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Abstract

The world is producing digital data at a rapid pace and this led to a new way
of seeing data as Big Data. Big Data refers to large numbers of large datasets
that typically include complex, various, rapidly-changing data of uncertain quality
that (usually) need preprocessing before analysis. Data integration over Big Data
gives rise to the challenge of correlating unruly and heterogeneous repositories of
data sources.

In this thesis, our focus is on integration techniques for Big Data, more specif-
ically on generating mappings over large repositories of heterogeneous and au-
tonomous datasets. A schema mapping generation algorithm constructs views for
populating a target database schema from source schemas. We have designed,
developed, and validated techniques for generating schema mappings over au-
tonomous data sources for which scant information is available, and for complex
multi-relation, constrained target schemas, at scale. Our proposed algorithm is
called Dynamap(X) and has at its core the dynamic programming paradigm for
performing the search over the space of mappings. The mappings are built in a
bottom-up fashion, where the merge operators are chosen based on profiling infor-
mation on the sources, i.e., candidate keys and (partial) inclusion dependencies.

We have employed Dynamap(X) in three main types of experiments: (i) with
the state-of-the-art integration scenario generator, thus, showing that it can handle
scenarios that are expected to be tackled by mapping generation algorithms;
(ii) with variations of real-world scenarios that come from different domains with
autonomous sources, showing that it can handle integration problems from real
datasets; and (iii) with stress-test scenarios showing that our algorithm can handle
scenarios where the input comprises hundreds of data sources.
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Chapter 1

Introduction

"Take the first step in faith. You don’t have to see the whole staircase,
just take the first step."

– Martin Luther King Jr. (1929 - 1968)

1.1 Motivation: Challenges and Opportunities

The world is producing digital data at a rate that is rapidly increasing due to
many technological trends, such as user interaction on social media platforms,
and machine-generated data. For instance, it was reported in Halevy et al. (2016)
that Google has indexed 26 billion datasets and this number keeps growing.
This has led to a new way of seeing data as Big Data. Big Data refers to large
numbers of large datasets that typically include complex, various, rapidly changing
data of uncertain quality that (usually) need pre-processing before analysis. Big
Data comes with its challenges which many refer to as the three Vs [Furht and
Villanustre (2016); Oussous et al. (2018)]:

1. Volume refers to the size of the data, i.e., instances and/or number of
sources.

2. Variety refers to the formats in which the sources come, e.g., diverse struc-
tured representations of the data, as well as their domain.

3. Velocity refers to the pace at which information is generated, stored, an-
alyzed, and managed by processes. With every new piece of information,
the format and schema of the generated data can be different from previous
versions making it all too fast to follow manually.

According to Furht and Villanustre (2016), in addition to the above mentioned

13



14 CHAPTER 1. INTRODUCTION

three Vs, there is (at least) one more V, for value, referring to the benefit the user
can obtain from Big Data.

In this thesis, broadly speaking, our focus is on integration techniques for Big
Data coming from autonomous sources. There are several surveys that present
methods for the data integration process [Chen et al. (2014); Ali et al. (2016)].
Data integration has the goal of providing the user with a unified view over local
or remote, typically autonomous, data sources. The overall outcome is usually a
view containing information about entities which are more coherently modelled
as the data is extracted from multiple sources. However, considering the above
Vs, data integration over Big Data gives rise to the challenge of correlating data
over large numbers of heterogeneous data sources in a constantly-changing, and
unruly repository. Nonetheless, data integration is an essential step preceding any
data analysis, which often relies on usefully correlated information.

1.1.1 Paradigmatic Scenarios

To motivate the need for schema mapping generation for autonomous data sources,
which is the narrower focus of this thesis, we use two example scenarios illustrated
in Figures 1.1 and 1.2. These exemplify two of the abstract patterns found in many
data integration applications, viz., instance verticality and schema horizontality.

Figure 1.1: Instance vertical portal example

Example 1.1.1. Instance vertical portal. By instance vertical we mean that the
outcome of integration is, broadly speaking, the iterated union of the sources.
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Consider a real-estate aggregator company that needs to supply information
for data analysis on house prices to a business partner. The aggregator needs
to deliver data that is sourced from different locations (from different suppliers)
with unrelated schemas, i.e., schemas that have different names and structures,
but broadly store the same kind of information, e.g., postcodes, addresses, prices,
etc.

Figure 1.1 depicts an example of the above scenario, i.e., there are three rela-
tional schemas, Oxford, London and Manchester Realestate, representing different
web-extracted data sources that contain the same kind of information. The data
that is required by the business partner is specified by means of a single-table
target schema UK Realestate: city name, postcode, street name, and price.

Notice that the aggregator company would need to devise techniques to identify
the relevant sources of required data (e.g., ensure that all sources contain the
attributes needed), and correlate the (often schema-incompatible) data prior to
delivering it as a single dataset to the partner, who need not be aware that the
data comes from different sources. Here, roughly speaking, each of the sources
contains subsets of the tuples that should appear in the target.

Figure 1.2: Schema horizontal portal example

Example 1.1.2. Schema horizontal portal. By schema horizontal we mean that
the outcome of integration is, broadly speaking, the iterated join of the sources.

Consider a similar scenario to the one in Example 1.1.1 where a company
delivers information to a business partner, but the information needed by the
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partner is contained in different data sources that do not contain the same kind
of information, i.e., the sources are schema complementary w.r.t. the required
data.

Figure 1.2 depicts an example of the above scenario, i.e., different source
schemas contain parts of information that is required by the business partner.

Notice that the aggregator company would need again to devise techniques to
identify the relevant sources of data, merge the data using appropriate attributes
prior to delivering it as a single dataset to the partner, who again need not be
aware that the data comes from different sources. Here, roughly speaking, each of
the sources contains subsets without the partner being aware of the data behind
the view that is served to them.

Furthermore, to complicate matters, we can assume that the source schemas
used by the company undergo periodic changes due to the dynamic nature of its
business, e.g., it may add attributes such as managing agency, construction year,
or currency that have become of interest for the business partner. Given these
changes in required data, an expert user in charge of delivering the data would
need to review all data sources and go through the same process of generating
the dataset desired by the partner.

In both examples, an expert must find the relevant attributes in the sources
(e.g., in Example 1.1.2, UKDeprivation.Crimerank information is needed in the
target schema as data values in UKRealestate.CrimeRank). Also, the expert must
find patterns (e.g., relationships) in the source data that enable the appropriate
merging of the relevant datasets. Then, taking the identified source attributes into
account as well as the inferred relationships, the expert must design queries that,
when evaluated, transform the data in the sources into data that can populate the
target (e.g., in Example 1.1.2, tables ManchesterRealestate and UKDeprivation
need to merge to correlate the realestate entries with the corresponding crimerank
information, and, if there is value overlap, a sensible way of merging would be to
join them by using the postcode attributes in the two tables).

1.1.2 Challenges and Opportunities

Examples 1.1.1 and 1.1.2 hint at the challenges tackled by experts in charge of
delivering an integrated view on multiple autonomous, heterogeneous sources.
These can be generalized as follows:
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1. How to manage a (potentially large) repository of data sources and identify
the relevant sources for the required data?

2. How to infer relationships between the (initially unrelated) data sources so
as to correlate the data, especially for scenarios such as in Example 1.1.2,
where it is plausible for the merged sources to have completely different
schemas and domains?

3. How to find, given the inferred relationships, a set of executable queries
that, when run over the pool of relevant sources, generate an integrated
view that correlates data as specified in a target schema?

4. How to deal with the problem of constantly-changing data and schemas that
cause one to have to review and redesign the view to fit the new target?

In a setting with a large volume of data sources, which are constantly changing
in terms of either stored information or schema format, manually creating the
required view in the light of all the above challenges becomes unfeasible. This
shows the growing relevance of a solution to the problem of automating the process
of creating views in the format of a target schema given large heterogeneous source
repositories in the context of volume, variety, and velocity of Big Data. In this
thesis, we contribute to this solution. We address data integration challenges in
the context of the three Vs by proposing a set of techniques to correlate repositories
of independent and diverse data thereby adding value to the available data.

1.2 Schema Mapping Generation for Databases

Schema mapping. Schema mapping is an essential operation in any data inte-
gration process whereby, when executed, the mapping transforms data under the
source schemas into data conforming to a target schema [Lenzerini (2002)]. More
specifically, a schema mapping is an executable transformation that specifies the
manner in which the tuples from the source schemas should be used to generate
tuples in the target.
Mapping generation. Schema mapping generation is the data management
task that, given a set of sources and a target schema, generates schema mappings.
The generated mappings are in a logical format that expresses the relationship
between the source and target schemas. Thus, mappings are commonly expressed
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as source-to-target tuple generating dependencies (s-t tgds – described in Sec-
tion 2.1.3) which can, in turn, become executable queries expressed in query
languages (e.g., SQL), depending on the underlying storage systems [Fagin et al.
(2005)].

Available knowledge for mapping generation. Previous schema mapping
generation approaches take as input at least one source schema to be mapped to
one target schema, schema matches (also known as correspondences) and (possibly)
schema metadata (e.g., schema constraints such as primary keys and foreign key
relationships) to create mappings w.r.t. the chosen target format [Miller et al.
(2000); Popa et al. (2002); Mecca et al. (2009)]. Prior work, such as the Clio
project [Fagin et al. (2009)], which has been extremely influential in this area,
consider the input as containing one source schema and one target schema, where
the source schema is well-behaved, by which is meant that it has been designed
according to relational theory (in the typical cases) and that all design constraints
are explicitly known. Thus, it is often the case that the creation of explicit join
paths is done through the use of semantic constraints such as key or foreign key
constraints. In the absence of such schema metadata, merge opportunities can be
overlooked.

Example 1.2.1. Consider again Examples 1.1.1 and 1.1.2, in Figures 1.1 and 1.2.
For the purpose of creating the desired views, an expert creates a set of schema
matches between the sources and the desired target potentially with tool support,
so as to specify the relevant data in the sources (e.g., in Example 1.1.2, UKDepriva-
tion.Crimerank matches UKRealestate.CrimeRank, and UKLQI.IncomeRank from
UK Life Quality Indices table matches UKRealestate.IncomeRank, etc). Then,
these matches are used to design the appropriate schema mappings (e.g., in Exam-
ple 1.1.2, sources UKDeprivation and UKLQI need to be merged following a (set
of) join path(s) that are either inferred or explicitly declared). However, in neither
of the Examples 1.1.1 or 1.1.2 there are explicit schema constraints, although if
there is a value overlap at attribute level, two tables (e.g., the two aforementioned
tables, UKDeprivation and UKLQI ) might be merged by performing a relational
equijoin on the county attributes in each of the two tables.

Schema mapping generation use cases. The use cases of schema mapping
generation are, generally, in data management processes such as data integration
[Lenzerini (2002)], data exchange [Kolaitis (2005); Fagin et al. (2009)] (a.k.a.
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data translation [Shu et al. (1977)]), peer-to-peer data sharing [McBrien and
Poulovassilis (2003b); Fuxman et al. (2006)], schema integration [Batini et al.
(1986)], and schema evolution [Yu and Popa (2005); Curino et al. (2008)]. The
importance of data management tasks, especially data integration, was recognized
decades ago in works such as the ones carried out by Shu et al. (1977), Casanova
and Vidal (1983), and Batini et al. (1986). However, much has evolved in the past
years because the constant increase in digital data gave rise to new challenges
which were addressed, e.g., by Halevy et al. (2006); Bernstein and Haas (2008);
Dong et al. (2009) and Golshan et al. (2017) who focus on issues such as the need
to integrate data without having to materialize all sources in a single place, new
data management requirements in organizations, manipulating uncertain data,
or sharing information between data services. Moreover, Dong and Srivastava
(2013) describe the integration challenges in terms of Big Data Vs, highlighting
the need to merge disparate, large, and heterogeneous sources. Although these
works describe both old and new challenges, they all rely on the same common
step of bringing sources together in a unified view through schema mappings. The
distinction comes from the fact that the mapping generation problem changes its
context according to the constant evolution of the data landscape.

1.3 Outline and Contributions of the Thesis

In this section, we state our main objectives and sketch the overall approach to
the schema mapping generation problem explored in the dissertation, i.e., schema
mapping generation for autonomous data sources. In our work, we set three main
objectives, and each of them is described together with proposals for tackling it
that constitute our research contributions.

The overall aim of this thesis is to design, develop, and validate techniques for
generating schema mappings over autonomous data sources for which scant infor-
mation is available, and for complex multi-relation, constrained target schemas,
at scale.

1.3.1 Thesis Contributions

This thesis has three main objectives:

Objective 1: Mapping generation for a single-relation target schema – to
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merge sources that do not have any explicitly declared relationships (i.e., declared
foreign keys that would facilitate the creation of the join paths) w.r.t. a target
schema with one target relation and no constraints.
Contribution 1.1: We have devised a decision procedure that combines pairs of
candidate mappings, informed by intra-source and inter-source information, viz.
relational metadata and profile data [Abedjan et al. (2015)], respectively.
Contribution 1.2: We have designed, implemented and evaluated a dynamic
programming algorithm that explores the space of candidate mappings, identifying
opportunities for combining source relations building on Contribution 1.1.
Contribution 1.3: We have designed and implemented a method for inferring
profile data for candidate mappings without materializing their results. The pro-
posal in Contribution 1.1 needs such information at each step of the dynamic
programming iteration proposed in Contribution 1.2. Thus, inferring and propa-
gating profile data without materialization becomes paramount.

Objective 2: Mapping generation at scale - to generate mappings over a large
set of input sources.
Contribution 2.1: We have designed, implemented and evaluated several prun-
ing strategies for a search space of mappings such that they filter the candidate
mappings keeping only those that promise to yield desirable outcomes.

Objective 3: Mapping generation for a multi-relation target schema with
constraints – to extend Objectives 1 and 2 in order to encompass target schemas
with multiple relations that have schema constraints and thereby create and select
mappings that violate as few target constraints as possible.
Contribution 3.1: We have designed, implemented and evaluated an algorithm
that populates a multi-relation target schema where constraints such as candidate
keys and foreign keys are satisfied to the greatest possible extent when populating
the corresponding attributes.
Contribution 3.2: We have designed, implemented and evaluated a mechanism
for characterizing the generated mappings based on the degree of target constraints
violation. This enables other data management modules (such as mapping selec-
tion) to rank the mappings in terms of their suitability for populating a given
target.

The contributions above give rise to a comprehensive mapping generation
system, which we have evaluated empirically. In doing so, we have (i) explored its
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applicability on simple and complex benchmark scenarios generated by the state-of-
the-art mapping generation benchmark (iBench); (ii) explored its performance
on open-government and web-extracted data from two real-world domains; and
(iii) explored its scalability on generated scenarios involving large numbers of
sources populated with synthetic data.

1.3.2 Thesis Structure

The structure of the thesis closely follows the above stated objectives and contri-
butions:

Chapter 2 describes the background and the related work on schema mapping
generation which are necessary for understanding the research context under which
this work has been developed and the contributions of this thesis.

In Chapter 3, we describe our proposal for mapping generation given many
source schemata and a single-table target schema without schema constraints.
This chapter contains (i) the description of a decision procedure that combines
pairs of candidate mappings, informed by profiling data, (ii) the description of a
dynamic programming algorithm that explores the space of candidate mappings to
incrementally identify opportunities for combining subsets of source relations on
the basis of profiling data, (iii) a description of an approach to infer the profiling
data for the result of a relational operator application from the profiling data of
its operands that removes the need to materialize intermediate mappings, and
(iv) an evaluation of the resulting algorithm, called Dynamap, against a set of
primitive scenarios [Arocena et al. (2015)] built using the state-of-the-art data
integration benchmark iBench, and against a scenario stemming from a larger
real-world domain. In these evaluation scenarios, we measure the quality of the
data generated by the output mappings.

In Chapter 4, we describe an approach to tackling the problem of unifying a
large set of large data sources, i.e., mapping generation at scale. We first analyze
the complexity of the mapping generation algorithm described in Chapter 3
which leads to a challenge of run-time efficiency. In order to explore a large
space of candidate mappings using dynamic programming, we describe a set of
pruning strategies which aim to keep control over the search space and, as a
result, on the growth of the running time. For evaluating the effectiveness of
the pruning strategies, we describe an integration scenarios generator, called
Synthegrate, which we use to create large scale scenarios against which
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we can stress-test the mapping generation algorithm. We conduct an empirical
evaluation that explores different aspects of the pruning strategies:

• Evaluation against scenarios generated using iBench. We show that, even
though the pruning strategies discard candidate mappings, Dynamap can
still tackle complex scenarios comprising merged integration scenarios.

