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Abstract 27 

Similar to MXene, MAB is a group of 2D ceramic/metallic boride materials which 28 

exhibits unique properties for various applications. However, these 2D sheets tend to 29 

stack and therefore lose their active surface area and functions. Herein, an amorphous 30 

cobalt nickel boride (Co-Ni-B) nanocomposite is prepared with a combination of 2D 31 

sheets and nanoparticles in the center to avoid agglomeration. This unique structure 32 

holds the 2D nano-sheets with massive surface area which contains numerous 33 

catalytic active sites. This nanocomposite is prepared as an electrocatalyst for 34 

borohydride electrooxidation reaction (BOR). It shows outstanding catalytic activity 35 

through improving the kinetic parameters of BH4
- oxidation, owing to abundant 36 

ultrathin 2D structure on the surface, which provide free interspace and electroactive 37 

sites for charge/mass transport. The anode catalyst led to a 209 mW/cm2 maximum 38 

power density with high open circuit potential of 1.06 V at room temperature in a 39 

miniature direct borohydride fuel cell (DBFC). It also showed a great longevity of up 40 

to 45 h at an output power density of 64 mW/cm2, which is higher than the Co-B, 41 

Ni-B and PtRu/C. The cost reduction and prospective scale-up production of the 42 

Co-Ni-B catalyst are also addressed.  43 

Keywords: Direct borohydride fuel cell, Borohydride electrooxidation, Cobalt 44 

Nickel Boride, Electrocatalyst. 45 

1. Introduction 46 

Hydrogen fueled polymer electrolyte membrane fuel cell (PEMFC) with zero carbon 47 

emission is considered as a promising renewable energy source for environmental 48 
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remedy [1, 2]. However, hydrogen as fuel imposes storage and transportation risk [3, 49 

4]. Direct borohydride fuel cell (DBFC) by employing KBH4 solution as fuel, 50 

overcomes these issues and concomitantly provides high theoretical open-circuit 51 

potential (OCP) of 1.64 V due to high hydrogen content of KBH4 (7.5 wt%) and its 52 

high energy density (6500 Wh/kg) [5]. As shown in Eq (1), the maximum of eight 53 

electrons are released during borohydride electrooxidation reaction (BOR) on the 54 

DBFC anode side [6].  55 

SHEvsVE 24.18eO6HKBO8OHKBH 0

-

224 −=++→+ −                  (1) 56 

The essential part of DBFC is the high-performance anode catalyst which can 57 

efficiently catalyze KBH4 oxidation with high kinetic parameters of BH4
- and its low 58 

hydrolysis.  59 

A large range of nanomaterials have been currently explored as BOR catalysts, 60 

i.e. noble metals (Pd, Pt, Au, Os, Ag, and Ru) [7-12], transition metals (Ni, Co, Cu) 61 

[13-15], hydrogen storage alloys (AB5
- and AB2

- type) [16] and bimetallic catalysts 62 

(Pt-Co, Co-W, and Ni-Co) [17-20]. However, among those, only a few catalysts, such 63 

as Au or Ag based catalysts [21], have achieved near 100% faraday efficiency (FE), 64 

which also considered as BH4
- oxidation efficiency. Noble metals such as Pt and Pd 65 

although show high catalytic activity towards BH4
- oxidation, but they promote BH4

- 66 

hydrolysis, and as the result decrease FE (releasing between 3 and 6 electrons per 67 

borohydride converted) [22, 23]. Hydrogen storage alloys increase FE by inhibiting 68 

hydrolysis, but their BOR potential is much lower in comparison with noble metals, 69 

which results in low OCP and power output [24]. It is reported that bimetallic or alloy 70 
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catalysts show higher catalytic activity and better stability than single metal ones 71 

which benefit of the merits of each component in the catalyst [25].  72 

Recently, Ni, Co-based metals/alloys and borides have attracted considerable 73 

attention for the relatively low price, high abundancy and excellent performance in 74 

capacitor and catalyst. Wang et al. [26] improved the capacitor’s performance via 75 

tuning the crystalline and electronic structures of bimetallic Co-Ni and MOFs to boost 76 

faradaic redox reaction for high energy density. As-obtained Co-Ni-B-S exhibits a 77 

high specific capacitance (1281 F/g at 1 A/g), due to the excess S2- formed a smaller 78 

nanosheets attached to the surface, which benefit for the electrolyte penetration, 79 

facilitate the short ion diffusion pathways and lead to higher energy storage. Masaan 80 

et al. [27] also found that amorphous Co2B is an exceptionally efficient electrocatalyst 81 

for the oxygen evolution reaction (OER) in alkaline electrolytes, because of the B 82 

induces lattice strain in the crystal structure of the metal, which potentially diminishes 83 

the thermodynamic and kinetic barrier of the hydroxylation reaction. Tan et al. [28] 84 

present an amorphous Co-B nanosheet coated Co-Bi (Co-B@Co-Bi) nanocomposite. 85 

Benefiting from the unique rich amorphous Co-Bilayer on the surface of Co-B, the 86 

