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MPOAOTIOZx

H SeBvrig €épeuva 0TV CECULKN AAANAETS PO €5APOVG-KATATKELT TIG TEAEVTALEG DEKAETIES
€xel wq ent{ To mAeloTov PBaocloBel og dVo BepeAddelg Tapadoxeg: (a) ypappukn (i .oodvvaun-
YPAUUIKN), LEwO0-EANCTIKN €80@IKY cuUTEPLPOPA Kal (B) TtArjpn emawn tou OspeAiov pe TO
urtootnpilov €da@og. Qotdoo, ot cuoTHHATA LPIKOPUWY KOATOAOKEUWY HE ETLPAVELOKN
BepeAlwon, akdua Kat VO KABECTWS UETPLOG OELOUIKNAG €€altnong, N avamtuooduevn pomn
oto BepéAdo (Adyw tng adpdvelag tng avwdourg) evdexetal va odnynoet oe eEAvTAnon tng
avtoxng tng dlemipdvetag (Kat Katd ouvemela oe amokOAAnon tou OgueAiov). EmutAgoy, n
avdAnyn g adpavelaknig pomrig Tov OepeAlov amd to €5aog €XEL WG ATOTEAECUA TNV
AVATTUEN ONUAVTIKWY TAACTIKWY {WVWVY 0TO £5a@IKO VAKS TAnciov tng OepeAiwong. Ao ta
TOPATIAVW AVADEKVUETAL N AVAYKALOTNTA €VOEAEXOUG QVTILETWTONG TWV HUN-YPOUUKWY
@awvopugévwy mov oxetilovtal UE TNV SUVAULKN CUUTEPLPOPA CUOTNUATWY ETLPAVELAKOU

BepeAlov-eddaoug.

Tnv mapovoa SLaTPLPr] LEAETATAL N CELCULKY] ATTOKPLOT] EMLPAVELAKWY ODeeAlwy pe Bewpnon
TWV UN-YPAUUKWY @OALVOUEVWY TIOU ATTOPPEOUV OAW’eEVOG UEV amd TNV AMOKOAANGN TOL
BepeAlov amd TO €85OG KAl APETEPOV dE AT TNV TAAOCTIKI] CUUTEPLPOPA TOU £8APIKOV
VAKOU otnv meplox tng OepeAlwong. OegreAlddng mpolimdBeon yla TV yéveon twv dVo
AVWTEPW HOPPUV UN-YPOULIIKIG CUUTTEPLPOPAS E(val N avdanTugn amd Ty avwdour HeydAwy
AKVIOTIKWY TAAAVTWOEWY. Mpog Tov OKOMO autdv n €peuva €0TIA(eTAL OTNY avAdAvon
vpikopuwy (slender) cuvotnudtwy e emupavelakn Oeuediwon Omov n Kvp HoPPN
adpavelaknig TaAdvtwong eivat n AKVIOTIKA. EV KaTAKAEDL, n UHEAETN TOL TPOPRANUATOC

emipeP((eTAL OTIC KATWTEPW PACIKES EVOTNTEG:



v Avvau Ay cUGTNUATWY AVIGUOD.

V' Mn YpUUIXEG XOUTTVAES SUVOUNG—UETAXIVNONG YL ETTLPAVELXXNE FEUEALQL.

v’ Q€pouoa xavoTNTA ETTLPAVELOHWY eUEAlWY AGYyw UEYAANG CELOULXIIS POTTHG.

V' EAQTNplwTd TPOCOUOIWUA YLt TNV avAAUON TNG AVIOTING otoxPLonG LT Ha9ECTWS

UEYAAWY SOUNTIXWY XL ESAPLLWDY UETAHLVHTEWV.

Avvopin) omAwv AVIGTIXWY ovoTNUaTwy: QG E0AYWYN] O0TNV avAAuon TG AKVIOTIKNAG
OUUTTEPLPOPAG LPIKOPUWY KOATAOKELWY €xel UEAETNOEl 1 OUVAUIKN HEPIKWY TUTILKWV

OLUOTNUATWY VPKOPUWY KATATKEVWV:

V' AKOUTITN KATAOKELY] O€ avévdotn BepeAlwon (TtAnpng artokGAAnon tou Bepeliov).

v' MovoBadbuog Ewdo-eAaoctikdg Tadavtwtrig o€ avévdotn Oeuedlwon (TAnpng

amokdAAnon tov OgpeAiov).

V' MovoBaduog €Aactikdg taAavtwtrg ot evddolun (EAAOTIK 1} €AAOCTOMAAOTIKN)

BepeAlwon xwpl(c atokdAAnon tov BgpeAiov.

H HEAéTn TwV avwTEPw CUOTNUATWY TEPLAAUPAVEL OE TTPWTO O0TAdIO TNV Katd Lagrange
KOTAOTPWON TWV EELOWOEWY KIVNOEWG. X€ OAEG TIG TIEPUTTWOELS EXOVV CULUTEPLANWOEL OTLg
€ELOWOELG OL UN-ypappkol OpoL OOTE va elval €QIKTA N HEAETN TNG amoKkplong o emimeda
HEYAAWY SOUNTIKWY UETAKIVACEWY, AKOUA KAl KOVTA oTa dpla TNG avatpomnig. H aplOuntikn
eniAvon Twv €§LlOWOEWY TTPAYHATOTONONKE UE Pria-TpoG-Brita Ev-Xpdvw 0AOKANpwOoT, LECW
g ueBSdov  dueong Swatumwong (explicit algorithm). Qg Oiéyepon  otnv  Pdon
XPNOLLOTIOW|ONKAY TIPAYHATIKEG KATAYPAPES CELTUKWY EMELCOS(WV AAAd Kat e§LSaVIKELUEVOL
maApol g eda@kng Kivnong (Kuplwg tptywvouetpikol maApol evog KUKAov Kal TTaApol TUTTov

Ricker). Ztnv UEXPL TWPO UEAETN TWV AVWTEPW CUOTNUATWY TpaypatomoiOnKke mAN0o0g



TIOPAUETPIKWY avaAvoewy Kat €€ixOnoav kavovikomounuéva Slaypauuata Tou TAATOUS
TaAdvtwong (ywvia AKVIOROU 6, KOUTTIKY Tapapdp@won u) wg TPog TIG WOLOTNTEG TNG
avwdoung (yewpetpla, W8lomepiodog), Tnv evéootudtnta Tov e5d@oug KaBwg Kat TNV €vtacn
KOl TA XOPAKTNPLOTIKA TNG CEWOUKAG OlEyeponG. EWOKOTEPA yla TOV AKVIOUO AKAUTITNG
KOTAOKELNG O avévdotn OepeAiwon (n mo amAr mePmMTWOoN AKVIOTIKOU GUOTHHATOC)
dla@avnKke OTL ylo EMOPKWG UEYAAEC KOTOOKEUEG N amokplon elvat mpoPAédiun. Xtnv
TEPMTWON LAALOTA EESAVIKEVUEVWY TIAAUKWY SLEYEPTEWY TO TAATOG TNG ywviag Tpogkuhe
UTLO KAVOVIKOTIOUNIEVN LOP®1] HECW OTTAWY EUTEIPIKWY dlAYPAUUATWY. ATtO TO GUVOAO TwV
ATTOTEAECUATWY TTPOEKVYPE OTL TO TAATOG TNG Ywviag AKviopov glvat avdioyo tou vpkopuou
(slenderness) tng Kataokeung, Tng €vtaong Kat Kuplwg tng deomdlovoag TEeEPLOdOL TNG
oelopkng dléyepong. Ot ouvOrikeg Katd T omoleq ta VPnAd emimeda Akviopol odnyolv
TEAIKWG 0€ avatpomr HeAeTAONKav Ole€odikd otnv uExpL Ttwpa €pevva. EWBKTEPQ,
UTLOAOY(OONKE TTAPAUETPIKA 1 EAGXLOTN ATTAULTOUUEVN CELCULKT] ETILTAXVVOT YLO AVATPOT WG

TPOG TNV YEWUETP{O TOL CLOTAUATOG KaL TNV TteP(0d0 TNG SLEyepong.

AvaAvuon TnG CELOUINIG ATTOXPLONG TOV CUCTHUOTOG E801(POUG-IeeA(OV UE TEMEPAOUEV GTOLYELDL:
Y€ auTrV TNV €vOTNTA N AVAALOT TNG OELOUIKAG ATTOKPLONG TOU GUOTHATOS EVWSOVTAL UE TNV
apOuUNTIKN HEBO0SO TwV TEMEPATUEVWY OTOLXE(WVY. [TPOG TOV OKOTIOV AUTAOV XPNOLLOTIOLE(TAL O
YEVIKAG XPNOEWSG KWOKAG Temepaopuévwy otoxelwv ABAQUS (Slabéouog oto EMIM). H
mpooopolwon Tov OepeAiov Kal TOv £8AWOUG TIPAYUATOTOLETAL UE TETPATTAEVPIKA OTOLXE(D
EMMEDNG TTAPAUOPPWONG EVW 1 AVWIOUN TIEPLYPAPETAL ATTAOTIONTIKA He oTolxela dokov. H
amokdAAnon touv BepeAlov amd to €8a@og EMTUYXAVETAL UE XPrion EWBIKWY OTOLKElWY KEVOL
(gap elements) péow €vog e€eAtypuévouv aAydplOuol emaprig dtabéoiuov oto ABAQUS movu
ETUTPETEL TNV PEAALOTIKI TTPOCOUO{WON TNG ALKVIOTIKIG CUUTEPLPOPAS KOUA KAl KOVTA 0T
opla NG avatpomng. H oAokAnpwon twv e§LloWoewy KvNoews yivetal ev-xpovw (Pripa mpog

Briua) péow emavaAnmrikng Stadikaciag oUykAwong (implicit algorithm). Xtig péxpt Twpa



AVOAUCEL( N OUUTEPLPOPA TOU €dAPIKOV VAWKOU BOewpriBnke elte 1Ewdo-eAaoTikl 1

EAQCTOTAQCTIKI] CUUPWVA E TO KpLTrplo actoylag Mohr-Coulomb.

Dépovoa avoTNTa EMIPOVELNWY JeueAiwy AGyw UeYAAnG OELOUMNG POTTHG: H TIPOKATAPKTIKA
SlepEVYNON TNG CELCULKIG CUUTIEPLPOPAS TWY ETLPAVELAKWY BepeAlwy Kovtd otnv actoyia
KOTESEIEE OTL N OPLOKI] POTIY] AVATPOTING EMNPEALETAL APEVOG LUEV ATTO TNV ATTOKOAANGN TOL
OepeA(OV OE TEPUTTWOEL] OXETIKWG UEYAAWY CUVTEAECTWYV AC@AAE(QG EvavTL KATAKOPLPOU
poptiov (FS > 2), awetépou de amd TI( AVATTTUCOOUEVES TTAAOTIKOTIOUOEL, OTO €50QOG
BepeAlwong yla KATAKOPL@A YOPTIOL KOVTA OTO UEYLOTO EMITPEMOUEVO (1 < FS < 2). ATtdppota
NG AAANAET{Spaong TNG YEWHETPIKNG KAt “UALWY” UN-YPAUIKOTNTAG TOV CLUOTANATOG Elval N
HEYLOTOTTONON TNG OPLAKAG POTIAG AVATPOTG Yl KATAKOPUPO OTATIKO opT(0 KOVTIA OTO

LoV TOU PEYLOTOU ETUTPETOUEVOU.

EAaTtnplwto mPOocouoiwue yloa TNV avaAuan tneG AXVIGTINGG TTOXPLONG UTTO U 9ECTWS UEYdAwY
Sountinwy xot eS0PIMWY UETOUUIVACEWY: ZTNV €vOTNTA QUTHY AvATTUXONKE ATAOTTONTIKA
puebodoloyia yl TOV OVAAUTIKO UTOAOYIOHO TWV  KOTAOTATIKWY OXEoEwY dUvaung-
petakivnong oto ovotnua OepeAiov-edd@oug Péow Tov EAATNPLWTOV TTtposouoLwpatog (beam-
on-Winkler-foundation). Avt{Beta pe Tnv €wg Twpa Slabgaiun oty BPALOYpapia TPOTEYYLOTIKN
enilvon Touv TpoPAuUAaTOg TOU TEPLOP((EL TO EVPOG EPUPUOYNG TNG OF TOAU UKPES
LETOAKLYNOELG TNG avwdourg, otnyv mapovoa UeAETN Aapfdvetal uT’ SPLv n AvATTUOCOUEVN -
YEWUETPIKAG QUOEWG- UN-YPAUKOTNTA Tov TtpoPAriuatog (p-6 effects) mov Aaufdvel xwpa o€
peydAeg ywvieq Akviopol Adyw tng amokéAAnong tou OeueAlov. H avwtépa Bewpnon
ETUTPETEL TNV PEAALOTIKY] Baduovdunon tng Suokappiag Tov cvotripatog eddpouc-OepeAiov

Ao TNV TEPLOXT] TWV UKPWY TIAPALOPQWOEWY EWG KOVTA TNV AVATPOTIH.
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Notation

g acceleration of gravity
m structural mass
N =mg vertical (gravitational) load of the foundation
Q horizontal load of the foundation
M overturning moment of the foundation
B width of a strip or rectangular footing
b half-width of a strip or rectangular footing
B half-width of the effective footing

R=\b*+ zcz half-diagonal of a rigid block

J, moment of inertia about a corner point
J, moment of inertia about the footing bottom mid-point
p=+mgR|J, size or frequency parameter

2
3. . . oo
r= [1 - Esm2 00] impact coefficient of restitution

sgn (-) signum function of ( )
t; time of impact
A= ay, / a, ‘dynamic’ amplification of the overturning acceleration

a, =b/h ‘static’ overturning acceleration



PGA

0=0/0,

0 = arctan(b/ h)

0

peak ground acceleration

angle of rocking rotation

dimensionless rocking rotation

amplitude of rocking rotation

critical rocking angle of overturning

uplift critical rocking angle of incipient uplift
p=46 angular velocity of rocking
Uy, horizontal displacement of the footing
w, vertical displacement of the footing
T=pt stretched time
v phase shift
Wg excitation frequency
Q=wy/p frequency ratio
E Young modulus of soil
s, undrained shear strength of soil
N, ultimate vertical load of the foundation (under static conditions)
FS,=N,|N safety factor of the foundation against vertical loading
Y= ( FS, )71 inverse of the safety factor against vertical loading or simpler vertical load factor
M ultimate moment of the foundation

0 angle of rocking rotation at M =M,









Chapter 1: Introduction

Chapter 1:

Introduction

1.1 DESCRIPTION of the PROBLEM

Research on seismic soil-structure interaction (SSI) over the last decades has mostly relied on the
assumption of linear (or at most equivalent-linear) elastic soil behaviour and fully bonded contact
between footing and soil. Seismic design of structure-foundation systems has followed a somewhat
parallel path: the still prevailing ‘capacity design’ philosophy allows substantial plastic deformation in
the superstructure but requires that no significant plastification should be developed below ground

level. With respect to shallow foundations this assumption implies that:

7

< foundation elements (e.g. piles, footings, caissons) must remain structurally elastic (or nearly
elastic)

% bearing capacity soil failure mechanisms must not be mobilised

< sliding at the soil-foundation interface must not take place, while the amount of foundation

uplift must be restricted to about half of the fully-bonded contact area.

However, seismic accelerograms recorded in the last twenty years, especially after the Northridge
1994 and Kobe 1995 earthquakes, have revealed that very substantial ground and spectral acceleration
levels can be experienced in the near-fault zones. Seismic loads transmitted onto shallow foundations
in such cases will most probably induce significant nonlinear inelastic action in the soil and soil-
foundation interface. Three possible types of foundation-soil nonlinearity as sketched in Fig. 1.1

emerge:

7

% sliding at the soil-structure interface

Apostolou, doctoral dissertarion 2011 3



Chapter 1: Introduction

7

% uplifting of the foundation from the supporting soil

o

% Dbearing capacity type of soil failure

Observations of shallow foundations in recent earthquakes confirm the above argument. The most
spectacular examples of strongly nonlinear foundation response which led to bearing capacity and
uplifting failures of buildings took place in the city of Adapazari during the Kocaeli 1999 earthquake
(Gazetas er al., 2003). But such phenomena are not limited to buildings: the Rion-Antirrion cable-
stayed bridge is mentioned as an example of a contemporary monumental bridge, the shallow
foundations of which, despite their colossal 90 m diameter had to be designed allowing for strong
nonlinear response. Hence, sliding, uplifting and partial mobilisation of soil bearing capacity are
expected to occur in order to resist the prescribed high levels of seismic excitation (Pecker &
Teyssandier, 1998; Gazetas, 2001). Offshore platforms are also a type of structures where nonlinear
mechanisms are likely to develop on the soil-foundation system as a result of (a) the large overturning
moments of the environmental loads, and (b) the usually poor subsoil conditions. Under such
circumstances conventional foundation design is inadequate and inefficient, and more rigorous

analytical methods are most often employed.

Sliding at the soil-foundation Foundation uplifting from the Bearing capacity type of
interface supporting soil soil failure

Figure 1.1 ‘Plastic hinges approach’ at soil-foundation interface (Gazetas and Apostolou, 2004).

Finally, for seismically retrofitting structures designed with the small acceleration levels of the past,
the necessity to explicitly consider the occurrence of one or more of the above-mentioned

nonlinearities is often unavoidable. The 1997 NEHRP Guidelines for the Seismic Rehabilitation of

Apostolou, doctoral dissertarion 2011 4



Chapter 1: Introduction

Buildings (FEMA, 1997) first acknowledge that the ductility demands on structures could be reduced
when allowing the ultimate moment capacity of the foundation to be mobilised, particularly for shear
walls. A typical example of concrete frame with a slender shear wall for a retrofitted multi-storey

building is portrayed in Fig. 1.2.

Under such an alternative approach, the task of the geotechnical seismic design lies with the adoption
of a foundation configuration, capable of exploiting the benefits of the nonlinear, softening response

under severe ground shaking, without ‘facilitating’ excessive permanent displacements to develop.

Elevation
7.3m

274m

Foundation plan

—

L=110m 3.0m

Figure 1.2 Typical example of concrete frame with shear wall for a 8-storey building (after NEHRP,
1997).

1.2 OBJECTIVES of the STUDY

The study is focused on the nonlinear effects associated with the response of a shallow foundation

subjected to large overturning moment. Slender structural systems are more vulnerable to develop

Apostolou, doctoral dissertarion 2011 5



Chapter 1: Introduction

high levels of foundation moment even during a moderate seismic shaking and evidently rocking
component of motion is predominant. In the domain of large displacements, nonlinear features of such

a soil-foundation system may be summarised in:

e

A

separation of a footing undergoing rocking oscillations from the supporting soil (‘uplifting’),
and
< mobilisation of bearing capacity type failure surface mechanisms under large cyclic

overturning moments (‘soil failure’).
These fundamental nonlinear effects associated with foundation rocking arise from:

% the negligible tensile capacity of the soil-foundation interface during swaying-rocking motion,

which results in uplifting of the foundation as well as in inadvertently, creating second order
(P -6 ) effects (geometrical nonlinearity — type A),
< the plastification of the supporting soil, especially in the vicinity of the corner points of the

foundation stemming from the concentration of high vertical stresses and amplified by the

cyclic response of the superstructure (material nonlinearity — zype B).
Within this framework the main objectives of the study can be summarised as follows:

(a) To gain insight on the profoundly nonlinear dynamics of rocking on rigid soil. In light of this it
is of great importance to distinguish uplifting from overturning which are identical under

static consideration.

(b) To identify the key parameters affecting the rocking response of a structure on compliant
supporting medium. In case of inelastic soil medium to study the interplay of the two

predescribed sources of nonlinear actions.

(c) To estimate levels of fail-safe response under severe ground excitation.

Apostolou, doctoral dissertarion 2011 6



Chapter 1: Introduction

(d) To establish design criteria for shallow foundations to withstand strong shaking with minor

permanent displacements.

Three elementary slender systems with a strip footing subjected to rocking vibrations can be
employed to distinguish linear from nonlinear SSI either due to type A or B mechanisms, as illustrated

in Fig.1.3:

(a) Rocking without uplift on elastic soil. Tensile capacity along the interface is considered large
enough to prevent uplifting. When overturning moment is imposed to the footing, coupled
swaying-rocking motion initiates due to soil compliance. Foundation is then rotating around a
point which lies along the central vertical axis of the interface (pole of rotation). For a very
slender structure, this pole is fixed on the interface midpoint. The linear response of the

system may be obtained through conventional SSI studies available in literature.

(b) Rocking on rigid soil. In this case soil-foundation interface has no tensile capacity.
Consequently, under large overturning moment, the footing can rotate only around its corner
points (poles of rotation). Once rocking initiates, subsequent uplifting occurs. In slender
systems sliding is prevented. A geometrically-induced, profoundly non linear response

emerges (type A).

(c) Rocking without uplift on inelastic soil. Tensile capacity along the interface is considered large
enough to prevent uplifting. In this way non linear response is attributed exclusively to
inelastic soil behaviour (type B). Compared to the linear system, the pole of rotation now

shifts towards the unloading edge.

It is worthy of note that a strip footing on elastic soil with a tensionless contact interface is also an
example of pure geometric nonlinear SSI. In this case though, nonlinear rocking response is
‘cushioned’ by the deformability of supporting soil. As a result, rocking without uplift occurs at low

levels of the overturning moment whereas at higher levels, the footing uplifts partially from the

Apostolou, doctoral dissertarion 2011 7



Chapter 1: Introduction

supporting soil. Accordingly, rocking response is bounded by the limiting cases of (a) and (b).
Nevertheless, this system will also be examined in detail as it simplifies (for a lightly-loaded footing)

the actual problem of nonlinear SSI in which both geometric and material nonlinearities develop.

(b) rocking and uplift on rigid soil

. yielding zone :;:i

(c) rocking on inelasticsoil

Figure 1.3 Large displacement analysis of rocking behaviour for a slender structural system;
Simplified states of response.

Apostolou, doctoral dissertarion 2011



Chapter 1: Introduction

1.3 OUTLINE of the STUDY

An overview of the fundamental analytical tools to address the SSI effects in a rigorous or simplified
linear formulation is presented in Chapter 2. The most widespread techniques available in the
literature to assess nonlinear phenomena related to inelastic soil behaviour or large structural

displacements are also discussed in the same chapter.

An introduction to study the geometrically nonlinear SSI is attempted in Chapter 3. To this extent,
rocking behaviour of a rigid, block-type or one-storey structure supported on a rigid, horizontally
oscillating base is examined. In the case of a one-storey structure the flexibility of the pier is also
considered. The profound nonlinear aspects of the dynamic rocking response are highlighted under (a)

free vibration, (b) harmonic shaking, (c) earthquake shaking.

In Chapter 4 the compliance of the supporting soil is implemented in the analysis of the rocking
response of shallow foundations. To this end, a series of sophisticated nonlinear finite element analyses
is performed with soil medium described with (a) visco-elastic and (b) inelastic material. In the latter,
nonlinear soil behaviour is described with advanced plasticity models. Hence, nonlinear behaviour of
soil is approached by: (a) the elastic—perfectly plastic model determined by the elastic parameters

E, v and the Mohr-Coulomb failure criterion described with the strength parameters ¢, ¢ and, (b)

the von Mises failure criterion combined with an isotropic and kinematic hardening model in the post-
yielding domain. The latter is most suitable for the analysis of the dynamic behaviour of cohesive soils
under undrained conditions. Monotonic response is calculated with static ‘push-over’ analysis to
extract backbone load-displacement curves. Moreover, time-domain analysis using simple pulses or
earthquake records as bedrock excitation is carried out to elucidate the nonlinear features of the

dynamic response of the soil-foundation system.

In Chapter 5, the afore-discussed nonlinear finite element analysis is focused on the limiting case that
the capacity of the foundation is reached. Interaction curves are produced under static conditions and

compared to the existing solutions of the literature. The analysis is extended in the time-domain by

Apostolou, doctoral dissertarion 2011 9



Chapter 1: Introduction

using both pulse-type time histories and earthquake records. Permanent cumulative displacements are

also calculated in light of a fundamental sensitivity study.

The limitations of conventional Winkler-based modelling under strong overturning moments are
highlighted in Chapter 6. To overcome these drawbacks, a macroscopic modelling of the soil-
foundation system is developed, capable of representing the large-displacement domain of the
response. Analytical equations for the monotonic load-displacement relationship are extracted
incorporating both geometric and material nonlinearities. Such analytical backbone curves may be
implemented in dynamic SSI analysis through the concept of nonlinear macro-element to represent

the near-field soil-foundation system.

The conditions under which uplifting leads to large angles of rotation and eventually to overturning
are investigated in Chapter 7 through rigorous, large displacement approach. The structure is resting
on the surface of either a rigid base or a linearly elastic continuum. Directivity—affected near-fault
ground motions, idealised as Ricker wavelets or trigonometric pulses, are used as excitation. A
profoundly nonlinear rocking behaviour is revealed for both rigid and elastic soil conditions. This
geometrically nonlinear response is further amplified by unfavourable sequences of long—duration

pulses in the excitation.
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Chapter 2:

Overview of linear and nonlinear soil-structure interaction

methods for shallow foundations

2.1 INTRODUCTION

Shallow mat foundations are generally chosen for buildings and bridges on stiff and strong soils. Under
certain circumstances however, surface foundation may be the most suitable solution even when soft
or poor soil conditions are encountered. As an example, for critical offshore facilities deep foundation
is often an impracticable method. Moreover in many regions around the world with soft soils and high
water table (e.g. Adapazari, Turkey) shallow mat foundations may be the only economically feasible

solution.

A schematic of soil-structure interaction problem for a spread footing is depicted in Fig. 2.1. During
earthquake shaking, soil deforms under the influence of the arriving ‘incident’ seismic waves and
‘carries’ dynamically with it the foundation and the supported structure. In turn, the induced motion
of the superstructure generates inertia forces which result in dynamic forces and moments at the
foundation that are subsequently transmitted into the supporting soil. Thus, superstructure-induced
deformations develop in the soil while additional waves emanate from the soil-foundation interface. In
response, foundation and superstructure undergo further dynamic displacements, which generate

further inertial forces and so on (Gazetas and Mylonakis, 1998).
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bending moments due to its different rigidity with respect to the surrounding soil (Fig. 2.2a),
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Chapter 2: Overview of linear and nonlinear SSI methods for shallow foundations

(b) ‘Inertial interaction’, (II) referring to the oscillation of the superstructure generated by the
motion induced at the foundation level which in turn imposes additional dynamic loading to

the foundation and the surrounding soil (Fig. 2.2b).

Before proceeding to the analysis of SSI, a site response analysis must be preceded to calculate the
free-field motion which will be applied as input for the KI analysis. This task requires that the design

motion be known at a specific (‘control’) point, usually taken at the rock-outcrop surface.

For a linear soil-foundation—structure system the mathematical validity of this multistep approach
emerges from the so-called superposition theorem (Whitman, 1972; Kausel and Roesset, 1974; Gazetas
and Mylonakis, 1998) which states that the equation of motion for the overall system in its matrix

formulation,
(M]{ii}+[K]{u}=—[M]-{I}a, [2.1]

can be decoupled in the two following differential equations:
(M, |y } [ K] {wn } = =[M,, |- {T}a, [2.2a]
(M| iy }+ (K] {e } = =[] ({i, } + {1}, ) [2.2b]

where: {u} is the relative displacement vector of points in the soil or the structure with respect to the
top of the ‘rock’, {u;} and {u,,} are respectively the kinematic and the inertial relative
displacements, {I } is the unit vector, [K ] is the stiffness matrix of the system, [M } is the mass matrix
of the system, [Mso] is the mass matrix assuming that only the soil and the foundation have mass (i.e.
the mass of the superstructure is made zero), and [Mst} is the mass matrix assuming that there is mass

only in the superstructure (i.e. the mass of foundation and soil are made zero). By definition it is

[M]=[M,, ] +[M,] and {u}={uy, } +{u; }
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For computational convenience, analysis of the inertial interaction described with Eq. 2.2b is further

subdivided into two consecutive independent analysis steps, as follows (Kausel and Roesset, 1974):

(bl) Computation of the dynamic foundation impedances (springs and dashpots) associated with

the swaying and rocking motion of the foundation (for shallow foundations cross-swaying-

rocking terms are usually neglected) as shown in Fig. 2.2b1; and

(b2) Analysis of the dynamic response of the superstructure supported on the springs and

dashpots of step (bl), subjected to the kinematic foundation inpur motion of step (a) (Fig.

2.2b2).

(bl) Estimation of stiffness matrix

Seismic
excitation

RN A
. RO Vs
S RN
O—0 RN
A
2y Ao
B
8 § i
S S e e
<3
B 5
& &

m; o— ak([)

m; . ’ ak(t)

(b2)

(b) Inertial interaction

(a) Kinematic interaction

Figure 2.2 The geometry of SSI problem; decomposition into kinematic and inertial response (Kausel

et al., 1976).

14

Apostolou, doctoral dissertarion 2011



Chapter 2: Overview of linear and nonlinear SSI methods for shallow foundations

Given that the analysis in each individual step is performed rigorously, the superposition theorem
provides the exact solution of the linear problem. In addition, it can be a reasonable approximation in

cases of moderately—nonlinear soil behaviour (Gazetas and Mylonakis, 1998).

The conventional approach to foundation design is based on such a linear, frequency-domain SSI
analysis, to derive dynamic forces and moments transmitted onto the foundation along with
considerations for inelastic structural response (e.g. by reducing the moments in columns through the

behaviour ‘ductility’ factor ¢ ). Factors of safety against sliding and exceedance of ultimate capacity,

are introduced in the design, in a way similar to the traditional static design. The foundations are then
designed in such a way that these transmitted horizontal forces and overturning moments, increased

by ‘overstrength’ factors, would not induce sliding or bearing capacity failure.

The relative importance of the kinematic and inertial effects on the structural response depends on the
foundation characteristics and the nature of the incoming wave field (Pecker and Pender, 2000). In
particular, for structural systems with a surface or an embedded at a shallow depth foundation, the

kinematic effect on the structural response is often small and could be neglected.

An important step in terms of inertial interaction analysis is the determination of the dynamic
impedance of an ‘associated’ rigid but massless foundation subjected to harmonic loading of
frequency, w. This is defined as the ratio between the steady-state force (moment) and the resulting
displacement (rotation) at the base of the foundation. Since dynamic force and displacement are
generally out of phase, any dynamic displacement can be resolved into two components: one in phase
and one 90° out of phase with the imposed harmonic load. Impedances may therefore be written in

complex notation:

K =K, +iK, [2.3]

in which, K, and K, are the dynamic impedance functions.

Apostolou, doctoral dissertation 2011 15



Chapter 2: Overview of linear and nonlinear SSI methods for shallow foundations

In his seminal work (1936), Reissner motivated by Lamb’s earlier studies on the dynamic Boussinesq
problem (1904) demonstrated theoretically that a vertically loaded circular foundation vibrating on a
halfspace could be represented with 1-dof visco-elastic oscillator. By comparing his analytical results
from the halfspace theory with those from the lumped-mass system he showed that the equivalent
lumped parameters should be frequency dependent. In this way he established the displacement

functions, f,(w) and fz(w), to express the vertical displacement u, by:

Y Py exp(iwt)

=g i) [2.4]

in which, F; is the amplitude of the total force applied to the circular contact area, G is the shear

modulus of the halfspace, and R is the radius of the circular contact area. According to Reissner’s
findings, the dynamic impedance components of Eq. 2.3 are functions of the vibrational frequency w

as well. In addition, soil visco-elastic parameters (G, v, and p) should also be included in these

components. Hsieh (1962) showed that in analogy with the 1-dof oscillator, the real part in Eq. 2.3
represents the stiffness and inertia of the supporting soil whereas the imaginary part describes the
absorption of energy within the soil medium through radiation damping. By a reorganisation of
dynamical equilibrium equation of the lumped system and in combination with Reissner’s equation

(Eq. 2.4) the complex dynamic impedance of steady-state vibration can be written:

H=K-muw*+iwC [2.5a]

in which, K:Gszi2 and C=—£§2ﬁz
F+F5 w f+h

[2.5b]

The parameters K and C in Eq. 2.5b are the familiar spring and damping terms respectively, of the
equivalent lumped system, both functions of the frequency of vibration. Lysmer (1965) uncovered

that when multiplying the displacement function f=f+:f, by a factor 4/ (l—u), a new

displacement function F' = F +iF, is obtained which is essentially independent of v . By adopting
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. ) wb . .
the dimensionless frequency factor , a, :7’ he was able to derive charts of F, and F, as functions
s

solely determined by a, . This discovery allowed Lysmer to provide values for the lumped parameters

. . - : : . 1— .
K and C'. By introducing a modified dimensionless mass ratio, B, = 4V%, for the vertical
p

vibration of the rigid circular footing, and based on Reissner’s expression for the displacement

amplitude, A , Lysmer developed normalised response curves through the magnification factor

M= 4G—RAZ for several values of B, . After studying the variations of spring and dashpot factors

(1 — 1/) @
with frequency (ao), as obtained from the elastic halfspace theory, he further noted that constant

values of these quantities could be used. Hence, he chose the spring constant equal to the static value

[k,U:4GR/(1—1/)] and fitted the damping term for the range (0<a,<1) to be

c, =3.4R*\/Gp / (l—y). According to this engineering approximation (often called ‘Lysmer’s

Analog’), the steady-state response of the footing can be computed through the equation of motion of
the equivalent lumped system:
3.4R*\G
mii, + 2o NGPp o AGR g [2.6]
: 1-v ’ 1-v

Richart and Whitman (1967) extended Lysmer’s Analog by demonstrating that all modes of vibration
can be studied by means of visco-elastic lumped systems having properly selected frequency-
independent parameters. A remarkable agreement is revealed from the comparison between the exact

halfspace and the approximated 1-dof response, as illustrated in the charts of Fig. 2.3 for the different

modes of vibration.

An alternative way of Eq. 2.5a is derived by separating the static from the dynamic component and

expressing stiffness and damping terms as a function of q :
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H =K -{k(ag)+i-a5-c(ay)} [2.7]

in which, K is the static stiffness, irrelative to the vibration frequency, k(a,) and c(a,) are

respectively, dynamic stiffness and radiation dashpot coefficients, both frequency dependent.

Mlngruificatiion Faiztor, b =

Ml miFiaiin Fielor, M,

|= Exact Solutign
=== Anolog Solution

20—

o

w

Magnification Foctor, M,

at)

Figure 2.3 Comparison between the exact halfspace and the analog 1-dof dynamic response of a rigid
circular footing, for the different modes of vibration (after Richart ez al., 1970).

Dynamic impedance functions (‘springs’ and ‘dashpots’) may be obtained with various computational
methods which can be grouped into four categories: (a) analytical and semi-analytical methods that can
handle multi-layered soil deposits and rectangular surface foundations (e.g. Gazetas and Roesset,
1976), (b) dynamic finite element methods that can treat any type of soil profile or foundation geometry
(even three- dimensional) provided that powerful computational resources are available, (c) combined
analytical-numerical methods which take advantage of the other two methods (e.g. the boundary

element method), and (d) approximate techniques that simplify the physics of the problem and can
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provide engineering solutions to some very complicated situations (among others Meek and Veletsos,

1973; Wolf, 1985, 1988). There is a variety of ready-to-use solutions for dynamic impedance functions

available in the literature covering a wide range of idealised soil profiles and foundation geometries.

For example, dynamic spring and dashpot coefficients for arbitrarily shaped and strip footings on

homogeneous halfspace can be obtained in the form of algebraic formulas and charts illustrated in

Table 2.1 and Fig. 2.4 respectively.

Table 2.1 Dynamic stiffnesses and dashpot coefficients for arbitrarily shaped foundations on the
surface of a homogeneous halfspace (Gazetas, 1991).

