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Abstract

Children’s vocabulary ability at school entry is highly variable and predictive of later

language and literacy outcomes. Sleep is potentially useful in understanding and

explaining that variability, with sleep patterns being predictive of global trajectories of

language acquisition. Here, we looked to replicate and extend these findings. Data from

354 children (without English as an additional language) in the Born in Bradford study

were analysed, describing the mean intercepts and linear trends in parent-reported day-

time and night-time sleep duration over five time points between 6 and 36 months-of-

age. The mean difference between night-time and day-time sleep was predictive of

receptive vocabulary at age five, with more night-time sleep relative to day-time sleep

predicting better language. An exploratory analysis suggested that socioeconomic status

was predictive of vocabulary outcomes, with sleep patterns partially mediating this

relationship. We suggest that the consolidation of sleep patterns acts as a driver of early

language development.

Introduction

Through the infant and pre-school years, children’s vocabulary skills show
substantial heterogeneity. Given that early vocabulary ability is predictive of
school-age language and reading performance (Duff, Reen, Plunkett & Nation,
2015; Lee, 2011; Psyridou, Eklund, Poikkeus & Torppa, 2018), it is important to
explore potential sources of this variability. One poorly understood, but
promising, area of research is into the role of early sleep in the development of
language. Here, associations will be considered between sleep over the first three
years of life and receptive vocabulary ability at school entry using cohort data
from the Born in Bradford study.
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Day-time sleep in infancy

Sleep plays a well-established role in supporting declarative memory consolidation across
the life-span. The acquisition of new language provides one example of such learning, as
laid out by the complementary learning systems approach (McClelland, McNaughton &
O’Reilly, 1995; see Davis & Gaskell, 2009 for an application to language). When infants
sleep shortly after exposure to a new word, they typically show better learning for that
word at re-test compared to those who stay awake for the same interval (see Horváth
& Plunkett, 2018). For example, at around 6 months of age, a day-time nap after
learning has been associated with both improved generalisation of labels to new
category exemplars (Friedrich et al., 2017), and a greater likelihood of extracting word
forms from an artificial language through statistical learning (Simon et al., 2017). This
generalisation advantage with day-time sleep persists between 9 and 16 months of age
(Friedrich, Wilhelm, Born & Friederici, 2015; Gómez, Bootzin & Nadel, 2006;
Hupbach, Gómez, Bootzin & Nadel, 2009). Napping within a few hours of learning
new linguistic information is not only associated with improved task performance that
same day, but also 24 hours later (Hupbach et al., 2009). This suggests that regular
sleep may be instrumental in the slow process of lexical development over infancy,
with the opportunity to consolidate new information off-line soon after learning
resulting in a benefit that persists even after a subsequent night of sleep. Importantly,
behavioural gains in performance after a nap positively correlate with expressive
vocabulary size in 16-month-olds (Horváth, Myers, Foster & Plunkett, 2015), such that
individual differences in the benefit of sleep may be associated with longer-term
changes in language acquisition. However, the relationship between sleep and language
development may not be as simple as more sleep means better language.

Developmental trajectories of sleep

From the age of around 18 months, children’s sleep patterns start to undergo a dramatic
shift from polyphasic to monophasic as children are gradually able to sleep through the
night and drop their day-time naps (see Iglowstein, Jenni, Molinari & Largo, 2003).
Most children achieve monophasic sleep by 4 years of age in cultures where day-time
napping is not the norm. The age at which children drop their naps varies
considerably, as does total sleep time over 24 hours, particularly earlier in infancy;
though variability in total sleep time reduces as monophasic sleep becomes more
common (Blair et al., 2012; Iglowstein et al., 2003). While much of this variability is
likely to be driven by child-internal factors, there are child-care practices and cultural
norms (Crosby, LeBourgeois & Harsh, 2005) which will also affect the sleep patterns
of young children. Notably, children who show more persistent napping habits do
not typically sleep for longer over 24 hours (e.g., Lam, Mahone, Mason & Scharf,
2011). Indeed, at around 34 months of age, habitually napping pre-schoolers have
been shown to sleep for 69 minutes less at night compared to their non-napping
peers, with shorter night-time sleep in this group being associated with later peak
melatonin production in the evening (Akacem et al., 2015).

Not only do lab-based studies suggest an active role for sleep in language learning over
infancy, but there is some suggestion that the maturation of sleep patterns predicts
vocabulary growth on a global scale. A number of studies have presented convincing
evidence that the shift from poly- to mono-phasic sleep is functionally relevant to
early cognitive development. In a population-based twin cohort (n = 1,029), Dionne
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et al. (2011) found that the ratio of day-time:night-time sleep (henceforth SLEEP RATIO)
predicted later vocabulary skill. Specifically, a shift towards monophasic sleep at 6 and
18 months predicted better parent-reported vocabulary scores at 30 months and
individually-assessed receptive vocabulary at 60 months. These authors also showed
that children with persistent language delays had more day-time sleep in relation to
night-time sleep (higher sleep ratio) at 6 and 18 months compared with peers who fell
within the normal range for language ability. Similarly, in a smaller sample (n = 60), a
greater proportion of night-time sleep at 12 months predicted better expressive
vocabulary at 26 months (Bernier et al., 2010). Day-time naps can also have a negative
influence on language development in the lab, with Werchan and Gómez (2014)
reporting that in 2.5 year-olds the generalisation of labels to new category exemplars
was less likely in those children who took a nap shortly after learning. Finally, in
support of the idea that less day-time sleep in early childhood is associated with better
cognitive performance, Lam et al. (2011) found that in 3-to-5-year-old children
concurrent receptive vocabulary size and auditory attention span were negatively
associated with time spent asleep during the day, and positively associated with time
spent asleep at night. These authors conclude that the shift from polyphasic to
monophasic sleep may act as a marker of brain maturation over the pre-school years.