• Evaluation against real-world scenarios. We use two real-world domains
(one of which is the extended scenario of the one in Chapter 3) to show
that there are real-world scenarios for which, compared to a ground-truth
mapping, the generated output mapping generates satisfying results.

• Accuracy of profiling data propagation. We again use the real-world sce-
narios to measure the accuracy of the propagation method for profiling
data. As the propagation results are estimations of the real values, we
measure the accuracy of the results by comparing the estimations against
the accurately-determined results of a profiling tool that was run on the
forced materialization of the intermediate mappings.

• Efficiency of the pruning strategies on large scale scenarios. We use Syn-
thegrate to generate various large scale scenarios and stress-test the
algorithm for running time.

• Effectiveness of each pruning strategy. We show the effectiveness of the
pruning strategies by measuring the run-time with each pruning strategy
active so as to quantify how each strategy impacts on the overall run-time.

In Chapter 5, we describe a proposal, called Dynamap(e)X(tended), for schema
mapping generation between many source schemata and a multi-table target
schema with constraints. The main contribution of this chapter is a method to
alter the mappings generated by the algorithm described in Chapters 3 and 4 so
that they generate data for each of the desired target tables taking into account
the target constraints.

To evaluate DynamapX , we conduct a similar evaluation to the ones in Chap-
ters 3 and 4, where we analyze the behaviour of the algorithm on integration sce-
narios generated with iBench, and, on real-world scenarios on target schemas
with constraints, measuring the quality of the output data with reference to the
ground-truth.
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In Chapter 6, we briefly discuss how our contributions fit into the research
area of mapping generation and we outline possible future directions for schema
mapping generation over autonomous data sources which have not been addressed
and seem to be suitable next steps stemming from the contributions and evaluation
reported here.



Chapter 2

Related Work

"Progress lies not in enhancing what is, but in advancing toward what will be."
– Khalil Gibran (1883 - 1931)

Schema mapping generation has been the subject of significant research and
development effort. In this chapter, we review work on mapping generation for
databases, its context in data exchange, and schema mapping generation in the
wild, i.e., over autonomous sources.

2.1 Schema Mappings for Databases

In comparing related mapping generation proposals, it is also important to con-
sider the data model used to describe the source and the target schemas, and
the language in which the mappings are expressed, thus, we briefly discuss these
before discussing the related work on mapping generation.

2.1.1 Data Model and Database Schemas

A data model is used to represent a formal description of information. This
description comprises the structure of the data, a.k.a., the conceptual model;
possible operations on the data, i.e., the types of queries for retrieving or modifying
the data and that can be run over the structure of the data; and the constraints
on the data, i.e., the description of the limitations imposed on the data to be
stored. The two most commonly-used data models for database systems are
[Garcia-Molina et al. (2008)] the relational model and the semi-structured data
model.

24
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Prior work on mapping generation has been on both relational and semi-
structured data models. The work presented in this thesis focuses on the relational
model, however, it could be extended to the semi-structured data model, as it
will be presented as an open technical challenge in Chapter 6. We describe below
the relational data model.

2.1.1.1 The Relational Model

Data Structure. The relational model is based on relations (i.e. tables) which are
two-dimensional data structures that have field headers representing attributes
(table columns). Under each attribute one can find values, and a row of attribute
values represents a tuple. A relational schema comprises a set of relations. The
values that a relational database stores are either constants or nulls, where the
latter can be labelled nulls. The notion of labelled nulls (a.k.a. skolems) has been
described in works such as Hull and Yoshikawa (1990), where Skolem functions
are discussed as a means for the invention of unique values. The usefulness of
these invented values for generating solutions in integration scenarios has been
recognized and described among others Mecca et al. (2009).

The structure of a relational database can be formalized as [Garcia-Molina
et al. (1999)]:

• Attribute names (columns names) are represented by A = {A0, A1, .., Am}.
Under the label of an attribute Aj ∈ A, there is a set of values which can
be either a constant or a (labelled) null. The number of distinct values in
an attribute Aj ∈ A is denoted V (Aj).

• A set of relation names (table names) is represented by a setR = {R0, R1, .., RN},
where each relation Ri ∈ R, i ∈ {0..N}, contains a set of attributes A, defin-
ing its schema and denoted by Ri(A0, A1, .., AmRi ). We say mRi is the arity,
i.e., the number of attributes, of relation Ri.

• An instance of a relation Ri is a set of tuples (rows), where a tuple
is of the form Ri(A0 : v0, A1 : v1, .., AmRi : vmRi ), where each value vi ∈
{v0, v1, ..., vmRi} can be either a constant or a (labelled) null. We say that
the total number of tuples of relation Ri is its cardinality denoted by |Ri|.

• A set of database schemas is represented by a set S = {S0, S1, .., Sk},
where each schema Si ∈ S, i ∈ {0..k}, comprises a set of relations Si =
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{R0, R1, ..., RNSi
}.

• Given a database D, D can contain one or more schemas, thus, D =
{S0, S1, S2...}.

Operators. The operations that can be typically performed under the relational
model are:

1. Binary set operators on relations: union, intersection and difference;

2. Unary operators that (partially) retrieve data in the relations: selection,
which selects some of the rows of a relation, and projection, which selects
some of the columns of a relation;

3. Binary operators that merge the data in two relations: join, which merges
the tuples in two relations based on the values in a set of condition attributes,
and cartesian product which merges, pairwise, all tuples in both argument
relations;

4. Unary operators that change the relation schema by renaming the attributes
and/or the relation.

These operators are usually formalized in relational algebra, which we discuss in
Section 3.1. In Section 3.3, we discuss under which settings we use a set thereof
to merge input relations to create schema mappings.

Constraints. The relational constraints describe the type of data and the values
that can be stored by a relational model. For schema mapping generation, the
constraints that are most relevant are key and foreign key constraints that are set
on individual and on pairs of attributes, respectively. In Section 2.1.4, we discuss
related work that uses schema constraints in mapping generation.

2.1.2 Schema Mappings

The creation of schema mappings is an essential step in processes such as data
integration, where the data residing in multiple sources needs to be merged and
transformed so as to populate a desired target. Schema mappings are executable
transformations that specify the manner in which the tuples from the source
schemas are used to generate tuples in the target. The chosen target is usually
referred to as a global schema, or a mediated schema, and it represents the unified
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virtual view that will contain the merged source information. In Lenzerini (2002),
there are described and compared three proposed approaches to model the rela-
tionship between the target, i.e., the global schema that would contain the virtual
data, and the sources, which contain the original data. One of the approaches is
global-as-a-view, where the target is expressed in terms of data sources; the second
approach is named local-as-a-view, where each source is defined as a view over
the global schema, with the global schema being independently defined from the
sources, and the third is global-and-local-as-a-view, which is a combination of both
preceding approaches. These models are used in tasks such as query answering
[Halevy (2000)] so that it can be determined how a query executed on a data
integration system delivers the data. We now briefly discuss the three types of
schema mappings.

Global-as-a-view (GAV). In the GAV model, each global relation has an
associated mapping which specifies how to retrieve the data from the sources to
the target. This model is suitable when the sources are less likely to change, and
a flexible global schema is desirable, thus, every change that the global schema
might suffer needs to be reflected in modifications to the mappings between the
sources and the new global schema. However, if the pool of sources is enriched by
adding new elements, then the already defined mappings need to be refined such
that the new sources are taken into consideration if they are relevant for the view
that the global schema encompasses.

Local-as-a-view (LAV). In this context, the global schema is defined inde-
pendently from the sources, but the sources are specified in terms of the global
schema and its concepts. Such an approach is desirable when the global schema
is unlikely to change, while the sources can be changed as often as needed by
either altering their schemas or removing sources completely. Such source schema
changes would not alter the global schema, however, the mappings between the
sources and the global schema would need to be changed according to the source
modifications.

Global-and-local-as-a-view (GLAV). In more recent works such as [Dong
and Srivastava (2013)], there has also been a focus on a combination of GAV and
LAV, namely global-and-local-as-a-view (GLAV) mappings. This model specifies
both the mediated data and the local data as views of data of a virtual schema.
The GLAV mappings are usually named tuple-generating dependencies which we
discuss in more detail in Section 2.1.3.
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Other works, such as the one undertaken by McBrien and Poulovassilis (2003a),
have built on the above approaches and propose both-as-a-view (BAV) where,
similar to GLAV, they combine global-as-a-view and local-as-a-view such that,
with their proposed method, it is possible to define a view of the global schema
using the sources, and, at the same time, it is possible to define a view of the local
schemas using the global one, i.e., they treat both global and the local schemas as
sources. Additionally, they introduce a method for updating the mediated schema
based on the integration of the newly added sources, and they do this by creating
a mapping that alters the attributes and the relations (add, delete, or rename) in
the mediated schema. With the BAV approach, schema evolution on either the
sources’ part or the global schema part are supported, providing a framework for
schema transformation and integration.

2.1.3 Schema Mapping Languages

A mapping specification language needs to accurately reflect the transformation
from one (set of) schema(s) to another. We now briefly discuss on a formalism to
express transformations between a source schema and a target schema, e.g., that
encompasses GAV, LAV, and/or GLAV.

2.1.3.1 Tuple-generating Dependencies (tgds)

Tuple-generating dependencies (tgds) and equality-generating dependencies (egds)
are two types of database dependencies with which one can express either rela-
tionships between relational database components, or constraints on them [Beeri
and Vardi (1984)]. They were first used for database design, but, in the past
decades, tgds and egds have been used to express schema mappings and for data
exchange [Fagin et al. (2005)].

Given a relation R(A0, A1, ..., Am), where A ∈ {A0, A1, ..., Am} are the attributes
of R, a tgd is a first-order formula of the form:
∀A(φ(A)→ ∃Y ψ(A, Y )), where A, and Y are sets of attributes, and :

• φ(A) is a conjunction of atomic formulas, each formula being over attributes
in A,

• ψ(A, Y ) is a conjunction of atomic formulas, each formula having variables
from A and Y ,
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• all variables Ai ∈ A appear in φ(A), but not necessarily in ψ(A, Y ).

Source-to-Target tuple-generating dependencies. A commonly used
formalism to express mappings, i.e., transformations between a source and a
target, is source-to-target tuple-generating dependencies (s-t tgds). These are
expressions that describe which tuples in the source should also appear in the
target. Thus, in the context of using tgds to express schema mappings:

• φ(A) is a conjunction of atomic formulas over the source schema(s), where
A is a set of source attributes,

• ψ(A, Y ) is a conjunction of atomic formulas over the target schema, where
A is a set of target attributes bound to the source attributes, and Y a set
of unbound target attributes.

Example 2.1.1. For the example in Figure 1.2, the following tgd would transform
tuples from the format of UK Deprivation source to the target format of UK
Realestate:

∀lc, cr, cd, co, pc : UKD(lc, cr, cd, co, pc)→ ∃I, S, P : UKR(I, cr, pc, S, P )

This mapping expresses that for all tuples in UKD, copy the crime-rank (cr),
and postcode (pc) values into the target (UKR), with income (I), street (S) and
price (P ) left as nulls.

Source tgds and Target tgds. These expressions usually represent the
constraints in, resp., the source and the target when there are, e.g., foreign key
constraints. In the context of schema mapping generation, they are part of the
input metadata from the source and/or target schemas.

Example 2.1.2. In Figure 1.2, we mentioned that for merging two of the source
relations, one might need to infer some relationships between them, such as
foreign keys. Let us assume that we infer a foreign key relationship between UK
Deprivation and Manchester Realestate (both are sources) as we can assume that
the postcode values in the open-government data source will fully contain the
postcode values in the realestate source. The tgd that expresses this foreign key
constraint is:

∀le, a, bcy, c, pc, s, bn, pr : MR(le, a, bcy, c, pc, s, bn, pr)→
∃LC,CR,CD,CO : UKD(LC,CR,CD,CO, pc)
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This expression represents a foreign key constraint: for every postcode (pc)
value in MR there exists one postcode (pc) value in UKD which is equal to it,
i.e., all the values in MR.pc are contained in the values of UKD.pc. This is the
full containment condition that needs to be satisfied between two attributes that
share a foreign key constraint.

2.1.3.2 Equality-generating Dependencies (egds)

Equality-generating dependencies are used to represent key constraints, which, in
the context of schema mapping generation, are part of the input metadata on the
source and/or target schemas.

Example 2.1.3. In Figure 1.2, again, suppose one wants to express that the post-
code attribute in UK Deprivation is a candidate key, then the egd that expresses
this key constraint is:
∀lc, lc′, cr, cr′, cd, cd′, co, co′, pc :
UKD(lc′, cr′, cd′, co′, pc)∧ UKD(lc, cr, cd, co, pc)→
(lc = lc′) ∧ (cr = cr′) ∧ (cd = cd′) ∧ (co = co′)
The egd above expresses that if there are two tuples in relation UKD that

have the same values on postcode (pc), then all the other corresponding values
in the two tuples are the same, essentially, stating that the postcode uniquely
identifies every tuple in relation UKD.

2.1.4 Schema Mapping Generation

Schema mappings can be created manually if there are experts that understand
the characteristics of the sources and of the desired target, such as the data
model descriptions, format and constraints. However, with the constant growth
in available datasets that need integration [Bernstein and Haas (2008)], it has
become increasingly relevant to automate schema mapping generation. Schema
mapping generation has been the subject of significant research and development
effort. In this section, we review work on mapping generation for databases.
Definition. A schema mapping generator has the signature MapGen(P ) →M ,
whereM is a set of generated mappings and P is a collection of parameters. P may
include at least the following: S, a (potentially singleton) set of source schemas;
T , the target schema; MDS, metadata about the sources; MDT , metadata about
the target; and MDS→T , metadata that relates S to T . The mappings in M
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are usually expressed in the generic form of s-t tgds, as this abstracts over the
conceptual model underlying the database system, but, to execute them over the
data, they need to be translated into an executable query language, e.g., SQL.

In relation to mapping generation for databases, probably the most influential
proposal is Clio first described by Miller et al. (2000), where MDS and MDT

include not only type information, but, crucially, also foreign key constraints;
MDS→T consists of matches between elements of S and T , which are called value
correspondences. The described algorithm generates separate queries for each
target relation, where a query is a single select-from-where-group-by clause, by
using subsets of value correspondences that match the target relation. Each target
attribute is matched at most once by each candidate subset of value correspon-
dences, and the candidate set is said to be complete if all the value correspondences
for every attribute in the target are included. If the value correspondences in
a subset involve multiple source relations then they must satisfy the condition
of taking part in (at least) one join path, which is found using foreign key con-
straints between the sources, otherwise, the set is discarded. The algorithm
continues by selecting the minimum number of candidate sets that cover all input
value correspondences (even if the same correspondence appears in several sets),
thereby reducing the possibility of generating mappings that output redundant
data. Then, for each candidate set, the algorithm creates the corresponding query
using value correspondences that involve a (sub)set of source relations merged
through join paths detected through foreign key constraints. At the end, the
union all operator is applied over all the created queries.

Importantly, Clio was designed to support an integration expert in the de-
velopment of schema mappings, and S is assumed to be a single schema. As a
result, although the Clio algorithm can be run over multiple source schemas, the
transformations used in mapping generation tend to assume that there is a single
schema for the source, with specified keys and foreign keys.

Schema mappings with target constraints. The initial Clio algorithm pro-
duced reasonable results in the sense that data from the source was translated
into the format of a chosen target. However, it failed to address the issue of
satisfying target constraints. Clio does not address this problem as it creates
mappings regardless of the fact that not all the target attributes are covered by
value correspondences. Key and foreign key constraints may be violated, e.g., if
there is a lack of value correspondences on the target key attribute(s). Given
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that, in general, sources can be expected to be heterogeneous, if not disjoint, i.e.,
having different origins, it is only natural that the target constraints might not
always be satisfied given the data.

In order to tackle the problem of generating mappings that address this issue,
the notion of semantic translations was introduced in Popa et al. (2002). Seman-
tic translation is the process of generating interpretations of the correspondences
such that they also satisfy the schema constraints, and whose results are named
logical mappings. The work described in Popa et al. (2002) is built upon the Clio
algorithm to which it adds a set of new features such that it is able to avoid data
inconsistencies. The described algorithm builds the logical mappings by using
associations between the source relations and between the target relations. For
example, considering a pair of value correspondences, v1 and v2, which match
two different target relations, the algorithm will first detect if the source relations
involved in the two correspondences can be associated through a (nested) refer-
ential constraint, and then it does the same check for the target relations as well.
A (nested) referential constraint can be a foreign key, for the relational model, or
provided through the nesting structure of the schema, for semi-structured data
model, i.e., XML. If after these checks it results that there is a link between the
data sources, and between the target relations, then, instead of generating sepa-
rate mappings for each target relation (as Clio did, in Miller et al. (2000)), their
mapping is built by taking into consideration both correspondences at the same
time. The associations are detected using two methods: the attributes involved
by the value correspondences are part of the same relation (structural association),
or the attributes belong to different relations, but the relations are linked through
a foreign key relationship, thus, it can be concluded that the attributes could be
semantically grouped together (logical associations). The logical associations are
considered to be maximal if there are no more attributes that can be added to
that semantic group. The logical associations are built using the chase method
[Maier et al. (1979)], where a chase step is an augmentation of an association by
applying to it a schema constraint.

