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Figure 1.11. NURBS object consisting of two patches (one for wood, one for steel).
Control points are shown as white circles.
(Created by GIiGA Team)

Figure 1.12. T-SPLine futuristic aircraft with complex geometry and
large number of degrees of freedom.

Figure 1.13. Guitar designed with subdivision surfaces.

15
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2. T-SPLines: Basic Ingredients

2.1. Introduction

It is since the dawn of time that engineers try to overcome everyday life problems by
giving the best possible solution to them. Until the first half of 20" century, it was
attainable for scientists to acquire an exact solution, something that unfortunately
proved to be impossible nowadays. As computer technology rises, so do the demands
of scientists to solve problems of incrementally increasing complexity. Even though it
sounds contradictory, computer technology proves to be not only a powerful tool in
engineers’ hands, but also a major ‘obstacle’ for giving exact solutions, as its
evolution increases the gap between the provided and the desired computing power.
The development of computational mechanics made it easy to find an approximate
and at the same time satisfactory solution for such complicated issues. The
contribution of CAD industry is of great importance for this procedure, as common
objects are approximated using CAD programs with great ease, enabling designers to
make better and more complex drafts. The design gives the so called physical space,
which can be of extreme geometrical complexity and thus hard to analyze. Although
the isoparametric concept is being used in FEA, the exact geometry cannot be easily
approximated due to the restricted element shape. This major drawback of FEA was
the motivation to use another concept of analysis. This concept is expressed by IGA,
that uses the shape functions of the geometry in order to approximate the numerical
solution (displacement, strain and stress field) and is able to utilize all the known
CAD tools (NURBS, T-SPLines, subdivision surfaces, polycube SPLines) for
analysis purposes. Compared with NURBS technology, T-SPLines offer great design
flexibility independent of geometry’s complexity (no trimmed surfaces, watertight
patch connection, NURBS patch merging), higher accuracy per degree of freedom
(especially for complex geometries), significant reduction of the required control
point number and local refinement. However, its formulation is quite sophisticated
and unknown to the majority of engineers.

This chapter serves as an introduction to T-SPLines and places great emphasis on
their formulation and properties. Important issues are:
e index space (essential), parameter space (auxiliary), physical (Cartesian) space
e junctions (T-Mesh, index space)
e global knot value vector
e anchors
e local knot value vectors
e T-SPLine blending functions (formulation, properties)
e T-SPLine shape functions (formulation, properties)
e T-SPLine geometry (properties, examples)
e refinement
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(b)

(©)

Figure 2.1. Futuristic aircraft designed with T-SPLine technology.
This extreme complex geometry could be designed and analyzed efficiently with T-SPLines.
On the other hand, with NURBS it will be computationally demanding
due to the required vast number of control points and degrees of freedom
in order the same geometric accuracy.

(a) Physical space with control lattice.
Material points are shown in black, while control points in white.

(b) Shaded model. Common technique for designers.

(c) Rendered model. Augmented reality.
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2.2. Index, Parameter and Physical Space

In order to solve a boundary value problem with the isogeometric method, an
engineer has to work with three spaces. These are:

e Index space (essential for T-SPLines, auxiliary for NURBS)
e Parameter space (auxiliary for T-SPLines, essential for NURBS)
e Physical space

T-SPLines’ formulation is tightly connected to index space, where junctions,
anchors, local knot value vectors, continuity reduction lines and elements are defined.
Knot values are positioned equally spaced on the index axes. Each knot value is
depicted regardless to its magnitude. Index space plays a crucial role for this CAD
technology in contrary to NURBS, where it is rather auxiliary. On the other hand,
parameter space represents knots and not knot values, means that knot values with the
same magnitude are placed in the same position on the parametric axes. Continuity
reduction lines define elements, where Gauss points are located and numerical
integration is taking place for each T-Mesh. Random curves, surfaces and solids are
transformed into simple line segments, rectangular planes and cuboids. These
normalized shapes allow flexible manipulation and analysis of the object, as their
common pattern enables the application of efficient programming techniques. Last but
not least is the physical Cartesian space, which represents the real geometry of the
analyzed object. All known commercial CAD software aim to physical space and
provide a variety of tools for its creation.

T-SPLines MURBS
Index Space  Parameter Space Physical Space Index Space - Parameter Space Physical Space
Essential | Auxiliary | Real Model Auxiliary | Essential | Real Model
Sophisticated i i Unlimited i Simple i ; ;

. | | J—_ . 1 . | Conic Sections
Formulation | | Efficient Design | _Formulation |
I 1 I FullTensor |
| Tensor Product | 1 |
| | 1 Product 1

. s I I Less Control I Anchor I More Control

Anchor Definition Rk S .
| | Points | Definition |  Points
Local Knot Value i i Watertight i Global Knot i
Vectors : : Connection : Value Vector :
Continuity | I No trimmed I |
. R | | | | Gaps

Reduction Lines | 1 surfaces 1 1
: Numerical : : Mumerical :
| Integration | | Integration |
Element i i i i
.. 1 1 |Compact Support,
Connectivity | | |
Shape Function : : : Shape Function |
Overlapping | 1 | Overlapping |

Table 2.1. T-SPLines compared with NURBS.
The essential space for T-SPLines is index space, while for NURBS is parameter space.
The appropriate data of T-Mesh (junctions, anchors, local knot value vectors
and blending functions) are defined in index space.
On the other hand, NURBS’ less sophisticated formulation requires only the number of control points,
the BSPLine basis functions’ polynomial degree and the global knot value vector (per axis).
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(a) Index space with 18 index cells as blue rectangles. T-Mesh with junctions.
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(b) Index space with 18 anchors as red circles.
Anchors lie on index cells’ center due to even polynomial degree p, Q.
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(c) In index space, continuity reduction lines (red dashed)
divide the domain into 4 integration elements.
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Parameter space. Yellow squares are already existent knots.
Continuity reduction (red dashed) line adds one more knot, the green one.
The Gauss point number is equal to p+1=3 per knot span,

(the minimum number required for exact integration).
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(f) Parameter space with Gauss points as magenta stars.

0 3 25 2

(e) Physical space. Plate with a hole.
Physical space is divided into 3 elements, which they do not coincide with the integration elements.
Control points are shown with red circles and
due to knot value repetition the edge ones are interpolatory to the curve.

Figure 2.2. Index, parameter and physical space. (Created with Geomlso)
£={0,0,1,1,2,2}, p=2 and H={0,0,1,2,2}, q=2
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Figure 2.3. Cook’s Cantilever. Index, parameter and physical space. (Created with GeomlIso)
=={0,0,1,2,3,4,4}, p=3 and H={0,0,1,2,3,4,4}, =3
Subfigures (b) and (c) show index space before and after the creation of continuity reduction lines.
The edge control points are interpolatory to the curve, due to knot value repetition.
Anchors of index space are located on junctions (odd polynomial degree).
Subfigures (d), (e) and (f) show parameter space that derives form index space with knot value vectors
==[0,0,1,2,3,4,4] and H=[0,0,1,2,3,4,4] and integration mesh created respectively.
Full tensor product structure is present in this example, but only for integration purposes.
Continuity reduction lines divide elements into smaller ones.
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(b)

(©)

Figure 2.4. Physical Space. (tsplines.com)
(a) Helmet designed with T-SPLines in Rhinoceros. Red dots show the interconnection of NURBS
patches, which were merged into a single T-Mesh.

(b) Jet ski designed with NURBS (left) and T-SPLines (right). NURBS require more control points.
Marked areas show problematic patch interconnection (no watertightness, major drawback of NURBS).
T-SPLines are able to design the same object with much less control points,
all united in one watertight and compact T-Mesh.

(c) Vase with NURBS (left) and T-SPLines (right).
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2.2.1. Index Space

Index space is created by equally spacing all indices, the number of which is equal to
the number of knot values. Each index line is labeled with its sequence number
(counting knot values). In order to define anchors and local knot value vectors, it is
obligatory to identify for every blending function the start and end index lines. For T-
SPLines, index space plays major role, as all basic variables initiate there, in contrary
to NURBS, where it is used as an auxiliary tool. Anchors are defined first as the
centers of their real support of p+2 knot value spans per direction. Then, the
corresponding local knot values are produced in order to generate T-SPLine blending
functions. T-SPLine blending functions are combined with the Cartesian coordinates
of control points and generate T-SPLine shape functions.

1 1 1

1 2 3 4 5 6 7
() 2D case. 2={0,0,1,1,2,2}, p=2 and H={0,0,1,2,2}, q=2.
Index space depicting anchors as red circles.

(b) 3D case. £={0,0,1,1,2,2}, p=2, H={0,0,1,2,2}, =2 and Z={0,0,1,2,2}, r=2

Figure 2.5. Index Space.
(Created with Geomlso, Karras Dimitrios)
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2.2.2. Parameter Space

Parameter space arises from the isoparametric concept of isogeometric method. It is
the transformation of the frequently obscure shape of the object examined. Parametric
axes &, n, £ with the aid of a Jacobian transformation alternate the uneven element
shape and turn them into pure and basic geometrical shapes. Specifically, randomized
curves, surfaces and solids are turned into line segments, rectangular planes and
cuboids respectively. This transformation enables easier analysis while ensuring the
accuracy needed in the geometrical representation of real objects. In case of NURBS,
parameter space is created by knot lines for all axes & n and ¢, that are extended
throughout the rest of the parametric domain, the so called full tensor product. Knot
lines exist for each and every one of the knot values of the global knot value vector.
This extension of knot lines is an identity that is no longer valid in T-SPLines. Note
that parameter space due to the possible multiplicity of some knot values can be
divided into two separate ones, i.e. parameter knot value space and parameter knot
space. Parameter knot value space has the same number of indices per axis as index
space. Indices now are the knot values spaced evenly despite the fact that more than
one may have the same value. Parameter knot space has similar principles to
parameter knot value space, but now knot values are no longer equally spaced and
identical value intervals seem vanished and so they are called trivial spans.
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Figure 2.6. (Created with Geomlso)
(a) Parameter space 2D T-SPLines (no full tensor product).
=={0,1,2,3,4,5,6}, p=2 and H={0,1,2,3,4,5,6}, q=2.

Knots are presented as yellow squares, anchors as red circles and elements as blue rectangles.

(b) Parameter space 2D NURBS (full tensor product)
=={0,0,1,2,3,4,5,6,7,8,8}, p=2 and H={0,0,1,2,3,4,4},=2.
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2.2.3. Physical Space

Physical space is the well-known three dimensional Cartesian space in which
structures are shaped. Each anchor and its local knot value vector, i.e. its support, is
found in index space. Utilizing these vectors, blending functions are shaped and with
the linear combination of control points’ data, objects are formed in physical space.
Note that control points are entities that describe the geometry of the object. They do
not necessarily lie on the surface of objects. Their relative distance from the geometry
depends on the mesh at their specific place and on their weights. An increasing weight
draws the geometry closer to the control points.

Figure 2.7.
T-SPLine objects. Physical space.
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2.3. T-SPLine Blending Function

Given the fact that T-SPLines are a generalization of NURBS, the full tensor product
property does not always apply here. T-Mesh is produced in index space and the
rectangular tiling does not have a constant pattern like in NURBS. The major
constraint, when creating a T-Mesh, is that every edge should lie on a positive integer
index value. Thus, we can conclude that many types of edge to edge interconnections
can exist. When four edges are connected, then we can see a normal interconnection,
just like in NURBS. This is called a cross junction. Likewise, when three different
edges connect, then we have a T-junction, two edges can form an L-junction or I-
junction and finally, when in 3 consecutive index values don’t connect at all with each
other, then we have the so called node junction. Typically the last type does not exist
and thus cannot be seen in T-Meshes, but we emphasize in its existence in order to
show that full tensor product property no longer is mandatory. All the mentioned
junctions are given below.
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+
- - _
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1 .
|_ o
—

12 | |

Figure 2.8. Junction Types.
Junctions in 2D meshes are 12 different types as depicted above.
The most special type of junction is node junction, where no knot lines are connected.
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2.3.1. Degree limitations

After defining the possible edge interconnections, it is imperative to enlighten some
ambiguities a finite element practitioner might encounter. So, despite the fact that all
the above junctions are likely to exist in a given T-Mesh, L-junctions can only exist
when odd degree is given for one of the axes. But even now a random T-Mesh might
seem weird. It is time to make clear that a T-Mesh and the integration mesh do not
have to coincide.
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Figure 2.9. (Created with Geomlso)
(a) Index space of even degree on both axes.
(b) Index space with at least one odd degree. L-junctions can appear.
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2.3.2. Global Knot Value Vector

In order to extract the so called anchors in SPLines, we have to define a domain. As
far as B-SPLines and NURBS are concerned, if a knot value vector is given per axis,
it is straightforward to obtain all possible anchors and accordingly each one of the
local knot value vectors. These vectors now can be linked to control points and basis
functions can be created.

D Knot TensorProduct
@ ControlPoint TensorProduct

Parameter Space

[ =53

§1 > @ D O
2 ® @ [ ®
[}

£

(1]

w0 & < O ©
o 0

Parameter Axis §

Figure 2.10. (Created with Geomlso)
Parameter space with global knot value vector depicted.