Dynamic stiffnesses K™ = K - k(a,)

Static stiffness K

Radiation dashpot
\';?k?ri?i;: General shape Dynamic stiffness coefficient C
(foundation-soil contact surface is of Strip coefficient & (General (General shapes)
area A, = x4/’ and has a shape; 0<a,<2)"
(21— )
circumscribed rectangle 2! by 2b;
I>b)
z Cy=(0V10dy) &
. _2GI 075 «_ K, 073G k,=Fk [f,u,ao] is I
Vertical, z K, = 171/[0.73+1.54x ] Ky="r=—— v Z, :ZW[Z”’;“OJ
plotted in Graph a
is plotted in Graph ¢
/ Ch,y - (pVLaAb>' oy
. K B 1 )
ey || |, Koo | hesnulpals |
atera > - > — - 7
( ) v 2 2-v plotted in Graph b Py p?
is plotted in Graph d
Swaying, x _g 02 _b B, =1 C, .= pVA
(ongitudinal) | Snx = Ky =575 -, 917 - o = he = PVsy
Coy = (pVLajbx)'Erx
0.25 2
Rocking, G ors( o) | g _Ku  _7Gh o < (L.
around x | v T {1p) Tk [b 2AFOST] ] BT Ty e =120-200, x>
is plotted in Graphs e
and f
k., =1-10.30q,, .
v <0.45 Cry = (PViaTyy )
i 0.15 .
Rocking, K, = G 7, 3[£] _ s (1
around y (1 — 1/) b kry ~1-0.25q, [Z] s Cry = Cry ;“lo
v ~0.50 is plotted in Graph g

* for the strip footing case is equivalent to a rectangular with /6 =20

+ a,=wb/V
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Figure 2.4 Graphs accompanying Table 2.1 for the dynamic stiffness and radiation dashpot
coefficients (Gazetas, 1991; reprinted in Mylonakis ez al., 2006).

For the type of structural systems examined in this study (e.g. shear walls and bridge piers) the
dimensionless frequency factor ranges over values less than 0.5. As derived from the graphs of Fig.
2.4, for such low levels of q,, the response is marginally affected by the dynamic stiffnesses
coefficients (k, =1, a = h,v,r ). Static stiffnesses coefficients such those presented in Table 2.1 may be
adequate to represent the stiffness of the elastic supporting medium. In addition, rocking vibration
(and consequently the overall response of a slender structure) in the lateral (weak) direction is

practically undamped as ¢, = 0. Significant damping is predicted for the translational modes of

response when q, < 0.5, and particularly for strip footings.
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2.2.1 Simplified procedures

As described above, within the limits of a linear formulation, the SSI effects can be considered as a
superposition of the kinematic and the inertial components. For simplicity, in case of a shallow
foundation the kinematic component can be neglected without loss of accuracy. The effect of the
inertial soil-structure interaction on the dynamic response of the structure may be summarised in an

increase in the natural period and a change (usually an increase) of the effective damping of the fixed-

base system. The increase in the natural period, 7}, = 27\/m/k , of the fixed-base system is attributed

to soil flexibility under swaying and rocking motion and can be quantified according to Dunkerley’s

rule (Dunkerley, 1894; Jeffcott, 1918):
T=\T5 +T} + 1’ [2.8]

in which, 7, =27 m/K, and T, =2m,/J, /K, are respectively the natural period in the swaying
and rocking mode whereas K, and K are the static stiffnesses of the foundation in these modes. The

mass moment of inertia J, is calculated with reference to the midpoint of the foundation baseline. In

addition the change of the effective damping can be evaluated approximately, through the following

expression:

- 50

:i+ 3
§=¢ 7 [2.9a]

in which, ¢, is the effective damping ratio of the fixed-based system and ¢, is the damping ratio of the

foundation associated to radiation damping within soil medium (frequency dependent). Wolf (1985)

proposed an alternative way for evaluating effective damping directly from ¢, £, , namely the

foundation damping components in the swaying and rocking mode respectively:
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TP &+ T2 6+ T2 €,
Tz

£= [2.9b]
A 1-dof, fixed-base system with equivalent lumped parameters from Eqs 2.8 and 2.9 can be utilised
instead of the actual coupled system to assess the effects of SSI through a simplified response spectrum

analysis. In so doing, response spectra of the equivalent fixed-base system in terms of the normalised

shear force are computed for different values of the relative flexibility parameter, ¢, =h/V, T,, in the

graphs of Fig. 2.5 (dotted lines), as derived by Veletsos and Meek (1974). In the same graphs the

shear force of the 3-dof, compliant-base system is also plotted for comparison (solid lines).
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Figure 2.5 Response spectra of the normalised shear force computed with the illustrated structural
system on compliant soil (solid lines) and the equivalent 1-dof fixed-base system (Veletsos and Meek,
1974, reprinted in FEMA 369 document, 2000).

The structural model proposed by Veletsos and Meek (1974) to address the SSI effects, comprises two

masses at the deck and the foundation mat. When the foundation is relatively small compared to the
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mass of the superstructure, a one-storey structure with a mass m at height 4 and mass moment of

inertia J, =J,, + mh? can be employed. In this case Eq. 2.8 becomes:

cm

J h?
T=2r |y den TN T [2.10a]
k K’m Kh
and for a concentrated mass m, at point C (J,_,, =0):
hZ
T=2n 2 M0 T [2.10b]
kK, K,

This simplified, one-storey coupled system as illustrated in Fig. 2.6, will be employed in this study to

examine the nonlinear features of SSI.

uH (t) ustr (t)

m, J R m—
k, c h
T b=B/2
WW ] L
72 T
\
o X, (1)
(a) (b)

Figure 2.6 Kinematics of the simplified one-storey coupled system; (a) at rest, (b) displaced due to a
base acceleration 7 (¢).

Interplay of structural and soil compliance
Quite often, swaying vibration is not a key parameter in inertial interaction due to the large lateral

stiffness of the soil-foundation system especially for embedded foundations. Soil compliance in the
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rocking mode however, may affect significantly the dynamic response. This is more evident in slender
systems imposing large overturning moments to the foundation. In addition, for slender but quite
flexible structures, inertia loading results to flexural vibrations of the superstructure with marginal
rocking motion. Consequently, it is of great importance to predict the predominant mode of response
when designing for slender structural systems. An interesting way to outline the interplay between
structural and soil flexibility on the dynamic response is through the pattern of a bridge pier. It is a
typical example of highway bridge piers constructed in Greece, however the pile-foundation which is
usually adopted in design practice has been substituted by a rectangular spread footing of 9 m in
width. A vertical load of 1000t representing the deck mass is applied at 11 m above the ground

surface (slenderness ratio 11/4.5 = 2.44 ). As depicted in Fig. 2.6, the total horizontal displacement of

the lumped mass is the sum of the horizontal components of the three vibration modes: the horizontal
and rocking oscillation of the footing (swaying and rocking respectively), and the relative

displacement of the mass centre to the pier base, due to flexural deformations of the pier (story drift):

U=y + Uy + Uy, [2.11]

Within the context of a linear SSI approach, the rotation pole is constantly located at the footing
midpoint, hence u, =h6. A quantitative estimate of the participation of rocking on the overall

response of the bridge pier can be given by the following period ratio as derived by Dunkerley’s

formula:

-1
14 En K [2.12]
W’k WK,

The rocking period ratio of the employed bridge pier is calculated with Eq. 2.12 and presented in
Table 2.2 for different types of the pier cross section. Accordingly, the period in each independent
mode of response can also be calculated with Eq. 2.8. Both soft and stiff soil conditions are considered

(soil Young modulus of 20 MPa and 100 MPa respectively) to elucidate the effect of the flexural
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rigidity on the fundamental natural period of the structure. While the diameter of d, =2 m seems to
be a lower bound in the design practice of bridge piers, for the sake of analysis even lower values d,

are implemented. Moreover, the rocking period ratio is plotted in the graphs of Fig 2.7 as a function

of the slenderness for three different pier sections: (a) a cyclic section of diameter d,=2m, (b) a
cyclic section of diameter d,=3 m, and (c) a rectangular section of width d,=1m in the

longitudinal direction, and d, = 2b in the transverse (rocking) direction.

Table 2.2 The period of the structural system calculated for two different soil conditions.

Pier section dp (m) Tm (sec) Th (sec) To (s€ec) T (sec)
Esoi| =20 MPa
Cyclic 1 1.17 0.47 3.46 3.68
Cyclic 15 1.17 0.47 1.53 1.98
Cyclic 2 1.17 0.47 0.86 1.53
Cyclic 3 1.17 0.47 0.38 1.32
Rectangular 10 1.17 0.47 0.10 1.26
Esoil = 100 MPa
Cyclic 1 0.51 0.21 3.46 3.50
Cyclic 15 0.51 0.21 1.53 1.63
Cyclic 2 0.51 0.21 0.86 1.02
Cyclic 3 0.51 0.21 0.38 0.67
Rectangular 10 0.51 0.21 0.10 0.56

In the limiting case of d, =1 m the flexural mode apparently accompanied with large displacement

demands, dominates the response. On the other hand, in the structural system with a rectangular pier
section, rocking is the predominant mode of response even for relatively low values of slenderness
ratio and regardless soil conditions. Similar behaviour is expected for the stiff cyclic pier section of

d, =3 m with an exception of a very slender structure on stiff soil. A more complicated response is

revealed for the 2 m width pier due to its increased flexibility. Hence, depending on its slenderness

and soil deformability, the structural system can respond either as a rocking or as a flexural oscillator.
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Figure 2.7 The ratio of the rocking period to the effective period of the system as a function of the
slenderness of the structure.

2.3 NONLINEAR LINEAR SOIL-STRUCTURE INTERACTION

Decomposition of the SSI problem into the afore-described tasks (site response analysis, kinematic
interaction, inertial interaction) is a convenient tool for calculating the dynamic response of the
structural system. Nevertheless, it does not necessarily entail that these steps must be performed
separately. The advent of powerful computational machines nowadays, makes feasible a one-step
numerical analysis of SSI (e.g. through the finite element method). Such a rigorous, time-domain
analysis however, should also incorporate complex three- dimensional geometry, a detailed
representation of soil profile, and most importantly sophisticated nonlinear algorithms to describe
inelastic soil behaviour (material nonlinearity). The latter together with nonlinearities arising from

large structural displacements (geometrical nonlinearities) comprise the nonlinear SSI effects.

2.3.1 Material nonlinearity

Soil response under large deformations is generally nonlinear, hysteretic and irreversible. Such a
nonlinear behaviour is more pronounced in the near field (i.e. the soil medium in the vicinity of the

structural foundation) where considerable concentration of stresses transmitted by the structural
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system may take place. On the other hand, a far field domain may also be determined at a sufficient
distance from the foundation where inelastic soil action is only governed by the seismic waves
propagation (Pecker and Pender, 2000). Nonlinear, inelastic behaviour of soil and the structural

elements is usually addressed in the SSI literature as material nonlinearities.

In early SSI studies only a little work had been done to incorporate soil nonlinearities. In the
pioneering work of Idriss and Seed (1968) nonlinear soil behaviour was approached by the equivalent
linear method (ELM). According to this iterative procedure, soil visco-elastic characteristics (i.e. shear
stiffness and damping ratio) are modified after each iteration of a linear, wave propagation analysis
until they reach values which are consistent with the calculated strains. The equivalent linear method
is a valid engineering approximation for calculating moderately nonlinear soil response induced by the
propagating seismic waves in the free field. It does not however address the need for predicting
inelastic soil strains developed in the near field primarily due to foundation vibration. These additional
plastic strains may be very significant in particular for slender structural systems which can generate

large overturning moments even under moderate ground shaking.

Considerable attention has been given since the late 1960’s to the development of constitutive models
to describe nonlinear soil characteristics. Among the numerous soil models developed, elasto- (visco)-
plastic models appear to be most promising. It may be argued that plastic models based on isotropic
plastic hardening rules are adequate for situations in which only loading (and moderately unloading)
occurs, however it is unlikely that such restrictions can be met at every point in general boundary
value problems. In order to account for hysteretic effects, more elaborate plastic models based on a
combination of isotropic (Hill, 1950) and kinematic (Prager, 1959) plastic hardening rules have been
proposed. An important theoretical development in plasticity has been made simultaneously by Mroz,
1967 and Iwan, 1967. They showed how continuous yielding could be represented by a set of nested
yield surfaces in stress space. The notion, in combination with kinematic and isotropic
hardening/softening plastic rules, can give rise to a material representation of considerable power and

flexibility. The concept has been adopted and enlarged by Prevost (1977, 1978 and 1985) and Mroz
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(1980). Both theories suffer inherent limitations namely storage requirements for the multi-surface
theory, a priori selection of an evolution law and arbitrariness in the mapping rule for the bounding

surface theory.

2.3.2 Geometric nonlinearity

In terms of a rigorous SSI analysis procedure geometric nonlinearity can be generated either at the

structural centre of mass when undergoing a large lateral movement (P—é effect) or at the soil-

foundation interface. Geometrically nonlinear behaviour of the foundation may arise when a large
horizontal force (sliding) or overturning moment (uplift) is applied. The latter case is associated with
loss of contact (partial or total) between the structural foundation and the supporting soil because of
the inability of soil to sustain tensile stress. Uplift onset results to a soil-foundation interface of
transient geometry and imposes the moment-rotation relationship to a softening behaviour even under

elastic soil conditions.

For structure with a shallow foundation on a horizontally vibrating soil two states of response can be
distinguished: (a) the full-contact phase and (b) the uplifting phase. In the former case the structure
whether remains at rest (rigid superstructure) or exhibits flexural oscillations (deformable
superstructure). The transition from the full-contact to the uplifting case is determined by an uplifting
criterion. For rigid soil conditions uplifting occurs when the overturning moment reaches the ultimate

moment capacity of the foundation.

The important effects of foundation uplift on the dynamic response of structures have been
demonstrated in early analytical and experimental studies of the simplified ‘rigid soil’ model (Meek,
1975; Huckelbridge and Clough, 1978; Chopra and Yim, 1985). It has been found that uplifting
modifies the dynamics of the structure in a way qualitatively similar with the sliding isolation which
cuts-off accelerations larger than a critical value. Later studies incorporated soil compliance and

material nonlinearities to extract similar conclusions for the uplifting response (Yim and Chopra,
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1984; Crémer et al., 2002; Gazetas and Apostolou, 2004; Gajan and Kutter, 2008; Anastasopoulos et
al., 2008). But while sliding systems survive strong seismic forces with (large) permanent
displacements, for an uplifting structure the ‘penalty’ to pay is large rotations (permanent for soils of

poor strength) and occasional overturning.

2.3.3 Recent developments in nonlinear SSI

Nonlinear numerical modelling of the entire soil-foundation-structure system through realistic
representation of the exact geometry and sophisticated tools for inelastic soil behaviour has nowadays
become a challenging task given the computational resources and capabilities available nowadays.
However such a sophisticated numerical analysis (e.g. with the finite element method) requires also
extensive discretisation of soil medium, which may not be feasible to perform in common geotechnical

design practice.

An engineering approximation to efficiently evaluate the nonlinear effects of inertial interaction in the
domain of large displacements can be obtained if the supporting medium is substructured into two
subdomains (Pecker and Pender, 2000): (a) a far field domain which extends a sufficient distance from
the foundation, in which soil nonlinearities only governed by the propagation of seismic waves, and
(b) a mear field domain, in the vicinity of foundation where both geometrical and material
nonlinearities associated to SSI are important. The exact boundary between these two domains does
not need to be precisely determined. The far field domain is approached by linear or equivalent linear
impedance function in which only radiation damping (viscous type) is implemented. On the other
hand, a macroscopic approach is adopted for the near field domain which is represented with a
nonlinear macro-element of six degrees of freedom in the general case (three translational and three
rotational). Damping now arises from inelastic soil behaviour underneath the foundation and obeys

Masing’s law. A schematic of the macroscopic modelling is illustrated in Fig. 2.8.
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A dynamic macro-element based on this macroscopic consideration was developed by Cremer er al.,
2001 for shallow foundation on cohesive soil. Later studies on macro-element modelling have been
presented by Gajan and Kutter, 2009; Chatzigogos et al., 2009; Figini ez al., 2011. A detailed review of

the available macro-element models in literature will be presented in Chapter 5.

L

Figure 2.8 Conceptual subdomains for dynamic soil-structure analyses (Pecker and Pender, 2000).

2.4  SEISMIC CODE PROVISIONS

According to almost every seismic building code, the structural response and consequently the
foundation loads are computed considering fixed base conditions at the support and therefore
neglecting soil-structure interaction. Inherent to this approach is the belief that the effect of SSI is
always towards reducing seismic loads (Pecker and Pender, 2000). Admittedly, the increase in the
damping ratio due to SSI explicitly reduces the seismic forces developed to the superstructure and the
foundation. However, the most important effect of SSI which is the increase in the natural period of
the structural system does not necessarily lead towards smaller spectral accelerations. Examples of
detrimental effect of the increased natural period in cases of unusually soft soil profiles have been

recently demonstrated in literature (e.g. Gazetas and Mylonakis, 1998).
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The ambiguous role of SSI has been recognised in some modern codes. According to Eurocode 8
(prEN 1998-5:1999) provisions, ‘the effects of dynamic soil-structure interaction shall be taken into
account in the case of: (a) structures where P —§ effects play a significant role; (b) structures with
massive or deep seated foundations; (c) slender tall structures; (d) structures supported on very soft

soils, with average shear velocity less than 100 m/s’.

Although not widely used in practice, engineering guidelines exist in the United States for simple

characterisation of SSI effects.

One set of guidelines is intended for use with force-based characterisation of seismic design, as is
commonly used for new building construction. These procedures were introduced by the Applied
Technology Council document (ATC-3-06, 1978, 1984) and an updated version has recently been
published in the NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other
Structures (BSSC, 2004). According to these procedures the fixed-base building period and damping
ratio are modified to account for the effects of foundation compliance. The derived flexible-base
vibration properties are used with the site design response spectrum to obtain the base shear for
seismic design. The foundation-soil characterisation inherent to these procedures consists of
foundation springs for translational and rotational degrees of freedom that depend on a strain-
compatible soil shear modulus. The soil behaviour is modelled as visco-elastic with no limiting shear

stress.

The second set of guidelines is intended for use with nonlinear static methods for structural
performance assessment, as commonly used for building retrofit design (ATC-40, 1994; BSSC, 1997).
In this approach, the structural performance is characterised by a nonlinear static pushover curve.
The shape of the pushover curve, as well as the distribution of member shears and moments, can be
sensitive to foundation modelling. Accordingly, the afore mentioned documents provide
recommendations for modelling the soil-foundation system as elastic-perfectly-plastic elements

positioned at each footing. The elastic portion is based on the real part of well-known impedance
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functions for foundation lateral translation, vertical translation, and rocking. The plastic portion of the
foundation springs is based on limiting soil pressures associated with bearing capacity failure (in the
vertical direction) and sliding/passive failure (in the lateral direction). It has to be made clear however,
that these procedures are intended for relatively simply calculations of base shear or pushover curves,
and are not immediately amenable for use in the relatively sophisticated nonlinear response history
analyses that are becoming increasingly common for major projects. In addition, while the afore-
discussed procedures implicitly account for soil nonlinearity through the use of an equivalent-linear
shear modulus, such springs inadequately represent the nonlinear response of foundations, which may
include relatively complex gapping and energy-dissipation mechanisms. Accordingly, there is a
recognised need in common geotechnical practice for the development of relatively sophisticated
engineering tools for characterising the nonlinear, time-dependent behaviour of the foundation-soil

interface.
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Chapter 3:

Dynamics of rocking structures on rigid soil; an introduction

to geometric nonlinearity

3.1  INTRODUCTION

The most vivid illustration of geometrically nonlinear rocking behaviour stems from the paradigm of a
slender structure on rigid (undeformable) soil. For the analysis purposes of such a system two
different states of response can be distinguished: (a) the full-contact phase and (b) the uplift phase. In
the full-contact (linear) phase the structure remains at a relative rest (rigid body) or undergoes
flexural oscillations (deformable body). On the other hand, in the uplifting (nonlinear) phase solely
rocking with total uplift may take place with the edges of the foundation being alternately the pivot
points. Uplifting and correspondingly geometrically nonlinear behaviour is initiated when the
overturning moment reaches the gravitational moment which is equivalent to the ultimate moment
capacity of the foundation. From this point on the moment-rotation relationship follows a declining
branch due to the gradually amplifying P —¢ effects. This reduction of the foundation moment is
totally reversible though, when the direction of rotation changes. Rocking vibration on rigid soil is
damped as a part of the mechanical energy dissipates during each impact. Consequently, after
transient motion has expired, the rocking body eventually settles back at its initial position due to
gravity. Clearly, the only likely failure mode of such a structural system is overturning about a corner
point. The more slender the structure the more vulnerable to toppling is. While nonlinear dynamic
features of rocking on rigid soil are investigated in depth in this Chapter, overturning response will be

discussed separately in Chapter 7.
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Two simplified structural systems on rigid soil undergoing rocking motion are involved in this

Chapter:

0

«» arigid block-type structure, and

@

+ arigid or flexible one-storey structure with a foundation mat

The driving equations of motion of both systems are extracted using a large-displacement approach.
To this end, in the case of a flexible oscillator a Lagrange formulation is adopted. The dynamic
response is then calculated by a direct (explicit) integration of the equations of motion during each
time increment. A fundamental parametric study of the uplifting response is presented next, in terms

of the flexural and rocking displacements.

3.2 ROCKING of a RIGID STRUCTURE

3.2.1 Statement of the problem — Equations of motion

Consider a rigid rectangular block simply supported on rigid soil which is subjected to horizontal
shaking. The coefficient of friction is adequately large so that sliding is prevented. For small levels of

the ground acceleration a, =a,(¢) (in units of g) the moment of the inertia force with reference to
the foundation midpoint (ma,h ) does not exceed the restoring, gravitational moment (mgb ). In this
way, the block remains attached to, and follows the oscillation of the ground. As soon as the ultimate
moment mgb is reached, uplifting initiates setting the block on rocking motion. The system

configuration together with the acting forces and moments are illustrated in Fig. 3.1.

George Housner (1963) first investigated in depth the rocking behaviour of block-type structures on
rigid soil subjected to earthquake shaking. Using an energy approach he uncovered the role of the
excitation frequency and of the block size on the overturning potential. Ishiyama (1982) determined

the possible modes of response for a rigid body on rigid floor and established transition criteria from
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one to another. Makris and his co-workers (1998, 1999) focused on the transient rocking response of
rigid blocks under near-source ground shaking idealised as trigonometric pulses, and derived the

acceleration amplitude needed for overturning.

J,d26/dt?

-
T
S
og

2b x

Figure 3.1 The rocking block on a rigid oscillating base: configuration of the system and acting forces
and moments.

Under pseudo-static conditions, once uplifting is initiated about the corner point, the body will
unavoidably overturn. In other words, the critical acceleration for uplifting is identical to the
minimum required to statically overturn the block. It is given by the so called West formula (Milne and

Omori, 1893); in units of g¢:

=a, = [3.1]

a’over,st c

On the contrary, under dynamic base excitation reaching a, simply initiates rocking motion. In this
case a, is the maximum acceleration that can be developed at the mass centre of the block. The
moment of the foundation is therefore bounded by a, to an ultimate value of ma.h= Nb where
N =myg is the central, vertical (gravitational) load. This peak value is reached instantaneously as soon

as uplift initiates (# =0) and from then on the moment is gradually decreasing due to P —¢ effects.
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Finally, the moment reduces to zero at a rotational angle of ¢ =6, where tanf, =b/h is the aspect

ratio (or the half width/half height ratio). The moment-rotation response of the foundation from the

uplift onset to overturning is portrayed in Fig. 3.2.

1.2 1

0.8 ¢

0.6 ¢

M | Nb

0.4 ¢

0.2 4

O @ T T T T ~ 1
0 0.2 0.4 0.6 0.8 1 1.2

61/6,

Figure 3.2 Moment-rotation relationship of the rocking block.

The dynamic response is determined by the rocking equation of motion:
0(t) = —p? {sin[@c sgnd(t) — ()] +a, () cos 6, sgn (t) — e(t)]} [3.2]

where: 0(t)<0 (or >0) denotes the angle of rotation about O (or, respectively, about O);
0. =arctan(b/h) is the angle shown in Fig. 3.1; and p=./mgR/J, is a characteristic frequency

parameter of the block; R is half the diagonal of the block. The frequency parameter is a measure of

the block size in a sense that large values of p correspond to relatively small structures and vice versa.
For a solid rectangular block the moment of inertia about its pivot point is J, =(4/3) mR* and
therefore p =./3¢9/4R . The vertical component of base acceleration is neglected, as its effect has been

found to be negligible on rocking. It is clear that whether the block will safely undergo rocking or
eventually overturn depends on its size and slenderness as well as on the nature and intensity of

ground shaking. The conditions for dynamic overturning of a rigid block are discussed in detail in
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Chapter 7. The effects of the vertical acceleration of the base on the overturning response will be also

discussed in that chapter.

When a rigid body is rocking back and forth about its pivot points, it impacts the ground and loses a

part of its Kinetic energy, even after a purely elastic impact. Its angular velocity right after the impact

(at time ¢, ) is a fraction of that just prior to impact (at time ¢, ):
0*(tH=ré*t) [3.3]

where r is known in the literature as the coefficient of restitution. An upper bound of r can be obtained
by applying conservation of the angular momentum with respect to the pivot point (Housner, 1963;

Makris & Black, 2001):

2
r= [1 —@sin2 0, [3.4a]

or for a rectangular block,
3 2
r= [l—Esin2 Oc] [3.4b]

From this relationship it is shown that the coefficient of restitution is dependent only upon the

slenderness of the structure. For example, for a five-story building with an angle 6, =0.4rad it
is 7=0.60. In general lines slender bodies tend to preserve their angular velocity after impact
whereas others with a lower mass centre undergo a more ‘dissipative’ impact. In the limiting case
where 6, — 0.95rad (54°), the coefficient of restitution reduces down to zero even under elastic

impact condition. A sophisticated impact model has been recently presented based on Dirac-delta type
forces (Prieto et al., 2004). It results into a smooth (exponential) reduction of the velocity during

impact, however such an in-depth analysis of impact mechanism is beyond the scope of this study.
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Typical theoretical values of r are presented in Table 3.1.

Table 3.1 Dynamic parameters for typical rocking systems.

Max.
Slenderness Half- Frequency . .
. . coefficient of
Rocking system angle, diagonal, parameter, restitution
6.: degrees h: m p: rad/sec v ’
Precarious rocks 20 -30 05-1 3-4 04-0.7
Tombstones 9 0.6 3.4 0.93
Electrical 29 25 17 0.62
transformers
Five-story 25-30 8-10 0.8-1 0.4 —0.55
building

These values have been calculated with Eq. 3.4 considering elastic impact conditions. In reality, some
additional energy is lost, dependent on the nature of the materials at the impact surface. Experimental
values of r have been recently presented by Uematsu ez al. (2000) from shaking table tests as shown
in Table 3.2. In the same table, measured values of the static and kinematic coefficient of friction are
also presented (Ishiyama ez al., 1982 and Uematsu et al., 2000). In the analytical study of this chapter

though, it is presumed that the static coefficient of friction is large enough to prevent sliding.

Table 3.2 Experimental values of r from shake-table tests (Ishiyama ez al., 1982 and Uematsu et al.,
2000).

Static Kinematic Coefficient of
Base Surface Specimen coefficient of coefficient of o
L o restitution
friction friction
wood (oak) 0.29 0.44 0.52
Concrete casing
wood (fir) 0.30 0.11 0.49
wood (oak) 0.35 0.45 0.49
Carpet
wood (fir) 0.45 0.35 0.49
hard rubber 0.96 0.47 0.86
Vinyl resin plastic 0.74 0.35 0.83
wood 0.81 0.49 0.59
hard rubber 0.81 0.68 0.86
Granite plastic 0.44 0.54 0.90
wood 0.35 0.40 0.53
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The rocking response of a rigid block can be obtained at any time increment through numerical
integration of Eqgs. 3.2 and 3.3. For slender blocks subjected to harmonic excitation however, Eq. 3.2

can be reduced to the following piecewise linearised and dimensionless form:
©—-0=—Acos(r +¥)—sgn®O [3.5]

in which ©=0/0,, A=a,/a,, Q=w;/p, 7= pt,and ¥ are respectively the dimensionless

rotation, ‘dynamic’ amplification of the overturning acceleration, dimensionless frequency, time and

phase shift. The double-dot superscript denotes differentiation with respect to ‘stretched’ time 7.

The closed-form solution of Eq. 3.5 has been derived by Spanos and Koh (1984):

O (r)=a" sinh7 + 87 cosh 1+ 1+ ycos(Qr + ) 6>0 [3.6a]
O (r)=a sinh7+ 3 coshT —1+ ycos(Qr + ) 6<0 [3.6D]
where o™, o, 3%, 8 are integration constants and y=—A/ (1 + QZ) .

Although Eq. 3.2 has been extracted from the dynamic (moment) equilibrium of a rectangular
structure, it is also applicable to a rigid structure of any geometry. In this case, the half-diagonal R
refers to the distance of the mass centre to the pivot point. Also, b and h are respectively, the

horizontal and vertical projection of the half-diagonal.

An interesting case of a rocking vibrator is a rigid one-storey structure with his mass concentrated at

height h (Apostolou and Gazetas, 2004). Neglecting the rotary inertia about the mass centre, the

frequency parameter and the coefficient of restitution are respectively:

mgR g
= = | 3.7
P=\mr? R [3-7]

Apostolou, doctoral dissertation 2011 39



Chapter 3: Dynamics of rocking structures on rigid soil

2

2 2
rzb_”“%gﬁ@]zﬁfzmﬁ@f [3.7b]
mR ) ]

Notably, in terms of the rocking response this single-d-o-f system is equivalent to a rectangular block

of the same slenderness when R, . = (4/3) Ry, and To.sdof = Tepioe, (iNElastic impact).

3.2.2 Free rocking vibrations

Unlike the simple pendulum case, the free-vibration response of a rocking structure (inverted
pendulum) is nonlinear even at small amplitudes of rotation. The nonlinearities of the inverted
pendulum are more pronounced as the rocking amplitude increases. Considering small displacements

and slender structures the governing equation of motion (Eq. 3.5) reduces as follows (A = 0):

é—pzﬁz—pz sgno, [3.9]

Although this simplified equation of motion is piecewise linear, the response preserves its nonlinear

features. A general solution of Eq. 3.9 may be obtained as originally derived by Perry (1881):
6(t)=C, cosh(pt)+ C, sinh(pt )+ sgno, [3.10]

in which €} and C, are integration constants. This analytical solution of the free-vibration response
may also be extracted by the general solution of the driven system (Eq. 3.6). For free vibrations

induced by an initial rotation of 6, (90 = 0) the rocking rotation is

6(t)=6, — (6, — 6, )cosh pt [3.11]

The latter analytical expression of rocking rotation was originally presented by Yasumi and Akao
(1951) as a special case of Perry’s general solution and revisited by Housner in 1963. The validity of

this equation is however limited to the interval of time from the initial condition of rest to the first
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impact. From this point and on integration constants C| and C, should be re-calculated after each
impact taking into account the new initial conditions #(¢,")=0 and é(tf )= Jr é(t{ ). Time histories of
the free-vibration rocking response of a slender rectangular block ( p=0.8rad/sec, tanf = 0.2) due
to initial rotation ¢, are computed with explicit integration of Eq. 3.2 and plotted in Fig. 3.3 for three

levels of 6, (solid lines): a small (90 =0.25 95) , a4 moderate (90 =0.5 96), and a strong near-failure
(0,=0.96,) level. The coefficient of restitution at each impact is calculated with Eq. 3.4 (‘elastic’

impact conditions are regarded). Clearly, the natural period is strongly dependent upon the amplitude
of rotation in such a way that large amplitudes are associated with slow rocking at first. Then the
amplitude decreases after each impact resulting in a gradually decreasing period which eventually
approaches zero. In the same figure time histories calculated with the linear formulation (Egs 3.10 and
3.11) are also plotted (dotted lines). For all levels of initial rotation, it yields that the linearised

equation of motion can efficiently predict the nonlinear rocking response.

6,=0.2508,

N AN A e ——

8/6,
o
®/p6;

8,= 0.5 8,

®/p86;

¢/p86

t:sec t:sec

Figure 3.3 Time histories of the normalised rocking rotation and velocity under free vibrations
(p:0.8 rad/sec, tanf = 0.2, r:0.889), due to initial rotation 6, : comparison of the nonlinear

solution (solid lines) with the linearised solution (dotted lines) for three levels of 6, .
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Natural period
The required time for the block to move from the position of § = 6, to § = 0 is equal to the quarter
of the free-vibration period. Neglecting the energy dissipation at each impact, the period of motion

during each cycle can be calculated from Eq. 3.11 as a hyperbolic function of the rocking

amplitude 6, (Yasumi and Akao, 1951; Housner, 1963):

4acosh[1 2 0] 312
T(0>: - 7L/ C [ . ]

Due to the profoundly nonlinear behaviour of the inverted pendulum, for § — 0 the free-vibration

period does not approach a constant (linear) value 7, but it continuously decreases and eventually

reaches zero. On the other hand, for large amplitudes of rocking, the period of the rocking block

increases in a way similar to the simple pendulum. In the limiting case of 6, — 6, it is derived

that T — 0.

On the basis of a nonlinear formulation, the period of motion during free vibration is derived from the

conservation of the total (kinetic and potential) energy at an angle 6 and at 0, :

%Jaéz +mgRcos(8, —0) =mgRcos(6, —0,) [3.13]

which leads to

. do
b=, = pyf2[cos(6, —6,) — cos(d, — 0)] [3.14]

By separating variables and integrating, we can finally express the period as a function of the rocking

amplitude:
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9’”
T(Hn):zﬁ f do [3.15]
rJ \/cos(ec—ﬁn)—cos(aj—e)

The elliptic integral of the first kind in Eq. 3.15 is calculated by its normal mode:

K(a )_—Z[(Zg )1'?”‘ [3.16]

m=0

in which a =a(#). The nonlinear calculation of the rocking period at the free-vibration regime is

plotted in the graph of Fig. 3.4 together with the closed-form simplified solution. A perfect match
between the linear and nonlinear solution is achieved, which confirms the efficiency of the linearised

system in predicting the free-vibration response.

LS
inverted R (8o=1) simple
pendulum pendulum
’///////////////////// O

2b
T =27 [PB _on /Lﬁfzzw\/E T=27r\/z
J, mR R ? R

O inverted pendulum (nonlinear formulation)
41 - -1}~ (linear formulation)

simple pendulum

Figure 3.4 Normalised free-vibration period of the inverted pendulum from linear and nonlinear
formulation (white circles and black line respectively) and comparison to that of the simple pendulum
(grey line).
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Effective damping
During free rocking vibrations energy dissipation of the system is associated exclusively with the

energy loss at each impact. A relation between the peak rotation after the nth impact ¢, and the initial

amplitude 6, may be extracted analytically from the linear formulation (Housner, 1963):

[3.17]

In this study Housner assumed that rocking on a rigid base would be an effective means of dissipating
energy. Priestley er al. (1978) motivated by the analytical expression for the amplitude reduction,
utilised the logarithmic decrement of the rocking amplitude after nth impact to calculate an equivalent

viscous damping ratio £ in a similar way with that of the lightly damped harmonic oscillator:

- Lln[é’—O] [3.184]

nm .,

¢=——1n]l [3.18b]

From the latter equation it is revealed that the energy dissipates more rapidly during large amplitude
motion (see Fig. 3.5a). Makris and Konstantinidis (2003) suggested a simple expression to
approximately obtain the equivalent viscous damping irrespective of the number of impacts or the

initial rocking amplitude:

£=—0.341n(r) [3.19]
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According to the Federal Emergency Management Agency document Prestandard and commentary for
the seismic rehabilitation of buildings (FEMA 356, 2000) an empirical expression for the damping ratio

as a function of the coefficient of restitution is recommended:

5:0.4(1—%) (3.20]
°2] 027 — =09
— n=2 r=0.9 r=08
0.15 n=4 0.15 4 r=0.7
n=6
wr 0.1 wr 0.1
0.05 0.05 A
n=2
0 T ! 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
6,/6, 8,6,
(a1) (a2)
021 0.2 1
— Priestleyetal., 1978 n=2r=09 n=2,r=0.7
0.15 4 0.15 +

= = Makris & Konstantinidis, 2003

""" FEMA 356, 2000

0.05 0.05 1 Priestley et al., 1978

Makris & Konstantinidis, 2003

FEMA 356, 2000

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
0,/6, 0,/86,

(b1) (b2)
Figure 3.5 The equivalent viscous damping ratio of the rocking block calculated from the Priestley ez
al. analogy as a function of the initial rocking amplitude for different impact numbers (al) and for

different values of the coefficient of restitution (a2). Comparison with the empirical formulae of
Makris & Konstantinidis (dashed lines) and FEMA Guidelines (dotted lines) for n =2, r=0.9 (bl)

and for n=2, r=0.7 (b2).