More recently however, Horváth and Plunkett (2016) analysed data on sleep patterns
and receptive/ expressive vocabulary development in 246 children who were between 7
and 37 months at initial test. In contrast to previous results, here the number of
day-time naps POSITIVELY predicted receptive vocabulary growth, while longer
night-time sleep was associated with decreased growth of expressive vocabulary. The
literature is therefore far from consistent on the question of whether day-time sleep
in the pre-school years is supportive of developmental trajectories of language learning.

Habitual napping

Lab-based studies consistently show a positive association between day-time sleep and
learning new language for children up to around two years, in whom habitual napping
is essentially universal (although see Werchan & Gómez, 2014). Beyond that age,
associations still exist (see Axelsson, Williams & Horst, 2016), but may be conflated
by the issue of habitual napping status (e.g., Williams & Horst, 2014). This is
perhaps unsurprising given the difficulty in persuading children who no longer
regularly nap to do so. If the shift to monophasic sleep is indeed a marker of brain
maturation then there may well be systematic differences in cognitive status between
those pre-schoolers who are and are not habitual nappers.

Kurdziel et al. (Kurdziel, Duclos & Spencer, 2013) trained 50-month-old children
(SD = 8 months) on a visuo-spatial memory task and observed that a day-time nap
protected against forgetting both the same day and 24 hours later. In this study, the
benefit of napping after learning was greatest for children who habitually napped;
though importantly, habitual nappers who did not nap after learning showed
substantially poorer performance after the delay than non-nappers. A day-time nap
was therefore beneficial to those who still regularly had one, but time awake after
learning was not detrimental to those who no longer napped. This perhaps suggests
that children drop their day-time sleep when they are cognitively ready to do so. By
contrast, habitual napping status at 37 months was not found to influence the nap
benefit shown for pre-schoolers’ ability to generalise learning about a new verb to a
novel actor (Sandoval, Leclerc & Gómez, 2017).
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Evidence as to the significance of change in habitual napping status and how it
relates to trajectories of learning in the pre-school years is therefore still unclear. It
may be that polyphasic sleep is only beneficial to young children who are not yet
cognitively mature enough to maintain information in an unconsolidated state over
the course of the day. In this case, day-time sleep could indeed be considered a
marker of relative brain immaturity. On the other hand, day-time naps could
continue to be equally beneficial throughout childhood, allowing a window for
off-line consolidation to support learning at intervals through the day. Indeed,
day-time naps are associated with benefits in learning even for adults (e.g., see Ficca
et al., 2010). In reality, the relationship between shifts in sleep status and cognitive
function is unlikely to be so simple, with multiple influencing factors, including
brain maturation, but also extending to domain, type and depth of learning, as well
as environmental context.

The current study

If variability in the developmental maturation of early sleep patterns is functionally
significant, then sleep trajectories could act as a marker for later cognitive or
language issues. Theoretically, charting the role that dynamic shifts in sleep patterns
play over childhood will contribute to our understanding of the mechanisms of early
language acquisition, and will allow us to make predictions about how the process of
memory consolidation changes over infancy and early childhood. In this study, data
from the Born in Bradford database was accessed pertaining to day-time and
night-time sleep from 6 through to 36 months, and related to receptive language
ability at UK school entry.

Research questions and hypotheses

Our first research question was whether the consolidation of sleep patterns from poly- to
mono-phasic over the first three years of life predicts receptive vocabulary at school entry.
This question was addressed by assessing whether individual linear trends in sleep patterns
between 6 and 36 months predict standardised vocabulary scores at school entry. Based on
existing literature (in particular Dionne et al., 2011 and Lam et al., 2011), it was
hypothesised that the rate at which sleep matures over this period would predict
receptive vocabulary at school entry, with children who show a more rapid rate of sleep
maturation also showing more advanced receptive vocabulary at 4-to-5 years of age.

There are likely to be multiple factors which co-vary with sleep patterns over early
childhood. Here, the roles played by hyperactivity/inattention, socio-economic status
and gender were considered. Between 18 months and 5 years of age there is a
significant association between hyperactivity and short sleep duration, with the three
key risk factors for both being: gender (being a boy), having insufficient household
income, and having parents with a low level of education (Touchette et al., 2009).
Self-regulation and attention also closely co-vary with language ability in early
childhood (Gooch et al., 2016). As such our second research question was whether
hyperactivity (as measured by the Strengths and Difficulties Questionnaire; Goodman,
1997), gender, and socio-economic status (as measured by indices of multiple
deprivation), would partially explain variance in our vocabulary data. It was
hypothesised that all three factors would explain some variance in our data, such that
including them in our model would provide a stricter test of our primary hypothesis.
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Our third research question was whether, as a group, children with clinically poor
receptive vocabulary levels at school entry would differ from their peers with respect
to sleep over the first three years of life. This question was also addressed by Dionne
et al. (2011) in their Canadian cohort study. The authors found that children with
persistent, clinically poor vocabulary had higher sleep ratios at 6 and 18 months
compared to children with typical language trajectories, with the association between
sleep and language development being stronger in this group comparison than for
the sample as a whole. Dionne and colleagues tentatively suggest that poor sleep
consolidation could be a marker for long-term language delays. Here it was
hypothesised that children who fall below the 10th percentile with respect to
receptive vocabulary at school entry would show more day-time sleep in relation to
their total sleep time and/or less total sleep at any given point of measurement
compared to their typically developing peers.

This research question is not independent of our first research question. However, in
the event of no sample-wide associations, a group difference might still be anticipated
when comparing children from the lower tail of the vocabulary distribution with peers
who score within the typical range. Group differences may be informative about
potentially qualitative differences in the role that early sleep plays in vocabulary
development for some children; it would also have particular clinical significance, as
change in sleep profiles over infancy could act as one of multiple markers for the
later diagnosis of developmental language issues, signalling the need for early
intervention.

Method

Born in Bradford (BiB) is a longitudinal birth cohort study, which is tracking 13,858
children born between April 2007 and June 2011 in the UK city of Bradford. Child
health, wellbeing and educational progress are being measured from birth through to
adulthood to understand the impact of multiple environmental, psychological and
genetic factors. The cohort represents a diverse range of ethnicities and
socio-economic status. Ethical approval for BiB data collection was granted by
Bradford Research Ethics Committee. The current study conforms with data privacy
requirements set out in the General Data Protection Regulation, 2018.

