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Turbulent partially-filled pipe flow was investigated using Stereoscopic Particle Imaging Velocimetry (S-PIV) in the

cross-stream plane for a range of flow depths at a nominally constant Reynolds number of 30,000 (based on bulk

velocity and hydraulic diameter). Unlike full pipe flow, which is axisymmetric, the turbulent kinetic energy exhibits

significant azimuthal (and radial) variation. Proper orthogonal decomposition (POD) of the fluctuating velocity field

indicates that the leading order POD modes occupy the “corners” where the free surface meets the pipe wall and that

these modes, which are closely linked to the instantaneous cellular structure, contribute nearly a quarter of the overall

turbulent kinetic energy. Spatial distributions of the large- and very-large-scale motions (LSMs/VLSMs) estimated

from pseudo-instantaneous three-dimensional velocity fields reveal a preference for the sides (in close proximity to the

free surface) and bottom quadrant of the pipe. That the LSMs and VLSMs are shown to populate a region spanning

the width of the free surface, as well as the corners, strongly suggests that there is a dynamical connection between

LSMs/VLSMs and the instantaneous cellular structures in turbulent partially-filled pipe flow which can explain the

spatial redistribution of the turbulent kinetic energy.

I. INTRODUCTION

The flow in partially-filled pipes has received far less atten-

tion than canonical, full bore, pipe-flow. Partially-filled pipe

flow, however, also has several important applications, such

as the transport of particulates in solution (an application of

interest to the decommissioning of nuclear power plants) and

many hydraulic applications such as subsurface drainage and

the transport of wastewater. It was only relatively recently that

Guo and Meroney 1 reported an analytical solution for laminar

pipe flow running partially full. As yet, numerical studies of

this problem only deal with laminar flow, for example, Davis

and Mai 2 and Ng, Lawrence, and Hewitt 3 . Measurements of

the velocity distribution in turbulent flow for smooth walled

circular pipes running partially full are very sparse, with no-

table examples reported by Knight and Sterling 4 and Yoon,

Sung, and Lee 5 .

In a recent work, Ng et al. 6 , we used two-dimensional,

three-component (2D-3C) high-speed stereoscopic particle

imaging velocimetry to detail the velocity field of partially-

filled pipes for both the laminar and turbulent flow regimes.

We showed that the measured velocity distribution in lami-

nar flow is in excellent agreement with the analytical solution

of Guo and Meroney 1 and that the so-called “velocity dip”

only occurs in laminar flow at fill depths d/D & 90%, where

d is flow depth measured at the pipe vertical bisector and D is

pipe diameter. Measurements of the velocity field in turbulent

flow revealed the velocity dip occurred for fill depths as low as

d/D = 44% and was accompanied by a mean secondary flow,

which remained close to the free surface for flow depths up to

d/D = 80%. Using two-point spatio-temporal correlations of

the streamwise velocity fluctuations we showed that the pres-

ence of the mean secondary flow had a significant effect on

the large-scale turbulent flow structures in relation to those in

canonical pipe flow.

a)Electronic mail: hchng@liverpool.ac.uk

The large-scale structures in wall-bounded turbulent flows

have received much attention in recent years. These elon-

gated structural elements are often termed large-scale and

very-large-scale motions (LSM/VLSM) in channel and pipe

flow and “Superstructures” in boundary-layer flows. Kim and

Adrian 7 first inferred the existence of these elongated struc-

tures from the bi-modal energy distribution in the stream-

wise velocity spectrum acquired using single-point hot-wire

measurements in turbulent pipe flow. They identified spec-

tral peaks at wavelengths λx non-dimensionalised by pipe

radii R of 1 . λx/R . 3 and 12 . λx/R . 14 as the signa-

tures of the LSMs and VLSMs, respectively. Hutchins and

Marusic 8 showed that structurally similar events existed in

turbulent boundary layers and that whilst the streamwise en-

ergy distribution peaked at a wavelength of λx/δ ≈ 6 (δ be-

ing the boundary-layer thickness), traces of streamwise ve-

locity fluctuation obtained using a hot-wire rake showed ev-

idence of pseudo-instantaneous structures with lengths of up

to O(20δ ). Many works, both experimental and numerical,

have since furthered our understanding of those long coherent

motions in pipes and channels9–18 and boundary layers19–21

and have highlighted the importance of the LSMs and VLSMs

in relation to turbulent kinetic energy and Reynolds shear

stress production and transport. Studies linking the existence

of LSMs and VLSMs to the instantaeous cellular structure

in open channel flow over both smooth and rough surfaces

have been gaining traction in recent years22–27 as the similar-

ities between the large scale structures that populate canoni-

cal wall-bounded turbulent flows and the coherent structure in

open channel flows28,29 and free surface turbulence30–32, such

as the “upwellings”, “downdrafts”, “whirlpools”33, aforemen-

tioned instantaneous cellular structure34 and mean secondary

flows, are difficult to ignore. Turbulent partially-filled pipe

flow shares many elements of open channel flows and canon-

ical pipe flows and our previous work has shown that the co-

herent structures in both aforementioned flow configurations

co-exist in partially-filled pipe flow6.

In the current study we aim to explore the influence of

the LSMs and VLSMs on the standout features of turbulent
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FIG. 1. Schematic of VLSPF facility.
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FIG. 2. Cross-section of pipe showing definitions of depth and free

surface width.

partially-filled pipes, such as the velocity “dip”, the associ-

ated mean secondary flow and the preferential spatial distri-

bution of the turbulent kinetic energy. The remainder of the

manuscript is organised as follows: the experimental setup

and database is introduced in §II and then the mean veloc-

ity flow field and mean turbulence statistics are briefly re-

capped in §III. In §IV, we use proper orthogonal decompo-

sition (POD) to identify, visualize and deduce the makeup

and locations of the large-scale energy containing motions

and also study the characteristics of a POD-filtered, low-

order representation of the velocity field. We then identify

and extract large- and very-large-scale motions from pseudo-

instantaneous velocity fields and determine their characteris-

tics in §V before presenting the conclusions in §VI.

II. EXPERIMENTAL SETUP & S-PIV DATABASE

High-speed Stereoscopic PIV (S-PIV) data reported in Ng

et al. 6 is examined here. These data were obtained in the

Very Large Scale Pipe Flow (VLSPF) facility at the Univer-

sity of Liverpool. The VLSPF facility has a working section

length of L = 23.3m made up of precision-bore borosilicate

glass tubes of D = 100± 0.4mm and matching machined-to-

fit stainless steel flanges. The flow loop consists of a 500 litre

header tank, which feeds a progressive cavity pump (Mono

Type-101). Fluid is then pumped through a set of three pulsa-

tion dampeners and passes through a Coriolis-type mass flow

meter (Endress and Hauser Promass 63) before entering a

plenum chamber where the flow is fully reversed to remove

residual swirl. Flow then travels through the working section

and is returned to the header tank via a flexible rubber hose.

A schematic of the rig is shown in figure 1. The facility was

not modified to run in partially-filled configuration with a de-

tailed description of the operating protocol used to achieve

partially-filled flow provided in Ng et al. 6 and omitted here

for brevity. The facility is the same rig used for the full-bore

pipe-flow measurements recently reported in Owolabi, Den-

nis, and Poole 36 and Wen et al. 37 (essentially an extended

version of the facility originally used by Escudier, Presti, and

Smith 38).

The S-PIV data was collected in the radial-azimuthal plane

at an axial location of x/D ≈ 220 from the inlet. Parti-

cle images of the flow were acquired via a pair of Nikon

Micro-Nikkor 60mm camera lenses set to f -4.0 attached to

two Phantom Miro M110 high-speed CMOS cameras us-

ing Scheimpflug mounts that facilitated stereoscopic imaging.

