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Abstract: Let G be a graph of order n. If the maximal connected subgraph of G has no cut vertex
then it is called a block. If each block of graph G is a clique then G is called clique tree. The distance
energy ED(G) of graph G is the sum of the absolute values of the eigenvalues of the distance matrix
D(G). In this paper, we study the properties on the eigencomponents corresponding to the distance
spectral radius of some special class of clique trees. Using this result we characterize a graph which
gives the maximum distance spectral radius among all clique trees of order n with k cliques. From
this result, we confirm a conjecture on the maximum distance energy, which was given in Lin et al.
Linear Algebra Appl 467(2015) 29-39.
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1. Introduction

Let G be a connected graph with V(G) = {v1, v2, . . . , vn} and edge set E(G), where
|V(G)| = n. For vi, vj ∈ V(G), di,j denotes the distance between vertices vi and vj. In
particular, di, i = 0 for any vi ∈ V(G). Let D(G) = (di, j)n×n be the distance matrix of graph
G. Let λi (1 ≤ i ≤ n) denote the eigenvalues of D(G) with non-increasing order. Also
let λ (= λ1) be the distance spectral radius of a graph G. When more than one graph is
under consideration, then we write λi(G) instead of λi. By the Perron-Frobenius theorem,
a unique unit eigenvector x corresponding to the largest distance eigenvalue of G has all
positive eigencomponents, which is called the Perron vector of D(G). Several studies on
this topic have been conducted, see [1–7] and the survey [8].

The energy of a graph G, often denoted by E(G), is defined to be the sum of the
absolute value of the eigenvalues of its adjacency matrix of a graph. The energy of a
graph was first defined by Ivan Gutman in 1978 [9]. However, the motivation for his
definition appeared much earlier, in the 1930’s, when Erich Hückel proposed the famous
Hückel Molecular Orbital Theory. Hückel’s method allows chemists to approximate
energies associated with π-electron orbitals in a special class of molecules called conjugated
hydrocarbons. From the motivation of graph energy, Indulal et al. [10] proposed the
distance energy ED(G) of G which is defined by

ED = ED(G) =
n

∑
i=1

λi.

Since the trace of D(G) is zero, we have

ED = ED(G) = 2 ∑
λi>0

λi = −2 ∑
λi<0

λi.
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Extremal graph theory is one of the important topics in graph theory and combina-
torics. In extremal graph theory to find the extremal (maximal and/or minimal) graphs for
some graph invariant is the important and interesting problem. It is very difficult to find the
exact value of the distance energy of graphs. In this paper we are concentrating to obtain
the maximal distance energy for some special class of graphs. For the basic mathematical
properties of ED(G), including various lower and upper bounds, see [8,11–14] and the
references therein.

If the maximal connected subgraph of G has no cut vertex then it is called a block. If
each block of graph G is a clique then G is called clique tree. Let Pk+1 be a path graph of
order k + 1. A clique path, denoted by Pn1, n2,..., nk , is a graph which is obtained from Pk+1 by
replacing each edge of Pk+1 by a clique Kni (ni ≥ 2) such that V(Kni )

⋂
V(Knj) = ∅ for j 6=

i− 1, i + 1 and 2 ≤ i ≤ k− 1. If ns+1 = ns+2 = · · · = ns+t, we use Pn1, ..., ns , ns+1·t, ns+t+1, ..., nk

to denote Pn1, n2,..., nk for short.
Lin et al. [15] discussed several properties of clique trees and discovered that the

positive inertia and the negative inertia of the distance matrix of a clique tree with n
vertices are 1 and n− 1, respectively. Among all clique trees with order n, the graph with
the minimum distance energy has been characterized in [15]. They also gave a conjecture
related to the maximum distance energy as follows:

Conjecture 1 ([15]). The graph Pd n−k+3
2 e, 2·(k−2), b n−k+3

2 c gives the maximum distance energy
among all clique trees with cliques Kn1 , . . . , Knk and order n.

Due to the fact that any clique tree has exactly one positive distance eigenvalue, then
Conjecture 1 is equivalent to the following:

Conjecture 2. The graph Pd n−k+3
2 e, 2·(k−2), b n−k+3

2 c gives the maximum largest distance eigenvalue
among all clique trees with cliques Kn1 , . . . , Knk and order n.