Access was granted to data from the Born in |Bradford 1,000 database, which consists
of data collected from a sub-sample of around 1,000 children and includes extensive
information from parental questionnaires. The children who form this BiB1000
cohort were born within approximately one calendar year, from August 2008 to
October 2009. Children were eligible for inclusion in the BiB1000 study if their
mother had completed a baseline questionnaire for the pregnancy. 41% of children
eligible for inclusion into the BiB1000 database were recruited to it. The key
predictor variables in the current analysis, taken from the BiB1000 questionnaire
data, were hours spent in sleep during the day-time and night-time at five
time-points: 6 months, 12 months, 18 months, 24 months and 36 months. The
number of data points varies at each administration of the questionnaire: at 6
months, 1,327, at 12 months, 1310, at 18 months, 1,292, at 24 months, 1,219 and at
36 months, 1,232. Estimates of sleep time are provided by parents to the nearest
hour and are likely to represent habitual sleep patterns over the previous few days or
weeks. Our key outcome variable was standard score on the British Picture
Vocabulary Scale-2nd Edition (BPVS-2; Dunn et al., 1997), which measures receptive
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vocabulary, during the first (reception) year of school. Access was also granted to the
hypothesised covariates: socio-economic status, as measured by indices of multiple
deprivation (IMD) from 2010, when children were 0–3 years of age, the
Hyperactivity subscale from the Strengths and Difficulties Questionnaire at school
entry (filled in by the class teacher), and gender.

Planned confirmatory analysis

All planned confirmatory analyses are set out in an R Markdown script (version 0.1.90;
RStudio and Inc., 2014; DOI 10.17605/OSF.IO/U4YWA), which details the analysis
pipeline and was tested with a small subsample of 30 data points from the dataset at
Stage One of this registered report. These 30 data points were included in the
confirmatory analysis as they were not used to determine sample size or to establish
hypotheses, but were rather accessed in order to accurately set up the analysis. Raw
data cannot be made available, in accordance with the data-sharing agreement set
out by the Born in Bradford research foundation management team.

To analyse the relationships between sleep and later language skill, changes in
individual sleep patterns were calculated over the five time points represented in the
data; individual trajectories were then used to predict receptive vocabulary ability
(BPVS-2 score) at school entry. The covariates hyperactivity, IMD, and gender were
added to the model in order to establish whether any of these provided additional
predictive power. Finally, children who fell below the 10th percentile on the BPVS at
school entry were sub-setted and matched to typically developing peers to consider
whether sleep parameters in infancy and early childhood differ between the groups.
Children who had English as an additional language were excluded from all planned
analyses as information was not available regarding the extent of exposure that these
children had to spoken English prior to starting school (see Supplementary Materials
for a separate analysis of these individuals). It is assumed that any missing data are
missing completely at random, and not as a function of either measured or
non-measured characteristics. Eligible children were included in the analysis if they
provided data at a minimum of three of the five waves of data collection.

Confirmatory model specification

Hypothesis 1: the rate at which sleep matures will predict receptive vocabulary at school
entry

Our main sleep parameters of interest were total sleep time (TST) and the difference
between day-time and night-time sleep (DIF) at five different time-points. Data were
analysed using R (R Core Team, 2017). For each participant, two linear trends were
fitted to these data in order to characterize: a) the average TST and DIF across all
time-points (denoted TST_B0 and DIF_B0 respectively), and b) the rate of change in
TST and DIF in units of sleep hours per month (denoted TST_B1 and DIF_B1
respectively). Individual linear trends were established to avoid making assumptions
about distributions before accessing data, and because it can be assumed that
parental estimates of sleep time will be approximate (Bauer & Blunden, 2008). These
intercept and slope parameters were then entered into a linear regression model that
predicted BPVS scores at the final time-point. As well as including the B0 and B1
terms as separate predictors, the model also specified a subset of the interactions
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between them (see Table 1). Each of these interactions tests a specific hypothesised
relationship between the average amount of sleep (B0 terms) and the rate of sleep
maturity (B1 terms). However, the main a priori hypothesis of interest concerns
TST_B0*DIF_B1, which tests whether change in the difference between night-time
and day-time sleep (DIF_B1) and the average amount of sleep per child (TST_B0)
interact to influence BPVS-2 score substantially more than either TST or DIF alone.
This interaction between TST and DIF terms acts as an approximation of the sleep
ratio measure used in previous studies, but is more stable in the face of outliers. All
interaction terms specified in Table 1 were included in the maximal model. Each
interaction, starting with the highest order, was then removed and the Bayesian
Information Criterion (BIC; Schwartz, 1978) of the resulting model compared with
the most parsimonious existing model. Wherever the removal of interactions resulted
in a decrease in BIC value equal to or greater than two, the interaction remained
excluded from the model.

Hypothesis 2: sex, socioeconomic status and hyperactivity will explain variance in
vocabulary scores above and beyond the variance explained by sleep patterns

From the most parsimonious baseline model, as described above, a conditional model
was built by adding all three predicted covariates: Sex, IMD and Hyperactivity. For the
purpose of the current data, all three of these were treated as time-invariant covariates
as, although IMD and Hyperactivity may well change over time, data were only available
from one time point. Each covariate was removed individually, and the BIC of the

Table 1. Hypotheses associated with each model term.