Example 2.1.4. To describe better how the logical associations are built, consider
the example in Figure 1.2, and let the following be foreign key constraints between
the sources:

FK1: ∀le, a, bcy, c, pc, s, bn, pr : MR(le, a, bcy, c, pc, s, bn, pr)→
∃LC,CR,CD,CO : UKD(LC,CR,CD,CO, pc)
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FK2: ∀lc, cr, cd, co, pc : UKD(lc, cr, cd, co, pc)→
∃IR,EA,HR : UKQI(co, IR,EA,HR)

FK1 expresses that for each postcode in ManchesterRealestate (dependent)
there is a postcode value in UKDeprivation (referenced).

FK2 expresses that for each county value in UKDeprivation (dependent) there
is a county value in UKQualityIndices (referenced).

Chase step 0: Applying the chase method from the structural association
A1 implied by relation ManchesterRealestate:

A1 : MR(le, a, bcy, c, pc, s, bn, pr).
Chase step 1: Apply FK1 to A1 to obtain the logical association A2:
A2 : MR(le, a, bcy, c, pc, s, bn, pr), UKD(lc, cr, cd, co, pc),MR.pc = UKD.pc

Chase step 2: Apply FK2 to A2 to obtain the logical association A3:
A3 : MR(le, a, bcy, c, pc, s, bn, pr), UKD(lc, cr, cd, co, pc), UKQI(co, ir, ea, hr),

MR.pc = UKD.pc ∧ UKD.co = UKQI.co

A3 is the maximal logical association as there are no more constraints to apply
to it. Indeed, there are no more source relations either, but if there were, the only
thing that would matter would be the existence of other foreign keys that could
transform the created associations.

In a mapping generation scenario, the associations are considered separately
on the source and the target schemas. An association pair is said to cover
a correspondence if the source and target relations in the correspondence are
part of both the source and the target associations. Pairs of source and target
associations are translated into mappings expressed as tgds, where the target side
contains the conditions imposed by the value correspondences as well.

Example 2.1.5. Continuing Example 2.1.4, where A3 is the source association:
A3 : MR(le, a, bcy, c, pc, s, bn, pr), UKD(lc, cr, cd, co, pc), UKQI(co, ir, ea, hr),

MR.pc = UKD.pc ∧ UKD.co = UKQI.co,

and given the target association:
T1 : UKR(ir, cr, pc, st, pr).
(for simplicity, we only consider a subset of the matches in Figure 1.2):
v1: MR.pr → UKR.pr

v2: UKD.cr → UKR.cr

v3: UKQI.ir → UKR.ir

Here, v1, v2, and v3 are matches that state which source attributes match
which target attributes: attribute Manchester.price matches UK Realestate.price,
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UK Deprivation.crimerank matches the crimerank in UKR and, similarly, for
income rank in UK quality of life matching the income rank in the UK Realestate
target table.

Given that A3 and T1 associations include all source and target relations
involved in v1, v2, and v3, the algorithm detects that it needs to take into con-
sideration all three correspondences when generating the mapping. The mapping
corresponding to the three sources, i.e., MR, UKQI, and UKD, and the chosen
target, i.e., UKR, based on the above associations and their correspondences, is
the following tgd:
tgd_map: MR(le, a, bcy, c, pc, st, bn, pr), UKD(lc, cr, cd, co, pc), UKQI(co, ir, ea, hr),

MR.pc = UKD.pc ∧ UKD.co = UKQI.co→
UKR(ir, cr, pc, st, pr),
UKR.pr = MR.pr ∧ UKR.cr = UKD.cr ∧ UKR.ir = UKQI.ir

The method presented in Popa et al. (2002) was taken further by the work in
Fagin et al. (2009), where given a set of value correspondences, Clio can generate
nested tgds. However, the work in Fagin et al. (2009) is related to data exchange,
which we discuss in Section 2.2.

Another mapping generation system is (++)Spicy which is described in sev-
eral works such as Bonifati et al. (2008) (Spicy), Mecca et al. (2009) (+Spicy),
and Marnette et al. (2011)(++Spicy). The work on the Spicy project shows an
end-to-end data integration solution by pipe-lining integration components: first
running the matching component, inputting the matches (a.k.a. value correspon-
dences) into a process for mappings generation, and then improving the generated
mappings by adding a verification step [Bonifati et al. (2008)]. (++)Spicy map-
ping generation builds on the Clio algorithm, but adds to it further enhancements,
among which the following: (i) it rewrites s-t tgds to reduce redundancy generated
by subsumed mappings; (ii) it makes use of target constraints, more specifically
of key constraints that are expressed as target equality-generating dependencies;
and (iii) it addresses the problem of generating mappings for a target with nested
components, e.g., XML.

+Spicy [Mecca et al. (2009)] described a rewriting algorithm that takes as
input a set of s-t tgds (possible mappings) and rewrites them such that, when
materialized, the data redundancy is reduced, where Clio produced mappings that
can generate redundant data (named canonical solutions in the context of data
exchange which we discuss in Section 2.2). The work in +Spicy relied on the fact
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that it can be recognized when two tgds may produce redundant data, e.g., possibly
one subsuming the other. They studied various scenarios such as subsumption,
where one mapping appears to produce (at least) the same information as another
mapping, self-joins, and coverages w.r.t. the target, i.e., a coverage for the right-
hand side of a tgd is a set of atoms from other tgds that might represent alternative
ways of satisfying the same target constraint. According to their investigation
the most common rewriting is done for subsumption cases. They consider that a
mapping subsumes another if it can be detected that it can generate the same or
more information than the subsumed mapping. The method they use to check
if one mapping m′ subsumes another mapping m is by checking the right-hand
side of their tgds (the conclusion): if both conclusions are for the same target
relation(s), and at least one unbound variable from the conclusion of one mapping
m can be mapped to a bound variable in the conclusion of the other mapping m′,
then it is said that m′ subsumes m. When it is concluded that one mapping m′

subsumes another m, the tgds are rewritten such that the mappings produce less
redundant tuples. For rewriting the tgds, they used the following intuition: when
materializing the mappings, the first step would be to produce the tuples of the
subsuming mapping, and then materialize from the subsumed mapping only the
tuples that bring new information to the target.

Example 2.1.6. Given the example in Figure 1.2, assume we have the following
two mappings expressed as tgds:

m1: ∀lc, cr, cd, co, pc : UKD(lc, cr, cd, co, pc)→ ∃I, S, P : UKR(I, cr, pc, S, P )
m2: ∀lc, cr, cd, co, pc, le, a, bcy, c, s, bn, p :

UKD(lc, cr, cd, co, pc)∧MR(le, a, bcy, c, pc, s, bn, pr)→ ∃I : UKR(I, cr, pc, s, pr)
Both mappings are compared by looking at the right-hand side of the tgds.

It can be observed that UKR(I, cr, pc, S, P ) from m1 can be mapped into the
conclusion of m2, UKR(I, cr, pc, s, pr), by mapping: I → I, S → s, and P → pr.
Under the strategy above, the mappings are rewritten into m′1 and m′2:

m′2: ∀lc, cr, cd, co, pc, le, a, bcy, c, s, bn, pr :
UKD(lc, cr, cd, co, pc)∧MR(le, a, bcy, c, pc, s, bn, pr)→ ∃I : UKR(I, cr, pc, s, pr)

m′2 is unchanged as it is the subsuming mapping, i.e., more informative.
m′1: ∀lc, cr, cd, co, pc, le, a, bcy, c, s, bn, pr :

UKD(lc, cr, cd, co, pc)∧
¬(UKD(lc, cr, cd, co, pc) ∧MR(le, a, bcy, c, pc, s, bn, pr))→
∃I, S, P : UKR(I, cr, pc, S, P )
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m′1 has changed (compared to m1) so that, when materialized, only the tuples
that have not yet been materialized by m′2 will be produced, thus, avoiding
redundancy.

Similarly to the approach of +Spicy, and with the same aim of removing
redundancy, the method described in ten Cate et al. (2009) on laconic mappings
generation proposes another way of rewriting s-t tgds. The main method for
transforming a set of s-t tgds into a laconic mapping comprises four steps: the
first step is to build a finite list of possible tuple patterns. This is done by analyzing
the conclusions (the right-hand side) of the tgds. In the second step, each pattern
will have an associated precondition. A precondition is a first-order formula on
the sources which is able to detect if the solution will contain the pattern. In
order to do this, they use the notion of certain answers, i.e., a tuple is certain for
a target query q w.r.t. to a mapping m if it is returned regardless of the chosen
source instance I. There are methods for detecting certain answers, e.g., using
universal solutions (which we discuss in Section 2.2) and using query rewriting.
Their approach is based on the latter: given a query qT over the target schema T ,
qT is rewritten to a query qS over the source schema S such that qS(I) computes
the certain answers for the initial query. The approach to rewriting the queries
is based on MiniCon algorithm proposed by Pottinger and Halevy (2001). The
third step generates a set of side conditions expressed as a Boolean combination of
formulas of the form xi < xj. The purpose of the side conditions is to prevent the
creation of multiple versions of the same pattern in the solution, i.e., it handles
self-join scenarios where the same relation symbol appears more than once in
the right-hand side of a tgd. In the last step, the laconic mapping is built: the
right-hand side is a pattern, and its left-hand side comprises the pre-condition
and the side condition for its pattern.

The work on +Spicy was advanced in ++Spicy, its successor. ++Spicy was
described in Marnette et al. (2011) and introduces another important feature
of mapping generation: it uses target egds, as well, and similarly to +Spicy,
detecting the possible redundancies between mappings before materializing them
(unlike other works which first materialize and then remove redundancy, e.g.,
DEMo [Pichler and Savenkov (2009)]). ++Spicy builds on +Spicy where the
tgds, i.e. foreign keys, were chased. It adds a new feature which detects overlaps
between the tgd conclusions, i.e., ψ(x, y), and then chases them. Chasing the
egds has the effect of reducing nulls in two ways: the first is to replace nulls with
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constants, where it uses overlaps to do the replacements, and the second is to
detect that two nulls are one and the same, where it proposes a method for doing
skolemization, and thereby, create labelled null values that may be detected as
equal. An overlap is defined as follows. Consider the conclusions of two tgds
with the atoms R(t1, t2, . . . , tn) and R(t′1, t′2, . . . , t′n), and a functional dependency
R[a1, . . . , ai] → k, where k is a key attribute in R and {a1, . . . , ai} are a set of
attributes of R. An overlap is detected if, for each j ∈ {1 . . . i}, taj and t′aj are
both universal or they represent the same existential variable in y (ψ(x, y)). This
idea is used to rewrite the tgds involving the overlap such that they do the chase
on the tgds (as described in Popa et al. (2002)) and then they chase the egds. The
chase on the egds is done by equating the corresponding universal and existential
variables (as explained above).

Example 2.1.7. Assume that for the example in Figure 1.2, we have the following
mappings expressed as s-t tgds:

m1: ∀lc, cr, cd, co, pc : UKD(lc, cr, cd, co, pc)→ ∃I, S, P : UKR(I, cr, pc, S, P )
m2: ∀le, a, bcy, c, pc, s, bn, p : MR(le, a, bcy, c, pc, s, bn, p)→
∃I, CR : UKR(I, CR, pc, s, p)

Where the two relations, UKD and MR have a foreign key constraint ex-
pressed:

FK1: ∀le, a, bcy, c, pc, s, bn, pr : MR(le, a, bcy, c, pc, s, bn, pr)→
∃LC,CR,CD,CO : UKD(LC,CR,CD,CO, pc) (see Example 2.1.4)

In the target, UKR, the key constraint on UKR.pc is expressed as an egd:
egd : ∀i, cr, pc, s, p, i′, cr′, s′, p′ : UKR(i, cr, pc, s, p)∧ UKR(i′, cr′, pc, s′, p′)→

(i = i′) ∧ (cr = cr′) ∧ (s = s′) ∧ (p = p′)
The resulting tgd after the chase on the tgds (which is done following the

method described in Popa et al. (2002) and explained in Example 2.1.4) and,
then, after applying again the chase with the above egd is:

o : MR(le, a, bcy, c, pc1, s, bn, pr) ∧ UKD(lc, cr, cd, co, pc2) ∧ pc1 = pc2 →
∃I : UKR(I, cr, pc1, s, p)

However, it can be observed that the overlap o removes some tuples from the
output as it only produces the join of the two source relations. Thus, ++Spicy
adds another step which produces the tuples outside the merge by applying
negation to the original mappings. Applying negation on mapping m1 transforms
it into:

m′1 : UKD(lc, cr1, cd, co, pc1)∧
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¬(MR(le, a, bcy, c, pc2, s, bn, pr)∧pc1 = pc2)→ ∃I, S, P : UKR(I, cr1, pc1, S, P )
The same applies for transforming m2 as well.

2.1.5 Other Work on Schema Mapping Generation

Considering the usual settings for mapping generation, i.e., MapGen(S, T,MDS,

MDT ,MDS→T , )→M , whereM is a set of generated mappings; S, a (potentially
singleton) set of source schemas; T , the target schema; MDS, metadata about the
sources; MDT , metadata about the target; and MDS→T , metadata that relates
S to T , other researchers have proposed mapping generation approaches relying
on different kinds of evidence, e.g., instance-level data, user feedback, existing
mapping metadata, etc. In our setting, i.e., over autonomous sources, the schema
metadata may be scant (or completely missing). Thus, in our approach, we need
to look for different ways to make informed decisions to merge the sources that are
not obvious candidates for merging by virtue of explicitly declared join paths. In
this section we outline some of the research directions that have been developed
on issues related to schema mapping generation.
Using instance-level information. Techniques have been developed for the
case where instance-level data is included as evidence, where these instances
are typically provided by expert users. For example, in the work of Fletcher
and Wyss (2006) they describe Tupelo, a mapping discovery algorithm that
performs a search within the transformation space of example instances based
on a set of mapping operators. The mapping operators extend the relational
algebra with dynamic structural transformations, which dynamically promote
data to attributes and relation names, merge, or demote metadata to data values.
Essentially, these are operators which help create more complex mappings that
create structural transformations or manipulate the data by creating relationships
between schema components, e.g., attributes. The mapping discovery is done
using only the syntax and structure of the input examples.

In Gottlob and Senellart (2010), they do not propose a mapping generation
algorithm, but they describe a method for finding optimal schema mappings
based on the structure and occurrences of constants in the instances. Their main
contribution is the introduction of notion of a cost function for schema mappings.
The proposed cost function has different criteria such as validity, explanation,
zero-repair, etc. The work provides an analysis of the complexity of computing
a numerical value for each type of criteria of the defined characteristics. The
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computation of these characteristics is based on the source and target instance
data. They measure the number of repairs that are needed in order to correctly
transform the data from the source to the target format.

The work of Gottlob and Senellart (2010) has been extended by Cate et al.
(2017), where they allow the use of any finite number of ground-truth data ex-
amples (instead of just one), and they, also, consider more schema languages,
and for each language they consider a repair language which expresses equalities,
inequalities, and ground facts (as in Gottlob and Senellart (2010)).

Another work that relies on instance data is the one described in Alexe et al.
(2011a,b). This approach uses two kinds of evidence: instance-level data and user
feedback for refinement. Their algorithm considers a set of mappings expressed
as source-to-target tgds (GLAV) and a set of data examples. They characterize
these mappings in terms of a finite set of positive and negative data examples
and whether the mapping can generate the given data examples or not. The
mapping refinement process is guided by an expert user that iteratively gives
pairs of source and target instance examples as input to the system, repeating
the characterization step until they are satisfied with the generated mapping.