Makris and Konstantinidis revealed in their study that the FEMA-recommended empirical expression
underestimates the damping ratio by a factor of about 2. On the other hand, their proposed formula

derived values of ¢ in a good agreement with Priestley’s results. A comparison of the afore-discussed
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methods for estimating the equivalent viscous damping ratio of the rocking block is presented in the

graphs of Fig. 3.5b for n=2, r=0.9 (bl) and for n=2, r=0.7 (b2). It is evident that for small
values of ratio 6, /6., i.e. for stable rocking motion, Eq. 3.19 provides results in close agreement with

c

Priestley’s formula especially in the range of small rocking amplitudes where a linearised solution
could be adopted. It is also clear that the FEMA-recommended expression leads to substantially

underestimated values of .

State-space formulation

Global information concerning the nonlinear dynamics of the rocking block under free vibration can
be drawn through a so-called state-space formulation. In particular, by letting gbzé, qﬁzé and
substituting them into the governing equation of motion the rocking angular displacement and

velocity (9 and ¢ respectively) are the independent state variables of the two-dimensional system:

0=¢=f(0,0) [3.21a]
¢ = p’sin(sgn 0o, —0)= g(6,¢) [3.21b]

The solution of this dynamical system can be uniquely defined by the state vector x = (0 gb)T .Sucha

system is often called autonomous in a sense that time has been explicitly eliminated. For a given initial

condition (6,,4,) the total amount of the points (6,¢) which satisfy Eqs 3.21 comprise an orbiz of the

response in the phase plane. The orbits of stable and unstable solutions are portrayed in Fig. 3.6 for a
rocking block of 6, =0.2rad and p=0.8rad/sec. In the same graph a closed curve (limit cycle)
separating the stable from the unstable region of the phase plane is also plotted. This seperatrix
encloses all the stable orbits of the response whereas it is surrounded by the unbounded orbits which

eventually lead to overturning. Each trajectory is characterised by a unique energy level:
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. 3.22
E= %JOGZ +mgRcos(0, —0) [3-22al
or in normalised form:
: .22b
H=l<92+pzcos(96—0):£ [3-22b]
2 J,
which is also known as the first integral of motion.
0.3
0.2 1
é J\/
5 0.1 A
©
s
2 0 1
[&]
Re}
[}
>
@
=] 0.1
2
< /—\/—\
0.2 1
0.3 . , - - ,
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Rotation, 6:rad

Figure 3.6 The phase portrait of the rocking block ( tanf), =0.2 and p =0.8rad/sec ).

The equilibrium points of the system are calculated from the condition (9,(;5)2(0,0) or

equivalently (9, sgn 6o, —9): (0, kw). Unlike the simple pendulum case, for a rocking block on a

rigid base k = 0. The system therefore possesses two equilibrium points:

(0.,0) and (—6,.,0) [3.23]
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The former equilibrium point represents critical overturning for a clockwise rotation whereas the

latter corresponds to a counter-clockwise rotation. Zero point (0,0) is also an equilibrium point since
for initial conditions 0, =¢, =0 it is 0(t)=¢(t)=0 at any time. It is remarked that equilibrium

points defined with Eq. 3.23 are vertices of the limit cycle at its intersection with the horizontal axis.

Given that the total energy of the equilibrium point is E, = mgR , the first integral of motion of the
limit cycle is H = p*. This is the lowest energy level of a trajectory required to ‘escape’ from the

stable region. Similarly, for the simple pendulum with w?® = ¢/I itis H =w’.

Linearisation around the equilibrium points

For a point x=a+ v close to equilibrium point a the nonlinear system described with Egs 3.21 can

0 : ]
s Y—[Z] and A is the Facobian with

be represented with the linear system v=Av where YV —[

reference to a :

Of(a) Of(a)
00 19} 0 1
A= = [3.24]
dg(a) dg@| |p? 0
00 ¢

The characteristic polynomial of this matrix is p(\)=\>—p> with eigenvalues N, =%p.
Consequently, the equilibrium point (6,,0) is a saddle point. For the eigenvalue )\ =p the

corresponding eigenvector is v, =(1 p )" whereas for the eigenvalue AN=—pitisv,=(1 —p ).

In the neighbourhood of the point (6,,0) the vectors v, and v, generate the field of the vectors

v=(0 ¢)" which satisfy the linearised system v= F(v):

t —pt
v=ce’"v, +ce’

v, [3.25]
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The direction determined by the eigenvector v, =(1 »p ) {respectively, vV, = (1 —p )T} comprises

the unstable {respectively, stable} invariant manifold of the vector field at equilibrium point (6,,0).

Each trajectory originating on the invariant manifold remains attached to it and departs from

{respectively, approaches} the equilibrium point at a rate of p. These conclusions may also be
applied to the equilibrium point (—6,,0) as the corresponding eigenvalues and eigenvectors remain

the same. Such a trajectory which is a limit cycle (for pendulum case also known as heteroclinic orbit),
is generated by the invariant manifolds of the equilibrium points and represents a critical overturning
condition. As the stable manifold is defined by the second part of Eq. 3.25 (i.e. the red vectors in the
phase-portrait of Fig. 3.6), it is derived that critical overturning of a rocking structure requires a
theoretically infinite long time. This is a very important conclusion for the study of overturning

response as discussed in Chapter 7.

3.2.3 Rocking under harmonic excitation

Within the limits of the analysis of geometrically induced nonlinear rocking of shallow foundations,
the present study is generally focused on the transient response, capable of representing the response
under strong earthquake excitation. Nevertheless, when rocking on a rigid base in considered, steady-
state response can be an efficient tool to elucidate the profoundly nonlinear features of rocking
behaviour. Moreover, an earthquake record of many significant cycles could conservatively be
represented with a harmonic excitation. The governing equation of rocking motion in its rigorous
formulation (Eq. 3.2) is highly nonlinear and therefore, extracting a closed-form analytical solution is
rather impossible even under harmonic loading. When the piecewise linear system is considered
though (a reasonable simplification for slender blocks), an analytical treatment of rocking under
harmonic base excitation may be feasible leading to the solution of Eq. 3.6, as developed by Spanos
and Koh (1986). Initially, a comparison between the nonlinear and the linearised response is carried
out to determine limits of applicability of the linear formulation. Then, nonlinear formulation of the

governing equation of motion (i.e. Eq. 3.2 and Eq. 3.3) is adopted to examine in-depth the nonlinear
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features of the harmonically driven rocking vibration. To this end the response is computed through

numerical integration explicitly at each time increment.

Linearised vs nonlinear response

Time histories of the rocking response of a slender rectangular block (tan9£ =0.2, r:0.8) are

computed first comparatively with both linear and nonlinear formulation of the equation of motion.

To this end, a harmonic excitation of a,_, =1.0 g (namely five times larger than the pseudo-static

overturning acceleration, aq =tanf, =0.2g) and 7, =0.4 sec is applied at the base. Three

over,st
different values of the frequency (size) parameter p are implemented in the analysis:
p, =0.8 rad/sec, p, =1.6rad/sec, and p, =3.2 rad/sec, representing a large, a moderately large,

and a small block respectively. Linear formulation is based on the closed-form solution of Eqs 3.6a
and as derived by Spanos and Koh (1984). The response is plotted in the graphs of Fig. 3.7 in terms of
the normalised rotation and velocity time histories (dotted lines). Nonlinear solution of the rocking

steady-state response is obtained with explicit integration of Eq. 3.2 (solid lines).

Originally, the response of the large block is computed, where an excellent agreement between
piecewise linear and nonlinear response is achieved. When downsizing the block (by doubling the

frequency parameter, p ), time histories predicted by linear formulation match those of the nonlinear

formulation in the beginning, however they diverge from the nonlinear ones, shortly after the first few
loading cycles. Actually, it seems that linear formulation predicts a steady-state response which is
dominated by a single frequency, whereas nonlinear formulation unveils an enhanced response by
‘capturing’ more subharmonic frequencies. Nevertheless, the rocking amplitude computed with both
methods is still practically the same. Finally, by further decreasing the size of the block it yields that
overturning is inevitable in both solutions, however according the nonlinear formulation it comes

quite later than ‘linear’ failure.
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Figure 3.7 Time histories of the normalised rocking rotation and velocity of a rigid rectangular block
(tang, = 0.2, r=0.8) under harmonic base excitation (T, =0.4sec, a,, =1.0g): comparison

between the nonlinear (solid lines) and the linearised solution (dotted lines) for three different values
of p.

The analysis of rocking response is repeated next for the same parameters tanf =0.2 and r=0.8.
The three different values of the frequency (size) parameter p implemented before
(p, =0.8 rad/sec, p, =1.6 rad/sec, and p, = 3.2 rad/sec) are used again. The excitation period of the

harmonic shaking at the base has been doubled (0.8 sec), whereas the amplitude has been reduced to

half (0.5 g) , in such a way that the peak ground velocity (PG V =PGA| w) remains unchanged.

Time histories of the rotation and velocity are plotted in the graphs of Fig. 3.8, computed with both
linear (dotted lines) and nonlinear formulation (solid lines). By comparing the results of Figs 3.7 and
3.8 it turns out that the rotation and velocity amplitudes remain at the same levels as the peak ground

velocity is kept constant. Also, an excellent agreement between piecewise linear and nonlinear

response is obtained in the response of the large block ( p, =0.8 rad/sec) , as before. What is more

interesting now is that for the moderately large block ( p, =1.6 rad/sec) , linear formulation manages
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to predict the exact solution. Even in the ‘small block’ case, the rocking response and overturning

computed with linear formulation is in a quite satisfactory agreement with the exact solution.

In concluding, both series of analyses presented above, reveal that rocking response of large blocks is
well predicted even when a linear formulation of the equation of motion is utilised. On the other hand,
steady-state analysis of a small rocking block is quite sensitive to whether a linear or nonlinear
formulation is adopted. The lower threshold of what is called ‘a large block’ may be expressed with

the frequency parameter, p. This distinction however between small and large blocks is affected by

the excitation frequency in such a manner that a block of a certain size may be considered as small for

a ground shaking of relatively short period while being regarded as large for a motion of longer period.
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Figure 3.8 Time histories of the normalised rocking rotation and velocity of a rigid rectangular block
(tang, = 0.2, r=0.8) under harmonic base excitation (7T, =0.8sec, a,, =0.5g): comparison

ma:

between the nonlinear (solid lines) and the linearised solution (dotted lines) for three different values
of p.

Rocking spectra
All analyses presented above with both linear and nonlinear formulation reveal among others the

sensitivity of the rocking response to the size of the block as described with the parameter p. It is
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concluded that the smaller the block the larger the amplitude is, and eventually for blocks smaller than
a limiting size overturning occurs. An interesting way of portraying the response of a rigid structure
under rocking vibration is in the form of the rotation response spectrum or simply rocking spectrum, as
introduced by Makris and Konstantinidis (2003). For a certain value of slenderness, the

amplitude of rotation is plotted as a function of the period parameter, T, =2m/p or simpler the
frequency parameter, p. For a rectangular block the period parameter is 7, = 4m\|R/3g = 2.3VR s

whereas for a rigid one-storey structure it is 7, =27 R/g =~ 2JR . Note that the latter period is equal

to the natural period of a linearised pendulum of length, R (see also Fig. 3.4).

The slender block considered before (tan&c =0.2, r:O.S) is revisited to compute rocking spectra

under harmonic excitation with both linear and nonlinear formulation. Extending the previous

analyses, a moderate and a strong ground motion is regarded (a_.. =0.5g and 1.0 g respectively)

whereas for the excitation period the same levels are used again (7, =0.4 sec and 0.8 sec). These
values yield four sets of rocking spectra: (a) A=2.5, T, =0.4 sec, PGV =31.2 cm/sec, (b) A=5,
T, =0.4sec, PGV =62.4 cm/sec, (c) A=2.5, T, =0.8sec, PGV =62.4 cm/sec ,and (d) A=5,
T, =0.8sec, PGV =124.8 cm/sec. The computed rocking spectra with both linear and nonlinear
formulation are plotted in the graphs of Fig. 3.9. The beneficial role of block size (large values of p

correspond to small blocks) is revealed again through all computed spectra. The detrimental effect of
the excitation period is also clear as the long period motion (7}, = 0.8 sec - bottom spectra) results to
higher rocking amplitudes and requires smaller levels of p for critical overturning. A comparison of
the linear to the nonlinear formulation may also be extracted from the rocking spectra of Fig. 3.9.
Apart from the rocking amplitude which can readily be obtained from the spectra, the capability to
efficiently predict the rocking time history with the linear formulation is also of special interest. The

range of values of p in which the linearised solution is in good agreement with the exact (nonlinear) in

terms of time histories is also shown in Fig. 3.9 above each spectrum. It is shown that there is a
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threshold value of p under which, the linear formulation predicts satisfactory the rocking response.
Additionally, the range of p formed by this threshold value can nearly cover the whole bandwidth of

safe rocking under harmonic shaking, provided the peak ground velocity is sufficiently small.
Nevertheless, linear formulation can efficiently predict the rocking amplitude and critical overturning

in most cases even when this threshold value of p has been exceeded.
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Figure 3.9 Rocking spectra of a slender block (tan@c =0.2, r= 0.8) , subjected to harmonic shaking

at the base: (a) PGV =31.2cm/sec, (b) PGV =62.4cm/sec, (c) PGV =62.4 cm/sec, (d)
PGV =124.8 cm/sec.

A major advantage of linear formulation over nonlinear, is that the response can be expressed through

dimensionless parameters. It is therefore interesting to develop normalised diagrams of the linearised
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response regarding that for relatively large bodies (including common civil engineering structures)
rocking can be efficiently predicted by linear formulation. Hence, by introducing the dimensionless

rotation, ©=46/6,, frequency, Q=w;,/p=T |T,, and amplitude (i.e. dynamic amplification),

A

/a, rocking spectra under harmonic shaking can be computed for different levels of the

- a’max

coefficient of restitution. In Fig. 3.10 the rocking spectra for »=0.97 and 0.90 are presented.
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Figure 3.10 Rocking spectra of the dimensionless rotation, © = 6 / 6, with respect to the dimensionless
frequency 2 = wy /p for a harmonic excitation. The response has been computed with the linear
formulation of the equation of motion, for different levels of the dynamic amplification A = a, /a, and

two values of the coefficient of restitution: (a) »=10.97 and (b) r=0.90.

Modes of response

Depending on the amplitude and the frequency of the harmonic excitation, rocking of a rigid body
may either be a bounded or unbounded motion. In the latter, rocking motion inevitably leads to
overturning. In the former, the rigid block undergoes safe rocking vibration which can be
distinguished into periodic, quasi-periodic, and chaotic response with a single dominant frequency, a

finite number of incommensurate frequencies, and an infinite number of frequencies, respectively (Yim

and Lin, 1991).
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Rocking response of a rigid block (tanf, =0.2, p=0.8rad/sec) subjected to a harmonic base
excitation of period T, =0.4sec is computed next. Two levels of the peak ground acceleration are

employed: (i) a,,, =0.5g and (ii) a,,, =1.0g namely 2.5 and 5 times respectively larger than the

over,st

pseudo-static overturning acceleration (a =0.2 g). A coefficient of restitution r=0.8 is first

adopted. The results are plotted in the graphs of Fig. 3.11a in terms of time histories of the rotation ¢

and the angular velocity ¢, and phase portraits (G,gb). Unlike pseudo-static consideration which

would predict toppling, the rocking block safely undergoes rocking vibration even for a peak ground

acceleration 5 times larger than a Moreover, for a,, =0.5g rocking is symmetric to the

over,st *
vertical axis and the response is periodic with a frequency equal to the excitation frequency

(f» =1/0.4sec =2.5hz). After doubling the excitation amplitude (a,,, =1.0g), the motion is still

symmetric to the vertical axis. Remarkably, it is now enhanced with two more frequencies which are

rational multiple of the fundamental frequency, evidence of a one-third subharmonic response or a

(1,3) mode. It is recalled that a (n,m) mode represents a symmetric response of n impacts per cycle

and m frequencies.

The analysis of rocking response of the afore-discussed block is repeated next by modifying impact
conditions, i.e. by setting r=1. Stable rocking motion is computed again for both levels of base
shaking (Fig 3.11b). In contrast to the periodic motion discussed before, rocking is not symmetric to
the vertical axis and the response is not dominated by a single frequency equal to the excitation
frequency. Interestingly, the dynamical system possesses a finite number of frequencies as portrayed
in the phase diagram of Fig. 3.11b., none of these frequencies however, is any longer a rational
multiple of the fundamental frequency. This feature of rocking vibration first unveiled by Yim and
Lin (1991), is well-known in the nonlinear dynamics literature as quasi-periodic response and is

considered a transition between periodic and chaotic response.
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Figure 3.11a Periodic response of a rocking block ( tanf, =0.2 and p =0.8rad/sec ) subjected to a
medium (i) and strong (ii) harmonic base excitation of period 7, =0.4sec. The coefficient of

restitution is » = 0.8.
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Figure 3.11b Quasi-periodic response of a rocking block ( tanf, =0.2 and p =0.8rad/sec ) subjected
to a medium (i) and strong (ii) harmonic base excitation of period 7, =0.4sec. The coefficient of

restitution is 7 =1.0.
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Periodic and quasi-periodic response can be readily identified by inspection of the Poincare map (i.e.
the intersection of a periodic orbit in the state space with a section transversal to the flow). In this
way, the periodic response is illustrated as a one-dot or a three-dot map, representing the harmonic
[case (i)] or the one-third subharmonic response [case (ii)] respectively (Fig. 3.12a). Quasi-periodic

response is depicted by a closed dotted line called rorus (Fig. 3.12b).

(a) r=0.8 (b) r=1.0
Periodic response Quasi-periodic response
e
a ®

:..: . ‘..’ -:#3:&’

Figure 3.12 Poincare maps of a rocking block (tanf, =0.2 and p =0.8rad/sec) for the analysis
presented in Fig3.11.

3.2.4 Rocking under earthquake excitation

Analysis of the steady-state response is a useful tool to explore the nonlinear features of rocking

behaviour. Nevertheless, earthquake loading often contains only a few significant cycles. In addition,
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near-fault ground motion should be represented with sine or cosine pulses of one cycle (Makris and
Roussos, 1998) or more efficiently with Ricker pulses especially when studying rocking (Apostolou et

al., 2007). Many examples of these pulses have been uncovered in near-fault records of Mg >6.5

earthquakes, such as the Imperial Valley 1979, Erzincan 1992, Northridge 1994, Kobe 1995, Kocaeli
1999, Chi-Chi 1999 (Gerolymos et al., 2005). These pulses are the result of two effects: the ‘forward
rupture directiviry’ effect and ‘permanent offsetr’ (or ‘fling’) effect (Somerville, 2003; Hisada and Bielak,
2003). Some of the most common idealised pulses to represent near-fault ground motion which will be

employed in the analysis are illustrated in Fig. 3.13.

One-sine One-cosine

Ricker Rectangular T-Ricker

N\ y

Figure 3.13 Idealised pulses utilised to represent near-fault ground motion.

For the analysis of rocking under earthquake excitation, a slender block of tanf, =0.2 and
p=1.387rad/sec is employed. In the beginning, the rigid base is excited with a Ricker pulse of peak
ground acceleration 0.4 g and predominant period 0.67sec and 2x0.67 sec=1.33 sec. The time

histories of rocking displacement and velocity are plotted in the graphs of Fig. 3.14. In the same
Figure, the trajectories of rocking motion in the normalised © —® plane are also plotted. The
response has been separated into a transient part (white circles) and a free vibration part (black solid
line). The beginning and the end of the transient response occurs at the moment of the onset and
expiration of base excitation respectively (large white circles). In the phase portrait the bounding cycle

separating safe from overturning area is also shown.
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During transient mode, the solution is obtained with the equation of rocking motion (Eq. 3.2). As in
the case of harmonic shaking, the increase of the excitation period results in amplifying rocking
vibration. At the moment ground excitation expires (large white circle) the response engages the free
vibration mode. Hence, the response is computed with the homogeneous solution of Eq. 3.2
(nonlinear formulation) or Eq. 3.10 (the analytical solution according to linear formulation) with

initial values 6, and ¢, being computed from the last increment of the transient mode. As depicted in

the predescribed study of free vibrations, larger rocking amplitudes correspond to larger vibration
period and damping. Consequently, each subsequent cycle of free vibration regime becomes smaller
and shorter. In the time histories portrayed in Fig.3.14 this dissipative mechanism is more

pronounced for the short-period excitation (left-hand side) in which, the initial rotation 6, is smaller.

Another interesting conclusion from the phase portraits of Fig. 3.14 is that the trajectory can

temporarily reach or even cross the limit cycle during transient mode without overturning to occur if

the point (Go,qﬁo) at the moment the excitation expires is bounded by this cycle.

The sensitivity analysis of rocking response is focused next on the size parameter p. In this respect,
the analysis with the initial parameters (Fig. 3.14, left-hand side) is repeated after doubling p to
2x1.387=2.774 rad/sec. The results are plotted in Fig. 3.15. When compared to the analysis of a

double 7, (Fig. 3.14, right-hand side), the rocking displacement and velocity amplitude is still the

. . . w .
same as the dimensionless period € =—£ has not changed. On the other hand, time seems to be
p

running quite faster as the dimensionless time 7= pt has now become double. These conclusions can

also be extracted from the comparison of the phase portraits which are identical as time has been

eliminated.
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Figure 3.14 Rocking response of a rigid structure (tanf, =0.2, p=1.387rad/sec, and r=0.85)
subjected to a Ricker pulse excitation at base (PGA:0.4 g) with predominant period of (a)
T, =0.67 sec and (b) 27, =1.33 sec.
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Figure 3.15 Rocking response of a rigid structure (tanf, =0.2, and r =0.85) of size parameter (a)
p=1.387rad/sec, and (b) 2p=2.774rad/sec. A Ricker pulse excitation of PGA=0.4g and
T, =0.67sec is applied at base.

Rocking spectra
As for the steady-state response, linearised rocking spectra of the dimensionless rotation, © with
respect to the dimensionless frequency €2 can be computed for a pulse-type excitation. Originally, a

Ricker pulse is imposed as excitation for different levels of the dynamic amplification (. A=2, 4, 6, and

Apostolou, doctoral dissertation 2011 63



Chapter 3: Dynamics of rocking structures on rigid soil

8) and two values of the coefficient of restitution (7 =0.97 and 0.90 ). The computed spectra are

plotted in Fig. 3.16.

(a)r=0.97 (b)r=0.90
0.8 1
o)
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8 021
0 4 8 12 16 20 0 4 8 12 16 20

Dimensionless frequency, Q Dimensionless frequency, Q

Figure 3.16 Rocking spectra of the dimensionless rotation, © = 6 /0, with respect to the dimensionless
frequency Q = wy / p for a Ricker pulse-type excitation. The response has been computed with the

linear formulation of the equation of motion, for different levels of the dynamic amplification
A = a, / a, and two values of the coefficient of restitution: (a) r=0.97 and (b) r=0.90.

An interesting normalisation can result when both dimensionless rotation and frequency are

compacted to a single parameter, II, = ©Q*. In this way, II, can be plotted in terms of the
amplification A or its inverse 1/.A, providing a single rocking spectrum for a certain value of the

coefficient of restitution. Under such a consideration, a series of analyses is performed to derive the
normalised rocking spectra of the basic pulses for different levels of r, as portrayed in Fig. 3.13. For

comparison, the rocking spectrum II, —1/.4 under harmonic excitation is also plotted in Fig. 3.13.

A measure for potential destructiveness of the basic motions utilised (or in general, of any recorded
motion) can be drawn from these spectra as shown in Fig. 3.13. Hence, it can be seen that among
these motions, the one-sine pulse is the most detrimental for a rocking block whereas the one-cosine is

the most beneficial. The Ricker pulse results in large values of II, in a range of 1/.4=0.15—0.30.
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Finally, the one-directional pulses (T-Ricker, rectangular) follow a unique exponential decay curve

for all values of 7, as in these cases, the largest rocking amplitude is observed before the first impact.
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Figure 3.17 Normalised rocking spectra of a rigid block, subjected to pulse-type shaking at the base,
for three different values of the coefficient of restitution and comparison to those from harmonic
shaking (bottom right).
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The afore described methodology can be extended to compute rocking spectra of recorded ground
motions and accordingly, to derive estimates for the potential destructiveness. Indicatively, the

rocking spectra of two typical near-fault records are illustrated in Fig. 3.18.

Diizce 0.55g Aegion

0.5

10

00?2

174 17A

Figure 3.18 Normalised rocking spectra of a rigid block, subjected to the earthquake records of Diizce
and Aegion, for three different values of the coefficient of restitution.

Structural response

After examing the rocking response of rigid rectangular blocks in terms of rocking rotation and
angular velocity, we can now further study the response of rocking structures through the one-storey
uplifting oscillator introduced earlier. Both the pier of the superstructure and footing are considered
rigid and massless. In contrast to the block-type structure, the structural mass is now concentrated at
the top of the pier. Once the system is set on rocking motion the inertial forces developed at the mass
point result in section shear forces and moments along the pier. As in the study of the rigid block, the

governing equation of rocking motion (Eq. 3.2) can be applied in which the size parameter p is given

by Eq. 3.7a. A slender one-storey oscillator of tanf, =0.2 and p=1.387 rad/sec is considered,
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submitted to a long duration, Ricker wavelet pulse of peak ground acceleration, PGA=0.4 g and
excitation period, (a) 7, =0.67 sec and (b) 7, =1.33 sec. The results are shown in Fig. 3.19, in

terms of: (a) time histories of the normalised rocking angle, structural acceleration (at the mass point),
and base moment, and (b) moment-rotation curves. The time history of the rocking angle is identical

to the block portrayed in Fig. 3.15, as both systems share common rocking parameters p and 6,. In

the beginning, the structure follows the accelerating base with its footing fixed on the ground. As soon

as the ground acceleration reaches the critical acceleration, a, =b/h , the rocking motion enters the

uplifting regime. During this mode, the structural acceleration departs from the excitation

acceleration at the base, tracking on a plateau which is defined by the critical value a,. This plateau

exhibits a sudden reversal and shortening during each impact. Accordingly, the time histories of the

base shear force and moment track on the same path, being linear functions of a,, (@ =-—mga,, and

M = —mga,, h ). Eventually, due to energy loss at every impact, rocking terminates. The period of
the time history of any structural quantity is determined from the duration of each cycle of rocking
motion. The moment-rotation curves of the earthquake response are also plotted in Fig. 3.19 together
with the monotonic curves in both directions. Throughout the response the dynamic, cyclic curve
traces the static one, whereas after reversing direction of rotation it follows the beaten track.

This restoring mechanism of the uplifting response together with the bounded motion in terms of the

structural quantities are two major advantages of rocking structures.
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Figure 3.19 Structural response of a rigid one-storey structure ( tanf, =0.2, p =1.387rad/sec, and

r=0.85). A long-duration Ricker wavelet is applied as a base excitation of peak ground acceleration,
PGA=0.4g and excitation period, (a) T, =0.67sec (left-hand side) and (b) 7}, =1.33sec right-

hand side.
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3.3 ROCKING of a FLEXIBLE 1-DOF STRUCTURE

3.3.1 Statement of the problem, Equations of motion

In the foregoing, only rigid bodies were employed to analyse rocking response. This may be a
reasonable approximation of block-type (usually small) non-structural elements. However, slender
engineering structures such as high-rise buildings which are vulnerable to experience rocking with
uplift may not be efficiently represented with rigid structural models. An elastic sdof oscillator with a
foundation mat allowed to uplift from its rigid base is employed here as illustrated in Fig. 3.20. This
model comprises a lumped mass m located at a height h above a rigid and massless foundation of

width 2b. The mass point is connected to the foundation with a vertical beam characterised with the
visco-elastic parameters k£ and £. The coefficient of friction at the foundation interface is considered

large enough to prevent sliding of the structure.

Figure 3.20 Configuration of the sdof uplifting oscillator.

Depending on whether the foundation mat is in full contact with the supporting base or not, two
different states of response can be distinguished: (a) the full-contact phase and (b) the uplift phase. In

the full-contact phase the structure undergoes only flexural oscillations. During this state the system
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reduces to a sdof harmonic oscillator and the dynamic response may be determined by the relative
displacement of the mass centre u . Provided that no plastic deformations develop, the uplifting model
yields to the well-known visco-elastic sdof system. However, once uplifting occurs the dynamic
response is a result of coupled flexural and rocking oscillations with « and 6 being the independent
variables. A highly nonlinear response is unveiled in this mode attributed to P—¢ effects which is

amplified by the flexural deformation of the superstructure.

The independent variables and the system parameters of the uplifting oscillator are summarised in

Table 3.3.

Table 3.3 Independent variables and system parameters of the uplifting oscillator.

U Structural (relative) displacement
Independent
variables
0 Rocking angle
tand, =b/h Aspect ratio
’ Inverted pendulum
parameters
p Frequency (size) parameter
w Natural frequency
Harmonic oscillator
. . . parameters
f Critical damping ratio

Muto et al. (1960) first incorporated such a structural model to investigate experimentally the effect of
the structural flexibility on the uplifting response. Meek (1975) utilised the same model to derive the
equations of motion and to calculate the response for a harmonic base excitation. In these pioneering
articles the beneficial effects of foundation uplift on the dynamic distress of the structure were
demonstrated. Substantial contribution to the analysis of the uplifting response has been also provided
by subsequent researchers, mainly by Psycharis (1983, 1991), Yim and Chopra (1985), and more

recently by Oliveto ez al. (2003).

All previous analytical studies have been based on a small-displacement approach, which is not

suitable for near-overturning conditions. Only Oliveto et al. (2003) derived equations of motion
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appropriate to large rotations (but small elastic deformations of the pier). A large displacement
approach is involved in this study for both rocking and flexural modes of response. In this respect, a
Lagrangian non-linear formulation is utilised to extract the equations of motion for the one-storey
structure portrayed in Fig. 3.20. To this extent the governing equation of motion can be expressed as

a function of the Lagrangian £ in the following compact form:

d[aﬁ] oc oD _ 3.26]

dt|9q.| oq, 04
where ¢, is the generalised variable and D is the dissipation function adopted to incorporate

hysteretic damping. The Lagrangian function is defined as the difference between the kinetic energy

T and the potential energy 1 :

L=T-V (3.27]

The generalised variables of the system comprise the angle of rocking rotation 0(: qe) and the

relative (flexural) displacement of the mass centre (: qu) .

The kinematics of the system employed to formulate the Lagrangian equations of motion are
portrayed in Fig. 3.21. The horizontal supporting base is represented with a rigid plane which can
undergo horizontal and vertical vibrations relative to the inertial frame XY . The position of the mass

point relative to the base is determined with respect to the frame zy which is parallel to inertial frame

and fixed to the contact point.
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Figure 3.21 Kinematics of the sdof uplifting oscillator.

The absolute position vector (with respect to the inertial frame) to the centre of mass is given by:

<31
Il

<3

<3

LT U [3.28]

where ?'g =z gi +y, j is the position vector of the contact point with i and j being respectively the
horizontal and vertical unit vectors. 7, = R7, is the relative position vector of the mass centre due to
rocking rotation, and % =us$ is the relative position vector of the mass centre due to flexural
oscillation of the superstructure. The formulation of the vectors 7, and ¥ and their time derivatives

with reference to the inertial frame is obtained by examming all possible directions of rocking and

flexural displacement as shown in Fig. 3.22. To this end the unit vectors 7, and 5 are expressed with

reference to the inertial frame:
7, = —sin(sgn6, —9)f+cos(sgn906 —9); [3.29a]
and

§=cosfi—sind [3.29b]
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where sgn « is the signum function.

6<0
u >0

Figure 3.22 The different modes of the uplifting response.

Finally, the following expressions are derived satisfying the above combinations:

i =ucosfi—usinf j [3.30a]
i—?z(ﬂcos&—uésin@)f—(dsin@—i—uécosﬁ)j [3.30b]
7 =—Rsin(sgn 6o, —0)5 + Rcos(sgn6, —0)3 [3.30c]

i—Z:Récos(sgnéﬁc —0)i + Rosin(sgn06, —0); [3.30d]

where the dot symbol indicates differentiation with respect to time. The absolute velocity vector is

derived by differentiating 7. with respect to time:

d7  d¥ d7  da
_ %% 4 du 3.31
dt dr dr 5331

U=
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— N

dr

—

0

R . . d d .
where d—;’: z,i+9,J is the velocity vector of the contact point. Also, d_qz and d_:; are given by

Eqgs 3.30b and 3.30d respectively. Finally we get:

V= [xq + R cos(sgn b, —(9)—Iracosﬁ—taésin@}zT

- ) . . [3.32]
~l—[g)g + ROsin(sgn 66, — ) —usinf — u@cos@]j
and therefore:
Ui = + v [3.33a]
or
70 = (iq + R cos(sgn0, — )+ ticosd — uésine)z
o . , [3.33b]
—i—(g)g + ROsin(sgnf6, —6)— isinf — uecose)
Eventually after some algebraic manipulations:
VU = i@+ + R0+ +u’0’
+2iqRé [cos 0. cosf +sgnfsinf, sin 9] + Zg)qRé [— cos®, sinf +sgnfsinb, cos 9]
‘ T . 3.33c
+22,icos0 — 2y, usind — 2z, ufsinf — 2y, ub cost [ ]
+2RA1cos, — 2RO usgnhsind,
The kinetic energy of the system is:
|
T = 5 MmUY [3.34a]
or
74
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1 .2 1 .2 1 2.2 1 .2 1 292

T = —mz’ +—my. +—mR0° +—mu” +—mu-0

2 TR Ty 2 2

—i—mgthé [cosd), cos + sgnfsin, sinf|+ mngé [—cos ), sin6 + sgnfsind, cos o] [3.34b]
+mi icost —my, ising —mz, ubdsing —my, udcosd

+mR@iicos, —mRO* usgnhsing,
The potential energy of the system is

V= ngvity + Vflezuml [335]

in which V

gravity Tevural

=mgr, j is the potential energy due to gravity and V; %kuz is the potential

energy due to flexural deformations of the superstructure. However, the quantity 7, j in the former is
the vertical component of the position vector 7, =y, + Rcos(sgn@@c —9) —usinfd. Eventually, the

potential energy of the system becomes:
V' =mgRy, + mgRcosf, cost +mgRsgndsind, sind —mgusin6 + %kuz [3.36]

By substitution of Eqs 3.34b and 3.36 to Eq. 3.28 we can formulate the Lagrangian of the system as a

function of the independent variables and their time derivatives:

L = %mxi —i—%myf +lmR292 +%mu2 —i—%muzéz
+ma gRé [cos 0. cosf +sgnfsinf, sin 9] + mg)gRé [— cos®, sinf +sgnfsinf, cos 9]
+mi ucost —my, using — miguésine — my'guécosa [3.37]
+mR@ticos, —mRO* usgnhsinf,

—mgRy, —mgRcosf, cosfd —mgRsgnfsinb, sinf +mgusing — %kuz

The derivatives of the Lagrangian with respect to § and 6 are:
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oL

50 ma’chécos@ sinf + moi:gRésgn@sin@C cosf — mngésgnOSinGC sind
—mngé cost, cost) —mi i sinf — my,ucosd — m:i:guécose [3.38a]

+mg)gu9 sinf + mgR cosfsin @ — mgR sgnfsin 6, cos 6 + mgu cosf

and

% = mR*0 +mu*0 + mt,R|cos6, cosd +sgnfsinb, sind
+mij, R~ cos, sinf + sgn0sin0, cos 6] —ma usind [3.380]

—my,ucosf +mRicost, — 2mROusgnhsing,

By differentiating Eq 3.38b with respect to time we get:

1[8_4] — R+ mud + 2mubi
dtl 00

+mi,RcosB, cosf —mi, Rcos, sinf 0+ mi, Rsgnodsinb, sinf +mi, Rsgnodsinb, cosf6

—myj,Rcosf, sinf —my, Rcosb, cosfo + myj,Rsgnfsinb, cost —my, Rsgndsino, sin 66 [3.39]

—ma, using —mz usinb —mz, uf cosd —myj,ucosd —my, ucosd + my, ufsingd

+mRiicosf, —2mRH usgnOsing, — 2mRA isgnhsinb,

The dissipation function is:

[3.40]

Its derivative with respect to 6 is:
— =0 [3.41]
The first equation of motion is:

d(oc) oL oD
+-—==0 [3.42a]

dtlod) o8 o6
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and after substituting and eliminating m :

(R2 +u’ —2Rusgn05in00)§+Rcosecii
+, [Rcos(sgn&@c —«9)—usin0] +9, [Rsin(sgn@&c —0)—ucos€J [3.42b]
—i—gRsin(sgnQHC —«9)—gucos€+2ﬂ9(u—ngn9sin08> =0

Similarly, the derivatives of the Lagrangian with respect to v and « are:

oL

e :mézu—mgbgésinﬁ—mygécosﬂ—mRéz sgnfsinf, +mgsinf —ku [3.43a]
u
and

oL . . .o :

50 mi +mi, cost —my, sinf +mR 6 cos, [3.43b]

By differentiating Eq 3.43b with respect to time we get:

%[Z—i] = mii+mZ,cosf —mi, sinff — my, sinf — mi, cos06 + mRécosGC [3.44]

The derivative of the dissipation function with respect to « is:

oD

5o = ci [3.45]

The second equation of motion is:

dt\ou) ou ' o [3.46a]
and after substituting and eliminating m :
i+ R cos 6 — gsinf + w* u+ &, cos —jj, sinf —6? (u—Rsgnsinb, )+ 2¢wu = 0 [3.46b]
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Eqgs 3.42b and 3.46b form the Lagrangian equations of motion for the studied system.