In case of T-SPLines, in order to describe a given T-Mesh, it is vital to provide a
global knot value vector. This vector’s content should be an ascending sequence of
numbers of equal multitude to the indices of index space. Having evaluated the
positions of anchors and their indices vector, we are able to match indices with knot
values and thus create local knot value vectors.

Figure 2.11. (Created with Geomlso)
T-Mesh with global knot value vector.
=={0,0,1,2,3,4,5,6,7,8,8} and H={0,0,1,2,3,4,4}.
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2.3.3. Anchor - Control Point

In order to define how each control point acquires a certain local knot value vector, it
can be initially described how anchors are produced in such a complex mesh. As
shown in the figures below, anchors lie in different points depending on the
combination of polynomial degrees chosen for each function. In case of odd degree
for all axes, anchors lie on the vertices defined in the T-Mesh.
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Figure 2.12. Index space with anchors as red circles. (Created with Geomlso)
(a) Odd degree for both axes.
(b) Even degree for & and odd degree for 1.
(c) Odd degree for £ and even degree for 7.
(d) Even degree for both axes.

When both odd and even degrees are present, anchors lie on the center of horizontal
or vertical line segments. Finally, when even degree dominates, anchors lie on the
center of rectangles.
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2.3.4. Local Knot Vector

Generally every anchor contains information about the local knot value vector of
each control point, as they are directly related. So, in order to acquire the local knot
value vector, we have to find p+2 values that form it. Having previously defined the
anchors, it is now deriving effortlessly.

In case of odd polynomial degree for both axes, the anchors lie on the vertices of the
T-Mesh that form an angle. So, for such an anchor s. with coordinates [&q, 1a], the
local knot vector for axis &, Z, arises with the following procedure. Initially, the
length of the vector is p+2, which means that once more its multitude is odd. The
middle position of the vector is occupied by the anchor’s index itself. In order to
complete the rest of the empty spaces of the knot value vector, we travel left
horizontally and fill blanks with (p+1)/2 values given by the indices of the vertical
lines or encountered vertices. The final (p+1)/2 spaces of the vector are defined once
more by travelling right and horizontally and writing down with the aforementioned
procedure the rest of the knot values. Note that some anchors may be positioned close
to the border of the T-Mesh and it may be reached before the local knot value vector
is completed. In this case, the standard procedure is to repeat the final index so many
times as needed in order to complete the vector. The same procedure is conducted
along axis n. The middle position of the knot vector is occupied by the ordinate n, of
the anchor, while we budge initially downwards to complete the first (p+1)/2 spots
with the n index of the horizontal lines or vertices encountered.

The procedure is similar in even degree. Anchors do not necessarily have integer
coordinates, as they are positioned at the center of 2D knot value cells (rectangles).
For axis &, it becomes obligatory to fill the knot value vector with an even number of
p+2 & indices. As the total required number of indices is once again even, the vector
will be now completed only by moving leftwards and rightwards for & and upwards
and downwards for n (completing each time p/2+1 knot value spans). This procedure
is repeated for every anchor in order to define the corresponding local knot vectors.

In Figure 2.13, examples of local knot value vectors in index space are depicted.

(a) Odd degree in both axes.
Top-left anchor: 2,={1,1,2,4,6} and H,={4,5,6,7,7}.

(b) Odd degree for axis & and even degree for axis 1.
Top-right anchor: Z,={1,2,6,7} and H,={3,4,5,6,7}.

(c) Even degree for axis & and odd degree for axis n.
Bottom-right anchor: £,={2,5,6,7,7} and H,={1,1,3,7}.

(d) Even degree in both axes.
Top-right anchor: Z,={4,6,7,7} and H,={2,3,7,7}.
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At this point, the previous knot value vectors (for the bottom-right anchor, subfigure
c), will be calculated analytically for both axes. Initially, one must make clear, if the
axes are even or odd (and obviously all of their combinations). As mentioned before,
a function with degree (p) has a local knot value vector with (p+2) values. In this
example, the degree is equal to 3 (odd) for the & axis and 2 (even) for the n axis, thus
the knot value vectors will have 5 and 4 values respectively.
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Figure 2.13. (Created with Geomlso)
Index space with anchors.
Local knot value vectors for even degree for axis & and odd degree for axis n.

Axis & Calculating the knot value vector will start by filling the anchor’s &-
coordinates in the 3™ (=middle) position of the empty vector { , ,6, , }.
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Now, moving leftwards (p+1)/2 or equally two values must be found, by extending
an imaginary line parallel to axis &, where the anchor belongs to. The needed knot
values will be shown by the intersections of the imaginary (yellow) line with the
vertical lines of the cell elements. The empty vector will now have the following form
{2,5,6, , }. Following the same procedure rightwards, a problem will occur. As
someone can easily notice, there are not enough vertical lines to “produce” (p+1)/2 or
equally two different intersections (values). In this case, a multiplicity in the last
intersection is needed to satisfy the knot value vector. The solution to this problem is
given by inserting the last intersection with &-coordinate &=7 twice, in order to give
the final form of the & local knot value vector {2, 5, 6, 7, 7}.

Axis n: The axis is even, thus the vector will have the form { , , , }. Anchor’s
coordinates won’t participate in the construction of the vector. In fact, the anchor will
only be a benchmark that will make the procedure easier. Moving upwards, starting
from the anchor, the needed values will be found as the intersection points of another
imaginary line parallel to axis n and the lines of the cell-elements that are parallel to
axis &, leading to the following knot value vector’s form { , ,3,7}. Following the
same procedure this time downwards, yet again, the same problem is encountered
(just as the &-axis), as there are not enough intersections (knot values). As before, a
multiplicity is needed in the last intersection in order to satisfy the knot value vector.

The needed multiplicity of the last point’s coordinate is never a fixed number and
depends on the axis degree and on the T-Mesh. It occurs as (p+1)/2 intersections until
the edge for odd polynomial degree and (p/2+1) for even.

T
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Figure 2.14. Index space with anchors and local knot value vector 3D. (Created by Karras Dimitrios)
Magenta spheres represent three dimensional anchors.
Since quadratic blending functions will be used for all axes, anchors lie on the center of cuboids.
Green cubes represent knots that exist only on junctions.
For the red anchor, local vectors are found by extending lines for all three dimensions.
Purple faces show the values that contribute to the creation of the knot value vector in each dimension.
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2.3.5. T-SPLine Blending Function

Given a T-Mesh and degrees p, q for both parametric axes & and n, Q<12 is the
index domain that encloses every index a, such that s, is an anchor. With local knot
value vectors =, :{51 8o v 1S ,fpﬂ} , H, :{771 Mo > - Mpaa ,nM} , we define for

both axes the univariate functions recursively as follows.

Beginning with constant piecewise polynomials (p=0), we have:

1if g <é<E,

. (0.2)
0 otherwise

Ni,o(éz) ={

For p=1, 2, 3..., we define higher degree functions by the Cox-de Boor recursive
formula:

‘fi+p+1 - 5

Nup ()= 22 N, (0

§i+p _gi

Nis1pa(8) (0.2)

with the assumption of %D 0.

Given the fact that the generated functions no longer stem from a global knot value
vector, rather a local one of arbitrary length, they cannot be called basis functions any
more as no specific space is defined for them. Instead, they will be referred to as
blending functions. We can associate each and every knot value vector with a single
univariate function of as described above. Given many univariate functions with not
related knot value vectors, we could assign coefficients to them and thus create a
curve as follows:

CO=Y (N, () X} 0.3)

In this part, it is vital to explain the distinction between the terms order and degree.
The definition of degree of the polynomial is given by CAD designers, as the highest
degree of all its terms. The term order refers to a related concept. It expresses the
maximum number of terms a polynomial has. Usually a polynomial of p-th degree has
order of p+1. In general, in this thesis, the adopted notations follow those of the
published isogeometric analysis papers, so that the reader can easily read through it
and be able to refer to the sources at the end for more sophisticated explanations. On
the other hand, in the code developed by the writer, the use of such abbreviations is
discouraged and rather replaced with the use of full names.
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2.3.6. T-SPLine Blending Function Properties

According to “Isogeometric Analysis using T-Splines” and “T-SPLines as a Design-
Through-Analysis Technology”, T-SPLine basis functions possess the following
important properties:

1. Local support:

Nip (£)=0 VE£[E. &) 0.4)
2. Non-negativity:
N, (&) 20 VEip (0.5)
3. Partition of unity:
2N, (&) =1 Vp (0.6)
i=1

T-SPLine Basis Function

B "0z o02a%0s o8 T "1z 14°i6 187 2
Parametric Axis §

4. CP™ continuity across knots with multiplicity m.
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2.3.6.1. Local Support

Local support means that blending functions are positive only in certain spans in
parameter space. This can be expressed by:

Ni,p (g) = 0 v& & [&I ° §i+p+l)

Figure 2.15. Parameter space with blending functions per axis &. (Created with Geomlso)
Each one of the varied colored shape functions has different support.

Local support is a result of the recursive Cox de Boor algorithm. For the creation of
one univariate function of degree p, two consecutive blending functions of degree p-1
are used. For the creation of each of those functions, another two consecutive
functions will be used. Since one function will be common for both of them, we
conclude that three functions are finally needed. Inductively, p+1 constant functions
are required in order to create one blending function of degree p. Each box in T-
SPLines has support of one span. This means that constant functions in contrast to
NURBS can have a support of more than one consecutive knot value spans. The
property remains, as the final blending function of degree p support is defined by the
union of the lower degree functions, hence now p+1 consecutive knot spans.

N;,(8)
| Ny(® 1
( Ngo(©) N;,(6)
N, (8) N;;(8)
N;,(8) Nea(8)
N;,(8)
No(8) )
Figure 2.16.

Lower order basis functions required for the creation of Ny, &).
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2.3.6.2. Non-negativity

It has been proven that:
Ni,p (é) 20 VE_,,I,p

U.E T T T

(0.7)

Figure 2.17. (Created with Geomlso)
T-SPLine blending functions.

In Figure 2.17, we can see various functions of degree p=3, which are all non-
negative for every &. This is an important feature that both B-SPLines and T-SPLines
have. It is of major importance in isogeometric analysis, as the common practice of
finite elements does not impose positive shape functions. As this property applies for
every axis, it can be easily generalized for 2D and 3D blending functions as well.

Inductively, the same principle applies for T-SPLine surfaces:

T=

n
A:1PA'WA'NA

n
asWa - Na

where Pa are the control points, wa their weights and Na the blending functions.
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2.3.6.3. Partition of Unity

Partition of unity is established by:

n
> N, (£)=1 V&p (0.9)
i=1
T-SPLine Basis Function T-SPLine Basis Function
1y 1
| —%-Gauss Point —%- Gauss Pont
09} {71 Knot Line Element 0.8} {1~ Knot Line Element
49 Control Point 1 @ Control Paint 1
BSPline BSPlne
08+ 0.8
07+ 07
Sos Sost
&) 3
> >
2as 205!
S =t
% g
# o4t @ o4t
03+ 03
02 0.2
01 0.1
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02 04 = 06 08 1 12 14 16 18 2 F "0z o406 os T 12 14 16 18 2
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Figure 2.18. (Created with Geomlso)
T-SPLine blending functions for open knot value vector in 2D.

Partition of unity is a property easily found in case of NURBS, as a common section
of a specific knot value can reveal it. On the other hand, in T-SPLines, this is not that
obvious, since partition of unity can only be examined for as many dimensions as the
simulation demands. For instance, in 1D applications of T-SPLines, partition of unity
is examined only in one dimension like NURBS. Higher degree applications require
that partition of unity is valid for every point regardless of &, n and (. This concludes
that this property is far more difficult to be verified in T-SPLine technology, as it
cannot be generalized from a specific section as in NURBS.

Partition of unity applies for multi-dimensional shape functions as well. In 2D, it is
expressed as:

n

Nip($)-M; () =1 VEn,p,q (0.10)

m
i=1 i=1

Analogously, 3D blending functions also possess partition of unity as described
before.

i D2 NG M ()L, () =1 VENLP.qr (0.11)

i=1 j=1 k=1

n
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2.3.6.4. CP"™ Continuity along knots of m- multiplicity

This property exists like in B-SPLines. Given a knot value vector of an anchor, if the
multiplicity of a knot value is greater than one, the blending function has CP™
continuity. This means that this specific blending function can produce p-m
continuous derivatives. Continuity less than C° is not acceptable for internal knots. As
a result, a certain knot value can be repeated at most p times in a local knot value
vector. Note that as continuity decreases, blending functions tend to become steeper.