In a similar research direction, Bonifati et al. (2017) present the mapping
generation process as being steered using both instance data and user feedback .
The focus of their proposal is on bootstrapping a set of example tuples from the
source and the target, asking for feedback from the users and then generalizing
the input mapping to a new mapping that more closely meets the needs of users
based on their feedback.
Mappings reuse. Further work has sought to support the refining and reuse
of mappings. The notion of debugging schema mappings has been described in
Chiticariu and Tan (2006). This work focuses on developing a language that helps
the user understand a schema mapping. The user is able to select target/source
data and the debugging algorithms find a route to it. A route is the description of
the relationship between the source and target data within the schema mapping.
The algorithm they propose uses tgds and egds for expressing schema mappings
and Clio for mapping generation. However, the mapping descriptions, i.e., routes,
are not tied to the mapping generation algorithm.

Another research direction that has received attention is that of reusing map-
pings through the application of two mapping operators: composition and in-
version. Mapping composition means that two mappings can be combined such
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that the result of their successive execution has the same result as the execution
of their composition mapping. A first proposal in this direction was made by
Madhavan and Halevy (2003). The focus was on creating a composition operator
which has as a result a mapping such that a query q w.r.t. the composition
mapping has the same certain answers as successively applying the two initial
mappings that created the composition. Other proposals in this direction are
described in Fagin et al. (2005) and Nash et al. (2007). Inversion was tackled
in works such as Arenas et al. (2009) and its purpose is to recover initial source
data once the data has been transferred from the source to the target. These
operators, i.e., composition and inverse, prove to be essential in applications where
metadata management is needed [Bernstein (2003)] or in schema evolution. Using
the composition operator, in the area of mapping generation, MapMerge was
developed and described in Alexe et al. (2012). The main contribution of the work
is that once the mappings have been generated, they can be reused to create more
meaningful mappings through composition. Their proposed algorithm is based
on a Divide-and-Conquer strategy that breaks down the input mappings which
are then correlated (used in composition) to the small mappings to create larger
and more complex ones. The method they use to detect whether two mappings
can be correlated or not is by using associations detected through the usage of
defined foreign key constraints.

As the reuse of mappings becomes a relevant research topic itself, the need
to formalize the process of reuse became a topic for investigation, and advances
in this direction have been made in works such as Wisnesky et al. (2010) and,
in more recent work, by Atzeni et al. (2019). In Atzeni et al. (2019), they char-
acterize schema mapping reuse and explain how schema metadata can describe
input schema mappings and use the extracted metadata knowledge to infer new
mappings, called meta-mappings, i.e., an abstraction over previously defined map-
pings. The inference approach extends previous efforts for the definition of schema
mappings by example, as the algorithm can take as input a source and a target
and searches in a pool of meta-mappings for the mappings that can fit the input
data (according to a defined fitness function). This work is particularly relevant
when there is a need to generate mappings fast and often, so that reusing already
computed meta-mappings could prove to be an asset.



2.2. SCHEMA MAPPINGS FOR DATA EXCHANGE 41

2.2 Schema Mappings for Data Exchange

In data exchange, mappings are used with the aim of creating target tuples that
represent the source data as accurately as possible. The problem of schema
mapping generation has given rise to investigations into a data exchange setting
because, given a set of generated mappings, materializing each of them could result
in a significant amount of redundant or missing data (due to poorly correlated
tuples).

Data exchange setting. Fagin et al. (2005) defines the problem of data exchange
as follows. Given a source schema S, a target schema T , a set of mappingsM that
relate S to T , and a set of target constraints MDT , the data exchange problem
is the following: given a finite source instance I, find a finite target instance J
such that (I, J) satisfies M and J satisfies MDT . Such an instance J is called a
solution in data exchange.

Solutions. The set of mappings M can represent several ways of transferring the
data from the source to the target. However, some data transformations can be
better than others in the sense that some can generate better quality tuples with
less redundancy and better data correlation. In the mapping generation literature,
the mapping solutions are required to have the following quality requirements
[Bellahsene et al. (2011)]:
• The instance data transferred in the target, J , comes only from the in-

stance source data, I, considering the given source to target correspondences
(MDS→T ), and the (possible) target constraints (MDT ). These are called
universal solutions.
• Given that the universal solutions can contain mappings that generate

redundant data, it is desirable to select the ones that produce solutions of
the smallest size. These solutions are called core universal solutions.

The above two types of solutions are formalized using the notion of homomor-
phism. Essentially, a homomorphism is a mapping which expresses that one data
instance can be transferred into a subset of another instance:

Given two instances I, and J , over a schema S, a homomorphism is defined as
h : J → I, h(c) = c, where c ∈ dom(J) (the domain of values of J).
The above definition means that any given constant in J can be mapped to

itself in I, and each tuple t = R(A1 : v1, ..., Ak : vk), t ∈ J can be mapped to
a tuple t′ ∈ I, thus, we can say that t′ contains at least the same amount of
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information as t. However, if t contains more information than t′, i.e., there are
values in t that cannot be found in t′, then we cannot define a homomorphism
between the two.

Assuming a data exchange setting where I is an instance of the source schema
S, T is a target schema, MDS→T are s-t tgds, and MDT a set of tgds and egds,
the solutions can be defined as following [Mecca et al. (2009)]:

Universal solution. A solution J is a universal solution for I if J satisfies
MDS→T and MDT , and if for every other solution J ′, there is a homomorphism
h : J → J ′.

Core universal solution. A core solution is the smallest possible universal
solution C, where C is a subinstance of J such that there is a homomorphism
from J to C, but there is no homomorphism from J to a proper subinstance of C.

Mapping generation for Data Exchange. Given a set of mappings, data
exchange provides techniques for evaluating these mappings in ways that minimize
redundancy in the target [Fagin et al. (2005)], where the redundant data comes
from the presence of multiple mappings that share source and target tables. The
approach to minimizing redundancy (viz., computing the core) may form part
of mapping evaluation (e.g. Fagin et al. (2005); Gottlob and Nash (2008)), or
involve transformations to the mappings (e.g., Mecca et al. (2012); ten Cate
et al. (2009)). As such, data exchange relates to mapping evaluation, and not
to mapping generation, and thus data exchange techniques can be used with
different mapping generation algorithms. Although, in this thesis, the generation
algorithm is cast in terms of algebraic operators, these can be translated to tgds for
evaluation using algorithms that make use of the chase procedure. Data exchange
has been investigated for different mapping languages, including those with target
constraints [Fagin et al. (2005)]. In this thesis, reflecting the fact that we act over
autonomous sources that can be expected to manifest inconsistencies, we do not
rely on explicit schema constraints, and therefore, we do not aim to compute core
mappings in the sense they have been studied so far.

Given the solutions in the context of data exchange, the evolution of schema
mapping generation systems is described in Marnette et al. (2010) as being sep-
arated into several generations: Clio [Miller et al. (2000)] and early versions of
Spicy [Bonifati et al. (2008)] can be seen as the paradigmatic first-generation
mapping generation system. The first generation is characterized by the fact that
they are capable of only generating (canonical) universal solutions, but they fail
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to remove redundancy when materialized, while ++Spicy [Marnette et al. (2010)]
is referred to as being the first schema mapping generation system that is part
of the second generation given that it addresses the problem of generating core
solutions for materialization by rewriting the initial s-t tgds such that they remove
redundancy in the output and they generate labelled nulls for correlating tuples.
Laconic schema mappings would be part of the second generation as well as they
are able to generate core solutions through a different method (as explained in
Section 2.1.4).

2.3 Schema Mappings in the Wild

We call schema mapping generation in the wild the process of generating mappings
over autonomous sources that are not expected to have well-defined schemas, e.g.,
one cannot rely on the existence of explicit relationships between the sources,
and the sources can come from a plethora of domains. Thus, in the wild is the
condition where there are no declared relationships to inform the integration.

Previous research, as in Section 2.1.4, addresses the problem of generating
mappings that yield quality results in a well-defined mapping generation scenario,
i.e., where both the source and target are represented as well-behaved schemas,
and where the schema constraints are expected to be explicitly defined, i.e., in the
form of source and target metadata as tgds and egds. However, with the increase
in the availability of diverse data sets (e.g., through open data or in data lakes),
some assumptions made by prior work do not tackle the changes in the mapping
generation problem. Golshan et al. (2017) briefly describe assumptions that used
to be made in data integration scenarios that have changed in the context of
Big Data. Most of the assumptions can be transferred to the schema mapping
generation problem as well:

A1: The global schemas in data integration scenarios have reasonable sizes.

- The change in this assumption is that the global schema can be richer and
more complex in new integration scenarios where data from a large pool of
sources needs to be formatted. This challenge applies to mapping generation:
the more complex the global schema, the more complex the mapping needs
to be so as to transform as much data as possible from the sources into the
format of the target.



44 CHAPTER 2. RELATED WORK

- Given the problem of a complex target, it may not be feasible to make
the assumption that there is just one correct mapping. Thus, there has
been a focus on devising techniques for mapping refinement and mapping
selection. Some papers describe techniques that rely on user feedback or/and
data examples to refine the mappings (e.g., Alexe et al. (2011b); Cate
et al. (2017)), others choose mappings based on a set of characteristics (e.g.,
Gottlob and Senellart (2010); Alexe et al. (2011a); Kimmig et al. (2017);
Abel et al. (2018)). For instance, in Alexe et al. (2011b), the aim is to
derive schema mappings from a set of examples such that the mappings fit
the given examples, while, in Alexe et al. (2011a), the aim is to detect if
a given schema mapping is characterized by a set of examples. In Gottlob
and Senellart (2010), they use tuple examples without nulls, and search
for mappings that can produce that target instance using a source instance
I. Given that such mappings may not exist, they propose a technique for
repairs on a given mapping (the repairs become an indicator of cost for the
mappings). Also, in the context of web data, metadata in the form of query
logs could be used to choose schema mappings that are related to frequently
executed queries [Elmeleegy et al. (2011)].

A2: The data sources have well-defined schemas and the data is stored in either
a structured or semi-structured format.

- A change in this assumption is that the source data is no longer expected
to come in the same (structured) format, in a well-behaved schema, and
not even from the same domain (which, usually, facilitated the integration
process). In mapping generation, the availability of knowledge about the
structure of the schemas and the existence of well-defined schema constraints
has been essential as, usually, these are used to determine the merge paths
between the sources (as described in Section 2.1.4). This assumption no
longer holds as schema mapping generation can no longer rely on input
metadata that was usually assumed to exist.

- This challenge has been addressed by recent work, such as Das Sarma et al.
(2012); Zhu et al. (2016); Castro Fernandez et al. (2018), and Nargesian
et al. (2018). Their focus is on tackling the problem of finding relationships
between the sources in terms of possible ways they could be merged. A
common approach that they have is to detect if attribute values coming
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from different sources are part of the same domain. Based on these, they
determine whether the sources are schema complementary, i.e., joinable, or
entity complementary, i.e., unionable. Their research addresses the issue of
no longer relying on relationships between the sources that could be found
in well-behaved schemas, e.g., foreign keys. Their work is on a problem we
share, but it focuses on inferring relationships between the sources w.r.t to
a target, while our focus is on using (potentially inferred) relationships to
build mappings between multiple sources w.r.t. to a target.

A3: There is a need to integrate all the sources at hand.

- The integration paradigm has for long assumed that the pool of input sources
has a manageable size and scope, and thus that it is feasible to create a
coherent global schema from them (see A1). This assumption no longer
holds as, nowadays, the pool of sources can increase rapidly [Bernstein and
Haas (2008)], and it is not feasible to assume all sources will be integrated
in the same integration solution. For mapping generation, this challenge
translates into being able to create mappings which involve only relevant
sources w.r.t. the chosen target, otherwise, there is a risk of including data
which can be considered as noise or redundant when transferred to the target
format.

- Dong and Srivastava (2013) outline the challenges brought by data inte-
gration on Big Data, and one of them is the scale of the data and the
constant evolution of source schemas, which creates difficulties for maintain-
ing schema mappings, recognizing the need to investigate other approaches,
producing best-effort integration. Best-effort integration over a large repos-
itory of sources can be tackled with different approaches such as creating
probabilistic schema mappings which are built between the source schemas
and a (possible) probabilistic mediated schema [Sarma et al. (2008); Dong
et al. (2009)]. For instance, the work presented in Sarma et al. (2008) de-
scribes an approach to generating mappings for a probabilistic mediated
schema that is automatically created from the input sources. They do
not assume a defined target schema, and they focus on aligning source
attributes with counterparts in a mediated schema, and not so much on
the generation of mappings that combine data from different sources. In
Dong et al. (2009), they tackle the challenge of an input of diverse sources
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with (potentially) erroneous data, thus, they try to find approximate map-
ping solutions that take into consideration the challenges brought by such
input data. Also, Mahmoud and Aboulnaga (2010a) tackle the problem
of integrating numerous (web) sources by clustering single table sources,
and then mapping keyword queries to the domains represented by the clus-
ters. Another approach to create best-effort mappings could be through
using a pay-as-you-go approach, where the user provides feedback on the
mappings [Talukdar et al. (2008); Belhajjame et al. (2013)]. With this ap-
proach, the user annotates tuples as true positives, false negatives, and false
positives according to their requirements.

A4: The data in the input data sources is mostly correct and consistent.

- This assumption no longer holds in integration scenarios as it is no longer
the case that the sources have just one origin, e.g., one enterprise. Nowadays,
integration scenarios involve several domains (e.g., real-estate with open-
government data, or medical details with student records), thereby raising
the challenge of integrating independent and inconsistent sources. In the
context of mapping generation, this change is relevant because finding merge
paths between (initially) independent sources becomes a challenge in itself,
as mapping generation can no longer rely on explicit constraints to find
possible merge paths, and as a result, these need to be inferred across the
(possibly different) domain(s).

- The challenges brought by inconsistent data were addressed by research that
aims to (i) find approximate mapping solutions that are between (poten-
tially) inconsistent sources and a target [Dong et al. (2009)]; or (ii) associate
and correlate source data by merging them through entity resolution and
data fusion [Stonebraker et al. (2013); Fernandez et al. (2017)]. Data Tamer
[Stonebraker et al. (2013)] describes an integration process where the sources
are processed with machine learning algorithms to identify and group at-
tributes into tables, transform input data and perform deduplication. Data
Civilizer [Fernandez et al. (2017)] is a system that addresses a similar prob-
lem to ours, i.e., integration on less consistent data, but their approach is
different because they rely less on mapping generation and more on entity
resolution complemented by data fusion. There are scant details on the map-
ping generation component in Data Civilizer, but they deploy user feedback
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on alternative join paths where these paths are associated with quality met-
rics. As such, our understanding is that Data Tamer and Data Civilizer do
not aim to address the problem of generating mappings over many sources.
Moreover, in the context of heterogeneous sources, the work of Kimmig
et al. (2017) focuses on mapping selection that relies on evidence that is not
always reliable and consistent. Their work proposes a selection technique
that considers data examples and user feedback that are used to rule out
or to promote mappings that are inconsistent or consistent, respectively, to
the input examples.

Overall, the work mentioned aims to address challenges brought by data
integration between autonomous, heterogeneous sources and (potentially complex)
various targets. It shows that for integrating sources that come in large scale,
are autonomous and constantly changing, one cannot rely on the assumptions for
mapping generation that hold in a well-behaved setting, i.e., where all sources
at hand are well-behaved and can be integrated in a solution for a target (as
described in Section 2.1.4). Schema mapping generation over autonomous sources
is an important component for integration of Big Data. The next chapters report
our contributions to it.

2.4 Discussion

A significant body of work on mapping generation can trace its technical ancestry
to Clio [Miller et al. (2000)], though typically retaining the assumptions that the
source metadata, i.e., MDS, includes declared foreign keys [Popa et al. (2002);
Mecca et al. (2009)] and keys [Marnette et al. (2010)], and that mapping generation
is being performed to support an expert in the construction of a high-quality
integration. Further work on the refinement of mappings generated between one
source schema and one target schema has been done by using different kinds of
evidence, such as user feedback, instance-level information, but it was mostly done
in the context of refining the mappings generated by algorithms such as Clio or
(++)Spicy. Contrasting mapping generation in the wild, we can say that Clio and
the works built on it primarily support experts in the development of mappings
between a single source and a single target, e.g., building on declared foreign
keys between source tables. In practice, this means that mapping generation can
benefit from precise and exhaustive descriptions of relationships within the source
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schemas, as well as human-curated matches between the source and the target,
while mapping generation in the wild must contend with arbitrary numbers of
source schemas and less reliable information to inform mapping generation. As a
result, the focus for mapping generation research has shifted toward managing the
resulting uncertainty and this challenge has been recognized in several works that
have advanced the research in the direction of generating best-effort integrations.