Term Sign Hypothesis

1 TST_B0 + More sleep over infancy positively predicts
vocabulary at 5yrs

2 TST_B1 - More rapid decrease in overall sleep positively
predicts vocabulary at 5yrs

3 DIF_B0 + More night-time compared to day-time sleep
positively predicts vocabulary at 5yrs

4 DIF_B1 + More rapid increase in night-time compared to
day-time sleep positively predicts vocabulary at
5yrs

5 TST_B0*DIF_B0 + The effects of more total sleep and more night-time
compared to day-time sleep are amplified when
they co-occur

6 TST_B1*DIF_B1 - The effects of decreasing total sleep time and
increasing night-time compared to day-time
sleep are amplified when they co-occur

7 TST_B0 * DIF_B1 + The effects of more overall sleep and increasing
night-time compared to day-time sleep are
amplified when these co-occur

8 TST_B0*TST_B1*DIF_B1 - The effects of term 7 are amplified given a faster
decrease in total sleep time
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resulting model compared with the most parsimonious existing model. Again, wherever
the removal of a term resulted in a reduction of the BIC by two or more, the term
remained excluded from the model.

Hypothesis 3: children with a standard BPVS score below the 10th percentile will, as a
group, show more day-time sleep in relation to their total sleep time and/or less total
sleep compared to peers with vocabulary scores in the typical range.

To test this hypothesis, children with standardised BPVS scores at or below the 10th

percentile (standard score of ⩽81) were sub-setted and matched to control participants
on the basis of sex and IMD using pairwise propensity score matching. These groups
were then compared with respect to TST and DIF using independent samples t-tests.

Results

Descriptive statistics

In total 1,5381 individuals were entered into the analysis: of those, 1,322 provided data
from three or more time points. From this set, 620 did not have English as an additional
language (EAL) when they entered school, and so formed our final sample. These 620
children (294 boys, 320 girls, 6 of unknown sex) are described here. 382 children
contributed five data points, 147 contributed four and 91 contributed three. The
median national IMD decile for the sample was 2 (IQR = 3), and the local IMD
decile within Bradford was 4 (IQR = 4). IMD is calculated based on factors such as
average education and income within a small geographic area, such that these values
give an approximation of socio-economic status for each participant relative to the
country and the local vicinity of Bradford respectively (where 1 represents the lowest
decile and 10 the highest). Nearly all the children (604) were first born, the
remaining had a single older sibling. The maternal ethnicity of 428 children was
reported as ‘white’, for 162 ‘Asian or British Asian’, while the remaining 30 fell into
other ethnic categories. 84 mothers moved to the UK from abroad before the birth
of their child; the mean age at moving was 18.22 years (sd = 9.15). 217 mothers
reported that they smoked cigarettes at three months pregnant. 553 children were
breastfed for at least one day; the mean number of days being breastfed was 86.17, a
little under three months (sd = 96.94). Median Apgar score (Apgar, 1953) at five
minutes after birth (to give an indication of the health of the cohort soon after birth
as rated on a ten point scale by the attending midwife or doctor) was 9, with a
minimum of 6 and a maximum of 10 across the sample. At school entry, 155
children were in receipt of free school meals (25% of the sample, and slightly higher
than the average for Yorkshire & Humber in 2013, which was 19% see Education
DataLab, 2016), 11 had an Education Health and Care Plan, and a further 102 had
other support for special educational needs (SEN) in school.

Based on the work of Iglowstein and colleagues (Iglowstein, Jenni, Molinari & Largo,
2003) we would expect to see a small increase in night-time sleep from a mean of
around 11.0 hours to a mean of around 11.4 hours over the period of 6-to-36
months, and a decrease in day-time sleep from 3.4 hours to 1.7 hours over the same
period. In our data, an increase in night-time sleep was observed from 9.68 to 10.05
hours, with the mean at 36 months over an hour less than expected. This increase
was significant across the 30 months over which sleep was recorded (F(4,2760) =
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4.42, p = 0.002). Reported day-time sleep decreased from 3.34 hours at six months to
1.82 hours at 36 months, in line with expectations, and again this change was
significant across the timespan of our sample (F(4,2760) = 78.70, p < 0.001). Table 2
gives values for caregiver-estimated Night sleep and Day sleep across the five data
collection points (6, 12, 18, 24 & 36 months), as well as total sleep time (TST) and
the difference between Night and Day sleep (DIF). Finally, we tested our assumption
that the TST_B1 and DIF_B1 statistics were able to characterise rates of change in
sleep duration across time points. If so, the average slope across participants
should be significantly different from zero, suggesting a non-zero rate of change in
TST and DIF scores. One sample t-tests revealed that this was indeed the case for
both TST_B1 (d = -0.51, t(619) = -12.64, p < 0.001) and DIF_B1 (d = 0.49, t(619) =
12.12, p < 0.001) (see Figure 1).

Around their 5th birthday, two years after the final sleep measure (as part of the
Starting School dataset) the BPVS-2 (Dunn et al., 1997) was carried out with 354
children from our sample at a mean chronological age of 59.06 months (sd = 3.61).
The mean standardised score for the sample was 104.76 (sd = 15.20), with a minimum
standard score of 39 and a maximum of 160. As 266 children did not have a measure
of receptive vocabulary, they were unable to form part of our confirmatory models.
Sleep parameters for this sample of 354 are given in Table 2, and again TST_B1 and
DIF_B1 statistics were able to characterise rates of change in sleep duration across time
points (TST_B1 (d = -0.54, t(353) = -10.23, p < 0.001) and DIF_B1 (d = 0.49, t(353) =
9.28, p < 0.001)). For this sample of 354, median national IMD decile was 2 (IQR = 3),
and local IMD decile within Bradford was 4 (IQR = 4). 89 children were in receipt of
free school meals (again, 25% of the sample). Five children had an Education Health
and Care Plan, and a further 64 had other support for SEN in school; 19.5% of the
sample therefore had identified SEN, compared to 15.4% of pupils in the UK overall
who had SEN in 2015 (DoE, 2015), and 17.5% in Bradford (Bradford City Council,

Table 2. Sleep parameters. Mean number of hours and standard deviation (sd) for Night and Day sleep,
as well as total sleep time (TST) and Night sleep – Day sleep (DIF) at 6, 12, 18, 24 and 36 months. Data are
shown for all children with at least three data points (up to 620 at each observation), and for those with
at least three data points and BPVS-2 score at school entry (up to 354 per observation).