Co-B@Co-Bi exhibits extraordinary catalytic activity and good stability toward the 87 

OER in 1.0 M KOH. Li et al. [29] synthesized amorphous Ni-B nanoparticles as the 88 

anode catalyst for DBFC, which exhibited a peak power density of 180 mW/cm2, and 89 

a relatively stable performance for approximately 180 h. 90 

A number of 2D materials eg, graphene [30, 31], borophene [32, 33] and MXene 91 

[34, 35] have been recognized as materials with high surface area and great electric 92 
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conductivity which made them suitable for their application in catalysis. MAB a 93 

group of 2D ceramic/metallic boride (instead of C or N in MXenes) materials with 94 

similar structure to MXenes, also considered as excellent candidates for 95 

electrocatalysis owing to the exceptionally high conductivity, rich interlayer porosity, 96 

high surface area and adjustable band gap structure etc. These materials were found to 97 

possess high heterogeneous electron transfer (HET) rates, and promising 98 

electrocatalytic performances toward hydrogen evolution reaction (HER) and oxygen 99 

reduction reaction (ORR) [36], and other electrochemical energy storage systems [37]. 100 

However, these 2D sheets tend to stack and the material will lose its desired function.  101 

Herein, we prepared amorphous Co-Ni-B nanocomposite catalyst with a 102 

combination of 2D nano-sheets and nanoparticles in the center via a simple potassium 103 

borohydride reduction approach. This structure benefits the electrochemical BOR 104 

activity, while it prevents the stacking of the 2D structures. Besides, the 2D structure 105 

planting on the surface of the nanocomposites, which provides more channels for 106 

charge/mass transport and increases the conductivity. The Co-Ni-B catalyst’s catalytic 107 

activity toward BH4
- oxidation and the DBFC performance are all well discussed. 108 

Electrochemical testing results of binary Co-B, Ni-B and commercially available 109 

PtRu/C and Pt/C electrocatalysts are also included in this research as a comparison.  110 

2. Experiments 111 

2.1. Materials and chemicals 112 

Nickel chloride hexahydrate (NiCl2·6H2O, 98 wt%), cobalt chloride hexahydrate 113 

(CoCl2·6H2O, 98 wt%), 99.5 wt%), potassium borohydride (KBH4, 98 wt%), 114 
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potassium hydroxide (KOH, 90 wt%), lanthanum nitrate hexahydrate 115 

(La(NO3)3·6H2O, 99.9 wt%), nickel nitrates Ni(NO3)2·6H2O, 99.9 wt%) 116 

tetrapropylammonium bromide (TPAB, 98 wt%), tetramethylammonium hydroxide 117 

pentahydrate (TMAOH, 99 wt%). Commercial PtRu/C (Pt 40 wt% Ru 20 wt%) and 118 

Pt/C (40 wt%) was supplied by Johnson Matthey (shanghai, China). Multi walled 119 

carbon nanotubes (MWCNT) was purchased from Tanfeng Tech.Inc (China). Ethanol 120 

(99.9 wt%) and hydrochloric acid (HCl, 37 wt%) were obtained from Sinopharm 121 

(China). Nafion (D520, 5% solution) was acquired from DuPont Corporation. 122 

Polytetrafluoroethylene solution (PTFE, 60 wt%) was acquired from DuPont 123 

Corporation (America), nickel foam (thickness =1.7 mm, porosity >95%, Fig. S1 ) 124 

was purchased from Kunshan Maozhen Electronics Co., Ltd (China), it was cleaned 125 

carefully by ethanol and deionized water before coating the catalytic ink. The gas 126 

diffusion layer (PTFE+Carbon, thickness =0.2±0.05 mm, porosity≈20-25 Vol%) was 127 

purchased from Changsha spring new energy technology Co., Ltd (China). O2 (99.99 128 