The structural mass has been eliminated from the governing equations of motion as in the case of a

rigid rocking body or a harmonic oscillator.

In the limiting case of a infinitely rigid system (w=0) Eq. 3.46b yields «=0. In this way Eq. 3.42b

reduces to the following equation:
R*0 + i, [R cos(sgn@@c — 9)] +9, [Rsin(sgn@@c — 0)] + gRsin(sgnH 0. — 9) =0 [3.47a]

or
g+ p? x_g[cos<sgn9t96 - 0)] +p? y_g[sin<sgn09c - 9)] +p’sin(sgn66, —60) = 0 [3.47b]
g g

The latter is the well-known rocking equation of motion for a rigid structure with a lumped-mass

(p=+/g/R ) as described in Eq. 3.2.

For simplicity we neglect the vertical component of the base acceleration j,. In this way, the

following nonlinear equations of motion are derived in each state of response:
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Full-contact phase:

For a rocking oscillator on a rigid base, full-contact conditions entail that no rocking displacements are developed (f# = 0). In this regime Eq. 3.46b

reduces to the well-known linear equation of the sdof oscillator:

i 4 wiu 4 28wl = —7 [3.48]

g

Uplift phase:
During the uplift regime the independent variables « and 6 are calculated by the Lagrange formulation:

Equation Lagrange (1)

R’ +u* —2Rusgn0sind, |0 + Rcosf,ii + gRsin(sgn 09, — 0) — ugcosd + O, (u, i, 0,0) = —i, [ R cos(sgn 06, — ) — usin o] [3.49a]

Equation Lagrange (2)
ii + Rcos 0,6 — gsin6 + w’u + 2&wii — O, (u,0,0) = —Z,cosf [3.49b]
where O,(u,1,0,0) and O,(u,0,0) the non-linear terms O, (u,u,0,0)=2uf(u— Rsgnfsinf,) and O,(u,0,0)=60%(u— Rsgnfsinf ). These two

equations of motion can be formed in a matrix equation:

0

i

0

U

0 0116

0 2&w

0 —gcosf

0 w?

R’ +u> —2Rusgnfsinf, Rcoso, Rcos(sgn60, — ) —usin

Rcos0, 1

Rsin(sgnff —0
|9 (sgnbf, —0)

—gsinf [3-50]

g cosd

|+0--s
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Uplift criterion
The foundation uplifts from the supporting rigid soil when the overturning moment (with reference to

the foundation centre) due to inertia moments (mah) exceeds the restoring moment [mg (b — u)].

From this moment on, the structural system enters a coupled flexural-rocking oscillation with the
corner points O and O’ being alternately the rotation pole. From equilibrium of the overturning and

the restoring moment the acceleration of the mass at marginal uplift is:

b - uu’ ift
Quplift = 7 pf g [3.51]

For an undamped system, the uplifting criterion can be also expressed in the form of the displacement

. 2 o .
uuplift given that w uuplift - a’upliftg .

tanf, |w’
uupliff - 1 9
.
(w/p)” cosd,

[3.52]

For w/p — oo (i.e. for a quite stiff or large structure) the latter equation reduces to the well-known

criterion for uplift, originally presented by Meek (1975):

tand,
uuplift = wz g [353]

The normalised displacement wu,,,; /b calculated with the exact uplift criterion of Eq. 3.52 is plotted

in Fig. 3.23 with respect to the natural circular frequency w for different values of the frequency

parameter p and constant aspect ratio (90 =0.2 rad). In the same graph the uplifting displacement is

compared to that extracted with the simplified approach (Eq. 3.53). It is shown that for sufficiently

stiff systems, Meek’s criterion may give a close approximation of the uplifting displacement. For more
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flexible systems however (w<2—3 rad/sec), and particularly for quite small structures

( p>1rad/ sec) the simplified approach fails to accurately predict the displacement w,,;;; .

—— Exact uplift criterion
o]
0.8 4 O 0 O Simplified uplift criterion
o 06 -
=
S
S
0.4 -
p: rad/sec
0.2 ~
0
0 2 4 6 8 10

w: rad/sec

Figure 3.23 Comparison of the normalised displacement u .. /b derived from the exact uplift

uplift
criterion (Eq. 3.52) to that extracted with the simplified approach (Eq. 3.53), for different values of
the size parameter p. The aspect ratio of the structure is §, =0.2 rad.

Re-establishment of full-contact

After the uplift phase is launched, impacts occur intermittently every time the foundation mat
instantaneously rocks back to its initial position. For analysis purposes of this study, the impact is
considered elastic, hence conservation of angular momentum exists and the coefficient of restitution is
obtained by Eq. 3.7b. Whether the structure continues to rock after an impact by shifting direction or

full-contact conditions are re-established, it depends upon the total energy of the uplifting phase

(Eup.phase> compared to that of the full contact phase (Ef.&phase) . Hence, if the total energy in the

uplifting phase right after impact is smaller than the full contact energy, (E <Ef‘&phase) , the

up.phase
structure will be set on rocking again in the reverse direction. Nevertheless, in the opposite case,

(E <FE , the structure may still uplift if the overturning moment due to inertial force,

f.c.phase — up.ph,ase)
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M;, is larger than the available resisting moment due to gravity M. Consequently, the system

returns to full contact conditions if the two following conditions are satisfied simultaneously.
Ef.&phase S Eupphase [3543]

| M| >[M] [3.54b]
In contrast to early studies on the uplifting oscillator, the exact formulation for re-establishment of full

contact as described above was introduced by Oliveto ez al., 2003.

Linearisation of the uplifting equations

Meek (1991). In this pioneering work, Meek first studied analytically the undamped uplifting
oscillator and extracted the linearised equations of motion in the small-displacement domain. To this
extent, he examined dynamic forces equilibrium of the mass and moment equilibrium of the structural
system about the foundation toe. Considering only the horizontal component of the mass displacement

(h0+u) Meek concluded with the following coupled equations for the uplift regime in matrix

notation:

0 0

0 W’

ho

U

1/cos’d, 1
1 1

ho
+

i

. . =—1I, 1 —gsgnbtand,

: 3.55
. [3.55]

By eliminating the rocking component of the structural acceleration, hf , and after some algebraic

manipulations the uncoupled equations of motion are obtained:

. w? gsgnf
hé — =—
tan® 0, ! tan6, [3-56a]
w? gsgnd
i .
4T sin? 6, T tan6, [3-560]
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w w . . . . . .
In the latter, — 7 ~— is the increased natural circular frequency in the uplift regime.
sin

c c

Chopra and Yim (1985). In their study the linearised coupled equations (Eq. 3.55) were re-derived

accounting also for the damping terms. In this way, the equations of motion (Eqs 3.56) were written

as:

= 28w . w? gsgnf
hé— U— U =—"—
tan’f,  tan’d, tand, [3.57a]
. 28w . w? .. . gsgnd
U+ U+ U =—T + .
sinf,  sin’@, ! tand, [3-570]
£ &

In Eq. 3.57b the quantity it corresponds to the increased damping ratio in the uplift regime.
sin

c c

Psycharis (1991). Applying Newton’s second law in the horizontal and rocking direction with the

assumption of small displacements, Psycharis extracted the equations of motion for the uplift regime,

which are identical to those of Eqs 3.57, given that 1+1/tan” 0, =1/sin’ 0, .

The proposed model. In the present work, linearised equations of motion are not derived explicitly

through a small-displacement configuration but from the exact Lagrange equations (Eqgs 3.49)

neglecting only the quadratic non-linear terms (O1 and Oz). In this way, the coupled equations of

motion are written in a matrix form:

R® nl|6] [0 016 0 —g||0 L |h sgnfb
o1+ - == 3.57]
ho 1|4l |0 2&w —g w||u 1 0
Eventually, we get for the uplift regime:
. g 26w wz—l—(pz/cosﬁc) gsgnf
ho +—5—0———=—1u— 5 U =—— [3.58a]
tan“0, ~ tan” 0, tan” 0, tan 6,
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. 2w . w’+cosl p’
U+ i U+ — P ‘gz 0 =—
sin” 0, sin” 0, sin” 0,

.. gsgn6
+ .
z tand, [3.58Db]

3.3.2 Earthquake excitation

In a similar way to conventional response spectrum analysis, structural displacement, velocity, or
acceleration amplitudes of the uplifting oscillator can be computed as a function of the natural period.
In this respect, for a certain geometry (described with the parameters p and 6, ) the time domain
analysis (by direct integration of Eqs 3.48 and 3.49) can be repeated each time for a different value of

the pier stiffness, k=3EI/h’ (and therefore the natural period). Thus, response spectra can be

computed for different levels of damping.

A one-story oscillator of p=0.909 rad/sec and ¢, =0.388rad is first considered to explore the
dynamics of the combined uplifting and flexural response. These dynamic parameters correspond to a
half-width of the footing, b=4.5m and height of the mass point from base, h=11m. A long

duration Ricker wavelet (TE :1.33sec) is imposed to represent near-fault moderate and strong

shaking (0.4 g and 0.6 g respectively). The response spectra of the normalised displacement are

plotted in Fig. 3.24. In the same graphs the response spectra of the equivalent fixed base system are
also plotted together with the criterion for incipient uplift. It is remarked that for 7= 0, the response
of the uplifting oscillator must also be computed with the equivalent rigid system, discussed above.
Under a moderate shaking, a very stiff system cannot experience uplift, as the critical acceleration of

the rigid system (a =tan6, ~0.41 g) is slightly larger than the imposed (0.4 g). As the flexibility

uplift
of the pier increases however, the developing structural displacement (equal to that of the fixed base
system) exceeds that required for marginal uplift, engaging rocking motion. The amplitude of rocking

angle as a function of the natural period is also plotted in Fig. 3.24. Remarkably, within a range of

periods around the excitation period (1.33 sec) , the displacements of the uplifting system are much
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less than those of the equivalent fixed base system. Eventually, for sufficiently flexible systems (i.e.
for values of 7' larger than a critical one), uplift cannot initiate and therefore, the response can be
predicted with the fixed base system. As observed in Fig. 3.24, the critical period beyond which uplift

does not occur, is larger under strong shaking conditions (0.6 g). Similar results can be extracted by

plotting the acceleration spectra (see also Fig. 3.24)

A flexural-uplifting oscillator with visco-elastic parametres 7 =0.5sec, £=5% and rocking
parametres p =1.387 rad/sec, 6, =0.2rad is involved next. The rotation spectrum of the oscillator
calculated for different levels of ground shaking is presented in Fig. 3.24. Excitation at the base is a
one-sine pulse with a period ranging from 0.01 sec to 2.5 sec. Initially, a weak base excitation

(PGA: 0.10 g) is employed such that a linear resonance curve is obtained with maximum rotation

at f, @ f =2hz. A gradually increasing base acceleration is applied next and the resonance curve is

recalculated for each level as plotted in Fig. 3.25. The emerging nonlinearities of the system
progressively shift the resonance frequency towards the left side of the spectrum. A large increase of
the rotation amplitude is also encountered in this area. Eventually, after a sufficiently strong level of
shaking, the resonance curve is distorted such that there is a range of excitation frequencies for which

there are more than one possible output amplitudes (instability area).
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Figure 3.24 Displacement, rotation, and acceleration spectra of the uplifting oscillator in comparison
with the fixed-base system. A long-period (1.33 sec) Ricker pulse is used for moderate (left) and
strong shaking (right).
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Figure 3.25 Displacement, rotation, and acceleration spectra of the uplifting oscillator in comparison
with the fixed-base system. A short-period (0.33 sec) Ricker pulse is used for moderate (left) and
strong shaking (right).
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Figure 3.26 Displacement, rotation, and acceleration spectra of the uplifting oscillator in comparison
with the fixed-base system. A short-period (0.33 sec) Ricker pulse is used for moderate (left) and
strong shaking (right).
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Figure 3.27 Displacement, rotation, and acceleration spectra of the uplifting oscillator calculated with
the linear (grey lines) and the nonlinear formulation (black lines). A long-period (1.33 sec) Ricker
pulse is used for moderate (left) and strong shaking (right).
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Figure 3.28 Displacement, rotation, and acceleration spectra of the uplifting oscillator calculated with
the linear (grey lines) and the nonlinear formulation (black lines). A short-period (0.33 sec) Ricker
pulse is used for moderate (left) and strong shaking (right).
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Figure 3.29 Rotation spectra of the uplifting oscillator with respect to the excitation frequency for
different levels of ground shaking. A one-cycle sine pulse is used.
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Chapter 4:

Finite element analysis of the uplifting response

41 INTRODUCTION

In Chapter 3 the dynamic behaviour of a tall structure with a shallow foundation allowed to uplift was
explored in depth assuming that the supporting soil is undeformable. Emphasis was given on the
(geometrical) nonlinear features of the response, amplified in the large displacement domain due to

the gradually developed second order (P -6 ) effects. For some cases such as the analysis of appended

equipment, the model of a rocking body on a rigid base may be a reasonable approximation of reality.
In civil engineering applications however, the foundation mat is in general supported directly by a soil
medium which may experience substantial deformations when undertaking the superstructure loads.
Due to soil compliance, a free-standing rigid structure may sustain rocking motion without uplift at
low amplitudes of rotation. In this regime, the response can be linear provided that soil material
deforms elastically and conventional soil-structure interaction procedures may be applied. For
sufficiently large rocking amplitudes though, separation of the footing from the underlying soil occurs
and the response alternates between the modes of full contact and uplift. Rocking motion is then
nonlinear even under the assumption of elastic soil behaviour. For a very stiff soil, uplifting initiates at
a very low rotation and the full contact mode tends to diminish. Hence, rocking is associated with
large amplitudes of uplift and the response is similar to the rigid base case. On the contrary, under soft
soil conditions, deformations of the supporting soil around the footing edges are significant and impact
during the uplifting mode becomes more absorbing. Consequently, dissipation mechanisms (radiation
and hysteretic damping) are generated through soil medium, uplift is limited and attenuation of

motion is faster. Reasonably, large soil deformations underneath the foundation are accompanied with
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generation of plastification zones which further amplifies the dissipative mechanisms and shrinks the

uplift mode.

Apart from the size parameter and aspect ratio of the block (pand @, respectively), the main

parameters affecting now the dynamics of rocking are:

% the visco-elastic soil properties GG, v and ¢ considering homogeneous and isotropic medium,

% the structural weight NV,
% the presence of bedrock at a shallow depth, and also

% the ultimate load N, , when limited soil strength is implemented in the analysis.

Several analytical studies have been published in the past to elucidate the effect of soil compliance on
the uplifting response. In these early studies (Psycharis and Jennings, 1983; Yim and Chopra, 1985;
Koh ez al., 1986) the underlying soil was represented with distributed tensionless spring-dashpot
elements (the beam-on-winkler-foundation model). Recently, with the advent of powerful
computational resources, some finite element studies have modelled the supporting soil with two-
dimensional continuum, either elastic or inelastic (among others Crémer and ez al., 2001; Gazetas and
Apostolou, 2004). In addition, during the last decade, many experimental studies (primarily
centrifuge tests) cast insight on the nonlinear features of the uplifting response (Gajan et al., 2003;
Paolucci er al., 2008). Crémer and et al., 2002 also analysed a foundation on inhomogeneous
continuum and developed a constitutive law to represent the uplift mechanics in an elastic or
elastoplastic soil through a single macro-element. Late studies focused on the macro-element approach
aimed at developing simplified yet realistic modelling of soil and foundation (Houlsby and Cassidy,
2002; Gajan and Kutter, 2009; Chatzigogos et al., 2009; Figini et al., 2011). In a parallel path, a new
generation of beam-on-winkler-foundation models have been developed to overcome the
shortcomings of the early ones (Allotey and El Naggar, 2003, 2008). A detailed review of recently

elaborated macro-element models will be discussed in Chapter 5.
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In this Chapter, the uplifting response of shallow foundation on compliant soil medium is examined
under both monotonic and earthquake loading conditions. The analysis is performed with the finite
element method where emphasis is given on the rigorous computation of the response in the domain
of large displacements. In this way the results can be utilised to elaborate a sophisticated macro-

element model efficient in both static and dynamic analysis.

The system configuration of Fig. 4.1 is considered, comprising a 1-dof structure with shallow
foundation supported on deformable soil medium. Compared to the ‘rigid soil’ problem, the uplifting
structure possesses now additional degrees of freedom due to the compliance of the supporting soil.

Hence, for such a structural system the independent variables are:

% The horizontal displacement of the footing u,
% The vertical displacement of the footing w, (upward is positive)

+ The rocking rotation of the footing 6

¢ The contact ratio A =3/b, where 3 is the half-width of the footing remaining in contact with

the soil (from now on tke effective footing).

For simplicity, in all numerical analyses of this stage the structural system is considered rigid and

therefore the superstructure displacements are explicitly derived from the foundation displacements.

centre Us-U,+ [ sin6
of mass !
| wsw,+[ cosf

Figure 4.1 Rocking and uplifting on deformable soil: system configuration.
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4.2 METHOD of ANALYSIS

4.2.1 Finite element modelling

Nonlinear analysis of rocking and uplifting response under static (monotonic) and earthquake loading
is implemented numerically with the finite element method. To this extent the sophisticated code
ABAQUS (Hibbit, Karlsson and Sorensen; 2004) is utilised. In most of the analyses performed in this
study the structure and the underlying soil are represented with plane-strain elements. For the
purposes of the two- dimensional modelling soil medium is represented with quadrilateral, continuum
elements whereas boundary conditions at the far field are described with nfinite elements. General-
section beam elements are utilised to model the superstructure whilst a massless rigid foundation is
obtained by a combination of solid and rigid (beam) elements. The structural weight is concentrated at
a mass element located at the gravity centre of the superstructure. An advanced contact algorithm has
been adopted to incorporate potential slipping or uplifting of the foundation, considering purely
elastic impact. To this end soil-foundation interface is modelled with gap elements of zero tensile
capacity allowing for a rigorous treatment of finite separation and sliding. The latter is calculated by a

Coulomb-type frictional law at the interface. Geometric nonlinearity attributed to (P —6) effects is

taken into account through appropriate large displacement formulation. A static step is preceding any

static or dynamic analysis to establish geostatic conditions within.

For the analysis of the earthquake response, seismic excitation is imposed to soil medium through the
underlying rigid bedrock. In so doing, time histories of recorded earthquake motion or pulse-type
Ricker wavelets are used. The latter is a very useful tool in numerical wave propagation analysis
through soil due to its ability to represent records with distinguishable, long-duration pulses
attributed to near-source effects (directivity, fling). An implicit direct-integration algorithm
incorporated in the code ABAQUS is utilised to compute the nonlinear dynamic response of the
system. With this technique the global equations of motion are integrated through time using the

implicit Hilber-Hughes-Taylor operator. Equilibrium solution within each time increment is obtained
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by an iterative process applying Newton’s method. An automatic incrementation scheme is also used
with the general implicit dynamic integration method. The scheme uses a half-step residual control to
ensure an accurate dynamic solution. The half-step residual is the equilibrium residual error (out-of-
balance forces) halfway through a time increment. This half-step residual check is the basis of the
adaptive time incrementation scheme. If the half-step residual is small, the accuracy of the solution is
high and the time step can be increased safely; conversely, if the half-step residual is large, the time
step should be reduced. The automatic incrementation scheme is especially effective in cases where a
sudden event is introduced to the dynamic problem e.g. the moment when the foundation impacts the
ground during cyclic rocking motion associated with large uplift. In such studies small time
increments are required immediately after the sudden event. At later times the response can be
modelled accurately with large time increments because most of the high frequency content of the

solution has been damped out by the dissipation mechanisms present in the model.

A typical two- dimensional finite element discretisation and the types of elements implemented are

portrayed in Fig. 4.2.
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Figure 4.2 Two- dimensional finite element discretisation and the types of elements applied.

4.2.2 Constitutive soil modelling

Mohr-Coulomb model

Soil yielding is represented with the M-C criterion and the critical parametres ¢ and ¢. For stress
levels inside the yield surface, soil response is determined by the visco-elastic parametres £, v, and
¢ . In the post-yield regime, a perfectly plastic behaviour is considered for soil, hence the stress field

remains invariant to the development of plastic strains. In the finite element study performed here the

Mohr-Coulomb model is confined to static analysis procedures.

Kinematic isotropic|hardening model
This constitutive soil model is based on the simulation of nonlinear cyclic behaviour of cohesive soils

under undrained conditions with the behaviour of ductile metals. It is characterised by an initial,
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pressure independent yield surface [ p= (al +0,+0; ) / 3] which is inflated and translated in the stress

space through the development of plastic strains. Yield surface is described with Von-Mises criterion

1/2
(al —02)2 +(02 —03)2 +(0'3 —01)2

2

q =0, , where ¢ is the deviatoric stress: ¢ = and o, is the yield

stress under uniaxial loading. During two-dimensional (plane-strain) conditions, the yield surface is
determined in the principal stress space by the following equation: \/af —alaz+a§ =o0;. An

isotropic/kinematic hardening flow rule is also incorporated in the model to simulate the post-yield
behaviour of soil subjected to cyclic loading. This evolution law consists of two components: a
nonlinear kinematic hardening component, which describes the translation of the yield surface in
stress space and an isotropic hardening component, which describes the change of the equivalent
stress defining the size of the yield surface, as a function of plastic deformation. For stress levels inside

the yield surface, soil behaviour is determined by the visco-elastic parametres E , v, and £. One- and

three-dimensional representation of the nonlinear isotropic/kinematic hardening flow rule
implemented in the numerical analysis for soil behaviour is presented in Fig. 4.3. Nonlinear aspects of
the cyclic behaviour predicted by the constitutive model for load- and displacement-controlled

loading conditions are illustrated in Fig. 4.4.
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Figure 4.3 One- and three-dimensional representation of the nonlinear isotropic/kinematic hardening
flow rule implemented in the finite element analysis to simulate cyclic soil behaviour.
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Figure 4.4 Cyclic soil behaviour predicted by the isotropic/kinematic hardening model implemented
in the finite element analysis.

4.2.3 Parameters of the soil-foundation models

The soil-foundation models have been implemented to examine the uplifting response as presented in
Table 4.1. These models also portrayed in Fig. 4.5 differ on the aspect ratio and size of the structure,
the height of soil stratum over the rigid bedrock, as well as the soil parameters (elastic and strength).
It is noted that all soil profiles describe homogeneous soil, apart of one in which increasing stiffness

and strength over depth have been implemented.
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Table 4.1 The soil-foundation models implemented in the analyses of the present

study
Numerical model
Parameters
Model v.01 Model v.02 Model v.03 Model v.04
E (MPa) 20-100 3000s, 20-100 20-100
G (MPa) 7-33 1000s, 7-33 7-33
s, (kPa) 50-100 0.20\',o +10 50-100 5-200
Soil

Omax | O 0.19 0.19 0.19 0.19
H (m) 5 20 20 20

T, (sec) 0.30-0.19 0.64 1.28-0.59 1.28 -0.59
2b (m) 2 6 2 11

Structure
h,,, (M) 5 12 5 9
Modelv.01 Modelv.02

G(2) =G, G(z) = G,[1+0.9428]

Rigid bedrock Rigid bedrock
Ricker wavelet: PGA, Tg Ricker wavelet: PGA, Tg
Modelv.03 Modelv.04

Rigid bedrock Rigid bedrock
Ricker wavelet: PGA, T Ricker wavelet: PGA, T

Figure 4.5 Soil-foundation models utilised in the finite element analysis.
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4.3 UPLIFT on VISCO-ELASTIC SOIL

The idealised case of an uplifting foundation on elastic soil is directly applicable only to the case of
very stiff soil which experiences small deformations limited in the vicinity of the foundation edges.
Nevertheless, it serves as a useful tool for highlighting the profoundly nonlinear dynamics of the soil—-
structure system. The geometrically induced nonlinear behaviour arises primarily from the
exceedance of the tensile strength at the soil-foundation interface which engages the uplifting regime.
It is amplified though, by the developing second order effects as the mass centre is drifting away from

the vertical axis of symmetry during uplift.

4.3.1 Monotonic response

The rocking response of a shallow foundation allowed to uplift under static conditions is investigated
first. To this extent, the system configuration of Fig. 4.5a is considered (model v.01). In the first step
the vertical (gravitational) load is applied through the mass centre (symmetric loading). Then a
gradually increasing horizontal displacement ¢ is applied at the mass centre up to a maximum value of

0ax =0 (antisymmetric loading). For a sufficiently slender structure the horizontal translation of the

m

footing wu, is negligible compared to ¢ and therefore, the moment at which v, =6, =0, the

max
footprint of the mass centre has reached the foundation edge. Evidently, critical overturning has
already occurred at this loading point. The displacement-controlled loading at the mass centre is
restrained by a horizontal shear force () and an overturning moment M imposed to the foundation
by the supporting soil so that static equilibrium is attained. From the vertical displacements of the

foundation edges (w;, w;) and the mass centre (w,, ), the rocking rotation ¢ and the foundation

moment M with respect to the corner point (3) can be computed:
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6 = arcsin [%] (4.1]

M = Qcmh’ (wcm - U]3 ) [42]

in which @

cm

= () is an output of the finite element analysis as well. The foundation moment A/ can

be calculated alternatively by integrating soil pressures over the contact interface:

M=M,= Zpﬂ (z;)x; cos§ Az, — Nhsinf [4.3]

i=1

where n is the total number of nodes on which soil pressures are computed, z; and p, (z,) are

respectively the distance of the i-th node from the footing midpoint and its corresponding soil

pressure, and Az, = Ab,_, +Ab, (Ab,_,, Ab, are the half-lengths of the neighbouring elements). Soil

pressure at a node of the foundation is calculated from the axial force of the gap element linking this

node to its corresponding soil node.

The half-width of the effective footing [ is calculated at each increment through the number of the
nodes remaining in contact with the supporting soil. Hence for a m < n number of foundation nodes

attached to the corresponding soil nodes, upper and lower bounds of uplift can be estimated:

m—1

B =2—"2b and B =-—-2b [4.4a]
n n

Then the half-width of the effective footing is:
6:<ﬂmax+6min>/2 [44b]

It is obvious that for m = n (full-contact regime) it is =b.

min — 6 max
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During the linear regime of rocking without uplift, the rotation pole remains fixed at the midpoint of

the contact interface and therefore w, =w, = N /K, . After uplift initiates however, the rotation pole

shifts towards the pivot point as the area of the effective footing decreases and an upward vertical

incremental displacement is developed:

bw, =x,sind [4.5]

where z, is the instantaneous position of the rotation pole with reference to the foundation midpoint.

In the limiting case of a rigid soil the pole moves from the midpoint to the pivot point right at the

uplift onset and w, =bsinf . From kinematic analysis of the rocking foundation the displacement of

the pole z, along the contact interface can be calculated as a function of the incremental vertical

displacements of corner points (1) and (3) and the half-width b:

ow; +6

z,
dw, — dwy,

Contact pressures
A key issue in the analysis of rocking response is to study the constitutive laws that govern the
development of soil pressures acting on the foundation. The soil-structure configuration of model v.01

(Fig. 4.5a) with soil modulus of elasticity E =20 MPa (GO =7 MPa) is adopted to compute p —w

curves along the foundation base. In the graphs of Fig. 4.6 the development of contact pressures is
plotted for the interface nodes from the left edge towards the midpoint (red circles) in comparison
with their equidistant nodes on the right (solid black lines). Initially, a vertical load is applied to the
footing through the mass centre, gradually increasing to reach gravitational load of 500 kN . During
this step, the distribution of the contact pressures along the interface is symmetrical to the midpoint
and can be validated with the elastic medium solutions available in literature (Sadowsky, 1928) as
shown in Fig. 4.7. These soil reactions must be in equilibrium with the external load, and therefore

integration along the foundation should lead to the gravitational load N . In the p —w curves of Fig.
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4.6 this step is represented by the linear branch determined by the points of rest ( p=w= 0) and full
loading (w =plk,=N|K,6 =0.025 m). As symmetrical nodes are represented on each graph, their

load-displacement curves are identical during this phase. Unlike the conventional winkler modelling,

the stiffness £, is not uniform along the foundation, but increases close to the edges. In the succeeding

step, a gradually increasing horizontal load is applied at the mass centre. The overturning moment
resulted from the imposed displacement generates additional soil pressures and differential
settlements. Hence, this antisymmetric loading separates the contact interface to the loading side (on
the right of the midpoint) and the unloading side (on the left of the midpoint). Along the loading side

soil pressures increase at a steeper rate determined by £k, . Likewise, for the unloading side soil

pressures gradually reduce at the same rate until they drop down to zero. Interestingly, at this point
the vertical displacement has not become zero as well (as the conventional winkler model predicts) but
has converged to a residual value. Evidently, uplift is engaged right after the contact pressure of the
left corner node becomes zero. As the separation zone is expanding towards the midpoint, the
unloading area is shifting rightwards. For the contact pressures on the foundation area remaining in

contact with soil, an upperbound exists now beyond which, unloading initiates.
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Figure 4.6 p—w curves of a foundation on elastic soil (EO =20 MPa) during: (a) pure vertical load,
(b) displacement-controlled horizontal load at the mass centre.
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Figure 4.7 Distribution of contact pressures on the foundation computed with finite element analysis
(white circles) and analytical equations (solid lines) for poor or medium soil stiffness: (a) under pure
vertical loading, (b) at incipient uplift, and (c) at ultimate moment.
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Figure 4.8 Vertical displacement along the foundation at incipient uplift normalised to the
gravitational settlement. Elastic soil of medium or poor stiffness (white circles and black crosses
respectively) is considered.
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Static stiffnesses

Many researchers have developed analytical solutions for the static stiffness of the soil-foundation
system under any type of loading. In this way the static stiffness is expressed as a function of the
elastic soil parameters and the width (or diameter) of the footing. Parameters such as the shape of the
footing, the embedment, the distribution of soil stiffness with depth, and the possible presence of a
shallow bedrock have also been implemented in these equations. Among them, Gazetas (1991)
recommendations are the most widely adopted for both analysis and design purposes. For the case of a
strip footing on the surface of a homogeneous soil stratum over a rigid bedrock, Gazetas equations for

swaying, vertical, and rocking vibrations are simplified as follows:

2G b
K, = 1+2—
h Z—V[ + H] [4.7a]
K = I'ZG[H&Si] [4.7b]
1-v
K = TGV 14022 4.7
m - 2(1—1/) * H [ . C]

The comparison of these equations with the finite element analysis is summarised in Table 4.2.

Table 4.2 Static stiffnesses of a rigid strip footing on homogeneous soil over bedrock
computed for different values of soil Young’s modulus (a) with the finite element method,
(b) analytically (Gazetas, 1991).

K, (MNm/rad) K,(MN/m) K,(MN/m)
E(MPa) 100 20 100 20 100 20
Analytical equation 89.7 17.9 112.1 224 63.3 12.7
(Gazetas, 1991) ’ ’ : ’ ’ )
Finite elements 92.6 16.5 98.6 19.8 45.2 8.8

An excellent agreement is achieved in the rocking mode for both soft and medium soil conditions,

whereas in the vertical mode the analytical solution slightly overestimates the stiffness. In the swaying
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mode, the analytical solution is by 1.5 times larger than the numerical values. This difference

however, can be attributed to the coupled swaying and rocking motion in the finite element analysis.

Load-displacement curves

A rigorous approach of the static overturning moment about the foundation midpoint as a function of
the rocking rotation for a rigid foundation allowed to uplift on elastic soil is depicted in Fig. 4.9. When
an undeformable soil is regarded, at incipient uplift the moment instantaneously climbs from zero up

to the ultimate value M, = Nb. From this point on, the moment is gradually decreasing due to the
amplifying (P -6 ) effects and eventually drops down to zero when the rocking rotation reaches the

critical value 6, =b/h. On the other hand, in the full-contact regime the soil-foundation stiffness is

kept constant and therefore the moment is a linear function of the rocking angle. It is concluded that
in case of deformable supporting soil and a foundation allowed to uplift, the moment-rotation curve is
bounded by the afore-mentioned limiting curves (Apostolou and Gazetas, 2005). This curve
comprises: (a) a linear branch from zero up to the point where uplift initiates, (b) a softening branch
to the ultimate moment capacity point, in which the soil-foundation rocking stiffness decreases due to
the gradually amplifying uplifting mechanism, and (c) a declining branch which is dominated by the

(P -0 ) effects and eventually leads to the overturning failure of the foundation at the critical angle 0,

(Fig. 4.9).

In the full-contact regime the moment is a linear function of rocking rotation and the rocking stiffness
is calculated analytically from the afore-described solutions of the literature (e.g. Gazetas, 1991).
From all finite element analyses of this study, the moment at incipient uplift is computed equal to half

the ultimate value of the ‘rigid soil’ case, M, = Nb, irrespective of soil stiffness:
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This expression for the uplifting moment has also been extracted from the parametric study of Crémer

et al. (2002). Regarding the moment capacity of the footing, it reaches a maximum value when a rigid

soil is considered. Then, by reducing the stiffness of soil medium, it gradually decreases until

eventually drops down to zero for an infinitely compliant soil (E = 0).
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Figure 4.9 Moment — rotation curves of a rigid strip footing on elastic (soft or medium) or rigid soil.
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Figure 4.10 Moment — vertical displacement curves of a rigid strip footing on elastic (soft or
medium) or rigid soil.

Coupling of foundation displacements with rocking angle

Apart from force-displacement curves, remarkable conclusions can be drawn from correlating the
translational (v, and w, ) with the rotational displacements (¢ ) of the footing.