Day sleep Night sleep
TST DIF

Month (n) Mean Sd Mean sd Mean sd Mean sd

All with >2
data points (620)

6 (540) 3.34 1.63 9.68 1.65 13.02 1.95 6.35 2.64

12 (552) 2.98 1.48 9.90 1.59 12.87 1.67 6.92 2.59

18 (567) 2.90 1.41 9.79 1.47 12.69 1.43 6.88 2.50

24 (541) 2.53 1.62 9.83 1.59 12.36 1.52 7.30 2.83

36 (565) 1.82 1.51 10.05 1.28 11.87 1.21 8.23 2.52

Children with
BPVS-2 scores (354)

6 (320) 3.30 1.58 9.67 1.58 12.97 1.90 6.37 2.53

12 (315) 3.04 1.53 9.85 1.55 12.89 1.75 6.80 2.52

18 (321) 2.92 1.38 9.75 1.35 12.67 1.38 6.83 2.36

24 (314) 2.62 1.81 9.71 1.76 12.33 1.58 7.09 3.20

36 (323) 1.79 1.45 10.03 1.31 11.82 1.20 8.24 2.49

Journal of Child Language 9

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305000920000677
Downloaded from https://www.cambridge.org/core. IP address: 2.27.74.162, on 08 Feb 2021 at 12:22:24, subject to the Cambridge Core terms



2018). The Born in Bradford cohort as a whole has been shown, elsewhere, to be
representative of the population of Bradford (Wright et al., 2013).

Confirmatory models

Hypothesis 1: the rate at which sleep matures will predict receptive vocabulary at school
entry

Three-way and two-way interaction terms were successively removed from the model (as
described under ‘confirmatory model specification’ above), leaving four single terms: the
intercept and the slope for total sleep time (TST) and for the difference between
night-time and day-time sleep (DIF). The model significantly predicted BPVS standard
scores at school entry (F(4,349) = 4.682, p = 0.001), with the only significant predictor
being the (mean) intercept of DIF (see Figure 2). The more time spent asleep during
the night compared to the day between 6 and 36 months of age, the better receptive
vocabulary outcomes at age five (see Table A1 in Appendix A for model details).

As DIF_B0 emerged as the only significant predictor of receptive vocabulary, we added
an exploratory model to determine whether any given data collection point was
particularly relevant to language development. A model with DIF scores at each time
point significantly predicted BPVS scores, as anticipated (F(5,219) = 3.91, p = 0.002).
Only the score at 12 months emerged as significant (t = 2.02), with the score at 6
months trending towards significance (t = 1.83) (see details in Table A2, Appendix A).

Hypothesis 2: sex, socioeconomic status and hyperactivity will explain variance in
vocabulary scores above and beyond the variance explained by sleep patterns

From the most parsimonious confirmatory model (as described above), we added
the co-variates IMD, Hyperactivity and Sex. This model significantly predicted BPVS
(F(7,262) = 2.62, p = 0.0126), with DIF_B0 remaining significant (t = 2.52), and IMD
(t = 2.05) emerging as an additional predictor (see Figure 3). This model with

Figure 1. Average slope for TST_B1 and DIF_B1 statistics characterising rates of change in sleep duration across

time points (age in months).
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additional covariates improved data fit (BIC without covariates = 2947.13, BIC with
covariates = 2265.64). However, as 84 participants did not have hyperactivity data
from the Strengths and Difficulties Questionnaire, we re-ran the model excluding this
variable. The removal of this variable was not planned or anticipated and should
therefore be considered exploratory. The predictors DIF_B0 and IMD remained
significant in this model, referred to henceforth as the Sleep Parameter model (BIC
= 2926.24), which again overall predicted receptive vocabulary at age five (F(6, 344)
= 4.43, p < 0.001 (see Table A3 in Appendix A).

In order to remove overly influential cases, DFBETAS (Belsley, Kuh & Welsch, 1980)
were calculated using the package ‘influence.ME’ (version 0.9; Nieuwenhuis, Pelzer & te
Grotenhuis, 2012). Fifteen participants were removed on account of DFBETAS exceeding
±3.29 standard deviations from the mean for either variable of interest or the intercept.
Running the Sleep Parameters model again (F(6, 329) = 5.089, p < 0.001) confirmed that
both DIF_B0 and IMD remained significant predictors, as can be seen in Table 3.

We have 55.7 observations for each term in our final model. To ensure that it is
appropriate to interpret significant effects, we assessed effect sizes with semi-partial
correlations for each of the independent variables that significantly contributed to
the model. Both semi-partial correlations were above 0.1 (DIF_B0 with BPVS_SS,
r = .19, p = <0.001; IMD with BPVS_SS, r = .16, p = 0.004), and were therefore
deemed to be of theoretical interest. Substantial multicolinearity was ruled out by
calculating variance inflation factors, which ranged from 1.01 to 1.13. Although the
final sample size obtained was substantially smaller than we had anticipated at Stage
One of this report (anticipated N= ∼700, observed N = 354), a-priori power analysis

Figure 2. Relationship between DIF_B0 age 6–36 months and BPVS-2 standard score at age five.
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Figure 3. Relationship between national IMD decile (higher indicates less deprived) and BPVS-2 standard score

at age five.

Table 3. Sleep Parameters intercept (B0) and slope (B1) for total sleep time (TST) and the difference
between night sleep and day sleep (DIF) over 6–36 months of age, plus national IMD decile and Sex
predicting BPVS standard score at age 5. Model formed from 334 participants (df = 6, 329).
Significance: *** p < 0.001, ** p < 0.01. Standard error of b and 95% confidence intervals are given as
bootstrap statistics over 1,000 re-samples.

Term b SE b ß

b 95% CI

tLower Upper

(Intercept) 92.92 8.54 76.23 109.74 9.32***

TST_B0 −0.15 0.67 −0.01 −1.45 1.16 −0.20

TST_B1 −11.30 7.89 −0.07 −28.56 3.54 −1.23

DIF_B0 1.39 0.35 0.20 0.67 2.04 3.59***

DIF_B1 −6.23 4.92 −0.06 −16.02 3.26 −1.03

IMD 1.08 0.32 0.17 0.43 1.70 3.03**

Sex 1.06 1.49 0.04 −1.78 4.12 0.74
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based on effect sizes of theoretical interest being f2 = 0.11 (r = 0.1), suggest that a model
with eleven predictors (all hypothesised terms plus covariates) would require an N of
239 to achieve 90% power.

