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Abstract

Research in recent years has focused on the application of more advanced control tech-
nologies in industrial controllers, however the low computing power of standard indus-
trial controllers has limited its implementation to higher end hardware. In multivariable
input-constrained plants, actuator saturation causes two major problems for control en-
gineers namely windup and directionality.

This research focuses on a Two-stage Multivariable IMC Antiwindup (TMIA)
structure for open-loop stable plants which requires minimal computing power and
tackles the aforementioned control problems in an intuitive and easy to tune way. The
highlight of this IMC-based structure is the solution of two low-order quadratic pro-
grams to control both steady-state and transient behaviours of the plant. The TMIA
structure is further developed to handle constraints on the input rate in a simple but
effective way.

The controller is tested by application to a Quadruple Tank process in both min-
imum and non-minimum configurations controlled by a PLC. Although the focus of
this paper is on computation and not performance, the TMIA structure is found to out-
perform its IMC counterparts in handling windup and directionality. Comparison of
the TMIA controller and Model Predictive Controller is also carried out and shows
competing results, hence is a suitable alternative for this class of systems.

Results on computation obtained demonstrate the realizability of the advanced
control technique on an off-the-shelf low-end industrial PLC using three different
quadratic programming methods. Worst case computation time is in the region of
5ms using the projected fast gradient method, this shows that the controller embedded
on the PLC can be applied to much faster processes. Thus the TMIA structure is pre-
sented as a competitive alternative for input-constrained multivariable plants in terms
of tuning transparency and reduced computations compared to other advanced control
techniques such as MPC which are limited by the low computational power offered by
standard PLCs.
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Chapter 1

Introduction

1.1 Background and motivation

All real world control applications involve magnitude or rate constraints on actuators.

If these constraints are not accounted for in the controller design, it could lead to poor

transient response, closed-loop performance degradation and even instability [3]. At

these constraint limits, saturation occurs and there is a mismatch between the requested

controller output and the achievable plant input. The significant difference causes an

accumulation of error which must be offset in the opposite direction long enough for

the controller action to return to normal. This results in transients/overshoots which

must decay before the system returns to a linear regime and the controller is said to

‘windup’.

In the design of analytical dynamic controllers such as Internal Model Control, a

common approach is to first design a linear controller neglecting the constraints which

satisfies all the closed-loop performance requirements and then add a saturation com-

pensation scheme to ensure graceful performance degradation of the closed-loop when

the constraints become active. These ad hoc methods are usually known as antiwindup

compensation [3–6].

15
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In multivariable systems, a further problem associated with actuator saturation is

called input directionality. Unlike SISO systems, the MIMO gain depends on the

direction of the input vector [7]. A process exhibits directionality when the saturated

controller output yields a system response that is not ‘closest’ to the system response of

the unconstrained controller output [8]. The problem of directionality compensation

is calculating a feasible plant input on the basis of a given unconstrained controller

output. In [8, 9], an optimal directionality compensation problem is presented as a

finite-time horizon, state dependent, constrained quadratic optimization problem. Its

objective is to minimize the distance between the output of the unsaturated plant with

an ideal controller and the output of the saturated plant with a directionality compen-

sator. This problem is similarly dealt with under the name of input allocation with

an extensive survey in [10] on control allocation algorithms for linear and non-linear

models.

The problems of windup and directionality can be overcome with Model Predictive

Control where the constraints are explicitly accounted for and the controller action is

the solution to a constrained optimization problem [9]. MPC applications have gained

widespread use in industrial process especially in refining and petrochemical indus-

tries [11]. However, so-called robust MPC design techniques increase the controller

computational and memory requirements and long-horizon MPC is usually deployed

on expensive dedicated digital computers.

There is current research into fast online MPC implementation [12–14] on plat-

forms such as Programmable Logic Controllers (PLCs) [15, 16], Programmable Au-

tomation Controllers (PACs) [17, 18], FPGAs [19, 20] and other embedded devices

[21]. In practice, PLCs offer the least computing capacity in the range of MHz pro-

cessing power and a few KB of memory to several MB in the higher end PLCs but are

still most widely used in industry for control tasks because of their robust operation

even in harsh conditions, reliability and ease of maintenance [15]. In [15, 16, 21] the
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PLCs used are in the range of several MBs hence there is need to test other online op-

timization algorithms on platforms with memory in the KB range and processor clock

frequencies in the MHz range.

In [22], the authors report a hardware-in-the-loop simulation of an online quadratic

optimization program and in [23] an MPC implementation is carried out on a SISO

plant both using low end PLCs. An IMC-based online optimizing anti-windup control

structure for multivariable plants that simultaneously handles the issues of windup

and directionality is proposed in [24]. This Two-stage Multivariable IMC Antiwindup

(TMIA) control structure does not require the receding horizon computation of MPC

and may serve as an alternative to MPC which is computationally less expensive and

more transparent in terms of tuning and robustness.

This is particularly attractive hence forms basis for the development, implementa-

tion and testing carried out in this thesis. The algorithm can be easily implemented on

a cheap digital industrial platform as is demonstrated in this thesis. Simulation results

presented in [24] show that the TMIA controller competes favourably with long hori-

zon MPC (where the number of optimization variables and constraints is a multiple of

the prediction horizon [10]) while only requiring the computation capacity of a single

horizon MPC.

1.2 Recent trends in Fast Model Predictive Control

Model predictive control is widely used in the process industries where plants have

slow time constants and sample times are large. It involves solving a finite horizon

constrained optimal control problem for the current state of the plant at each time step

[25]. The theory of MPC as well as stability studies is well established in the literature

[11, 26–28]. The main strength of MPC is dealing with MIMO and nonlinear systems

in a systematic way and major weakness being the high computational requirements
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which is a limitation to real time implementation.

Work is being carried out at various research institutes to enable MPC to be used for

fast sampled systems, commonly known as ‘Fast MPC’. Practical applications of MPC

require that storage and computation needs are taken into account in the controller

design. Two common methods of implementing the MPC controller are the use of

explicit MPC and online MPC. In the former, the control action is pre-computed and

stored offline while the latter involves online optimization.

Explicit MPC seeks to move the computational burden of online optimization of-

fline to obtain an explicit control law which is stored on a look up table which is cheap

and easy to implement [29–33]. A survey of some explicit methods can be found

in [34] and a Multi-parametric toolbox has also been developed in MATLAB for im-

plementing explicit MPC [35]. Explicit MPC offers the advantage of high sampling

rates for high speed systems since the optimal solution is pre-computed. Another major

advantage is the ability for stability, robustness, performance and closed loop feasibil-

ity pre-processing analysis to be carried out especially for safety critical systems [25].

The main disadvantage is the size of the partition and computation grows expo-

nentially with the size of the problem which limits its use to relatively small problems

and as such may require approximation of the explicit solution. In [29], the state space

partition is represented by a search tree consisting of orthogonal hypercubes where

the optimal solution is computed explicitly using quadratic programming only at these

vertices, an approximate solution based on this data is then computed for the whole

hypercube. A combination of both explicit and online paradigms in [36] is introduced

to overcome both individual limitations.

Online MPC has the advantage of being applicable to all problem sizes but limited

when the applied to high speed systems required fast sampling. Recent trends have

been focused on computation reduction by exploiting the structure of the problem or

by warm starting techniques which reduce the number of iterations by starting the
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optimization at a good initial point [12,37–41]. Most solutions for fast implementation

of linear MPC are based on interior point, active set and fast gradient methods. In [12],

the effect of exploiting sparsity structure, warm starting and early termination of the

quadratic program is examined.

An online scheme based on Nesterov’s fast gradient method [42] is presented in

[43] with both cold and warm starting techniques where the same fixed sequence of

controls is provided at each time step in the former and in the latter, an initial iterate is

obtained based on the solution from the previous time step. The benefits of the warm

starting technique is quantified in terms of computational complexity.

There is now need for research to be carried out to produce more efficient algo-

rithms in order to meet the challenge of implementing MPC on embedded platforms

with memories in the KB range and processor clock frequencies in the MHz range.

Previous works which focus on implementation considerations for MPC on embed-

ded hardware are presented in [15, 44–48] and some impressive results using custom

reconfigurable Field Programmable Gate Array (FPGA) architecture for solving QPs

have been reported in [49, 50].

Some efficient online solvers for embedded platforms are now readily available

such as but not limited to FORCES [38], qpOASES [37] and CVXGEN [51]. In [52]

an efficient solver is presented which optimizes linear algebra for implementing linear

MPC on various embedded devices such Intel atom (found in netbooks), ARM pro-

cessor (found in smart phones) and a high end ABB 4MB PLC processor with C-code

capability. The solver is compared with the popular FORCES (Fast Optimization for

Real-time Control on Embedded Systems) code [38] on the three devices.

In the light of the surrounding literature and ongoing research, the digital platform

used in this research which is a Siemens S7-300 series PLC has memory capacity of

less than 200KB and about 1.7MHz CPU processing for floating point operations.
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1.3 Objective of the Thesis

1. To implement a fast online optimizing controller on a digital platform with mem-

ory in the KB range and processor clock frequency in the MHz range.

2. To compare and make recommendations on quadratic program algorithms suit-

able for fast online optmization on such devices.

3. To highlight considerations that need to be applied to maximize the limited com-

puting capacity of such devices.

4. To compare the controller used with standard Model Predictive Control.

1.4 Thesis Outline

This thesis is organized in 7 chapters.

Chapter one gives a background to the control problem and the motivation for the

research. It also discusses the limitations of recent research in this area and why the

results in this thesis are relevant.

Chapter two introduces the concept of constrained quadratic optimization and dis-

cusses algorithms which will be implemented in the controller for simulations and real

time experiments.

Chapter three discusses the problems associated with actuator constraints such as

windup and directionality. It also explains the development of an existing IMC-based

optimization technique which handles this problem effectively. Further development

of the original technique is carried out to handle actuator constraints on both input

magnitude and input rate. This is a novel contribution.

Chapter four presents a quadruple tank process as a multivariable process for real

time control. The TMIA controller is designed for the model of the process to be
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implemented on 2 control platforms. The practical application of the control scheme

on the test rig is an original contribution.

Chapter five describes the set up of the PLC, relevant considerations to take into

account when implementing on the PLC and the main body of results. It also highlights

the limitations of the programming standard used, compares computation results for

three QP algorithms and makes recommendation for a suitable algorithm based on th

results obtained. The application of the TMIA controller on an industrial PLC using

ladder logic programming for quadratic optimization is novel and a valuable result of

the thesis.

Chapter six presents results on the performance of the TMIA controller on the

PLC compared with classical IMC methods. The TMIA controller implemented on

the QuaRC platform is also compared with Model Predictive Control.

Chapter seven contains the main conclusions and recommendations for further

work.

1.5 Contributions

The contributions of this research are contained in Chapters 3, 4, 5 and 6.

In Chapter three a Two Stage Multivariable IMC Antiwindup controller was mod-

ified and extended to incorporate both input magnitude and rate constraints for multi-

variable processes thus providing a complete simple but effective design. The exten-

sion of this optimizing antiwindup technique is novel.

In Chapter four the TMIA controller was applied to an experimental Quadruple

Tank process and compared with classical IMC methods and Model Predictive control.

The TMIA controller was designed for both minimum and non-minimum phase con-

figurations of the experiment. The application of the design technique to a real plant is

a novel contribution as only simulation studies were carried out in the literature.
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Chapter five is the main focus of the results in this thesis. the TMIA design was

coded using a Siemens SIMATIC S7-300 CPU 314C-2 PN/DP PLC. The PLC program

was implemented in ladder logic using 3 different algorithms namely interior point,

active set and projected fast gradient method for the quadratic programs of the TMIA

controller. Extensive results were obtained based on computation requirements and

suitability of the 3 algorithms.

Three main novel contributions are presented in this chapter. First the results show

that a simple and efficient advanced controller like TMIA controller can be realized

on a standard PLC which is an affordable industrial alternative to MPC for input-

constrained multivariable processes.

Secondly, three algorithms were coded on the PLC and projected fast gradient

method was found to be the most suitable QP algorithm for the PLC implementation

due to its least computing requirements. The memory utilization and execution time in

the region of a few milliseconds using show that the TMIA controller on the PLC can

be applied to much faster processes.

Thirdly, the results show that though difficult, advanced algorithms like quadratic

optimization can be coded on a PLC from scratch using ladder logic for ease of under-

standing and debugging by operators and technicians in industry.

In Chapter six results based on performance of the TMIA controller and other

IMC techniques are compared. Also results based performance of the TMIA controller

using a QuaRC platform are compared against MPC.

An initial draft of this work was presented at the 2014 IEEE Multi-Conference on

Systems and Control, Nice, France [53].