Vol%) and Ar were supplied by Shaanxi Xinkang Medical Oxygen Co., Ltd (China). 129 

Deionized water (18.25 MΩ cm resistivity) was used throughout the experiments. All 130 

chemical reagents were used directly without further purification. 131 

2.2. Catalyst synthesis 132 

The catalyst was prepared via a simple potassium borohydride reduction 133 

approach using NiCl2·6H2O, CoCl2·6H2O and KBH4. 75 mL KBH4 (0.2 mol/L) was 134 

added drop-wisely into 50 mL CoCl2·6H2O (0.1 mol/L) solution and the dropping rate 135 

was 1.0 mL/min, then with vigorous stirring at room temperature (~25 oC). After 2 h 136 
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stirring, the mixture was transferred into an ice bath. At the same time, further 37.5 137 

mL KBH4 (0.2 mol/L) and 125 mL NiCl2·6H2O (0.02 mol/L) with the dropping rate of 138 

1.0 mL/min and 3.3 mL/min were added into the solution while it was stirred 139 

vigorously until no gas generated. To ensure a complete reduction, the molar ratio of 140 

KBH4 to Ni and KBH4 to Co was 3:1. After the reaction was completed, the mixture 141 

was filtrated and washed with deionized water and ethanol to remove any residues. 142 

Then, the catalyst of Co-Ni-B was obtained by freeze-drying overnight. The catalysts 143 

with different molar ratios of Co to Ni were prepared according to the preceding 144 

method, and the molar ratio of Co to Ni were 1:1, 1:2, 1:3, 2:1, and 3:1. The 145 

preparation procedure was illustrated in Scheme 1. For comparison, Co-B and Ni-B 146 

catalysts were synthesized using the procedures.  147 

 148 

Scheme 1- Synthetic process of the Co-Ni-B catalyst.  149 

The Lanthanum nickel oxide (LaNiO3) as cathode catalyst of DBFC was 150 

prepared using the reverse-phase hydrolysis method as described another paper [38]. 151 

The La(NO3)3·6H2O and Ni(NO3)2·6H2O were mixed with 1:1 molar ratio in 50 mL 152 

of deionized water, such that the total metal concentration was 9.9 mmol. 153 
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Tetrapropylammonium bromide (TPAB) was dissolved into 200 mL of 1 wt% 154 

tetramethylammonium hydroxide (TMAOH, PH14) followed by added the metal 155 

nitrate solution drop-wisely (2.0 mL/min) into TPAB solution under vigorous stirring. 156 

The solution was left stirring for 24 h and then centrifuged for 4 minutes at 8000 rpm 157 

resulting in a gelatinous green pellet, followed by washing with deionized water, 158 

which resulted in a green colloidal suspension. The colloid was dispersed in 100 mL 159 

of deionized water and stored in a freezer for overnight. After freeze-drying, particles 160 

consist of lanthanum and nickel hydroxides were calcined at 700 °C for 4 h to form 161 

the perovskite phase. The resulting perovskite particles were washed with ethanol and 162 

deionized water and vacuum filtered to obtain the final LaNiO3 catalyst. 163 

2.3. Characterization 164 

X-ray diffraction (XRD, Bruker D8 ADVANCE) was used to characterize the 165 

crystal structures of samples. The field emission scanning electron microscope 166 

(FE-SEM, Zeiss GeminiSEM 500) and high resolution field emission transmission 167 

electron microscope (FE-TEM, ThermoFisher Talos-F200X) were employed to 168 

characterize the morphology, crystal structure and element distribution of the catalysts. 169 

The valence state of elements and elemental composition were tested by X-ray 170 

photoelectron spectroscopy (XPS, Thermo Fisher ESCALAB Xi+, Thermo Fisher 171 

technologies, China), the binding energy (BE) was calibrated using C 1s = 284.6 eV 172 

as reference. Infrared spectrum (IR, Bruker Vetex 70, Bruker AXS, Germany) was 173 

used to detect OH- functional group in the catalysts. UV Spectrophotometer 174 

(Shimadzu UV-2550) was employed to record the ultraviolet-visible (UV-vis) diffuse 175 



9 

reflectance spectra of the catalysts, to characterize the band gap, and BaSO4 as 176 

reference sample. Inductively Coupled Plasma Mass spectrometer (NexION 350D 177 

ICP-MS, PerkinElmer Co., Ltd, China) was used for element composition analysis. 178 