The cameras have sensor resolution of 1280× 800 pixels, a

12-bit dynamic range and at full resolution are capable of cap-

turing images at a maximum repetition rate of f = 1600Hz.

The measurement plane was viewed through a prism filled

with the same working fluid as the pipe facility and the cam-

eras were synchronised with the laser light pulses emitted

from an Nd:YAG laser (Lee Laser LDP-100MQG DUAL). The

flow was seeded with silver-coated hollow glass spheres with

an average diameter of 10µm and a custom made two-level

calibration target made up of a lattice of dots of known spac-

ing with a 3mm axial offset is imaged prior to the flow mea-

surements. The reconstruction of the three-component vector

fields from the calibration and particle images was performed

using Dantec Dynamics DynamicStudio 2015a with a final

interrogation window size of 32× 32 pixels and 50% over-

lap which yielded an approximate measurement resolution of

l = 2mm. The S-PIV data were acquired at both low and high

repetition rates. The former done so that a sizable number

of independent vector fields facilitated well converged time-

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
3
1
6
3
9



3

d/D[%] ReH ReEQ Fr Ub[mm/s] Vector fields per sec. PIV realisations TUb/R

44 29,300 20,700 0.52 311 1 6150 38253

52 30,100 21,300 0.43 289 1 6000 34680

62 31,000 22,300 0.36 268 2 10250 27470

70 30,300 22,500 0.30 252 2.5 12300 24797

80 28,500 22,100 0.25 234 2.5 12300 23026

44 29,400 20,800 0.53 311 382 29725 484

62 31,300 22,500 0.37 273 291 29725 558

80 28,700 22,100 0.25 236 255 25625 474

†100 35,000 35,000 N/A 350 500 21268 512.4

TABLE I. Experimental conditions for turbulent flow velocity measurements. †Data from Dennis and Sogaro 35 .

averaged statistics and the latter to obtain a spatio-temporal

3D view of the flow field and large structures. The high repe-

tition rate data were collected in discrete blocks of 1025 PIV

image pairs with a minimum of 25 blocks per flow depth in-

vestigated.

Data were acquired at a nominally constant Reynolds num-

ber of ReH = DHUb/ν ≈ 30,000± 5% for flow depths rang-

ing between 44% ≤ d/D ≤ 80% where DH is the hydraulic

diameter, Ub bulk velocity, ν kinematic viscosity, d the flow

depth measured along the pipe vertical bisector and D is

the pipe diameter. The hydraulic diameter DH = 4A/Pw

is a function of flow cross-sectional area (A) and wetted

perimeter (Pw). In a partially-filled pipe (with circular cross-

section), A = R2 (θ − sinθ cosθ ) and Pw = 2Rθ , where θ =
cos−1 ((R− d)/R) is the angle subtended by the arc between

the bottom-dead-center of the pipe and the location where

the free surface meets the pipe wall. A partially-filled pipe

flow has a free surface and so the Froude number Fr =
Ub/

√
g×Dm becomes important. Here g is gravitational ac-

celeration and Dm = A/B the hydraulic mean depth which is

dependent on free surface width B. In a partially-filled pipe

with circular cross section, B = 2Rsinθ . In this paper x, y and

z refer to the streamwise, spanwise and vertical directions with

respect to the pipe vertical bisector, with u, v and w the respec-

tive velocity components in Cartesian co-ordinates. Radial (r)

and azimuthal (θ ) directions are defined from the pipe centre

axis. Figure 2 provides definitions of geometric parameters

and table I summarizes the relevant experimental conditions

and S-PIV parameters.

III. MEAN FLOW

The time-averaged mean flow field was previously de-

scribed in detail Ng et al. 6 so here we only provide a short

description of the salient features for completeness. Figure

3 displays contours of the time-averaged streamwise velocity

distribution normalised with bulk velocity U/Ub, with corre-

sponding in-plane velocity vectors superimposed. We have

exploited the symmetry of the flow about the vertical bisec-

tor to improve the statistics. The maximum streamwise ve-

locity appears below the free surface for the five flow depths

tested (although only three flow depths are shown in fig-

ure 3 for brevity), representative of the so-called “velocity

dip” phenomenon. The contours of U/Ub are distorted (rel-

ative to full pipe flow) by the presence of a mean secondary

flow which consists of a pair of large-scale counter-rotating

rollers, each filling the half-width of the pipe. The secondary

flow (observed for all flow depths tested) is the so-called

Prandtl secondary flow of the second kind39 driven by turbu-

lence anisotropy and spatial gradients of the Reynolds shear

stresses40 due to the breaking of azimuthal symmetry by in-

troducing the free surface.

Profiles of mean streamwise velocity along the pipe verti-

cal bisector for flow depths between 44% ≤ d/D ≤ 80% are

plotted together in figure 4. Unlike one might do for canonical

pipe flow, we were not able to determine friction velocity Uτ

from pressure-drop measurements (as the pressure taps in the

VLSPF were located near the top-dead-center of the pipe) and

as our S-PIV measurements cannot reliably resolve velocities

in the viscous sublayer we have refrained from presenting ve-

locity data scaled using wall variables and only present data

scaled with outer variables. Since partially-filled pipe flow

does not have a single natural outer length scale (which, for a

full pipe is simply radius R or diameter D), the velocity pro-

files presented in figure 4 are scaled using length scales of D,

d and DH and velocity scales of Ub and Umax (the latter rep-

resenting maximum streamwise velocity), respectively. The

full pipe flow velocity profile taken from data acquired in the

VLSPF facility by Dennis and Sogaro 35 is included for com-

parison. When scaling with D and Ub (figure 4a), there is

good collapse near the “lower” wall for all cases (including

full pipe flow) revealing that up to the location of Umax in a

partially-filled pipe flow, the behaviour is very similar to that

of full pipe flow. When rescaled with d and Ub (figure 4b) we

see that the proportion of the velocity profile above the mean

velocity, i.e. U/Ub > 1, increases with increasing flow depth

and that when z/d approaches unity, the mean velocity gra-

dient tends to zero for the partially-filled pipe. Finally, when

scaling with DH (commonly used in compound open-channel

flows) and Umax, the velocity profiles in partially-filled pipe

flow collapse well, but do not tend to full pipe flow. Inter-

estingly, with this scaling the location of Umax appears con-

stant at z/DH ≈ 0.3. Regardless of the length and velocity

scales used, we note that Umax occurs below the free surface

(i.e .“velocity dip” phenomenon) for all flow depths tested and
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FIG. 3. Contours of time-averaged streamwise velocity normalised with bulk velocity U/Ub for flow depths: (a) d/D = 44%, (b) d/D = 62%

and (c) d/D = 80% at ReH ≈ 30,000. The time-averaged in-plane velocity vectors are superimposed.
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FIG. 4. Mean streamwise velocity along vertical bisector scaled with (a) pipe diameter D and bulk velocity Ub, (b) flow depth d and bulk

velocity Ub and (c) hydraulic diameter DH and maximum streamwise velocity Umax. (◦): d/D = 44%, (�): d/D = 52%, (⋄): d/D = 62%,

(△): d/D = 70%, (▽): d = 80% and (⋆): d/D = 100%. Grayscale shading increases with increasing flow depth.

that the mean velocity gradient when approaching the free sur-

face approaches zero implying that, at least along the vertical

bisector, we have a “true” stress free surface at the air/fluid

interface in our pipe working section.