1.6. PUBLICATIONS 23

1.6 Publications

• A. R. King-Hans, W. P. Heath, and R. Alli-Oke, Two-stage Multivariable IMC

Antiwindup (TMIA) control of a quadruple tank process using a PLC, in Proc.

IEEE Multiconference on Systems and Control, Nice, 2014, pp. 16811686.

1.7 Summary

This chapter has summarized the background and motivation for this work citing rele-

vant material related to fast online optimization and their implementation on embedded

devices. The structure of the thesis and main contributions including published papers

are presented.



Chapter 2

Optimization

Optimization according to [54] can be defined as “the science of determining the ‘best’

solutions to certain mathematically defined problems, which often are models of phys-

ical reality. It involves the study of optimality criteria for problems, the determination

of algorithmic methods of solution, the study of the structure of such methods, and

computer experimentation with methods both under trial conditions and on real life

problems”.

Optimization problems involve maximizing or minimizing an objective or cost

function which is dependent on one or more variables. These variables may or may not

be subject to constraints and are hence called constrained or unconstrained optimiza-

tion problems respectively. This chapter focuses on a subset of optimization problems

known as convex quadratic programming and highlights some methods of solution.

Convex optimization deals with a problem where the objective function is convex and

its constraints define a feasible convex set.

A set A is convex [55] if for all a,b ∈A and for all λ such that 0≤ λ ≤ 1,

λa+(1−λ )b ∈A (2.1)

24



2.1. UNCONSTRAINED OPTIMIZATION 25

Figure 2.1: Convex and Non-convex set

An objective function f : A 7→ ℜ defined on a convex set A is convex if for all

a,b ∈A and for all λ such that 0≤ λ ≤ 1,

f (λa+(1−λ )b) ≤ λ f (a)+(1−λ ) f (b) (2.2)

2.1 Unconstrained optimization

Unconstrained optimization [56, 57] is concerned with minimizing an objective func-

tion that depends on real variables without any restriction on the values of these vari-

ables. The problem is formulated mathematically as

min
x

f (x) (2.3)

where x ∈ ℜn is a real vector of variables with n ≥ 1 components and the objective

function f : ℜn 7→ℜ is a smooth function (second derivatives exist and are continuous).

A point x∗ is a global minimizer if f (x∗)≤ f (x) for all x ∈ℜn while a point x∗ is a

local minimizer (sometimes called a weak local minimizer) if there is a neighbourhood

N of x∗ such that f (x∗)≤ f (x) for all x ∈N .

Furthermore, a point x∗ is said to be a strict (strong) local minimizer if there is a

neighbourhood N of x∗ such that f (x∗)≤ f (x) for all x ∈N with x 6= x∗. This point

is an outright winner in its neighbourhood. When f (x) is convex, any local minimizer
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x∗ is global minimizer of f (x).

2.1.1 Optimality Conditions

Necessary conditions If f (x) is continuously differentiable in an open neighbour-

hood of x∗, first and second order necessary conditions for x∗ to be a local minimizer

are

∇ f (x∗) = 0 and ∇
2 f (x)≥ 0 (2.4)

Sufficient conditions If f (x) is continuously differentiable in an open neighbour-

hood of x∗, first and second order sufficient conditions for x∗ to be a strict local mini-

mizer are

∇ f (x∗) = 0 and ∇
2 f (x)> 0 (2.5)

Optimization algorithms begin with a starting point x0, and generate a sequence of

iterates {xk}∞
k=0 that terminate when no more progress can be made or a solution point

has been approximated with sufficient accuracy. The algorithms use information about

the function f at xk and possibly information from earlier iterates x0,x1, . . . ,xk−1, to

find a new iterate xk+1 with a lower function value than xk. Two common methods

for moving xk to the next iterate xk+1 are the line search and trust region methods, the

former will be discussed briefly.

Line search In the line search strategy, the algorithm chooses the search direction

pk, and moves along this direction for an appropriate distance αk, which is a positive

scalar called the step length in the iteration given by

xk+1 = xk +αk pk. (2.6)
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An effective choice of the direction pk and step length αk determines the success of

the line search method. Most algorithms require pk to be a descent direction ensuring

that f (xk+1)< f (xk). For pk to be a descent direction, the property pT
k ∇ f (xk)< 0 (i.e.

it makes an angle of strictly less than π/2 radians with −∇ f (xk)) must be satisfied to

guarantee that f (xk) can be reduced along this direction.

Search direction

The search direction often has the form

pk =−B−1
k ∇ f (xk) (2.7)

where Bk is a symmetric non-singular matrix. The search direction can be obtained via

the following methods

1. Steepest descent: The search direction is the negative gradient where Bk is sim-

ply the identity matrix I.

2. Newton’s method: This direction is derived from the second-order Taylor series

approximation to f (xk + p) where Bk is the exact Hessian ∇2 f (xk) and ∇2 f (xk)

is positive definite.

3. Quasi-Newton method: Here Bk is an approximation to the Hessian that is up-

dated at every iteration by a low-rank formula described in [56].

Newton’s method will be utilized in the algorithms described in this chapter.

Step length

The distance to be moved from the current iterate xk to a new iterate with a lower

function value along the chosen search direction pk can be found by approximately
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solving the optimization problem to find a step length αk:

min
αk>0

f (xk +αk pk) (2.8)

The Armijo condition ensures that the choice of αk leads to sufficient decrease in the

objective function f (xk), according to the inequality

f (xk +αk pk)≤ f (xk)+ c1αk∇ f (xk)
T pk (2.9)

for some constant c ∈ (0,1), i.e. reduction in f (xk) should be proportional to both

the step length αk and the directional derivative ∇ f (xk)
T pk. The sufficient decrease in

f (xk) may not be enough to ensure the algorithms make reasonable progress towards

the solution, hence Wolfe and Goldstein conditions described in [56] impose additional

requirements to avoid unacceptably short steps, αk.

Alternatively, a backtracking approach can be implemented which uses the suffi-

cient decrease inequality to terminate the line search procedure. Here an initial step

length α0 is chosen and reduced by a contraction factor ρ , such that after a finite

number of trials αk becomes small enough to satisfy the Armijo condition. This ap-

proach ensures that the chosen step length αk is either a fixed value (initial α0) or short

enough to ensure the Armijo condition, but not too short. A backtracking algorithm is

described below:

Backtracking Line Search algorithm [56]

Choose α0 > 0, ρ,c ∈ (0,1); set α ← α0;

repeat until f (xk +α pk)≤ f (xk)+ c1α∇ f (xk)
T pk

setα ← ρα;

end (repeat)
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Terminate with αk = α .

*In practice, c1 is chosen to be quite small, say 10−4.

2.2 Constrained optimization

A constrained optimization [54, 56] problem is formulated as

min
x∈ℜn

f (x) sub ject to


ci(x) = 0, i ∈ E

ci(x)≥ 0, i ∈I

(2.10)

where f and ci are smooth real valued functions on a subset of ℜn and E and I are

finite sets of indices. As before f is the objective function, ci : i ∈ E are the equality

constraints and ci : i ∈I are the inequality constraints. Any point that satisfies all the

constraints in (2.10) is said to be a feasible point and a set of all such points is referred

to as a feasible region. Hence the minimizer x∗ of the constrained problem must exist

in the feasible region.

The subject of constrained optimization is split into two main parts, linear con-

straint programming and non-linear programming. In linear constraint programming,

each constraint is a linear function of the form ci(x) = aix− bi. The simplest cases

are where the objective function is either linear or quadratic as in the case of linear

programming or quadratic programming respectively. The Simplex method developed

by Dantzig in the 1940’s proved very effective for dealing with linear programming

problems. An alternative method called interior point was developed by Karmarkar in

1984, others include active set and gradient projection methods. Most of the ideas be-

hind these alternative methods can be carried over to quadratic programming problems

which is the focus of this chapter.
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An important concept in constrained optimization is the Lagrange multiplier ob-

tained by equating the first order partial derivatives of the Lagrangian function to zero.

The Lagrangian function L is given by

L (x,λ ) = f (x)− ∑
i∈E∪I

λci(x) (2.11)

where λi are the Lagrange multipliers and i indicates the index of the constraints. An

explanation of how the Lagrangian multiplier determines the sensitivity of the cost

function to changes in the constraint is given in [54].

Another important concept, the active set A (x) at any feasible x is the union of the

set E with the indices of the active inequality constraints given by

A (x) = E ∪{i ∈I |ci(x) = 0}. (2.12)

2.2.1 Optimality conditions

If x∗ is a solution of equation 2.10, there is a Lagrange multiplier vector λ ∗, with

components λ ∗i : i ∈ E ∪I , such that the following conditions are satisfied at (x∗,λ ∗)

∇xL (x∗,λ ∗) = 0,

ci(x∗) = 0, for all i ∈ E

ci(x∗)≥ 0, for all i ∈I

λ
∗
i ≥ 0, for all i ∈I

λ
∗
i ci(x∗)≥ 0, for all i ∈ E ∪I

(2.13)

The conditions in (2.13) are often called the Karush-Kuhn-Tucker conditions (KKT)

[56].
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2.2.2 Quadratic programming

A quadratic program [57] is a special case of constrained optimization where the ob-

jective function of the optimization problem is quadratic of the form

f (x) = cT x+
1
2

xT Hx (2.14)

where c is a constant vector, H is a constant symmetric n× n matrix and x ∈ ℜn is

a set defined by a finite number of equality and inequality constraints. The quadratic

program is convex if H is a positive semi-definite matrix. The gradient and Hessian of

the objective function are

∇ f (x) = Hx+ c and ∇
2 f (x) = H

Let the primal (original) quadratic program with inequality constraints be given by

min
x∈ℜn

cT x+
1
2

xT Hx

subject to Ax≥ b.
(2.15)

We define a corresponding dual problem as

max
λ∈ℜm,w∈ℜn

Ψ(λ ,w) = bT
λ +

1
2

wT Hw

subject to AT
λ ≥ Hw+ c

λ ≥ 0

(2.16)

If λ ∗ is the Lagrange multiplier vector for the primal QP problem, and w∗ = x∗, then

(λ ∗,w∗) is the solution of the dual. To ensure that a solution of the primal can be

recovered from a solution of the dual, H must be non-singular and AH−1AT must be

positive definite.
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Two methods for the solution of convex quadratic programs will be discussed in this

chapter, namely interior point and active set methods.

2.2.2.1 Interior point for convex QP

Interior point methods [56, 58–60] generally focus on searching for primal and dual

variables that satisfy the KKT conditions of section 2.2.1 and hence solve the primal

and dual programs concurrently. Primal and dual variables that are required to be non-

negative at the solution are kept strictly positive at each interior point iteration. This

means that the iterates will stay interior with respect to this constraints though some

variables will approach zero in the limit. Interior point methods have been proven to

be advantageous for solving problems that are large and convex.

This section considers a primal-dual interior point approach to convex quadratic

programs with inequality constraints as follows:

min
x

q(x) =
1
2

xT Hx+ cT x

subject to Ax≥ b.
(2.17)

where H is a symmetric positive semi-definite matrix and where the m× n matrix A

and b on the right hand side are defined by

A = [ai]i∈I , b = [bi]i∈I , I = {1,2, . . . ,m}

Obtaining the necessary KKT conditions for equation 2.17, if x∗ is the solution of

(2.17), there is a Lagrange multiplier vector λ ∗ such that the following conditions are
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satisfied for (x,λ ) = (x∗,λ ∗):

Hx−AT
λ + c = 0

Ax−b≥ 0

(Ax−b)iλi = 0, i = 1,2, . . . ,m

λ ≥ 0

We introduce a slack vector s≥ 0, and rewrite the necessary conditions as

Hx−AT
λ + c = 0

Ax− s−b = 0

λisi = 0, i = 1,2, . . . ,m

(λ ,s)≥ 0

(2.18)

The KKT conditions are both necessary and sufficient because the objective function

and feasible region are convex. The solution of the convex quadratic program of (2.17)

is obtained by solving (2.18).

We are concerned with related problem where the complementary condition, λisi =

0 is replaced by the following relation

ΛSe = µe

where Λ = diag(λi,λ2, . . . ,λm), S = diag(si,s2, . . . ,sm), e = (1,1, . . . ,1)T .

Given a current iterate (x,λ ,s), that satisfies (λ ,s) ≥ 0, the duality measure µ is de-

fined by

µ =
1
m

m

∑
i−1

λisi =
λ T s
m

(2.19)

As µ → 0 the primal and dual problems coincide. Rewriting (2.18) we need to find
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(x,λ ,s) such that

F(x,λ ,s) =


Hx−AT λ + c

Ax− s−b

ΛSe−µe

= 0, (λ ,s)≥ 0 (2.20)

The constrained system of non-linear equations in (2.20) can be solved iteratively by

Newton’s method, however, exact solutions for each target value of µ is not required.