The correlation of horizontal displacement, u, with rocking angle, 6 for the case of soft and medium
soil (£ =20 MPa and 100 MPa respectively), is plotted in Fig. 4.11. The v, —6 relationship of the
‘rigid soil’ case is also plotted in the same graph. The latter curve can be computed analytically, from

the geometry of the problem [ub = b(l — COos 9)] . On the other hand, for a footing in full contact with

elastic soil, the horizontal displacement u, can be correlated with rocking rotation by eliminating the

mh

moment from its constitutive relationships M =K, 0 =K, ,u, |then u,= (K, /K,, )0] . Evidently, for

a footing prevented to uplift, the trend is linear for any rotation. This linear correlation is followed by
the ‘elastic soil’ curves (Fig. 4.11), at small rotations where uplift has not yet initiated. Nevertheless,
after uplift onset, these curves tend to track on the ‘rigid soil’ curve as the rocking angle approaches

the critical value 6, . The stiffer the soil, the more rapidly the ‘elastic soil’ curve reaches the limiting
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curve. In general the uplifting response weakens coupling between u, and 6 and sets an upper bound
for the horizontal displacement, w, .. =b(1—cosf,), as resulted from limit equilibrium. For the

slender block examined, it is u, , =0.166, =0.02 m. Regarding that b=,

max

(where 6, is the

X

maximum imposed displacement at the mass centre during pushover loading), the following

relationship is derived:

cosd, [4.9]

It is evident that for slender systems, the imposed displacement at the mass centre is transferred to the

footing as rocking displacement, the horizontal component of which can be considered negligible.
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Figure 4.11 Coupling of horizontal displacement with rotation of a rigid strip footing on elastic (soft
or medium) or rigid soil.

The correlation of the vertical displacement with the rocking angle is plotted in Fig. 4.12. The w, —0
relationship of the ‘rigid soil’ case is also plotted in the same graph, computed with the analytical
relationship, w, =bsinf. This equation results in a linear curve starting from the point (0,0) and
leading to upward displacement, w, =060, = b®/h at critical equilibrium. The numerically computed

‘elastic soil’ curves have an initial vertical displacement at rest (gravitational settlement)
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w,, =—N | K, . Like the footing on elastic soil prevented to uplift, this value is kept constant in the full

contact regime regardless the rocking angle. Once uplift initiates though, the incremental

displacement éw, becomes upward at a rate which depends on the soil stiffness. In general this rate is

close to b, whereas for a sufficiently stiff soil (in this example £ =100 MPa) it can be considered

equal to b. Under a gross estimate (considering bilinear w, —6 curve), the maximum available

upward displacement of an uplifting footing on elastic soil is then w, = b(b /h—Nb/ 2) -N/K, .

v
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Figure 4.12 Coupling of vertical displacement with rotation of a rigid strip footing on elastic (soft or
medium) or rigid soil.

Rotation pole

The exact positioning of the rotation pole during rocking vibrations is of great importance as it
governs the distribution of soil pressures. When a strip footing is rocking in full contact with elastic
soil, the pole of rotation lies on the interface midaxis. For a sufficiently slender structure the
translational mode can be neglected and the pole is located constantly at the interface midpoint. In any

case for the projection of the pole on the footing interface it holds z, = 0. On the other hand, in case

of a rigid soil the pole of rotation jumps from the midpoint to the corner of the footing as rocking

initiates (Fig. 4.13). In the general case of rocking with uplift on a compliant soil, the pole departs
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from the midpoint right after uplift onset moving towards the corner point. The stiffer the supporting

soil the more rapid this transition is (Fig. 4.13).
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Figure 4.13 The transition of the rotation pole from the midpoint to the corner of the foundation
during rocking.

Uplift

According to Eqs 4.4a, lower and upper bounds of the half-width of the effective footing § can be
computed from finite element analysis. It is reminded that the effective footing G = \b is the part of
the footing remaining in full contact with the underlying soil. A mean curve can then be derived
according to Eq. 4.4b. The 3 —0 curves for the medium and stiff soil are plotted in Fig. 4.14. During

full contact regime, the effective footing width is equal to 2b. As uplift initiates, the width 25 follows

an exponential decay and eventually approaches a residual value, 3

res

as ¢ — 0, . The stiffer the soil,

the smaller this residual value is. In the limiting case of rigid soil, it yields 5. =0.

res
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Figure 4.14 Upper, lower, and average curves of foundation uplift (described with the effective

footing) on elastic soil of poor or medium stiffness.
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Figure 4.15 Analytical curves of a rigid strip footing without p — delta effects and comparison with
finite element results.
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4.3.2 Free vibration response

In Chapter 3, the free vibration period of a rigid one-story structure was computed as a function of the
rocking amplitude according to linear and nonlinear formulation. It was outlined that the linear
formulation as derived by Housner can adequately predict the period. It was also pointed out that in
the free vibration regime, the frequency of a rocking structure on a rigid soil is amplitude-dependent

even at low levels of rotation, and therefore, the dynamic parameter p is not the eigenfrequency of

the system. Contrary to the rigid soil case in which the free vibration period tends to zero under low
levels of rocking, postulation of a deformable supporting medium results in linear response before
uplifting initiates. In this state the fundamental period of the rigid structure is provided by linear SSI
theory for an oscillator with two degrees of freedom (i.e. the horizontal displacement of the base

midpoint, », and the rotation 6 ):

~ J
T=\T?+T? =2 K;Mrﬂ [4.10]

m h

The influence of the vibration in the horizontal direction on the overall response can be estimated by

the following period ratio:

~ K B
AN WL LT TR W ¥
T’m, cb Km l1-v

tan’ 0, [4.11]

in which the mass moment of inertia is J,=mh> and the elastic medium is considered as

homogeneous halfspace. As demonstrated in Chapter 2, for sufficiently slender structures the

fundamental period can eventually yield:

[4.12]

Psycharis and Jennings (1983) studied rocking and uplifting of slender structures on a flexible

foundation by modelling soil continuum with independent linear springs of zero tensile capacity. In

Apostolou, doctoral dissertation 2011 118



Chapter 4: Finite element analysis of uplifting foundation

this study the rocking period was computed as a function of the normalized impulse 3=0,,. /0,

where 0, is the amplitude of rocking of the equivalent fixed base system and 0, ,, is the critical

X

angle at incipient uplift. For values of (5 smaller than 1.65, a linear correlation was established

between the amplitude of rotation and the rocking period:

=0.903+0.09753 [4.13]

S

The influence of soil stiffness to the rocking period of rigid uplifting structures is outlined next
through the pattern of a bridge pier with a spread foundation on elastic soil, as represented with model
0.02 of Fig. 4.5. The vertical load of the bridge pier is applied at the mass centre, which is located
12m above the ground surface. In the transverse direction the footing of the pier is 6 m wide,
whereas in the longitudinal direction is considered infinite so that plain strain assumption can be
adopted. Sliding at the soil-foundation interface is prevented thereby rocking is the dominant mode of
the response. Unlike the soil profile associated with the model v.02, the supporting medium is now an

elastic halfspace of stiffness £/, =10 MPa and 20 MPa (case 1 and 2 respectively) and Poisson ratio
v=0.3. For these levels of soil stiffness the rocking period prior to uplift is 7, = 3.1 sec sec and

2.2 sec. A finite element analysis is performed to compute the rocking response of the pier at the free
vibration regime. In Fig. 4.16 the free vibration period is plotted in terms of the rocking amplitude for
the two values of soil stiffness (case 1 and 2) and in comparison with the limiting case of a rigid soil

medium (case 3). The aspect ratio of the structure is tan6¢, = 0.25 meaning that when the peak angle

is close to 0.25 rad, the period of rocking tends to infinity. The response can be separated in two
states depending on whether uplift occurs or not. Initially, for rotation amplitude below the threshold

of uplift the rocking system exhibits harmonic oscillations on the flexible base of constant period 7

Once uplifting occurs the period of free vibration converges gradually to the period of the rigid base
system even when an extremely soft soil is regarded (case 1). This is a result of the amplifying role of

the P—¢ effects on the soil-foundation stiffness (on the expense of soil modulus £, ) at large
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rotations, as portrayed in Fig. 4.9. Hence, for a peak angle of rotation 6, =0.1rad (40 % of the
critical value 6, ), the period of the rigid soil system (case 3) is 5.1 sec , which is merely increased to

5.6 sec and 5.3 secin cases 1 and 2 respectively. It can therefore be assumed that for high levels of
rotation (comparable to the critical angle) a rigid base system can be adequate to compute the free

vibration period of an uplifting structure.

8
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8 1000 kN / m
2 4 0
& _____ —_—
= OO0 €
2 - ‘ i
3 Es 6m ‘
S —
uplift,(2)
0.04 0.08 0.12 0.16
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Figure 4.16 The rocking period of a rigid, one-storey structure supported on, (a) rigid soil, (b) soft
soil (E =20MPa), and (c) very soft soil (£ =10MPa).

4.3.3 Earthquake response

The dynamic response of an uplifting structure subjected to earthquake excitation is next

investigating.

At first, rocking of the one-storey structure allowed to uplift is computed for different values of soil
stiffness. Each analysis is repeated by preventing uplift. In this way, rocking displacement spectra

with respect to the fundamental period, 7, can be computed for both the uplifting and the fixed base

system. For the purposes of finite element analysis, the model v.01 of Fig. 4.5 is considered. A long

duration Ricker wavelet of PGA=0.3 g and 7, =1.3 sec is used as excitation at the bedrock.. For
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the range of soil stiffness values used in the analysis, the fundamental period of soil layer can be
considered adequately small in such a way that no perceptible filtration of the bedrock motion may
occur through soil. Time histories of the rocking response are plotted in the upper two graphs of Fig.

4.17, in comparison to that of the fixed base system. For the flexible system of 7/ =1.66 sec (left-

hand side), the rocking amplitude is not sensitive to whether uplift is prevented or not. A difference in
the period of vibration between two systems is also observed. As the pulse-type excitation has ceased
after the first three seconds of rocking, this is practically the free vibration period. It turns out that the
period of the uplifting system is nearly twice as much as the period of the fixed base, which is
attributed to the increase of the amplitude-dependent period due to uplift as predicted in Fig. 4.16.

When a stiffer system is regarded by increasing soil modulus (7. = 0.74 sec, right-hand side), uplift

results in a fundamentally different response compared to that of the fixed base system. In fact, the
amplitude of rocking of the uplifting system is still at high levels much larger than the one of the fixed
base system which has significantly reduced. As shown from the rocking displacement spectrum of
Fig. 4.16, the rocking amplitude tends to zero as soil becomes infinitely stiff when uplift is prevented,

whereas for the uplifting system this amplitude converges to a value of about 0.06 rad.
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Figure 4.17 The effect of uplifting on the rocking response of a one-story rigid structure for different
values of the rocking period 7, .

The structural response of the uplifting structure is examined next, in comparison to that of the rigid
soil case, through the pattern of model v.01. A soft soil profile of F =20 MPa is first employed to

highlight the effect of the compliant supporting medium. The results are plotted in Fig. 4.18 in terms
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of normalised time histories of (a) rocking rotation, (b) acceleration of mass point, and (c) foundation

moment.
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Figure 4.18 Rocking response of a rigid structure ( p =1.387 rad/sec, tanf), =0.2, and r =0.85), (a)
on elastic soil (E =20 MPa, v= 0.5) and (b) on rigid soil. A Ricker pulse excitation of PGA=0.4g
and 7T, =1.33sec is applied at the bedrock.
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Figure 4.19 Moment — rotation curves of a rigid footing on elastic soil under earthquake shaking and
comparison to the static response. A Ricker wavelet of PGA=0.3g and 7, =1.33 sec is used as

bedrock excitation.
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Figure 4.20 Moment — vertical displacement curves of a rigid footing on elastic soil under earthquake
shaking and comparison to the static response. A Ricker wavelet of PGA=0.3 g and 7, =1.33 sec is

used as bedrock excitation.
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Figure 4.21 Vertical displacement — rotation curves of a rigid footing on elastic soil under earthquake
shaking and comparison to the static response. A Ricker wavelet of PGA=0.3 g and T, =1.33 sec is

used as bedrock excitation.
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4.4 UPLIFT on INELASTIC SOIL

4.4.1 Preliminary analysis — Validation of soil models

The failure mechanism of a rigid strip footing resting on a cohesive soil under central vertical loading
is illustrated in Fig. 4.22 (model v.03). In the numerical computation of bearing capacity the
kinematic/hardening soil model was utilised. A displacement-controlled loading was applied at the
centre of the footing and eventually an ultimate load of about 550 kN was computed. As shown in Fig.
4.22, a good approximation to the theoretically predicted slip lines (white dashed line) was obtained.

Also, the ultimate load of 550 kN is close to the analytical Prandtl’s solution which gives

N, =(m+2)As, =514 kPa (s,= 50 kPa).

LY

Figure 4.22 Failure mechanism of a rigid strip footing on a cohesive soil under central vertical
loading: Finite element plane strain analysis and comparison to the theoretically predicted slip lines
(white dashed line).
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The computed failure mechanism of a foundation in the general case of a combined loading

(M —-Q—-N ) over cohesive soil is presented in Fig. 4.23. The computed response is in good

agreement with the theoretical prediction of Salencon and Pecker (1995).

Without foundation uplift With foundation uplift

T T EETTT

Figure 4.23 Failure mechanism of a rigid strip footing on a cohesive soil under eccentric inclined
loading: Finite element plane strain analysis and comparison to the theoretical mechanism (Salencon &
Pecker, 1995).

Comparison of the soil constitutive models

A fundamental comparative study is presented next to highlight the effect of soil constitutive
modelling on the foundation response. Nonlinear behaviour of soil is approached by: (a) the elastic —
perfectly plastic model, (b) the nonlinear kinematic/isotropic model. In the latter two different values
3. A uniform distribution

of the yield stress a|0 are employed: (a) a|0 =0 10 and (b) O’|0 =0

max / max /

of the elastic modulus and the undrained strength (£ =100 MPa and s, =50 kPa respectively) is

considered throughout soil medium according to model v.03 (Fig. 4.5).
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Initially, a monotonic displacement-controlled vertical loading is applied at the foundation midpoint,
which is gradually increasing up to failure. An ultimate load of 550 kN is calculated with both
methods. This value is consistent to the analytical estimation according to Prandtl’s theory

(7r+2)5uA =514 kPa. Nevertheless, Mohr-Coulomb model provides a more stiff backbone curve

with an insignificant hardening behaviour after initial yield as shown in Fig. 4.24a. This is a result of
perfectly plastic, post-yield behaviour. On the other hand, implementation of the kinematic hardening
model leads to a softer behaviour which can be fitted by a log-type curve. From Fig. 4.24a also, it is
clear that the yield stress of the kinematic model has a minimal effect on the backbone curve. Similar

curves have been computed for a very soft soil profile (E =10 MPa) as plotted in Fig. 4.24b.

600 600 |

2
500 - 500 - 999999

400 A 400 1

E = 100 MPa E =10 MPa

300 A 300 A

N: kN
>
N: kN

—Mohr-Coulomb —Mohr-Coulomb

200 A 200 A

A Kinematic hardening A A Kinematic hardening A

100 100 -

© Kinematic hardening B © Kinematic hardening B

0 0.02 0.04 0.06 0.08 0.1 0 0.2 0.4 0.6 0.8 1
Wp: M Wp: m

(a) (b)

Figure 4.24 Monotonic curves for vertical loading extracted from two different models for nonlinear
soil behaviour: (1) elastic — perfectly plastic model, and (2) von Mises failure criterion with
isotropic/kinematic hardening law.

In Fig. 4.25a the M —6 curves are plotted for horizontal monotonic loading (displacement-
controlled) under a constant vertical load of 100 kN . In Fig. 4.25b the same curves are plotted,
zoomed in the small-displacement region. Similar conclusions to those concerning vertical loading can
be drawn. It is worthy of note that the computed (from both models) ultimate moment of about

80 kNm can be approximated by closed-form  equation of limit  analysis

M = Nb(1-N/N,)=100x1(1-100/514).
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Figure 4.25 Monotonic curves for moment loading extracted from two different models for nonlinear
soil behaviour: (1) elastic — perfectly plastic model, and (2) von Mises failure criterion with
isotropic/kinematic hardening law.

Cyclic behaviour of the foundation under a Ricker pulse-type excitation at the seismic bedrock

(TE =0.33 sec, PGA=0.2 g) is investigated next. The results are plotted in Fig. 4.26 in the form of

the foundation moment M and rigid-body displacements w,,f calculated from: (a) the Mohr-

Coulomb elastoplastic model, (b) the kinematic hardening model. A good agreement between the two
models is obtained in terms of the moment-rotation loops. The elastoplastic model though is not
sufficient enough to provide accurate estimates of the cyclic (accumulative) foundation settlement. A
harmonic excitation is also employed to compare the two models and the resulting loops are presented
in Fig. 4.27. From the results of both analyses it is derived that the M-C elastoplastic model

underestimates the additional cyclic settlement of the foundation by a factor of two (see Fig. 4.27).
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Figure 4.26 Foundation cyclic behaviour under a Ricker pulse-type excitation

(TE =0.33 sec, PGA=0.2 g) : (1) elastic — perfectly plastic model, and (2) von Mises failure criterion

with isotropic/kinematic hardening law.
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Figure 4.27 Foundation cyclic behaviour under a long-period harmonic excitation

(TE =1.00 sec, PGA=0.4 g) : (1) elastic — perfectly plastic model, and (2) von Mises failure criterion

with isotropic/kinematic hardening law.

4.4.2 Monotonic response

As for the study of elastic soil, rocking with uplift under static conditions is investigated first. The
system configuration of Fig. 4.5a is revisited (model v.01). In addition to the ‘elastic soil’ problem, the
rocking response is also affected by the limited strength of soil material. The soil strength parameter

can be implemented to the ultimate load against vertical loading N, or in a normalised form, to the
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load factor x =N /N, (i.e. the inverse of the factor of safety against vertical loading). In the first step
the vertical (gravitational) load is applied through the mass centre (symmetric loading). Then a
gradually increasing horizontal displacement ¢ is applied at the mass centre up to a maximum value of

0nax =0 (antisymmetric loading). For a sufficiently slender structure the horizontal translation of the

m
footing w, is negligible compared to 6 and accordingly, at the moment that u,, =6, =0, the
footprint of the mass centre has reached the foundation edge. Evidently, critical overturning has
already occurred at this loading point. The displacement-controlled loading at the mass centre is
restrained by a horizontal shear force () and an overturning moment )/ imposed to the foundation
by the supporting soil so that static equilibrium is attained. The rocking rotation 6 and the foundation
moment M can be computed again from Eqs 4.1 and 4.2. Alternatively the foundation moment M

can be calculated by integrating soil pressures over the contact interface (Eq. 4.3).

The half-width of the effective footing (5 is calculated at each increment through Eqgs 4.4.

Unlike the elastic soil case, during rocking without uplift, the rotation pole does not lie along the
midpoint axis of the footing. It starts moving towards the unloading corner right after the onset of
antisymmetric loading. Depending on the load factor, x , the rotation pole may shift during uplift
either towards the loading or the unloading corner. In any case the incremental vertical displacement

dw, can be calculated from Eq. 4.5.

Contact pressures
The soil-structure configuration of model v.01 (Fig. 4.5a) with soil modulus of elasticity

E, =20 MPa (Go =7 MPa) is revisited to compute p—w curves along the foundation base. An

ultimate shear strength s, =100 kPa is also introduced leading to an ultimate vertical load

N, >~1000 kN .

u —

In the graphs of Fig. 4.28 the development of contact pressures is plotted for the interface nodes from

the left edge towards the midpoint (red circles) in comparison with their equidistant nodes on the
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right (solid black lines). Initially, a vertical load is applied to the footing through the mass centre,
gradually increasing to reach gravitational load of 500 kN . During this step, the distribution of the
contact pressures along the interface is symmetrical to the midpoint and can be validated with the
elastic medium solutions available in literature (Sadowsky, 1928) as shown in Fig. 4.29. These soil
reactions must be in equilibrium with the external load, and therefore integration along the foundation

should lead to the gravitational load N . In the p—w curves of Fig. 4.28 this step is represented by

the linear branch determined by the points of rest (p:w:O) and full loading
(w: plk,=N|K,6 =0.025 m). As symmetrical nodes are represented on each graph, their load-

displacement curves are identical during this phase. Unlike the conventional winkler modelling, the

stiffness £, is not uniform along the foundation, but increases close to the edges. In the succeeding

step, a gradually increasing horizontal load is applied at the mass centre. The overturning moment
resulted from the imposed displacement generates additional soil pressures and differential
settlements. Hence, this antisymmetric loading separates the contact interface to the loading side (on
the right of the midpoint) and the unloading side (on the left of the midpoint). Along the loading side

soil pressures increase at a steeper rate determined by £k, . Likewise, for the unloading side soil

pressures gradually reduce at the same rate until they drop down to zero. Interestingly, at this point
the vertical displacement has not become zero as well (as the conventional winkler model predicts) but
has converged to a residual value. Evidently, uplift is engaged right after the contact pressure of the
left corner node becomes zero. As the separation zone is expanding towards the midpoint, the
unloading area is shifting rightwards. For the contact pressures on the foundation area remaining in

contact with soil, an upperbound exists now beyond which, unloading initiates.
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Figure 4.28 p—w curves of a foundation on elastoplastic soil (Eo =100 MPa, = 0.5) during: (a)

pure vertical load, (b) displacement-controlled horizontal load at the mass centre.
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Figure 4.29 Distribution of contact pressures on the foundation computed with finite element
analysis: (1) under pure vertical loading, (2) at incipient uplift, (3) at ultimate moment, and (4) at the
declining branch.

Load-displacement curves

A rigorous approach of the static overturning moment about the foundation midpoint as a function of
the rocking rotation for a rigid foundation allowed to uplift on elastic soil is depicted in Fig. 4.30.
When an undeformable soil is regarded, at incipient uplift the moment instantaneously climbs from

zero up to the ultimate value M, = Nb. From this point on, the moment is gradually decreasing due
to the amplifying (P -0 ) effects and eventually drops down to zero when the rocking rotation reaches

the critical value 6, =b/h. On the other hand, in the full-contact regime the soil-foundation stiffness

is kept constant and therefore the moment is a linear function of the rocking angle. It is concluded that
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in case of deformable supporting soil and a foundation allowed to uplift, the moment—rotation curve is
bounded by the afore-mentioned limiting curves. This curve comprises: (a) a linear branch from zero
up to the point where uplift initiates, (b) a softening branch to the ultimate moment capacity point,
where the soil-foundation rocking stiffness decreases due to the gradually amplifying uplifting

mechanism, and (c) a declining branch which is dominated by the (P -6 ) effects and eventually leads

to the overturning failure of the foundation at the critical angle 6, (Fig. 4.30).

In the full-contact regime the moment is a linear function of rocking rotation and the rocking stiffness
is calculated analytically from the afore-described solutions of the literature (e.g. Gazetas, 1991).

Uplift initiates for a moment of Nb/2. This value for the uplifting moment is also extracted from the

parametric study of Crémer ez al. (2002).
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Figure 4.30 Moment — rotation curves of a rigid strip footing on inelastic (soft and medium) or rigid
soil. In the deformable soil the vertical load factor is x =0.5.
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Figure 4.31 Moment — rotation curves of a rigid strip footing on inelastic soil for different values of
x and comparison to the rigid soil case.
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Figure 4.32 Moment — vertical displacement curves of a rigid strip footing on inelastic soil for
different values of x and comparison to the rigid soil case.

Coupling of foundation displacements and rocking angle
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Figure 4.33 Coupling of vertical displacement — rotation of a rigid strip footing on inelastic soil for
different values of x and comparison to the rigid soil case.

Rotation pole

The exact positioning of the rotation pole during rocking vibrations is of great importance as it
governs the distribution of soil pressures. When a strip footing is rocking in full contact with elastic
soil, the pole of rotation lies on the interface midaxis. For a sufficiently slender structure the
translational mode can be neglected and the pole is located constantly at the interface midpoint. In any

case for the projection of the pole on the footing interface it holds z, = 0. On the other hand, in case

of a rigid soil the pole of rotation jumps from the midpoint to the corner of the footing as rocking
initiates (Fig. 4.34). In the general case of rocking with uplift on a compliant soil, the pole departs
from the midpoint right after uplift onset moving towards the corner point. The stiffer the supporting

soil the more rapid this transition is (Fig. 4.34).
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Figure 4.34 Shift of the rotation pole along the foundation during rocking for different levels of the

capacity factor Yy .
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Figure 4.35 Reduction curves of the contact area (effective footing) during uplift for different levels
of the capacity factor x .

4.4.3 Earthquake response

The significance of uplifting and soil inelasticity on the seismic response of the slender structure of
Fig. 4.5 is explained in Figs 4.36 and 4.37. Seismic excitation in the form of a long-period Ricker
pulse (TE = 2.2 sec, PGA = 0.20 g) is applied at the bedrock and is propagated through soil to
produce a free-field “input motion” of a dominant period TE = 1.8 sec and PGA = 0.34 g. Such a
Ricker-type excitation represents long-period pulses that are often attributed to near-source rupture-

directivity effects.

The response is highlighted in terms of M-0 and M-w hysteresis loops (Fig. 15), as well as time-
histories of rotation 6, settlement w, and acceleration Acm at the superstructure (Fig. 16). Two cases

are considered :

. a “light” weight structure : N = (1/4) Nu = 1000 kN, corresponding to x = 0.25

. a “heavy” weight structure : N = (3/4) Nu = 3000kN, corresponding to y = 0.75

Several conclusions may be drawn from Figs 4.36 and 4.37:
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. For the light structure : The initial loading cycle follows the monotonic pushover M—6 curve.
Upon unloading after a small excursion in the descending branch of the monotonic curve, the path
follows with small deviations the original monotonic curve. This is evidence of reversible behaviour

the result of nonlinearly elastic uplifting response. However, after a substantial excursion into the
descending branch unloading departs slightly from the virgin curve, as soil inelasticity is “activated”
due to the large concentration of the applied normal stress when uplifting reduces substantially the

area of contact.

. For the heavy structure: The departure of all branches of loading—unloading-reloading cycles
from the monotonic curve is far more substantial apparently the result of strongly inelastic soil

behaviour as the bearing capacity failure mechanisms (left and right) are fully “activated” in this case.

. The moment-settlement curves (M-w) reflect the above M—0 response, with the curve of the
light-weight case showing the smallest deviation from the monotonic curve, and of the heavy weight

the largest.

. From a design perspective, soil-foundation-structure interaction (SFSI) plays a beneficial role
in reducing the acceleration ACM at the centre of mass of the superstructure. This reduction is much
greater in the heavy-load case, as result of significant soil inelasticity induced by the rocking

foundation (“inertial” nonlinearities).

. The “penalty” of the heavily loaded foundation is to sustain substantial additional vertical
settlements, AW (of about 20 cm) ; by contrast the lightly-loaded foundation ends-up with the same

settlement as its original static settlement, w wo 5 cm.

. Particularly significant, although somewhat coincidental, is the very small residual rotation in
both cases. This is due to the largely symmetric nature of the excitation, as a result of which the

heavily-loaded foundation develops “left” and “right” bearing-capacity failure mechanisms. The
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resulting two-sided inelastic deformations lead to a symmetric downward displacement (: Aw) with

only a minor residual rotation A9.
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M —0 and M —w curves for the soil-foundation system of Fig. 4.5.
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Figure 4.37 M —6 and M —w curves for the soil-foundation system of Fig. 4.5.

4.5 SIMULATION of CENTRIFUGE EXPERIMENT

In the framework of the ‘QUAKER’ research project a series of centrifuge tests have been performed
at LCPC to investigate a building with a slenderness ratio of two resting on clay under monotonic and
cyclic loading. Ultimate capacity and permanent deformation of the foundation have been recorded
and discussed. Nonlinear finite element modelling of the experimental tests highlights the effects of
the problem parameters on the foundation response. In this series of experiments, a 100x100 mm2
footing (80x80 mm2 in few cases) over soft saturated clay is submitted to (a) purely vertical, (b)

monotonic horizontal and (c¢) cyclic horizontal loading. To this end, a servo-controlled actuator was
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used to operate as displacement-controlled for the static tests and force-controlled for cyclic loading.
The tests were performed under a centrifugal acceleration of 100 g meaning that a scale of 1/100
should be applied to derive the prototype model. Horizontal loading is applied to the structural centre
of gravity at a height of 100 mm above the foundation level leading to a height-to-width ratio of two.
Two values of the structural dead weight were chosen to investigate the influence of the vertical load
on the rocking response. Principally, a building with a dead weight of 1284 t (for test Tub3 - T07) or
1370 t is implemented, corresponding to a heavily-loaded foundation (M1). A building with a dead
weight of 580 t is also used corresponding to a lightly-loaded foundation (M2). The former gives a
vertical loading ratio of y = N/Nu = 0.6 whereas for the latter it is y = N/Nu = 0.26. Soil material used
in the experiments is saturated kaolin Speswhite clay at a water content of about 42 % and density of
about 17 KN/m3. The total depth of the soil sample inside the container is 263 mm corresponding to a
soil stratum width of 248 mm. Each container has been prepared by consolidation under stress in lab
with three or four successive layers of clay. Cone Penetrometer tests were performed at 1 g before
consolidation in the centrifuge, and also in-flight after reconsolidation and just before loading the
structure. Shear vane tests were also carried out at several points to estimate su. Profiles of su with
depth were determined using CPT and well-established correlation between qc and su measured in-

flight on Speswhite clay (Garnier, 2001):

q./s,=18.5 [4.14]

Geometry and instrumentation of the model utilised at the centrifuge tests are shown in Fig. 4.38.
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Figure 4.38 Loading device (left) and deformed position of model M2 after loading (right).

4.5.1 Loading program

Within the framework of the Quaker project the following loading conditions have been applied

during the centrifuge experiments:

+«» monotonic, displacement-controlled vertical loading to failure (determination of vertical
bearing capacity),

+«+ monotonic horizontal loading to failure (with constant vertical dead weight either M1 or M2).
The load is always applied at the centre of gravity, regardless of settlement or rotation,

¢+ cyclic horizontal loading at the gravity centre, under self weight (with and without a sand layer
below the footing). The amplitude of the displacement-controlled loading is 0.4 mm (0.4 m in

prototype dimensions) and the driving frequency ranges between 0.10 Hz and 0.16 Hz.

The list of the loading tests performed is presented in chronological order in Table 4.3 together with

the values of the ultimate capacity.
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Table 4.3 Loading program of the centrifuge tests and ultimate load

Tub n® | Test Foundation (mm x mm) Loading sequences Ultm(latﬁ)load
Tub 1 TO1 8x8 Vertical static (DC) 10
T2 10x 10 Vertical static (DC) )
(cancelled)
Tub 2 TO3 8x8 Vertical static (DC) 16.5
T04 10x 10 Vertical static (DC) 24
Tub 3 TO5 10x 10 Vertical static (DC) -
TO6 10x 10 Vertical static (LC) 22
TO7 10 x 10 - Building M1 Horizontal static (DC) 1.4
Tub 4 TO8 10 x 10 - Building M1 Horizontal static (DC) 1.2
- Horizontal static (DC) 1.3
T09 10x 10 - Building M1 Horizontal cyclic (DC) 2.0
T10 - Horizontal static (DC)
10x 10 - Building M1 Horizontal cyclic (DC) )
Tub 5 T10 Horizontal static (DC)
10 x 10 - Building M1 Horizontal cyclic (DC) -
Horizontal cyclic (LC)
T 10 x 10 - Building M2 Horizontal cyclic (LC) -
Tub 6 T12 10 x 10 - Building M2 Horizontal static (DC) 0.75
10 x 10 - Building M1 . .
T13 (+sand layer) Horizontal cyclic (LC) -
Tub 7 T14 10 x 10 - Building M1 Horizontal static (DC) -
T15 10 x 10 - Building M2 . .
(+sand layer) Horizontal cyclic (LC) -

Prior to lateral loading, preliminary displacement-controlled tests have been performed to estimate
the vertical bearing capacity of the foundation for the two structural configurations (tests T01 to T06).
Due to the log-type shape of the vertical load-settlement curve no clear failure point could be
identified. To overcome this, two ‘conventional’ failure criteria were established for settlement level
of 4.5 mm and 10 mm. On the other hand, horizontal load-displacement monotonic curve after initial
yielding tends to a horizontal line determining the lateral load capacity of the foundation. Ultimate

loads in horizontal and vertical loading direction are presented in Table 4.3.

4.5.2 Finite element simulation

A series of two-dimensional finite element analysis was performed to simulate the centrifuge
experiments. The prototype model has been implemented in the numerical study so that all

dimensions at the centrifuge model have been properly scaled up. A lumped-mass structure with a
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square footing (10x10m2) is considered to represent the building. The mass point located at a height
of 10 m above the foundation level is connected to the foundation with a (rigid) beam element so that
no flexural deformation of the superstructure is permitted. Horizontal loading is applied at this level.
Rigid beam elements have been also utilised to prevent foundation mat deformations. The rigid
boundary at the bottom is placed at a depth of 25 m below the foundation level. Nonlinear soil
behaviour is described with the above discussed nonlinear constitutive model which incorporates the
von Mises yield criterion combined with an isotropic and kinematic hardening model in the post-yield
domain. This model is most suitable for the analysis of the dynamic behaviour of cohesive soils under
undrained conditions. Some of the analyses were repeated by utilising the elastic—perfectly plastic
Mohr-Coulomb model. Linear undrained strength profiles were estimated from in-flight CPT results
in association with Eq. 4.14 as presented in Table 4.4. These profiles have been utilised in the two-
dimensional finite element analysis. The favourable effect of vertical loading to soil strength
underneath the foundation has been taken into account by increasing the values of su at surface, up to
su(B/4). Due to lack of experimental data for the soil stiffness, Young’s modulus at low deformations
is considered as a linear function of the undrained shear strength. Different formulae are implemented

to estimate the soil stiffness during horizontal and vertical direction.

Table 4.4 Linear distributions of the undrained strength with depth based
on the CPT results at 100g. These values of su have been implemented in
the finite element analysis

Test Undrained shear strength (kPa) Notes

Tub1 TO1 s, =12.5+3.24z
Tub2 TO3/T04 s, =89+1.74z

T06 s, =18.5+4.24z Profile b
Tub3

T07 s, =7.6+2.64z Profile ¢
Tub4 T09 5, =6.4+3.65z
Tub6 TO12 s, =5.6+5.87z

A typical comparison of the numerical and the experimental vertical load-settlement curve (tub3 test)
is presented in Fig. 4.39. Upper and lower bound distributions of su from tub3 (profiles b and c

respectively) have been utilised in the numerical simulation. Both numerically computed backbone
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curves capture the initial stiffness and the hardening behaviour (after the yield onset), of the
centrifuge test. The large-displacement response and the ultimate bearing capacity calculated with
profile b however are much closer to the centrifuge results. Similar trends for the vertical backbone
curve are extracted from the simulation of the other tests. The experimental load-displacement curve
under monotonic horizontal loading (tub3 test) is presented in Fig. 4.40. Both profiles b and ¢ of su
were used for the numerical interpretation. In this case however, the soil underneath the foundation
has been strengthened due to the gravitational preloading (12.6 MN). Hence, an increase of the
undrained strength is considered as shown in Fig. 4.40. A correlation of E = 1200su was adopted for
the elastic soil modulus. An excellent agreement between the experimental and the numerical results
is achieved when the profile b is considered. It is also uncovered from the numerical analysis that the
foundation response is marginally influenced by the contact conditions at the interface (rough or
smooth). On the contrary, the ultimate horizontal load merely reaches up to 300 kN when the profile

¢ is used; a value which is far less than the centrifuge result.