In figure 5 we show filled contours of the TKE distribu-

tion across the r-θ plane of the pipe, with contour lines of

mean streamwise velocity superimposed (again flow depths

d/D = 52% and 70% were omitted for brevity). The distri-

bution of u2 (previously shown in Ng et al. 6) is nearly identi-

cal to that of the TKE distribution indicating that u2 remains

the dominant contributor to TKE, hence contours of u2 are

not shown here. Unlike full pipe flow, which is axisymmetric,

the TKE distribution exhibits pronounced azimuthal variation.

We observe increased activity in the bottom and “sides” of the

pipe and decreased TKE along approximately the ±45◦ bisec-

tors. It is thought that the preferential distribution of the TKE

(and u2) is impacted by the presence of the mean secondary

motion.

Figure 6 shows profiles of turbulence statistics (normalised

with bulk velocity) taken along the pipe vertical bisector

scaled with the flow depth d. Interestingly, turbulent kinetic

energy (TKE), streamwise Reynolds normal stress (u2), as

well as, the Reynolds shear stress (−uw), all peak at approx-

imately z/d = 0.2 which could be thought of as the edge of

the outer region in canonical pipe flow (where d here would

be analogous to pipe radius R). Beyond z/d ≈ 0.2 both u2 and

TKE appear to decrease linearly with depth up to z/d ≈ 0.5
which coincides with the location of Umax. For z/d > 0.5, a

peculiar trend emerges. Up to a flow depth of d/D = 52%,

u2 and TKE remain constant from z/d = 0.5 until the free

surface. For flow depths greater than d/D = 52%, both u2

and TKE increase between z/d = 0.5 and the free surface,

the magnitude of which is increasing with increasing flow

depth. Profiles of −uw (figure 6c) also all peak at approxi-

mately z/d = 0.2 and then begin to decrease with increasing

z/d. For all flow depths except d/D = 44%, −uw changes

sign between 0.4 < z/d < 0.6 which coincides with the sign

change in the mean streamwise velocity gradient. Between

0.5 . z/d . 0.75, −uw becomes increasingly negative with

the magnitude of the minimum value increasing with increas-

ing flow depth, i.e. increasing from d/D = 44% to d/D =
80%. With z/d very close to unity, −uw returns to zero as

expected. That the TKE and Reynolds stress distributions are

different to canonical pipe flow is not surprising: by reduc-

ing flow depth and introducing a free surface, the boundary

condition for the upper part of the flow changes from no-slip

wall to that of no mean shear. When z/d tends to unity, tur-

bulence production approaches zero due to the lack of mean

shear (at least along the vertical bisector) leading to the reduc-

tion in Reynolds shear and normal stresses, as well as TKE in

the upper part of the flow near the free surface.
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FIG. 5. Contours of time-averaged turbulent kinetic energy (TKE) normalised with bulk velocity T KE/U2
b for flow depths: (a) d/D = 44%, (b)

d/D = 62% and (c) d/D = 80% at ReH ≈ 30,000. Solid blue lines represent the corresponding mean streamwise velocity contour distribution.
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FIG. 6. Profiles of (a) turbulent kinetic energy T KE2/U2
b , (b) u2/U2

b and (c) Reynolds shear stress −uw/U2
b along vertical bisector plotted as

a function of flow depth. (◦): d/D = 44%, (�): d/D = 52%, (⋄): d/D = 62%, (△): d/D = 70% and (▽): d/D = 80%. Grayscale shading

increases with increasing flow depth.

IV. PROPER ORTHOGONAL DECOMPOSITION

The proper orthogonal decomposition (POD) is a

commonly-used modal analysis technique to visualize

coherent features in turbulent flows41–46 and has recently

been successfully applied to elucidate the large-scale struc-

tures in fully-developed turbulent canonical pipe flows14,47–50.

When applied to the fluctuating velocity field, POD modes

are obtained by maximizing the turbulent kinetic energy over

the data set. The decomposition can be written as

u(x,y,z, t) =
N

∑
i=1

ai(t)Φi(x,y,z) (1)

where u(u,v,w) is the velocity fluctuation vector, Φi is the

eigenmode of the ith mode, ai(t) is the mode’s temporal (or

random) co-efficient and N is the total number of modes.

The fluctuating velocity components (u, v and w), acquired

in Cartesian co-ordinates were first interpolated onto a new

mesh with bi-polar coordinates (ξ ,η) to remove the points

outside the physical flow domain while arranging the veloc-

ity components in a non-sparse rectangular matrix. The bipo-

lar co-ordinate system for partially-filled pipe flow was given

by Guo and Meroney 1 and its relationship to Cartesian co-

ordinates is given by

y

R
=

sinθ sinhξ

coshξ − cosη
, (2)

and

z

R
=

sinθ sinη

coshξ − cosη
. (3)

The increments of ξ and η were chosen such that the max-

imum spacing of the bi-polar grid matched the resolution of

the acquired data i.e. ∆ymax = ∆zmax ≈ 0.04R in the bi-polar

grid. This resolution was found to be sufficient as doubling

the number of points did not result in an appreciable change

to the calculated POD modes and the POD energy spectrum.

The POD was computed using the method of snapshots51 from

3000 independent snapshots of the fluctuating velocity field.

Using a similar snapshot POD analysis of full-bore pipe-

flow, Hellström and Smits 47 reported that the first six POD

modes contain around 10 to 12% of the scaled energy. In

contrast, the first six POD modes in our partially-filled pipe

flow contribute between 22 to 25% of the scaled energy (see

figure 7), with their respective POD mode shapes shown in

figures 8, 9 and 10 for flow depths of d/D = 44%, 62%, and

80%. The out-of-plane (axial) component is shown as filled

contours, with red and blue regions representative of values

of opposing sign (positive and negative) and white represent-

ing small values surrounding zero. The in-plane components

are shown as vectors. As eigenmodes, the values of the con-

tour levels and the length and direction of the vectors bear no

physical meaning until weighted by their random co-efficients

to recover velocity fields. However, the mode shapes do tell
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FIG. 7. Scaled energy per mode represented by blue bars and cumulative energy represented by the dashed line (−−), truncated to display

only the first N = 50 modes. (a) d/D = 44%, (b) d/D = 62% and (c) d/D = 80%.

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 8. The first six POD modes

for d/D = 44%. Color contours

represent the eigenfunctions of

the axial component Φu and vec-

tors represent the in-plane compo-

nents Φv and Φw. (a) i = 1, (b)

i = 2, (c) i = 3, (d) i = 4, (e) i = 5

and (f) i = 6.

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 9. The first six POD modes

for d/D = 62%. Color contours

represent the eigenfunctions of

the axial component Φu and vec-

tors represent the in-plane compo-

nents Φv and Φw. (a) i = 1, (b)

i = 2, (c) i = 3, (d) i = 4, (e) i = 5

and (f) i = 6.
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 10. The first six POD modes

for d/D = 80%. Color contours

represent the eigenfunctions of

the axial component Φu and vec-

tors represent the in-plane compo-

nents Φv and Φw. (a) i = 1, (b)

i = 2, (c) i = 3, (d) i = 4, (e) i = 5

and (f) i = 6.

(a) (b) (c)

FIG. 11. Example higher or-

der POD modes for d/D =
62%. Color contours represent

the eigenfunctions of the axial

component Φu and vectors repre-

sent the in-plane components Φv

and Φw. (a) i = 20, (b) i = 28 and

(c) i = 35.

us the location of large-scale motions that contribute the most

energy and here the contour levels and lengths of the arrows

have been scaled consistently across the six modes and three

flow depths to provide a like-for-like comparison.