Rather, µ is adaptively reduced at each iteration aiming in the limit for µ = 0, in which

cases the optimality conditions for the QP are recovered.

We apply Newton’s method from section 2.1.1 to F(.) to find a search direction

(∆x,∆λ ,∆s) which satisfies

J(x,λ ,s)


∆x

∆λ

∆s

=−F(x,λ ,s) (2.21)

where J is the Jacobian of F . Expanding (2.21) for a σ µ-perturbed system gives


H −AT 0

A 0 −I

0 S Λ




∆x

∆λ

∆s

=


−rd

−rb

−ΛSe+σ µe

 (2.22)

where the centering parameter σ ∈ [0 1] is a parameter chosen by the algorithm and

rd = Hx−AT
λ + c, rb = Ax− s−b.

If σ = 1, equation (2.22) defines a centering direction while at the other extreme σ = 0

is referred to as the affine scaling direction. The choice of σ ∈ [0 1] provides a trade-off
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between moving towards the central path and moving towards optimal solution of the

problem (µ = 0).

The next feasible iterate is obtained by setting

(x+,λ+,s+) = (x,λ ,s)+α(∆x,∆λ ,∆s) (2.23)

where α is chosen such that (λ+,s+) > 0. By elimination, we restate (2.22) in an

augmented form as

H −AT

A Λ−1S


∆x

∆λ

=

 −rd

−rb +(−s+σ µΛ−1e

 (2.24)

Further elimination gives

(H +AT S−1
ΛA)∆x =−rd +AT S−1

Λ[−rb− s+σ µΛ
−1e] (2.25)

The form in (2.25) is usually called the normal form and can be solved by Cholesky

factorization and two back-solves. This is the major computational operation at each

iteration of the interior point program. A modification of the basic primal-dual interior

point program devised by Mehrotra and usually called the Predictor-Corrector algo-

rithm is discussed in detail in [56, 58, 61]. If the convex QP problem has only equality

constraints, it may be solved via Gaussian elimination and back substitution.

Summary of Interior Point algorithm for Convex QP [56]

Compute a starting point (x0,λ0,s0) with (λ0,s0)> 0;

for k = 0,1,2, . . .

Choose σk ∈ [0,1] and solve (2.22) for (∆xk,∆λ k,∆sk);

where µk = (λ k)T sk/m
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Set (xk+1,λ k+1,sk+1) = (xk,λ k,sk)+αk(∆xk,∆λ k,∆sk)

choosing αk so that (λ k+1,sk+1)> 0

end (for)

2.2.2.2 Active set for convex QP

An optimal active set [56] at an optimal point x∗ following from equation (2.12) is

defined as the indices of the constraints at which equality holds, that is,

A (x∗) = {i ∈ E ∪I : aT
i x∗ = bi}. (2.26)

Active set methods generally start by making a guess at the optimal active set, if the

guess is incorrect, it repeatedly uses information from the gradient and Lagrange mul-

tiplier to drop and add an index from the current estimate of A (x∗). Active set methods

for QPs are of three variants namely primal, dual and primal-dual; the first will be dis-

cussed in this section.

For the primal quadratic program,

min
x

q(x) =
1
2

xT Hx+ cT x

subject to aT
i x = bi, i ∈ E

aT
i x≥ bi, i ∈I ,

(2.27)

primal active set methods start by computing a feasible initial iterate x0 and ensures

that all subsequent iterates remain feasible. A step from one iterate to the next is found

by solving a quadratic sub-problem on a subset called the working set denoted by Wk

at the kth iterate xk. The working set contains all the equality constraints and some or

all of the inequality constraints with the condition that the gradient ai of the constraints
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contained in it must be linearly independent.

Given a working set Wk at iterate xk, we determine if xk minimizes (2.27) subject

to the constraints defined by the working set. If it does not, a step p is computed

by solving an equality constrained sub-problem where the working set constraints are

regarded as equalities and others are temporarily discarded. We define,

p = x− xk, gk = Hxk + c

and substituting into the objective function q(x) in (2.27), we obtain

q(x) = q(xk + p) =
1
2

pT H p+gT
k p+d

where d = 1
2xT Hx + cT x is a constant term. d can be dropped from the objective

function without changing the solution to the problem, hence the sub-problem to be

solved at the kth iteration is rewritten as

min
p

1
2

pT H p+gT
k p

subject to aT
i p = 0 for all i ∈Wk

(2.28)

with aT
i p = bi−aT

i xk. The following KKT conditions for the sub-problem are solved

for (pk,λk): H −AT

A 0


pk

λk

=

−gk

0

 (2.29)

If the optimal pk from (2.28) is non-zero, it be must be decided how far to move along

this direction. If xk + pk is feasible with respect to all the constraints, using pk as the

search direction, we set xk+1 = xk + pk. Otherwise we set

xk+1 = xk +αk pk (2.30)
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where the step length αk ∈ [0,1] is chosen to be the largest value for which all con-

straints are satisfied. The largest possible value of αk which achieves feasibility is

defined by:

αk := min

(
1, min

i6∈Wk, aT
i pk<0

bi−aT
i xk

aT
i pk

)
(2.31)

The constraints i for which the minimum in (2.31) are achieved are called the blocking

constraints. If αk = 1, there are no blocking constraints at this iteration, i.e. no new

constraints are active at xk +αk pk.

If αk < 1, it means that a step along pk was blocked by some constraint not in Wk,

hence one blocking constraint is added to Wk to obtain Wk+1. The iteration is continued

in this manner till x̂ is obtained that optimizes the objective function over its current

working set Ŵ at p = 0. p = 0 satisfies the optimality conditions in (2.29) for (2.28),

hence

∑
i∈Ŵ

aiλ̂i = g = Hx+ c (2.32)

for some Lagrange multipliers λ̂i, i ∈ Ŵ .

The non-negativity of the Lagrange multipliers λi ≥ 0 guarantees satisfaction of all

the optimality conditions of section 2.2.1, hence x̂ is the KKT point for the original

problem (2.27).If H is positive semi-definite, x̂ is a local minimizer and if H is posi-

tive definite, x̂ is a strict local minimizer as described in section 2.1.1. Conversely, if

λi < 0, optimality conditions are not satisfied and the objective function is decreased

by dropping this constraint. The index corresponding to one of the negative multipliers

is removed from the working set and a new problem of the form (2.28) is solved. A

primal active set algorithm for convex QP is summarized as follows:

Summary of Active Set algorithm for Convex QP [56]

Compute a feasible starting point x0;
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Set W0 to be a subset of the active constraints at x0;

for k = 0,1,2, . . .

Solve (2.29) to find pk;

if pk = 0

Compute Lagrange multipliers λ̂i that satisfy (2.32),

set Ŵ = Wk;

if λ̂i ≥ 0 for all i ∈Wk∩I

STOP with solution x∗ = xk;

else

Set j = argmin j∈Wk∩I λ̂ j;

xk+1 = xk;Wk+1←Wk\{ j};

else (∗pk 6= 0∗)

Compute αk from (2.31);

xk+1← xk +αk pk;

if there are blocking constraints obtain Wk+1 by adding one of the

blocking constraints to Wk+1;

else

Wk+1←Wk;

end(for)

Comparison of algorithms The major difference between active set and interior

point methods for convex quadratic programming is that active set generally requires a

large number of steps in which the search direction is relatively inexpensive to compute

while interior point methods generally take a smaller number of more costly steps. Ac-

tive set algorithms are generally most effective for small and medium scale problems

while interior point methods are typically used where the problem is large. Active set
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methods are in some cases more complicated to implement with respect to factoriza-

tion updating procedures at each active set iteration while in interior point methods,

because the system of linear equations retains the same structure and size throughout

the algorithm, standard sparse factorization software can be used.

2.3 Summary

This chapter has discussed a basic background to quadratic optimization. The quadratic

programming algorithms discussed in this chapter are key tools required for the con-

tributions in Chapters 4, 5 and 6. Active set and Interior point methods have been

discussed and their step by step algorithm summarized.

In particular, the quadratic programming algorithms steps in section 2.2.2.1 and

2.2.2.2 were implemented on a Siemens S7 PLC using ladder logic programming to

compute the optimized solution of the TMIA control scheme discussed in section 3.4

of Chapter 3. The results shown in Table 5.1 of Chapter 5 are based on comparison of

the computation of the quadratic programming algorithms discussed in this chapter.



Chapter 3

IMC Anti-windup techniques

Input constraints in multivariable systems controlled by analytical dynamic controllers

such as PID and Internal Model Controllers give rise to problems such as directionality

change and controller windup. This leads to significant performance deterioration of

the closed loop system and must be accounted for in the controller design. This chapter

discusses the concepts of controller windup and process directionality and introduces

the TMIA control structure [24] to simultaneously tackle these problems within an

Internal Model Control framework.

3.1 Windup and Directionality

3.1.1 Windup

Windup occurs when the states of the controller are driven by the error when the actu-

ator is in saturation [5]. The inconsistency between the controller output and states of

the controller causes the feedback loop to run as open loop. It is a performance degra-

dation exhibited by dynamic controllers with slow or unstable nodes [62]; a special

case being integrator windup occurring in PI/PID controllers. The controller is said to

41
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‘wind-up’ and requires that the error has an opposite sign for a long time before the

feedback loop is active again. This results in a significant overshoot before the system

returns to the linear region.

The control of systems under actuator constraints fall under two major categories.

One approach is the a priori design of the control system which inherently satisfies

both nominal performance requirements and saturation constraints. A typical exam-

ple is a Model Predictive Controller (MPC) [26], in which constraints are explicitly

accounted for and the controller action is the solution to a constrained optimization

problem [9]. The a posteriori approach first designs a controller fitted to meet all nom-

inal performance specifications, then adds an anti-windup compensator to minimize

the undesirable windup effects that may occur in the event of saturation [3, 63] as in

figure 3.1.

Figure 3.1: Anti-windup compensation

The anti-windup compensator is designed to achieve the following goals:

1. Maintain closed loop stability.

2. Recover linear design specifications when constraints are inactive (i.e. plant re-

sponse with anti-windup compensation coincides with unconstrained response).

3. Graceful performance degradation during saturation (i.e. plant response with

anti-windup compensation is as close as possible to the unconstrained response).
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3.1.2 Directionality

The phenomenon of directionality [8, 9] usually occurs in multiple-input multiple-

output (MIMO) systems with actuator saturation non-linearities. For the case of a

single-input single-output (SISO) system, the boundary of the feasible plant input set

is naturally closed and convex and consists of two isolated points such that when the

output of the controller is infeasible, only one of those two points that is closest to the

output of the unconstrained controller yields an optimal response. This ‘clipping’ of

an unconstrained controller output in SISO plants leads to an optimal feasible plant

input. On the other hand, for constrained MIMO systems, the boundary of the feasi-

ble plant input set contains an infinite number of points such that when the controller

output is infeasible the closest feasible point to the unconstrained controller output in

the plant input space may not yield an optimal response. Hence MIMO clipping of an

unconstrained controller output may not lead to an optimal feasible plant input.

To ensure a graceful performance degradation of the MIMO system in the presence

of input saturation, an artificial non-linearity (NL) in form of directionality compen-

sator [3–6,9,64,65] is inserted in the system as shown in figure 3.2. The directionality

compensator calculates a feasible plant input on the basis of a given unconstrained

controller output.

Figure 3.2: Directionality compensation

The artificial non-linearity can be defined as a quadratic optimization problem as

ur∗ = argmin
ur
||T ur−Fu||2W (3.1)
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subject to

umin ≤ ui ≤ umax i = 1, . . . ,m

Feasible plant inputs can be obtained by one some of the following forms of compen-

sators:

• Clipping/limiting [4]: T = 1, F = 1

This is equivalent to the saturation function in section 3.3.

• Direction preservation [5, 62]:


T = 1, F = 0 i f ‖u‖∞ < umax

T = ‖u‖∞, F = 1 i f ‖u‖∞ ≥ umax

This approach is suggested for plants with ill-conditioned steady state gain ma-

trix. The constrained control action is obtained by scaling down the controller

outputs such that u and v has the same direction when saturation occurs. Hence

subsequent saturation has no effect since ur always remains in the linear region.

• Optimization based conditioning techniques [6, 66]: T = F = D−1
k

where D−1
k is the non-singular feedthrough matrix of a the classical feedback

controller Gc described in section 3.2. When a controller output in infeasible,

an online optimization problem is solved to obtain a feasible controller output

by calculating a new set-point value closest in the set-point space to the original

set-point value.