An electrochemical workstation (CHI750d Shanghai Chenhua Instrument Co., Ltd.) 179 

was employed to test the half-cell electrochemical oxidation of catalysts. The battery 180 

testing system (BTS-5 V 3A, Neware Technology Co., Ltd., Shenzhen, China) was 181 

employed to measure the performance of the DBFC.  182 

2.4. Electrochemical Testing 183 

The half-cell electrochemical oxidation reaction of the catalysts was investigated 184 

using a CHI750d electrochemical workstation with a conventional three-electrode cell 185 

at room temperature (~25 oC) (Fig. S2). Glassy carbon rotating disk electrode (RDE, 186 

diameter=5 mm), Hg/HgO (1 M KOH) and graphite rod electrode were applied as 187 

working electrode, reference electrode and the counter electrode, respectively. The 188 

catalyst ink was prepared by mixing 5 mg catalyst in 500 μL ethanol and 20 μL 189 

Nafion (5 wt%) solution in ultrasonic sound bath for 15 minutes. Then 15 μL of the 190 

ink was dropped on the surface of the glassy carbon electrode followed by drying at 191 

room temperature to ensure a catalyst loading of 0.735 mg/cm2. The cyclic 192 

voltammograms (CV) were recorded at a range of 0-0.7 V vs. Hg/HgO with scan rates 193 

of 50 mV/s. The catalysts were coated on a piece of Ni foam (A=1cm2) for 194 

chronoamperometry (CA) testing. The CA curves were recorded at 0.6 V vs Hg/HgO, 195 

with the catalyst loading of 10 mg/cm2.  196 

2.5. Electrode preparation and DBFC testing 197 
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The structure of the DBFC in this work as shown in Fig. 1. 198 

 199 

Fig. 1- The structure of DBFC. 200 

The cathode is composed of a gas diffusion layer, an active layer, and a current 201 

collector layer (nickel foam). The ink of the active layer was prepared by mixing 28 202 

wt% of LaNiO3 catalyst, 36 wt% of multi-walled carbon nanotubes (MWCNT), 36 wt% 203 

of PTFE solution in ethanol under ultrasonic sound bath for 1 h. The resulting slurry 204 

was pasted on Ni foam employed as a current collector and dried in vacuum oven at 205 

80 oC for 2 h. The cathode was finally obtained by pressing the Ni foam with the 206 

active layer and gas diffusion layer together at a pressure of 3 MPa. The loading of the 207 

cathode catalyst was 7.5 mg/cm2. 208 

The anode consisted of a current collector layer and an active layer. Briefly, 75 209 

wt% catalyst (Co-Ni-B, Co-B, Ni-B or PtRu/C) and 25 wt% PTFE solution in ethanol 210 

solution were mixed to form a slurry by ultrasonic dispersion for 1 h. Then the slurry 211 

was pasted on a Ni foam (the same to the cathode) and dried at 80 oC for 2 h. Finally, 212 

the anode was pressed under a pressure of 2 MPa. The loading of the anode catalyst 213 

was 30 mg/cm2. 214 

The performance of the DBFC was measured by discharging tests at room 215 

temperature (~25 oC) using a battery testing system. The oxygen flow rate at the 216 
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cathode was 20 standard cm3/s, and 0.8 M KBH4-6 M KOH aqueous solution was 217 

supplied to the anode. The stability test of the battery is conducted as discharging with 218 

80 mA/cm2 current density. During this period, with the consumption of electrolyte, 219 

new electrolyte needs to be added. 220 

3. Results and discussion 221 

XRD pattern of Co-Ni-B, Ni-B and Co-B in Fig. 2a, displays a wide diffraction peak 222 

around 2θ = 45°, which indicates an amorphous structure for the catalysts. The 223 

morphology of the as-prepared Co-B and Ni-B were characterized using SEM, TEM 224 

and HRTEM. Fig. 2b is the TEM of Co-B, Fig. S3 and Fig. S4 show the SEM images 225 

and the average diameter of Co-B (23.3 nm). From the HRTEM image of Co-B in Fig. 226 

2c, it’s noted that the Co-B has short-range order and long-range disorder, which is a 227 

common characteristic of amorphous alloys, and the plane distance of 0.205 nm 228 

which can be assigned to the (211) plane of CoxB. As shown in TEM (Fig. 2d) and 229 