It is clear from figures 8-10 that the energy containing mo-

tions associated with the leading order POD modes appear

near the interface of the free surface and the no-slip wall,

or “corner”, in the partially-filled geometry. This is particu-

larly apparent at the highest flow depth (d/D = 80%) where

the active parts (intense regions of blue and red) of the first

four modes (figures 10a-d) are all confined to the “corner”

region. These active regions are characterised by large-scale

roll motions, where the core of the roll cells tracks closely

with Φu ≈ 0 (which essentially means u/U ≈ 0 i.e. traveling

at the mean velocity) that we interpret are the signature of the

instantaneous roll cells identified previously in partially-filled

pipe flows6 and are common to open channel flows28,34. We

note that this signature of the instantaneous roll cells appear to

be present at all flow depths tested and is the dominant feature

contained in the first two POD modes for d/D = 44% (fig-

ure 8a,b) and first six POD modes for the d/D = 62% (figure

9a-f) and d/D = 80% (figure 10a-f). These low-order modes

appear to come in pairs mirrored about the vertical bisector,

the symmetry plane in this flow. Interestingly, the signatures

representative of the large-structures that appear in the “cor-

ners” do not appear simultaneously in the same mode num-

ber. We suspect that this may be due to a combination of the

large-scale instantaneous roll cells being free to grow to sizes

exceeding the pipe radius, as well as, the migration of these

roll cells beyond the pipe vertical bisector. At d/D = 62%

and 80%, the modes i = 5 and i = 6 reveal the instantaneous

signature of “upwellings” and “downdrafts” present near the

corners. Upwellings and downdrafts are prominent features

of free-surface turbulence and Banerjee 33 describes the for-

mer, when looking down onto the free surface, as regions on

or very near the free surface where the ‘streamlines radiate

outwards’ and the latter as regions where ‘streamlines con-

verge forming what look like lines of stagnation flow’. We

suspect that the signature of upwellings and downdrafts ob-

served in modes i = 5 and i = 6 for d/D = 62% (figure 9e,f)

and d/D = 80% (figure 10e,f) are related to so-called sec-

ond quadrant (Q2) and fourth quadrant (Q4) events52 or the

“burst/ejections” and “sweeps” which form the backbone of

the self-sustaining mechanism of wall turbulence. Here, how-
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0.01
(a) (c) (e)

(b) (d) (f)

FIG. 12. Cumulative distributions of

scaled energy for d/D = 44% calculated

from low order representation of fluctu-

ating velocity fields including up to N

modes with cumulative energy provided

in parentheses. (a) N = 2(≈ 10%), (b)

N = 4(≈ 20%), (c) N = 9(≈ 30%), (d)

N = 16(≈ 40%), (e) N = 26(≈ 50%) and

(f) N = 90(≈ 75%). Contour levels of

T KE/U2
b vary from 0.001 to 0.01 in in-

crements of 0.0005.

0

0.01
(a) (c) (e)

(b) (d) (f)

FIG. 13. Cumulative distributions of

scaled energy for d/D = 62% calculated

from low order representation of fluctu-

ating velocity fields including up to N

modes with cumulative energy provided

in parentheses. (a) N = 2(≈ 10%), (b)

N = 5(≈ 20%), (c) N = 11(≈ 30%), (d)

N = 21(≈ 40%), (e) N = 35(≈ 50%) and

(f) N = 132(≈ 75%). Contour levels of

T KE/U2
b vary from 0.001 to 0.01 in in-

crements of 0.0005.

0

0.01
(a) (c) (e)

(b) (d) (f)

FIG. 14. Cumulative distributions of

scaled energy for d/D = 80% calculated

from low order representation of fluctu-

ating velocity fields including up to N

modes with cumulative energy provided

in parentheses. (a) N = 2(≈ 10%), (b)

N = 5(≈ 20%), (c) N = 11(≈ 30%), (d)

N = 19(≈ 40%), (e) N = 34(≈ 50%) and

(f) N = 132(≈ 75%). Contour levels of

T KE/U2
b vary from 0.001 to 0.01 in in-

crements of 0.0005.
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ever, the presence of the mean secondary flow changes the

trajectory of the wall-normal lifting motion to a more wall-

parallel motion that “lifts” fluid in the corner towards the free

surface. The instantaneous signatures of upwelling and down-

drafts were visualised directly from pseudo-instantaneous ve-

locity fields in our previous work6 where we speculated that

there was a close link between upwellings or bursting mo-

tions near the corners and the instantaneous cellular structure

observed near the free surface. The cause and effect of these

events, however, is still an open question53 with the bursts

thought to have been created by the long, streamwise-oriented

rolling vortices54, as well as, vice versa55. Regardless of

whether the bursts create the rollers or the rollers create the

bursts, using POD tells us that the bursting and sweeping mo-

tions near the corner associated with the instantaneous cellu-

lar structures account for nearly a quarter of the relative en-

ergy in our turbulent partially-filled pipe flow at flow depths

of d/D = 62% and 80%.

At d/D = 44%, the second POD mode pair, i = 3 and i = 4

(figure 8c,d) is located slightly away from the free surface

and there appears a pair of rollers which combined with the

out-of-plane component is representative of negative stream-

wise velocity fluctuations and positive wall normal velocity

fluctuations, or vice versa. In other words, these modes pro-

vide a more classical view of the aforementioned Q2 and Q4

events. At this flow depth in our partially-filled configura-

tion these events also contribute to the aforementioned up-

wellings, downdrafts and instantaneous cellular structures due

to their size (filling almost half the flow cross-sectional area)

and proximity to the free surface. Only for i = 5 do we ob-

serve a repeating pattern of high and low Φu associated with

vortex pairs around the perimeter of the pipe wall in a quasi-

azimuthally-periodic arrangement.

In fully-developed canonical pipe flow, the flow is peri-

odic in the streamwise and azimuthal directions, thus the basis

functions, or POD modes, are known and can be prescribed a

priori in a classical POD analysis. Using classical POD, it has

been shown that the leading order POD modes have a radial

mode number of ir = 114,49 and azimuthal mode numbers of

iθ = 2 and iθ = 3 which were identified with the large- and

very-large-scale motions. When ir = 1, the POD modes are

interpreted as representative of wall-attached motions. These

eigenmodes fill a large proportion of the pipe cross-section,

are characterized by azimuthally-alternating regions of posi-

tive and negative Φu and become larger (both taller and wider)

with smaller azimuthal wavenumber. In a partially-filled pipe,

the mode shapes are not prescribed and we observe vastly

different behaviour. The leading-order modes are confined

to the corner regions and contribute a signficant amount of

the scaled energy, however, azimuthally-alternating regions of

positive and negative Φu emerge at higher-order modes (figure

11). For illustrative purposes we only show the d/D = 62%

flow (with d/D = 44% and d/D = 80% omitted for brevity)

and plot in figure 11 a selected number of higher-order modes

i = 20, 28 and 35. These modes reveal a distinct arrangement

of quasi-azimuthally-periodic, wall-attached motions where

the most active portions are largely confined to the perime-

ter around the pipe wall. These wall-attached motions fea-

ture regions of positive Φu flanked by negative Φu (and vice

versa) with roll pairs that are closely associated with Φu ≈ 0

which we interpret as a quasi-azimuthally-periodic signature

of Q2 and Q4 motions and quasi-streamwise vortices. Im-

portantly, as the number of roll pairs and associated patches

of +Φu,−Φu,+Φu (or −Φu,+Φu,−Φu) increases, they be-

come smaller i.e. as the number of wall-attached structures in-

creases, the wall-attached structures themselves become pro-

portionally smaller suggesting a geometrically self-similar hi-

erarchical behaviour. For even higher-order modes, the co-

herence of the structures continues to break down indicating

that the energy contribution of those modes comes from the

smaller-scale, less coherent, motions. Importantly, the emer-

gence of the signature of the wall-attached modes with radial

mode number ir = 1 appear in POD modes of appreciably

higher order in partially-filled pipe flow than in full pipe flow.