Hypothesis 3: children with a standard BPVS score below the 10th percentile will, as a
group, show more day-time sleep in relation to their total sleep time and/or less total
sleep compared to peers with vocabulary scores in the typical range.

As fewer children than anticipated were included in our models, only 12 could be
identified as falling below the 10th percentile on the BPVS at age 5. Nevertheless,
these 12 were matched by Sex and IMD to 12 children who fell within the typical
range of the BPVS. The four sleep parameters included in the models described
above (TST_B0, TST_B1, DIF_B0, DIF_B1) were compared across groups, revealing
no significant differences (see Table 4).

Exploratory models

Mediation analysis

In our hypotheses we anticipated that adding hyperactivity to our model would improve
fit by virtue of this factor potentially mediating the relationship between sleep and
vocabulary development; we planned to add socioeconomic status and sex to the
model as they are known to predict hyperactivity. In the event, we were unable to
add hyperactivity to the model because of data loss, however, socioeconomic status
(IMD) was found to significantly predict vocabulary when controlling for our sleep
variable of interest (DIF_B0). We decided to explore this relationship further by
asking whether the difference between night-time and day-time sleep might be
mediating a relationship between IMD and receptive vocabulary. Socioeconomic
status has long been recognised as a predictor of language development (see Demir
& Küntay, 2014 and Schwab & Lew-Williams, 2016 for reviews of the neurocognitive
and behavioural associations respectively). The relationship between SES and
language development has been proposed to operate via child characteristics,
environmental resources or aspects of parent-child interaction (see Pace, Luo,
Hirsh-Pasek & Golinkoff, 2017). SES is also known to predict aspects of sleep
behaviour in older children, such as sleep hygiene, sleep efficiency and total sleep
time (e.g., El-Sheikh et al., 2013).

Here, we decided to investigate the possibility that the relationship between IMD and
BPVS-2 standard scores at school entry was partially mediated by our sleep variable of

Table 4. Mean (and standard deviation) for each sleep parameter for 12 children falling below 10th

percentile on BPVS and 12 matched controls. Mann Whitney U statistic is given along with p value.

Group TST_B0 TST_B1 DIF_B0 DIF_B1 BPVS_SS

BPVS > 10th

percentile
Mean (sd) 12.46 (1.21) −0.04 (0.11) 6.54 (1.87) 0.11 (0.11) 104.75 (18.24)

BPVS < 10th

percentile
Mean (sd) 12.82 (0.70) −0.05 (0.07) 6.01 (2.64) 0.09 (0.07) 69.92 (12.09)

U( p) 50.5 (0.23) 90 (0.32) 80.5 (0.64) 93 (0.24) 144 (<0.001)
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interest: namely, the mean difference between night and day sleep (see Figure 4). The
effect of IMD on BPVS-2 outcomes was indeed found to be partially mediated by
DIF_B0. We tested the significance of the indirect effect between IMD and BPVS-2,
and DIF_B0 and BPVS-2 (0.19*1.38 = .25) using bootstrapping procedures in R
package ‘mediation’ (version 4.5.0; Tingley et al., 2014). Unstandardized indirect
effects were computed for each of 1,000 bootstrapped samples. The bootstrapped
unstandardized indirect effect was significant at .25 (95% CI 0.09 and 0.47, p
<0.001). The proportion of the effect of IMD on BPVS-2 to operate via our sleep
variable was estimated at 0.179 (95% CI 0.060 and 0.43, p < 0.001). See Table A4
(Appendix A) for details of the models entered into the mediation analysis.

Discussion

The aim of this registered report was to contribute to the literature establishing how
sleep in infancy and early childhood, and changes in sleep over that period, are
relevant to language development. We hypothesised (in line with Dionne et al., 2011
and Bernier et al., 2010) that the rate at which sleep shifts from polyphasic to
monophasic over 6-to-36 months would positively predict receptive vocabulary at
school entry in children participating in the Born in Bradford study. We further
hypothesised that hyperactivity, SES and sex would explain additional independent
variance in receptive vocabulary, and that children with clinically poor levels of
receptive vocabulary at school entry would show more day-time sleep in relation to
their total sleep time and/or less total sleep at any given point of measurement
compared to their typically developing peers.

Mean difference between night-time and day-time sleep in infancy predicts receptive
vocabulary outcomes at age five

We anticipated that the interaction between mean total sleep time (TST) and the
increase in the difference between night-time and day-time sleep time (Sleep DIF)

Figure 4. Partial mediation of the relationship between IMD and BPVS-2 standard scores at school entry by the

mean difference between night and day sleep at 6–36 months. Unstandardised regression coefficients shown.

Significance ***p < 0.001, **p < 0.01.
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would best capture sleep maturation over infancy and early childhood (relative to other
sleep variables such as TST), and hence be most predictive of receptive vocabulary.
However, the only significant predictor to emerge from our model was the mean
difference between night-time and day-time sleep over the whole period of
measurement. This suggests that more consolidated sleep (a higher proportion of
night-time relative to total sleep) may be an indicator of advanced cognitive
performance, as also demonstrated by Dionne et al. (2011), Bernier et al. (2010) and
another population study, which found persistently short nocturnal sleep over
infancy predicted lower language scores at two years of age (Smithson et al., 2018). It
is notable that our measure of CHANGE in sleep behaviour was not predictive of
language at age five, such that individuals who showed relatively consolidated sleep
at each measurement point had a slight advantage at follow-up, but those who
showed a greater rate of change between time points did not. A subsequent
exploratory analysis suggested that the biggest driver of receptive vocabulary at age
five was our Sleep DIF variable when infants were 12 months of age, with Sleep DIF
at 6 months being the second biggest contributor.