In this thesis, we address the problem of schema mapping generation over
autonomous sources where a mapping generation system can no longer rely on
explicit schema constraints between the sources, thus, our work occupies a position
between the results discussed as mapping generation for databases (Section 2.1.4)
and mapping generation in the wild (Section 2.3), addressing challenges expressed
by the latter while still handling those of the former. We propose an algorithm
that infers relationships between heterogeneous, independent sources, where the
sources are expected to contain data structured using the relational model.

The work described in this thesis has in common with the work on mapping
generation for databases the fact that we assume a target schema is given, and
that we generate expressive mappings. On the other hand, |S| can be greater than
1 as we assume the data can come from various domains, i.e., different schemas;
and we do not depend upon declared keys and foreign keys in MDS, and instead
make use of a wider range of (less dependable but more widely available) results
from data profiling [Abedjan et al. (2015)].

In contrast with most previous work related to mapping generation in the
wild, we combine tables in diverse ways using expressive mappings. This seems
impractical without some additional constraints on the problem, so instead of
creating a mediated schema we assume that the target T is given, and that we have
access to profiling data on sources [Abedjan et al. (2015)]. The cost of computing
such metadata and of exploring the space of mappings likely precludes the use
of our approach at web scale. We anticipate, however, that many applications
exist where data can usefully be combined from multiple sources, even where the
numbers of tables involved may not run into millions.

In Section 2.3, we mentioned several techniques that tackle the challenges
brought by data integration over Big Data, where mapping generation over au-
tonomous sources is one of them. Methods for schema refining or mapping selection
are proposed to be performed after mapping generation, as one can no longer
assume that the mapping generation can yield perfect mappings without any help.



2.4. DISCUSSION 49

Such works can follow Dynamap as a post-processing step as the output mappings
might need refinement [Cate et al. (2017)] or filtering according to a (potential)
user requirements [Kimmig et al. (2017); Abel et al. (2018)]. Also, the problem
caused by the lack of explicit relationships between the sources in a repository
has been a research direction in several projects, such as Zhu et al. (2016); Castro
Fernandez et al. (2018), and Nargesian et al. (2018). They propose methods
for finding related sources w.r.t. a target based on the detected domains of the
attribute values. The solutions they propose can complement our work in the
sense that their methods could be integrated in a mapping generation technique
with the purpose of providing information about the possible merge opportunities
between the sources. Moreover, Data Tamer [Stonebraker et al. (2013)] and Data
Civilizer [Fernandez et al. (2017)] have not sought to address the problem of
generating mappings over many sources head-on, as in this thesis, but they rely
on entity resolution and data fusion to merge the data, thus, proposing a different
research direction to a shared problem.

Given that the landscape of the integration problem has shifted to open
data [Miller (2018)], i.e., over heterogeneous, independent sources that do not
have explicitly declared relationships between them, the works mentioned in
Section 2.3 show that the integration process under such settings brings various
challenges that have been the focus of recent works. Some of these challenges
remain to be addressed, and mapping generation over autonomous sources is one
of them.



Chapter 3

Mapping Generation for a Simple
Target

"The secret of getting ahead is getting started. The secret of getting started is
breaking your complex overwhelming tasks into small manageable tasks,

and then starting on the first one."
– Mark Twain (1835 - 1910)

This chapter describes a proposal for schema mapping generation between a
(set of) source schema(s) and a simple target. By simple target we mean a target
schema with a single target relation and no constraints.

As explained in Section 2.1.4, mapping generation algorithms can take as input
different types of evidence, e.g., user feedback, instance values, etc., to compute
mappings in an informed manner. However, the evidence that has been taken into
account so far (e.g., Clio [Fagin et al. (2009)], or ++Spicy [Marnette et al. (2010)])
with a view to generating and refining mappings are only found in well-behaved
schemas. Little work has been done towards generating mappings where source
schema constraints are missing. Because of this, merge opportunities can be over-
looked by state-of-the-art algorithms. We describe a new technique for generating
mappings that is appropriate to a setting where sources are autonomous and
independent and therefore lack explicit relationships between them. Our proposal
for relationship inference is based on identifying merge opportunities using profile
data, more precisely candidate keys and (partial) inclusion dependencies, and
schema matching tools. We then rank the mappings based on their fitness, which
requires metadata, such as the estimated size of the view that would result from
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mapping evaluation and the estimated number of distinct values and nulls the
resulting attributes would contain.

In terms of the objectives outlined in Section 1.3, this chapter aims to meet
Objective 1, viz. to devise a method for generating mappings (which we refer
to as Dynamap) between source schemas and a target schema, i.e., merging
the sources w.r.t. to the target schema, where the sources do not have any
explicitly declared relationships (i.e., declared foreign keys that would facilitate the
creation of join paths). Objective 1 is met following three research contributions:
Contribution 1.1 proposes a method for merging autonomous sources based on
inferred relationships using profile data, Contribution 1.2 proposes a mapping
generation search algorithm based on the dynamic programming paradigm; and
Contribution 1.3 describes a method for propagating profile data to intermediate
mappings that result from merging other mappings in the same search space.

3.1 Preliminaries

This section describes the terminology used throughout the rest of the thesis for
relation and mapping metadata.

3.1.1 Metadata, Statistics, and Profile Data

We now define the notions and notations from data profiling (i.e., candidate keys
and (partial) inclusion dependencies) and mapping metadata (i.e., estimated size
of the view defined by the mapping, estimated number of distinct values and nulls
in the attributes of the mapping-defined view).
Database metadata and statistics. We assume a preprocessing step generates
statistics for each source relation, as follows:
Cardinality. The cardinality (or the size) of a relation R is the number of tuples
in R, denoted by |R|. The cardinality of a projection X of R, where X is a (set
of) attributes, is denoted by |R.X|.
Number of distinct values. The number of distinct values in the extent of an
attribute X in relation R is denoted by V (R.X) (sometimes we omit the relation
name when it is clear from context and write V (X) for V (R.X)).
Number of nulls. The number of nulls of an attribute X in relation R is
denoted by nulls(R.X) (again, sometimes we omit the relation name when it is
clear from the context and write nulls(X) for nulls(R.X)).
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Profiling data. In the same preprocessing step as gathering database informa-
tion, profiling data for each source is generated. This includes candidate keys and
(partial) inclusion dependencies, such as produced by the Metanome data profiler
[Papenbrock et al. (2015)], which has modules such as HyUCC [Papenbrock and
Naumann (2017)] (for discovering candidate keys) and SINDY [Kruse et al. (2015)]
(for discovering (partial) inclusion dependencies).

HyUCC is a candidate key discovery algorithm which uses and combines row
and column-efficient methods to analyze datasets. It creates subsets of attributes
from the same relational table determining which are minimal unique column
combinations (minimal UCC). A UCC is a set of attributes whose projection
contains no duplicate tuples, a minimal UCC means a set of attributes where
elimination of any if its attributes invalidates the uniqueness of tuples for the
remaining column combination. The UCCs are detected through a bottom-up
generation of the subsets of attributes (starting with singleton UCCs, then with
pairs of attributes and so on). The output contains all resulting minimal UCC
which are detected in the bottom-up parse of the relational attributes.

SINDY is a (partial) inclusion dependencies detection algorithm that builds
upon a map-reduce-style framework, which is meant to accelerate the identification
of inclusion dependency candidates as this enables SINDY to run on a cluster
of machines. Instead of checking all pairs of columns, SINDY performs the
identification of inclusion dependencies through the full outer join of the columns
in the database [Kruse et al. (2015)]:

Let O = A ./ B ./ ... be the full outer join of all columns in a database,
where A,B etc. are columns. SINDY checks if A ⊆ B by looking at the tuples
in the outer join where t ∈ O : (t[A] 6= NULL then t[B] 6= NULL). Based
on this verification, SINDY detects the pairs of attributes that share inclusion
dependencies.

We chose HyUCC and SINDY as they are capable of outputting the type
of profiling data input that we require for our mapping generation technique,
i.e., candidate keys and (partial) inclusion dependencies, respectively, while also
proving that they scale on large input datasets [Papenbrock and Naumann (2017);
Kruse et al. (2015)], which is the context under which we build our work.
(Partial) Inclusion dependencies. Given two projections R and S with
identical arity over relations R′ and S ′, resp., we define the inclusion dependency
IR,S = R ⊆θR,S S, where θR,S represents the overlap of values between attributes
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R and S, i.e., the ratio of distinct values from R that are included in the distinct
values from S. Note that θR,S 6= θS,R as they represent different ratios.

The overlap θR,S of an inclusion dependency IR,S = R ⊆θR,S S is defined as
follows:

1. If R ∩ S = ∅, then θR,S = θS,R = 0, and, based on profiling evidence, we say
that R and S are disjoint and there is no inclusion dependency.

2. If R∩S = R, then θR,S = 1.0, and, based on profiling evidence, we say that
R ⊆ S and there is a (total) inclusion dependency from R to S.

3. If R∩S 6= R and R∩S 6= S, then θR,S = V (R∩S)
V (R) and 0 < θR,S < 1, in which

case, based on profiling evidence, we say that there is a partial inclusion
dependency between R and S.

Candidate keys. A candidate key for a relation R is an attribute (or a combi-
nation thereof) that has distinct values for every tuple in R based on profiling
evidence.

3.1.2 Schema Matching

Schema matching is a closely related research topic to mapping generation, as
matching is needed to generate the source-to-target relationships (s-t tgds) that
express semantic correspondences between the source attributes and the target
attributes. The close relationship between matching and mapping generation is
due to the fact that matches determine which attribute values may be relevant to
populating the target, while mapping generation determines how these attributes
are combined to achieve that.
Background. Work on schema matching has been described in several surveys,
e.g., Bernstein et al. (2011); Shvaiko and Euzenat (2005); Rahm and Bernstein
(2001). We now briefly discuss some aspects of that work insofar as to offer a
glimpse of the complexity of the overall problem.

Most matching algorithms use either schema-level matchers (i.e., based on the
similarity of the schema structure as manifested in attributes and table names)
or instance-level matchers (i.e., based on comparison of instances in one dataset
with the instances in another) or a hybrid between them [Bellahsene et al. (2011)].
Recent work has focused on combining these techniques so as to scale to more
and larger schemas. Papers that propose solutions for schema matching at scale
have taken a variety of approaches. Some propose an incremental process (e.g.,
adding one schema at a time) [Bernstein et al. (2006)], some a holistic process
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(i.e., considering all schemas at once) [Su et al. (2006)]. Both incremental and
holistic processes often use clustering techniques on schemas or attributes or both.
These aim to reduce the number of pairwise comparisons needed. The pairwise
comparisons involve computing some similarity measure (e.g., edit distance, cosine
distance, data type comparisons or Jaccard distance) between the arguments (e.g.,
schema names, and/or instance tuples). By resorting to one or more of these
operations and aggregating their measurements, matchers output the similarity
score between two schemas. If the score exceeds a given threshold, then conceptual
equivalence, i.e., a match, is thereby postulated. When the clustering process
is successful, the matching process becomes less compute-intensive and, hence,
less time consuming [Mahmoud and Aboulnaga (2010b); Algergawy et al. (2011);
Batini et al. (2015)]. However, reliance on clustering comes with its own challenges.
The more stringent problems in this regard are (i) choosing criteria with which
to decide when the derivation of new clusters should stop so that each cluster
has maximum dissimilarity with the other clusters while the elements within each
cluster have maximum similarity with each other, and (ii) deciding which schema
belongs to which cluster. These problems have been tackled but it has been
demonstrated that it is hard to achieve high accuracy when the schemas may well
belong to multiple clusters [Huang et al. (2014)]. This occurs when each cluster
represents a domain and the schemas comprise elements from multiple domains.
Furthermore, if the clustering is not done with high accuracy, then the matching
process might be affected by the fact that two similar schemas may belong to
different clusters and these would never be compared to each other.

Another technique used in the incremental approach is schema fragmentation,
where each schema is broken down into smaller parts, e.g., small tree structures.
Such an approach is found in Aumueller et al. (2005) where the COMA++ match-
ing tool is introduced. This tool matches each fragment from the source schema
to each fragment from the target schema. The user is prompted with a set of
candidate correspondences that can be modified using a GUI in order to increase
accuracy. The approach decomposes a large schema matching problem into several
smaller ones and reuses previous match results at the level of schema fragment.
By dividing the schemata into smaller parts, COMA++ proves more suitable for
matching large schemas than most competitors. However, the fact that COMA++
needs user feedback on matchings makes it unfeasible for use at scale. There were
attempts at minimizing the human effort when finding the matches, but it comes
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with assumptions (e.g., constraint specification for each schema) that are not
always valid [Quoc Viet Nguyen et al. (2013)].
Matches. Previous research shows that schema matching results are not expected
to be perfect, as achieving flawless results has been proven to be a difficult
task due to the high degree of semantic heterogeneity, domain specificity, and
different structures in the data [Bernstein et al. (2011)]. In this thesis, our focus
is on schema mapping generation and, given that the correctness of matches is
paramount for mapping generation, we assume that the quality of the matches
is such as would result from creation by expert users who can discern correct
semantic correspondences. Nevertheless, for mapping generation in the wild one
cannot expect that matches will be perfect as these are (usually) provided by a
matching algorithm. Thus, extending the mapping generation process by allowing
the integration of partially correct matches is an open topic which we mention in
Chapter 6 as an open technical challenge.

In this thesis we consider matches of the following simple form:
matchST : S.a→ T.a′, where S is an input source relation, a ∈ schema(S) is

an attribute in S; T is a target relation and a′ ∈ schema(T ) is an attribute in T .

3.1.3 Merge Operators

The candidate mappings generated by our mapping generation algorithm, Dy-
namap, are expressed in relational algebra. We describe below the relational
algebra notations we use throughout the thesis. For completeness, for each op-
erator, we add the equivalent tgd expressions as they abstract over the query
language in the underlying data model. We assume that the relational operations
are known as defined in Garcia-Molina et al. (2008).

Let R(A0, A1, . . . , AmR) and R′(A′0, A′1, . . . , A′mR′ ) be two relations with their
corresponding attributes, and R′′ the result of the following operators applied on
them:

Projection Operator
Given P = {A1, . . . , Ap}, 1 ≤ p ≤ mR, a subset of attributes in relation

R with arity mR, P ⊆ schema(R), R[P ] denotes the projection of the selected
p attributes of relation R in P . For simplicity, we will use the notation R[P ]
interchangeably with the notation R.P , however, the meaning should be obvious
from the context.
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Relational Algebra expression: R′′ ← πP (R)
Tuple-generating dependency expression:
R′′(A1, . . . , Ap)← R(A0, A1, . . . , Ap, . . . , AmR)

Union Operator
Given two relations R and R′ with the same arity, i.e., mR = mR′ , where each

attribute Ak ∈ schema(R) is schema compatible with its corresponding attribute
A′k ∈ schema(R′), then the union of the two relations is denoted by R ∪R′ and
returns a new relation R′′ that contains every tuple in R and every tuple in R′.

Relational Algebra expression: R′′ ← R ∪R′

Tuple-generating dependency expression: For simplicity, we give the same
names to the schema compatible attributes in the two relations:

R′′(A0, . . . , AmR)← R(A0, . . . , AmR)
R′′(A0, . . . , AmR)← R′(A0, . . . , AmR)

Join Operator
Given two subsets of attributesXR = {A0, . . . , ApR}, 0 ≤ pR ≤ mR, andXR′ =

{A′0, . . . , A′pR′}, 0 ≤ pR′ ≤ mR′ , then the equi-join of the two relations is R ./θ R
′,

where θ is a join condition expressed as a conjunction of equality conditions on
pairs of attributes from the two subsets XR and XR′ : A0 = A′0 ∧ · · · ∧ApR = A′pR′ .
The result of an equi-join operation is a set of aligned tuples from the two relations
based on the join condition.

Relational Algebra expression: R′′ → R ./θ R
′, θ = {A0 = A′0, . . . , ApR =

A′pR′}
Tuple-generating dependency expression:
R′′(A0, . . . , ApR , . . . , AmR , A

′
0, . . . , A

′
pR′
, . . . , A′mR′ )← R(A0, . . . , ApR , . . . , AmR)∧

R′(A′0, . . . , A′pR′ , . . . , A
′
mR′

)∧
A0 = A′0∧· · ·∧ApR = A′pR′

Note that throughout the rest of the thesis we will refer to this operation as a
join, although it represents an equi-join.
Full Outer Join Operator

Given two subsets of attributes XR = {A0, . . . , ApR}, 0 ≤ pR ≤ mR, and
XR′ = {A′0, . . . , A′pR′}, 0 ≤ pR′ ≤ mR′ , then the full outer join of the two relations
is R ./ θ R

′, where θ is a join condition expressed as a conjunction of equality
conditions on pairs of attributes from the two subsets XR and XR′ : A0 = A′0 ∧
· · · ∧ApR = A′pR′ . The full outer join operation is similar to the join operation in
the sense that there is a join condition, but instead of returning only the aligned
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tuples, the result of a full outer join consists of the aligned tuples together with
the rest of the tuples from the two relations.