Please note that Conjecture 2 has been proved for k = 3 [4]. In the next section, we
will confirm that Conjecture 2 holds for the remaining cases and thus Conjecture 1 follows
immediately.

2. Proof of Conjecture 2

In [15], the authors revealed that the clique trees with the maximum spectral radius
belong to a special class of clique paths.

Lemma 1 ([15]). The graph Ps, 2·(k−2), t with respect to the restriction s + t = n− k + 3 gives the
maximum largest distance eigenvalue among all clique trees with cliques Kn1 , . . . , Knk and order n.

By Lemma 1, for proving Conjecture 2, we only need to find the maximum distance
spectral radius of Ps, 2·(k−2), t, where s + t = n− k + 3. Please note that Conjecture 2 follows
directly if k = n − 1. For k = n − 2, we have s + t = 5 and hence P3, 2·(n−3) gives the
maximum distance spectral radius among all clique trees with cliques Kn1 , . . . , Knk and
order n, which provide the Conjecture 2 is true. Therefore, hereafter we only consider
the cases with 4 ≤ k ≤ n− 3. Now let P(n, k, s, t) ∼= Ps, 2·(k−2), t with s + t = n− k + 3,
whose vertex set is V(P(n, k, s, t)) = {v1, v2, . . . , vn} and edge set is E(P(n, k, s, t)) =
E1
⋃

E2
⋃

E3, where E1 = {vivj|1 ≤ i < j ≤ s}, E2 = {vivj| n− t + 1 ≤ i < j ≤ n} and
E3 = {vivi+1| s ≤ i ≤ n− t}. Let xT = (xv1 , xv2 , . . . , xvn) be the unit positive eigenvector
corresponding to spectral radius λ of D(P(n, k, s, t)). By symmetry, one can see that
xv1 = xv2 = · · · = xvs−1 and xvn−t+2 = xvn−t+3 = · · · = xvn . Thus, we may suppose that

xT = (x1, . . . , x1︸ ︷︷ ︸
s−1

, x2, x3, . . . , xk, xk+1, . . . , xk+1︸ ︷︷ ︸
t−1

).
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From D(P(n, k, s, t)) x = λ x,

λ x1 = (s− 2) x1 + k(t− 1)xk+1 +
k
∑

j=2
(j− 1) xj,

λ xi = (s− 1) (i− 1) x1 + (k− i + 1) (t− 1) xk+1 +
k
∑
j=2
j 6=i

|j− i| xj, i = 2, 3, . . . , k,

λ xk+1 = k (s− 1) x1 + (t− 2)xk+1 +
k
∑

j=2
(k− j + 1) xj.

(1)

First, we discuss the properties of Perron vector of D(P(n, k, s, t)).

Lemma 2. Let G ∼= P(n, k, s, t) with k = 2p− 2 (p is an integer, p ≥ 3) and s ≥ t + 2. Let

xT = (x1, . . . , x1︸ ︷︷ ︸
s−1

, x2, x3, . . . , xk, xk+1, . . . , xk+1︸ ︷︷ ︸
t−1

)

be the Perron vector of D(G). Then xp+i > xp−i for 1 ≤ i ≤ p− 2. Moreover, if p ≥ 4, then

xp+i − xp−i > xp+i−1 − xp−i+1 for 2 ≤ i ≤ p− 2.

Proof. Since k = 2p− 2, from (1), we obtain

λ(x2p−1 − x1) = (ks− k− s + 2)x1 − (tk− k− t + 2)x2p−1 + 2
p−2

∑
j=1

j (xp−j − xp+j),

λ(xp+1 − xp−1) = 2

(
(s− 1)x1 − (t− 1)x2p−1 +

p−2

∑
j=1

(xp−j − xp+j)

)
,

and if p ≥ 4,

λ(xp+i − xp−i) = 2i

(s− 1)x1 − (t− 1)x2p−1 +
p−2

∑
j=i

(xp−j − xp+j)

+ 2
i−1

∑
j=1

j (xp−j − xp+j),

where i = 2, 3, . . . , p− 2. Setting xp+i − xp−i = yi (1 ≤ i ≤ p− 1) in the above, we get