The foregoing analysis procedure was repeated with profile b, for different values of the initial load N
varying from near zero to the ultimate value Nu. The horizontal load was obtained (a) at incipient
yield and (b) at u/B = 0.1. The derived failure envelope in the N-Q space (plotted in Fig. 4.41) can be
approximated by a parabola with a local maximum at near the half of Nu. This maximum value of the
shear force reaches merely 1.7 MN which is significantly lower than Asuo = 2.9 MN. The difference
between the two values is attributed to the interaction in Q-M space in the former case. Furthermore,
for values of N close to Nu the lateral load at u/B = 0.1 exceeds increasingly the yield load, due to a

hardening effect.
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Figure 4.39 Monotonic vertical load-settlement curve calculated with centrifuge experiment (tub3,
testT06) and comparison with the two-dimensional FE analysis.
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Figure 4.40 Monotonic lateral load-displacement curve calculated with centrifuge experiment (tub3,
testT07) and comparison with the two-dimensional FE analysis
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Figure 4.41 Monotonic failure envelope in the N-Q space calculated with two-dimensional FE
analysis (tub3). For each level of vertical load, the ultimate horizontal force is calculated at incipient
yield and at u/B = 0.1

Cyclic horizontal loading at the level of the gravity centre, under a constant vertical load was also
performed in centrifuge. Typical results of the tub4 test (T09) are presented in Fig. 4.42. Initially, a
monotonic loading is applied to the structure until a prototype displacement of 0.2 m is obtained.
Then the building is removed automatically to its initial position. The second (dynamic) loading phase
is subdivided in three displacement-controlled cyclic sequences: (a) 10 cycles at 0.1 Hz with an
amplitude of 0.4 mm (0.04 m in prototype dimensions), (b) 10 cycles at 0.16 Hz with an amplitude of
0.4 mm, and (c) 9 cycles at 0.16 Hz with an amplitude of 0.4 mm. After cyclic loading, a monotonic
loading is applied to re-calculate the ultimate horizontal force. In this step the maximum force has
increased from 1.2 MN to 2.1 MN which is attributed to the preceding cyclic loading. The
interpretation of tub4 cyclic test is also presented in Fig. 4.42. Finite element analysis captures both
the initial and the residual (increased) shear force capacity of the foundation. Also dynamic numerical
analysis provides the same maximum force with the experimental value (1.8 MN). In the numerical

loops however an isotropic behaviour is revealed in the loading and unloading directions.
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Figure 4.42 Backbone Q-u curves before and after cyclic loading (tub4) from the centrifuge (left)
and numerical simulation (right)
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Chapter 5:

Foundation capacity and permanent displacements under

earthquake loading

5.1 INTRODUCTION — DESCRIPTION of PROBLEM

One of the most important issues in the design of a shallow foundation is to estimate the ultimate
capacity under combined vertical, horizontal and moment loading. Under a statically applied central
vertical load bearing capacity failure of a shallow foundation occurs when the supporting soil fails in
shear. This may involve either a general failure mechanism or punching shear failure. The former is a
sudden, catastrophic type of failure and usually occurs in soils that exhibit brittle stress-strain
behaviour. The latter develops in soils that exhibit compressible, plastic stress-strain behaviour and is
accompanied by progressive downward movement or punching of the foundation into the underlying

soil (Poulos er al., 2002).

Under a combined vertical, horizontal, and moment loading, foundation failure may also occur by
horizontal shear failure of soil (sliding) or excessive rotation (overturning). Slender structural systems
are most vulnerable to the latter. There are two distinct types of overturning failure depending on the
level of vertical loading, as outlined in Chapter 4. Hence, overturning of a lightly-loaded foundation is
associated with large amplitudes of uplift. In this case mobilisation of the moment capacity under
dynamic conditions does not necessarily lead to overturning. Depending on the dynamic parameters of
the structural system and the kinematic characteristics of ground motion the foundation may safely
undergo rocking after the ultimate moment has been exceeded or eventually overturn. It is worthy of
note that structural displacements are almost reversible if toppling is prevented. On the contrary, for a

heavily-loaded foundation overturning is attributed to a bearing capacity type of failure. Mobilisation
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of moment capacity implies permanent displacements which are amplified due to the cyclic nature of
loading. In the context of geotechnical design, serviceability issues demand the control of these

cumulative foundation displacements.

The bearing capacity problem of a shallow foundation is revisited here with emphasis given on the
effect of the dynamic and cyclic characteristics of the (transient) earthquake motion. In this respect a

nonlinear finite element method in the time domain is utilised.

5.2 AVAILABLE BEARING CAPACITY SOLUTIONS

5.2.1 Conventional bearing capacity method

The static bearing capacity of a shallow foundation under central vertical loading was initially
calculated by L. Prandtl, back in 1921. In his pioneering work, Prandtl utilised the method of stress

characteristics to estimate the ultimate vertical load of a strip footing on weightless soil. Provided that

soil medium is described as homogeneous half-space under undrained conditions (c =8, 0= 0) the

ultimate vertical soil reaction p, is:

p, =(7+2)s, [5.1]

After Prandtl’s work, analytical research on the bearing capacity problem was based on the upper and
lower bound theorems of limit analysis. According to this procedure the ultimate load can be calculated
by prescribing either a statically admissible stress field (lower bound theorem) or a kinematically
admissible velocity field (upper bound theorem). It was found that Prandt!’s slip line method gives the

exact solution for a strip footing on cohesive undrained soil (Drucker, 1952).

Terzaghi (1943) introduced the general bearing-capacity factors N, N, and N, to calculate the

bearing capacity of a soil described by strength parameters ¢ and ¢ with the following formula:
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1
p, =cN, %—EB'yNW +¢N, [5.2]

Where ~ is the unit weight of soil and ¢ is the overburden pressure. This empirically-based method

is widely applicable in common foundation engineering practice up to nowadays. Notably, for a

cohesive soil under undrained conditions it yields N, =7+2 and N_=0. If the overburden pressure

is neglected, Terzaghi’s method leads to Prandtl’s analytical solution (Eq. 5.1).

Additional empirical factors have been appended to the Terzaghi formula (Meyerhof, 1953; Vésic,
1975) to account for the effects of (a) the foundation shape and (b) load inclination and eccentricity

leading to the following equation:

cceccc qq qq

‘ 1 ‘ .
p, =cN,i.R s, +§B7NWZ*1R757 +gN iR s [5.3]

The factors 7 and R stand for the inclination and eccentricity of the load whereas s accounts for the
foundation shape. Some of the most common empirical correlations of the bearing capacity factors are

plotted in the graphs of Figs 5.1 and 5.2.
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Figure 5.1 Bearing capacity factors of strip footing for central, vertical load as a function of the
friction angle ¢. Comparison of classical methods against numerical (finite difference) results

(Apostolou et al., 2006).

Apostolou, doctoral dissertation 2011 156



Chapter 5: Foundation capacity and permanent displacements under earthquake loading

1.2 7 Meyerhof* (1963) 1.2 Meyerhof (1963)
— - Meyerhof** (1963) & FD results
1% 1€ ©
A Aiban et al. (1995) 5 @ FE results
0.8 — Butterfield & Gottardi (1994) 0.8 - o =
X FD results ° .
N
& 06+ & 061 ) =
A =
° P
0.4 1 - 0.4 *
~—— .
0.2 0.2 4 °
®
0 T T T T 1 0 T T T T 1
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 03 04 0.5
e/B e/B
1.2 1 — - Meyerhof, 30 deg (1963 1.2 7
eyerhof, eg ( ) Meyerhof (1963)
— - Meyerhof, 40 deg (1963) = FD results
1 ‘\\?‘ — - Muhs and Weiss (1973) 9= @ x = @ FE results
WS4 A Aiban et al., 44 deg (1995) o ™
ANNCER a =
081 SN Vesic (1975) 0.8 1 0 ®
NN ~N. A
NN ~. ™ FD results 9
NN ~
> 061 SN S < 06 °
AN ~ T~ L
NNl A °
~ ~ ~.
0.4 1 SO Telm Sl 0.4 1 o
AN ~~ =~ e
N ~ ~. =
0.2 R - T~ E_ 0.2 1
0 . . . ——=— == 0 . . . . . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6
a: rad a: rad
1.6 q 1.6 q
S
wsd T o 06 4 — Meyerhof (1963)
X FD results
04 1 — Meyerhof, 30 deg (1963) Meyerhof, 40 deg (1963) 044 .
’ - - - Brinch Hansen (1970) — - Terzaghi (1943) ’ 4 Lower bound solution
024 o Foundoukos & Jardine (2003) % FD results 0.2 1 ¢ Upper bound solution™*
& Zhu et al, 30 deg (2005) 4 Zhu et al, 40 deg (2005) - - - Zhu et al (2005)
0 T T T T J 0 T T T T d
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
B/L B/L

Figure 5.2 Modification factors for inclination, eccentricity of loading and shape of the footing
(Apostolou et al., 2006).

5.2.2 Static interaction curves in the N- Q- Mloading space

Bearing capacity factors have been established in common engineering practice as a simple tool to
estimate the ultimate loading of a shallow foundation. It is broadly accepted however, that in some
cases such as for foundations subjected to eccentric inclined loads, the existing empirical bearing
capacity factors with the proper correction factors attached may not provide reliable failure criteria.
For example in case of undrained homogeneous clay the calculated ultimate load may be

underestimated by more than 25% compared to the exact collapse solutions. On the other hand for
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undrained clay with significant strength gradient with depth these factors may become completely

unreliable (Ukritchon ez al., 1999).

The accuracy of ultimate load calculations is of great importance particularly for foundations under
large lateral and moment loading such as offshore structures (Ukritchon ez al., 1999; Bransby and
Randolph, 1997). In this respect much of the recent research has been focused on the development of

more reliable failure criteria for general planar loading conditions (N ,Q, M ) It has been found that

for any foundation there is a unique closed surface in the generalised loading space N,Q,M

containing all possible combinations of loads that would cause failure of the foundation. This surface
defines a failure envelope representing the bearing capacity of the foundation under combined

loading. It is calculated analytically by a function f of the foundation loads N,Q, M :

JWN,Q,M)=0 [5.4]

In the special case of a purely vertical, horizontal or moment loading Eq. 5.4 must satisfy the ultimate

loads N,, ), and M, respectively. The failure envelope is independent of load path and encloses all

possible combinations of loads which would cause only elastic deformations. It is also independent of
soil characteristics (e.g. cohesion, inhomogeneity) and footing geometry (Butterfield and Gottardi,
1994; Ukritchon er al., 1998; Taiebat and Carter, 2002) and reasonably has prevailed over the

conventional Terzaghi method.

Although the hypothesis of a unique failure surface has originally been formulated by Roscoe and
Schofield back in 1957, its experimental validation came merely in 1979 by Butterfield and Ticof
through small-scale tests with footings on sand. In this study it was uncovered that the combinations
of vertical load N and moment M that cause failure to the footing lie on a simple parabolic curve.

Additionally it was shown that bearing capacity in the N —() plane may also be represented by similar

parabolic-shaped failure loci. A simple fit of these curves was given by Butterfield and Gottardi

(1994):
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Q—m%%M—N) [5.5a]

.—N) [5.5b]

I
==
=

where t, (t,) is the slope of the N—@Q (N—M) parabola at the intersection points with the

horizontal axis (i.e. at the origin and at N, ). The failure envelopes of Eqs 5.5 can be rewritten in a

non-dimensional formulation:

Q N(, N

A | A ,
M N, N

B .
NB "N [ Nu] [5.60]

Normalised loads n=N/N,, =Q/N,,and m =M /N, B can be defined in accordance with Eqs 5.6

leading to the following simplified formulas (Fig. 5.3):
i=t,n(1-n) and  m=tA(1-7) (5.7]

For very small values of vertical load N it yields ¢, ¥ N/Q and ¢, ~ M /NB=0.5M|Nb. Evidently,

t, represents the static coefficient of friction. Also, the coefficient ¢ must be always smaller than 0.5

given that the moment capacity of the foundation cannot exceed the rigid soil capacity (M

w,rigid

Nb).

Actually, due to elastic soil behaviour at this level of loading (n =N/N,— 0) it can be assumed that

!
the moment capacity approaches the rigid soil capacity and eventually ¢, is close to 0.5. Furthermore,
the maximum horizontal and moment capacity is obtained at =N /N, =0.5. In combination with

Eqs 5.7 this gives the normalised maximum horizontal and moment loads =0.25¢,

A
qmax
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and m, . =0.25¢ . Based on experimental results Butterfield and Gottardi (1994) have proposed

=0.125 and m,, =0.1 and correspondingly ¢, =0.5 and ¢, =0.4.

(}max
Houlsby and Puzrin (1999) utilised the lower bound theorem of limit analysis to study the bearing

capacity problem for a shallow footing on undrained cohesive soil. They derived a closed-form

solution for the failure envelope in the N — M plane:

ﬁ—(774—2)5 - 2M 5.8
A " NB [5-8]
Given that the ultimate central vertical load is N, =(7+2)s,A and taking ¢, =0.5 the failure
envelope of Eq. 5.8 reduces to that of Eq. 5.6b. It is also interesting that Eq. 5.8 can be rewritten after

introducing the inverse of the safety factor x=N/N, =N/ [(77 + Z)SUA] in the following simple form:

M =Nb(1-x) [5.9]
0.16 A
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op fr F—
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Figure 5.3 Failure envelope in the non-dimensional N — M and N —( plane for ¢, =¢, =0.5.

In recent years, a plethora of centrifuge tests has led to more systematic work focused on the
prediction of the failure envelopes in the three-dimensional space. Based on these experiments

together with analytical predictions through advanced plasticity models several analytical expressions
160
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of the function f have been proposed in the literature. For a shallow footing on sand it has been
shown that the general form of the three-dimensional failure locus is a rugby-shaped closed surface
with its principal axis coinciding with the N — axis. According to Butterfield and Gottardi (1994) the

analytical expression of the failure surface in the non-dimensional space n — ¢ —m is:

208 (1) [5.10]

where C'=C/(t,,t,, ). The afore-discussed two-dimensional failure envelopes can be obtained from
Eq. 5.10. In this way by putting m =0 it yields ¢=¢, [ﬁ(l — ﬁ)] which is equivalent to the failure
surface in the N —(@ plane (Eq. 5.7a). Also, for ¢=0 it is derived m =1, [ﬁ(l — ﬁ)] corresponding to

the failure surface in the N — M plane (Eq. 5.7b).

5.3 LARGE-DISPLACEMENT ANALYSIS of the FOUNDATION CAPACITY

5.3.1 Simplified analytical modelling at limit state

A simplified closed-form expression of the failure locus in the N — M plane can be obtained with the
beam-on-winkler-foundation model. In this case a rigid strip footing of width 2b is supported by
distributed uncoupled springs with no tensile capacity so that uplift is allowed. Compressional load-
displacement behaviour of each spring is described with the elastic—perfectly plastic law characterised

by the axial stiffness %, and the ultimate value p,. At first, a small-displacement configuration is

adopted as illustrated in Fig. 5.4a. Equation of the overturning and the restoring moment at the state

of limit equilibrium provides:

M=(b—B)N=(b-p5)(28p,) [5.11]
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where 3= Mb is the half-width of the effective footing. Provided that N =p, 2b it is easy to show

through Eq. 5.11 that at limit equilibrium it holds:
A=x [5.12]
From Eqs 5.11 and 5.12 it yields that:

M [5.13]

The latter describes the failure locus in the N — M plane derived by a beam-on-winkler-foundation
model. Obviously it is the same with the lower-bound solution for a strip footing on undrained,

cohesive soil (Eq. 5.9).

A large-displacement configuration is adopted next (Fig. 5.4b) allowing for P —§6 effects to be
incorporated in the analysis. The rotation of the structural system as monotonic loading increases and
the accompanying drift of the mass point are taking now into account. In this case equation of the

overturning and the restoring moment at the state of limit equilibrium provides:

M= N[(b — 8)cos b, — hsineu] = (251)71,)[(1) — 8)cos6, —hsind, [5.14]

where 0, = 9<M =M u) is the rocking angle at limit equilibrium. From Eqgs 5.12 and 5.14 the failure

locus becomes:

tand 0
M = Nbcosf |(1—y)— LI~ Nb|l—y——2 .
L |(1=x) -~ [ Xy ] [5.15]
or in non-dimensional variables:
M N N 0
—=0.5—|1——"———%
N.B N [ ) ] [5.16a]

Apostolou, doctoral dissertation 2011 162



Chapter 5: Foundation capacity and permanent displacements under earthquake loading

m:o.s&(l—ﬁ—ugl) [5.16b]

where 4, =6, /6, is the ductility demand of rocking displacements. It is worthy of note that this term
is dependent on the normalised vertical load n as the angle 6, is a function of N. The ultimate

rocking response in the large-displacement domain will be further investigated in Chapter 6 in order
to derive analytical curves of the moment capacity through macroscopic modelling of the soil-

foundation system.

Overturning moment: Qh /

Restoring moment: N (b - B8) /

(a) without P-6 effects

Overturning moment: Q[ hcos8 + (b-B)sin8] !

Restoring moment: N [ (b - B) cosé — h sin@ |

(b) with P-6 effects

Figure 5.4 Schematic of a rigid strip footing at limit equilibrium with and without P — ¢ effects.
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5.3.2 Finite element study

Small-displacement analysis — Comparison with the analytical solutions
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Figure 5.5 Interaction curves in the Q — N space for cohesive soils computed with finite elements and
comparison with analytical solutions.
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Figure 5.6 Interaction curves in the M — N space for cohesive soils computed with finite elements and
comparison with analytical solutions.

Large-displacement analysis

In principle, a series of static finite element analyses is conducted to derive levels of the moment
capacity and compare the calculated failure envelopes to the analytical solutions. Unlike the limit-state
theoretical curves, P —¢ effects are now incorporated in the analysis. A homogeneous, cohesive soil
medium under undrained conditions is considered. The soil-foundation system described with model

2.01 (B =2b=2m, h=5m, £=100 MPa, s, =100 kPa) is assumed for the analysis. For this
configuration, an ultimate vertical load of N, = (7r + 2) x2x100=1028 kN is predicted. Monotonic
M —theta curves are computed for different levels of vertical load by applying a displacement-
controlled loading to the mass point. The results are plotted in normalised values (9/ 0., M| ABsu) in

the graphs of Fig. 5.7. The corresponding failure envelope is also portrayed in Fig. 5.7, in normalised

values N /As,, M|ABs,. The upper and lower bound analytical curves (Houlsby and Puzrin, 1999)

are plotted in the same graph. As expected, the maximum moment is obtained for the vertical load of

500 kN which is about half the ultimate vertical load (1028 kN). In the normalised form of the derived

failure envelope this optimum behaviour occurs at N/As, =2.5 22.57[:(7r—|—2)/2]. However, a
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reduction of the ultimate moment occurs when compared to the analytical values, attributed to P —6
effects. At this point the reduction of the capacity is about 15 %. Taking into account that in common
foundation design a value of x=0.5 is rather typical, it seems that P — ¢ effects should not be
neglected in analysis of slender structural systems. The reduction of the moment capacity is further
amplifying as the vertical loading is heading towards the ultimate value. Remarkably, for values of N
close to N, a small ‘bulging’ of the numerical curve is also observed, attributed to the passive forces

developed behind the footing corner point.
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Figure 5.7 Monotonic M —theta curves for different levels of vertical load and the corresponding
failure envelope, computed with finite elements ( P — ¢ effects are incorporated). Analytical upper and

lower bound failure curves are also plotted. B=2b=2m, h=5m, £ =100 MPa, s

u

=100 kPa.
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Figure 5.8 Interaction curves of (i) the moment capacity and (ii) the rocking rotation at the
mobilisation of capacity, computed with finite elements ( P —§ effects are incorporated). Winkler-
based, analytical failure curves with and without P —§ effects are also plotted in the N — M plane.
B=2b=2m, h=5m, E=100 MPa, s, =100 kPa.

5.4 DYNAMIC MOMENT CAPACITY CURVES

It is quite often in geotechnical practice to treat the earthquake-induced loading from soil or
superstructure upon the foundation with pseudo-static mechanism in order to derive estimates of the

ultimate capacity. However, dynamic rocking of a footing with several significant cycles may lead to
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substantially higher levels of the moment capacity especially for large values of the vertical load as

hinted by recent experimental findings (Fig. 5.9).

0.12
r Y
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2 ™~
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- f 7 | o sscoz*
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1/ — — Houlsby & Cassidy (2002)™ \\\
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Fy = (1/FSy)

* Centrifuge experiments (cyclic loading) at Davis, California.
** | imit-state pseudostatic analysis.

Figure 5.9 Failure envelope and experimental failure points on sands in the normalised N — M plane
F,=m, F,=n for M/Q=4.9 m (Gajan et al., 2005).

A series of finite element analyses in the time-domain will try to highlight the effect of the dynamic

and cyclic nature of earthquake loading on the foundation moment capacity.

For the analysis purposes the soil-foundation system described by the model v.01 (Fig. 4.5) is assumed
with undrained shear strength of 50 kPa throughout the soil. The seismic bedrock is merely at the
depth of 5 m so that any filtration of the excitation frequency components through soil is prevented

(Ts =4H, |V, <0.1 sec). Despite the presence of a shallow bedrock, the footing (2 m in width) can

m

undergo rocking oscillations as if it was supported on a half-space (K H—5m = 1.O4Km,half75pace). A

Ricker wavelet excitation is applied in the seismic bedrock with a predominant period of 0.33 sec,

0.67 sec, and 1.33 sec [Ricker nominal frequency ( fR> of 2.0, 1.0, and 0.5 Hz respectively]. It is

considered that these values cover the period range of a typical near—fault pulse-type motion. For a
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slender system, rocking is the prevailing mode of response and therefore a simplified calculation of the

eigenperiod can be obtained with the following expression:

2
T=27 | T —op [N [5.17]
K, K..9

Non-linear response is taking into consideration by adopting the secant foundation stiffness,

equivalent to the ultimate capacity point, namely K =M, /6, . The secant rocking stiffness and

m,sec

the corresponding eigenperiod are depicted in Table 5.1 for different values of vertical load.

Table 5.1 Equivalent (secant) stiffness and the corresponding eigenperiod in the rocking
mode for the soil-foundation system of model v.01 (s, =50 kPa).

N (kN) 100 200 300 400
K, « (MNm/rad) 14900 12300 9400 6200
T, . (seC) 0.82 1.28 1.79 2.55

Three levels of ground shaking have been implemented in the analysis; a weak, a moderate and a
strong shaking level (PGA: 0.2 g, 0.4 g, and 0.6 g, respectively). For each loading case the ‘dynamic’
moment capacity of the foundation is calculated for different values of the gravitational load N and

failure envelopes in the N — M loading space are derived.

Initially, the moment capacity of the footing is calculated for the short-period (high—frequency)
excitation 7, =1.33 sec and plotted in the graph of Fig. 5.10. In the same graph are also presented:
(a) the parabolic lower bound solution [M = N b(l — X)] and (b) the linear ‘rigid soil’ failure envelope

(M :Nb). For the moderate and strong shaking level, a dynamic over-strength develops which is

enhanced with the increase of the vertical load. Counter-intuitively, this beneficial dynamic behaviour
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is highly amplified close to the limiting value of y =N /N, =1 where the static ultimate moment is
approached. On the other hand, for low levels of vertical load the ultimate dynamic response is similar

with the static curve or even with the ‘rigid soil’ linear curve (X — 0). Only for the weak level of

ground shaking, the dynamic failure locus plots below the static curve, over most of the range of N .

Two more Ricker wavelets with a long-duration pulse are utilised, under the same shaking levels. The
resulting failure envelopes are plotted in the graphs of Fig. 5.10. What is more interesting now is that
not only the dynamic over-strength is even higher, but also that the results tend to approach the ‘rigid

soil’ moment capacity, especially for the case of 7}, =1.33 sec.

The afore-discussed series of finite element analysis is repeated for the soil-foundation configuration

of model v.02 (see Fig. 4.5). A larger footing (B=9 m) and a less slender structure (6, =0.388 rad)

are now adopted. Moreover soil stiffness and undrained strength are linearly increasing with depth
(E=4.742+30, s, =15.72+10). Failure loci in the N —M plane are presented in the graphs of
Fig. 5.11. It is worthy of note that the short-period excitation of Ricker2.0 demands levels of moment
substantially lower than the capacity of the foundation. This can be explained by comparing the

period of this pulse (TE =0.33 sec) with the effective eigenperiod of the structural system (Table

5.2). The latter ranges from 1.30 to 4.68 sec, meaning that it is in any case essentially higher than the
predominant period of ground motion. On the contrary, for a long-period excitation of Rickerl.0

(TE =0.67 sec) and especially Ricker0.5 (TE =1.33 sec) , mobilisation of the foundation capacity is

attained even under a weak ground shaking. Interestingly, the dynamic over-strength is limited when
compared to the model v.01 case and only in the Ricker2.0 case is observed over a wide range of
vertical load. It is also common in all excitations the minimal effect of the ground shaking intensity on
the foundation moment which can be roughly attributed to the high flexibility of the structural

system.
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Table 5.2 Equivalent (secant) stiffness and the corresponding eigenperiod in the rocking
mode for the soil-foundation system of model v.01 (s, =50 kPa).

N (kN) 100 200 300 400
K, «(MNm/rad) 34400 43900 31200 10600
T, . (sec) 1.30 1.63 2.36 4.68

A preliminary explanation for the favourable nonlinear behaviour during dynamic conditions can be
offered by revisiting the model v.01 case as portrayed in Figs 5.12, 5.13 and 5.14. The maximum
moment for five different values of N (from 100 to 500 kN) obtained statically with finite elements
and with the lower bound solution (Houlsby and Puzrin, 1999) are depicted in Fig. 5.12. In the same

figure, distributions of contact pressures on the footing (at M/ =0 and M =M, ) are presented for

each loading case. Interestingly, it is confirmed that the theoretical prediction of the bearing capacity

b,

:(7r—|—2)su ~ 255 kPa] is the upper bound of the developed stresses under both vertical and

moment loading conditions. In the interaction diagram of Fig. 5.12 a dynamic failure envelope due to
a Ricker-type excitation (TE =0.67 sec, PGA=10.40 g) is also plotted. The beneficial role of the
dynamic nature of loading can be interpreted through the comparison of the distributions of contact
pressures at M = M, . In any loading case and particularly for values of NV close to ultimate load, the

dynamic distribution of the contact pressures exceeds the static bearing capacity in the vicinity of the
pivot point. As the foundation moment is derived from integration of the contact pressures with

respect to the midpoint, the exceedance of p, provides higher levels of dynamic A/, than the
statically predicted. Remarkably, for N =500 kN (X = 0.97) the dynamic pressure may reach up to

twice the static bearing capacity at the right corner point of the foundation. Time-histories of the

contact pressures for this loading case are presented in Fig. 5.14.
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Figure 5.10 Finite element calculation of N — M interaction curves under earthquake loading and
comparison with the static case. The excitation at the seismic bedrock is a Ricker pulse of
pga=0.2,0.4,and 0.6 g and period 7, =0.33,0.67,and1.33sec (Ricker 2.0, 1.0, and 0.5

respectively). B=2b=2m, h=5m, £=100 MPa, s, =50 kPa (model v.01).
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Figure 5.11 Finite element calculation of N — M interaction curves under earthquake loading and
comparison with the static case. The excitation at the seismic bedrock is a Ricker pulse of
pga=0.2,0.3,and 0.4 g and period 7}, =0.33, 0.67,and 1.33 sec
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respectively). B=2b=9m, h=11m, s, =1.5724+10 (model v.02).
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Figure 5.12 Failure envelope for a strip footing in the N — M space calculated with the finite element model and soil pressure distributions at
different points. B=2b=2m, h=5m, s, =50 kPa (model v.01).
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Figure 5.13 Failure envelope in the N — M space calculated with the finite element model (a) for monotonic loading, (b) for seismic loading with a
Ricker-type excitation (TE =0.67 sec, PGA=0.40 g). Contact pressure distributions at different loading points are also presented. B=2b=2m,

h=5m, s, =50 kPa (model v.01).
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Figure 5.14 Time-histories of soil pressures at symmetric points underneath the footing. N =500 kN, B=2b=2m, h=5m, s, =50 kPa (model
0.01). Excitation at the seismic bedrock is a Ricker pulse (TE =0.67 sec, PGA=10.40 g) .
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5.5 DYNAMIC UPLIFT CURVES

During strong seismic shaking, rocking motion of a shallow footing is often associated with large uplift
from the supporting soil. The uplifting level is higher in case of a lightly-loaded foundation or a
slender structural system. A simplified estimation for the uplifting level at static overturning

conditions can be derived from the schematic of Fig. 5.4 which leads to Eqs 5.13 and 5.14.

A finite element validation of this approximation comes from the static results portrayed in Fig. 5.15,

for the soil-foundation configuration of model v.01 (s, =50 kPa).

=—Winkler foundation (A = X)

CatM=Mu
1.5 1
A at failure (M = 0)

2B:m

0.5 1

0 100 200 300 400 500 600
N:kN

Figure 5.15 Finite element calculation of the effective width under monotonic loading (a) at the
increment of maximum moment (M =M,), (b) at failure (M =0) and comparison with the

elastoplastic Winkler model. B=2b=2m, s, =50 kPa (model v.01).

The earthquake-induced uplift of a shallow foundation is investigated for a Ricker-type excitation. In

Figs 5.16 and 5.17 the width of the effective footing (Zﬁ) at (M = Mu) is computed from the afore-

discussed finite element study of the dynamic moment capacity. Depending on the frequency of

ground shaking, the dynamic failure envelope in the 25 — N plane may be located above or below the

static linear trend \ = y. The divergence of the dynamic from the static failure envelope is enlarged
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by the intensity of ground shaking. Hence, for a strong shaking (PGA: 0.6 g) the dynamically-
induced uplift may be substantially lower (for 7}, =0.33 sec) or higher (for Tj, =1.33 sec) than the
static prediction. On the other hand, for a weak excitation (PGA =0.2 g) the expression A =y can

practically describe the uplifting level.

Slightly different conclusions can be drawn when the soil-foundation system of model 2.02 is
considered. Unlike the model v.01 case, the uplift at ultimate capacity is kept constantly at low levels
compared to the static, Winkler-based prediction. Furthermore, when the Rickerl.0 and Ricker0.5
pulses are applied the uplifting response is pretty close to that calculated with pseudostatic finite
element analysis. Dynamic uplift is even more limited under the high-frequency excitation of
Ricker2.0 and far less than the static predictions, however such a response is expected as the moment

capacity is not mobilised in this case.
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Figure 5.16 Finite element calculation of N —2( interaction curves under earthquake loading and

comparison with the static case. The excitation at the seismic bedrock is a Ricker pulse of
pga=0.2,0.4,and 0.6 g and period 7, =0.33,0.67,and1.33sec (Ricker 2.0, 1.0, and 0.5

respectively). B=2b=2m, h=5m, s, =50 kPa (model v.01).
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Figure 5.17 Finite element calculation of N —2( interaction curves under earthquake loading and
comparison with the static case. The excitation at the seismic bedrock is a Ricker pulse of
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pga=0.2,0.3,and 0.4 g and period 7, =0.33,0.67,and1.33 sec (Ricker 2.0,
respectively). B=2b=9m, h=11m, s, =15.724+10 (model v.02).
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5.6 DEVELOPMENT of CUMULATIVE DISPLACEMENTS

It has been found in the literature from experimental and numerical studies that cyclic rocking motion
of the foundation may lead to significant accumulation of permanent settlement (Gajan et al., 2005
among others). This ‘cyclic’ vertical displacement 6w, , which is added to the initial (static)
settlement w,, is primarily sensitive to the vertical load factor x , the footing width, the number of

cycles, and the frequency content of ground shaking.

The additional (residual) displacements éw,,, (or simply (5w) computed from a series of finite element

analyses with the soil-foundation systems of model v.01 and v.02 are summarised and plotted as a
function of the vertical load in Figs 5.18 and 5.19 respectively. These settlements are also normalised

to the initial static settlement (6w/w, ) and plotted in Figs 5.20 and 5.21.

It is revealed that the cyclic settlement is very sensitive to the level of vertical loading. Particularly, for

a lightly-loaded foundation subjected to rocking vibration ( X < 1/3) , the additional settlement is less

than 1% the width of the footing even under strong seismic shaking. This was expected as under such
low levels of vertical load uplifting response is prevailing and dynamic displacements (Q,w) are
almost reversible. For higher levels of the vertical load however, the additional settlement increases in
an exponential growth and eventually reaches values of about 3% the footing width or even larger.
The detrimental effect of the vertical load on the cyclic settlement is amplified when a long-period

excitation is applied (7}, =1.33 sec).

An interesting way of presenting the cyclic settlement is as a function of the rocking amplitude 6_,_.

Gajan ez al. (2005) first published a 6w —6_,  correlation extracted from a large database of centrifuge

X

tests as portrayed in Fig. 5.22. The vertical load factor (X = FSU) over all the experiments ranges

from 3.4 to 9.6 representative of moderately to lightly loaded foundation. All the results of the
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parametric finite element analyses performed in this study are utilised to correlate the cyclic

settlement to the rocking amplitude for different levels of x as illustrated in the graph of Fig. 5.23.
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Figure 5.18 Finite element calculation of N — 6w interaction curves under earthquake loading. The
excitation at the seismic bedrock is a Ricker pulse of pga=0.2,0.4,and 0.6 g and period

T, =0.33,0.67,and 1.33 sec (Ricker 2.0, 1.0, and 0.5 respectively). B=2b=2m, h=5m,
E =100 MPa, s, =50 kPa (model v.01).
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Figure 5.19 Finite element calculation of N — 6w interaction curves under earthquake loading. The
excitation at the seismic bedrock is a Ricker pulse of pga=0.2,0.3,and 0.4 g and period

T, =0.33,0.67,and 1.33 sec (Ricker 2.0, 1.0, and 0.5 respectively). B=2b=9m, h=11m,
E=4742+4+30, s, =15.72 410 (model v.02).
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Figure 5.20 Finite element calculation of N —éw/w

o

interaction curves under earthquake loading.

The excitation at the seismic bedrock is a Ricker pulse of pga=0.2,0.4,and 0.6 g and period
T,=0.33,0.67,and 1.33 sec (Ricker 2.0, 1.0, and 0.5 respectively). B=2b=2m, h=5m,

E =100 MPa, s, =50 kPa (model v.01).
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Figure 5.21 Finite element calculation of N —déw/w, interaction curves under earthquake loading.
The excitation at the seismic bedrock is a Ricker pulse of pga=0.2,0.3,and 0.4 g and period
T, =0.33,0.67,and 1.33 sec (Ricker 2.0, 1.0, and 0.5 respectively) B=20=9m, h=11m,

E=4.742+4+30, s, =15.72 410 (model v.02).
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Figure 5.23 Normalised cyclic (additional) settlements of the foundation from numerical analysis.
The excitation at the seismic bedrock is a Ricker wavelet.
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Chapter 6:

Macroscopic modelling for large-displacement analysis of

uplifting foundation

6.1 CONVENTIONAL WINKLER MODELLING

In common SS8I analysis procedures, Winkler modelling of soil medium has been found a simple and
efficient tool because of its ability to incorporate different nonlinear aspects of the rocking behaviour
at relatively low levels of computational cost. For example, no-tension springs can capture uplifting
effects at the soil-foundation interface whereas soil yielding can be represented with elastic — perfectly
plastic springs. In the context of a conventional Winkler model the following postulations are often
encountered:

0

% A unique spring modulus %, is adopted for any type of loading (symmetric or antisymmetric)
which is independent of the distance from the mid-point z. Correspondingly, a purely

vertical or moment loading results to a uniform or triangular distribution of contact pressures
along the foundation.

«» The rotation pole of the structural system remains fixed at the foundation mid-point even
after uplift or soil yield initiates.

+» During a clockwise (counter-clockwise) rotation, uplift onsets when the vertical displacement
at the left edge (right edge) of the foundation becomes zero.

s P-—§6 effects are ignored even in the domain of large lateral displacements of the

superstructure mass centre.
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A schematic of a rigid footing resting on a Winkler foundation is shown in Fig. 6.1. Bartlet (1979)
used a conventional soil model of distributed elastic — perfectly plastic springs to study the rocking
response of a footing on clay. His considerations on the different states of moment-rotation response
have been implemented by FEMA guidelines (273/274 documents) in the modelling of shear walls as
portrayed in the graph of Fig. 6.2. The following considerations of the backbone M —theta
relationship are presented in this plot: (a) the extreme case of elastic soil conditions represented with
the path 1-2-3-5a, (b) the case of a soil with limited strength where uplift occurs before yield (path 1-

2-3-4-5b-6), and (c) the case of a soil with limited strength where yield initiates first (path 1-2c-3c-

4c-5c-6).