This is not to say that the LSM and VLSM are no longer dom-

inant motions but rather the wall-attached LSM and VLSM

signatures near the bottom of the pipe appear to contribute less

energy than those which form near the corners and populate

the flow cross-section close to the free surface.

Whilst the eigenmodes or POD modes inform us of the

shapes of the coherent structures, strictly, they have no phys-

ical meaning until combined with their temporal coefficents

and projected back onto the velocity fields. Using equation 1,

we reconstruct the fluctuating velocity fields up to Nth order,

where N =Nmax will recover the full fluctuating velocity field.

In this way, the POD acts as an inhomogeneous spatial filter,

and we can generate a low-order representation of the veloc-

ity fields for N <Nmax from which we can compute the spatial

cumulative TKE distributions by superposition of the POD fil-

tered snapshots. These cumulative distributions of TKE (cal-

culated over the flow cross-sectional area and then averaged

about the vertical bisector to improve statistics) are shown in

figures 12 to 14 for d/D = 44%, 62% and 80%. When the

number of modes N is gradually increased such that the cu-

mulative TKE distributions are reconstructed from fluctuating

velocity fields using modes containing up to 10, 20 and 30%

of the scaled energy (figures 12a-c, 13a-c and 14a-c) the spa-

tial distribution of the cumulative TKE remains confined to

the corner regions in close proximity to the free surface for all

three flow depths. For d/D = 44% the cumulative TKE field

begins to fill the bottom region of the pipe for N = 16 modes

corresponding to the first 40% of the scaled energy (figure

12d) and only when the low-order representation takes into

account the first N = 26 modes and 50% of the scaled energy

(figure 12e) does the distribution close up into a single band

around the azimuth of the pipe wall. The behaviour of the

cumulative energy distribution is similar for d/D = 62%. Up

to the first 30% of the scaled energy resides close to the free

surface near the corner region, but when including all modes

up to N = 22 that contain the first 40% of the scaled energy

(figure 13d), we see the cumulative TKE distribution spread

towards the bottom of the pipe and by including modes up to

N = 38 (the first 50% of the scaled energy) the cumulative

TKE distribution emerges at the bottom of the pipe (figure

13e). In this distribution, and those that contain the first 75%

of the scaled energy (figure 13f), we see that the cumulative
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TKE persists near the free surface and grows from the corner

region towards the pipe vertical bisector. At d/D= 80%, even

when using modes that contain up to 50% of the scaled en-

ergy (figure 14e), the cumulative TKE distribution is confined

to the top half of the flow cross sectional area in close prox-

imity to the free surface. Including higher-order modes up to

N = 132, the POD-filtered fluctuating velocity field contains

75% of the scaled energy and the cumulative TKE distribution

for this case (figure 13f) reveals appreciable contributions at

the bottom of the pipe.

Using snapshot POD on the fluctuating velocity field, we

have shown that around 20 to 25% of the energy is captured

in the first six modes for each flow depth investigated. Im-

portantly, these energy containing motions are confined close

to the corner where the free surface meets the no-slip wall.

The signatures of large-scale wall-attached motions appear in

higher-order modes as opposed to full pipe flow where they

dominate the very first few modes. That the first N = 6

modes contribute almost a quarter of the scaled energy in

partially-filled pipe flow, as opposed to around 12% in a full

pipe flow47, suggests that the large-scale structures that popu-

late the “corners” are more energetic than their wall-attached

counterparts that populate the near-wall regions away from the

free surface. We hypothesize that this is due to the coupling

and interaction of the large-scale motions with the mean sec-

ondary flow and free surface, both absent in canonical pipe

flow. The free-surface, which is a shear-free and impermeable

boundary allows the growth of the large-scale motions that

form near the “corners” whilst at the same time the mean sec-

ondary flow sweeps these motions away from the wall along

laterally, i.e. along the free surface, forming so-called instan-

taneous roll cells. The presence of the free surface also breaks

azimuthal symmetry, hence the low order modes in partially

filled pipes are not confined to ordered pairs that appear pe-

riodically around the pipe azimuth as in full pipe flow14,47,49.

This migration of the large-scale motions and their coupling

with the mean secondary flow may explain why fewer POD

modes are needed to account for a larger proportion of the

scaled energy when compared to full pipe flow. Conceptually,

this appears to be supported by the cumulative spatial TKE

distributions calculated from POD-filtered fluctuating velocity

fields which show that the energy containing motions for up to

the first 30% of the total relative energy resides near the free

surface at flow depths of d/D = 44% and d/D = 62%, with

this proportion increasing to the first 50% for a flow depth of

d/D = 80%.

V. DISTRIBUTION OF LARGE STRUCTURES

Snapshot POD has allowed us to visualize the location and

infer the makeup of the scales of motions that contribute the

most energy and from the POD filtered velocity fields we re-

veal that anywhere between 30 to 50% of the scaled energy

resides in the upper part of the flow cross-sectional area in

close proximity to the free surface. We conjecture that the

low-order POD modes contain the signature of the formation

and evolution of instantaneous cellular structure and that these

very-large-scale roll cells contribute a large proportion of the

TKE, as borne out in the cumulative distributions. Now we

attempt to elucidate a link between the instantaneous cellu-

lar structure and the large- and very-large-scale motions pre-

viously observed in canonical pipe flow by determining the

distribution of these large-scale structures from instantaneous

flow fields. Figures 15(a,c,e) presents example snapshots

of pseudo-instantaneous streamwise velocity fluctuations for

flow depths of d/D = 44%, 62% and 80%. These snapshots

were reconstructed from the high-speed S-PIV data (see: table

I) using Taylor’s56 frozen turbulence approximation with the

convection velocity taken to be Ub. Whilst Taylor’s hypothe-

sis has been shown to be a valid estimate for projecting tem-

poral information into the spatial domain, choosing the ‘cor-

rect’ convection velocity in this flow configuration is particu-

larly challenging as the mean streamwise velocity in partially

filled pipes is distorted relative to a full pipe flow and there-

fore the ratio of bulk velocity to local mean velocity is a func-

tion of both radial and azimuthal position. We have, there-

fore, chosen the bulk velocity Ub as the convection velocity

out of convenience and acknowledge that this can lead to an

over/underestimation of the structure pseudo-lengths. Thus,

we essentially limit ourselves only to a qualitative compari-

son of structure lengths and spatial distributions across flow

depths, where we have used Taylor’s hypothesis to infer spa-

tial information from the planar S-PIV measurements.

Since our primary interest is the large-scale coherent struc-

tures, a moving average filter with kernel size 0.12×0.12×1R

(elongated in the streamwise direction) was applied to the

snapshots to remove small scale velocity fluctuations and S-

PIV noise. We have selected an isosurface threshold level of

±10% of the local mean velocity, i.e.

uiso =±0.1U (4)

where low-speed events are shown in blue isosurfaces and

high speed events in red. This threshold value has been used

in previous studies14,19,57 and allows us to clearly demarcate

between low- and high-speed structures with clear separation

from the local mean velocity. Figure 15 reveals the presence

of long, streamwise aligned streaky structure characterized

by streamwise velocity fluctuations alternating from positive-

negative-positive (or vice versa) and with lengths O(10R)
which are the instantaneous signature of the large- and very-

large-scale motions (LSM/VLSMs) in pipe flows first re-

ported by Kim and Adrian 7 . These LSM and VLSM scale

events (also known as “Superstructures” in turbulent bound-

ary layers) are well documented for canonical wall-bounded

turbulent flows using both experimental8,9,11 and numerical

approaches13,17,57.