Relational Algebra expression: R′′ → R ./ θR
′, θ = {A0 = A′0, . . . , ApR = A′pR′}

Tuple-generating dependency expression:
R′′(A0, . . . , ApR , . . . , AmR , A

′
0, . . . , A

′
pR′
, . . . , A′mR′ )← R(A0, . . . , ApR , . . . , AmR)∧

R′(A′0, . . . , A′pR′ , . . . , A
′
mR′

)∧
A0 = A′0∧· · ·∧ApR = A′pR′

∃A′0, . . . , A′pR′ , . . . , A
′
mR′

: R′′(A0, . . . , ApR , . . . , AmR , A
′
0, . . . , A

′
pR′
, . . . , A′mR′ )←

R(A0, . . . , ApR , . . . , AmR)∧
¬(R′(A′0, . . . , A′pR′ , . . . , A

′
mR′

)∧
A0 = A′0∧· · ·∧ApR = A′pR′ )

∃A0, . . . , ApR , . . . , AmR : R′′(A0, . . . , ApR , . . . , AmR , A
′
0, . . . , A

′
pR′
, . . . , A′mR′ )←

R′(A′0, . . . , A′pR′ , . . . , A
′
mR′

)∧
¬(R(A0, . . . , ApR , . . . , AmR)∧
A0 = A′0∧· · ·∧ApR = A′pR′ )

3.1.4 Merge Operators in Mappings

While tgds are ideal for expressing the mappings when the mapping generation
algorithm is oblivious to the underlying data model, our focus is on tabular data
and we mainly use relational algebra throughout the thesis.

In the rest of the thesis, the operators are used to express the merges between
the input sources. To express a mapping for a target table, we use the following
method: i) express the merge between the sources through a relational algebra
operator (union, (equi-)join, or full outer join), and then ii) map the result of the
merge to the target table by using the input matches. This approach is chosen
so that when two or more sources merge, the schema of their merge result is not
transformed into the schema of the required target until the mapping generation
finishes, i.e., it keeps both matched and un-matched source attributes. We refer
to these mappings as intermediate mappings as their schema does not comply to
the target schema until mapping generation finishes. The intermediate mappings
are used to iteratively build larger mappings (explained in Section 3.4).

Example 3.1.1. For the example in Figure 1.2, assuming UK Deprivation (UKD)
and Manchester Real-estate (MR) merge through join on postcode attributes, the
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mapping that represents their merge w.r.t the target table UK Real-estate (UKR)
is expressed as the following:

i) MR ./postcode=postcode UKD → mapMR,UKD

ii) πcr,pc,st,pricemapMR,UKD → UKR

It can be observed that mapMR,UKD has the schema of the two source relations
merged through join, i.e., it will contain all 13 attributes from the two source
relations, while the second step transforms its schema (through projection) to the
required schema by the target, i.e., it projects only the four attributes that the
two sources match together in the target.

Now, if the third source in Figure 1.2, UK Life Quality Indices (UKQ), needs
to be added to the already merged sources, this can be done through the join on
county attributes. These attributes are contained by UKD and UKQ. Considering
that mapMR,UKD contains all attributes from its source relations, then the merge
is possible using mapMR,UKD as an intermediate mapping:

i) mapMR,UKD ./county=county UKQ→ mapMR_UKD,UKQ

ii) πcr,pc,st,price,irmapMR_UKD,UKQ → UKR

Had the intermediate merge of UKD and MR, mapMR,UKD, kept only the
needed attributes by the target, i.e., had it been of the form πcr,pc,st,price(MR ./postcode

UKD) → mapMR,UKD, the subsequent merge with UKQ would not have been
possible as county is not needed in the UKR target, thus, it would not have been
included in the projection.

Note: Throughout the rest of the thesis, when we refer to an intermediate
mapping, we will often omit ii) above, referring only to the merge of the two
mappings, but the matching between the merged sources and the target table should
be obvious from the context. However, all created (intermediate) mappings imply
both i) and ii) above, as, in the end, they all have the schema of the target with
respect to which they have been built.

3.2 Dynamap - Overview of the Approach

Our proposed mapping generation algorithm, Dynamap, tackles the problem of
creating mappings over a pool of sources by performing a search through the
space of possible mappings using a dynamic programming approach where the
inference of relationships between the sources using profile data has a steering
effect on the progress of the search.
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The process of mapping generation is formalized asMapGen(S, T, MDS,MDT ,

MDS→T ) → M , where M is a set of generated mappings; S is a set of source
schemas; T is the target schema; MDS is metadata about the sources; MDT

is metadata about the target; MDS→T is metadata that relates S to T . In our
proposal, we consider:
• M is a set of mappings formalized as relational algebra expressions;
• S is a set of relational schemas, where 1 ≤ |S|;
• T is a relational schema with a single relation;
• MDS comprises source metadata, viz., the database statistics and profiling

data described in Section 3.1.1;
• MDT is an empty set as, in this chapter, we do not consider target con-

straints (in Chapter 5 the latter are then considered too);
• MDS→T is a set of matches (a.k.a. value correspondences) which relate

attributes from the sources S to target attributes in T .

Example 3.2.1. Let us consider the scenario in Figure 3.1 as a running example
through this chapter. The figure depicts four source relations with two real-estate
data sources from Manchester and Cambridge, and two sources showing quality of
life indices, e.g., UK Deprivation (UKD) and UK quality-of-life-statistics (UKQ).
The sources do not have any declared relationships between one another as each
has a different origin: the two real-estate agencies are web-extracted data, and
the other two are open-government data supplied by different public bodies. The
chosen target has a schema depicted in the single table MA_CA_statistics,
which aims to draw values from all the given four source relations. As a result,
we need to combine the sources so as to obtain correlated data to populate the
target.

Given the signatureMapGen(S, T, MDS,MDT , MDS→T )→M , the evidence
considered in this scenario is the following:
• S = {S1, S2, S3, S4} is the set of four single-table relational source schemas,

so |S| = 4 and S1 = {MA}, S2 = {CA}, S3 = {UKD}, S4 = {UKQ};
• T = {MA_CA_statistics} is the target;
• MDS comprises source metadata generated by a profiling tool: 7 candidate

keys annotated with [ck] in Figure 3.1 (e.g., UKQ.county, UKD.postcode),
and 8 (partial) inclusion dependencies, represented by arrows in Figure 3.1,
the color of which is that of the dependent table and the label is the overlap
(e.g., θCA.postcode,UKD.postcode = 0.334, θUKD.postcode,CA.postcode = 0.25);
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Figure 3.1: Mapping generation scenario

• MDT = ∅ (throughout this chapter);
• MDS→T is a set of 9 matches. For simplicity, in this example, attributes

that have similar names are matches.
From this input, Dynamap generates a set of candidate mappings M that can

populate T with correlated data from the four sources.

Before starting the search, i.e., prior to building the mappings, there are three
(major) pre-processing steps that take place:

i) MDS, i.e., the profile data corresponding to the input sources, is either read
from the input or, in case there isn’t any, is obtained by running a profiling
tool such as Metanome [Papenbrock et al. (2015)];

ii) the input sources that do not have any matches to the target are discarded;
iii) mappings between each (remaining) input source and the target relation

are created and referred to as base mappings.

Example 3.2.2. Assuming that for the example in Figure 3.1 no profiling data is
available, the first pre-processing step is to read or generate the profile data and
store it as MDS. In this example, because there are no input relations that do
not match the target all input relations are considered in the mapping generation
process. The third pre-processing step is to create four base mappings that map
each source relation to the target. For example, the base mapping between MA

(source relation) and MA_CA_statistics (target relation) is a simple projection
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applied on the source, where the non-matched attributes will be padded with nulls,
but, for simplicity, this detail is omitted from the base mapping below (expressed
as an s-t tgd):

MA_CA_statistics← πstreet,postcode,price(MA)

The rest of the chapter describes how the final setM of mappings is generated.
In Section 3.3, we describe how each pair of (base/intermediate) mappings are
merged based on the input profile data. In Section 3.4, we describe how we adapted
the dynamic programming paradigm for the mapping generation problem and how
the mappings are built using the merge approach in Section 3.3. The procedure
to evaluate the intermediate mappings is explained in Section 3.5. In Section 3.6,
we describe the method for propagating the existing evidence to newly-created
mappings, i.e., how we update MDS such that a profile-informed operator can
continue to use profile data corresponding to intermediate solutions. Moreover,
we show that the updated metadata can be used to evaluate the newly-created
intermediate mappings without the need to materialize the latter. In particular,
we can decide whether a mapping is fitter to populate the target in comparison
to other mappings. In Section 3.7, we describe how all the components work
together. Finally, in Section 3.8, we show how Dynamap behaves in various
benchmark-generated scenarios and in a real-world one.

3.3 Profile-informed Merge Operator

In this section, we describe how Dynamap decides which operator to use for merg-
ing intermediate mappings. The output of this component is either a relational
operator (one of union, join, or full outer join) or null if no merge opportunity is
found. The method for applying an operator between two mappings is described
in Section 3.1.4: the result of a merge between two (intermediate/base) mappings
has the schema of the two mappings combined through the chosen operator, pre-
serving matched and non-matched attributes, thus preserving merge opportunities
for subsequent merges.

Whilst there is always a possible merge, not all merges offer opportunities to
properly populate the target. Because of this, the algorithm checks whether a
candidate merge satisfies a set of conditions, and whether these conditions suggest
that the merge would correlate the data generated by the two input mappings
and therefore be suitable for populating the target.
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Algorithm 1 Choose suitable merge operator
1: function ChooseOperator( map1, map2)
2: \\ t_rel is the target relation and it’s a global variable
3: if CommonAncestors(map1, map2) > 0 then
4: return null
5: map1_ma← FindMatchesAttr(map1, t_rel)
6: map2_ma← FindMatchesAttr(map2, t_rel)
7: operator ← null
8: if SameMatches(map1_ma, map2_ma) then
9: operator ← Union(map1, map2)

10: else
11: if DiffMatches(map1_ma, map2_ma) then
12: operator ← ChooseOperatorDiff(map1, map2)
13: return operator

We call this component ChooseOperator and formalize it at a high
level in Algorithm 1. Before explaining the steps in the algorithm, we define an
ancestor relation w.r.t. to a given mapping as an initial source relation that is
merged with other initial source relations in that mapping (given that a mapping
merges at least two relations).

This method takes as input two parameters, viz., two (base) intermediate
mappings (map1, and map2 ), and operates in the global state through two pieces
of information, viz., the target relation(t_rel) and the profile data (pd).

ChooseOperator decides how to combine two intermediate mappings
by considering how these relate to the given target table. Specifically, Commo-
nAncestors1 (line 3) retrieves the number of common ancestor relations between
map1 and map2. If they have at least one common ancestor, then the algorithm
chooses not to merge them (line 4) so as to avoid creating mappings that would
yield redundant data. The intuition is that if the common ancestor is the sole
link between the two, this would (possibly unnecessarily) lead to merges that
would not happen otherwise. If they do not have any common ancestors, then
the sets of matched target attributes are retrieved for each mapping w.r.t. the
target relation by a call to FindMatchesAttr (lines 5-6). Each input mapping will
have a corresponding set of matched target attributes. Matching different target
attributes means that the two sets of matched target attributes, i.e., map1_ma,
and map2_ma, may or may not be disjoint, i.e., they either (i) both have matches
that are for the same target attributes while also possibly having matches for

1In this thesis, if a method call is typeset in sans-serif, then it is a helper method. All helper
methods are written and described in more detail in Appendix A.
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different target attributes, or (ii) they match entirely different target attributes
in the same target relation, t_rel. SameMatches checks whether the matches are
for the same target attributes. If they are, the two mappings are unioned (lines
8-9). DiffMatches checks whether the matches are for different target attributes.
If they are, they become candidates for joining, to be decided by ChooseOp-
eratorDiff (line 12). Finally, on line 13, the output, i.e., either an operator
that merges the two input mappings, or null if no merge was found, is returned
to the calling function.

Example 3.3.1. In Figure 3.1, the matches with the target for both theMA and
CA relations are postcode, price and street, so they are candidates for unioning.
However, UKD has different matches, viz., postcode and crime_rank, to those of
MA, and thus MA and UKD are candidates for joining.

ChooseOperatorDiff (Algorithm 2) decides which join operator to
apply between pairs of mappings where the target attributes that are matched in
one mapping are disjoint or only partially overlapping with the target attributes
matched in the other. This method uses the same parameters and global state as
ChooseOperator.

In lines 4-7, IsSubsumed determines whether, on attributes that match the
target, the profiling data has inclusion dependencies between an attribute in one
mapping and a corresponding attribute in the other mapping. If so, the subsumed
mapping is discarded from the set of kept mappings (for further reference, in
Section 3.4, we refer to the kept mappings as memoized sub-solutions) and null
is returned. In lines 8-9, FindKeys retrieves the candidate keys from the profile
data for both input mappings. Then, on line 10, MaxInd retrieves from the profile
data the (partial) inclusion dependency (ind) with the highest overlap between
a pair of keys from the two sets of candidate keys (map1_keys and map2_keys).
If there is a pair of overlapping keys, i.e., if ind exists (line 11), then the overlap
value is checked:

- if θ = 1.0, then the inclusion dependency is total and the chosen operator
is join because a foreign key relationship is inferred between two mappings
on their candidate key attributes (lines 12-13);

- if θ ∈ (0, 1.0), then the inclusion dependency is partial and the operator is
full outer join because a foreign key relationship cannot be inferred so the

1In this thesis, if a method call is typeset in sans-serif, then it is a helper method. All helper
methods are written and described in more detail in Appendix A.
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Algorithm 2 Generate operator when two mappings match different target
attributes
1: function ChooseOperatorDiff(map1, map2)
2: \\ t_rel, pd(profile data) are global variables
3: op← null
4: subsumedMap← IsSubsumed(map1, map2)
5: if subsumedMap not null then
6: discard(subsumedMap)
7: return op
8: map1_keys← FindKeys(pd, map1)
9: map2_keys← FindKeys(pd, map2)

10: ind← MaxInd(pd, map1_keys, map2_keys)
11: if ind exists then
12: if ind.overlap = 1.0 then
13: op← Join(map1, map2, ind.attributes)
14: else
15: op← OuterJoin(map1, map2, ind.attributes)
16: else
17: map1_ind← MaxInd(map1_keys, map2.attributes)
18: map2_ind← MaxInd(map2_keys, map1.attributes)
19: ind← MaxCoef(map1_ind, map2_ind)
20: if ind exists then
21: if ind.overlap = 1.0 then
22: op← Join(map1, map2, ind.attributes)
23: else
24: op← OuterJoin(map1, map2, ind.attributes)
25: else
26: map1_mk ← FindMatchedKeys(map1, t_rel)
27: map2_mk ← FindMatchedKeys(map2, t_rel)
28: if SameMatches(map1_mk, map2_mk) then
29: op← OuterJoin(map1, map2, < map1_mk, map2_mk >)
30: return op

algorithm joins the tuples that can be joined and keeps the remaining data
(lines 14-15).

In both cases, the join condition is built from the key attributes that are
involved in the chosen inclusion dependency.

If there is no overlap between the pairs of keys, the algorithm tries to infer a
foreign key relationship between a candidate key from one relation and attributes
of the other relation that may not be candidate keys (lines 17-18). If there are
several (partial) inclusion dependencies, MaxCoef compares them and chooses the
one with the highest overlap (line 19). If such an inclusion dependency exists, the
type of merge is decided by the overlap level, as before.

Next, if a foreign key relationship cannot be inferred, then, on lines 26-27,
FindMatchedKeys retrieves the candidate keys from both mappings that match
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target attributes and checks if they match the same target attributes (line 28). If
they do, then the two mappings are merged using full outer join, where the join
condition is on the attributes that meet the requirements (line 29). The intuition
behind this last step is that even if there is no overlap between the attribute
values of the two mappings, it could be that there is instance complementarity
between the two mappings, in which case performing a full outer join vertically
aligns the key attributes that match the same target attributes.

It can be observed that the merge opportunities that use two candidate keys
in the join conditions are preferred to the ones that use one candidate key and a
set of non-key attributes in the condition. The intuition behind this is that the
predicted profile data values (mostly overlaps of inclusion dependencies) are more
accurate when it is known that the merge was performed using two candidate
keys in the join condition, as explained later in Section 3.6.