@

Figure 6.1 Conventional beam-on-winkler-foundation model: (a) configuration of the model and (b)

#, pole of rotation

@)

Po

Po

P, (uplift initiation) +

i 2]! Py — P, (vield initiation)
|

(b)

superposition of soil contact pressures at full-contact state.
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Figure 6.2 Rocking of a shear wall on strip footing: the different states of the M-theta curve under
monotonic loading (Bartlet, 1979, reprinted in FEMA274 document).

Elastic soil:

For purely elastic soil behaviour, nonlinearity of the moment-rotation response emerges once uplifting
occurs and leads to an ultimate capacity of M, = Nb. During full-contact conditions (state 1), the
moment with reference to the centre of the footing can be easily extracted by integrating distributed

moments over the foundation:

b
3
MlszUszdx = Zkgb 9 [6.1]

—b
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The rocking rotation and moment at incipient uplift (state 2) can be derived by the uplifting criterion

w(—b)=0 (: 0

uplift

b— N/(Zkvb)) together with Eq. 6.1:

N Nb
Guplift :W and M, :?: M, [6.2]

v

After the uplift onset, the moment—rotation curve enters a softening mode (state 3 and 5a). The

moment at this level is derived after integration over the remaining in contact part of the footing 20

as follows (Siddharthan ez al., 1992):

b
, 1 [2N 2N
M3’5a:fkﬂ€x dz :Nb[l—g m]:Mﬂpliﬂ[3— m] [63]

b—24

This curve reaches a maximum value of M , = Nb which represents the ultimate moment capacity

of the foundation for elastic soil response when P — ¢ effects are ignored.

Elastoplastic soil:

In the general case of soil with limited strength, an ultimate value of the spring reaction p, =N, /2b is
implemented with N, being the foundation bearing capacity under central vertical load. It is revealed
that the inverse of the safety factor under purely vertical loading ( X = FS,U’1 =N/N u) has a

significant effect on the rocking behaviour (Allotey ez al., 2003). In particular, two separate modes of

the moment-rotation curve can be distinguished dependent upon the value of  : an uplift prevailing
state corresponding to a lightly-loaded foundation (X < 0.5) and a soil-yield prevailing state in case of
a heavily-loaded foundation (X > 0.5). The former follows the path 1-2-3-5b-6 in the graph of Fig.

6.2 whereas the latter is represented with the path 1-2c-3c-4c-5¢-6. As shown in Fig. 6.1b uplift

initiates before soil yield if p, <p, —p, or p, <0.5p, ( X < 0.5). The rocking rotation and moment at
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uplift onset are given by Eq. 6.2. Similarly if p > 0.5 >0.5) soil yield occurs first. In this case
p g y Eq yu p, b, \X y

the yield criterion becomes (Siddharthan ez al., 1992):

q, N 2¢,b> Nb
v 2 and My:—i_: 2¢
kb 2kpb 3 3

[6.4]

Allotey et al., (2003) derived the analytical M — theta relationship during concurrent uplift and yield
(state Sb or 5¢):
NZ P 3

My =Np———Pu
Sbie 2p,  24(k0) [6.5]

Regardless the value of y the ultimate moment capacity of the foundation derived from Eq. 6.5

(for 0 — oo) is:

D,

The equation of the ultimate moment can be also obtained from moment equilibrium at limit state 6
(see Fig. 6.2). After some algebraic manipulations, Eq. 6.6a yields to the analytical solution of the
failure curve in the N — M plane (Eq. 5.9):

- Xn_
— = 2(1 X) [6.6b]

M
N, B

The failure curve in the dimensionless n —m plane calculated with Eq. 6.6b is plotted in Fig. 6.3
together with the analytical curves for uplift and soil yield onset, as extracted from the foregoing
discussion. By plotting these curves, the loading plane bounded by the failure envelope is partitioned
in regions of linear and nonlinear response. The nonlinear area is subdivided in smaller parts

depending on whether uplift or soil yield or both are encountered. It is worthy of note that a perfectly
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symmetric response is achieved about the vertical axis at x =0.5. At this point the optimum

foundation behaviour in terms of the moment ultimate capacity is attained:

max M = 0.125N,B [6.7]

In addition, at x =0.5 the maximum range of linearly elastic response is achieved before nonlinear

conditions due to uplift or soil yield are engaged, with a threshold moment

of 0.083 N, B=(2/3)max M .

Uplift onset prior to Uplift onset after Yield onset after Yield onset prior to
yield: (3) (x<0.5) yield: (3) (x>0.5) uplift: (4) (x<0.5) uplift: (4) (x>0.5)
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Figure 6.3 Interaction curves in the normalised N-M plane for critical failure (overturn) on rigid or
deformable soil (curves (1) and (2) respectively), uplift onset (3), and initiation of soil yield (4).
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6.2 MACROSCOPIC FOUNDATION MODELLING — PREVIOUS STUDIES

Nonlinear numerical modelling of the entire soil-foundation-structure system through realistic
representation of the exact geometry and sophisticated tools for inelastic soil behaviour has nowadays
become a challenging task given the computational resources and capabilities available nowadays.
However such a sophisticated numerical analysis (e.g. with the finite element method) requires also
extensive discretisation of soil medium, which may not be feasible to perform in common geotechnical

design practice.

An engineering approximation to efficiently evaluate the nonlinear effects of inertial interaction in the
domain of large displacements can be obtained if the supporting medium is substructured into two

subdomains (Pecker and Pender, 2000):

(a) a far field domain which extends a sufficient distance from the foundation, in which soil

nonlinearities only governed by the propagation of seismic waves, and

(b) a near field domain, in the vicinity of foundation where both geometrical and material
nonlinearities associated to SSI are important. The exact boundary between these two domains does

not need to be precisely determined.

The far field domain is approached by linear or equivalent linear impedance function in which only
radiation damping (viscous type) is implemented. On the other hand, a macroscopic approach is
adopted for the near field domain which is represented with a nonlinear macro-element of six degrees
of freedom in the general case (three translational and three rotational). Damping now arises from
inelastic soil behaviour underneath the foundation and obeys Masing’s law. A schematic of the

macroscopic modelling is illustrated in Fig. 2.8.

A dynamic macro-element based on this macroscopic consideration was developed by Cremer et al.,
2001 for shallow foundation on cohesive soil. Later studies on macro-element modelling have been

presented by Gajan and Kutter, 2009; Chatzigogos et al., 2009; Figini et al., 2011.
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6.3 FORMULATION of a MACRO-ELEMENT TYPE MODEL

6.3.1 Elastic soil

Rigorous finite element analysis of a footing under monotonic loading (Chapter 4) revealed that for a

vertical load factor y <<1 (i.e. for a lightly loaded foundation or for very stiff soil conditions)

foundation rocking is associated with large levels of uplift and small soil deformations. Under such
circumstances the assumption of elastic soil behaviour is generally a reasonable approximation in
analysing the rocking response. Nonlinear behaviour under moment loading is then attributed
primarily to the reduction of the footing contact area (geometric nonlinearity). In slender structures
geometrical nonlinearity is even more amplified at large rotations due to the accompanying lateral

movement of the mass centre (P — 6 effect).

In light of an elastic approach for the soil response, concentration of contact pressures occurs in the
vicinity of corner points which cannot be captured by the conventional Winkler modelling. The

increase in ‘local’ soil stiffness with the distance from the footing midpoint is higher under anti-

symmetric loading which corresponds to larger values of rocking stiffness K compared to the

vertical stiffness K. Table 6.1 shows the ratio of rocking-to-vertical stiffness calculated (a) with the

classical ‘elastic medium’ solutions (e.g. Gazetas, 1991) and (b) with the convectional Winkler
modelling. Remarkably the rigorous ‘elastic approach’ gives a stiffness ratio of about four times higher
than the ratio predicted by the simplified Winkler model. It is therefore evident that a more efficient
and precise soil model should be incorporated in the non-linear analysis of footings subjected to severe
overturning moments. Neglecting the effects of soil nonlinearity, such a rigorous macroscopic
modelling of rocking behaviour should be in agreement with: (a) the classical ‘elastic medium’
solutions of the soil-foundation stiffnesses during full-contact conditions, and (b) the limiting case of

an uplifting foundation on a rigid soil discussed in Chapter 3.
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Table 6.1 Rocking and vertical stiffnesses for a strip footing calculated with the analytical approach of
the elastic medium (infinite half-space) and the Winkler modelling.

K /K .
Km KV Km / KV ( m V)medlum
( Km / KV winkler
Gb?
Elastic medium i 12G 1.3b?
Z(I—V) 1-v
39
3
Winkler 2k§b 2k, b 0.33b°

To formulate a macroscopic model for the rocking response we consider a rigid strip footing of width
B =2b resting on the surface of a homogeneous half-space. Initially the footing is subjected only to a

vertical loading N . Then a gradually increasing horizontal force is applied at the mass centre of the
superstructure (located at height i) leading to an overturning moment M = Nhcosf about the

foundation centre. It is postulated that tensile forces cannot be undertaken by the soil-foundation
interface. In this way uplift onsets whenever the subgrade reaction due to moment loading at a corner

point p, reaches the initial vertical reaction p, .

The different states rocking response of the foundation in terms of a large-displacement analysis

procedure are illustrated in Fig. 6.4.
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(a) full-contact phase

Uplift condition : | =
p,(-b) = 0 ! M (=M, )

(b) incipient uplift

centre
T of mass

!

IX' M (> M)

(c) uplifting phase

Figure 6.4 Rocking of a rigid strip footing on elastic soil: different states of response.
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Full-contact phase:
For sufficiently low levels of moment, the confinement due to vertical loading ensures a full-contact
condition at the interface. At this state, the strip is rocking about its midpoint and therefore any

vertical displacement w at a distance = from the centre comprises (a) a vertical component w,, and

(b) a rocking component zsin6 :
w,(x) = w,, +xsinf [6.7]

Moreover, the contact pressure to the footing at a distance z can be determined with the

superposition of the symmetric (vertical) and the anti-symmetric (moment) components of loading:
p,(z,0)=p,(z)+p,,(2,0) [6.8]

Where p, (z)=k, (z)w,, and p, (z,0)=Fk, (z)zsind are the vertical contact pressures for the case (a)

m

and (b) respectively and %, , k,, are the subgrade moduli for the two loading cases.

It is remarked that in contrast to the conventional beam-on-winkler-foundation modelling, the
sensitivity of soil response to the loading conditions is now incorporated by adopting two separate

spring constants for vertical and moment loading.

The problem of a rigid strip on a homogeneous isotropic medium can be analysed in a variety of ways.
These include Green’s function techniques, complex variable methods and integral transform
methods. Within the assumption of a smooth interface, closed-form solutions can be derived for
simple loading cases. Sadowsky (1928) and Muskhelishvili (1953) developed solutions for the contact

pressures in symmetric or anti-symmetric loading:

N 2Mx

(1) =—F——= and p, (2,0)=—F—7—
Pt Tl — 22 b2 P T3\ 1— 22 /b [6.9]
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Evidently, the contact pressure for each loading case theoretically approaches infinity at the edges of
the footing. In reality the maximum value of the contact pressure is bounded due to the finite soil
strength and redistribution of stresses. The subgrade modulus for vertical and moment loading at a

distance z from the foundation mid-point is derived after dividing Egs 6.9 by w,, and xsinf

respectively:

k (z) —K” and £k (x) —ZK’"’

()= (L) = 6.10
7hyJ1— 2% | b? 31— 22 b2 [6.10]

Where K, = N/w, and K, = M /6 are the global soil-foundation stiffnesses for each loading

case. As mentioned above, for a rigid strip on a homogeneous half-space the closed-form solutions for

these static stiffnesses are (Gazetas, 1991):
K,=0.73G/1-v) and K, =nGb*/2(0—-v) [6.11]

Recalling Eqgs 6.10 the subgrade moduli ratio at a distance x from the centre is:
= [6.12]

Which is independent of the distance z and therefore it is also satisfied for x = —b. It is noted that

Eq. 6.12 is validated from the findings of the foregoing finite element analysis (Chapter 4), regardless

the footing size and the presence of a shallow bedrock.

The sensitivity of the subgrade modulus to the distance from the midpoint and the loading conditions
is reflected in the p —w curves, calculated with two-dimensional finite element analysis at the centre
and at the edges of the foundation, as plotted in Fig. 6.5. The vertical load which is initially applied to
the footing induces a uniform settlement w,, . The horizontal (displacement-controlled) loading

imposed at the level of the superstructure mass centre invokes an additional loading in the right part

of the footing (see curve 3) with stiffer subgrade modulus as well as unloading of the left part (see
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curve 1). At this state of response, symmetric points of the footing with respect to the vertical central

axis have equal subgrade moduli (i.e. £, =%, ;).

4 o
0 1\ Kms®
o
3 -
o (3
5
N
N

Q

1 .

Kmo™*
0 i/ ) ) ) \ - ) )
0 0.25 0.5 0.75 1 1.25 1.5

Wyl Wy,

Figure 6.5 p—w curves underneath the footing at the middle [(2)] and at the corner points [(1) and
(3)] for horizontal loading and unloading at the superstructure mass centre.

The resultant moment of the contact pressures with reference to the centre can be computed with

integration over the foundation:

M:MP’U+Mp’m:fkﬂ(a:)wboa:cosedz+fk:m:1:2cosesin6dz [6.13]

—b —b

are the moments associated with the symmetric and anti-symmetric loading

where M, and M

) m

respectively. Setting the transformation z = bsinw (dx=bcoswdw ), these moment components
yield:

b w2

Mm—chostx - Mfsinwdw =0 [6.14a]

71— 2% | b @
—b —7/2
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and

b 72
2 ] _
M, = K,27sin20 . _ K,sin20 f 1cosdw 4~ K 0 [6.14b]
b 127 b’ i 2
b —7/2

Through Egs. 6.14 it is verified that symmetric loading does not contribute to the resultant moment

whereas a linear moment-rotation relationship is established under antisymmetric loading.

Uplift initiation:
For a clockwise rotation, the footing marginally lifts off the supporting soil when the contact pressure

at the left edge counter-balances the initial reaction of vertical loading:
p,(=b)=p,(=b)—p,(-=b)=0 [6.15]

Unlike the conventional Winkler models, in the proposed model moment loading is associated with
stiffer subgrade moduli. This is a result of the two-dimensional geometry of the supporting medium

and induces uplift to initiate at a vertical displacement w(—b) larger than zero. This is evident in the

numerical analysis results depicted in Fig. 6.5 where uplift onsets before the normalised vertical

displacement of the unloading (left) edge w,,/w, becomes zero. Taking into account that at marginal

uplift the vertical displacement of the footing pivot point is w(—b) = w,,,; (see Fig. 6.4b) the

following expression for the rotation at incipient uplift is derived:

. Wy, — W, lift Wy, kv (b)
sinf ,, =——— P =_bo _vo - 6.16
uplift b b km (b) [ ]

Substitution of Eq. 6.12 into Eq. 6.16 derives the following uplifting criterion for the angle of rotation:

Nb My
o ., ~ - = .
uplift 2K 2K [6 173]

m m

2
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and therefore:

Nb M'r'igz'd

M = - 5 [6.18b]

According to the conventional model, the uplifting criterion of Eq. 6.15 is satisfied when w(—b)=10

meaning that at the uplift onset the footing edge reaches its initial position. On the contrary, from the
proposed model uplifting occurs before the foundation corner point returns to its initial position. For a
homogeneous soil profile the arising ‘restitution’ ratio is depending upon the footing geometry and the

presence of shallow bedrock. In fact this ratio is approximately according to Eq. 6.12:

Wy, _wUPliﬁ — k“(b) = Kﬂbz =
k,(b) 2K,

o m

0.32 [6.18]
Wy

which is non-zero in contrast to that of the conventional model (w,_ ., =0). On the other hand, in

uplift

terms of the conventional model the critical angle for incipient uplift is 6 :sin’l(w,m / b) or

uplift

0, ZN/Kb=Nb/3K,6 and therefore the uplifting moment is I

uplift — uplift =N b/3 = Mrigid /3 N
Evidently, the conventional model underestimates the moment at incipient uplift by a factor of 1.5 in

comparison to the ‘exact’ two-dimensional solution.

Uplifting phase:

Once uplifting occurs the foundation area remaining in contact with the ground is gradually
decreasing (see Fig. 6.4c). As a result the rocking response enters a non-linear regime even under
purely elastic soil conditions. During the uplift mode, the moment of the foundation with respect to its

midpoint is the sum of (a) the moment due to the contact pressures (M,, and M, ) and (b) the

p,m

moment ensued by the lateral movement of the superstructure (P —§ effects). In this way the

foundation moment becomes:
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b

M=M,,+M,, +M, = fpv(x)xCOSde + fpm(x,e)xcosﬁdx — N hsind [6.20]

b—20 b—20

It is reminded that § is the half-width of the footing remaining in contact with the ground. We define

£ the distance of a point in contact with the ground from the effective footing midpoint. In this case:

r={+b-0 [6.21]

The contact pressures of the effective footing on the basis of elastic soil behaviour are calculated with

the hypothesis of the incipient uplift:

The distribution of subgrade reactions along the footing due to combined vertical and moment loading once

uplifting occurs is equal to that of a fictitious footing of width 23 , which under the same combined loading is

being at incipient uplift.

A consequence of this hypothesis is that the centre of the effective footing at each step is the
instantaneous rotation pole of the footing. This can be expressed by the following incremental

equation:

Sw, =b(1—X)60 [6.22]
Where A is the effective-to-initial footing width ratio (ﬁ / b) .

Now, the vertical displacement of the foundation w, can be derived by integration:

w, 0

féwb:fb(l—A)ée

Wy, uplift

1
or w, =w,, +b(1—A)¢9—A91nX [6.23]
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The latter equation provides the analytical relationship between the vertical displacement and the
rocking angle of the footing over the elastic soil. The hypothesis of the incipient uplift allows for the
superposition principle to be applied for the analytical calculation of the contact pressures developed

along the effective footing:

N 2M¢

, (&)= d 0 (&50) =
p,(§) P 1_62/62 an P, (&50) w,@SW [6.24]

By virtue of Eqs 6.21 and 6.24 the moment due to purely vertical loading for the uplifting footing

yields:
3 /2
N (E+b— N cosf .
M,, —f osGdfz f(ﬁsmw—l—b—ﬁ)dw:Ncos@(b—ﬂ) [6.25]
T BA1— f m Y,

This denotes that the moment M, is the product of the vertical reaction resultant times the distance

sV
from the effective footing centre to the footing midpoint. The moment of the foundation due to purely

moment loading is:

g /2
% K, o . K, . sin20 . o
Mp,m = 3 > NPy sin20 { (E+b—-B3)dE = ———— sin“w+sinw (——1)|dw
m B 1-€p i 8
-8 —7/2
K in 26 " K in20
meff S f l1-cos2w . |b gy SIN20 70
+sinw|——1j|ldw = ——*——— =~ K 0 ]
T 2 3 - 5 mscff [6.26]

The equation above verifies the expression adopted for the subgrade stiffness due to moment loading.

Finally, the total overturning moment of the uplifting foundation yields:

M=K, 0+N(b—ﬂ)c0s0—Nhsin9 [6.27]

However, the rocking stiffness of the effective footing is:
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ﬂ_GﬁZ BZ
K _ P g 2
m,eff 2<1 . V) m b2 [628]
By substituting Eq. 6.28 into Eq. 6.27 we finally get:
/82
M:Kmb—29—|—N(b—ﬁ)cos€—Nhsin0 [6.29a]
or M =K,\* 0+ Nb(1—X)cos§ — Nhsinf [6.29Db]

In the finite element study of the uplifting response (Chapter 4) it was shown that the half-width of

the effective footing [ is inversely proportional to the rotation # as shown in Fig. 6.6:
A = g8 = 1 0<0 ..
== z == —= Yuplift [6 303]

0 .
A = % = it 0> 0, [6.30b]

According to Eqgs 6.29 and 6.30 the moment can be determined by a closed-form expression as a non-
linear function of rotation. It is worthy of note that the above analytical procedure can be utilised to
the computation of the moment: (a) in the /inear domain where full-contact conditions are established,

(b) in the large-amplitude region where the gradually amplified P — ¢ effects dominate the response,
and (c) at near-overturning conditions where 0 =0, = tan"'(b/h). In the limiting case that the footing

is supported by rigid soil it yields A =0 for any ¢ >0 and therefore Eq. 6.29 leads to the well-known

moment—rotation relationship:

MszCOSH—NhSiﬂHzNRSin(H —9) [6.31]

C
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While the analytical formulation of the foundation moment was based on a strip footing it can also be
applied to any rectangular spread foundation where the direction of horizontal loading runs parallel to
a normal axis of the foundation cross-section.

1 : rocking at incipient uplift

2 : rocking with uplift " 2b sin@
o

=2 sin6
or
B/b=86,,;,/6

uplift

N =500 kN, 2b=2m, h=5m

— E =100 MPa - Analytical

A -/l- FE
E = 20 MPa - Analytical
o -//- FE

A=8Ib

O 0.0 O

o 0-0_O0 O O

O O 0O 00O

A R E T dhtbdh A A A A A A

0 T T T T 1
0 0.02 0.04 0.06 0.08 0.1
6:rad

Figure 6.6  Comparison of the numerical curves of the A—6 relationship with the analytical
prediction.

A comparison of the analytical calculation of the foundation moment and vertical displacement to the

results of the finite element analysis is shown in Fig. 6.7 in form of M —0, w—#6, and M —w curves

for a strip footing (Zb:Z m, h=5m, N =500 kN) on elastic soil layer over rigid bedrock
(E, =20 and FE,=100 MPa). An excellent agreement between the analytical and the numerical

method is achieved throughout the range of the rocking rotation.
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N =500 kN, 2b=2m, h=5m
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Figure 6.7
dimensional finite element results.

M(0) = K,\*0+ Nb(1—X)cosd — Nhsin6
w, (0) = w,, +b(1—X)sind + A0In(1—X)

euplift /9 >
1,

0 > euplift
0<60

uplift

Analytical curves of a rigid strip footing on elastic soil and comparison with two-
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Moment capacity of the foundation:
During the uplift regime the foundation moment may be expressed explicitly as a function of the

effective footing ratio A by substituting the rocking angle given by Eq. 6.30b to Eq. 6.29b:

Nh
M=M,,; [Z—A—Z—K A] [6.32a]
or without P — ¢ effects
M =M, (2=X) [6.32b]

The latter equation has also been presented by Crémer ez al. (2002) extracted empirically from the

results of a parametric numerical study.

In the foregoing it was pointed out that once uplifting initiates the foundation stiffness enters into a
softening fashion which bounds the overturning moment to an ultimate value. This upper limit
corresponds to the moment capacity of the foundation. It is well known that for the extreme case of an
infinitely rigid soil this ultimate moment equals to the vertical load times the half-width of the footing.
In reality though, soil deformations in the vicinity of the base edge are inevitable even when dealing
with very stiff soils. Thus, soil compliance shifts the axis of the resultant vertical reaction towards the
base centre, reducing the moment capacity of the foundation. For elastic soil conditions, the moment

M, is the local maximum of the function M = M () as defined in Eq. 6.29. Hence it can be calculated

(7

by the condition d M/ /df =0. For small angles of rotation (compared to the critical angle ) it is

sinf >~ 0 and cosf =~ 1. In this case Eq. 6.29 in combination with Egs. 6.19 and 6.30 can be written:

272
M:Km)\z9+Nb(1—)\)—Nh9=—ﬁ(be+Nb—Nh9 [6.33]

m

The rotation at which the ultimate moment of the foundation occurs can be computed with derivation

of Eq. 6.33 with respect to 0 :
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dM  N%’

A0 aK, ¢ 1634

Therefore the angle that satisfies the equality cii—]\; =0 is:

Nb? Nh
0, = =tanf, |—— [6.35a]
4K h 4K

and the moment at this point:

Nh
M,=Nb|l- |— 6.35b
sy [ -
or
M, =Nb|1—- 26, ~ Nb 1—2i [6.35c¢]
tand, 0,

We notice that when 6, — 0 the ultimate moment approaches the rigid soil limiting value ( Nb ), while

for 6, — 6, /2 the moment M, tends to zero. This means that the locus of points (¢

u?d

M, ) tracks onto

the median of the angle defined by the ordinate and the ‘rigid’ M — theta softening line as portrayed

in Fig. 6.8. The exact location of an ultimate point (6, , M, ) at this locus depends on the vertical load,

the height of the mass-point and the soil-foundation rocking stiffness.
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Figure 6.8 Comparison of the numerical curves of the A —@ relationship with the analytical
prediction.

As shown in Chapter 3 for a one-story uplifting oscillator with a concentrated mass, the period

parameter T, is:

R h
T =27 |~ =2
e Pl e [6.36]

Moreover, when full-contact conditions are considered, the natural period of the rocking structure

2 2
T =2r mh” o |NA [6.37]
K, 9K,

The period ratio 7,, /T, is then:

over elastic soil is:

&_2 N hcos0, Nzﬂi [6.38]
T[) 4K’”L B 0C '

Hence, the ultimate moment of the foundation is rewritten:
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[6.39a]
M, = Nb|l1— LTS DTSN PR
’ \]COSH(: TP {TP
or [6.39b]

The failure locus on the N — M plane determined by Eq. 6.39 can be applied to any strip or
rectangular foundation allowed to uplift on elastic soil. Nonetheless, it is very important on the
estimate of the ultimate foundation moment as it incorporates the interplay of the two rocking modes
of the structural system: (a) the linear component of rocking without uplift on elastic soil which is
represented by the rocking period (frequency) and (b) the uplifting (non-linear) component of
rocking on a rigid base represented by the period (frequency) parameter. These two simplified
rocking systems are illustrated in Fig. 6.??. An interesting way of presenting Eq. 6.39 is portrayed in
Fig. 7.??. The ratio of the ultimate to the uplifting moment is plotted as a function of the rocking

period for different values of the period parameter.

6.3.2 Inelastic soil

The simplification of elastic soil behaviour allows for a tractable analytical calculation of the uplifting
response. Excluding some cases of lightly loaded foundations(x<0.2—0.3) , yielding zones of the
supporting soil emanating from the area underneath the foundation edges are often inevitable. This
may lead to a ‘visible’ non-linear fashion of the moment-rotation relationship even under full-contact
conditions. Moreover, once uplift initiates, soil material nonlinearity counterbalances the uplifting

displacements and contributes to substantially non-linear foundation behaviour.

We consider again a rigid, strip footing of width B = 2b resting on the surface of a homogeneous half-

space. Initially the footing is subjected to a vertical loading N . The vertical displacement of the

footing (settlement) w,, is now a non-linear function of the applied load. Two analytical curves are
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most suitable to describe the backbone N —w curve according to the exponential and the hyperbolic

law (Egs 6.40a and b respectively):

N=K ——— [6.40a]

1 1 [6.40b]

Where =K, /N,. In Fig. 6.9 the analytical N —w curves are plotted in comparison with those

calculated from finite element analysis of a strip footing (Zb =2m, h=5 m) on homogeneous soil

layer over rigid bedrock (E =100 MPa, s, =100 kPa) .

1200 - 1200 -

W 0.0-0-0-0-0-0-0
1000 4 500 1000 4 o 00 0-000RLOEE

0°°
800 4 800 -

z
< 600 600 4 ¢
z
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MODEL MODEL
200 - 200 -
/
0 < T T T T T 1 0 <@ T T T T T 1
0 002 004 006 008 0.1 0.12 0 0.02 004 006 0.08 0.1 0.12
Wp: M W,: m

Figure 6.9 Comparison of the exponential and the hyperbolic model with the finite element analysis
in the calculation of the N —w curve.

An excellent agreement is achieved for both models with the numerical results. According to the

afore-discussed models the settlement at the end of this loading phase may be calculated as follows:

_ln(l—N/Nu)_ ln(l—x)
T [6.41a]

N 1 1

wb:_le—NU/N:_w(l—ux) [6.41D]
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The analytical calculation of the settlement with the exponential model has been successfully

evaluated by Nova and Montrasio (1991) through experimental N —w curves on sand.

At the second loading stage, a gradually increasing horizontal force is applied at the level of the
superstructure mass (located at height A ) leading to an overturning moment M = Nhcosf about the
foundation centre. As in the elastic case uplift onsets whenever the subgrade reaction due to moment

loading at a corner point p,, reaches the initial vertical reaction p, .

Full-contact phase:

For sufficiently low levels of moment the confinement due to vertical loading ensures a full-contact
condition at the interface. In contrast to the elastic case the strip is rocking about a point (rotation
pole) which is not fixed at the centre of the base but shifts towards the unloading edge. This leftward
(for a clockwise rotation) movement of the instantaneous pole is attributed to the plastification of the
supporting soil underneath the loading edge of the footing. The larger the structural weight is, the

more rapidly the pole moves towards the unloading edge. In the limiting case of y — 1 the footing

tends immediately to rotate about its unloading edge even under a very small overturning moment. In

this case the vertical displacement (settlement) becomes:
w, =—bsind [6.42]

On the other hand, for elastic soil behaviour (x = 0) the displacement w, prior to uplift initiation is

Z€ro.

The M —theta curve at the full-contact phase may be calculated with the exponential or the

hyperbolic model as follows (Eqs 6.43a and b respectively):

M=K -—¢ [6.43a]
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L1, [6.43b]

Where =K, |M

(!

, and M, is the ultimate moment of the foundation if uplift is prevented. The
afore-mentioned analytical models are evaluated in the calculation of the M —theta relationship

through finite element analysis for a strip footing (N =500kN, 2b=2m, h=5 m) on homogeneous
soil layer over rigid bedrock (E =100 MPa, s, =100 kPa) as plotted in Fig. 6.10. Both models seem

to capture the basic features of the backbone curve. Nevertheless, a slightly closer fit is achieved with

the exponential model throughout the loading sequence.

N=500kN, £ =100MPa, 2b=2m, £2=5m

400 - 400 -
300 - 300 -
£
< 200 200 -
% HYPERBOLIC
EXPONENTIAL (
s MODEL poR 43’9 MODEL
d .
0 L] Ll LI L] D ﬁ L] L] L] L)
0 0.01 0.02 0.03 0.04 0 0.01 0.02 0.03 0.04
& rad & rad

Figure 6.10 Comparison of the exponential and the hyperbolic model with the finite element analysis
in the calculation of the M —theta curve.

Uplift initiation:
As in the elastic case, the footing marginally lifts off the supporting soil when the uplifting criterion
described with Eq. 6.15 is satisfied. By applying the exponential law to the p—w curve of the

unloading edge, the following uplifting criterion is obtained:

RACON ACh)

vo Who ~ Wyplift )
Py — _ Dy ’
=p,|1—e

p,|1—e
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K, (=b) jm(fb)( R )
or 7]) Wy, 7[} Who —Wyplife
e u — e u

k’u(_b) . Wyo _wuplift

E(—=b) w

m vo

and finally [6.44]

where k, and £ are the elastic stiffnesses as determined above.

From the latter equation it is derived that the critical rotation for marginal uplift is equal to the
‘elastic’ one:

Nb
O, K

m

112

[6.45]

The moment at incipient uplift is then derived by substituting Eq. 6.45 to the exponential law for the

M —theta relationship:

_Kn Nb
2
Muplift :MLL l—e M2
_Nb
or Muplift :Mu l—e 2 [646]
Equivalently in the dimensionless N — M plane:
I, 1
—a = l1—e [6.47]

Evidently, the uplifting moment is not anymore a linear function of the vertical load N but exhibits a
softening behaviour as N increases. As the failure curve in the N —M plane is described with a
parabola, it is expected that a threshold value of N exists where the uplift and failure curves intersect

and beyond which no uplifting occurs.
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Uplifting phase:
Once uplifting occurs the foundation area remaining in contact with the ground is gradually
decreasing. However the magnitude of uplifting (i.e. expressed with the effective footing ratio A ) is

limited with the increase in the structural weight (expressed with the load factor y ).
The vertical displacement w, in the limiting cases of x = 0 and y =1 is given by Eqgs 6.23 and 6.42

respectively. From these two states of response, linear interpolation may provide the vertical

displacement w, of a load factor x as follows:
w, = w,, +b(1—)\)0—)\91n§—xb9 [6.48a]
or
w, = w,, —|—b(1—)\—x)0—)\01n§ [6.48b]

During the uplift mode the moment of the foundation with respect to its midpoint is the sum of (a) the
moment due to the contact pressures (M . and M . ) and (b) the moment ensued by the lateral

P p,m

movement of the superstructure ( P —§ component):

M= Mp,m + Mp,v + MPfﬁ [649]

The components of the moment associated with the eccentricity of the resultant reaction N (M W‘,)

and the P —¢ effects M, _, are the same with those of the elastic case.

For the analytical calculation of the moment component associated with the antisymmetric part of the
external loading (M p,m) calculation of soil reactions due to that loading and integration along the
effective footing is required. For inelastic soil conditions however, this method leads to complex
integral expressions of the resultant moment even when simple analytical p —w curves are employed

(for example the exponential law). More than that, the shift of the rotation pole towards the edge of
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the footing, further complicates the decoupling of the developed soil reactions into symmetric and
antisymmetric components. An alternative approximate method to calculate the moment component

M__ may arise through the extrapolation of the linear M — A correlation extracted for elastic soil

psm

conditions.

This linear trend of the M — )\ correlation is confirmed by the numerical results plotted in Fig. 6.11.

In addition, the effective footing ratio A must satisfy: (a) the limiting case of elastic soil (y = 0) and
(b) the limit state condition A=y . The exponential law of the effective footing ratio A with respect

to the rocking angle which satisfies both limitations is given by the following equation:

euplift (1 - X) + XH
0

N [6.50]

Numerical validation of the latter equation through nonlinear finite element analysis of rocking
response is presented in Fig. 6.11. Eventually, the moment of the foundation for inelastic soil

conditions becomes:
)\ 2
M=K, [1—X] 0 + Nb(1— \)cosf — Nhsind [6.51]
X

Eqgs 6.50 and 6.51 comprise the analytical expression of the foundation moment as a non linear

function of the rocking rotation for the general case of inelastic soil.

A comparison of the analytical calculation of the foundation moment and vertical displacement to the
results of the finite element analysis is shown in Fig. 6.12 for a strip footing

(N=500kN, 2b=2m, h=5m) on inelastic soil layer over rigid  bedrock
(EleO MPa, s, =100 kPa). A close agreement of the analytical results to those obtained from

numerical analysis is attained throughout the range of the rocking rotation.
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Figure 6.11 Nonlinear rocking response of a strip footing on inelastic soil, calculated with two-
dimensional finite element analysis: (a) distribution of soil reactions in characteristic increments prior
to uplift, (b) M — X correlation, and (c) the effective width 23 with respect to the rocking angle ¢
and comparison with the analytical prediction.
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Figure 6.12 Analytical curves of a rigid strip footing on inelastic soil and comparison with two-
dimensional finite element results

6.4 ULTIMATE MOMENT CAPACITY

As shown in the foregoing discussion, the A —6 backbone curve follows a softening fashion due to
geometric and soil material nonlinearities. As a result the moment developed by the foundation is

bounded by an ultimate value } . In the optimum case of a rigid supporting soil the foundation

undertakes the maximum possible moment which corresponds to the vertical load N times the half-
width of the footing 5. In common geotechnical applications however soil compliance and
plastification of the supporting soil result in substantial reduction of the ultimate moment. Moreover,

further decrease in MM, is expected in tall structures due to P —¢ effects. In the general case the

ultimate moment of the foundation may be derived analytically as the local maximum of Eq. 6.51. To

this extent derivation of Eq. 6.51 yields:
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dM  N?b?

—=——>—-Nh=0
do 4K, 07 [6.52]

The rocking angle 6, at which the ultimate moment is attained is therefore:

u C

0, =tanf, |-~ =0 [6.53]

Eventually, the ultimate moment is:

Nh
or
20 0
M =Nb|l— LI~ Nb|1-2-—2+ .
¢ [ tan&c] [ OC] [6.54]

After some algebraic manipulations, the ultimate moment may be expressed as a function of the

. Nh . . . . .
nonlinear parameters 7= R and x , which represent respectively geometrical and soil material
m

nonlinearities.