• Optimal directionality compensation (ODC) [8, 9]: T = F = PC

where P is a diagonal matrix whose elements depends on the relative orders of

each controlled output and C is the characteristic (or decoupling) matrix.
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In MIMO plants, the clipping and direction preservation compensators may pro-

duce different feasible plant inputs which steer the plant response in the wrong di-

rection. Also the optimization based conditioning technique may lead to poor perfor-

mance since it is based on the controller used and not the plant being controlled. The

optimal directionality compensator is most effective and is employed in the design of

the TMIA control structure of section 3.4. The nature of the characteristic matrix of the

plant determines when it is optimal to use the clipping method or direction preserva-

tion. The characteristic matrix over a short horizon primarily determines the direction

in which the output response will change and the extent of the effect of input changes

on the controlled output response.

A class of systems that do not exhibit process directionality are those with diagonal

characteristic matrices. Also noteworthy is the fact that since the ODC optimizes over

a short time horizon, the calculated plant input may not be optimal over a long time

horizon. For this reason, the TMIA structure of section 3.4 incorporates a steady state

optimization to guarantee optimality over a long horizon.

3.2 Internal Model Control (IMC)

A classical IMC structure as introduced in [67–69] is shown in Figure 3.3.

G(z) = discrete plant,

G̃(z) = approximate plant model,

d(z) = vector of disturbances,

r(z) = setpoint vector,

y(z) = output vector,

u(z) = input vector and

QIMC(z) = the IMC controller.
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Figure 3.3: Conventional IMC Structure

This IMC structure is equivalent to a classical feedback controller defined as

Gc(z) = [I−QIMC(z)G̃(z)]−1QIMC(z) (3.2)

Likewise, any feedback loop with arbitrary controller can be converted to IMC struc-

ture by defining

QIMC(z) = [I +Gc(z)G̃(z)]−1Gc(z) (3.3)

The feedback signal d̃(z) from figure 3.3 is zero when no disturbances d(z) af-

fect the system and the model is perfect (i.e. G(z) = G̃(z)), thus it acts as a feedback

controller only when necessary.

d̃(z) = d(z)+ [G(z)− G̃(z)]u(z) (3.4)

Input and output transfer functions obtained by block diagram manipulation are

u(z) = [I +QIMC(z)(G(z)− G̃(z))]−1QIMC(z)(r(z)−d(z)) (3.5)

y(z) = d(z)+G(z)[I +QIMC(z)(G(z)− G̃(z))]−1QIMC(z)(r(z)−d(z)) (3.6)
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Assuming G(z) = G̃(z), (3.5) and (3.6) become

u(z) = QIMC(z)(r(z)−d(z))

y(z) = d(z)+G(z)QIMC(z)(r(z)−d(z))
(3.7)

Hence if both the process G(z) and the controller QIMC(z) are stable, then closed sta-

bility of the system is guaranteed [7].

Assuming a perfect controller given by

QIMC(z) = G̃−1(z) (3.8)

Equation (3.8) achieves perfect set point tracking despite disturbances and plant-model

mismatch since equation 3.6 becomes

y(z) = d(z)+G(z)[I + G̃−1(z)G(z)− I]−1G̃−1(z)(r(z)−d(z)) = r(z) (3.9)

This perfect controller is not a feasible design because the closed loop may be rendered

unstable and G̃−1(z) may often not be realizable. However, it will serve as a good

starting point for the IMC controller design. Though perfect control cannot be achieved

for the whole frequency range, it can be achieved in steady state using

QIMC(1) = G̃(1)−1 (3.10)

Integral action can thus be achieved by making the steady state controller gain the

inverse of the model gain.

3.2.1 IMC Design

Implementation of the perfect controller is not suitable for two main reasons:
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1. If G̃(z) contains time delays, then G̃−1(z) would involve predictive terms which

cannot be evaluated.

2. If G̃(z) contains zeros outside the complex unit circle, this will translate to un-

stable poles when inverted thus rendering the overall loop unstable.

The IMC controller is thus designed using the following steps.

3.2.1.1 Step 1: Model Factorization

The plant model G̃(z) is factorized into an invertible and non-invertible part such that

G̃(z) = G̃+(z)G̃−(z)

G̃+(1) = I
(3.11)

where G̃+(z) contains time delays and zeros of G̃(z) outside the complex unit circle

and G̃−(z) has a stable realizable inverse.

3.2.1.2 Step 2: Robustness Filter Design

Since the plant model is never accurate (G(z) 6= G̃(z)), a low-pass filter F(z) as shown

in figure 3.3 is added to improve the robustness of the IMC loop to modelling errors.

For a multivariable plant, a diagonal filter is used to make input actions less severe

and shape the plant output response. Closed loop dynamics of the system can be di-

rectly specified in the IMC design and the required controller is calculated from these

specifications and the model of the plant. The IMC controller is given by

QIMC(z) = F(z)G̃−(z)−1 (3.12)
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where F(z) which directly expresses a trade off between robustness and performance

is given by

F(z) = diag
(

1−ai

1−aiz−1

)
, 0≤ ai ≤ 1 i = 1,2, . . . ,m (3.13)

m is the number of manipulated variables.

If G(z) = G̃(z), the closed loop transfer matrix is G̃+(z)F(z) and following from

(3.7),

y(z) = G̃+(z)F(z)(r(z)−d(z))+d(z) (3.14)

Since F(z) forms a factor of the closed loop transfer matrix, improved robustness is

being traded with sluggish performance. Adjustment of the filter tuning parameter ai

is very transparent and suitable for manipulating online, this makes IMC a good choice

for multivariable control. For integral action, G̃+(1) = F(1) = I to ensure zero steady

state offset even when G(z) 6= G̃(z).

3.3 Modified IMC Anti-windup (MIMC)

For a saturating system where the actual plant input v = sat(u), the conventional IMC

structure of section 3.2 could lead to performance degradation and instability when

constraints are active [7].

If the input signal is constrained such that

umin ≤ ui ≤ umax i = 1,2, . . . ,m (3.15)
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Figure 3.4: IMC Antiwindup Structure

where m is the number of manipulated variables, this can be represented by the satura-

tion function sat(u) defined as

sat(u) =


umax ui > umax

ui umin ≤ ui ≤ umax

umin ui < umin

(3.16)

For the saturating system in figure 3.4, the saturation effect is not fed back directly to

the controller, the controller acts only on the error between the reference signal and the

output disturbance as shown in the closed loop equation (3.17).

u(z) = QIMC(z)(r(z)−d(z)) (3.17)

y(z) = G(z)v(z)+d(z) (3.18)

A modified IMC structure shown in figure 3.5 is proposed in [4] to deal with the un-

desirable effects associated with the standard IMC structure during saturation. QIMC(z)
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Figure 3.5: Modified IMC Antiwindup Structure

from figure 3.4 assumed to be bi-proper minimum phase stable is factorized such that

QIMC = (I +Qb(z))−1Q f (z) (3.19)

Assuming no plant-model mismatch, the closed loop equations are given by

u(z) = Q f (z)(r(z)−d(z))−Qb(z)v(z) (3.20)

y(z) = G(z)v(z)+d(z) (3.21)

In this case the controller is also directly fed with information on the saturation action

as shown in (3.20). In order to preserve output direction, [4] recommends 2 choices of

factorization for Q f (z) and Qb(z) as:

3.3.1 Factorization 1

Q f (z) = FA(z)G̃(z)QIMC(z) (3.22)

Qb(z) = Q f (z)QIMC
−1(z)− I (3.23)

= FA(z)G̃(z)− I
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where FA(z) is a non-causal filter chosen to be diagonal in order to avoid introducing

any change in the output direction and satisfies certain conditions such that FA(z)G̃(z)

is biproper and limz→∞[FA(z)G̃(z)] = I. Qb(z) is strictly proper and thus implementable

(free of algebraic loops). Q f (z) is minimum phase stable to guarantee internal stabil-

ity of the closed loop system because if QIMC is minimum phase and Q f (z) is non-

minimum phase, then (I +Qb(z))−1 must be unstable. When the constraints are inac-

tive (i.e. v = u), equations (3.20) and (3.21) revert to the closed loop equations for the

implementation of figure 3.3, thus linear performance is recovered.

3.3.2 Factorization 2

Q f (z) = ΛQIMC +(I−Λ)QIMC(∞) (3.24)

Qb(z) = Q f (z)QIMC
−1(z)− I (3.25)

where Λ = λ I is a diagonal weighting matrix and λ ∈ [0,1]. The choice of λ = 1 re-

sults in the classical IMC structure which yields a sluggish performance but stability is

guaranteed [5], while the choice of λ = 0 results in Q f (z) = QIMC(∞) [70], where per-

formance is improved but internal stability is not guaranteed if QIMC is non-minimum

phase. A trade-off between performance and stability is achieved through a suitable

choice of λ .

3.3.3 Summary of the Modified IMC algorithm

1. Factorize the plant model G̃(z) into an invertible and non-invertible part such

that

G̃(z) = G̃+(z)G̃−(z) and G̃+(1) = I
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where G̃+(z) contains time delays and zeros of G̃(z) outside the complex unit

circle and G̃−(z) has a stable realizable inverse.

2. Choose a filter F(z) (diagonal for multivariable plant) such that

F(z) = diag
(

1−ai

1−aiz−1

)
, 0≤ ai ≤ 1 i = 1,2, . . . ,m

where m is the number of manipulated variables.

3. Set the IMC controller as

QIMC(z) = F(z)G̃−(z)−1

with G̃+(1) = F(1) = I to ensure zero steady state offset.

4. Choose a factorization of QIMC(z) such that

QIMC = (I +Qb(z))−1Q f (z)

QIMC(z) should be bi-proper and minimum phase stable.

(a) Factorization 1

Q f (z) = FA(z)G̃(z)QIMC(z)

Qb(z) = Q f (z)QIMC
−1(z)− I

= FA(z)G̃(z)− I

where FA(z) is a non-causal diagonal filter, FA(z)G̃(z) is biproper and limz→∞[FA(z)G̃(z)]=

I. Qb(z) is strictly proper and Q f (z) is minimum phase stable.
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(b) Factorization 2

Q f (z) = ΛQIMC +(I−Λ)QIMC(∞)

Qb(z) = Q f (z)QIMC
−1(z)− I

where Λ = λ I is a diagonal weighting matrix and λ ∈ [0,1].

3.4 TMIA Control Structure

The Two-stage Multivariable IMC Antiwindup TMIA control structure proposed by

[24] for open loop stable plants directly addresses the problems of windup and di-

rectionality change which affect multi-variable plants under input constraints such as

actuator saturation. The core of this structure is the solution of two low-order quadratic

programs at each sample step to control the transient and steady state behaviours of the

system. The dynamic QP (QP1) as shown in figure 3.6 addresses transient behaviour

of the plant ensuring that the constrained system response is as close as possible to the

unconstrained, while the steady state QP (QP2) ensures optimal steady state perfor-

mance. According to [9]:

“The characteristic matrix of a process characterizes the sensitivity of

the process to input changes over a short time horizon, while the steady-

state gain matrix of a process characterizes the sensitivity of the process

to input changes over an infinite horizon”.

Hence the dynamic QP is formulated based on the characteristic matrix of the plant

while the steady state QP is formulated based on the steady state gain matrix of the

plant.

The two QPs have similar structures - convex QPs solved over a single-step horizon

subject to the same input constraints. The steady state QP initially has an equality
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Figure 3.6: TMIA Control Structure

constraint which models the steady state response of the system, this is eliminated such

that both QPs solve similar problems. The control objective is to keep the constrained

output y as close to the unconstrained output y′ as possible. For the dynamic QP, the

optimization problem is formulated as:

v∗ = argmin
v
||Cv−Cu||2W (3.26)

subject to the constraints:

umin
i ≤ vi ≤ umax

i i = 1, . . . ,m

where m is the number of MVs and v and u are the constrained and unconstrained inputs

respectively with W assumed to be a positive definite symmetric matrix that penalizes

deviations in the constrained control inputs from the unconstrained and their relative

importance. C is the characteristic matrix of the square system defined according to [9]

as

C = lim
z→∞

[diag{zrm}G] (3.27)
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where ri = min(ri1,ri2, . . . ,rim) and ri j is the relative order of output yi with respect to

manipulated input u j.