3.4 Mapping Generation as a
Dynamic Programming Problem

Dynamic Programming. Dynamic programming is a method that divides a
complex problem into a collection of simpler overlapping sub-problems, and then
combines the sub-solutions into a solution to the original compound problem
[Aho and Hopcroft (1974)]. For mapping generation, this paradigm is applied as
follows:
• The compound problem is to find mappings involving multiple input relations
with attributes that match the same target relation. The compound problem
of merging multiple input relations is divided into sub-problems that involve
pairs of subsets of the input relations, and then merging the results from
each pair of sub-problems.
• The sub-problem is to find a mapping for fewer relations than in the initial

input. Each sub-problem represents an iteration in the mapping generation
process. Given N initial source relations, in each iteration i, 1 ≤ i ≤ N ,
the algorithm searches for a suitable way to merge any i source relations.
The mappings that result from combining each subset of source relations
characterize new relations that are referred to as intermediate mappings,
the collection of which comprises the solution at iteration i.
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Motivation. The mapping generation problem must explore a large search space
making it a difficult problem to solve without building it up. Thus, we decided on
a methodology which allows building bottom-up solutions, i.e., from simpler to
the more complex. We now discuss two other methods that could have been used
on this problem, and why we prefer dynamic programming as a better option.

Greedy. With a Greedy approach, the algorithm makes the optimal choice with the
expectation that the final solution is close enough to the optimal one. Applying
Greedy to our problem would lead to a similar approach to the current one: the
merge of intermediate mappings would have been done in iterations, but keeping
only one best mapping for each iteration. However, the discarded alternatives
at each iteration might have, if retained, lead to combined mappings in further
iterations that are better than those that can be derived from the best solution at
the point in which they were discarded. Before adapting Dynamic Programming
to our problem, we tried a Greedy approach which rarely reached the ground-
truth merges for which we tested it. This was due to the fact that, through this
approach, many promising candidate mappings were discarded because they were
not the best at intermediate points of selection. Thus, the intended solutions were
seldom built. Given this experiment, we concluded that applying Greedy to our
problem might mean missing on merge opportunities that the algorithm would
never consider because the intermediate mappings from which those opportunities
arise would not get picked to being not as good as the best at that particular
point in the search. Thus, we understood that the algorithm needed to keep more
than one mapping at a time, even if this meant keeping less promising solutions.

Divide-and-Conquer. The main difference between a Divide-and-Conquer ap-
proach and a Dynamic Programming one is that the former divides the problem
into independent sub-problems, solve each of them, and then combines the sub-
solutions, while Dynamic Programming uses overlapping sub-problems. Each
sub-problem is solved with sub-solutions being stored for reuse (a technique called
memoization). Dynamic Programming can be seen as an extension or refinement
of Divide-and-Conquer.

Mapping generation. The top level algorithm that exhibits the characteristic
recursive behaviour of dynamic programming is called GenerateMappings,
formalized in Algorithm 3. It is first called with i set to N , the total number of
source relations. When GenerateMappings evaluates iteration i, where
i ≤ N , it tries to find candidate mappings for merging each subset of the sources
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Algorithm 3 Mapping generation - the recursive method of dynamic program-
ming
1: function generateMappings(i)
2: if sub_solution[i] exists then
3: return sub_solution[i]
4: else
5: iteration_maps← []
6: for j ← 1, ceil(i/2) do
7: batch1← GenerateMappings(j)
8: batch2← GenerateMappings(i− j)
9: new_maps← MergeMappings(batch1, batch2)

10: iteration_maps.add(new_maps)
11: sub_solution[i]← iteration_maps

12: return sub_solution[i]

with i relations by merging the intermediate mappings returned by previous
iterations. More specifically, when running GenerateMappings in iteration
i, the sub-solutions from iterations j and (i−j) will be merged (lines 6-10), where j
grows from 1 to (the rounded up value of) half of i. The sub-solutions for iterations
j and (i− j) are generated by recursive call to GenerateMappings with
parameters j and (i − j). Two sets of intermediate mappings are generated at
lines 7 and 8, members of which are merged pairwise (line 9). Batch1 is the
collection of intermediate mappings for the input j and batch2 is its counterpart
for the input (i− j). The next step is to merge the sub-solutions from iterations
j and (i− j), i.e., to merge mappings from batch1 and batch2 (line 9), where each
mapping from one batch is merged with all the mappings from the other batch.
Two intermediate mappings are merged at a time because the merge operators
are binary: union, join or full outer join. The resulting merged mappings are
memoized as sub-solutions for iteration i (line 11) so that this sub-solution is
available for reuse in subsequent calls to GenerateMappings (lines 2-3).
For i = 1, the sub_solution represents the set of mappings where a mapping is
generated for each input relation that can (partially) populate the target table
t, which resides in the global state of the mapping generation process. This sub-
solution represents the base solution which is generated before the first call to
GenerateMappings.

After iteration N of Algorithm 3, a set of mappings that merge all (or the
possible subsets of) the initial source relations is obtained. The schema of the
output mappings is that of the target relation.

Throughout the rest of the thesis, we use the following notions:
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• base mappings: a base mapping is a mapping between each source relation
and the target table, essentially representing a projection on the matched
attributes of the source relation in order to populate the matched target
attributes. These represent the base solution for the dynamic programming
search and are obtained in a pre-processing step to the search;
• intermediate mapping: an intermediate mapping is a mapping generated

between iterations 1 to N (inclusively) in the mapping generation process;
• parent mapping: a parent mapping is a base/intermediate mapping that
was used in a merge, thus obtaining a new intermediate mapping, where
the new intermediate mapping is called its child (intermediate) mapping;
• child mapping: a child mapping is an intermediate mapping that is the result

mapping from a merge between two other base/intermediate mappings (from
other iterations), where the two mappings that are merged are called its
parent mappings. The only mappings that cannot be called child mappings
are the base mappings as these represent the starting point from which other
mappings are created, all other created intermediate mappings are the child
mapping of a merge.

Algorithm 4 Merge pairwise the mappings from 2 sets of mappings
1: function MergeMappings(batch1, batch2)
2: new_maps← []
3: for each map_i in batch1 do
4: for each map_j in batch2 do
5: operator ← ChooseOperator(map_i, map_j)
6: if operator not null then
7: new_map← NewMapping(operator, map_i, map_j)
8: md← ComputeMetadata(new_map)
9: if IsFittest(new_map) then

10: new_maps.add(new_map)
11: return new_maps

MergeMappings (Algorithm 4) combines batches of mappings returned
by GenerateMappings. Specifically, given pairs of mappings map_i and
map_j from batches of mappings from two iterations, MergeMappings calls
ChooseOperator (described in Section 3.3) in line 5 to identify if map_i
and map_j can usefully be merged. If so, then, in line 7, NewMapping builds a new
intermediate mapping for the chosen operator. The new mapping keeps only those
attributes in the parent mapping that are either needed in the target relation, i.e.,
have a match to the target, and/or that could be useful in further merges. An
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attribute is potentially useful in future if it is either part of a candidate key or if
it is involved in an inclusion dependency. This pruning of attributes is done for
optimization purposes and without causing any loss in the mapping generation
process. ComputeMetadata (line 8) computes metadata for the new mapping, i.e.,
fitness value, metadata, and profile data. Then, IsFittest checks if the intermediate
mapping has the highest fitness of any mapping involving the same initial sources.
If so, it is retained (lines 9-10). We say that a sub-solution at iteration i is a set
of memoized mappings that merge i initial source relations with each sub-solution
being retained for use in the future iterations.

Example 3.4.1. For the example in Figure 3.1, where N←4, in the last iteration
i ← 4, the algorithm tries to merge the mappings from iteration 3 with the
mappings from iteration 1, and then pair-wise merge the mappings from iteration
2. For instance, assume that in iteration 2, the following mappings (among others
not shown here) were found, where merge abstracts over the specific operation
used to combine its operands:

m2,1 ← merge(MA,CA)
m2,2 ← merge(UKQ,UKD)
m2,3 ← merge(CA,UKD)

Then, in iteration 4, GenerateMappings tries to merge each of the
mappings with the other: (m2,1, m2,2), (m2,2, m2,3) and (m2,1, m2,3). Notice that
by merging m2,1 with m2,2, a mapping that covers all the input sources is obtained.

3.5 Mapping Fitness

In this section, we discuss possible characteristics and directions for designing
a fitness function that is to be used in assessing a mapping without needing to
materialize its instances.
Motivation. In our mapping generation setting, the fitness function is needed
to compare candidate mappings that stem from the same source relations so as to
discard the less promising mappings that merge the same sources, the goal being
that we keep only one generated combination for each subset of initial source
relations. A solution for evaluating the mappings without materializing them
is needed in order to have a feasible approach in terms of processing time for
generating mappings. If the algorithm were to materialize the mappings, then
the mapping generation process would be slowed down by the need to evaluate
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the queries then possibly write it to secondary storage, in a context where the
search strategy generates many candidate mappings, in each iteration.
Mapping characteristics. Extracting mapping characteristics is a subject of
on-going research. It is has been studied in, e.g., Gottlob and Nash (2008), where
a formal framework is defined in which schema mappings can be expressed and
which allows the evaluation of their quality. The cost function they design is
based on the number of repairs the mapping needs so as to represent correctly the
target instance using instance data generated by the execution of the mappings.
Alexe et al. (2011a) present another approach. They focus on assigning a rank
to the mappings based on data examples that uniquely characterize the mapping.
This approach is also based on evaluating materialized data examples.

Previous works focus on example-based fitness functions because they assume
that the mapping generation process has ended and the final set of candidate
mappings can be evaluated using an instance-driven cost function. However, in
our setting, this assumption is not valid as we need to evaluate the mappings
immediately after they are generated in order to decide whether or not to keep
them. The available evidence for computing mapping fitness consists of the
metadata, profiling data and the following estimates w.r.t. the results of the
mapping:

- number of nulls and distinct values on attributes,
- size of the extents,
- coverage of the target, i.e., the number of matched target attributes,
- candidate keys and (partial) inclusion dependencies, and
- merge opportunities.

The main requirement for a fitness function, in our setting, is to assign a fitness to
each mapping, where the fitness indicates whether, upon evaluation, the mapping
would output instances that, to a lesser or a greater extent in comparison to
other mappings, correlate source data in such a way as to produce valuable target
data. We define valuable w.r.t a set of desired data properties, e.g., as few nulls
as possible, as many complete tuples as possible, etc.
Fitness function. Different fitness functions could be conceived. In this thesis,
the fitness of a mapping is a function of the estimated number of largely complete
tuples it would return, if evaluated. This approach was found to be effective
in practice. The fitness function builds on an approach to infer profiling data
(described in Section 3.6) for the result of a merge operator by propagating the
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Algorithm 5 Fitness function
1: function fitness(map)
2: atts← removeOutliers(map.attributes)
3: attr_nulls = {〈a, count(v)〉|a← atts, v ← a.values, v = null}
4: max_attr_nulls = {max(n)|〈a, n〉 ← attr_nulls}
5: return map.size−max_attr_nulls

profiling data of its operands.
Fitness is formalized in Algorithm 5. It is called after a new intermediate

mapping is created (see Algorithm 4). Specifically, given the list of attributes
of a mapping, RemoveOutliers returns the set of attributes that are not
outliers with respect to the number of nulls they contain (line 2). Outliers are
identified using the Median and Interquartile Deviation Method. Then, for the
remaining attributes, i.e., atts, the attribute predicted to have the most nulls is
identified (lines 3-4). The number of largely complete tuples in the mapping is
then estimated to be the cardinality of the mapping minus the number of nulls
in the attribute with the most nulls. This notion of fitness prefers mappings with
larger results (thus retaining more data from the sources) and with fewer nulls.

The fitness function can be changed so as to prefer mappings with other
characteristics. Other options could prefer: the lowest ratio of estimated nulls,
which would favor mappings with as few nulls as possible; the highest number
of distinct values on matched attributes, which would favor mappings that bring
data from sources that are as disjoint as possible; the highest cardinality, which
would favor mappings that merge data from (possibly) many sources; or the best
coverage for the target, which aims to populate as many attributes as possible.

Example 3.5.1. In our scenario, there are two options for merging Cambridge
agency (CA), UK quality of life statistics (UKQ), and UK Deprivation (UKD):

1. m3,1 ← (CA ./ CA.county=UKQ.countyUKQ) ./ CAUKQ.postcode=UKD.postcodeUKD
2. m3,2 ← (CA ./ CA.postcode=UKD.postcodeUKD) ./CAUKD.county=UKQ.county UKQ

When both these mappings are generated (one was memoized and one is newly
created), the algorithm detects that these mappings stem from the same three
initial sources and chooses which one to keep. Both contain join operations, but
only m3,1 keeps all the tuples. One can observe that both mappings correlate the
same data, while m3,2 is actually subsumed by the output of m3,1 as it loses the
tuples that do not satisfy the join condition in the second merge. The algorithm
will choose to keep mapping m3,1 for further merges as m3,1 has a better fitness
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as it will estimate that it will produce four complete tuples while for m3,2 it will
estimate just two.

3.6 Profile Data Propagation

This section describes how profiling data is propagated from the operands to the
result of the merge operator without materializing data.
Motivation. In searching the space of candidate mappings, Dynamap requires
metadata about the latter so as to consider how they relate to each other (e.g.,
can they be joined or unioned), and also as inputs to comparing their fitness
(as seen in Section 3.5). Dynamap assumes the availability of profiling data, in
the form of cardinalities (to compute mapping fitness – Section 3.5), and of keys
and inclusion dependencies (to inform how mappings can be combined – Section
3.3). Such profiling data can be obtained for source data sets using a profiling
tool such as Metanome [Papenbrock et al. (2015)]. However, given that we do
not materialize intermediate results, we must propagate profile data from the
operands to the result of merge operators. We propagate the profile data using
specific formulas for each type of merge, i.e., lossy and lossless merges, and we
generate profile data for new candidate mappings, i.e., taking into account the
relationships between the new and the memoized mappings.

3.6.1 Generalized Profile Data Propagation

Mapping cardinalities. Mapping generation makes use of cardinality estimates
for mappings. In particular, for a mapping m and an attribute C, the result
size in number of tuples (|m|), the numbers of distinct values for each attribute
(V (C)), and the number of nulls in each attribute (nulls(C)). The result size
and the number of nulls are used by the fitness function, whereas the number of
distinct values is needed to derive properties of inclusion dependencies associated
with the mapping. The result sizes and the numbers of distinct values returned by
relational operators can be estimated using established techniques (e.g., Garcia-
Molina et al. (1999)). These characteristics are computed from the profile data
of the parent mappings and the operator used to combine the parent mappings,
as detailed in Table 3.1. In Table 3.1, r represents an intermediate mapping that
results from the merge between two other mappings, where the merge operation
can be either union, join or full outer join. As explained in Section 3.1.4, here we
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Merge operator Estimates for mappings
r ← merged(m1,m2) Result size - |r| Distinct values per attribute Nulls per attribute
Union |r| ← |m1.X1|+ |m2.X2| V (r.X)← V (m1.X1) + V (m1.X2) nulls(r.X)← nulls(m1.X1)
r.X ← m1.X1 ∪m2.X2 −|m1 ./X1=X2 m2| −V (m1.X1 ∩m2.X2) +nulls(m2.X2)
Join

|r| ← |m1.X1|

V (r.X)← V (m1.X1) nulls(r.X)← 0
r ← m1 ./X1=X2 m2, where V (r.Y )← V (m1.Y1) nulls(r.Y )← nulls(m1.Y1)
X1 ⊆1 X2,

V (r.Z)←
{
|r|, if V (m2.Z2) > |r|
V (m2.Z2), otherwise

nulls(r.Z)← nulls(m2.X2)
|m2.X2|

∗ |r|
Y1 ∈ schema(m1), Y1 6= X1,
Z2 ∈ schema(m2), Z2 6= X2
Full Outer Join nulls(r.X)← nulls(m1.X1)
r ← m1 ./X1=X2 m2, where V (r.X)← V (m1.X1) + V (m2.X2) +nulls(m2.X2)
X1 ⊆θ X2, 0 < θ < 1, |r| ← |m1.X1|+ |m2.X2| −V (m1.X1 ∩m2.X2) nulls(r.Y )← nulls(m1.Y1)
Y1 ∈ schema(m1), Y1 6= X1 −|m1 ./X1=X2 m2| V (r.Y )← V (m1.Y1) +(|r| − |m1.X1|)
Z2 ∈ schema(m2), Z2 6= X2 V (r.Z)← V (m2.Z2) nulls(r.Z)← nulls(m2.Z2)

+(|r| − |m2.X2|)

Table 3.1: Cardinality estimations

omit in Table 3.1 the step where the resulting mapping r is brought to the schema
of the target table t, as r represents an intermediate mapping that is meant to
be merged in subsequent iterations (if any), thus, preserving both matched and
unmatched attributes. Table 3.1 uses the notation introduced below.