& . - 0 - |
45 . . . . . 1.8
16F
4 L L
1.4rF
35 . . »
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25 . . . nsk
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2 - [ 3
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—{Knot Line Element
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©
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Figure 2.19. (Created with Geomlso)
T-SPLine blending function of degree p=2.
Due to knot repetition, blending function with reduced continuity are created.
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2.4. T-SPLine Shape Function

Given the local knot value vectors of an anchor for all axes &, n, ¢, the univariate T-
SPLine blending function Nip(&), Mjq(n), Lkr({) are created. With the aid of these
functions, the multivariate T-SPLine shape functions are created. For the one
dimensional case, we obtain:

Nip(‘f)'wi _ Nip(é:)'wi

RP (&) = =

Inductively for 2D and 3D cases:

NP (5)-M{(n)-w,;
22:12?:1 pr (&)-M ip (5).Wf,i

RP(S.h) =

Nip(f)'M?(ﬂ)' er(é/)'vvi,j,k
Z:ﬂz?:lzlk;l pr (&)-M Jp(g) LE (n).wﬂiﬁ

Ri?j’q (f: h) =

2.4.1. T-SPLine Shape Function Properties

Properties of T-SPLine blending functions can be inductively proven for shape
functions as well:

1. Local support:

R, (£:7)=0 VENE[E, &) VMis i) (0.12)
2. Non-negativity:
R,(£7) =0 VEn,ij.p.q (0.13)

3. Partition of unity:

n

Ri,j,p,q (5’ 77) =1 V&ﬁn’paq (014)

i=1
4. CP™ continuity across knots with multiplicity m.

5. Linear independence of blending functions.
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2.4.1.1. Local Support

Local support means that blending functions are positive only in certain spans in
parameter space. This can be expressed by:

Ri,p (5’ 77) =0 V&:Tl 2 [él ’§i+p+l) U[ﬂ. ’ni+p+1)

TSPLine Shape Function

'0.5\ | i o

TSPLine Value

ei\"c pp= 5

para™

Figure 2.20. Parameter space. (Created with Geomlso)
In this figure, local support of this function can be seen for both axes.
For axis &, the support of the depicted shape function is [0,1], while for 1 is [0,2].
The cyan circle shows the projection of the anchors in 1D.
Magenta circles are the real parametric coordinates of the tensor product anchors.
The red colored 1D blending functions are combined to give the” countered” shape,
i.e. the shape functions and their support in 2D.

Local support is a result of the recursive Cox de Boor algorithm. For the creation of
one univariate function of degree p, two consecutive blending functions of degree p-1
are used. For the creation of each of those functions, another two consecutive
functions will be used. Since one function will be common for both of them, we
conclude that three functions are finally needed. Inductively, p+1 constant functions
are required in order to create one blending function of degree p.
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Each box in T-SPLines has support of one span. That means that constant functions
in contrast to NURBS can have a support of more than one consecutive knot value
spans. The property remains and the support of the final blending function of degree p
is defined by the union of the lower degree functions, hence now p+1 consecutive
knot spans.

N;0(8) N

N M@)n
Njo(8) ( > N ©) K
R

SN X /\ N®)

N
\y

rd N
N,,(&) X A N® )
(N, €)Y

/
7

Nyo(®) )

/

Figure 2.21.
Lower order basis functions required for the creation of N, (&) .
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Figure 2.22. (Created with Geomlso)
Subfigures (a) to (f) depict each of the supports of the anchors.
Areas that are not colored blue are considered as the anchors’ supports.
Note that the support differs for the various functions.
p+2 spans support per axis for each anchor create different pictures of supports.
This can easily be explained, as one span may contain more than one T-SPLine blending functions.
Subfigure (g) shows the magnitude that each one of them contributes to partition of unity.

Note that support in 2D and 3D T-SPLines is not constant per axis. Despite the fact
that every support is p+2 spans, this number is not constant for all axes and shape
functions. T-Mesh topology defines each time the local support and it may vary, as
one span in T-SPLines does not necessarily coincide with one knot value span. This is
why, as shown in figure 2.22 above, shape functions affect different types of the
domain.
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2.4.1.2. Non-negativity
It has been proven that:

Ri,p (‘f’ 77) 2 O vésnaisjapsq (015)

TSPLine Shape Function

TSPLine Value

Figure 2.23. (Created with Geomlso)
T-SPLine shape functions.

In Figure 2.23, we can see various functions of degree p=3. All blending functions
are positive for every &. This is an important feature that both B-SPLines and T-
SPLines possess. It is of major importance in isogeometric analysis, as the common
practice of finite elements does not impose positive shape functions. As this property
applies for every axis, it can easily generalized for 2D and 3D shape functions as well.
Inductively, the same principle applies for T-Spline surfaces:

n

_ Lina
T= n
A Wa - N,

P,-w,-N, (0.16)

where Pa are the control points, wa their weights and Na the blending functions.

46



T-SPLines Basic Ingredients

2.4.1.3. Partition of Unity

Partition of unity is established by:

n
> Ripe(Em) =1 VEnp.q (0.17)
i=1
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Figure 2.24. (Created with Geomlso)
T-SPLine blending functions for open knot value vector in 2D.

Partition of unity is a property easily found in case of NURBS, as a common section
of a specific knot value can reveal it. On the other hand, in T-SPLines, this is not that
obvious, since partition of unity can only be examined for as many dimensions as the
simulation demands. For instance, in 1D applications of T-SPLines partition of unity
is examined only in one dimension like NURBS. Higher degree applications require
that partition of unity is valid for every point regardless of &, n, {. This leads to the
conclusion that this property is quite more difficult to be verified, because it cannot be
generalized from a specific section as NURBS.

Partition of unity applies for multi-dimensional shape functions as well. In 2D, it is
expressed as:

n

Nip($)-M; () =1 VEn,p,q (0.18)

m
i=1 i=1

Analogously, 3D blending functions also possess partition of unity, as described
before.

i D2 NG M ()L, () =1 VENLP.qr (0.19)

i=1 j=1 k=1

n
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2.4.1.4. CP"™ Continuity along knots of m- multiplicity

This property exists like in NURBS. Given a knot value vector of an anchor, if the
multiplicity of a knot value is greater than one, the blending function has CP™
continuity. This means that this specific blending function can produce p-m
continuous derivatives. Continuity less than C° is not acceptable for internal knots,
meaning that a certain knot value can be repeated in a local knot value vector at most
p times. Note that as continuity decreases, blending functions tend to become more
steep.

5 e . 0 . 0
45 . . . . . 1.8
16F
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TSPLine Shape Function

TSPLine Value

(©)

Figure 2.25. (Created with Geomlso)
Quadratic T-SPLine shape function is created by two blending functions,
which have reduced continuity due to knot value multiplicity.
For &: local knot value vector {0,1,1,2} and C° continuity.
For n: local knot value vector {0,0,0,1} and C** continuity.
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2.4.1.5. Linear Independence

It is mathematically proven that T-Meshes in general do not produce linear
independent T-SPLine blending functions. This is a major drawback of T-SPLines,
hence linear independence of basis functions is crucial for isogeometric analysis and
computational mechanics in general. In that case, the system of equations is not
invertible and the stiffness matrix as well. As a consequence, not every T-Mesh is
acceptable for analysis. It is proven that meshes that follow certain constrains always
define an independent base of blending functions.

2.4.1.6. Analysis Suitable Elemental T-Mesh

An analysis-suitable T-SPLine is one whose extended T-mesh is analysis suitable. In
an analysis-suitable extended T-mesh, no T-junction extensions intersect.

Figure 2.26. (Created with Geomlso)
Analysis Non-Suitable Mesh.

As A. Scott defines, analysis suitable is a mesh whose extended mesh is analysis
suitable. Figure 2.26 illustrates a typical T-Mesh. Nevertheless, this mesh cannot be
considered analysis suitable. By extended mesh, we define the mesh in Figure 2.27,
which is obtained by extending the T-junctions in both directions. For instance, ifa T-
junction is created by removing the horizontal left line of a cross junction, then the
extensions will be the following. The main extension will be on the vanished side, i.e.
the black dashed line, of the junction and it can be extended throughout the mesh, but
only the segment of the extension until the next knot line or junction counts. The other
extension is the red dashed line as depicted below, that has an opposite direction to
the previous one.
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Figure 2.27. (Created with Geomlso)
Extended Analysis Non-Suitable Mesh.

Figure 2.28. (Created with Geomlso)
Extended Analysis Non-Suitable Mesh with intersections.

As we can see, the numerous extensions of the T-junctions intersect with each other.
The intersection points are given above as green triangles. We conclude that if such
intersections exist, then the T-Mesh is not analysis suitable. Luckily with a simple
refinement of the mesh, it is plausible to convert the mesh to an analysis suitable one,
which creates linearly independent blending functions.
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2.4.2. Derivatives

Taking into account that one univariate blending function derives from the
combination of Cox-de Boor recursive algorithm and a local knot vector, we conclude
that univariate blending functions and inductively multivariate blending functions
derive from the following recursive definition.

| p (5) = N i,p-1 (5) o Ni+1,p—1(§) (020)

_P P
é §|+p §| ‘§i+p+l - §i+l

This leads us to a generalized equation for the k-th derivative:

dk k
—N, N0k 0.21
dék |p ( —k) Z.: i+j,p (é) ( )
Q0 =1
A1
Ao = )
’ §i+p—k+l _fi

A=A .
k’j:—k“ e |
é:i+p+j-k+l - §i+j

_a'k—l,k—l

é:i+p+1 o é:i+k

Ay =

In addition, partial derivatives of two-dimensional T-SPLine shape functions can be
easily obtained by application of the quotient rule:

N M 0.22
ag Ri*(5.m) = (5 .p(é‘)j (1) (0.22)

—qu(§ )= N.p(i)( qu(ﬂ)j (0.23)

Three dimensional shape functions can be obtained in a similar fashion.

Kl

Riik Nip M, Lyr 0.24
o (&7.6)= [ E (f)j () - Ly, (&) (0.24)
%Rﬂi’(é 17,¢)=N,, (&) ( M“*(")j L. () (0.25)
0

o — R (€m.0) =N, (5)- M, () [ Lkr(C)J (0.26)
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2.5. T-SPLine Geometry

2.5.1. T-SPLine Curves, Surfaces and Solids

Given a knot value vector = and a polynomial degree p, we can evaluate the T-
SPLine functions at every &. In order to create a T-SPLine curve, we also need a

vector of coordinates for each basis function, the control points. X, ={X; ., Y, , Z;}.

After evaluating the shape functions, the T-SPLine surfaces defined in analogy to the
T-SPLine curve:

CO)=Y (N, () X} 0.27)

Similarly, in three dimensional case once we determine the local knot value vectors,
T-SPLine blending functions are obtained through:

. i{Rf,}’q(é,n)-Xu}

S(Em) =D Y AN (&) M, () X, =
i=1 j=1 i=1 j=1
Thus, given a T-Mesh and an appropriate set of control points, we can define a three
dimensional T-SPLine volume using:

n

S(£.m.8)= Ziz{mp () My )L o) X} = S N (R (€, ) X

i=1 j=1 k=1 i=1 j=1 k=1

Figure 2.29.
T-SPLine Solid.
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2.5.2. T-SPLine Curve Properties

As a generalization of NURBS, T-SPLine curves acquire most of their properties.
The most important ones are:

1.

© © N o g B~ DN

=
o

11.

T-SPLine curves can be considered as a generalization of Bezier curves with the
difference that now a knot span is extended to a span.

C(&) is a piecewise polynomial curve.

Each blending function and by extension anchor corresponds to a control point.
Any control point corresponding to C°-continuity is interpolatory to the curve.
T-SPLine curves maintain convex hull property.

Moving a control point X; affects only part of the curves, due to its local support.
The control polygon represents a piecewise linear approximation to the curve.
Different control points are enabled to have same coordinates.

Affine covariance applies to T-SPLine curve’s control points.

.Hence C(&§) is a linear combination of univariate blending functions. Curve

properties, like continuity and differentiability, stem straightforward out of them.

Two merged T-SPLines have a water-tight interconnection

2.5.2.1. Generalization of Bezier curves

T-SPLine curves are a generalization of B-SPLine curves and namely produced from
a knot vector and the Cox de Boor recursive formula. Blending functions are linearly
combined with control points and produce curves. This latter procedure is similar as
far as Bezier curves are concerned. Bezier polynomials are produced given a knot
value vector, that extends only in one knot span. So, they can be described as B-
SPLines, that have support of only one span.

Binlt) Biyir) B2 (1)

Figure 2.30.
Bezier Polynomials
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2.5.2.2. Piecewise polynomial curve

C(&) is formed from piecewise polynomials N, (&) and therefore is a piecewise
polynomial curve.

05

4 | ! ! | |

0 1 2 3 4 a

Figure 2.31. (Created with Geomlso)
Piecewise polynomials that form a T-SPLine blending function.

A T-SPLine curve is obtained through the curve function:

CO)=Y (N, (&)X}

T-SPLine curve is a linear combination of piecewise polynomial basis functions and
control point coordinates. This applies in multi-directional entities as well. Two
dimensional shapes derive from univariate piecewise polynomial functions
Generalizing, T-SPLine surfaces (2D case, &, 1) and T-SPLines solids (3D case, &, 1,
¢) can be also considered piecewise.
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2.5.2.3. Control Point — Basis Function Correspondence

Each blending function corresponds to a certain control point. There are n blending
functions and n control points in a T-SPLine curve. In case of surfaces, there is a
similar correspondence. Anchors (defined in index space) correspond to one local
knot vector per direction. These local knot vectors are necessary to create the T-
SPLine blending functions. Finally, in order to create a curve, each anchor must be
linked with a control point. A surface stems from linear combination of control points
and blending functions. In the figure below, we can see the one to one correspondence
of anchors-control points and blending functions.
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Figure 2.32. (Created with Geomlso)
Blending function to anchor correspondence.