There are two main ways in which these data might be interpreted, though these
interpretations are not mutually exclusive. The first is that the status of infants’
sleep-wake behaviour relative to peers marks individual differences in brain
maturation, as suggested by Lam et al. (2011). Indeed, various features of sleep have
been suggested to both drive and mark fundamental neurodevelopmental processes.
Slow wave sleep parameters have been associated with changes in white matter
microstructure over childhood (Kurth et al., 2017), regional grey matter volume in
adolescence (Buchmann et al., 2011) and regional changes in experience-dependent
plasticity, particularly in childhood (Wilhelm et al., 2014; and see Ringli & Huber,
2011). REM sleep, which accounts for about 50% of sleep time at birth, falling to
around 25% by age three (see Huber & Born, 2014), has been suggested to provide
endogenous activity stimulating activity-dependent neuronal maturation in infants
(see Ednick et al., 2009), with REM sleep deprivation being associated with loss of
brain plasticity in animals (Frank, Issa & Stryker, 2001). The second interpretation of
our key finding is that sleep behaviour may actively drive language development,
with consolidated night-time sleep providing an opportunity for the consolidation of
new associative learning in the linguistic domain.

While our results concur with much of the literature, there is a discrepancy with the
findings of Horváth and Plunkett (2016). These authors recorded sleep and vocabulary
development through detailed parent diaries and parent reported language scores; they
found sleep efficiency at night (but not time spent asleep) and number of naps during
the day to be predictive of receptive vocabulary, as well as change in receptive
vocabulary. Sleep efficiency is the percentage of time spent in bed when the individual
is asleep, and has been shown to be an important predictor elsewhere. For example,
toddlers with Down Syndrome who have low sleep efficiency also exhibit poorer
expressive language (Edgin et al., 2015), and higher verbal IQ at 36 months in
typically developing children is predicted by less disrupted sleep at night and more
fragmented sleep during the day at zero and six months of age (Franco et al., 2019). It
is possible then, that our Sleep DIF variable indirectly reflects the efficiency of
night-time sleep. Indeed, sleep efficiency increases linearly between two and four years
of age, along with a linear decrease in day-time sleep and increase in the proportion of
night-time-to-total sleep (Tétreault, Bernier, Matte-Gagné & Carrier, 2018).
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Continuous night-time sleep has been shown to support memory consolidation
compared to fragmented sleep in adults (Djonlagic et al., 2012); and experimentally
induced sleep fragmentation dramatically reduces slow wave sleep quantity in adults
(Ferri et al., 2010). In childhood, sleep fragmentation correlates negatively with
performance on cognitive tasks requiring executive control (Sadeh, Gruber & Raviv,
2002). At ten months of age sleep efficiency correlates positively with general cognitive
development, while motor activity and night waking correlate negatively (Scher, 2005),
and at eight months PSG measured snore-related arousals (where no apnea was
observed) correlate negatively with cognitive development (Montgomery-Downs &
Gozal, 2006). Finally, amount of time spent awake after night-time sleep onset at four
and six months predicts more rapid working memory maturation over the first year of
life (Pisch, Wisemann & Karmiloff-Smith, 2019), with more time awake after sleep
onset predicting slower growth.

Extant data are therefore convergent on the idea that continuous sleep supports
cognitive development, although there is very little work regarding the effects of
change in day-time sleep behaviour on neurophysiological sleep parameters. The one
study that has considered this question (Lassone et al., 2016) found that, in children
aged 30–36 months, missing a nap resulted in night-time recovery sleep that was
both more efficient and contained greater slow wave activity than night-time sleep
after a day containing a nap (the difference in efficiency held even when parameters
of the nap sleep were taken into account). Consolidated night-time sleep may
therefore provide more opportunity for slow wave sleep, and consequently more
opportunity for the consolidation of new linguistic learning in infancy (Friedrich
et al., 2015; 2017; Gómez et al., 2006; Hupbach et al., 2009; Simon et al., 2017).
Future work is required here focusing on multi-measure approaches to capturing
sleep over development to consider not only the mechanisms by which efficient sleep
might support language development, but also how sleep effects play out over
developmental time and across cognitive domains.

The issue of more day-time naps being predictive of better receptive vocabulary
outcome in the Horváth and Plunkett data is somewhat harder to reconcile with the
current results. It is of note that the current sample contrasts quite sharply with that
of Horváth and Plunkett with respect to SES, with the latter data coming from a
considerably more affluent population. The constraints on language development are
likely to vary across samples, as are childcare options and opportunity for day-time
naps; thus, it is possible that SES may moderate associations between sleep
maturation and language, with the relationship between sleep and cognition differing
at different levels of SES (Buckhalt, El-Sheikh & Keller, 2007). Interactions with age
and demographic factors should be carefully considered in future research.

Socioeconomic status, sleep and vocabulary development

We found that SES, as measured by national indices of multiple deprivation decile taken
within the first three years of life, predicted variance in our receptive vocabulary
measure at five years. This replicates many previous reports of an association
between SES and language development (see Demir & Küntay, 2014; Pace, Luo,
Hirsh-Pasek & Golinkoff, 2017; Schwab & Lew-Williams, 2016). This association has
been proposed to operate via multiple routes, including aspects of parent-child
interaction such as the diversity of child-directed speech (Huttenlocher et al., 2010),
and aspects of the home environment such as level of chaos (Vernon-Feagans,
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Garrett-Peters, Willoughby & Mills-Koonce, 2012). Upon running an exploratory
mediation analysis, we found that sleep partially mediated the link between SES and
receptive language: children from lower SES households showed a smaller difference
between time spent asleep at night versus during the day, and this tendency was
associated with lower receptive language outcomes two years later.