SEM (Fig. S5) of the Ni-B, the average particle size of Ni-B is smaller than Co-B, 230 

with a diameter of 19.1 nm (Fig. S6). The corresponding HRTEM image in Fig. 2e 231 

shows that the characteristic of amorphous alloys and the plane distance of Ni-B is 232 

0.194 nm can be assigned to the (211) plane of NixB. Fig. 2f gives the SEM of 233 

Co-Ni-B catalyst display bundle of spherical nanocomposite composed with 2D 234 

ultrathin nano-sheets cluster on the surface with an average size of 344.1 nm (Fig. S7). 235 

In addition, it can clearly found that due to the fixed support of the central spheres, the 236 

nanosheets on its surface with a thickness of ∼30 nm are not stacked together, and the 237 

catalytic materials inside are also well exposed (Fig. 2g). HRTEM image of Co-Ni-B 238 
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is shown in Fig. 2h, it further confirmed that the Co-Ni-B catalyst also has the 239 

characteristic of amorphous alloys, and this is consistent with the XRD results. The 240 

plane distance of 0.197 nm in Co-Ni-B is in agreement with the calculated value of 241 

approximately 0.2 nm, which is almost the same to the value calculated from the XRD 242 

pattern (2θ = 45°), and can be assigned to the (211) plane of CoxB or NixB. Fig. 2i 243 

gives the HAADF-STEM image of Co-Ni-B catalyst. The elemental mapping of 244 

Co-Ni-B in Fig. 2j to 2n show an even distribution of Co, Ni, O and B. The signal 245 

intensity of O is weaker in the center than Co and Ni element, suggesting it is mainly 246 

distributed on the outer layer. The B is uniformly dispersed on the whole composite. 247 

According to the above results, it is confirmed that the center is mainly composed of 248 

Co and B elements, and the outer layer is mainly composed of Ni, O, B, and tiny Co 249 

elements. 250 

 251 
Fig. 2- (a) XRD pattern of Co-Ni-B, Ni-B and Co-B. (b) TEM and (c) HRTEM of Co-B. (d) TEM 252 

and (e) HRTEM of Ni-B. (f) SEM, (g) TEM, (h) HRTEM and the local enlarged images of 253 

Co-Ni-B. (i) HAADF-STEM and (j) overlap mapping image of Co-Ni-B, and elemental mapping 254 

of (k) Co, (l) Ni, (m) O, (n) B. 255 
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X-ray photoelectron spectroscopy (XPS) analysis of Co-Ni-B were carried out to 256 

investigate the elemental composition and chemical state of the surface. Fig. 3a 257 

reveals B 1s spectra with two peaks at 187.9 eV and 192.0 eV [39], corresponding to 258 

elemental B (zero oxidation state) and oxidized B (BO2
-). BO2

- is a byproduct of BH4
− 259 

partial hydrolysis (as shown in Eq (2)), and has an adhesive effect [40]. In addition, 260 

the peak of O 1s at 531.3 eV is partially assigned to OH- groups (Fig. 3b), as it is 261 

proven by infrared spectroscopy (Fig. S8). 262 

2224 4HBOO2HBH +=+ −−
                                                  (2) 263 

Co 2p3/2 region spectrum (Fig. 3c) can be deconvoluted to three major peaks at 778.0, 264 

781.2, 782.8 eV, and one satellite peak at 786.1 eV. The peaks at 778.0 eV are 265 

assigned to CoxB [41], and the ones at 781.2 eV and 782.8 eV are associated with 266 

Co2+ [42, 43], in Co(OH)2 and Co(BO2)2 respectively. The spectrum of Ni 2p3/2 (Fig. 267 

3d) displays two major peaks at 852.9 eV and 856.1 eV, and one satellite at 861.7 eV 268 

[44], the binding energy of 852.9 eV corresponds to the energy level of NixB, 856.1 269 

eV is assigned to the Ni2+ [45], which corresponds to Ni(OH)2 and Ni(BO2)2. 270 

According to the above results, the center composed of CoxB and NixB, the 2D 271 

nanosheets of Ni(OH)2 and tiny amounts of Co(OH)2 are planting on the surface of 272 

CoxB and NixB, which consistent with the result of the elemental mapping. Ni(BO2)2 273 

and Co(BO2)2 make strong adhesion between NixB (or CoxB) and Ni(OH)2 (or 274 

Co(OH)2) and play a role of immobilizing 2D sheets. The results of XPS also suggest 275 

the electronic structure of the Co-Ni-B catalyst, comparison with that of Co-B and 276 