It is obvious that anchors do not correspond to the peak of the blending functions.
This is why anchors’ local support on one or both directions has multiple knot values
on its edges.

Figure 2.33.Physical Space.
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2.5.2.4. Interpolation to the curve

Any control point corresponding to a blending function with C° continuity is
interpolatory to the curve.

Figure 2.34. (Created with Geomlso)
Physical space with control points. Plate with a hole.
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Figure 2.35. (Created with Geomlso)
Physical space’s blending functions. 8" control point.

Figure 2.35 shows that control points with blending functions of C° Continuity are
interpolatory to the curve. This can be explained with the help of the following curve

equation.

CO)=Y (N, (&)X}
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For £ =0, it applies that:

CO) =N, (0) X

where
N1,2 (0) =1
N;,(0)=0,i=2,..6
so,
C(0)=N,,(0)- X, =X,
And for £=3:
C(d) = Z Ni,z ©) X
i=1
N6,2 (3) =1
N;,(3)=0,i=1..,5
so,

CB) =N,;,(3)- X, =X,

Likewise, the internal control point (with C° continuity across £=2) is
interpolatory to the curve because:

C(2) =2 {N:.(2)- X}
i=1
N,,(2) =1, as this is the only non-zero basis function across &=2.

N,,(2)=0, i=4

SO,
C(2) = N4,2 (2)- X, =X,

Observe that both the form of the curve and the form of the basis functions indicate
that this geometry could be represented by two different sets of knot vectors and
control points, with absolutely no deflections from the current representation. This
will be examined thoroughly later. Interpolation also applies for surfaces and solids,
when appropriately reduced continuity is used for all directions at a knot. C™*
continuity is required for external knots and C° for internal.
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2.5.2.5. Convex Hull

T-SPLines curves, as a generalization of NURBS curves, retain convex hull
property. The convex hull of the curve is obtained as the sum of the convex hull of
p+1 consecutive control points. The curve is always contained in the convex hull.

Figure 2.36.
Convex Hull Representation
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2.5.2.6. Control Point Local Support

Moving a control point X only changes part of the curve, more specifically the part
corresponding to one control point is p+2 consecutive spans per axis. This is a result
to local character of the corresponding T-SPLine blending functions. Note that in T-
SPLines, blending functions do not affect a certain number of knot value spans rather
a certain number of spans, as the restricted non tensor product T-Mesh differentiates
the span and knot span definitions.
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Figure 2.37. (Created with Geomlso)
Control point local support.
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2.5.2.7. Control Polygon Approximation

The control polygon represents a piecewise linear approximation to the curve. Due
to convex hull properties, refinement brings the control polygon closer to the curve.
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Figure 2.38.

Control polygon approximation.
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2.5.2.8. Two merged T-SPLines have a water-tight interconnection

The intricate structure of the mesh enables the designer to merge separate meshes
with gap free “welding”.

(@)
“

(b) (©

Figure 2.39.
(a) Two pipes and their interconnection.
(b) Non watertight interconnection for NURBS representation.
(c) Watertight interconnection for T-SPLines design.
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2.6. Refinement

Isogeometric analysis is a methodology that allows designers to utilize the exact
mesh of the geometry. In addition, engineers are able to analyze the model more
efficiently and accurately, as the shape functions used for design are the same with the
ones used for analysis. Unfortunately, the coarse mesh used by designers does not
usually give satisfactory results. So, refinement is introduced in order to improve the
solution, while keeping the parameterization and geometry unchanged. Various types
of refinement exist, which allow scientists to reach the desired outcome with various
ways (each one suitable for specific problems). Note that NURBS refinement
strategies require that full rows or columns of control points are inserted in order to
refine the needed area. On the other hand, T-SPLines are the first type of SPLines that
enable local refinement.

2.6.1. Refinement Types

2.6.1.1. Knot Value Insertion

Knot value insertion is the introduction of new knot values and the enrichment of the

existing knot value vector Z. A new knot value vector Z is created, such that= c E.
Only internal knot values can be added; while the ones on the boundaries have to
remain intact.

2.6.1.2. Degree Elevation

Instead of adding knot values to an existing knot value vector, the raise of the
polynomial order can also enrich the basis. Apart from geometry, the mapping from
parameter to physical space must also remain unchanged.

2.6.1.3. Degree Elevation and Knot Value Insertion

Increasing polynomial degree by p-refinement is an improvement to the basis, but
continuity remains the same as in the coarse mesh. In order to improve this aspect, k-
refinement was introduced by Hughes. The basic idea is that, after p-refinement, h-
refinement can be applied in order to create basis functions of C** Continuity. This is
a powerful tool that can lead to greater convergence rates for our models.
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2.6.2. Local refinement

T-SPLines are the first type of SPLines that enables true local refinement. The
insertion of T-junctions enables refinement to take place on element level. Faces
subdivision is the most common refinement strategy. The main process is to divide
one of the elements created into four new ones. In addition, T-SPLines allow the
insertion of single control points in places, where geometry needs special local
handling. Finally, there is an edge insertion possibility that allows the division of
element into two and at any point needed by analysis.

Figure 2.40.
(a) Initial Mesh.
(b) Refinement using T-SPL.ines.
(c) Refinement using NURBS.
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3. Stiffness Matrix

3.1. Preliminary Steps

3.1.1. Degrees of Freedom

In isogeometric analysis, as it is common in any other type of computational
analysis, it is crucial to define the modeling type of structure that is going to be
analyzed. Given the fact that until now only continuum mechanics elements are
applied in isogeometric analysis, the previous dilemma could be transformed into the
number of dimensions the simulation elements will have, i.e. the number of
displacement degrees of freedom. So, in order to define the analysis type, the first step
would be to determine the number of dimensions of the simulation. Three categories
are available:

One displacement degree of freedom (1D analysis). This type appeals to
problems like truss elements analysis. In these cases, forces and displacements
are applied only on the longitude of the structure. Lines and curves are
structures that belong to this case, as they can be considered the representation
of a given element that its height and thickness are substantially smaller (by
orders of magnitude) than its length.

Figure 3.1. 1D analysis structure.
(engineering-inventions.blogspot.com)

Two displacement degrees of freedom (2D analysis), which is suitable for
surfaces and plane strain or plane stress structures. Plane strain is considered a
structure that its thickness is significantly larger than length and width by
orders of magnitude. In that case, we can simplify the real structure by
considering a surface that has a certain usually uniform thickness. Plane stress
is considered a structure that its thickness is significantly smaller than length
and width by order of magnitude. In that case, calculation of stresses is
simplified, since they correspond to a 2x2 matrix, rather than 3x3.
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Figure 3.2. 2D analysis structure.
(www.princeton.edu)

e Three displacement degrees of freedom (3D analysis). By this approach, any
structure or object is simulated in real dimensions, without considering
simplifications based on its physical analogy.

Figure 3.3. 3D analysis structure.
(www.hondatuningmagazine.com)

The analysis type determines the information about the structure’s geometry, that
should be provided. In 1D analysis, there exists only one parametric axis (&) for the
representation of the model and therefore data of height and thickness are required. In
2D analysis, one-dimensional control points are given on axes & and n and the
unknown data is the thickness of the structure. In 3D analysis, the geometry is fully
described by the combination of control points on axes &, n and £, requiring no further
information.

66



Stiffness Matrix

3.1.2. Constitutive Law

In order to achieve an analysis that corresponds to the actual behavior of the used
material, its properties and constitutional law have to be defined. Properties deal with
elasticity modulus, Poisson’s ratio and specific weight. The constitutive law defines
the response of the material under the action of external forces, depending on whether
it is elastic-inelastic, isotropic-anisotropic, homogenous- no homogenous and includes
equations which describe this reaction. Elastic materials tend to recover completely
from deformation and return to their initial shape after the external load is removed.
Steel and iron can usually be simulated as materials with linear elastic behavior, when
loads increment. On the other hand, materials, like concrete, have only a short linear
elastic behavior, followed by a brittle almost plastic breach. Isotropic materials have
identical properties in all directions and the homogenous ones have identical
properties at all points in their body.

(o] . . i . .
(stress) Elastic Region | Plastic Region
(Once stress is removed Permanently deformed by the
retumns to original size/shape | stress

! fracture

point

yield strength | 555 5 S ogeriay” T T T T TTTTTTToos

limitof [~~~

proportionality

& (strain)

Figure 3.4. Stress-strain chart. Elastic and plastic regions.
(www.cyberphysics.co.uk)

So, the constitutive law of the material plays a major role on the analysis type that
will be performed. Many types of analysis can be applied to a structure, varying from
linear (stress proportional to strain) to nonlinear and static to dynamic. Linear and
nonlinear analyses are types imposed by material properties, as explained above. The
choice between static and dynamic analysis depends on the acceleration of the applied
load in comparison to the natural frequency of the structure. When the load is applied
slowly enough, static analysis can be performed. Otherwise, inertia forces should be
taken into consideration and the suitable analysis type is the dynamic one. For the
needs of this thesis, the selected structures will undergo a linear static analysis and
both elasticity modulus and Poisson’s ratio must be defined for the selected material.
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3.1.3. Elasticity Matrix

The elasticity matrix type is given by the dimension and the type of the simulation
used in each case. As mentioned above, the degrees of freedom for each problem may
vary between three different cases. Elasticity matrices for these cases are shown
below.

1D Elasticity:
[E]=E
(1x1)
2D Elasticity, Plane Stress:
e 1 v O
E]= > lv 1 0
(3x3) 1-v 1—v
0 0 —
L 2
2D Elasticity, Plane Strain:
1-v v 0
E
[E]= 1 v 1-v 0
b (1) (-2v) o
0 0 5

Finally, in three dimensional analysis, elasticity matrix is identical to the one of
finite element analysis, as it is shown below:

1-v v Y 0 0 0

1-v Y 0 0 0

Y v 1-v 0 0 0

(E]- E o o o 1_22" 0 0
o) (1-v)-(1-2v) 15

0O 0 0 0 —V )
2

0O 0 0 0 0 1_22V
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The corresponding stress and strain vectors are:

1D Elasticity:
{o} ={ox}
(24)
ef ={ex}
()

Ox

{o}=10y

(341) Ty

8X

€f =1 &y

(3><1) ’YXY

3D Elasticity:

Ox €x
GY 8Y

—~—
Q
——'
I
m
I

(6x1) Oxy (6x1) Yxy

@) (b)

Figure 3.5. Stress contour. (Created with Geomlso)
Subfigure (a) shows stresses that are discontinuous due to knot multiplicity (C° continuity).
In figure (b), continuity is greater than C° and stresses are smoother.
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3.1.4. Mesh

Since isogeometric analysis is a computational analysis method, its main concern is
to approximate as accurately as possible the desired geometry. Mesh is the array of
isogeometric elements used to represent the geometry of a structure. FEM node is
now divided into two different notions, the notion of knot and the notion of control
point, which have complementary properties. Knots are the boundaries of
isogeometric elements, while control points determine the degrees of freedom. The
number of basis functions used is equal to the number of control points. The
unknowns of the resulting algebraic equations correspond to the displacements of the
control points for each axis.

In IGA method, the exact geometry is represented (even in cases of very coarse
meshes), unlike FEM, where approximations can only be achieved. Thus, the fact that
the same shape functions are used for both analysis and geometry (solution field)
assures accurate and reliable results. Better quality of a NURBS-mesh is also pursued
through multiple patches, which are subdomains with the varying material and
geometry type and consist of a full tensor product grid of elements.

The basic feature of IGA basis functions is their tensor product nature. Functions of
each parametric axis are combined in order to form the corresponding shape
functions. Due to the higher regularity between inter-element boundaries, they exhibit
greater overlapping in comparison with the shape functions of FEA. Attention is
recommended at knots where basis functions are interpolatory (connection of
patches), since that indicates discontinuity (C) and consequently loss in accuracy.

The order of curves that will verge on geometry should be defined appropriately. For
instance, if a straight line needs to be modeled, a minimum degree of one must be
given to the polynomial which is called upon to fit it. So, every dimension of the
problem must acquire a certain degree. Due to the isoparametric concept applied in
IGA, these degrees are usually applied to parametric space rather than to the
dimensions of physical space. It is wise to always apply a degree greater than the
minimum one in order to improve the accuracy of the integration scheme.

In case of B-SPLines, each object is divided into orthogonal-like pieces and then
each one of them is divided into elements that are utilized for integration. This
division requires only the definition of global knot value vector.