For a multivariable linear time-invariant system described by a state space model

of the form
ẋ = Ax+Bu

y =Cx
(3.28)

where A, B and C are n× n, n×m and m× n matrices respectively, the characteristic

matrix [8] is given by

C =


c1Ar1−1B

...

cmArm−1B

 (3.29)

The steady state performance optimization seeks to minimize the error between

feasible steady state target ys and the reference r within the limitations of the input

constraints by obtaining suitable values for ys and us which satisfies:

ys = Kpus + d̃ (3.30)

where us is the value of the control input which causes the controlled variable to attain

ys in steady state. From figure 3.6, d̃ is the disturbance estimate obtained as the differ-

ence between the measured plant output y and the model output ỹ and Kp is the steady

state gain of the plant (G(1) for discrete systems). The steady state gain Kp is obtained

from the state space matrices of the plant in (3.28) as:

G(1) =C(I−A)−1B f or G(z) (3.31)

provided (I−A) is non-singular. The steady state QP is solved to obtain an optimal

feasible steady state target y∗s according to:
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y∗s = argmin
us,ys

||r− ys||2Qss (3.32)

subject to the inequality and equality constraints:

umin
i ≤ vi ≤ umax

i i = 1, . . . ,m

[
−Kp I

]us

ys

= d̃

where Qss is a positive definite symmetric matrix for penalizing deviations in the con-

trolled variables and their relative importance. The equality constraint ensures the

steady state requirement of (3.30).

TMIA structure summarily works such that if the set point target is achievable in

steady state, the difference between the reference r and the disturbance estimate d̃ is

passed to the dynamic QP for the solution of the optimal control input v∗. Otherwise if

input constraint violation causes the steady state target to be unachievable, the steady

state QP computes a feasible steady state target ys which is optimally close to reference

r . The difference between the feasible steady state target and the current disturbance

estimate is then passed to the dynamic QP for computation of v∗.

An equivalent optimization problem to (3.32) can be obtained by eliminating the

equality constraints to obtain:

u∗s = argmin
us

||r− d̃−Kpus||2Qss (3.33)

subject to the constraints

umin
i ≤ vi ≤ umax

i i = 1, . . . ,m
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This transformed optimization problem now optimizes only over variable us with in-

puts as the difference between reference r and the disturbance estimate d̃. An optimal

solution u∗s of (3.33) ensures that the optimal y∗s of the original problem in (3.32) is

found via the steady state model of (3.30).

Equations (3.26) and (3.33) can be written in standard QP form as:

v∗ = argmin
v

1
2

vT H1v− vT H̃1u (3.34)

sub ject to Lv≤ b

u∗s = argmin
us

1
2

uT
s H2us−uT

s H̃2
T
(r−d) (3.35)

sub ject to Lus ≤ b

where H1 = H̃1
TWH̃1 and H2 = H̃2

T QssH̃2 are symmetric positive definite Hessian ma-

trices which are defined based on the structural properties of the plant such that H̃1 and

H̃2 are the characteristic matrix and steady state gain matrix of the plant respectively

(i.e. H̃1 = C and H̃2 = Kp). W and Qss are the respective positive definite symmetric

weighting matrices for the dynamic and steady state optimization problems.

L and b in the inequality constraints are defined as:

L =

−Im

Im

 and b =

−umin

umax

 (3.36)

where m is the number of MVs and umin = [umin
1 , ....umin

m ]T and umax = [umax
1 , ....umax

m ]T .

The solutions v∗ and u∗s to (3.26) and (3.33) are unique if the characteristic matrix C

and the steady state gain matrix Kp are non-singular.
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3.4.1 TMIA control algorithm

Given an open-loop stable plant G(z) with a nominal model G̃(z), and feasible opti-

mal solutions v∗ and u∗s satisfying (3.26) and (3.33) respectively, the control law that

achieves both optimal transient and steady state performance by the TMIA structure of

figure 3.6 is given by:

d̃ = y− G̃(z)v∗

u∗s = ψ2(r, d̃)

y∗s = H̃2u∗s + d̃

u = Q f (z)(y∗s − d̃)−Qb(z)v∗

v∗ = ψ1(u)

(3.37)

where ψ1 and ψ2 are the non-linear functions representing the dynamic and steady

state QPs from (3.26) and (3.33) respectively.

When the constraints are inactive, the control law reduces to the standard uncon-

strained IMC control equation such that:

d̃ = y− G̃(z)u

u = (I +Qb)
−1Q f (r− d̃)

(3.38)

Good steady state performance is ensured by designing QIMC from section 3.2 such

that QIMC(1) = G(1)−1 for G(z).

[24] further states that for systems which have similar characteristic matrix (C)

and steady state gain matrix (Kp), the two QPs solve the same optimization problem,

hence only the dynamic QP needs to be solved to achieve both optimal transient and

steady state responses under control input saturation.
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3.5 Extension to Rate Constraints

In this section, the author extends the anti-windup synthesis for input magnitude con-

strained multivariable processes developed in [24] to rate-constrained inputs. This is a

novel addition an existing scheme.

3.5.1 Rate saturation

Rate constraints occur when actuators cannot change faster than a specified value.

Compared to magnitude constraints there is a limited amount of literature available

on both magnitude and rate constraints [71–73]. For systems subject to only rate con-

straints the controller development can be carried out in the same way as in Section 3.4

by using using the derivative of the input signal in place of the input signal which is

then subject to magnitude constraints. However for systems subject to both input and

rate constraints, such an approach would not work [74].

A better approach would be to incorporate the rate constraints into the controller

design such that the optimized output always satisfies the constraints and the actuator

is never overworked. Since the rate is the derivative of the input it is natural that the

modelling framework is in discrete time:

uk = uk−1 +∆uk (3.39)

where uk is the input at sample time k and ∆uk is the change between the previous and

current input. The block diagram of the input rate is shown in Figure 3.7.

Rate constraints are easily handled by Model Predictive Control, but where MPC is

either not feasible or not affordable, it is necessary to provide and alternative simpler

but effective controller design to handle this dynamic non-linearity.
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Figure 3.7: Input rate block diagram

3.5.2 TMIA extension

Additional constraints can be added to incorporate the rate non-linearity into the TMIA

controller. We redefine the input constraints of the dynamic QP in section 3.4 by adding

constraints on the change in input as:

umin ≤ uk ≤ umax

∆umin ≤ ∆uk ≤ ∆umax.

This can also be written in the form:

uk ≤ umax

∆uk ≤ ∆umax

−uk ≤−umin

−∆uk ≤−∆umin.

Since equation 3.39 can be re-written as:

∆uk = uk−uk−1 (3.40)

we substitute equation 3.40 so that the constraint inequalities become:
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uk ≤ umax

uk ≤ ∆umax +uk−1

−uk ≤−umin

−uk ≤−∆umin−uk−1.

The final constraints realization is of the form

Luk ≤ b

where

L =



1

1

−1

−1


and b =



umax

∆umax +uk−1

−umin

−∆umin−uk−1


(3.41)

For this extension the dynamic optimization cost function section 3.4 remains un-

changed and still minimizes over u. However the TMIA controller structure changes

slightly to incorporate these new constraints. The QP algorithm needs new information

about the rate limits and the past value of the input uk−1. Figure 3.8 shows the modi-

fied TMIA controller where QP1 now has two sets of inputs. A sample delayed input

and the current input are fed to the dynamic QP. The dynamic QP uses the modified

constraints in Equation 3.41.

A snippet of the modification to the TMIA controller in MATLAB simulation is

shown in Figure 3.9.
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Figure 3.8: Modified TMIA controller

Figure 3.9: Snippet of TMIA controller modification in MATLAB

3.6 Summary

This chapter has discussed anti-windup techniques that can be used to deal with the

performance deterioration in plants that are subject to input constraints. A TMIA

controller has been presented as superior to classical anti-windup techniques by the

inclusion of a quadratic optimization routine which utilizes minimal computing. The
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TMIA controller is the basis for the online control of a Quadruple Tank system on a

PLC discussed in Chapter 4.

Furthermore, the main contribution to this algorithm is the extension to incorporate

rate constraints in a simple but efficient way. The TMIA controller has now been de-

veloped to become a complete design that handles both magnitude and rate constraints

on the input.



Chapter 4

TMIA control of a Quadruple Tank

process

4.1 The Quadruple Tank Process

The Quadruple Tank system is a multivariable laboratory process consisting of 4 in-

terconnected water tanks of uniform cross-sectional area, 2 pumps and a water basin

as presented in [1]. The Quadruple Tank system fabricated by Quanser is shown in

Figure 4.1 with inputs as voltages to the 2 pumps, and outputs as water levels in the

two lower tanks.

The tank pumps are gear pumps composed of a DC motor rated for 12V continuous

voltage, hence the inputs are constrained between 0-10V in the controller design. Each

of the pumps thrust water vertically to the tanks via two orifices of different sizes

provided by Quanser. Through these orifices, a piping connection is made to the tank

based on the configuration required. Each tank also has outlet orifices for discharge of

water back into the water basin and the user can also vary the areas of discharge using

different orifice sizes. The apparatus forms an autonomous and closed recirculating

system [2].

65
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Figure 4.1: Schematic diagram of the Quadruple Tank process [1]

The water levels are measured by pressure sensors located at the bottom of each

tank. The outputs of the sensors are passed through a signal conditioning board with a

range of 0-5V which corresponds to 0-25cm of water height. The sensors are calibrated

according to information provided in the Quanser user manual [2].

The Quadruple tank process has an adjustable zero described in [1] that can be

moved along the real axis between the right and left plane s plane (in or out of the

unit circle for discrete time), therefore the process can be set up to minimum or non-

minimum phase depending on system configuration used. Details of how the location

of zeros inside or outside the unit circle can be adjusted by varying the process con-

nections is described in [2]. Results for both minimum phase and non-minimum phase

settings of the quadruple tank rig are reported in this thesis. However, since our interest

is in the PLC computation, focus is placed on the minimum phase configuration which

allows higher closed-loop bandwidth and thus requires faster computation on the PLC.
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4.1.1 Tank configurations

Water from the tank is pumped from Pumps 1 and 2 pump through rubber pipes to

Out1 and Out2 shown in Figure 4.2. Out1 and Out2 have different diameters. For the

minimum phase configuration, the larger flows through Out 1 are pumped to the two

bottom tanks 2 and 4, while the smaller flows through Out2 are pumped to the top tanks

1 and 3. In the non-minimum phase case, the larger flows through Out 1 are pumped

to the two top tanks 1 and 3, while the smaller flows through Out2 are pumped to the

bottom tanks 2 and 4.

Figure 4.2: Quadruple Tank process connections - minimum phase [2].
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4.1.2 Hardware Peripherals

The Quanser quadruple tank system is provided with hardware and QuaRC (Quanser

Real-time Control) software that allows real-time interface between MATLAB its sen-

sors and actuators. The complete real time Quadruple Tank process components pro-

vided by Quanser are:

1. Quadruple Tanks.

2. QUARC real time control software for MATLAB/SIMULINK.

3. Quanser 8-channel USB Data Acquisition board.

4. Analog Sensors Adapter.

5. 2-channel Linear Voltage Amplifier.

The data acquisition board provides a standard USB connection to a PC for read-

ing/writing from the MATLAB-QUARC software with drivers pre-installed during

installation of the software. The data acquisition board carries out digital to analog

and analog to digital conversion with configurable ranges. It provides 8 analog inputs

and 8 analog output connectors to the quadruple tanks. Figure 4.3 shows a snapshot of

the Quadruple Tank system connected to the hardware peripherals and a PLC.
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Figure 4.3: Snapshot of the Quadruple Tank process with connections to a PLC and
Quanser hardware. Top right corner is a Siemens SIMATIC S7-300 CPU 314C-2
PN/DP PLC. Top left corner is a Quanser Data Acquisition board. Top middle consists
of Analog Sensors Adapter (above) and Voltage Amplifier (beneath).

4.2 Control Platforms

Two control platforms are utilized; the QuaRC platform for real-time testing of the

control design before deploying to a Siemens PLC which is main focus of our results.

When the process is controlled using the QuaRC platform, all hardware peripherals are

used, whereas when the process is controlled by the PLC, the Data acquisition board

is not required since the inputs and outputs to the PLC are analog signals.
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4.2.1 Quanser Real-Time Control (QUARC)

The communication set-up of the QUARC platform for control of the Quadruple Tank

process is as shown in Figure 4.4. It comprises of a PC with integrated MATLAB-

QUARC software installed, a power amplifier with a gain of 3, an analog sensors

adapter and a data acquisition board. Here MATLAB-QUARC controls the process.

The control signal range from the controller is 0-4V which is amplified to a 0-12V

range for the pumps. Pressure-type level sensors are used for the 4 tanks with outputs

as a voltage signal to feedback to the controller, the relationship between the sensor

voltage and tank height in cm is linear and is calibrated with a sensitivity of 6.25 cm/V.

Electrical connections are set up as described in [2]. Figure 4.5 shows a snaphot of

the SIMULINK block diagram for the TMIA control of the plant in real time using the

MATLAB-QUARC environment where the 2 quadratic programs (QP1) and (QP2) are

implemented using embedded MATLAB functions.