Ni-B, a significant positive shift of Co 2p3/2 and Ni2p3/2 XPS signal (Fig. S9a, b and 277 
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Table S1, S2), due to the electron transfer from the neighboring Co and Ni atoms to B 278 

atoms. In parallel, the peaks of B1s of the Co-Ni-B negatively shifted comparing to 279 

that of the Co-B and Ni-B (Fig. S9c, Table S3), it also indicates that there are 280 

electrons transferred to B, which confirmed the downshift of the d-band center of Co, 281 

Ni in Co-Ni-B catalyst. Such downshift of the d-band center and by electron transfer 282 

through doping is more conducive to the improvement of the intrinsic activity of the 283 

catalyst materials, which could greatly accelerate the charge transfer process between 284 

OH- and Co-Ni-B and significantly improve the activity for BOR [46-48]. In addition, 285 

the content of each element analyzed by ICP-MS can be found in Table S4. 286 

 287 

Fig. 3- High-resolution XPS of the Co-Ni-B on (a) B, (b) O, (c) Co, (d) Ni regions with the 288 

deconvoluted compounds. Dots indicates the experimental data. 289 

The electrochemical behavior of Co-Ni-B electrode for KBH4 electrooxidation 290 

was researched in a typical three-electrode system at room temperature ~25 oC. Fig. 291 
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4a shows the CVs of Co-Ni-B in absence and presence of KBH4. Without KBH4, the 292 

CV curve does not show apparent current density peaks, and the current density of 293 

Co-Ni-B is 1.4 mA/cm2. In the presence of KBH4, the CV curve exhibited higher 294 

current density (6.6 mA/cm2 at 0.7 V vs Hg/HgO) on the Co-Ni-B electrode, which is 295 

caused by the electrooxidation of KBH4 on the electrode. Co-Ni-B catalysts with 296 

different mole ratio of Co to Ni were prepared to select the best catalyst. Fig. 4b 297 

shows that the highest current density of Co-Ni-B, 6.6 mA/cm2 can be achieved in 298 

Co-Ni-B=1:2:1 and this is the catalyst used thoroughly in this work. Fig. 4c presents 299 

the CV curves of Co-B, Ni-B, Co-Ni-B, PtRu/C and Pt/C in 0.1 M KBH4-1M KOH. It 300 

can be seen that PtRu/C and Pt/C exhibit inferior catalytic activity for KBH4 301 

electrooxidation, whereas Co-B, Ni-B, and Co-Ni-B electrodes exhibit the highest 302 

current density of 6.6 mA/cm2. According to reported literature, the initial oxidation 303 

potential of KBH4 is around 0.45 V vs Hg/HgO [49]. Thus, the primary reaction, at 304 

the potential negative than 0.45 V, is the oxidation of BH4
- hydrolyzed hydrogen. 305 

When the potential is positive than 0.45 V, the rapidly increased current density is 306 

related to the direct electrooxidation of BH4
- which is caused by the electrooxidation 307 

of KBH4 on the electrode. This phenomenon suggests that Co-Ni-B electrode 308 

possesses specific catalytic performance toward KBH4 oxidation [50]. In Fig. 4d, the 309 

CA curves test in 0.1 M KBH4-1 M KOH solution is used to evaluate further the 310 

electrocatalytic activity and operating stability of Co-B, Ni-B, Co-Ni-B and PtRu/C, 311 

and the current density of each catalyst is recorded at 0.6 V for 6000 s. In the initial 312 

stage the current density decays rapidly, which is attributed to the hydrolysis of BH4
- 313 
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on the surface of the catalysts to form a limiting layer that gradually occupy the active 314 

sites. After 6000 s CA test, the current density of Co-Ni-B electrode was maintained at 315 

40.48 mA/cm2, which is the highest compared to the Co-B, Ni-B and PtRu/C catalysts, 316 

indicating that the Co-Ni-B catalyst shows excellent operating stability than other 317 

three catalysts [21], the details of processing are summarized in Table 1. The 318 

electrochemical active surface area (EASA) of the catalysts is educed from the double 319 

layer capacitance (Cd). CV curves, which recorded in 1 M KOH at non-Faraday 320 

potential windows of 0.5 to 0.6 V, are used to evaluate the EASA of prepared catalysts 321 