On the other hand, TSPLines, as a generalization of B-SPLines and NURBS, have a
much more complex mesh definition, which enables easy design and local refinement,
but, on the other hand, increases analysis complexity. As far as T-SPLines are
concerned, there is also a distinction between T-Mesh and integration mesh that will
also be explained. These two major aspects of T-SPLines will be thoroughly analyzed
in the following paragraphs.
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3.1.5. T-Mesh - Integration Mesh

As mentioned in Chapter 2, integration mesh is different from a T-Mesh. A T-Mesh
might have a variety of junction combinations, making it almost impossible to define
the elements where integration will take place. The integration mesh is a product of
the initial mesh and the supports of anchors are depicted in the figure below. Figure
3.6 depicts two anchors of the T-Mesh and how their local knot value vectors are
defined.

1 L L
1 2 3 4 5 6 T

Figure 3.6. T-Mesh. (Created with Geomlso)
Anchors are shown as red dots and their supports as green lines.

For the anchor, that has index coordinates {&q,, n«}={5,2.5}, its knot value vector
consists of p+2 values for both axes. This support per direction creates an influence
domain for each anchor, as shown below.

1 2 3 4 5 6 7

Figure 3.7. (Created with Geomlso)
T-Mesh. Influence domain of anchor with index coordinates {&q, n.}={5,2.5}.
Red bold line is a continuity reduction line, as created by this anchor’s support.
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The support domain of this function is defined by the blue transparent area. It is
obvious that the defined support area creates lines that do not exist in the real mesh.
One of these lines is depicted above with a deep red color. By creating all these non-
existing lines in a T-Mesh, we take as a product the so called continuity reduction
lines. These lines divide the index space into elements, where shape functions are C*
continuous. On the verge of these lines, the continuity is limited due to the connection
of different polynomials.

7

El_—

Figure 3.8. (Created with Geomlso)
T-Mesh. Continuity reduction lines as red dashed ones.

These continuity reduction lines form the final integration mesh, on which
integration will be performed after the placement of Gauss Points.
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Figure 3.9. (Created with Geomlso)
Parameter space with Gauss points for integration elements.
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3.1.6. Gauss Points

Gauss points should be placed in the elements defined by the continuity reduction
lines as above. Since blending functions, as described in Chapter 2, are piecewise
polynomials in each span, Gauss points are chosen to be applied in each and every
knot span. Gauss points for the mesh above are shown in Figure 3.10.

As it was previously mentioned, Gauss points are chosen per parametric direction for
each element. Their coordinates are obtained on a reference element spanning [-1, 1]
as the roots of the Legendre polynomials. The next step is to transform the

coordinates and weights from the reference knot span &° to the desired knot span

[E.si ) E.>i+l) '

(gm =& ) EF + (E_vi+1 +§ )
2

GP im—ii R
f8a8)

€=

w

Full tensor product properties apply in the analyzed elements, leading in similar
equations for the other two parametric directions.

_ (nj+1_nj)'nR +(T1,-+1+T],-)
2

GPn _ (ni+12_ni) -W:

L S o *********
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Figure 3.10. T-Mesh. (Created with Geomlso)
Knots are shown as green squares.
Gauss points (magenta stars) are placed with respect to tensor product knot spans.
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The minimum number of Gauss points, where a certain function has to be evaluated,
is p+1, where p is equal to the degree of the polynomial, as previously described. This
statement leads us to the conclusion that different number of integration (Gauss)
points has to be defined and applied to each and every different axis.

Gauss integration is preferred, because its ability to have integration points at varied
distances makes integration much more accurate than other schemes. Standard
positions and weights of Gauss points for an interval [-1,1] are the following:

n &i ai

1 0 2
-0,57735 1
0,57735 1

3 -0,77459 0,55555
0 0,88888
0,77459  0,55555

4 -0,86113 0,34785
-0,33998 0,65214
0,33998 0,65214
0,86113 0,34785

5 -0,90617 0,23692
-0,53846 0,47862
0 0,56888
0,53846 0,47862
0,90617 0,23692

Table 3.1.
Positions and weights of Gauss points for the interval [-1,1].

3.1.6.1. Gauss Point Number

Gauss point’s coordinates and weights are evaluated for every element created by a
tensor product knot span. According to Hughes et al, for the exact integration of a
polynomial of degree q, qT+1 or % Gauss points are required per knot span in the

case of g odd and even respectively.

For 1D problems, the maximum degree of the deformation matrix is defined from
the derivation of piecewise polynomial shape functions of polynomial degree g and is
consequently g-1.
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[B(&)]T-[E]-[B(ﬁ)] yields the product of polynomials of maximum order p-1
resulting in a polynomial of maximum order (p-1)+(p—1)=2p-2. Thus, the
minimum number of gauss points per knot span required for exact integration is
(2p—2)+2
2 F

Inductively, for 2D and 3D problems, the exact order of deformation matrix is
determined by partial derivation of piecewise polynomial shape functions. Therefore,
the maximum degree is p for derivation in the remaining directions.

The order of the product [B(&)]T [E]-[B(&)] is p+Pp=2p. In order to achieve

exact integration, the minimum number of Gauss points required per knot span is
2p+2

=p+1.
5 p

To sum up:

e For 1D problems, p Gauss points per knot span are required.

e For 2D and 3D problems, p+1 Gauss points per knot span are required.

T-SPLine Blending Function
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Figure 3.11. (Created with Geomlso)
Quadratic T-SPLine blending functions.

p+1 or three Gauss points are required per knot span for accurate integration.
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3.2. Patch Merging

In computation science, it is of crucial importance to divide a structure into simple
segments, that can be separately analyzed and then all combined can give the final
solution. This idea became the motive that urged the development of patches. Patches
are used in case of specific elements that have different material properties and thus
do not share the same constitutive law. Unfortunately, this option is not available as
far as T-SPLines are concerned. T-SPLines do not support the so called patch, like
NURBS do. T-Meshes cannot be torn apart and then combined due to their intricate
element interaction. This might seem a major drawback of T-SPLines, but once again
T-Mesh’s intricate interconnection allows the watertight merging of NURBS patches.
Specifically, a uniform mesh can be created for one or more patches with different
knot value vectors. This is a solution to the previously mentioned problem.

273 T8 [ T12 T16 2 [ u1o u1s uz20
Y ° 3 - L e L L]
2 2
ug u14 19
T T T11 T15 ° ° ° *
L © e .
4/3
U3 us u13 )18
1 L] L] L L]
2/3
T¢ T10 14
L3 L] @ L] U? U1
0 =5 == S T3 0 U6 VIR U186
® » ° "~ ° ® . °
0 0
0 0 1 2 2 0 0 1 2 2

Figure 3.12. Quadratic TSPLines.
Parameter knot value spaces with different knot value vectors on axis n will be merged.

Figure 3.12 shows two separate NURBS patches. Apparently, these patches are
created by orthogonal domains that have different global knot value vectors. Until
now, the connection of these patches with NURBS was impossible. Refinement
strategies, such as knot insertion, had to be implied in order to create domains whose
control points would coincide. This obstacle can be easily overcome with T-SPLines.
With the appropriate manipulation, only the boundary control points and elements of
both patches need to be adjusted so as to coincide. In Figure 3.12, left patch has four
elements on the connection edge, while the right one has five. It would be expected
that the connected boundaries should both have five elements (the maximum number
of boundary elements). The fact that the knot value vectors do not have the same
values leads to the creation of a new knot value vector, which is the Boolean union of
the previous ones. This procedure is depicted in Figure 3.13, where the two domains
are prepared for a C° continuity connection. Since the two knot value vectors are now
identical, the patch interconnection becomes now possible, as shown in Figure 3.14.
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Figure 3.13.

Quadratic T-SPLines.
Parameter knot value spaces are prepared for integration.
The final column of the first mesh and the initial of the second are divided,
in order to anchors coincide after merging.
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Figure 3.14.

Parameter knot value space of the merged NURBS meshes.
B-SPLines have now unified in one watertight T-SPLine surface.
T-junction have now appeared and
the multiplicity of the merged parts creates a C° continuity.

The above procedure indicates how T-SPLines are able to overcome the problem of
patch interconnection, providing the sought structure division.
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3.3. Stiffness Matrix Assembly

The general process for the total stiffness matrix assembly, as obtained from finite
element method, is shown in the following flow chart.

1

{ Create Integration Mesh }

'

Element — Degree Freedom

Connectivity
Add Contribution to
Global Stiffness Elemental Gauss Points
Matrix and Weights calculation

I

Gauss Point Loop

‘ Store Data per

Gauss Point
F 3
Stiffness Matrix
Element
T Deformation Matrix Blending Functions
n rivati P
and Jacobian and Derivatives at G
Figure 3.15.

Stiffness matrix assembly in finite element method.

78



Stiffness Matrix

There are two loops:
e Element loop
e Gauss point loop

It is worth mentioning that the element loop in IGA using T-SPLines cannot be
avoided due to the intriguing structure of the mesh. As described above, the local knot
value vector consists of p+2 values for each axis. In case of NURBS, the distance
between the consecutive values remains constant. This is a result of the full tensor
product of the mesh, which creates a stable number of functions, that influnces each
element. This property is no longer valid in T-SPLines, as the spans do not correspond
any more to one knot value span. So, each element is affected by a different number
of functions, compared to NURBS, where this number remains the same for all

elements.

TSPLine Value

TSPLine Value
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Figure 3.16. (Created with Geomlso)
Shape functions with varied support.

The essential information for the formulation of stiffness matrix is divided into:

e Structural analysis and material
e Computational geometry
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3.4. Stiffness Matrix

3.4.1.1D

One dimensional problem can be compared to a uniaxial truss element under
longitudinal forces. It is not possible to apply other types of loads, as degrees of
freedom are parallel to axis & Thus, these types of elements are trivial in their
examination, yet it is crucial to study them to make the transition to greater
dimensions easier. In such case, only axial deformation for each point of the truss
exists. This deformation is u(x)= u(C(é)) =u(&). The strain matrix consists of only

one value:

{5

In order to calculate the derivative of deformation, we must first establish a
transformation between physical space and parameter space, i.e. the Jacobian one.

0p _ 0¢ 08
X OF OX
op  0p OX
0E ox O

% = [J][a_ﬂ
0€, OX
where [J] is the Jacobian matrix, which enables transition from physical to parameter

space and vice-versa. It can be evaluated with the help of blending functions R, (&)

and control points’ Cartesian coordinates X; as shown:

X,
X,
[‘](é)]:[Rl,g(i) szg(g) Rn,é(&):l'
(1) ()
X, |

(mx1)

where Ri,@@:a%Ri(a).
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In finite element analysis, the reverse transformation is applied. This is why the

inverse matrix [J]_1 is needed.

a1
N ==
<[1x1]> [J]

()

Special care has to be taken to assure the correct calculation of the Jacobian. The
positive direction of axes in parameter and physical space must coincide, or else the
determinant of the Jacobian will be negative and the matrix [J] irreversible.

Numerical integration on points of singularity, such as two points on parameter space
mapped into the same point on physical space, has to be avoided as well as far as
NURBS are concerned. In case of T-SPLines, this obstacle does not exist, as the
complex T-Mesh allows the same representation, without using singularity points.

The next step is to calculate the matrices [B,] and [B,]. Matrix [B,] transfers the
strains of the element from parameter to physical space and matrix [B, ] transfers the

nodal displacements of the elements to the strains at the parameter space. Therefore,
the matrices [B,]and [B, ] can be calculated from the following equations:

MEIRUEE

SRS

[Z_ﬂ:[w@ Rye(®) o o o Ro(®)]

[B(z(f)]:[RLa@) Rpe(® oo o o Ry(9)]
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The vector {u,} is equal to the product between [Bz] and the control point
(1)

displacement vector {d}.
(nx1)

As deformation sub-matrices [B ] and [B ] are known, deformation matrix
(xa

1><n)

[B(&)] is given by:

(Bxn)

Deformation matrix produces strain values anywhere in the model, by utilizing nodal
displacements.

®
3w
=
£

(1d

Stiffness matrix for a patch is evaluated as shown:

[K]- 2" (BT [E}BE)]} A-det]

Direct integration is almost never applicable. Numerical integration is used instead,
looping through all the Gauss points of a patch and their respective weights:

GP&
[K]= {[B )] E[B }Adet] GF’@}
(nxn) i= nxl
where:

e A the area of the cross-section

eGP, : the total number of Gauss points for the specific patch
e & .:the parametric coordinates of Gauss points

e W : the weights of Gauss points
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3.4.2.2D

Two dimensional problems can be seen anywhere around us. Both plane strain and
plane stress cases can be seen in dams, slabs, cantilevers and cells. Generally all cases
that one dimension is significantly smaller (or larger) than the other two can be
described as two dimensional. The main difference is, obviously, the utilization of one
more dimension. Parameter space is defined on (& n) and physical space on (x,y).

Displacements per X, y at any point in the entire domain are defined as
u(x,y)=u(S(&mn))=u(&mn) and v(x,y)=v(&n), respectively.