Figure 4.4: Communication setup with MATLAB-QUARC platform.
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Figure 4.5: SIMULINK block diagram of TMIA control of plant in real time using the
QUARC environment
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4.2.2 Siemens PLC

With this platform, a Siemens SIMATIC S7-300 CPU 314C-2 PN/DP PLC controls

the process. This is discussed in detail in Chapter 5.

4.3 Plant Model

The model of the quadruple tank process derived from first principles is non-linear, the

linearised model will be of the form in Equation 4.1 where G12 and G21 are second

order transfer functions [1].

y1

y2

=

G11 G12

G21 G22


v1

v2

 (4.1)

y1 and y2 are the levels of the two lower tanks and v1 and v2 are the input voltages from

pumps 1 and 2 respectively. Due to shared laboratory equipment, the plant model used

in this experiment is one that had been previously identified by colleagues, see [83] for

details of modelling and verification. The linearized system model was identified with

a 1s sampling time using MATLAB System Identification Toolbox from input-output

data obtained using a Pseudo Random Binary Sequence (PRBS) excitation signal to

obtain a transfer function model of the system at an operating voltage of [7V, 7V] for

the pumps. This operating voltage was chosen via experimental testing in open loop

to satisfy the conditions that at this voltage none of the bottom tanks overflowed, none

of the top tanks were empty and there was still an allowance of a 30% pump range to

control the tank levels.

In order to capture the dynamics of the system, the process was first stabilized at

the operating voltage. Then for each case one pump is held constant at the operating

voltage while a PRBS signal (of small enough magnitude that the voltage is still within
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the pump operating range) is applied to the other pump. To obtain G11 and G21 data, a

PRBS signal is applied to Pump 1 while Pump 2 is kept constant while to obtain G12

and G22 data, the PRBS signal is applied to Pump 2 while Pump 1 is kept constant.

The identified and validated model is then discretized with a 1s sampling in order to

implement it on the PLC. The minimum phase discrete model of the process is given

in Equation 4.2 and the non-minimum phase in Equation 4.6.

4.4 TMIA control design

A Two-stage Multivariable IMC Anti-windup controller is designed for the Quadruple

Tank process as described in Chapter 3.

4.4.1 Minimum phase

G̃(z) =

 0.1359z−2

1−0.9362z−1
0.1326z−2−0.01253z−3

1−0.3906z−1−0.5538z−2

0.03781z−2−0.02813z−3

1−1.833z−1+0.8395z−2
0.1642z−2

1−0.9215z−1

 (4.2)

The system in equation (4.2) is minimum phase stable with poles and zeros inside the

unit circle.

To design the TMIA controller for the Quadruple Tank process, first a classical

IMC controller is designed according to Section 3.2 factorizing the plant model G̃(z)

is into an invertible and non-invertible part

G̃−(z) =

 0.1359
1−0.9362z−1

0.1326−0.01253z−1

1−0.3906z−1−0.5538z−2

0.03781−0.02813z−1

1−1.833z−1−0.8395z−2
0.1642

1−0.9215z−1

 (4.3)

and

G̃+(z) =

z−2 0

0 z−2

 (4.4)
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Next, a robustness filter following from equation (3.13) is designed as

F(z) =

 1−0.65
1−0.65z−1 0

0 1−0.85
1−0.85z−1

 (4.5)

The filter F(z) is used to avoid some chattering effects on the control signals [63] as

well as shape the closed loop response. The loop shaping procedure involves ensuring

high loop-gain at low frequencies for disturbance rejection and good reference tracking

(where S( jω)≈ 0 and T ( jω)≈ 1), a low roll-off rate around cross-over frequency for

good damping and stability and a high roll-off rate at high frequencies for insensitivity

to sensor noise and high frequency unmodelled plant dynamics (where S( jω)≈ 1 and

T ( jω) ≈ 0). For a multivariable system, these specifications can be visualized in the

frequency domain using singular value plots. The tuning parameters for F(z) (a1 =

0.65,a2 = 0.85) were selected to meet these design criteria and can be seen on the

singular value plot response in Figure 4.7.

Figure 4.6: TMIA implementation with additional bandwidth filter

QIMC(z) = G̃−(z)−1F(z)

For the Quadruple Tank model, the open loop bandwidth is obtained approximately

as 1/τmax, where τmax is the maximum time constant of the system. We specify the

desired closed loop bandwidth of the system to be twice the open loop bandwidth
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corresponding to about 0.2rad/s. In order to further shape the response, an additional

bandwidth filter FB(z) shown in figure 4.6 was added outwith the IMC controller to

limit the cut-off frequency of the control signal to this closed loop bandwidth. For a

bandwidth filter of 0.2rad/s, the discrete equivalent is obtained as:

FB(z) =
0.1813z−1

1−0.8187z−1 ∗ I

The IMC tuning parameters in equation (4.5), (a1 = 0.65,a2 = 0.85) for F(z) along

with FB(z) is such that the frequency of the maximum sensitivity is greater than the

closed loop bandwidth (σ̄(S)> 0.2rad/s). The sensitivity plots in figure 4.7 show that

the loop shaping specifications are met. A biproper form of QIMC(z) is used according

to [4] for the design of the MIMC controller. However, for the implementation of the

classical IMC controller, a strictly proper QIMC(z) is used.

Figure 4.7: Singular value plots

Also the specification for reference tracking and zero steady state error is achieved

since the conditions for integral action, [FB(z)F(z)G+(z)]z→1 = I is met.

Next, the MIMC controller is designed by factorizing the biproper QIMC(z) via
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’factorization method 1’, to obtain Qb(z) and Qb( f ) choosing a non-causal filter FA(z)

FA(z) =

 1
0.1359z 0

0 1
0.1642z


such that limz→∞[FA(z)G̃(z)] = I (notice that FA(z) matches the top diagonal elements

of G̃(z)).

Finally the TMIA controller is designed according to section 3.4. The charac-

teristic and steady state matrices for the Quadruple Tank to be used in the quadratic

optimization are obtained by equations (3.29) and (3.31) as

C =

 0.1359 0.1326

0.03781 0.1642

 and Kp =

2.13009 2.1595

1.4892 2.0917


.

4.4.2 Non-minimum phase

G̃(z) =

 0.09956z−2

1−0.951z−1
0.01118z−2+0.009991z−3

1−1.7z−1+0.7138z−2

0.007059z−2+0.006682z−3

1−1.842z−1+0.8482z−2
0.09038z−2

1−0.9407z−1

 (4.6)

For the identified plant model of equation (4.6) in non-minimum phase configura-

tion [1, 2], with zero locations at [0.6622; 1.01203; 0.9574; 0.9417], the inverse of

the plant model would yield an unstable IMC controller. Hence the model is factor-

ized into an all pass and minimum phase portion using the inner outer factorization

method [84–86].

We assume that

G̃(z) = C(zI−A)−1B+D :=

 A B

C D

 ∈RH p×m(p ≥ m) is a minimal realization
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such that 0 < |λi(A)|< 1,∀ i = 1,2, . . . ,n.

Assuming the matrix D has full column rank m, there exists a right coprime factoriza-

tion G̃(z) = N(z)M(z)−1 such that N is inner (N*N = I) if and only if and G̃(z) has no

zeros on the unit circle. The realization is given as

M =

 A+BF BR−1/2

F R−1/2

 ,

N =

 A+BF BR−1/2

C+DF DR−1/2


where

RD = DT D > 0,

R = RD +BT XB

F =−(R+BT XB)−1(BT XA+DTC)

and X = XT > 0 is the unique stabilizing solution of the discrete algebraic Riccati

equation

(A−BR−1DTC)T X(A−BR−1DTC)−X +CT (I−DR−1DT )C

−(A−BR−1DTC)T XB(R+BT XB)−1BT X(A−BR−1DTC) = 0

The model G̃(z) is strictly proper (D = 0), therefore in order to correctly apply the

factorization method, a small D = εI with ε = 0.0001 is added [7]. Thus the model

is factorized into an invertible part M−1(z) and a non invertible part N(z). The IMC

formulation involves the inversion of the invertible portion of G̃(z) and integral action

is obtained by ensuring that the product of the controller inverse gain and the process

model gain is identity. Since the inner-outer factorization of the plant model does not



4.4. TMIA CONTROL DESIGN 78

guarantee this, the non-invertible portion is scaled down by pre-multiplying N(z) by

N(1)−1 to obtain N(z)N(1)−1 such that the invertible portion becomes N(1)M−1(z)

[87].

Then the classical IMC controller is

QIMC = M(z)N(1)−1F(z) (4.7)

with a diagonal filter F(z) to shape the closed loop response. The closed loop response

for the non-minimum phase control is about 10 times slower than that of the minimum

phase response as seen in the time scales of Fig. 4.8.

As in the minimum phase case, the TMIA controller is formulated by first ob-

taining the Modified IMC (MIMC) controller by factorizing QIMC according to equa-

tion (3.19). Using factorization method 1 for the plant in this case can be restrictive

because in order to satisfy the conditions, the design of FA(z) may require that the plant

model be diagonal or that the off-diagonal transfer function components have higher

relative orders than the diagonal components [88]. For the quadruple tank the dy-

namics are coupled across input channels and all the transfer function components of

G̃(z) have the same relative orders. Hence G̃(z) in Equations (3.23) and (3.22) would

need to be modified to have a relative order of 2 in the off diagonal components in

order to achieve a strictly proper Qb(z). Also since the plant model is non-minimum

phase, Q f (z) from Equation (3.23) is also non-minimum phase and the condition for

internal stability is not met, which makes factorization method 1 unsuitable. Hence

we used Factorization method 2 instead. Again the controllers Q f (z) and Qb(z) are

designed more a slightly modified plant model by increasing the relative orders of the

off-diagonal elements of G̃(z) in order to ensure Q f (b) is strictly proper and thus im-

plementable. The characteristic and steady state matrices for the Quadruple Tank in
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(a) Non-minimum phase

(b) Minimum phase

Figure 4.8: Simulation of closed loop responses for minimum and non-minimum
phase.

non-minimum phase are

C =

0.0996 0.01118

0.0071 0.0904

 and Kp =

2.0303 1.574

2.2013 1.525


In summary, the design parameters needed for the TMIA implementation are:
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1. Factorized G̃(z) using an appropriate factorization method.

2. ai used to obtain FA(z) and hence QIMC(z).

3. FA(z) used to obtain Qb and Q f with factorization 1 or λ with factorization 2.

4. FB(z) if required to further shape the response.

5. Weighting matrices W , Qss.

6. Characteristic and steady state matrices C and Kp.

4.5 Summary

This chapter has discussed the set-up, model and control platforms of a multivariable

experimental rig to be controlled. In particular the design of the TMIA controller has

successfully been described for two control cases: minimum and non-minimum phase.

For the non-minimum case, special care needs to be taken in the factorization and

inversion of the plant model so that the controller does not yield and unstable system.

The development of the TMIA controller involved first designing the classical IMC

anti-windup controller, then the modified IMC controller to be used for comparison in

simulation and real-time experiments with the TMIA controller.



Chapter 5

PLC implementation

This chapter discusses authors contribution of implementing the TMIA controller de-

signed in Chapter 4 on a real time experiment. It specifically details the controller

implementation via the PLC platform using the quadratic programming methods dis-

cussed in Chapter 2. Results from three different quadratic program methods are pre-

sented in order to make useful recommendations on the most suitable algorithms for

low computing industrial hardware.

5.1 Siemens S7 PLC

The TMIA design for the control of the quadruple tank process was implemented in

the Siemens SIMATIC S7-300 CPU 314C-2 PN/DP PLC using Ladder logic. The

IEC-61131-3 standard for programmable logic controllers defines five programming

languages which are Ladder Logic, Function Block Diagram, Structured Text, Instruc-

tion List and Sequential Function Chart.

The following programming languages are supported by the S7-300 PLC [89]:

1. Ladder Logic: This is graphical programming language based on circuit diagram

representation of relay logic hardware. Networks are formed with a combination

81
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of circuit elements like normally open and normally closed contacts to form

rungs/ladders of code executed from left to right and top to bottom.

2. Function Block Diagram: This a graphical programming language based on boolean

algebra. Logic blocks are used to connect input and output variables.

3. Structured Control Language (SCL): this conforms to the IEC-61131-3 standard

and is available only as an optional package. It is a high level text-based language

similar to PASCAL or C language. It uses high level commands to simplify pro-

gramming of loops and conditional branches and hence is suitable for complex

optimization algorithms.

4. Statement List (STL): This is a low-level programming language which resem-

bles assembly code.

5. Continuous Function Chart (CFC): This is also an optional package for graphi-

cal linking of complex functions and parallel control processing.