We can only speculate as to the reason for this partial mediation. While in older
children, poorer sleep in children from low SES backgrounds has been attributed to
factors such as pre-sleep worry (Bagley, Kelly, Buckhalt & El-Sheikh, 2015), of more
relevance to the age of children studied here are factors such as increased bed
sharing practices (which is associated with increased nocturnal wakings) (Hysing,
Harvey, Torersen, Ystrom, Reichborn-Kjennerud & Sivertsen, 2014), and less
adherence to bedtime routines (Crabtree et al., 2005). As these variables were not
recorded in the current dataset we cannot draw conclusions as to the origin of any
effects of SES. Notably though, both IMD and our Sleep DIF variable explained
additional independent variance in our outcome measure, indicating that the effects
of sleep are not wholly attributable to SES, and that SES operates via more routes
than sleep alone.

Limitations

The conclusions we can draw here must be considered alongside the limitations
inherent to this study. Most importantly, Born in Bradford was not intended as a
study of sleep, such that the data available are approximate parental reports. While
these data replicate and add to the extant literature, naturally a deeper level of
understanding could be achieved with more detailed sleep measurement.

The current dataset is more limited by sample size than we had anticipated, with not
all children contributing BPVS-2 data: as a result, very few clinical cases emerged.
Follow-up in a prospective clinical sample would be justified as there are plenty of
indications that sleep is clinically important with respect to language development:
Dionne et al. (2011) show that for children with clinically poor language at 60
months, day-time sleep in infancy accounted for more total sleep time than for
typically developing peers; Botting and Baraka (2017) found that, according to
parental report, children with developmental communication disorders had more
trouble getting to sleep and tended to wake earlier than their peers; and finally, sleep
disorders place children at risk for language issues, particularly in the phonological
domain (McGregor & Alper, 2015).

A final limitation to highlight is that these data are not necessarily representative of
the UK population, being from a relatively low SES and ethnically diverse sample. The
children represented here showed considerably shorter total sleep time (over an hour
less) than has been previously reported for children of this age (Iglowstein et al.,
2003). While we cannot address this here, it seems plausible that this short total
sleep time may be accounted for, in part at least, by the socioeconomic status of the
children included.

Conclusions

In conclusion, we suggest that the consolidation of sleep patterns acts as a driver of early
language development. The change from polyphasic to monophasic sleep acts as a
marker of biological changes that allow the consolidation of new linguistic material.
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Sleep is also implicated in neurodevelopmental changes that underlie linguistic capacity.
Evidence from behavioural genetic studies (Touchette et al., 2013) suggests that while
day-time sleep duration in infancy is strongly influenced by environmental factors,
consolidated night-time sleep duration is, conversely, strongly influenced by genetic
factors, such that the interplay of genetic and environmental factors may influence
different aspects of the establishment of circadian and ultradian cycles. There is a
clear need for detailed measurement of sleep over early development, to understand
this interplay and to answer questions such as how day-time sleep in early childhood
is necessary for the consolidation of information stored in the immature
hippocampus (see Gómez & Edgin, 2015); what biological mechanisms allow
children to reduce day-time sleep; whether fragmented night-time sleep is beneficial
in early infancy (Freudigman & Thoman, 1993); and crucially, how parents can best
support their children to develop cognitive skills by supporting sleep behaviour in a
way that is sensitive to the physical, neurological and emotional needs of the child.
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Notes
1 At Stage one of this registered report we anticipated an initial sample size of 1,346, based on the number

of children in the BiB1000 database for whom questionnaire data was understood to be provided at three or

more of the five possible time points. In the event, the number of unique respondents was actually higher

than that, with not all respondents providing data at the first time point, we were therefore unable to

identify the exact number of data points before exclusions prior to accessing the sleep data.
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Appendix

Table A1. Fixed effects for model of BPVS standard score. Model formed from 354 participants (df = 4,349).

Term b SE b ß

b 95% CI

tLower Upper

(Intercept) 103.41 10.66 82.52 124.30 9.699***

TST_B0 −0.79 0.81 −0.05 −2.38 0.80 −0.977

TST_B1 −10.10 10.43 −0.05 −30.54 10.34 −0.968

DIF_B0 1.60 0.43 0.20 0.76 2.44 3.770***

DIF_B1 −9.75 6.87 −0.07 −23.22 3.72 −1.420

Table A2. Fixed effects for model of BPVS standard score. Model formed from 225 participants (df = 5, 219).

Term b SE b ß

b 95% CI

tLower Upper

(Intercept) 89.17 4.33 80.68 97.66 20.59***

DIF.6 0.92 0.50 0.14 −0.06 1.90 1.83 ֹ

DIF.12 1.06 0.53 0.17 0.02 2.10 2.02*

DIF.18 −0.49 0.59 −0.07 −1.65 0.67 −0.83

DIF.24 0.47 0.45 0.08 −0.41 1.35 1.06

DIF.36 0.43 0.47 0.07 −0.49 1.35 0.93
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Table A3. Fixed effects for model of BPVS standard score. Model formed from 351 participants (df = 6,
344).

Term b SE b ß

b 95% CI

tLower Upper

(Intercept) 102.17 10.69 81.22 123.12 9.56***

TST_B0 −0.83 0.80 −0.06 −2.40 0.73 −1.04

TST_B1 −8.60 10.40 −0.05 −28.99 11.79 −0.83

DIF_B0 1.34 0.44 0.17 0.49 2.20 3.08**

DIF_B1 −7.71 6.86 −0.06 −21.15 5.72 −1.13

IMD 1.14 0.39 0.16 0.38 1.91 2.93**

Sex 0.81 1.61 0.03 −2.36 3.97 0.50

Table A4. Linear regression models entered into mediation analysis. Significance ***p < 0.001.

DV F df Term b

95%CI

tLower Upper

BPVS-2 13.85*** 1,352 (Intercept) 100.79 98.18 103.40 75.80***

IMD 1.41 0.67 2.16 3.72***

DIF_B0 16.09*** 1,352 (Intercept) 6.54 6.22 6.86 40.03***

IMD 0.19 0.10 0.28 4.01***

BPVS-2 12.30*** 2,351 (Intercept) 91.77 85.71 97.83 29.68***

DIF_B0 1.38 0.54 2.22 3.22**

IMD 1.15 0.40 1.91 3.01**
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