The strain vector is defined as:

a o
e OX OoX
X u
{e}=|¢, |= N ={el=| 0 9 { }
(3x1) v oy (3x1) oy | LV
o ov o 0
|0y OX | | oy OX |

The transformation of a function ¢ between parameter and physical space yields:

dp_ 092, dpon
OX 0O OX oOnoX

dp 0% 0o
gy 0gdy onoy

99 _0O9x 09y
0 0OX 0t 0y ok

Op_0@0x 090y
on OXxon oy on

Thus, the 2D Jacobian matrix can be defined as:

Op| | Ox Oy ||dp d o
ok | |ee o] ax ok '
Op| [oXx Oy ||%@) 00| (a)|le
om| |em on| Loy on oy
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and the inverse mapping:

% %
oX _ [ J] -1 6&
2| @a |00
oy on

The Jacobian matrix can be calculated as follows:

X, Y,
X, Y,
[J]{Rl,g(a,n) Roc(6M) v oo RN,g(a,n)]
23 |Ri@Em) Ry, Em) . o o Ry, (Em)
[ Xn Y

where N is the total number of control points.

The inverse Jacobian matrix is used in stiffness matrix calculation:
[\]]71 :|:J*11 ‘]*12:| _ 1 { I _le}
(2:2) J, Iy det[J] -J,, s

The determinant of the Jacobian matrix is also required and is equal to:

det [J] =J;,:d—J,5 -3

In order to calculate the deformation matrix for 2D problems, [B,] and [B,] have to
be evaluated as usual.

To obtain matrix B, ]:

ou 24
OX

Jyp —Jp, O 0 —

0

{e} = % - 0 0 —Jy Ju | !

ou ov

| oy OX | ov
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Hence,
1 ‘]22 _‘]12
B,(&n)|= - 0 0
e G|
21 11
To calculate matrix[B, |:
o
93
8_u Rlé 0 Rzyé 0
| R, 0 R, O
| R, 0 R,
¢ 0 R, 0 R,
N
Lo |
Hence,
R, 0 R, O
R 0 R 0
[B.em)]=| " o R
(4x2N) Le 28
' 0 R, 0 R,

-J 21

‘]22

‘]ll

_‘]12

)

Stiffness Matrix

iy

< ©C < C
N [

N

N.g

N,n_

Having determined [B, ] and [B, ], the deformation matrix is calculated as:

[B(&m)]=[B.(&n) [[B,(Em)]

(3x2N) (3x4)

(4x2N)

In order to evaluate stiffness matrix, integration is required.

E,v pinmql

J. J[B&n [B&n]tdet

(2N><2N) £ (2Nx3) (3x3) (3x2N)

dndg

Numerical integration procedures for &,m lead to integration for tensor product

Gauss points
GPE GPn

(2 N><2N =L (2nsa) (3x3) 7 (32N)

[B(&i'nj)]-r. [E].[B(E_’i,nj)].t.det[\]]_ WEPE WGPn
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where:
e t: the thickness of the cross section

e GP,: the total number of Gauss points per & for the specific patch

GP | : the total number of Gauss points per n for the specific patch

&, m;: the parametric coordinates of the tensor product Gauss point (i, J)
o w5, wi": the weights of the tensor product Gauss point (i, j)
The only difference, at this point, between plane stress and plane strain is the

elasticity matrix, which is the result of the utilized constitutive law, which connects
stress and strain field.

T-SPLine Blending Function

1
e —k—Gauss Point l‘
. ~{1-Knot Line Element |
o —D—Control Point
' —B-SPLine
]
|
07 !
% * !'!
[ e \ /
S 06 N - 1
G 0.4 / \* *
0. 3 \ :"."‘ : . ,J". ,'/‘
/i\ ! * l\"\‘ *, ;
- \/ X Ak
\ ;*)\ '\x‘ e : ;’
/ [l
ofF+ 15 2 23

‘ Parametric Axis &

Figure 3.17.

Parameter space with blending functions as blue lines,
knots as yellow squares and Gauss points as magenta stars.
Blending functions evaluated at Gauss points.
(Created with Geomlso)
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3.4.3.3D

3D elasticity is merely the extension of 2D elasticity in all directions, with a
complete stress field. Every other problem can be created by downgrading 3D
problems into 2D and 1D problems. The displacement field for each point in physical
space is now defined for x, y, z by u(x,y,z)=u(S(&n,¢))=u(&n,&), v(&n.C),

w(&,m,§) respectively. The strain field can now be defined as:

— — 0 0
OX OX
- - N 0 9 0
€x oy oy
e
Y w 0 0 91Ty
{e} = P 11y
) |V| | M| |0 O
Ty oy OX oy oXx
_YZX_ @4_% 0 2 ﬁ
oz oy oz oy
OW ou 0 0
- _ 0 _—
lOX o0z] Loz OX
which leads to the definition of the Jacobian matrix for 3D:
| [x oy azl|[ae] |o0] g |
o0& o 0 OE || ox o¢, OX
Gp|_|ox &y az||de|_ |00 ryde
on on on on||oy on| 3|0y
do| |x &y az||de| || |
o] e e oc|lez] |ec] L oz |
and the inverse Jacobian matrix as well:
_8_(p_ a_(p
OX o€
op 1| OQ
i =[J] . =
oy (3:3) n
9 )
L0z | | oC |
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Jacobian matrix can be calculated from the derivatives of the shape functions. It is a
square matrix.

><1 Yl Zl

X2 Y2 ZZ
R.(EmC0) R,.(EmC) o . .« Ry(&n0)
(3] =| Ry (&M0) Rpp(&MG) o o o Ry, (&M0)
(3<3) Ru;(é!ﬂi&) Rg@@n'@ RNvg(i,n,C)

_XN YN ZN_

The inverse of the Jacobian matrix is:

R, 0 0 R, 0 O Ry 0 O
R, 0 0 R, 0 0 Ry, 0 0
R, 0 0 R, 0 0 Ry 0 O
0 R, 0 0 R, O 0 Ry, O
0 R, 0 0 R, O 0 Ry, O
B8, (5n0)]= 0 R, 0 0 R, O 0 Ry, O
o)
0 0 R, 0 0 R, 0 0 Ry
0 0 R, O 0 R, 0 0 Ry,
0 0 R, 0 0 R, 0 0 Ry
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As a result, the deformation matrix for 3D elasticity is calculated as:

[B(&m,6)]=[B.(&n.6)}[B,(&m.C)]

(6x3N) (6x9) (9x3N)

The corresponding stiffness matrix is produced by integration:

Em+p+1 T1m+q+1 €I+r+1

Kl =] | J[(anc] 66)[Banc]det dcnde

(3Nx3N) £ S 3Nx6) 6x3N

Numerical integration is used in 3D, as well:

GPE GPn GP¢

K] _ZZZ[B(&JI’“J’ )} [E]'[B(‘gi’nijk)]'det[‘]]'WiGPi'WjGPn'WEPC

3N><3N i=1 j—l k=1 3N><G) (6)(6) (6><3N)

where:

e GP . : the total number of Gauss points per & for the specific patch
oGP : the total number of Gauss points per n for the specific patch
oGP : the total number of Gauss points per { for the specific patch
e &, :the parametric coordinate & of the tensor product Gauss point ijk
e m;: the parametric coordinate n of the tensor product Gauss point ijk
e (,: the parametric coordinate ¢ of the tensor product Gauss point ijk
e w "5: the univariate weight (&) of the tensor product Gauss point ijk
o wf"”: the univariate weight (n) of the tensor product Gauss point ijk
e w5 the univariate weight (€) of the tensor product Gauss point ijk

3.4.4. Stiffness Matrix Examples

For two different meshes of the same structure with the same degrees of freedom,
when NURBS and T-SPLines are used, significant differences are spotted. The main
difference is the bandwidth of the stiffness matrix. NURBS have a constant
bandwidth, while in T-SPLines its range varies. The maximum bandwidth is greater
than the one in NURBS and this leads to an increased computational cost, but
analyses have shown that it provides much greater accuracy. Figure 3.18 depicts two
such stiffness matrices. T-SPLine stiffness matrix has a bandwidth of 120 degrees of
freedom, while the same stiffness matrix for NURBS has a bandwidth of 70 degrees
of freedom.
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Figure 3.18. Stiffness matrix for (a) T-SPLines and (b) NURBS.
(Created with Geomlso)

A possible process could be the transformation of a given T-Mesh into a NURBS
one. This is achieved by extending the lines of index space, so as to create a full
tensor product structure. These two meshes give the same geometry, but the number
of control points becomes automatically larger. In this case, the constant bandwidth of
the NURBS stiffness matrix is equal to the maximum bandwidth of the corresponding
one in T-SPLines. Figure 3.18 shows the results of the process described. NURBS
control points are more and so the scale of the axes is different in these two
illustrations and the maximum bandwidth is the same. This procedure seems
worthless, as it leads to more unknown degrees of freedom. The process usually
utilized is the reverse one for the sake of simplification of calculations.
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Figure 3.19.
Stiffness matrix for (a) T-SPLines and (b) NURBS.
(Created with Geomlso)

The property of overlapping behaves similarly to the one of bandwidth. This means
that it remains constant in case of NURBS as the local support of shape function is
always fixed. In T-SPLines, the local support differs due to the existence of T-
junctions and thus the continuity and shape function overlapping changes throughout
the domain.
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Figure 3.20. (Created with Geomlso)
Stiffness matrix for (a) T-SPLines and (b) NURBS.
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3.5. External Loads & Boundary Conditions

3.5.1. External Loads

Having created the stiffness matrix with the aforementioned procedure, it is now
imperative to define loads, which comply with the actual load situation of the
examined structure. In finite element analysis (FEA), external loads act on the nodes
of the structure, which are at the same time material points. In isogeometric analysis
(IGA), external loads are imposed not on material points, but on the control net. It’s
obvious that this handling is far away from a young engineer’s perception, who is
used to act loads directly on points belonging to the model geometry. The only case in
IGA where a load imposed at a control point and a material point at the same time is
at interpolatory control points. We should keep in mind that, regardless the type of the
external loads chosen for the analysis, the final forces will be implemented on
interpolatory control points, due to the fact that only interpolatory control points can
be loaded. In case a f(§n,0) load has to be distributed on control points, that are not
interpolatory to the curve, it has to be transformed into equivalent concentrated loads
by integration :

Enepet Mmaget Gl
(Fl= 1] T RENOM En o) det[s] dzonde

( N Xl) & Mo o ( le)

More specifically, for each case:

1D:
Enipit
{F1="] {R(g)}-F(5) det[d]de
O (I
2D:
Enipst Mgt
=] [ (R(&m)}-f(&n)det[Idnde
(NG g m (N9 (1)
3D:

Enipit Mmsget Gppraa

=] | [ REnOM (& neydera]dcands

(Nx1) & L (Nx1)

This way, the load vector {F} is assembled.
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251

Axis Y

Axis X

Figure 3.21. (Created with Geomlso)
Physical space. Quarter of an annulus. 2D Analysis.
Red color refers to free control points and yellow to the supported ones.
Concentrated loads have been acted at green control points.

3.5.2. Boundary Conditions

A crucial step, that allows analysis to be done, is the enforcement of the boundary
conditions, as structures cannot be analyzed when they are not stable. This means that
some degrees of freedom will be free and some have to be fixed, i.e. their
displacements will be zero. These degrees of freedom are called stationary and their
corresponding rows and columns are deleted from the stiffness matrix and the load
vector. The stiffness matrix and the load vector having only free degrees of freedom

are [K] and {F} respectively. The solution of the equation is the final step in
analysis:

{Ff}:[Kﬁ]'{Df}:{Df}:[Kﬁ]_l’{Ff}

The (zero) displacements for the stationary degrees of freedom are added back to the
result creating the displacement vector {D} .
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The necessity of applying boundary conditions and the inability to apply strong
formulation leads to the application of a weak one. The weak formulation of such
boundary conditions demands that they are applicable on a finite number of points.
The enforcement of the boundary conditions takes place at the control points of the
structure. Each control point has one, two or three displacement degrees of freedom
for 1D, 2D and 3D analysis respectively. In this reference, we deal with the
enforcement of 2D boundary conditions (plane stress/strain), which are enforced at
the corners of the domain’s boundaries. At these points, basis functions have C
continuity and one component of them refers to corner control point. We aim to these
control points’ commitment only when their corresponding basis function has non-
zero value. Having set zero corner control point’s displacements, we ensure that all
the material points of the specific boundary side have zero displacements, too. For
example, on parametric axis &:

n+p+1 n+p n+p

SN 0= N D END#N.,.D.. 0= END

The procedure of the boundary condition enforcement is getting complicated,
because the domain of influence of each control point overlaps the domains of its
adjoining control points. Compared with finite element analysis, in which control
points are simultaneously material points, in isogeometric analysis control points may
be points out of the structure’s body. So, another difficulty is ahead, concerning the
enforcement of boundary conditions in IGA. Enforcing boundary conditions in this
way, we do not deal with a general case of mixed conditions on a boundary domain.
Every researcher should give special attention to its implementation and dare with all
the above difficulties.

Axis Y

|
[

B
Axis X

Figure 3.22. (Created with Geomlso)
Physical space. Cook’s 2D cantilever.
Red color refers to free control points and yellow to the supported ones.

The displacement vector {D} allows us to calculate the equivalent actions at the
control points and to estimate the support reactions of the structure.
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3.6. Displacement, Strain and Stress Field

3.6.1. Displacement

After solving the equation, control points’ displacements are obtained. Unlike
classical FEM, control points are usually located outside the area of the model. The
displacements of the model’s material points differ from the displacements of the
corresponding control points. Conclusively, these analysis results are considered
“pseudo-displacements” and play an auxiliary role in calculating the real ones. As
mentioned before, the distribution of the displacement field is achieved via shape
functions.