λ yp−1 = (ks− k− s + 2)x1 − (tk− k− t + 2)x2p−1 − 2
p−2

∑
j=1

j yj, (2)

λ y1 = 2

(
(s− 1)x1 − (t− 1)x2p−1 −

p−2

∑
j=1

yj

)
, (3)

and if p ≥ 4,

λ yi = 2i

(
(s− 1)x1 − (t− 1)x2p−1 −

p−2

∑
j=i

yj

)
− 2

i−1

∑
j=1

j yj, (4)

where i = 2, 3, . . . , p− 2. Combining (2) and setting i = p− 2 in (4) with k = 2p− 2, we
have

λ yp−1 − λ yp−2

= (ks− k− s + 2)x1 − (tk− k− t + 2)x2p−1 − 2(p− 2)
(
(s− 1)x1 − (t− 1)x2p−1

)
= s x1 − t x2p−1,
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that is,
λ yp−2 = (λ + t)x2p−1 − (λ + s)x1 (5)

as yp−1 = x2p−1 − x1.

Using (3), from (4),

λ yi − λ yi−1 = 2

(
(s− 1)x1 − (t− 1)x2p−1 −

p−2

∑
j=i

yj

)

= 2

(
(s− 1) x1 − (t− 1)x2p−1 −

p−2

∑
j=1

yj

)
+ 2

i−1

∑
j=1

yj

= λ y1 + 2
i−1

∑
j=1

yj,

that is,

yi = y1 +
2
λ

i−1

∑
j=1

yj + yi−1, i = 2, 3, . . . , p− 2. (6)

From (6), we conclude that if y1 is positive (zero or negative) then all yi (i = 2, 3, . . . ,
p− 2) are positive (zero or negative, respectively).

Claim 1. y1 > 0.

Proof of Claim 1. We suppose that y1 ≤ 0. This implies that yi ≤ 0 (i = 2, 3, . . . , p− 2),
thus

p−2

∑
j=1

yj ≤ 0.

Using yp−2 ≤ 0 in (5), we obtain that

x1 ≥
λ + t
λ + s

x2p−1.

It implies that

(s− 1)x1 − (t− 1)x2p−1 ≥
(s− t)(λ + 1)

λ + s
x2p−1 > 0,

as s > t, λ > 0 and x2p−1 > 0. Combining the last inequality with (3), we conclude that
y1 > 0, which is a contradiction. We finish the proof of Claim 1.

Using Claim 1, we conclude that yi > 0, i.e., xp+i > xp−i for 1 ≤ i ≤ p− 2. From (6), we
obtain yi > yi−1, i.e., xp+i − xp−i > xp+i−1 − xp−i+1 for i = 2, 3, . . . , p− 2.

By the same method as the above, we also obtain the similar result for odd k.

Lemma 3. Let G ∼= P(n, k, s, t) with k = 2p− 1 (p is an integer, p ≥ 3) and s ≥ t + 2. Let

xT = (x1, . . . , x1︸ ︷︷ ︸
s−1

, x2, x3, . . . , xk, xk+1, . . . , xk+1︸ ︷︷ ︸
t−1

)

denote the Perron vector of D(G). Then xp+i − xp+1−i > xp−1+i − xp+2−i > 0 for 2 ≤ i
≤ p− 1.

Combining Lemmas 2 and 3, the next theorem follows immediately.



Mathematics 2021, 9, 360 5 of 7

Theorem 1. Let G ∼= P(n, k, s, t) with s + t = n− k + 3 and s ≥ t + 2. Let

xT = (x1, . . . , x1︸ ︷︷ ︸
s−1

, x2, x3, . . . , xk, xk+1, . . . , xk+1︸ ︷︷ ︸
t−1

)

be Perron vector of D(G). If k = 4, then xk− x2 > 0; otherwise, xk+1−i− xi+1 > xk−i− xi+2 > 0
for 1 ≤ i ≤ b k−3

2 c.

Theorem 2. For any pair of integers s and t with s ≥ t + 2 ≥ 4,

λ1(Ps, 2·(k−2), t) < λ1(Ps−1, 2·(k−2), t+1).