Co-B, Ni-B (Fig. S10) and Co-Ni-B (Fig. 4e). The corresponding relationship 322 

between V vs. j at 0.55 V was exhibited in Fig. 4f. Double-layer capacitance (Cd) of 323 

the catalyst could be estimated by Eq (3) and Eq (4) [51].  324 

vdj dCd .=                                                                  (3) 325 

*/ CCEASA d=                                                              (4) 326 

where C⁎ is the specific theoretical double layer capacitance, the C⁎ of Co and Ni in 327 

alkaline electrolyte is thought to be 60 μF/cm2 [52]. The Cd on Co-B, Ni-B and 328 

Co-Ni-B catalysts were evaluated as 1.07 10-3 F/cm2, 2.31 10-4 F/cm2 and 329 

4.3710-3 F/cm2. Based on Eq (4), the EASA value of the Co-B, Ni-B and Co-Ni-B 330 

catalysts are 17.8 cm2, 3.85 cm2 and 72.8 cm2. The EASA of Co-Ni-B is 19 times 331 

larger than Ni-B catalyst, and 4 times larger than Co-B. The larger EASA achieved on 332 

Co-Ni-B catalyst may be caused by the nano-sheets structure of Ni(OH)2 and 333 

Co(OH)2.  334 
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 335 

Fig. 4- (a) CVs of Co-Ni-B electrode in the situations of absence and presence of KBH4, (b) CVs 336 

of Co-Ni-B in 0.1 M KBH4-1 M KOH, (c) CVs of Co-B, Ni-B, Co-Ni-B, PtRu/C and Pt/C in 0.1 337 

M KBH4-1 M KOH. (d) Chronoamperogram of Co-B, Ni-B, Co-Ni-B and PtRu/C in 0.1 M 338 

KBH4-1 M KOH solutions at a potential step of 0.6 V for 6000 s. (e) CV curves of Co-Ni-B 339 

catalyst under different scan rate. (f) Arrhenius plots of Co-B, Ni-B, Co-Ni-B catalysts. 340 

Table 1-Summary of the current density for chronoamperogram. 341 

Catalysts Current density (mA/cm2) 

Co-B 37.98 

Ni-B 34.09 

PtRu/C 34.32 

Co-Ni-B 40.48 

To further investigate the electronic structure of the Co-Ni-B catalyst, 342 

investigated by UV-vis diffuse reflectance spectra (DRS) spectroscopic studies and 343 

the spectra are shown in Fig. 5a. The Tauc plot of transformed Kubelka-Munk 344 

function: [F(R)hν]1/2 plotted against the energy of light hν is shown in Fig. 5b, the 345 

band gaps of the catalysts were determined from the reflectance spectra according to 346 

Eq (5) [53, 54].  347 

)2,1()()( =−= nEhvAhvRF n

g                                            (5) 348 
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Where F(R) is the diffuse reflectance absorption coefficient which can be calculated 349 

on the basis of the Kubella-Munk function [55]. The h is the photon energy, A is the 350 

proportional constant, and Eg is the band gap energy. The values of n represent the 351 

type of transition when n taken as 2 is the direct transition, taken 1/2 is the indirect 352 

transition. By the plot of (F(R)h)1/n vs. h, the intercept of (F(R)h)1/n on the h axis 353 

is the Eg value [56]. The value of Co-Ni-B, Co-B and Ni-B are given in Table S5, the 354 

band gap energy of Co-Ni-B is calculated to be 2.61 eV smaller than Co-B (3.30 eV) 355 

and Ni-B (3.17 eV). The narrower band gap of Co-Ni-B is attributed to the interaction 356 

of the components of Co(OH)2, Ni(OH)2, NixB and CoxB. The little band gap energy 357 

is more easily for electrons jump from the valence band to the conduction band and 358 

become free electrons [57], which can urge the charge transfer kinetic be greatly 359 

accelerated and obtain good BOR activities. 360 

 361 

Fig. 5- (a) UV-vis diffuse reflectance spectra of Co-Ni-B, Co-B and Ni-B. (b) Band-gap 362 

evaluation from the plot of (F(R)hν)1/2 vs hν for Co-Ni-B, Co-B and  Ni-B. 363 

To evaluate the performance of the Co-Ni-B catalyst in a practical application, 364 

we assembled a DBFC. As prepared Co-Ni-B electrode was employed as the anode 365 

catalyst, LaNiO3 as the cathode catalyst of DBFC. Discharge curves and power 366 

density curves of DBFC (under room temperature ~25 oC) were shown in Fig. 6a. It 367 
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can be clearly observed that the Co-Ni-B presents the highest peak power density 203 368 

mW/cm2, also obtained a high open circuit voltage (OCV) of 1.06 V. As exhibited in 369 