1D:
@) = 2.{R,(6)D} =R, (2)}"{D)
20:
& =25 {R. (&) B = (R, ()] D)
3D:
d(Em.) = Z{ (6m.8) D} ={R ((i,N?,c)}T-sz})
where:

e R, isthe shape function i
e D, is the displacement of the corresponding control point i

e N isthe total number of control points

If a control point c is interpolatory to the curve at (&C,nc,gc), it follows that:

d(E. .. &) = Z{ (.M. ) D} =1-D, =D,

Displacements of interpolatory control points are material points’ displacements as
well.
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3.6.2. Stress and Strain

The strain vector can be evaluated at any point in the field with the help of control
point displacements and the deformation matrix [B] :

1D
{ } I:leN le)
2D
{e(&m)j=[B(&n)}{D}
(34) (3x2N)  (2Nx)
3D

{e(&n.¢)}=[B(&n,¢) ] {D}

(6x1) (6x3N) (3Nx1)

Applying Hooke’s constitutive law leads to:

1D
{o(e);=[EH=(2)}=[E}[B(2) }{D)
(1x1) (1<1)  (va) (1<1) — (=xN)  (Nx1)
2D
{o(&m)j=[EHe(em)}=[E}[B(&m)} {D}
(3x1) (3x3) (3x1) (33)  (3x2N)  (2Nx1)
3D

{o(&m)} =[E]{e(&m.0)} = [E}[B(&n.¢) ] {D)

(6x1) (6x6) (6x1) (6x6) (6x3N) (3Nx1)

Note that stress and strain vectors are evaluated via the derivatives of the shape
functions. This means that their distribution is going to be one order less than the
displacement distribution. This is why stress and strain continuity cannot be achieved
in FEM models, where shape functions are always C™* continuous. This problem is
solved when the derivatives of the shape functions are also continuous, which means
that used shape functions have C* continuity or higher.
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4. Applications

4.1. Plate with a hole

The plate with a hole presented here is a structure subjected to plane stress, as its
thickness is significantly smaller than the other two dimensions (height, length). Thiw
model subjected to uniaxial tension, due to symmetrical geometry, boundary and load
conditions, can be divided into four identical plates for the sake of simplicity. The
examined model is one quarter of the real one.

TSPLine Value

(b)

Figure 4.1. Plate with a hole. (Created with GeomlIso)
(a) Physical space.

(b) Parameter space. Basis functions for plate with a hole.
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In Figure 4.1(a), the physical space of a plate with a hole is shown. Twelve control
points are depicted. It is obvious that only control points on the boundary are
interpolatory to surface. A question, that can arise now, is which is the difference
between interpolatory control points and all the others, as all control points seem to be
material points (but they are not). A control point is interpolatory, when it is moved
and still remains a point of the surface. This occurs only when the shape function of
the particular anchor-control point is of reduced continuity and thus of magnitude C°
or CL.

45} » » » » »
4

ast » » »
3 » »

25} » » »
2

15¢ » » » » »
] ! ! ! ! L

1 1.5 2 245 3 345 4 445 5 55 B

Figure 4.2.
Index space. (Created with Geomlso)
Anchors are drawn as red circles.

Index space is chosen above, so that the quarter plate with the hole is depicted with
the less possible control points. The global knot value vector for axis & is
=={0,0,1,1,2,2} and for axis n H={0,0,1,2,2}. We can see that, even for the coarsest
mesh, a T-SPLine representation needs much less control points. This will become
more obvious, when refined meshes will be shown as applications later on. For the
inexperienced eye, the global knot value vectors might seem not to be open. Note that
an open knot value vector is the one that whose boundary knot values are repeated
p+1 times. So, if open knot value vector does not exist, the continuity on the boundary
seems to be greater than C* and thus the control points of the boundary are not
interpolatory to the object. In fact, this is not true, as this important aspect is no longer
defined by global knot value vectors. It is the degree combination for both axes,
which implies where anchors will lie and consequently their local knot value vectors
define the continuity. Note that certain knot values are repeated. These ones create the
reduced continuity effect. The following figures depict shape functions with varying
local support due to T-junctions and shape functions with reduced continuity.
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TSPLine Shape Function

TSPLine Value

TSPLine Value

(b)

Figure 4.3. Shape functions. (Created with GeomlIso)
(a) Biquadratic shape function has continuity of C* for both axes.
Local knot value vectors are Z,={0,0,0,1} and H1={0,0,0,2}.
(b) Eighth biquadratic shape function is of C° Continuity along & and greater along n.
Its domain of influence is much greater than the first function.
This difference is created due to the T-Junction.
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T- Splines do not own the full tensor product property. In Figure 4.4, parameter
space is divided into three elements, which have different size. This is a property,
which does not exist in NURBS, where all elements have the same size in parameter
space. In T-SPLines, the various junction types allow this intricate junction
interlocking. This procedure permits geometry design with less control points than in
NURBS.
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Figure 4.4. Parameter Space. (Created with Geomlso)
Anchors red circles and knots as yellow squares.
Anchors that lie on the knot lines have reduced continuity C* or C°.
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Figure 4.5. Parameter space. (Created with Geomlso)
Shape function on the boundary have reduced continuity.

102



Applications

Figure 4.6 represents stress oxx contour. Model is subjected to tensional axial stress.
The applied constraints bound displacement Y for the edge parallel to & and X for the
edge parallel to X. Note that, stresses are not continuous everywhere in the model, as
a result of C° continuity blending functions.
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Figure 4.6. Physical space. Stress o,, contour. (Created with GeomlIso)
Shape function of reduced continuity separates the domain in two subdomains,
that have continuous stress field.
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Figure 4.7. Plate with a hole. Stiffness matrix. (Created with Geomlso)
(a) Coarsest mesh (analyzed with T-SPLines). (b) Analyzed with NURBS.

Figure 4.7 depicts a comparison of these coarse meshes for NURBS and T-SPLines.
Note that, even for these meshes, there is a difference between degrees of freedom. T-
SPLine stiffness matrix is denser in the part where one element exists. Overlapping
exists only in the C%-continuous function.
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4.2. Cook’s Cantilever

On contrary to simple cantilever, cross section area of Cook’s cantilever is not
constant. This type of cantilever is quite popular in computational mechanics, because
its shape proves ideal for testing numerical methods. Figure 4.8 shows this model in
physical space, where its four edgy material points have coordinates (0,0), (0,48),
(44,48) and (44,60).
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Figure 4.8. Cook’s cantilever. Physical space. (Created with Geomlso)

Cook’s cantilever is subjected to transverse bending. Loads are applied on the right
edge and have direction towards the negative Cartesian axis Y. The left vertical edge
is bounded. In this way, all displacements along this edge are limited to zero. All
shape functions are smooth and there are no patches in the internal of the domain.
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Figure 4.9. T SPLine blending functions.
(a) Axis & (b) Axisn
(Created with Geomlso)
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Figure 4.10 shows the initial index mesh of Cook’s cantilever. It contains 14 index
cells. T-SPLine blending functions are bi-cubic, so anchors lie on the vertices and
their number is equal to 13.

(]

a3 ]

25

Figure 4.10. Cook’s cantilever. Index space. (Created with Geomlso)
Anchors (red circles) lie on the vertices due to odd polynomial degree.
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Figure 4.11. Cook’s cantilever. (Created with Geomlso)
Continuity reduction lines (red dashed) divide further index space
in order to envelop new integration mesh.
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Figure 4.12. Cook’s Cantilever.
Parameter space constitutes of 3 elements and 4 integration cells.
Gauss points are located within the integration cells.
(Created with Geomlso)

Figure 4.12 depicts stress filed of o,,. Significant stress concentration occurred on
the right edge. In order to imporve the results’ accurasy, the right domain of the

model was refined.
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Figure 4.13. Cook’s cantilever. (Created with Geomlso)
Stress o, contour.
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The mesh is refined (from 23 initial control points to 30 final), by subdividing the
initial left element to four new ones.
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Figure 4.14. Cook’s cantilever. Parameter space.
(a) Refined T-SPLine blending functions (axis &).
(b) Refined T-SPLines blending functions (axis n).
(Created with Geomlso)

Blending functions of the refined mesh are similar to those of B-SPLines due to
mesh interconnection. This refinement was chosen, as the previous one did not result
in accurate stress field on the loaded edge and contained quite few elements. Index
space is shown below with 20 index cells and parameter space with six integration
elements. Stresses become now smoother and displacements have increased as
expected.

(@) (b)

Figure 4.15. Cook’s cantilever.
(a) Index space with anchors as red circles.
(b) Parameter space with Gauss points as magenta stars and knots as green squares.
The initial left element is divided into four new ones.
(Created with Geomlso)
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Figure 4.16. Physical
(a) Physical space with control points as red circles (after first subdivision).

(b) Stress oxx contour (after first subdivision).
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The mesh is refined again (from 30 control points to 43 final), by subdividing each
of the four new elements of previous refinement to four smaller ones.
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Figure 4.17. Cook’s cantilever.
(a) Refined T-SPLine blending functions (axis &).
(b) Refined T-SPLine blending functions (axis n).
(Created with Geomlso)

Blending functions of the refined mesh are similar to those of B-SPLines due to
mesh interconnection. This refinement was chosen, as the previous one did not result
in accurate stress field on the loaded edge and contained quite few elements. Index
space is shown below with 30 index cells and parameter space with 20 integration
elements. Stresses become now smoother and displacements have increased.
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Figure 4.18. Cook’s cantilever.
(a) Index space with anchors are red circles.
(b) Parameter space with 20 elements as blue rectangles, 30 knots as green squares
and 320 Gauss points as magenta stars.
(Created with Geomlso)



Isogeometric Analysis with T-SPLines

»

W

(b)
Figure 4.19. Physical space. (Created with Geomlso)

(a) Physical space with control points as red circles (after second refinement level).
(b) Stess oxx contour (after second refinement level).
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It is crucial to remind the fact that a refined T-Mesh requires much less computations
than the equivalent NURBS one. The following mesh is suitable for both NURBS and
T-SPLines. This mesh was refined in order to examine the efficiency of local T-
SPLine refinement.

Figure 4.20. Physical space. Exact geometry mesh.
(Designed by Tsapetis Dimitrios)

The initial number of control points is 25 in both case (NURBS, T-SPLines). The
area, that requires refinement, seems to be the loaded edge, where consecutive
refinements are applied.

€Y (b)

Figure 4.21. First refinement level.
(Designed by Tsapetis Dimitrios and analyzed with Geomlso)
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After first refinement level, it is obvious that there are major differences between
NURBS and T-SPLine meshes with the same odd degree. T-Mesh requires 67 control
points, while the equivalent NURBS one is increased by 20% to 81.

€Y (b)

Figure 4.22. Second refinement level.
(Designed by Tsapetis Dimitrios and analyzed with Geomlso)

For the second refinement level (same polynomial degree for both axes), benefits of
T-SPLines are more clear. T-Mesh requires 114 control points, while the equivalent
NURBS ones is increased by 35% to 153. It is decided to continue for one last
refinement step and then compare the results.

(@) (b)

Figure 4.23. Third refinement level.
(Designed by Tsapetis Dimitrios and analyzed with Geomlso)
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For the third refinement level, the major “gap” between T-SPLines and NURBS is
obvious. T-Mesh requires 179 control points, while the equivalent NURBS mesh 363.
The increased percentage has now skyrocketed to 100%.
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Figure 4.24. Local refinement.
Control point number per refinement level.
Comparison between NURBS and T-SPLines.
(Geomlso Results)
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Figure 4.25. Local refinement.
Displacement norm according to degree freedom number.
Parametric investigation.

(Geomlso Results)
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Figure 4.26 depicts the comparison between two different T-SPLine meshes. As
shown, the real displacement of the examined control point is reached with only few
control points. Specifically, if the mesh with 358 degrees of freedom is considered as
the accurate solution, then, with only one third of the degrees of freedom required the
desired solution was reached. The error of the solution with 90 degrees of freedom is
only 5% compared with the accurate one. Below, the corresponding features of fine

mesh are available.

Figure 4.26. Index space.
(Created with Geomlso)
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Figure 4.27. Continuity reduction lines.
(Created with Geomlso)
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As far as Cook’s cantilever is concerned, T-SPLine and NURBS models were
compared in terms of accuracy, degree freedom number and stiffness matrix’s
bandwidth.

7 // / e

e / e
e p S
4 / 4 /
S - / /
s Y / /
e e " y
yd / S /
/ ry Y

/- / v

e y S /
e e
// // g
/- /
/ v
/ /
/ /
e /
/ /
(@) (b)

Figure 4.30. Fist refinement level.
Comparison between (a) T-SPLines and (b) NURBS.
Equivalent meshes in terms of refinement strategy
with the same degree freedom (84) and control point (42) number.
(Created with Geomlso)
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Figure 4.31. Fist refinement level.