M, :Nb(l—n)(l—x) [6.55a]
In dimensionless form:
M, x
v —2(1—p)(1—
NB 2 (1-n)1-x) [6.55b]
= %(1 —n)(1-4) [6.55¢]
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Eqgs 6.55 provide the analytical expression of the failure curve in the nondimensional n —7 plane

when P —§ effects are considered. Remark that for =0 (i.e. no P—§ effects are considered) the

failure curve reduces to that calculated with the conventional Winkler model (Eq. 6.6b).

6.6 APPLICABILITY and LIMITATIONS

Non linear features of the rocking response of tall structures founded on shallow foundations are
investigated. Principally, based on conventional Winkler modelling, interaction curves in the
nondimensional N — M plane were calculated for failure (overturn) as well as incipient uplift and soil

yield. A perfectly symmetric response is achieved about the vertical axis at y =0.5. At this point the

optimum foundation behaviour in terms of the moment ultimate capacity is obtained. To highlight the
induced nonlinearities in the large-displacement domain, a macroscopic modelling of the soil-
foundation system was developed. In this respect analytical equations for the overturning moment and
the vertical displacement were extracted as a function of the rocking angle (a) for elastic soil, and (b)
for inelastic soil. From the latter case, analytical equation of the failure curve in the nondimensional

N — M plane was obtained, incorporating both geometric and material nonlinearities.

Apostolou, doctoral dissertation 2011 222



Chapter 7: Analysis of the overturning response of slender structures

Chapter 7:

Analysis of the overturning response of slender structures

7.1 INTRODUCTION

The nonlinear features of rocking and uplifting behaviour of a shallow foundation under static and
dynamic conditions have been investigated in depth in the preceding chapters. When dealing with
slender structural systems subjected to strong seismic excitation however, rocking vibrations may lead

to overturning under certain circumstances. In case of rigid or stiff soil conditions toppling of a

shallow foundation is attributed to the exceedance of the gravitational (resisting) moment (E N b)

due to large uplifting. On the other hand, for a foundation on soft soil, overturning failure is usually
the result of the loss of strength and the excessive yielding of the supporting soil under large
overturning moment. In the former case overturning under a seismic excitation is a sudden and abrupt
type of foundation failure associated with the dynamic rocking characteristics of the structural system.
In the latter case ‘seismic’ overturning can be interpreted as a conventional geotechnical failure which

is gradually developed and can be described with a ‘pseudostatic’ mechanism.

The discovery on the ground surface of slender blocks toppled after an earthquake has for many years
provided upper-bound and lower-bound estimates of the peak ground acceleration. The fallacy that
the acceleration needed to just overturn a block is the one obtained from moment equilibrium
between the statically applied inertia force and the weight of the block (see Eq. 3.1), has prevailed for
nearly a century and led to the establishment of unrealistically low levels of ground acceleration (of the
order of 0.05 g to 0.10 g, even in areas of high seismicity). In fact, much greater acceleration levels are

needed for overturning under seismic shaking, especially for large blocks and at high frequencies.
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Ironically, this was already known (even if incompletely) as early as 1893 (Milne & Omori), while by
1927 Kirkpatrick had published a simple formula for estimating the ‘dynamic’ overturning
acceleration, which captured the role of the basic problem parameters with sufficient degree of
realism. In the subsequent 40 years, the lack or scarcity of accelerographs prompted many researchers
and earthquake engineers to study the overturning behaviour of slender bodies. However, the
dynamic character of the overturning behaviour was not widely understood by the engineering
community until Housner’s (1963) publication, in which he derived overturning criteria and showed
the importance of both frequency of excitation and size of structure. In recent years the subject of
overturning of blocks and structures under seismic excitation has received renewed attention. Makris
and Roussos (1998) and Anooshehpoor ez al. (1999), in particular, focused on the transient response of
rigid blocks under near-fault ground shaking. They found that distinguishable long-duration pulses
inherent to such shaking may be particularly detrimental to the rocking response of slender structures.
Many examples of such pulses have been uncovered in near-fault records of recent Ms 6.5
earthquakes, such as the Imperial Valley 1979, Erzincan 1992, Northridge 1994, Kobe 1995, Kocaeli
1999, and Chi-Chi 1999. These pulses are the result of two effects: the ‘forward rupture directivity’

effect and ‘permanent offset’ (or ‘fling’) effect (Somerville 2003, Hisada & Bielak 2003).

In light of the above we investigate the overturning potential of near-fault ground motion, represented
for simplicity and clarity with the following idealised pulses: the Ricker-wavelet, the (truncated) T-
Ricker wavelet, the one-cycle sinus, the one-cycle cosinus, and the rectangular half-cycle pulse. Their
time histories are plotted in Fig. 7.1. Time histories of recent earthquake records have been also
implemented in the analysis. Numerical and analytical solutions of the rocking response are utilised:
(a) to derive lower-bound estimates of the overturning amplitude, and (b) to demonstrate how
sensitive the overturning behaviour is not only to the intensity and frequency content of the base
motion, but also to the presence of strong pulses, to their detailed sequence, and even to their
asymmetry. In so doing, overturning acceleration and rotation spectra are introduced as an efficient tool

to quantify the overturning response and to provide criteria for marginal toppling.
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Although emphasis is given on the overturning over a rigid soil, the effect of soil compliance is also
examined in view of both elastic and inelastic soil behaviour. Rocking and overturning response on a
rigid soil is calculated through explicit integration of the governing equation of motion (Eq. 3.2 or
3.50 for a rigid or flexible structure respectively), whereas for a rocking structure on deformable soil,
two-dimensional finite element analysis is employed. In any case lower-bound estimates of the

overturning amplitude are calculated through a trial-and-error procedure.

One-sine One-cosine

Ricker Rectangular T-Ricker

\/

Figure 7.1 Idealised pulses utilised to represent near-fault ground motion.

7.2 OVERTURNING on RIGID SOIL

7.2.1 Rigid structure

We consider first the rigid rectangular block shown in Fig. 3.1, which is subjected to horizontal

shaking. For small levels of the ground acceleration a, =a,(¢) the moment of the inertia force with
reference to the foundation midpoint (ma,h) does not exceed the restoring, gravitational moment

(mgb). In this regime, the block remains at rest with respect to the ground. As soon as the ultimate
moment mgb= Nb is reached uplifting initiates and the block is set to rocking motion. This peak

value of the resisting moment is reached instantaneously at the onset of uplift (§ =0) and from then
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on the moment is gradually decreasing due to P —§é effects. On the basis of a pseudo-static approach,
once uplifting about the corner point initiates, the body will unavoidably overturn. In other words,
the critical acceleration for uplifting a, is identical to the minimum required to szatically overturn the

block (=b/h in units of g). On the contrary, under a dynamic base excitation reaching a, simply

initiates rocking motion. Whether the block will safely undergo rocking or eventually overturn
depends on its size and slenderness as well as the kinematic characteristics and intensity of ground

shaking.

The state-space formulation of a rocking system driven by a one-cycle sinus pulse is:

0= =f(0,0,7) [7.1a]
¢ =p’sin(sgnf, —0)+%,, sinT = g(0,¢,7) [7.1b]
F=w, =h0,p,7), 0<7<2m [7.1c]

where 7=w,t is the dimensionless time. At 7, =27 the base excitation expires and the nonlinear
system enters into the free vibration regime with initial conditions (Go,gbo). For any 7 <27 there are

no equilibrium points since it is always 7 = 0. Additionally, due to the limited duration of the forced

system it cannot be identified an unbounded trajectory representing critical instability. It may be
generalised that for a structure subjected to a transient base motion, critical overturning may occur only in
the free vibration regime. As discussed in Chapter 3, critical overturning in the free vibration regime is
associated with a trajectory which is attracted by the heteroclinic orbit and passes through equilibrium

point(&(:,O) (see also Fig. 3.6). The phase plane of a slender rocking block (Zb =1lm, 2h= Sm) is

revisited in Fig. 7.2 with identified stable and unstable areas separated from the heteroclinic orbit. It is
notable that the unstable area may be subdivided into (a) an area where overturning occurs without
any impact in the free vibration regime and (b) an area where overturning occurs after an impact (at

the instant ¢,) in the free vibration regime.

Apostolou, doctoral dissertation 2011 226



Chapter 7: Analysis of the overturning response of slender structures

@: rad/sec

Rocking without overturn

Overturn with one impact

Overturn without impact

L E O

Overturn without impact

++++  Heteroclinic orbit

Figure 7.2 Phase plane of a rocking block with identified stable and unstable areas
(2b=1m, 2h=5m).

Along the heteroclinic orbit the total energy (i.e. kinetic and potential) is preserved. Hence, for the

points of (i) impact (0, é(tg)

only kinetic energy; %J Oé(ti)z and (ii) saddle equilibrium (Gc s 0)
[only potential energy; ng(l —cos0, )] preservation of energy gives:

0t,* =2p* (1—cos),) [7.2a]
or

0(t,) = £p\2(1—cos,) [7.2b]

The impact points of the heteroclinic orbit can be calculated according to Eq. 7.2b. This equation is

also a criterion for marginal overturning when an impact occurs during free vibration.
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The potential of the heteroclinic orbit (X = E/ Jo) is:
H=p’= %9'2 + p’ cos(sgn g, — ) [7.3]

It yields that an unstable trajectory will start from the point (90,¢0> if Hy > p*. Accordingly, for a

stable trajectory an initial condition (6,,¢,) with (H) < pz) is necessary. From Eq. 7.3 the

heteroclinic orbit can be determined:

9:j:p\/2[1—cos(sgnQGC —0)] [7.4]

Positive (negative) sign in this equation corresponds to an orbit that approaches (departs from) the

equilibrium point.

Linearisation of the response in the neighbourhood of the equilibrium point (6,,0) denotes that the

limit cycle close to this point tracks on the instable manifold v =c,e *'v,, and therefore:

eipt =0 [75]

The latter equation indicates that the rocking block approaches the equilibrium point (i.e. critical

overturning) asymptotically at a theoretically infinite amount of time: pt — oo. This conclusion is

well established in the qualitative analysis of nonlinear systems (otherwise uniqueness of solutions

would be violated) and leads to the following overturning criterion:

t—oo and (6,0)=(+6,,0) [7.6]

For sufficiently slender bodies linearisation can be extrapolated along the heteroclinic orbit. In this

case Eq. 7.2b and Eq. 7.4 are simplified respectively:

0(t,) = +pb, [7.7]
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0 = £p(sgndd, —0) [7.8]

For critical overturning under a pulse-type motion the state variables (9,9) must satisfy Eq. 7.8 at the

onset of free-vibration regime (i.e. at ¢ =1}, ) as the point (Gt:TE,ét:TE) must lie on the heteroclinic

orbit. In this way, Eqs 7.6 and 7.8 summarise the conditions of critical overturning. In case of
overturning with impact after excitation expires it is evident that Eq. 7.7 can be also implemented
instead of Eq. 7.8. These equations together with a closed-form solution of the governing equation of

motion allow for analytical estimate of the minimum overturning amplitudes.

The aforediscussed findings are depicted qualitatively in the phase portrait of Fig. 7.3.

Figure 7.3 Phase plane of a linearised rocking block; Analytical calculation of heteroclinic orbits,
impact, and equilibrium points.

The overturning criterion described with Eq. 7.5 was originally extracted by Anooshehpoor ez al.
(1999). In that study it was correctly stated for the first time that a block at the instant of critical
overturning must have zero angular velocity, however it was not considered that this condition should

occur at theoretically infinite time. Makris and Zhang (1999) presumed that both Eq. 7.6 (in the form

of é(tm):O) and Eq. 7.8 should exist at critical overturning and showed that a one-cycle

trigonometric pulse may overturn a block either after one impact (mode I) or without impact at all
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(mode 2). A ‘safe region’ emerges between the two modes, meaning that while the block overturns for

a certain level of shaking, it surprisingly remains standing when the amplitude increases. This

counter-intuitive conclusion is elucidated graphically through the following numerical example. The

rigid block discussed above (szlm, Zh:Sm) is set on rocking under a one-sine pulse of

T, =0.8sec for different levels of shaking. The calculated trajectories in the phase plane are

presented in Fig. 7.4 together with the time-histories of response (non-linear formulation).
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Figure 7.4 Critical stable and unstable solutions of the rocking block (Zb =lm, 2h=5 m) under a

one-sine pulse of 7, =0.8sec.
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The block safely experiences rocking motion for acceleration amplitudes lower than 0.428 g whereas it
marginally overturns after an impact for a PGA of 0.429 g. The acceleration is further increased
gradually up to 1.233 g and the block still overturns after an impact. However for acceleration
amplitude of 1.234 g the block undergoes rocking without toppling. Eventually, when the acceleration

reaches 1.293 g overturning occurs towards the opposite direction (without impact).

Block size and excitation frequency:

The major outcome of the nonlinear nature of rocking motion is that for a specific type of ground
motion, the required acceleration for overturning is a sensitive function of both the block size and the
excitation frequency. This has been recognized by many researchers since more than a century (Milne
and Omori 1893). Eighty years ago, Kirkpatrick (1927), assuming small rotations of slender
structures, was the first to quantify the effects of the two afore mentioned parameters on the
overturning response. For a sinusoidal excitation he derived analytically the necessary acceleration for

overturning:

Housner (1963) studied thoroughly the overturning response under pulse-type and white-noise
excitation and re-derived Eq. 7.9 for the case of a half-sine pulse. This simplified formula is a good
approximation of the exact solution for steady-state harmonic excitation. However, for the case of a

half-sine pulse it was based on a conceptually incorrect overturning criterion [6(¢) = 6, when the

pulse expires]. Using trigonometric pulses Makris and Roussos (1998) unveiled the detrimental role of
long-duration pulses inherent in near-fault ground shaking. In this study it was shown that Housner’s
overturning criterion is non-conservative and the overturning amplitude for a sine (half or full cycle)
and cosine pulse excitation can be fitted with the following linear trends (Eqs 7.10a, 7.10b, and 7.10c

respectively):
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half-sine pulse: Qoverhalf-sine = b 1428 s “r 3 [7.10a]
R p

. b Wy Wy

one-sine pulse: Copersine = |1+ —=1 5 —<3 [7.10b]
U h 6p p

. b Wy wg
one-cosine pulse: Qpoorcosine = —|1+==1>5 —£ <3 [7.10c]

T p

Revisiting the solution of Spanos and Koh (1984) for the linearised system under harmonic excitation,
Makris and Zhang (1999) derived a transcendental equation to calculate analytically the minimum

overturning acceleration a . under a one-sine pulse for both modes. In the same study, they utilised

over

this equation to calculate minimum acceleration levels for different values of the excitation frequency
and derive the overturning acceleration spectrum. Within the limits of the linear approximation, the
overturning acceleration spectrum can be normalised for a specific value of the coefficient of

restitution as plotted in Fig. 7.5 for r =0.8. Overturning accelerations computed numerically in the

present study are also portrayed in the same graph.

10 -

N

Figure 7.5 Overturning amplification ratio (i.e. ratio of dynamic overturning acceleration to the
pseudostatic overturning acceleration) for slender blocks under a one-sine pulse excitation computed
by: (i) numerical integration of equation of motion (circles) and (ii) the analytical formula derived by
Makris and Zhang (solid lines). The coefficient of restitution is 0.8.

Apostolou, doctoral dissertation 2011 232



Chapter 7: Analysis of the overturning response of slender structures

Evidently, increasing the excitation frequency w, = 27 f, and the size of the block (i.e. decreasing the

parameter p) affects favourably the overturning response. It is notable that for sufficiently high

frequency pulses the required acceleration for toppling can be substantially larger than the critical

static value a, = b/h. As an example, for excitation period of 0.3 sec and block diameter of 0.5m

the frequency ratio is {2 = wy / p = 5.45 which leads to a minimum acceleration about 4 times the static
acceleration (A =~ 4 ). On the other hand, an excitation period of 1sec could be regarded as a static

loading as for the same block diameter it results to a minimum acceleration that tends to the static
value (A ~1.2). The profoundly nonlinear-dynamic nature even of the piecewise linear system is not
reflected only on the overturning amplitudes. In this respect, the two overturning modes, namely
after one impact or without impact at all are also shown together with the ‘safe region’ emerging

between the two modes.

Asymmetry and detailed sequence of pulses:

Sensitivity of the overturning amplitude to the size of the block and the frequency of excitation was
previously discussed under a one-sine pulse. In Fig. 7.6 the overturning spectrum for the case of a
one-cosine pulse is presented as calculated by (a) the analytical solution of Makris and Zhang (1999)
and (b) numerical integration (trial-and-error approach). The two distinct overturning modes (i.e.
overturn after one impact or without impact at all) and the ‘safe region’ between the two modes are
encountered again. However, the difference of the overturning amplitude levels in comparison to
those computed under a one-sine pulse is remarkable. For all frequency ratios (2 larger values of
acceleration are now required to overturn the block (compared with the one-sine case). Also, the
critical value of the frequency ratio beyond which only overturning without impact can occur has
dropped down to about 4. The beneficial effect of the cosine pulse with respect to the sine pulse is

attributed merely to the phase shift of 7 /2.
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Cycloidal pulses are reasonable idealisations of near-fault ground motions, nevertheless, they cannot
fully capture the effect of a slight asymmetry inherent to near- fault pulses. The Ricker wavelet has a
distinct advantage in this respect as will be discussed later. It is thus employed here to excite the
rectangular block of 2b =1m and 2h =5m in rocking vibrations (with r=0.89). As portrayed in the
overturning spectrum plotted in Fig. 7.7, more failure loops ‘appear’ in this case. It is also remarkable
that there is no distinction between overturning with one or no impact as derived from the time-
histories of Fig. 7.8. The difference between two ‘neighbouring’ loops is now in the direction of

toppling.

Figure 7.6 Overturning amplification ratio under a one-cosine pulse excitation computed by: (i)
numerical integration of equation of motion (circles) and (ii) the analytical formula derived by Makris
and Zhang (solid lines). The coefficient of restitution is 0.8.
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Figure 7.7 Overturning amplification ratio under a Ricker pulse excitation computed by numerical
integration of equation of motion. The coefficient of restitution is 0.8.
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Figure 7.8 Time-histories of the rocking response for a rectangular block with 2b=1m and
2h=5m subjected to a Ricker-wavelet excitation of f, =0.53 hz . The coefficient of restitution is

0.89 (elastic impact).
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Overturning potential of large structures:

An important question arises as to whether or not large structures such as high-rise buildings or tall
bridge piers may safely uplift from their foundation during strong shaking. Although such tall
structures are unlikely to behave as rigid blocks, and their (unavoidable) flexibility is a favourable
factor, the rigid block assumption may give a conservative glimpse on the threat of overturning. The
beneficial effect of increased block size to overturning response is already known. However, with very

tall and slender buildings, the slenderness ratio 4 /b is also large. The interplay between slenderness

and size regarding overturning is clarified with the help of a rectangular block of a constant half-

width b. In the plots of Fig. 7.9 the height of the block is gradually increased so that both its

slenderness (4 /b ) and its frequency parameter ( p ) keep rising.

4 4 1
/\ Te=0.4sec
c 0.8 1
£ 3 \/
Y
Q< -
< 5 2/
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'c 0.4 4
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$ 1
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Figure 7.9 Overturning spectra with respect to the half-height h for blocks with half-width 0.5 m and
1 m subjected to a one-cycle sinus pulse of period 0.4 sec (left) and 0.8 sec (right).

Initially, a block of 5=0.5m and h=1m is set on rocking under a long-duration one-cycle sinus
pulse of 7}, = 0.8 sec; to topple it, a peak ground acceleration of 0.7 g is needed. By increasing h by
a mere 1 m , the overturning acceleration drops to 0.35g -- an example of detrimental influence of

slenderness. However, as the height of the structure is further increased, the decrease of the
overturning acceleration diminishes and the beneficial effect of the size parameter gradually takes

over. Paradoxically, after reaching a minimum about 0.18 g the overturning acceleration tends to
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increase, not decrease, with increasing height and slenderness! All that happens is that the size effect
overshadows the influence of the slenderness and becomes the prevailing parameter on the
overturning response. Hence for a sufficiently tall structure of a certain width, the more slender is
made the less vulnerable to overturning it will be! This can explain why large slender structures
survive toppling even under severe seismic shaking. In the experimental work of Huckelbridge &
Clough (1976) it was made clear that for a practical building, transient uplifting response would in no

way imply imminent toppling.

Resemblance of near-fault ground motions with idealised pulses:

The resemblance of near-fault ground motion with cycloidal symmetric pulses has been demonstrated
by Anooshehpoor er al. (1999), Makris et al. (1998, 1999), Mavroeidis & Papageorgiou (2003).
Asymmetric pulses can be represented with a Ricker or a T-Ricker wavelet. For example the
directivity affected Diizce record (in the Kocaeli 1999 earthquake) is compared with a Ricker wavelet

(PGA=0.28g and T, =1.3sec) in Fig. 7.10. The two time histories excite in rocking a slender block

(6, =0.2rad ) for different values of the period parameter T, =27|p.
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Figure 7.10 Rocking and overturning spectra for blocks with h/b=5 (6, =0.2rad ) subjected to the

time-histories of: (a) Diizce, in the Kocaeli Earthquake (plotted with gray solid lines) and (b) a Ricker
wavelet (plotted with black solid lines and circular dots).
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The resulting spectra of peak rotational angle ¢ . and minimum acceleration level for overturning

(derived by scaling up and down each motion). Evidently the simple Ricker pulse can simulate the

long-duration pulse inherent in the Diizce record for all values of 7). This almost excellent

agreement (with respect to rocking) of the Diizce record with a simply fitted Ricker wavelet indicates
that the rocking and overturning is practically unaffected by the high-frequency acceleration peaks

that are ever present in every strong accelerogram.

The case study of the toppled tombstones (Athens earthquake, 1999):
While the overturning hazard may not be the key issue in the seismic response of slender structures
(at least if stiff soils support them), it is usually addressed in engineering practice for two different
reasons: (a) toppling of non-structural elements are in many cases of special interest in seismic design
procedures (for example appended equipment, electrical transformers and so on and (b) for nearly a
century the engineering community analysed overturning failures observed after an earthquake to
obtain rough estimates of the true intensity of (unrecorded) seismic shaking. To demonstrate how
difficult it is to obtain reliably such estimates, toppling of a typical cemetery tombstone in the Athens
earthquake of 1999 is studied (Fig. 7.11). It was expected that back analysis of the overturning would
reveal the intensity of the unknown ground motion at this location, 2 km away from the causative fault
(Apostolou ez al., 2007). Two different earthquake records are used as the basis of the analyses:
+» The accelerogram of Sepolia station, recorded in the Athens 1999 earthquake, as a typical
stiff-soil record of a moderate (M, 5.9) magnitude event, at a distance of about 9 km from the
ruptured normal fault zone. The record has a peak ground acceleration of 0.35 g and dominant
periods in the range of 0.15-0.25 seconds.
+» The accelerogram of Diizce in the Kocaeli 1999 earthquake, which is typical of a large (M, 7.4)

magnitude event whose strike-slip rupture is directed towards the recording soil site, and

stops a few kilometres before it. The strong forward-directivity effect has given the Diizce
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record a characteristic long duration acceleration pulse. Its PGA =0.37 g is similar to the one

of the Sepolia record, but its significant periods range from about 0.40 to at least 1.50 seconds.

Minimum acceleration levels required to topple the tomb are computed after scaling up or down each
record. Elastic impact conditions are considered throughout the analysis leading to a

coefficient »=0.928 . In the case of the Sepolia-type excitation the block can sustain rocking motion

without overturning until the accelerogram is increased so that it acquiresa PGA of 0.85 g (about 2.5
times the recorded value). By contrast, the Diizce excitation must be scaled down toa PGA of 0.27 g
for overturning to occur (about 0.73 times the recorded value). Ground acceleration and rotation time
histories for marginal overturning for the two records are plotted in Fig. 7.11. Evidently, the long-
duration pulse in the Diizce record tends to reduce the overturning acceleration towards its static

value (0.20/1.27 g=0.16 g).
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Figure 7.11 (a) A typical free-standing tombstone that toppled after the Athens earthquake, (b) the
up-and-down-scaled accelerograms SPLB/Athens and Diizce/Kocaeli with the corresponding time
histories of induced rotation just leading to overturning of the tombstone.
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The rocking response of the tomb under the Sepolia—type motion is revisited next. Now the time
increment of this accelerogram is artificially increased by 10% and by 20%. This leads to an increase
of the predominant period of motion from 0.26 sec to 0.29 sec and to 0.31 sec, respectively. The slight
modification of the excitation period has a dramatic effect on its rocking response: the overturning
acceleration is reduced from 0.85 g down to 0.61 g and to 0.58 g for the two modified records! A 2—sec
detail of each modified time-history along with the original time—history (each one scaled to the

critical acceleration) is plotted in Fig. 7.12.
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Figure 9.12 The up-and-down-scaled accelerograms SPLB/Athens (original and time-extended) with
the corresponding time histories of induced rotation just leading to overturning of the tombstone of
Fig. 7.11.

The two distinct modes of overturning for trigonometric pulses as discussed by Makris and Zhang

(1999) are now extracted for the tombstone and plotted in the overturning spectrum of Fig. 7.13. For
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relatively low values of the excitation period, a rocking block such as the tomb of Fig. 7.10 will not
overturn even for peak ground acceleration 4 or 5 times the pseudo-static critical acceleration (0.16 g).
For values of 7}, exceeding about 0.3 sec the minimum PGA to overturn the block is rapidly

decreasing. Eventually for sufficiently large periods (7}, >0.7sec) the minimum overturning

acceleration approaches the pseudo-static value. As seen in Fig. 7.13 the real records and the

sinusoidal pulses give fairly similar results for the overturning response.
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Figure 7.13 Overturning spectra of the cemetery tomb (5 /b = 6.35) for one-cycle sinus-type and for
numerous ground motions used as earthquake excitation.

Concluding, the peak ground acceleration that toppled the cemetery block could vary from about 0.20
g to 0.80 g within a period range 0.25 sec — 0.5 sec. The former period is closer to the records of the
Athens 1999 earthquake, which however being far—field. However, it is evident that the practice of

estimating ground acceleration from observations of toppled and untoppled slender blocks, which has
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for a century been utilised to assign levels of design acceleration in many parts of the world, is
meaningless in view of the strong frequency-and detail-dependence and the profoundly nonlinear

nature of rocking behaviour.

7.2.2 Flexible 1-dof structure

While the rigid block is a convenient approximation of a rocking structure in view of estimating the
overturning potential, for slender systems the structural flexibility may affect the overturning
response. To this extent, the rocking response of a flexural 1-dof oscillator with a foundation mat (see
Fig. 3.10) is now revisited. The structural dimensions of the oscillator are chosen in such a way that
the rocking parametres be the same to those of the afore-discussed rigid

block ( p=1.699rad/sec, 0, = 0.2rad). A one-cycle sinus pulse is imposed to the base with a period

range from 0.35 sec to 2 sec. Initially, a quite stiff visco-elastic oscillator is employed

(TU =0.1sec, ¢ :5%) so that flexural deformations cannot affect the rocking vibrations. The

minimum overturning amplitudes are calculated from Eqs 3.48 and 3.50 for elastic impact conditions

(r = 0.89) as portrayed in the overturning spectrum of Fig. 7.14. In the same graph, the minimum
acceleration estimates of the equivalent rigid block ( p=1.699rad/sec, 6, = O.Zrad) are also plotted.

It is evident that the sdof oscillator can be considered as a rigid rocking system. The overturning
analysis is repeated next for two more flexible oscillators of eigen-period 0.3 sec and 0.5 sec
respectively. The calculated overturning spectra are presented in Fig. 7.15 in comparison with the
spectrum of the stiff system. It turns out that structural flexibility affects favourable the overturning
response in such a way that the minimum acceleration amplitude after an impact (‘loop 1°) may be
significantly increased especially at high-frequency pulses whereas the safe area between the two
modes expanses. On the other hand no prominent effect on the overturning mode 2 (without impact)
is revealed. The progressive shrinkage of the overturning ‘loop 1’ is further illustrated in the

overturning spectrum of Fig. 7.16. In this spectrum the overturning amplitudes are calculated for
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different values of the structural eigen-period under a base excitation of period 0.6 sec (a vertical
section at f, =1.67hz in the spectrum of Fig. 7.15). It is shown that the increase of the structural
period results into (a) a slight decrease of the overturning acceleration without impact, and (b) the

shrinkage of the failure loop with an impact at an accelerating pace, which eventually vanishes at a

period of 0.6 sec. For even more flexible systems only overturning without impact is possible.
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Figure 7.14 Overturning  acceleration  spectra of a  one-storey  structure

(p=1.699rad/sec, §, =0.2rad)  of eigenperiod 7,=0.1sec and a rigid block

( p=1.699rad/sec, 6, :0.2rad) under a one-cycle sinus pulse of frequency f,. The coefficient of

restitution is 0.89.
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Figure 7.15 Overturning acceleration spectra of a one-storey rocking structure

(p =1.699rad/sec, 0, = O.2rad) of eigenperiod 7, =0.1, 0.3, and 0.5 sec (black, grey, and light

grey lines respectively) under a one-cycle sinus pulse of frequency f, . The coefficient of restitution is
0.89.
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Figure 7.16 Overturning acceleration spectra of a one-storey rocking structure

( p=1.699rad/sec, 0, :O.Zrad) for different values of the eigenperiod 7, under a one-sine pulse

excitation of 7, =0.60sec (a vertical section of the spectrum of Fig. 7.15 at f, =1.67hz). The
coefficient of restitution is 0.89.
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7.3 OVERTURNING on COMPLIANT SOIL

The profoundly non-linear behaviour that a rocking structure experiences can be even more
complicated when a flexible base is considered. In order to gain an insight to the dynamic phenomena
related to the rocking motion on a flexible base we investigate the response of two rectangular blocks
on an accelerating base. The dimensions of the two blocks are (1 x 5m )and (2 x 10 m ) so that the
critical angle be 0.2 rad for both cases and the frequency parameter be 1.7 rad/sec and 1.2 rad/sec
respectively. A one-cycle sine pulse (TE = 0.8 sec and 1.2 sec) is applied as an excitation so that the
results can be comparable to the findings that Makris ez al., outlined for the rigid base case. The
supporting soil medium is assumed to be a homogeneous, elastic halfspace with Poisson ratio 0.3.
Moreover when the rocking structure impacts the ground, elastic conditions are considered, hence the

coefficient of restitution is given by Eq. 3.4.

Minimum acceleration levels for toppling are computed in terms of the rocking period of the fixed-

based system 7 , for two different values of the effective density, namely 0.25 t/m3 and 2.5 t/m3.

The overturning spectra are plotted in Figs 7.17 and 7.18 along with the rigid base case (7), =0).
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Figure 7.17 Overturning acceleration spectra of a rectangular block (2b = 1m, 2h = 5m) on a rigid (a)
or deformable (b) base. The structure is subjected to rocking by a one-cycle sinus excitation at the

base.
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Figure 7.18 Overturning acceleration spectra of a rectangular block (2b = 2m, 2h = 10m) on a rigid
(a) or deformable (b) base. The structure is subjected to rocking by a one-cycle sinus excitation at the

base.
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Chapter §:

Conclusions

8.1

SUMMARY of CONCLUSIONS

This thesis studies the dynamic response of simple rigid structures with foundation uplift under strong

seismic shaking.

Some of the key conclusions of the thesis are as follows:

K/
0.0

7
‘0

RY

e

A

Foundation uplifting has a multiply beneficial role on the dynamic response of the structure.

The available rotation ductility of the foundation is substantially higher comparing to a fixed
base system. Given that uplifting restrains plastification of the supporting soil, the maximum
rotation that a rocking system with significant uplift can experience tends to the critical angle

0. ~b/h which is in any case much higher than the angle a fixed base system can tolerate

without toppling due to soil yielding.

The ultimate moment of an uplifting foundation is significantly reduced compared to the
fixed-base moment resulting to a beneficial effect for the seismic design of structural

foundations.

Overturning of a rigid free-standing structure is a very sensitive function of the nature and
dominant period of the horizontal excitation, as well as of the aspect ratio and the absolute size
of the block. Under static conditions, or for an extremely long-period motion, the overturning
acceleration is equal to the aspect ratio (b/4) of the block times the acceleration of gravity.

However, under strongly dynamic (short-period) excitation the block can sustain rocking
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motion without toppling even if peak ground acceleration increases three or four times the
static critical value. Moreover, increasing the size of the block affects rocking response in a
similar way to decreasing the dominant period of ground motion. Thus, large blocks can safely
undergo rocking motion while smaller ones exhibit rocking vibration with higher magnitudes

of uplifting, and are thus much more vulnerable to toppling.

< Dynamic failure envelopes in the N — M plane may reach considerably higher levels than the

corresponding static curves. This is an outcome of larger dynamic bearing capacity p, ,, than

the static value (e.g. p, =(7m+2)s,).

e

A

Under monotonic loading the part of the footing remaining in contact with soil (effective

width: 23) when the moment capacity of the foundation is mobilised (M =M 1,) can be

estimated by the simple relationship: A= x (or 26=N/p,). This formula can be easily

drawn by the elastic-perfectly plastic footing-on-Winkler springs model. Even under
dynamic-cyclic loading conditions the effective width can be approximately calculated
through this equation; however the frequency and the amplitude of the seismic excitation may

be significantly different from the linear trend under certain circumstances.

e

A5

A simplified ‘dynamic’ failure envelope in the N — M space can be derived by adopting at the

increment of M =M, a distribution of contact pressures that is: (a) different from the

rectangular (as in the conventional static approach), and (b) not bounded by the static ultimate

capacity p,. Considering the linear expression A =y for the effective width, the distance of
the vertical reaction axis to the footing midpoint becomes (=b—28+43/3=0—23/3. In

this way the ultimate moment becomes (see also Fig. 8.1):

M:Ng:Nb[l-%X] [8.1]
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Figure 8.1 Dynamic failure envelope in the N-M plane for a triangular distribution of contact
pressures

According to the findings of the present study, a simplified methodology for the design of footings on
soft soil against large seismic moment can be proposed, based on the interaction curves of the

generalised loads:

(a) The bearing capacity of the supporting soil is first computed. For example, for linearly

increasing strength with depth (s, =s,, +£z), the ultimate vertical load is (Davies and

Booker, 1974): pu:F[(w+2)su+/<;(b/2)], in which F is a inhomogeneity factor
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dependent on the coefficient «, the footing width, and the interface conditions. For a

smooth strip it ranges between 1 and 1.5.

(b) Based on the vertical design superstructure load, the vertical load factor y=N/N, is

computed.

(c) The vertical load — moment interaction curve is computed according to the equation:

% = %(1 —n)(1—x), in which n= f% is a factor describing P — delta effects.

Nb

(d) The moment for incipient uplift is then calculated: M, .. =M, [1 —e M

uplift

, In which M,

is the moment capacity considering full contact conditions.

(e) For vertical load factor smaller than 0.3, and in particular for M, <M, .., the permanent

displacement can be neglected.

(f) For vertical load factor larger than 0.3 and given that limited permanent rotation is developed,

the cumulative settlement can be estimated from the following conservative formula:

Sw = 4nbo.

max ?

in which n is the number of significant cycles of inertial vibration
(nn. =3, given that foundation soil is gradually hardening due to cyclic rocking), and

0, the effective rocking amplitude. This angle can be estimated from the effective period

of the system 7 =~ 2x,/J, /K, in combination with the rocking displacement spectrum.

Alternatively, for a time domain analysis of earthquake response through macroscopic modelling,

the foundation moment can be estimated analytically as follows:

2
_ . . 0 . (1—x)+x0 .
T—X] 0+ Nb(1—X)cosf — Nhsinf, in which M= “”llft( QX) X is the

M=K

m

dimensionless effective half-width of the footing. The cumulative settlement can be predicted
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as before, given that the effective rocking amplitude and the number of significant cycles will

be estimated from the nonlinear analysis.
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Figure 8.2 A proposed methodology for assessment of cumulative displacements during rocking on
inelastic soil.
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