From the filtered pseudo-instantaneous fields of stream-

wise velocity fluctuations, we compute the isosurfaces with

a threshold level corresponding to equation (4). Individual

large-scale structures are then identified as the “connected”

regions in the isosurfaces from which we can determine the

“spines” of the individual structures (the geometric center

of the individual connected isosurface regions). We define

a non-dimensional streamwise pseudo-length-scale as ∆x∗ =
∆TUb/R where we have chosen R as the length scale to fa-
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FIG. 15. Pseudo-instantaneous snapshots of streamwise velocity fluctuation at flow depths (a) d/D = 44%, (c) d/D = 62% and (e) d/D = 80%.

Isosurface levels of uiso =±0.1U with low-speed events displayed in blue and high-speed events in red. “Spines” of the isosurfaces or discrete

large-scale events for ∆TUb/R > 1 corresponding to (a,c,e) shown in (b,d,f).

cilitate direct comparison to canonical pipe flow. To further

emphasize our interest in the large-scale structures, we dis-

card identified structures that are ∆x∗ < 1 in length. Fig-

ures 15(b,d,f) shows the “spines” corresponding to the filtered

pseudo-instantaneous velocity fields shown in figure 15(a,c,e).

We see here that in partially-filled pipe flow the instantaneous

signatures of large-scale structures found in canonical wall

bounded turbulent flows remain, albeit appearing less fre-

quently as the flow depth decreases. The number of large-

scale structures appears to decrease monotonically with de-

creasing flow depth in figure 15 and this becomes clear when

we tally the total number of such events detected for the en-

tire high-speed S-PIV dataset reported in table II. Further,

we count more low-speed large-scale events than high-speed

large-scale events, which is commensurate with past work on

canonical wall-turbuence, e.g. Dennis and Nickels 19 . We

also briefly consider a streamwise pseudo-length ∆TUb/RH

based on hydraulic radius RH (which is used as a length-scale

in compound open channel flow). Again, as our focus is on

large-scale structures, we discard structures identified with

lengths less than ∆TUb/RH < 1. With streamwise pseudo-

length defined as ∆TUb/RH , the total number of detected

large-scale structures (∆TUb/RH > 1) increases, as expected,

because with RH/R < 1 (as it is for all flow depths consid-

ered here) we are excluding less of the “smaller” events. Even

when changing the length-scale to RH the number of low-

speed events remains larger than the number of high-speed

events (see table II).

Now that the large-scale structures have been identified we

can calculate the distribution of their lengths for different flow

depths. Structure lengths are estimated by subtracting the ax-

ial location of the most downstream “spine” point from the

axial location of the most upstream “spine” point for each

of the individual “spines”. With this type of analysis, struc-

ture characteristics will depend on the isosurface threshold

level used to define the structures, however, as our main inter-

est here is to obtain a distribution of structure lengths rather

than exact values, these limitations in the methodology will

not affect the conclusions. Further, to compare population

densities across flow depths and different numbers of PIV

realisations, we scale the number of events detected, n, by

“flow volume”, (A × TUb). Here, the flow cross-sectional

area, A, is multiplied by TUb, where measurement time T

is converted to a pseudo-length using Taylor’s approxima-

tion with Ub as convection velocity such that the number of

events per unit volume is nR3/(A×TUb) and nR3
H/(A×TUb),

where R3 and R3
H make the volumes dimensionless. His-

tograms showing the number of large-scale structures per unit

volume binned according to length are shown in figure 16.

We see that the number of low-speed LSMs (1 ≤ ∆x∗ ≤ 3)

per unit volume scaled with pipe radius, nR3/(A× TUb), is

fairly insensitive to changes in flow depth (figure 16a) and

that there is a clearly a larger number of VLSMs at higher fill-

depths for structure lengths 3 ≤ ∆x∗ ≤ 7. Beyond ∆x∗ = 7,

the distribution becomes fairly uniform, however, these very-

long structures are also very rare with only one, two and

five events detected for d/D = 44%, 62% and 80%, respec-

tively. The distribution of high-speed events per unit vol-

ume scaled with pipe radius (figure 16b) follows a similar

trend with a larger number of VLSM-scale structures for the

higher flow depths, but now no high-speed events are de-

tected for ∆x∗ > 4 at d/D = 44% with only three total events

detected for ∆x∗ > 7 over both sets of data at d/D = 62%

and 80%. Large-scale structures detected when streamwise
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n structures detected for length ∆x∗ > 1 n structures detected for length ∆TUb/RH

Low speed High speed Low speed High speed

d/D[%] All 1 ≤ ∆x∗ ≤ 3 ∆x∗ > 3 All 1 ≤ ∆x∗ ≤ 3 ∆x∗ > 3 All 1 ≤ ∆TUb/RH ≤ 3 ∆TUb/RH >
3

All 1 ≤ ∆TUb/RH ≤ 3 ∆TUb/RH >
3

44 188 160 28 155 143 12 1176 1020 156 939 834 105

62 343 246 97 317 267 50 1267 1023 244 1080 899 181

80 447 339 108 388 308 80 1594 1340 254 1291 1060 231

TABLE II. Left: Number of structures n detected for ∆x∗ =∆TUb/R> 1. Right: Number of structures n detected for ∆TUb/RH > 1. Structures

are broken down into those of pseudo-length between 1 ≤ ∆x∗ ≤ 3 (and 1 < ∆TUb/RH ≤ 3) and those exceeding ∆x∗ > 3 (and ∆TUb/RH > 3).
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10 -4

10 -3

10 -2

10 -1
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FIG. 16. Distribution of streamwise length of large-scale structures per unit volume (identified for uiso = 0.1U) in partially-filled pipe flow

for (a,c) low-speed and (b,d) high-speed. Panels (a,b) are scaled using pipe radius R and panels (c,d) are scaled using hydraulic radius RH .

Distributions colored by flow depth. Sensitivity of the computed distributions to the isosurface level shown as blue error bars which represent

limits of uiso = 0.08U and uiso = 0.12U .

pseudo-length is non-dimensionalised with hydraulic radius

(i.e. ∆TUb/RH) yielded histograms of nR3
H/(A×TUb) where

the abscissa is stretched due to RH decreasing with flow depth.

The distribution of these low-speed events (figure 16c) reveals

that there are, generally speaking, more LSMs and VLSMs at

d/D = 80% than at d/D = 44% and 62%, although a larger

number of structures were detected for 4 ≤ ∆TUb/RH ≤ 7 at

d/D = 62%. For structure lengths 8 ≤ ∆TUb/RH ≤ 13, there

are an appreciably greater number of events for d/D = 80%.

The long tail in the distribution is made up of extremely rare

events with only eight total events detected for ∆TUb/RH ≥
14 over all flow depths. Scaled using hydraulic radius, the

number of high-speed events per unit volume (figure 16d) de-

creases monotonically with flow depth, with no events reg-

istered for ∆TUb/RH > 9 at d/D = 44% and no registered

at all for ∆TUb/RH > 14. Therefore, we find that when the

number of events is weighted by “flow volume”, the popu-

lation of low-speed events is greater than that of the high-

speed events and also tends to longer lengths, regardless of

the length-scale used for normalization. Further, we find that,

generally speaking, the populations of both low- and high-

speed events decrease with decreasing flow depth, even when

weighted by volume, suggesting a change in statistical char-

acteristics of the large-scale structures is not simply explained

by a reduction in flow area. To test the robustness of these

observations, population densities were also computed with

large-scale structures identified using additional thresholds of

uiso = 0.08U and uiso = 0.12U (shown as error bars in figure

16). These computed distributions do reveal some sensitivity

to the thresholds employed, with more events skewed towards

the tails of the histograms at lower thresholds as expected.