Stiffness matrix comparison between (a) T-SPLines and (b) NURBS.
NURBS’ full tensor product nature provides a steady overlapping and bandwidth.
On the contrary, T-SPLines have a varying bandwidth and increased accuracy.
(Geomlso Results)
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The second stage of refinement creates similar results, as shown by the figures
below. In both T-SPLines and NURBS, the control point number was chosen to be the

same.

(@)

Figure 4.32. Second refinement level.

(b)

Comparison between (a) T-SPLines and (b) NURBS.
Equivalent meshes in terms of refinement strategy
with the same degree freedom (144) and control point (72) number.
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Figure 4.33. Second refinement level.

(Created with Geomlso)

100 F
120 ¢

140+

nz = 8640

Stiffness matrix comparison between (a) T-SPLines and (b) NURBS.
NURBS’ full tensor product nature provides compact overlapping and steady bandwidth.
On the contrary, T-SPLines have a varying bandwidth and improved accuracy.

(Geomlso Results)
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(@)

(b)

Figure 4.34. Third refinement level.
Comparison between (a) T-SPLines and (b) NURBS.
Equivalent meshes in terms of refinement strategy
with the same degree freedom (462) and control point (231) number.
(Created with Geomlso)
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Figure 4.35. Third refinement level.

Stiffness matrix comparison between (a) T-SPLines and (b) NURBS.
NURBS?’ full tensor product nature provides compact overlapping and steady bandwidth.
On the contrary, T-SPLines have a varying bandwidth and improved accuracy.
(Geomlso Results)
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NURBS - TSPLines Comparison
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Figure 4.36.
Comparison between T-SPLines and NURBS. Error percentage.
T-SPLines provide increased accuracy and reduced error per degree of freedom.
(Geomlso Results)
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Figure 4.37.
Comparison between refinement levels of T-Mesh. Stiffness matrix.
NURBS exhibit smaller and compact bandwidth and steady overlapping.
T-SPLines do not own these properties, as they do not have full tensor product nature.

(a) First refinement level.
(b) Second refinement level.
(c) Third refinement level.

(Geomlso Results)
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4.3. L-Shaped Domain

The L-shaped domain is a quite common geometry for researchers of computational
mechanics worldwide. The applied external forces on the two (horizontal and vertical)
sides tend to “open” the corner. This is similar to infinite stress concentration near a
hole. A dense mesh was initially chosen near the edges of the opening corner, as the
area, which was affected mostly, was known a priori.

Axis Y

Axis X

Figure 4.38. Physical space.
L-shaped domain with control points as red circles
and material points as blue dots.
(Created with Geomlso)

Figure 4.38 shows the physical space of an L-Shaped domain with 24 control points.

It is obvious that only control points on the boundary and the diagonal of the corner
are interpolatory to the surface.

Figure 4.39. Index space of L-shaped domain with anchors as red circles.
(Created with Geomlso)
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The initial index space was chosen in order to design the L-shaped domain with the
minimum possible control points. The global knot value vectors are =={0,0,1,1,2,2}
and H={0,0,1,2,2}. We can see that, even for this coarse mesh, a T-SPLine
representation requires much less control points than the equivalent NURBS model.
This will become more obvious, when refined meshes will be shown as part of the
application later on.
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Figure 4.40. L-shaped domain. Parameter space.
Anchors as red circles and knots as yellow rectangles.
(Created with Geomlso)
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Figure 4.41. L-shaped domain. Parameter space.
Gauss points as magenta stars, knots as yellow squares and
control points as cyan circles.

T-SPLine blending functions as blue lines (&).
(Created with Geomlso)
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Figure 4.42. L-shaped domain. Parameter space. (Created with Geomlso)

Gauss points as magenta stars, knots as yellow squares and control points as cyan circles.
T-SPLine blending functions as blue lines (n).

Figure 4.43 represents stress contour.
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Figure 4.43. Physical space. Stress contour. (Created with Geomlso)

(a) von Mises (b) oy, (C) oyy (d) Txy
Shape function with reduced continuity separates domain into two ones with continuous stress field.
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TSPLine Shape Function

TSPLine Value
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Figure 4.44. Physical space. L-shaped domain. (Created with Geomlso)
Shape functions with reduced continuity..
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5. Conclusions

5.1. Exact Geometry

Isogeometric analysis has a main advantage compared to finite element analysis,
which is the 100 % utilization of the exact geometry mesh. Shape functions used for
geometry design are identical to those used for mesh generation and solution
approximation, thus there is no need for geometry approximation. Automatically,
representation errors are eliminated. As far as T-SPLines are concerned, the full
tensor product nature is no longer obligatory, fact that minimizes the required control
point number for design and analysis as well. Conclusively, isogeometric analysis
minimizes time needed for design and analysis, as the mesh generating step of finite
elements is by passed, while, at the same time, accuracy is boosted, as no more
geometrical approximation is need.

Figure 5.1.
Pisa leaning tower.
T-SPLine representation.
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5.2. Local Refinement

Until now, refinement was used in finite element analysis in order to approximate
better the tested geometry and then to improve the results in problematic areas, such
as ones with stress concentration. On the other hand, isogeometric analysis uses the
exact inserted geometry mesh in the analysis from the begging and makes FEA
refinement procedure no longer needed, conserving precious CPU time. Finite
method’s refinement techniques demand always the initial geometry, on which a new
better and finer mesh is created from scratch. This is no longer valid in IGA, as the
geometry is exact and refinement schemes create finer meshes by passing the steps of
FEA’s re-meshing. In IGA, refinement techniques are more efficient and effective. T-
SPLines are the first type of SPLines that enable local refinement (Figure 5.2). The
lack of full tensor product structure allows true refinement where the structure
demands it.
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Figure 5.2.
Airplane wing.
Local refinement has been applied on the top right edge.
As a result, the mesh there is denser, without affecting the other model’s area of the wing.

(a) Coarse T-SPLine mesh.

(b) Fine T-SPLine mesh,
which consists of more and smaller elements.
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5.3. Element Connectivity

Similar to NURBS, T-SPLines have the overlapping property of their shape
functions. Support can be considered constant with magnitude of p+2 spans for both
axes. Since a T-Mesh has intricate interconnectivity, one span may equal to two or
more knot value Spans. This way, one shape function may affect more elements.
Higher order T-SPLine blending functions mean smoother derivatives, increased
continuity in stress field and more accurate results.

@ (b)

Figure 5.3.
Stress contour oyy.
(a) L-shaped plate. C° continuity.
(b) Cook’s cantilever. C' continuity.
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Figure 5.4. T-Mesh.

Junction connectivity and global knot value vectors, as given in input file.
Junction numbering is identical to the numbering, described in Chapter 2.
An equivalent NURBS mesh would contain only cross junctions,
so T-SPLine code can be used for NURBS analysis as well.



Isogeometric Analysis with T-SPLines

5.4.Patch Merging with T-SPLines

Patches are used in isogeometric analysis in order to simulate different materials and
geometry types. This pattern inherited by finite element analysis, where each element
can be considered as a single patch on its own. Patches don’t allow shape functions to
overlap, as they have C* continuity on their boundaries. In addition, patches are used
to separate an enormous problem into more easily handled ones. The latter
methodology is followed as far T-SPLines are concerned. T-SPLines are capable of
representing any arbitrary topology, thus the only reason for patches division is faster
analysis. Also, patch merging is a major advantage of T-SPLines against NURBS,
since T-Mesh provides water tightness and smoother interconnections between
patches, a problem that NURBS cannot always overcome and require much more

effort and computational time.

2 T8 T12 T16 2 5 u10 uts U20
° ] L] [ o e [ ] L3
2 2
U4 ug u14 u19
L L ] L] L]
i T T T
L] ® L3 *
4/3
U3 us U13 u18
1 [ ] L] L ]
T2 T T10 T14 23
. & ¢ ¢ u u7 u12 u17
L ] L ] e L ]
0 7 5 T9 T3 0 U6 U U16
& L] * @ [} [ ] L ] L J
0 0
0 0 1 2 2 0 0 1
(a) (b)
2 y V4 V28
L) = # W L] L
2
V23 w27
- L] L ]
L ] *"-
443
- V22 V26
1 . .
23 |w v
» " V21 W25
- -
0 v i
n 5 N 20 a4
0
0 0 1 2 3 4
(c)
Figure 5.5.

T-SPLines enable watertight NURBS merging.
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5.5. Stiffness Matrix Formulation

Stiffness matrix calculation in isogeometric analysis follows a similar fashion to
finite element method. As known, in finite element analysis, elements are connected
with C° continuity. On the other hand, IGA enables much greater continuity between
elements, which leads to greater overlapping. In the case of NURBS, this overlapping
is constant, while, in T-SPLines, T-junctions allow overlapping to vary. Finally,
continuity of NURBS objects is constant throughout the domain, while this is not the
case for T-SPLine geometries, as T-junctions enable continuity to change abruptly
and give T-SPLine methodology tremendous design flexibility. As a result, stiffness
matrix formulation can be a more laborious task compared to FEA.
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Figure 5.6.

Stiffness matrices with various interconnectivities.
Subfigures (a), (b) show equivalent NURBS and T-SPLine stiffness matrices accordingly.
Subfigures (c) to (e) show consecutive refinement steps.
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5.6. Comparison with NURBS

In general, T-SPLines, as a generalization of NURBS, exhibit more advantages
compared to NURBS and overcome basic NURBS drawbacks, such as:
e patch watertightness
e local refinement
e accurate design of complex geometries. NURBS are able to design accurately
only conic sections.

T-SPLines NURBS
Index Space Parameter Space  Physical Space Index Space Parameter Space Physical Space
Essential | Auxiliary 1 Real Model Auxiliary 1 Essential | Real Model
Sophisticated | | Unlimited | Simple |_ . .
: ! [ . 1 . | Conic 5ections
Formulation | | Efficient Design | __Formulation |
| 1 I Full Tensor |
| Tensor Product | 1 1
| 1 ] Product 1
s : : Less Control : Anchor : More Control
[Anchor Definition B s .
| 1 Points | pefinition 1 Points
Local Knot Value i i Watertight i Global Knot i
Vectors I I Connection I Value Vector I
Continuity | I No trimmed 1 1
R R | 1 1 1 Gaps
Reduction Lines | 1 surfaces 1 1
: Numerical : : Numerical :
| Integration | | Integration 1
Element i i iC s rti
om u
Connectivity I : : pa ppo :
Shape Function : : : Shape Function :
Overlapping | 1 1 Overlapping |

Table 5.1. T-SPLines compared with NURBS.
The essential space for T-SPLines is index space, while for NURBS is parameter space.
The appropriate data of T-Mesh (junctions, anchors, local knot value vectors
and blending functions) are defined in index space.
On the other hand, NURBS’ less sophisticated formulation requires only the number of control points,
the BSPLine basis functions’ polynomial degree and the global knot value vector (per axis).

Figure 5.7. T-SPLine model.
Watertight patch interconnection.

130



Conclusions
Linear independence is a major drawback of T-SPLines, which can be easily

overcome. Their intricate formulation poses programming difficulties. However, the
results show that this laborious task proves itself worthwhile, as it allows water
tightness, no trimmed surfaces and NURBS patch merging. At the same time, a
significantly reduced required control point number is a major advantage both for
geometry design and for model analysis. All the above make T-SPLines ideal for use
and a candidate to conquer both computer aided design and computational analysis
community in the future.

NURBS - TSPLines Comparison
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Figure 5.9.
(a) T-SPLine refinement.
(b) NURBS refinement.



Isogeometric Analysis with T-SPLines

132



Appendix

6. Appendix (T-SPLine Drafts)

(a) Control lattice with material points as black dots
and control points as white circles.

(b) Shaded design model.
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(c) Rendered design model.

Figure 6.1.
Physical space.
Futuristic aircraft designed with T-SPLines.
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(a) Control lattice with material points as black dots
and control points as white circles.

(b) Shaded design model.

(c) Rendered design model.

Figure 6.2.
Physical space.
Cruise ship designed with T-SPLines.

134



(a) Control lattice with material points as black dots
and control points as white circles.

(c) Rendered design model.

Figure 6.3.
Physical space.
Pets designed with T-SPLines.
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(a) Control lattice with material points as black dots
and control points as white circles.

(b) Shaded design model.

(c) Rendered design model.

Figure 6.4.
Physical space.
Television set designed with T-SPLines.
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(a) Control lattice with material points as black dots
and control points as white circles.

(b) Shaded design model.

(c) Rendered design model.

Figure 6.5.
Physical space.
Table soccer designed with T-SPLines.
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(a) Control lattice with material points as black dots
and control points as white circles.

(b) Shaded design model.
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(c) Rendered design model.

Figure 6.6.
Physical space.
Pisa leaning tower designed with T-SPLines.
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(a) Control lattice with material points as black dots
and control points as white circles.

(b) Shaded design model.

(c) Rendered design model.

Figure 6.7.
Physical space.
Amphora designed with T-SPLines.
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(a) Control lattice with material points as black dots
and control points as white circles.

(c) Rendered design model.
Figure 6.8.

Physical space.
Human designed with T-SPLines
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