Fig. 6b, Co-Ni-B also delivers the highest peak power density relative to those of the 370 

Co-B (117 mW/cm2), Ni-B (162 mW/cm2), and the OCV and power density of 371 

Co-Ni-B catalyst is even superior to state-of-the-art PtRu/C (0.96 V, 93 mW/cm2) and 372 

Pt/C (0.94 V, 47 mW/cm2) catalysts. The electrochemical tests show that the 373 

performance of DBFC is very sensitive to catalyst loading. Thus, the DBFC 374 

performance under various catalysts loading was studied. Fig. 6c reveals the peak 375 

power density was improved from 30 to 209 mW/cm2 with increasing catalyst loading 376 

from 10 to 50 mg/cm2. With the increase of catalyst loading to 70 mg/cm2, the power 377 

density began to decrease. Because such a high loading and the increased thickness is 378 

detrimental to the mass and electron transfer.  379 

Operating stability of the fuel cell is also important for evaluating the 380 

performance of DBFC in practical applications. Stability tests of the DBFC were 381 

reflected in Fig. 6d. It indicates that assembled DBFC with Co-Ni-B catalyst works 382 

very stable at 80 mA/cm2 for 45 h, the output voltage can be retaining 93.2%. With a 383 

higher output voltage (0.83 V) than those of DBFC assembled using Co-B, Ni-B and 384 

PtRu/C (Fig. S11). Furthermore, excellent discharge performance is related to the 385 

charge transfer and solution resistance. Therefore, the electrochemical impedance 386 

spectroscopy (EIS) was recorded at the OCV of DBFC from 100 kHz to 0.01 Hz. In 387 

general, the intersection point between the curve and the actual axis reflects the high 388 

frequency equivalent series resistance (Rs), which originates from the resistance of the 389 
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electrolyte solution, including connections of interfaces and electrode clips, while the 390 

diameter of semicircles of Nyquist plots corresponding to the charge transfer 391 

resistance (Rct) [58, 59]. The values of Rs and Rct have great influence on the 392 

electrocatalytic kinetics, usually a smaller value of Rs indicates a good combination of 393 

catalyst and collector, and smaller Rct value indicates an expeditious charge transfer. 394 

As shown in Fig. S12, the inset is a partial enlarged view, the Rs value of that Co-Ni-B 395 

is about 0.3 Ω, almost the same as those of the other three samples. Besides, the Rct 396 

value of Co-Ni-B was estimated to be 4.7 Ω, which is lower than Co-B (6.9 Ω), Ni-B 397 

(20 Ω) and PtRu/C (4.9 Ω). These results certify the low internal resistance and fast 398 

oxygen electrochemical redox for the DBFC assembled using Co-Ni-B catalyst [46].  399 

 400 

Fig. 6- The discharge polarization curves and power density curves of: (a) Co-Ni-B DBFCS, (b) 401 

DBFCS with catalysis of Co-B, Ni-B, Co-Ni-B, PtRu/C and Pt/C. (c) Co-Ni-B DBFC under 402 

different catalyst loading, (d) Stability test of DBFC at the 80 mA/cm2 discharge current density. 403 

 404 
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4. Conclusion 405 

An amorphous Co-Ni-B nanocomposite consists of nanoparticles and 2D 406 

structure has been successfully fabricated through a simple potassium borohydride 407 

reduction approach. It exhibits excellent BOR catalytic performance, high current 408 

density (6.6 mA/cm2) during the reaction and good stability toward KBH4 409 

electrooxidation. While assembling in a DBFC, the OCV is as high as 1.06 V and 410 

peak power density is 209 mW/cm2 achieved at room temperature. At the end of 45 h 411 

stability test, the fuel cell displays no obvious decay, which suggests that the 412 

assembled DBFC possesses excellent working stability. The special structure plays a 413 

key role in contributing to the catalytic performance, the enhanced synergetic effects 414 

could be ascribed to the narrow band gap accelerating the electrons jumping and 415 

therefore enhancing the speed of electron transfer.  416 
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