Hence, we note that estimates of the structures lengths given

in this paper are for the contour level chosen (uiso = 0.1U) and

will depend on this level. However, we find that when compar-

ing across flow depths at the same threshold level, the general

trends for the distributions of structure lengths remains mostly

unaffected. Thus, the conclusions of the paper will not change

for isosurface threshold levels between 0.08 < uiso/U < 0.12.

We now estimate the spatial distribution of the large-scale

structures by binning them according to their location in the

r-θ plane of the pipe. First we divide the field-of-view of the

S-PIV domain into a 20× 20 grid, i.e. we select a bin size of

0.1× 0.1R. Next, we compute the number of “spine” points

that advects through each individual 0.1× 0.1R bin. Finally,

we divide the “spine” points in each bin by the the total num-

ber of “spine” points which advects through the plane. Here
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FIG. 17. Spatial distributions of the

large-scale structures with streamwise

pseudo-lengths ∆x∗ > 1 (left of bisec-

tor) and ∆TUb/RH > 1 (right of bisec-

tor). Bin size 0.1× 0.1R. Contour level

indicates number of events nlocal as a

proportion of all detected events in flow

cross sectional area nall . Distribution of

all events detected (top) and breakdown

into low-speed events (middle) and high-

speed events (bottom). (a-c) d/D= 44%;

(d-f) d/D = 62 and (g-i) d/D = 80%.

Full distributions (a,d,f) are scaled be-

tween 0 and 1 by normalizing by peak

value of nlocal/nall and superposition of

low-speed (b,e,h) and high-speed (c,f,i)

return the full distribution. Dotted lines

guide the eye to the “bottom” quadrant.

we have again considered both pipe radius R and hydraulic

diameter RH as the length-scale to non-dimensionalise the

streamwise pseudo-lengths of the identified structures. The

spatial distributions are calculated across the entire flow cross-

sectional area and then averaged about the pipe vertical bisec-

tor (the symmetry plane in this flow) to improve the statis-

tics. As before, only “large” scale structures are included,

i.e. those with streamwise extent greater than ∆TUb/R = 1

or ∆TUb/RH = 1. Both sets of distributions, with stream-

wise pseudo-lengths normalised by R and RH , respectively,

are plotted together in figure 17 with normalization by R

shown on the left of the vertical bisector and normalization

by RH display on the right of the vertical bisector. In this

part of the analysis we have refrained from further separat-

ing the large-scale structures into nominally LSM-scale events

(1 < ∆TUb/R < 3) and VLSM-scale events (∆TUb/R > 3)
due to the relatively low number VLSM-scale events detected.

Figure 17(a,d,g) shows the spatial distributions of all events

detected. The contours indicate the number of events detected

in the bin nlocal divided by the total number of events detected

in the flow cross sectional area nall which is then scaled be-

tween zero and unity by normalising by the maximum value of

nlocal/nall for each flow depth. Also shown is the breakdown

into low-speed (figure 17b,e,h) and high-speed (figure 17c,f,i)

structures and we note that superposition of the individual

low- and high-speed distributions will recover the full distri-

bution for each flow depth (i.e. the distribution in figure 17a =

17b+17c). Given that RH/R < 1, the distributions calculated

where RH is used to non-dimensionalize streamwise pseudo-

length will naturally include smaller scales which leads to sub-

tle differences such as the distributions penetrating further into

the “core” region. However, these subtle differences are small

and only appreciable for d/D = 80%. Therefore, the conclu-

sions are not affected by the choice of length scale (R or RH)

and the following discussion of the spatial distribution of the

large-scale structures essentially applies equally to both.

Unlike full pipe flow, where the population densities of the

large-scale structures identified from instantaneous fields is

only a function of wall distance57, spatial distributions of the

large-scale structures for partially-filled pipe flow exhibit an

azimuthal variation due to the breaking of azimuthal symme-

try. When considering the spatial distributions for all (both

low- and high-speed) large-scale structures (figures 17a,d,g)

we see that at d/D= 44% the distribution of the structures ap-

pears more or less uniform in the azimuthal direction whereas

for flow depths d/D = 62% and 80%, the structures favor the

“sides” of the pipe, close to the free surface, and the bottom

quadrant of the pipe with a slight decrease in frequency near

the 45◦ bisectors. This distribution bears a strong resemblance

to the TKE distribution in figure 5, with the key difference be-

ing that the spatial distributions of the large-scale structures

have sizable areas where no events greater than ∆x∗ > 1 (or

∆TUb/RH > 1) are detected, suggesting that it is the increased

presence of the LSM and VLSM at the “sides” and “bottom”

of the pipe that are responsible for the relative increase in TKE

in those regions and that it is the small scales that contribute

to TKE near the core region corresponding with the “velocity

dip” (figure 3). That the large-scale structures, particularly at

d/D = 62% (figure 17d) and 80% (figure 17g) have a pref-

erence for the upper portion of the domain corroborates the

snapshot POD where we have seen that the energy contain-

ing motions in the low-order POD modes populate the cor-
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ners and flow regions close to the free surface. Further, these

spatial distributions tells us that the large-scale structures also

occupy the region near the vertical bisector close to the free

surface (at least for d/D = 62% and d/D = 80%). Thus, we

surmise that there is a strong link between the LSM/VLSMs

and the formation and evolution of the instantaneous cellular

structures observed previously. Separating the spatial distribu-

tion of large-scale structures into low-speed (figures 17b,e,h)

and high-speed events (figures 17c,f,i) it is apparent that low-

speed events near the bottom of the pipe penetrate much fur-

ther towards the “core” of the flow than the high-speed events

which remain much closer the the pipe wall. Around the az-

imuth, away from the free surface (see for example the bottom

quadrant in figure 17h), this is explained by the self-sustaining

mechanism of wall turbulence, where axial vorticity is posi-

tively signed on the right of a low-momentum zone and nega-

tively signed on the left of the low-momentum zone, with the

converse true for the high-momentum zones. These counter-

rotating vortices work together to lift low-momentum fluid

from the wall and propel high-momentum fluid towards the

wall in the so-called “bursts” and “sweeps” or Q2 and Q4 mo-

tions which we alluded to earlier. Near the free surface, in

particular in the corners where the free surface meets the no-

slip wall, the spatial distributions of the large-scale structures

are compressed (as in the radial or wall-normal extent of the

distribution from the corner is less than from the bottom of the

pipe along the vertical bisector) which we interpret is due to

the mean secondary flow changing the trajectory of the “wall-

normal” bursting process (Q2), typically associated with low-

speed events, to a more wall-parallel trajectory which would

sweep low momentum fluid up toward the free surface (in the

“corner”) from which it would be transported laterally towards

the pipe vertical bisector.

While the high-speed events remain closely confined to the

wall for d/D = 44%, with no events detected across the free

surface away from the corners (figure 17c), the same is not

true for the higher flow depths (figures 17f,i) and we see that

high-speed events at d/D= 80% reach the pipe vertical bisec-

tor, but in only a narrow horizontal strip distinctly below the

free surface (figures 17i), in contrast to the low-speed events

which are detected in a wider horizontal band from the free

surface and downwards (figure 17h). The reason for high-

speed events populating a region that spans the width of the

free surface for d/D = 80% is unclear but could potentially

be due to lateral transport of these structures from the mean

secondary flow which remains the same strength as for the

d/D = 62% flow but now acts over a smaller free surface

width.