The motivation for choosing ladder logic is that it is easily understood and widely

used by operators in industry. The PLC used consists of an integrated power supply

and CPU unit alomg with two I/O modules. The power supply converts 230VAC line

voltage to a 24VDC operating voltage to supply its S7-300 rack and load circuits. The

I/O modules consist of 24 digital inputs, 16 digital outputs, 5 analog inputs (4 curren-

t/voltage and 1 PT100) and 2 analog outputs. The 2 inputs to the PLC in the quadruple

tank experiment are the water levels in the two lower tanks, the PLC program calcu-

lates the required pump voltage. The 2 PLC outputs are the voltages supplied to the

voltage amplifier which feed the pumps. The PLC provides 192KB working memory

on an external micro memory card (required for the PLC to run), 4 fast counters (60

KHz) and CPU processing times of 0.59µs per floating point operation.
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Figure 5.1: S7-300 CPU 314C-2 PN/DP PLC.

5.1.1 PLC communication setup

The PLC provides two types of communication interfaces. A combined MPI (Multi-

Point Interface) and Profibus DP interface via an RS485 connector can be used to link

up to a maximum of 127 devices on the network with maximum transmission rate

of 12 Mbits/s. With this link a PC is connected to the PLC via USB adapter. The

PLC also supports Ethernet communication via an integrated PROFINET (Industrial

Ethernet) interface; this is the communication link used in this experiment. This can
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also link up to 127 devices (for copper medium) up to a maximum transmission rate of

100 Mbits/s via an RJ45 connector. The communication setup for the PLC is shown in

Figure 5.2. The PLC scan time is set to 1s which coincides with the sampling time for

the discretized process transfer function.

Figure 5.2: PLC communication setup.

5.1.1.1 Program Coding and download using the PC/PG interface

The PLC is programmed using a Programming Device (PG) which in this case is a

PC with Siemens Totally Integrated Automation (TIA) Portal version 11 software in-

stalled. The PG and PLC are connected via standard twisted pair cables with RJ45

connectors. An Ethernet connection is created in the same network with PLC address

192.168.0.1 and PG address 192.168.0.2. Program code is downloaded from the PG

to the PLC and online diagnostics can be monitored during run-time as shown in Fig-

ure 5.3.
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Figure 5.3: Sample Siemens PLC program in run time showing online diagnostics.

5.1.1.2 HMI via MATLAB-OPC communication

The PC serves a dual purpose; not only for program coding and downloading to the

PLC but also serves as a Human Machine interface (HM1) for online monitoring

and control. Real-time data acquisition is obtained via MATLAB-OPC toolbox and

a KEPServerEX5 OPC server. With the TMIA controller running on the PLC, the

KEPServerEX5 provides an interface for SIMULINK to read data continuously from

PLC memory and to write desired set-points to the PLC. Hence MATLAB is able to

communicate with the PLC via the KEPServerEX5 which is useful for trending the

process response. Installed on the PC is a Siemens TCP/IP Ethernet driver that works

with KEPServerEX5 to pass data between MATLAB-OPC client and Siemens PLC

using the TCP/IP Ethernet protocol. The driver communication with the PLC uses a
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standard network interface card already installed on the PC. Each parameter that needs

to be read from or written to the PLC is configured in the KepserverEX5 input and

output channels to be accessed by MATLAB.

Figure 5.4: Real time MATLAB-OPC communication with PLC via KepserverEX5

A snaphot of the MATLAB-OPC communication with PLC via KepserverEX5 is

shown in Figure 5.4 and the read/write communication with the KepserverEX5 chan-

nels is shown in Figure 5.5. Plant setpoints can be written directly into the PLC code

but this is too cumbersome and inefficient as the program code would need to be re-

downloaded to PLC each time a change is made. On an industrial plant this would

be expensive since the plant would need to be shut down. Hence, it is more efficient

to make these changes via the MATLAB/OPC link. Other controller parameters can

be changed dynamically such as filter parameters which control the speed of response.
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In industrial applications the PLC would be integrated with a HMI panel e.g. the

SIMATIC Panel for machine-level operator control and monitoring of the plant.

Figure 5.5: OPC Read/Write to KepserverEX5 channels.

5.1.2 Program Structure

The PLC CPU runs two programs: the operating system and the user program. The op-

erating system runs all sequences and functions not associated with any specific control

task e.g. calling user programs, error handling and managing memory areas. The user

program is created by the user for download to the CPU for a specific control task. The

user program is organised in blocks which are self-contained program sections [89].

The main blocks available in the S7-300 PLC are:

• Organizational Blocks (OB): This is the interface between the CPU and user
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program that defines the structure of the user program. They are called by the

operating system for controlling start-up, cyclic and interrupt execution and error

handling.

• Functions (FC): These are user programs for frequently used routines. They

are logic blocks without a memory hence any temporary variables used in the

function are lost after execution.

• Function blocks (FB): These are logic blocks with a memory. It is assigned a

Data Block as its memory such that any temporary variables are lost after exe-

cution but static variables are saved in the instance Data Block after execution.

• Data Blocks (DB): These are data areas assigned to a Function Block for storing

user data.

5.1.3 PLC code

The PLC code structure for the TMIA controller shown in Figure 5.6 is summarized as

follows:

Offline: The design parameters are computed with MATLAB offline for storage in

PLC memory. The Hessian matrices, the difference equations for the plant model and

controllers Qb and Q f etc are prepared beforehand.

Online:

1. OB1 (Main program): This block runs standard PLC tasks and housekeeping func-

tions. It also runs during CPU idle time between OB35 calls. It has the lowest priority

of monitored OBs.

2. OB100 (Complete Restart): This is the start up block for warm restart. Run initial-

ization parameters are written here. Design parameters such as Hessian matrices are

initialized in this block. This block is called once when the controller is started.
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3. OB35 (Cyclic Interrupt): This is a timed loop that executes at fixed intervals. The

TMIA closed loop program is written here. The default interval for this block is 200ms

however is set to execute every 1s. This block reads the plant reference from the OPC

server, calls FB blocks with their associated DBs which contains the plant model and

also calls FC blocks which contain the quadratic program. The FC blocks called cal-

culate the optimized plant inputs to be passed to the outputs of the PLC and read by

the OPC server. The block runs every second till the experiment time is elapsed.

4. OB82-OB86: These blocks are assigned for handling asynchronous errors such as

rack failure, errors like short circuit or removal of an input module etc.

5. FCs (Functions): The FC blocks are used to code the main quadratic program func-

tions and also combine the models of the plant (G11,G12,G21 and G11) and the con-

trollers by calling their function blocks.

6. FBs (Function Blocks): The FB blocks along with their corresponding data blocks

are used to write the parameters of the discretized plant model G̃, the controllers Qb

and Q f , PLC inputs and outputs, setpoints and filters.

7. FC105 and FC106: These are in-built scaling blocks native to the S7 PLC used for

analog input and output conversions. The inputs to the PLC are of integer type and

need to be converted to float type values. The PLC input is scaled using the FC105

block and unscaled using the FC106 block.

5.1.4 Optimization of memory utilization

The PLC program utilizes both memory and temporary variables. The values of the

memory variables are stored in the PLC memory until a reset occurs while temporary

variables are not stored. MD (Memory Double Word) variables are used in the TMIA

program, however the S7-300 CPU 314C-2 PN/DP model provides 256 bytes of mem-

ory for the MD format which are 4 bytes long. This results in a total of 64 MD variables



5.1. SIEMENS S7 PLC 90

Figure 5.6: PLC code call structure.

available for use. Since this is insufficient for the TMIA program, the problem is over-

come by mainly using temporary variables in the main program (OB35) and functions

(FC) while only a few variables which need to be pre-loaded to memory such as the

QP parameters and variables which need to be read and written to by the OPC server

are stored as MD variables. The use of MD variables can also be limited by taking

advantage of the symmetry of the Hessian matrices where only one off-diagonal ele-

ment is stored in memory. The design parameters are calculated offline and stored in

memory to reduce online computation so the PLC program focuses on implementing

the TMIA closed loop system and solving the quadratic programs.



5.1. SIEMENS S7 PLC 91

5.1.5 QP Algorithm implementation

Three different quadratic program algorithms are implemented in the PLC using ladder

logic: a basic primal-dual interior point algorithm as outlined in [56, p. 484], active set

method for convex QPs outlined in [56, p. 472] and the Projected fast gradient method

specified in [90] and also in [43, 91, 92]. The positive definite symmetric weighting

matrices, W and Qss described in Chapter 4 are chosen as identity. The stopping cri-

teria implemented in the PLC for each of the three QP algorithms are given the same

tolerance level of 10−3 in order to provide an effective comparison. Also the maximum

number of iterations for the algorithms was set at 200 to ensure termination within the

scan cycle. For each iteration of the active set algorithm, the amount of computation

carried out is variable while the computations required for the interior point method is

fixed.

5.1.6 Computational considerations

It must be noted that the Siemens PLC does not support matrix multiplication and as

such discrete transfer functions are used instead of state space representations. A ma-

jor computational step in the implementation of the quadratic program of section 4.4.1

is the solution of the linear system of equations which may involve a Cholesky factor-

ization and backward or forward substitutions. The matrix multiplications and factor-

izations are carried manually in the logic the way one would normally solve them by

hand. Complex algorithms are no easy feat to code on a PLC using ladder logic and as

such a text-based language like Structured Control Language (S7 SCL) which is better

suited for loops and conditional branches could be used. However, the ease of under-

standing would be lost as graphical user programs are more in demand in industry due

to the necessity for debugging and tuning.
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5.2 PLC implementation results

A comparison of three algorithms based on computational demand on the PLC is

shown in Table 5.1. It can be seen that the projected fast gradient method is most

Item Active Interior Projected fast
Set Point gradient method

% of total PLC work memory used 23% 19% 16%
by TMIA algorithm

Highest number of QP block iterations 7 37 16
per scan cycle

Highest execution time 6ms 30ms 5ms
per scan cycle (OB35 block)

QP code size 421 186 70
(No. of FLOPs required per QP)

% of used memory consumed by 2 QPs 38.6% 25.5% 10.3%

Table 5.1: Comparison of QP algorithms (minimum phase).

suitable for the PLC implementation as it requires the least amount of memory (16%),

PLC coding (70 FLOPs) and computation time (5ms). It should be noted that the re-

sults obtained are based on coding in ladder logic which would require several ladder

rungs to implement the checking conditions required for if then else statements.

From the results table in Table 5.1, the Active set ladder logic algorithm has the

largest QP code size due to the number of if else checking statements carried out on

the working set. An important note on Table 5.1 is that even though the Active set

algorithm uses the most PLC code size, execution time remains low with the lowest

number of QP iterations (7) since not every ladder rung is implemented during each

scan cycle. The implementation of the rungs are dependent on the contents of the active

and inactive working sets which changes with each iteration (see ref [56]). There is

sufficient reason to believe that the Active set method would yield even more promising

results if programmed used a text-based language.

The interior point method used the most computation time of the three algorithms
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due to the number of matrix multiplications and back-solves carried out. This is inher-

ent in the formulation of the interior point algorithm and as such we use the results as

a worst case scenario. For Interior point, TMIA program utilized only 19% (36.2KB)

of the PLC working memory, 10% of its available RAM and 0.12% of retentive memory

as shown in Figure 5.7.

Figure 5.7: PLC Memory usage (TMIA controller using Interior point method)

25% of this total utilized memory is contained in the two quadratic programs of the

TMIA control structure. Each interior point algorithm utilized 186 FLOPs including

move operations. The highest number of iterations for the quadratic program is 37

as shown in Figure 5.8. The rise and fall in the plots of Figure 5.8 closely follow the

pattern of the set point profile 1 used in the experiments in Chapter 6. It can be seen that

the number of iterations of the QP and execution time of the cyclic program (OB35)

tends to increase as the set-point requested increases and vice versa. This is due to the

constraints being active for high set points. From the plots in Figure 5.8 it is seen that

there is a direct relationship between the number of iterations and the execution time

because the QP called within the OB35 block much reach the optimum solution within

the scan cycle. Also the number of FLOPs used clearly impacts the memory utilized.
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Figure 5.8: PLC code: Number of QP iterations per scan cycle and TMIA program
execution time for OB35 block (Interior point algorithm).

Figure 5.9: PLC online diagnostics: Longest and shortest execution time
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The longest cycle time for the execution of the TMIA program obtained from the

PLC online diagnostics (Figure 5.9) was 30ms which is far below the scan cycle moni-

toring rate of 1s. Thus the optimal solutions for the references and control inputs were

always obtained during each scan cycle even for the slowest of the three algorithms.

These results indicate the the PLC can be used for the control of faster, larger and more

complex processes.

5.3 Summary

Three main contributions are presented in this chapter. First the results show that a sim-

ple and efficient advanced controller like TMIA controller can be realized on a standard

PLC which is an affordable industrial alternative to MPC for input-constrained mul-

tivariable processes. This is beneficial in an industrial setting since PLCs provide the

stability and reliability which most digital computers do not offer.