Proof. For convenience, let G ∼= Ps, 2·(k−2), t and let G′ ∼= Ps−1, 2·(k−2), t+1. Let

xT = (x1, . . . , x1︸ ︷︷ ︸
s−1

, x2, x3, . . . , xk, xk+1, . . . , xk+1︸ ︷︷ ︸
t−1

)

be the Perron vector corresponding to spectral radius λ of D(G). Then

λ(G′)− λ(G) ≥ xT
(

D(G′)− D(G)
)

x

= 2x1

(k− 1) (s− 2)x1 − (k− 1) (t− 1)xk+1 +
b k−1

2 c

∑
i=1

(k− 2i)(xi+1 − xk−i+1)

.

Now let F = (k− 1)(s− 2)x1 − (k− 1)(t− 1)xk+1 + F1, where

F1 =
b k−1

2 c

∑
i=1

(k− 2i)(xi+1 − xk−i+1).

To prove λ(G′) > λ(G), we have to prove that F > 0. From D(G)x = λx,

λ(xk+1 − x1) = (ks− k− s + 2)x1 − (kt− k− t + 2)xk+1 + F1 (7)

and
λ(xk − x2) = (k− 2)

(
(s− 1)x1 − (t− 1)xk+1

)
+ F1.

Combining the above two equations with s > t, we get

λ(xk+1 − x1)− λ(xk − x2) = s x1 − t xk+1 > t(x1 − xk+1),

that is,

xk − x2 <
λ + t

λ
(xk+1 − x1). (8)

By Theorem 1 with (8), xk+1 > x1. We can rewrite (7) as

λ(xk+1 − x1) = 2F− F1 + (kt− k− t)xk+1 − (ks− 3k− s + 2)x1.

Using Theorem 1 with s ≥ t + 2 and (8), from the above equation, we obtain



Mathematics 2021, 9, 360 6 of 7

λ(xk+1 − x1) ≤ 2F− F1 + (kt− k− t)(xk+1 − x1)

≤ 2F + (xk − x2)
b k−1

2 c

∑
i=1

(k− 2i) + (kt− k− t)(xk+1 − x1)

< 2F +
λ + t

λ
(xk+1 − x1)

b k−1
2 c

∑
i=1

(k− 2i) + (kt− k− t)(xk+1 − x1),

that is,

2F >

(
λ + k + t− kt− λ + t

λ
F2

)
(xk+1 − x1), (9)

where

F2 =
b k−1

2 c

∑
i=1

(k− 2i) =


(k− 1)2

4
if k is odd,

k2 − 2k
4

if k is even.

Claim 2. λ ≥ F2 + (k− 1)(t− 1) + s− 1.

Proof of Claim 2. Let

ri =
n

∑
j=1, j 6=i

di,j.

Recall that G ∼= Ps, 2·(k−2), t with s ≥ t + 2 ≥ 4. For 1 ≤ i ≤ s− 1, ri = (s− 2) + k(t− 1) +
k2−k

2 . For n− t + 2 ≤ i ≤ n, ri = (t− 2) + k(s− 1) + k2−k
2 . For s ≤ i ≤ n− t + 1,

ri = (s− 1)(i− s + 1) + (t− 1)(k + s− i− 1) +
n−t+1

∑
j=s, j 6=i

di, j ≥ s− 1 + (k− 1)(t− 1) + F2

as s > t and

n−t+1

∑
j=s, j 6=i

di, j ≥


2
b k−1

2 c
∑

j=1
j− k−1

2 if k is odd,

2
b k−1

2 c
∑

j=1
j if k is even

= F2.

Please note that r1 = r2 = · · · = rs−1 < rn−t+2 = rn−t+3 = · · · = rn. Combining the
above results, we obtain

min
i
{ri} ≥ min{r1, s− 1 + (k− 1) (t− 1) + F2} = s− 1 + (k− 1) (t− 1) + F2.

It is well-known that λ ≥ min
i
{ri}. Thus, we get the result in Claim 2.

By Claim 2,
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λ + k + t− kt− λ + t
λ

F2

≥ F2 + (k− 1) (t− 1) + s− 1 + k + t− kt− λ + t
λ

F2

= s− t
λ

F2

> s− t > 0 as λ > F2 and s > t.

By combining this result with (9), F > 0. Hence we get the required result.

Remark 1. By Theorem 2, we immediately confirm that Conjecture 2 is true. Hence, the
Conjecture 1 is confirmed to be true as well.
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