The spatial distributions of the large-scale structures were

also computed for isosurface threshold levels of uiso = 0.08U

and uiso = 0.12U (in order the test the robustness of our ob-

servations as we did for the distributions of structure lengths).

These additional spatial distributions also reveal a sensitiv-

ity to the threshold level employed with, generally speaking,

more penetration of the large-scale structures into the core re-

gion of the flow for lower thresholds (due to a larger num-

ber of structures identified as “large-scale” as the threshold is

reduced). Hence, we again note that estimates of the struc-

tures lengths and spatial distributions given in this paper are

for the contour level chosen (uiso = 0.1U) and will depend on

this level. Importantly, however, the key trends such as the

preference of the large-scale structures to populate the “cor-

ners” and “bottom” of the pipe remain unchanged with the

different thresholds. Thus, the conclusions of the paper will

not change (for the threshold levels considered) and we have

omitted the spatial distributions computed using uiso = 0.08U

and uiso = 0.12U for brevity.

By estimating the spatial distribution of the large-scale

structures (with ∆x∗ > 1 or ∆TUb/RH > 1) we show that the

LSMs and VLSMs have a preference for the sides (in close

proximity to the free surface) and bottom quadrant of the pipe

for d/D = 62% and d/D = 80%, whereas at d/D = 44% the

flow behaves more like a shallow open channel with a curved

wall. That the LSMs and VLSMs, and in particular the low-

speed large-scale events, have a preference for the “corners”

is consistent with the POD-filtered low-order representation

of the flow field strongly suggesting that there is a dynamical

link between the LSMs/VLSMs and the instantaneous cellular

structures with evidence to suggest that the LSMs/VLSMs are

influenced or distorted by mean secondary motion in turbulent

partially-filled pipes.

VI. CONCLUSIONS

S-PIV measurements in turbulent partially-filled pipe flow

have been analysed using snapshot POD, which provides an

objective method to visualise the largest scale energetic mo-

tions (ranked by their energy contribution). We show that

these large, energy containing structures predominantly reside

in the “corner” regions where the free surface meets the pipe

wall. From the shapes of two lowest-order POD modes, which

reveal the presence of a single large-scale roll motion in the

corner, we infer that these energetic motions are strongly con-

nected to the instantaneous cellular structure previously ob-

served in a wide range of open channel flows28,53 (including

our own recent work on partially-filled pipe flow6). The first

four POD modes, all confined to the corner region in close

proximity to the free surface are shown to contain approxi-

mately the first 25% of the turbulent kinetic energy for flow

depths 44 ≤ d/D ≤ 80%. Using POD as an inhomogeneous

spatial filter, we examine low-order reconstructions of the ve-

locity field and compute cumulative turbulent kinetic energy

distributions. The large-scale energy containing motions con-

tribute to the overall TKE primarily in the corners, with the

distribution spreading azimuthally and downwards along the

pipe wall towards bottom-dead-center of the pipe when an in-

creasingly large number of POD modes is included for the

cumulative TKE distribution. At d/D = 80%, however, the

contribution from POD modes containing the first 50% of the

scaled energy resides in the top half of the domain with the

bottom of the pipe largely remaining inactive. In higher-order

modes there exists the signature of azimuthally-alternating

wall-attached motions (which line the pipe wall in the az-

imuthal direction) with very little activity in the upper portion

of the domain near the free surface, indicating that the coher-
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A

B

C

FIG. 18. Cartoon of large-scale motions in turbulent partially-filled

pipe flow. (A) Mean secondary flow (shown only for one half of the

geometry). (B) Large-scale (wall-attached) motions. (C) Large-scale

motions influenced by mean secondary flow. (D) Bursting motion

near the free surface and associated upwelling/downdraft. (E) Instan-

taneous roll cell. (F) Whirlpool, likely associate with hairpin/cane

vortices. (G) Instantaneous roll cell swept towards vertical bisector

by mean secondary flow.

ent structures of canonical wall turbulence co-exist with the

dominant large-scale energetic motions associated with the

free surface in turbulent partially-filled pipe flow.

Large scale structures (LSMs and VLSMs, together) iden-

tified from pseudo-instantaneous velocity fields reveal a pref-

erential spatial distribution around the azimuth of the pipe

consistent with the azimuthal variation observed in the time-

averaged TKE distribution. That the LSMs and VLSMs, and

in particular the low-speed large-scale events, have a predis-

position for the “corners” is consistent with the POD-filtered

low-order representation of the flow field strongly suggest-

ing that there is a dynamical link between the LSMs/VLSMs

and the instantaneous cellular structures in turbulent partially-

filled pipes. Low-speed large-scale structures in the bottom

quadrant of the pipe penetrate much further into the “core”

region than the high-speed events consistent with canonical

pipe flow and the classical picture of second- and fourth-

quadrant events52. Moving around the azimuth of the pipe

and towards the free surface, the spatial distributions of the

low-speed events are more compressed than at the bottom of

the pipe suggesting that the population density of LSMs and

VLSMs are influenced by the mean secondary flow. Regard-

less of the link between the LSMs/VLSMs and the formation

of the secondary flows, the large-scale structures that popu-

late the region near the free surface can account for up to 30

to 50% of the TKE in turbulent partially-filled pipes.

A simple drawing summarizing the large-scale features in

turbulent partially-filled pipe flow is presented in figure 18.

In this cut-away view, the mean secondary flow (A) occupies

the half-width of the flow cross-sectional area. The large-

scale motions found in canonical pipe flow (B) appear in the

partially-filled configuration and those motions that populate

the bottom of the pipe are largely unaffected by the mean

secondary flow (when sufficiently far from the free-surface).

Moving around the pipe wall towards the free surface, the

large-scale motions in full pipe flow are influenced by the

mean secondary flow and swept towards the free surface

(C). Bursting motions or second-quadrant events occurring in

close proximity to the free surface can lead to “upwellings”

and “downdrafts” (D), often found in free-surface turbulence

and turbulent open channel flows. Instantaneous roll cells (E)

are thought to be closely linked to the LSMs/VLSMs (B) that

appear in full pipe flow, as well as, bursts that interact with

the free surface (D). So-called “whirlpools” (F) also appear

on the free surface which we believe are associated with “hair-

pin” and “cane” vortices interacting with and attaching to the

free surface. Finally, the instantaneous roll cells are them-

selves influenced by the mean secondary flow which sweeps

them towards the pipe vertical bisector and down towards the

bottom of the pipe. This description of the flow features is

consistent with the redistribution of the turbulent kinetic en-

ergy and appears to be supported by POD analysis and the

spatial distribution of the large-scale structures presented in

the manuscript.

Presently we have observed similar large-scale features to

canonical pipe flow such as the LSMs and VLSMs together

with the large-scale features found in open-channel flows

and free surface turbulence such as instantaneous roll cells,

whirlpools, upwellings and downdrafts. Our simple concep-

tual picture describes these large-scale features in discrete

terms which is appealing, but the reality is far more com-

plicated with evidence to suggest that all these features are

dynamically linked to each other and to the observed mean

secondary flow. Even with empirical evidence of these large-

scale features, we do not fully understand the cause and effect

of their interactions, how they scale with flow conditions and

their functions. Hence, further investigation is required. There

is considerable scope in this regard as the Reynolds number

and Froude number scaling of even the mean flow remains

largely unexplored, let alone the impact of these flow param-

eters on the structural composition of turbulent partially-filled

pipe flow.
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