Secondly, three algorithms have been coded on the PLC and projected fast gradient

method was found to be the most suitable QP algorithm for the PLC implementation

due to its least computing requirements. The memory utilization and execution time in

the region of a few milliseconds using the TMIA controller on the PLC has shown the

technique to be a useful tool for the practical implementation of optimized multivari-

able control that can be applied to much faster processes.

Thirdly, advanced algorithms like quadratic optimization can be coded on a PLC

from scratch using ladder logic for ease of understanding and debugging by operators

and technicians in industry.



Chapter 6

Experimental Results - Quadruple

Tank Process

This chapter provides experimental results of the implementation of a classical IMC

controller (IMC), Modified IMC controller (MIMC), TMIA controller and an MPC

controller on a multivariable quadruple tank process. Comparison in this chapter is

made based on performance rather than computation as in the case of Chapter 5. The

TMIA competes favourably compared to other IMC schemes in terms of handling

windup and directionality issues.

The transient and steady state performances of the controllers are compared espe-

cially looking at the effects of windup such as overshoot, directionality issues where

the controller steers the plant in the wrong direction leading to large steady state error

and also multivariable coupling effect.

6.1 Performance

In order to test the efficiency of the TMIA controller, three set-point profiles were

applied to the Quadruple Tank to activate the constraints and thus sufficiently excite

96
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windup and process directionality in the system. Sufficient step magnitudes were cho-

sen to emulate situations where the controllers to be compared would normally yield a

degraded performance.

• Profile 1: Level set points of 12cm applied in the same direction with no lag

between them.

• Profile 2: Level set points of 4cm applied in the same direction with a 50s lag

between them.

• Profile 3: Level set points of 2cm applied in opposite directions with no lag

between them.

The input voltages to the pumps are constrained between 0 and 10V in the algorithm.

The results of the PLC implementation of the TMIA controller are compared with

classical IMC and MIMC structures as shown in Figures 6.2 to 6.5. The tank levels

were allowed to settle for 250s in open-loop with the application of (7V, 7V) operating

voltage before closed-loop control was applied.

6.1.1 Minimum phase

Profile 1: In Figure 6.1 the IMC controller yields a poor performance due to satu-

ration. This response is as expected since the IMC controller takes no account of the

saturation effect and as such the output does not track set-point when the constraints

are active. The MIMC output in Figure 6.2 yields a better performance where Tank 1

tracks the reference signal but Tank 2 is unable to meet the set-point due to active con-

straints. The TMIA has the least steady state error as seen in the figures. The TMIA

algorithm works by recalculating an optimal realizable reference signal. It recalculates

a slightly higher set-point for Tank 1 and a lower one for Tank 2 while keeping the

levels as close as possible to the actual reference.
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Figure 6.1: Controller comparisons for Profile 1 (TMIA vs IMC)
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Figure 6.2: Controller comparisons for Profile 1 (TMIA vs MIMC)
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The steady-state QP uses the knowledge of the constraints to calculate a new ref-

erence. The weight W in the QP parameters can be adjusted to reflect priority on a

particular output in maintaining the set-point. Profile 1 requests set-points close to the

limit of the tanks capacity in order to force the TMIA controller to saturation even

though for a short time as seen in Figure 6.1b. For a reduced set-point than this value,

the TMIA controller achieves perfect set-point tracking and the realizable reference is

kept as close to the set-point at all times.

Profile 2: In Figures 6.3 and 6.4, both the IMC and MIMC controllers achieve set

point tracking but the effects of saturation are clearly seen in the overshoots/under-

shoots in the tanks where inputs constraints are active. Also, hints of directionality

issues are seen in this time delayed profile and a strong coupling effect is exhibited.

The IMC controller in Figures 6.3 yields the least performance with the largest un-

dershoots and coupling effect. The TMIA controller performs better with set point

tracking, no overshoots and only a small coupling effect is observed. The inputs for

the TMIA control are far away from the constraints as seen in Figure 6.3b. The op-

timal references and optimal input voltages calculated by the quadratic program keep

the actuator away from saturation while ensuring a smoother response.

Profile 3: In Figures 6.5a and 6.6a, both IMC and MIMC controllers are unable to

handle directionality problems in the Quadruple Tank system, their control inputs in

Figures 6.5b and 6.6b remain saturated for a long time and steer the output of Tank 1 in

the wrong direction. The uncompensated IMC controller naturally yields the poorest

response with the windup effect lasting for much longer. The TMIA controller handles

the problem of directionality by recalculating optimal set-points and control inputs

which though much lower, steer the strongly coupled plant in the right direction. The

TMIA inputs as seen in Figure 6.5b remain unsaturated.
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Figure 6.3: Controller comparisons for Profile 2 (TMIA vs IMC)
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Figure 6.4: Controller comparisons for Profile 2 (TMIA vs MIMC)
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Figure 6.5: Controller comparisons for Profile 3 (TMIA vs IMC)
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Figure 6.6: Controller comparisons for Profile 3 (TMIA vs MIMC)
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6.1.1.1 Minimum phase comparison

Steady state Overshoot / Directionality Coupling
error undershoot effect

PROFILE 1
TMIA Minimum Small - -
MIMC Large - - -
IMC Largest - - -

PROFILE 2
TMIA Minimum Minimum Small Small
MIMC Small Large Large Large
IMC Small Largest Largest Largest

PROFILE 3
TMIA Medium - - Small
MIMC Large Small Large Large
IMC Largest Large Largest Large

Table 6.1: Performance comparison Profile 1 (minimum phase)

6.1.2 Non-minimum phase

The results for the non-minimum phase implementation for all 3 profiles are reported

in this section for TMIA, MIMC and IMC controllers (see figures 6.7 to 6.15). The

output responses show that the TMIA controller outperforms the classical IMC and

Modified IMC structures in handling the performance degradation associated with con-

troller windup and process directionality during saturation.

The non-minimum phase case is much harder to control [93], is 10 times slower

and shows worse coupling effect than the minimum phase case. However it must be

noted that for profile 3, the TMIA controller achieves better set point tracking than

the minimum phase case (see Figures 6.13 to 6.15). This is because in non-minimum

phase configuration, the outlet pipes are adjusted to allow more flow into the two upper

tanks. Hence when profile requested set points in opposite directions, the optimum

voltage calculated yields more water in the desired tanks.
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Figure 6.7: Profile 1: Real-time implementation of TMIA controller for non-minimum
phase.
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Figure 6.8: Profile 1: Real-time implementation of MIMC controller for non-minimum
phase.
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Figure 6.9: Profile 1: Real-time implementation of IMC controller for non-minimum
phase.
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Figure 6.10: Profile 2: Real-time implementation of TMIA controller for non-
minimum phase.



6.1. PERFORMANCE 110

0 200 400 600 800 1000
0

5

10

15

20

25

Time (s)

Le
ve

l (
cm

)

 

 

Set point 1
Setpoint 2
MIMC 1
MIMC 2

(a) Output responses

0 200 400 600 800 1000

0

2

4

6

8

10

Time (s)

V
ol

ta
ge

 (
V

)

 

 

Pump 1
Pump2

(b) Plant inputs

Figure 6.11: Profile 2: Real-time implementation of MIMC controller for non-
minimum phase.
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Figure 6.12: Profile 2: Real-time implementation of IMC controller for non-minimum
phase.
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Figure 6.13: Profile 3: Real-time implementation of TMIA controller for non-
minimum phase.
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Figure 6.14: Profile 3: Real-time implementation of MIMC controller for non-
minimum phase.
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Figure 6.15: Profile 3: Real-time implementation of IMC controller for non-minimum
phase.
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6.2 Comparison with MPC

For a particular Quadratic Dynamic Matrix Control (QDMC) algorithm [94] imple-

mentable on the PLC, with multivariable formulation [95], the size of the Hessian

matrix and its corresponding matrices increases with the control horizon. This in-

creases the requirements for memory allocation and computation time on the PLC by

at least a multiple of the control horizon (in the least case where P = M). Hence we

compare the performance of the TMIA controller with an QDMC controller on the

PC-based Quanser platform. One setback however is that in the QuaRC-MATLAB

platform, embedded MATLAB functions used for coding the QPs are limited to 2 x 2

matrix multiplication. Thus multiplication of large sized matrices involved in solving

the quadratic program has to be done manually in the program thus increasing coding

complexity. For this this reason the MPC implementation on the QUARC platform

was limited to a control horizon of 2.

A set point of [16 15]T is requested from zero and inputs are also constrained

between 0V to 10V. The input and output weights are set to 1 as in the TMIA algorithm.

The TMIA response competes favourably the MPC response with setpoint tracking and

similar settling times as shown in Figure 6.16 with control horizon of 2 and prediction

horizon of 20 for the minimum phase case and control horizon of 2 and prediction

horizon of 20 for the non-minimum phase case in Figure 6.17. With the advantage

of reduced computation equivalent to a single horizon MPC, the TMIA controller is

the obvious choice for PLC implementation. From the results in Table 5.1, a higher

specification of PLC would be required to implement a long-horizon MPC controller

with a reasonable control and prediction horizon. Also coding would need to be carried

out using a text-based language on a PLC because of the complexity of carrying out

matrix multiplication of large sizes.
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Figure 6.16: Quadruple Tank control in minimum phase with MPC controller (P =
20, M = 2) and TMIA controller.
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Figure 6.17: Quadruple Tank control in non-minimum phase with MPC controller
(P = 100, M = 2) and TMIA controller.
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6.3 Summary

The design of the TMIA controller with the specifications for the control platforms

and results have been discussed in this chapter. The TMIA controller was successfully

implemented on the Quadruple Tank system via the QUARC platform and the Siemens

SIMATIC S7-300 CPU 314C-2 PN/DP PLC and works effectively on both minimum

phase and non-minimum phase configurations of the plant. From experimental results,

the TMIA structure was found to outperform the classical IMC and Modified IMC

controllers in terms of handling windup and directionality when constraints are active.

Furthermore, the TMIA controller was also compared with MPC and produced similar

performance with long horizon MPC for the minimum phase case.



Chapter 7

Conclusions and Future work

7.1 Conclusions

In conclusion, the objectives of the thesis were achieved. The TMIA controller pre-

sented in [24] has been developed to incorporate rate constraints in a simple and effec-

tive way. The TMIA controller was also successfully implemented on a multivariable

quadruple tank system using a Siemens PLC with limited computing capacity and a

QUARC/MATLAB platform. Comparisons were made with other IMC formulations

and an MPC controller. Extensive results based on PLC computation were obtained

and recommendations for suitable algorithms have been made.

The PLC program was implemented in ladder logic using 3 different algorithms

namely interior point, active set and projected fast gradient method for the quadratic

programs of the TMIA controller. The results show that a simple and efficient ad-

vanced controller like TMIA controller can be realized on a standard PLC which is an

affordable industrial alternative to MPC for input-constrained multivariable processes.

The projected fast gradient method was found to be the most suitable QP algorithm for

the PLC implementation due to its least computing requirements. The memory utiliza-

tion and execution time in the region of a few milliseconds using show that the TMIA
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controller on the PLC can be applied to much faster processes. The results also show

that though difficult, advanced algorithms like quadratic optimization can be coded on

a PLC from scratch using ladder logic for ease of understanding and debugging by

operators and technicians in industry.

7.2 Future directions

7.2.1 PLC coding using Text-based programming

Based on the results in Chapter 5, a limitation in using ladder logic is the difficulty in

implementing loops, conditional branches and complex algorithms. The results from

the Active Set implementation show low execution times and low number of QP iter-

ations but very high PLC memory utilization for the program code. Hence a further

research direction would be to implement the three previously used optimization al-

gorithms on a PLC using a text-based language like Structured Control Language (for

S7). The computation requirements will be compared using the same indices and more

in order give a clearer view of the algorithm capabilities and also an algorithm recom-

mendation for low computing capacity devices.

7.2.2 Rate constrained TMIA controller for fast systems

There is limited control literature dealing with rate constraints and the literature is

mainly focused on input magnitude constraints. The TMIA controller in [24] has been

formulated for rate constrained systems in this thesis. Results in this thesis show the

application of the TMIA controller to a slow quadruple tank process. Hence a further

research direction is to use the rate constrained TMIA controller for implementation

on a faster system such as on a nanopositioning stage.
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7.2.3 Comparison with MPC

Due to computational limitations on the QuaRC-MATLAB platform, the MPC con-

troller implemented had a limited control horizon. Hence the designed TMIA algo-

rithm with rate constraints on the nano-stage could be embedded on a platform such

as an FPGA for comparison with a MPC controller with sufficient control horizon.

This would provide a better benchmark to compare computation capabilities of the

two algorithms.
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