Let r[X∪Y ∪Z]← merge(m1[X1∪Y1],m2[X2∪Z2]), whereX, Y, Z,X1, Y1, X2,

and Z2 are (sets of) attributes from mappings r,m1 andm2. TheX, Y, Z,X1, Y1, X2,

and Z2 attribute sets are defined as follows:
- if r is the result of union then X1 and X2 represent the projections of m1

and m2 on which union is performed, while Y1 and Z2 are empty sets (m1.X1

and m2.X2 are schema compatible), thus Y and Z are empty as well.

- if r is the result of join or full outer join, then X1 and X2 represent the join
condition attributes on whichm1 andm2 join, and their merge is represented
by attribute X in r, while Y1 and Z2 are attributes that are not used in
the join condition, but are used to build attributes Y and Z in the new
intermediate mapping.

Profiling data. Estimating properties of relationships between mappings in
the wild is the subject of active investigation. For example, recent results have
described probabilistic approaches to estimating the unionability [Nargesian et al.
(2018)] and joinability [Zhu et al. (2016)] of attributes in large data sets, indexed
using Locality Sensitive Hashing. Such solutions approximate measures of degree
in relationship, e.g., degree of overlap, or containment, between attributes using
special hash functions applied on their extents. In our setting, given that we
do not materialize the extents of intermediate mappings, we cannot use such
hash-based approximation techniques and, therefore, our focus is on propagating
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profiling data originally stemming from source tables.
This section describes how information about candidate keys and (partial)

inclusion dependencies is propagated through the algebraic operators used in
mappings, and thus how profile data can be propagated to new candidate map-
pings they give rise to.

Propagating (partial) inclusion dependencies means inferring inclusion depen-
dencies for a child mapping from the inclusion dependencies in which the parent
mappings participate. The inference is done by replacing the parent attributes
with the new corresponding attributes (from the newly generated intermediate
mapping) and computing a new overlap. The computation of the new overlap
depends on several factors:
• which type of operator is applied to the parent mappings, i.e., union, full

outer join (lossless merge) or join (lossy merge);
• whether the attribute(s) in the propagated inclusion dependency appear in

the join condition (when the operator is join or full outer join);
• whether the parent attributes represent the dependent or the referenced

attributes in the propagated inclusion dependency; and
• whether the parent attributes (referenced or dependent) are involved in

other inclusion dependencies, i.e., there are overlaps between the same
parent attributes and attributes in other intermediate mappings.

We now define the following notations:
• Let m1 and m2 be mappings that merge to give mapping r; m1 and m2 are

said to be the parent mappings of r.
• Let r [R∪X∪Y ]← merge(m1[S∪X1],m2[P ∪Y2]), where R,X, Y, S,X1, P,

and Y2 are (sets of) attributes from mappings r, m1 and m2.
• Let R, X and Y be (sets of) attribute(s), R,X, Y ⊆ schema(r), where
R denotes the merge of attributes S and P according to the chosen op-
erator, S ⊆ schema(m1), P ⊆ schema(m2), X denotes the data trans-
ferred from X1 ⊆ schema(m1), and Y denotes the data transferred from
Y2 ⊆ schema(m2). Attributes X1 and Y2 are not combined with other
attributes in the merge between m1 and m2.
• Let Q be a (set of) attribute(s), where Q ⊆ schema(m3), where m3 6= m1,

and m3 6= m2.
Inclusion dependency inference. Given an inclusion dependency S ⊂θS,Q Q, the
inferred inclusion dependency is of the form R ⊂θR,Q Q, given that attribute S is
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a parent attribute of R. Given an inclusion dependency Q ⊂θQ,S S, the inferred
inclusion dependency is of the form Q ⊂θQ,R R, given that S attribute is a parent
attribute of R.

Tables 3.2 and 3.3 show the set of formulas that our work contributes for
inferring overlaps (θ) without materializing any of the mappings. In both tables,
when both attributes from both parents are involved in the inclusion dependency
(S, P, X1 or X2), and when one of the parents is involved in an inclusion de-
pendency with another attribute Q ∈ schema(m3), m3 6= m1,m3 6= m2. For
simplicity, Table 3.2 only shows when parent attributes from m1 are involved in
an inclusion dependency with Q, but the same formulas apply for the attributes of
m2. The tables differ based on whether the merge of two parent attributes, S and
P, causes the loss of distinct values in the new attribute R. Note that the tables
show the interactions between singleton sets of attributes (i.e., S, P and Q contain
just one attribute) as the current state-of-the-art in discovering partial inclusion
dependencies (e.g., Kruse et al. (2015)) does not yet support multi-attribute sets
due to the high computational cost.

Lossless merge. Table 3.2 shows how to estimate the overlap when the merge
of the parent attributes is lossless, i.e., for the projected attributes in a union
operation, or for the join condition attributes of a full outer join operation. By
union we mean r.R← m1.S ∪m2.P , with S and P attributes that were projected
from the parent mappings to compute the union, and where R← S ∪ P , and X1,
and Y2 are empty sets. Likewise, by full outer join, we mean r ← m1 ./ S=P m2,
with R ⊆ schema(r) the result of S merging P , where θS,P , θP,S ∈ [0, 1], and X1,
and Y2 are sets of attributes with any number elements (0 ≤ arity(m1.X1), 0 ≤
arity(m2.Y2)).
Lossy merge. Table 3.3 shows how to estimate the overlap when propagating
the inclusion dependencies when the merge of the parent attributes is lossy, i.e.,
when the chosen operator is join and one of the relations may lose attribute
values. By join we mean r ← m1 ./S=P m2, and R ⊆ schema(r) is the result of
S merging P , where θS,P = 1 and θP,S ∈ (0, 1].

Example 3.6.1. In iteration 2, MA and CA are merged through union. The
partial inclusion dependencies between these two relations and UKD and UKQ
need to be propagated to the newly created intermediate mapping: m2,1 ←
MA ∪ CA. For union operations, the merge is lossless, so Table 3.2 is used to
compute the new overlaps.
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Dependent Referenced Conditions Overlap(s) for inferred
inclusion dependency

1 S(parent) P (parent) θR,P = V (P )
V (R) , θS,R = 1

2

S(parent) Q

θS,P = 0 θR,Q = V (P )∗θP,Q+V (S)∗θS,Q

V (R)

3 θS,P = 1 θR,Q = V (P )∗θP,Q

V (R)

4 θP,S = 1 θR,Q = V (S)∗θS,Q

V (R)

5 θS,Q = 1 θR,Q = V (S)−V (S)∗θS,P +V (P )∗θP,Q

V (R)

6 θP,Q = 1 θR,Q = V (P )−V (P )∗θP,S+V (S)∗θS,Q

V (R)
7 θQ,P = 1 or θQ,S = 1 θR,Q = V (Q)

V (R)

8 θP,Q = 0 θR,Q = V (S)∗θS,Q

V (R)

9 θQ,S , θS,Q, θQ,P , θP,Q ,θP,S ,
θS,P ∈ (0, 1) θR,Q = V (S)∗θS,Q+V (P )∗θP,Q−V (S)∗θS,P

V (R)

10 X1(parent) Q θX,Q = θX1,Q

11

Q S(parent)

θS,P = 0 θQ,R = V (P )∗θP,Q+V (S)∗θS,Q

V (Q)

12 θS,P = 1 θQ,R = V (P )∗θP,Q

V (Q)

13 θP,S = 1 θQ,R = V (S)∗θS,Q

V (Q)

14 θS,Q = 1 θQ,R = V (S)−V (S)∗θS,P +V (P )∗θP,Q

V (Q)

15 θP,Q = 1 θQ,R = V (P )−V (P )∗θP,S+V (S)∗θS,Q

V (Q)
16 θQ,P = 1 or θQ,S = 1 θQ,R = 1
17 θP,Q = 0 θQ,R = V (S)∗θS,Q

V (Q)

18 θQ,S , θS,Q, θQ,P , θP,Q ,θP,S ,
θS,P ∈ (0, 1) θQ,R = V (S)∗θS,Q+V (P )∗θP,Q−V (S)∗θS,P

V (Q)

19 Q X1(parent) θQ,X = θQ,X1

Table 3.2: Inclusion dependencies propagation for lossless attribute merges

For the propagation of MA.postcode ⊂0.667 UKD.postcode into m2,1.postcode

⊂θ UKD.postcode the overlap estimation (θ) needs to be computed. In Table 3.2,
the dependent attribute of the parent mapping is S, i.e., MA.postcode, and the
referenced attribute is not a parent, i.e., Q is UKD.postcode, while the other
parent attribute P is CA.postcode. The two parent attributes (MA.postcode

and CA.postcode) are disjoint, thus the condition on the second row is satisfied
(θS,P = 0), so θ = 3∗0.334+3∗0.667

6 = 0.5. A similar process applies for the remaining
inclusion dependencies.

Propagating candidate keys means detecting whether the unique constraint still
holds. Candidate keys are identified if there is no possibility of duplicates or
null creation. The conditions for propagating the candidate keys are depicted in
Table 3.4. In Table 3.4, r represents the intermediate mapping that results from
the merge between two other mappings. As explained in Section 3.1.4, we omit
in Table 3.4 the step where the resulting mapping r is brought to the schema
of the target table t, as r represents an intermediate mapping that is meant to
be merged in subsequent iterations (if any), thus, preserving both matched and
unmatched attributes.
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Dependent Referenced Conditions Overlap(s) for inferred inclusion dependency
1 S(parent) P (parent) θS,P = 1 θR,P = 1, θS,R = 1
2 P (parent) S(parent) θS,P = 1 θR,S = 1, θP,R = V (S)

V (P )
3 Q S or P (parent) θS,P = 1 θQ,R = θQ,S
4 S or P (parent) Q θS,P = 1 θR,Q = θS,Q
5 X1(parent) Q θS,P = 1 θX,Q = θX1,Q
6 Q X1(parent) θS,P = 1 θQ,X = θQ,X1

7 Y2(parent) Q θS,P = 1 θY,Q =
{

1, if θQ,Y2 ∗ V (Q) > |r|
θY2,Q∗V (Y2)

|r| , otherwise

8 Q Y2(parent) θS,P = 1 θQ,Y =
{ |r|
V (Q) , if θQ,Y2 ∗ V (Q) > |r|
θQ,Y2 , otherwise

Table 3.3: Inclusion dependencies propagation for lossy attribute merges

Operator Conditions for propagating a candidate key
Union -r.X is candidate key if m1.X1 & m2.X2 are

candidate keys and m1.X1 ∩m2.X2 = ∅r.X ← m1.X1 ∪m2.X2
Join -r.X is a candidate key if m1.X1 and m2.X2

are candidate keys.r ← m1 ./X1=X2 m2,where
X1 ⊆1 X2 -r.Z is a candidate key if m1.X1 is a cand.key
Y1 ∈ schema(m1), Y1 6= X1 -r.Y is a candidate key if m2.X2 is a cand.key
Z2 ∈ schema(m2), Z2 6= X2
Full Outer Join -r.X is a candidate key if X1, X2 are

candidate keys.r ← m1 ./X1=X2 m2

Table 3.4: Candidate keys propagation

Example 3.6.2. After propagating the inclusion dependencies for mapping m2,1,
the algorithm tries to propagate the candidate keys that the parent relations have.
In this case, it checks whether either of the parents have candidate keys, which,
in this case, neither MA nor CA do.

However, if it were the case that the postcode attribute in both relations was
a candidate key, and given that i) θMA.postcode,CA.postcode = 0, i.e., there is no
overlap between MA.postcode and CA.postcode, and ii) nulls(MA.postcode) =
nulls(CA.postcode) = 0, i.e., they do not have any nulls, then the algorithm would
have concluded that r.postcode, where r.postcode←MA.postcode∪CA.postcode,
remains a candidate key for the resulting mapping r.

3.6.2 Profiling Data Propagation Examples

In this section, we give examples of the propagation cases in Tables 3.2 and 3.3 so
as to explain how a newly inferred inclusion dependency is created and to show
that most of the formulas can accurately predict the new overlap.
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3.6.2.1 Example Settings

For these examples, we use the relational schemas in Figure 3.1. However, the
attribute values are changed so that we can adapt the overlaps as required for
triggering the propagation cases. More specifically, we look at the following
abstract case, using the notations from Section 3.6.1:

Let r[R∪X∪Y ]← merge(UKD[S∪X1], CA[P∪Y2]), where S,X1, P, Y2, R,X,

and Y are single attributes from the base mappings of UKD, CA, and their merge
result, r, and let Q be an attribute from the base mapping of UKQ where:

- S = UKD.postcode,
- P = CA.postcode,
- R = merge(S, P ), i.e., R represents the merge of attributes S and P ac-
cording to the chosen merge operator,

- X1 = UKD.county,
- X = r.UKDcounty, i.e., it represents the data transferred from X1,
- Y2 = CA.county,
- Y = r.CAcounty, i.e., it represents the data transferred from Y2,
- and Q = UKQ.county.

Let us consider the following inclusion dependencies:
1. UKD.postcode ⊂θUKD.postocde,UKQ.postcode UKQ.postcode (S ⊂θS,Q Q),
2. UKQ.postcode ⊂θUKQ.postcode,UKD.postocde UKD.postocde (Q ⊂θQ,S S),
3. UKD.county ⊂θUKD.county,UKQ.county UKQ.county (X1 ⊂θX1,Q

Q),
4. UKQ.county ⊂θUKQ.county,UKD.county UKD.county (Q ⊂θQ,X1

X1),
then, given that attribute UKD.postcode is a parent attribute ofR, and UKD.county
is a parent attribute of X, their corresponding inferred inclusion dependencies
are:

1. R ⊂θR,UKQ.postcode UKQ.postcode (R ⊂θR,Q Q),
2. UKQ.postcode ⊂θUKQ.postcode,R R (Q ⊂θQ,R R),
3. X ⊂θX,UKQ.county UKQ.county (X ⊂θX,Q Q), and
4. UKQ.county ⊂θUKQ.county,X X (Q ⊂θQ,X X)
It can be observed that the first two inclusion dependencies in each batch

correspond to attributes that are used in the merge condition, while the latter
two correspond to attributes that are not merged with other attributes during
the merge.

Note that each pair of attributes has two corresponding inclusion dependencies
each with different overlaps (e.g., for each two overlapping attributes S and Q
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there are θS,Q 6= θQ,S). This is reflected in Tables 3.2 and 3.3, as each case has
a mirroring case for computing the other overlap, e.g., in Table 3.2, Case 2 is
mirrored by Case 11. Below, we consider such cases together.

(a) Case 1 (b) Cases 2 & 11 (c) Cases 3 & 12

(d) Cases 4 & 13 (e) Cases 5 & 14 (f) Cases 6 & 15

(g) Cases 7 & 16 (h) Cases 8 & 17 (i) Cases 9 & 18

Figure 3.2: Lossless merges - attributes overlaps
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3.6.2.2 Lossless Merges

Table 3.2 is used in the case of a lossless merge, i.e., the merge operator is union
or full outer join, as none of the attribute values are lost. In the case of both
operators, R← S ∪ P as all the distinct values from S and P will be contained
by R.

Distinct values. For computing the overlaps, we need to compute V (R), the
number of distinct values in R. For this, we use the formulas in Table 3.1 for
the corresponding merge operator. For both union and full outer join, V (R) =
V (UKD.postcode)+V (CA.postcode)−V (UKD.postcode∩CA.postcode). In the
case of full outer join, the attributes outside the join condition retain the number
of distinct values their parent had.

Let us consider the Venn diagrams in Figure 3.2 to represent the interaction
between the two sets of parent (postcode) attributes and the third attribute with
which the child infers the relationships. For simplicity, the name of the attribute
(postcode) is omitted from the diagrams.

Case 1. The first case in Table 3.2 represents the case when the inclusion
dependency where both parent relations are involved is propagated to the child.
This propagation would create a link between each parent and their child mapping.
Here, two inclusion dependencies are inferred (one for each parent), and there are
no preconditions for propagating them. An example is depicted in Figure 3.2(a).
Distinct Values: V (CA.postcode) = 5, V (UKD.postcode) = 6, V (R) = 6+5−2 =
9
Propagated ind: UKD.postcode ⊂0.334 CA.postcode

Inferred inds:
1. R ⊂0.556 CA.postcode as θR,CA.postcode = V (CA.postcode)

V (R) = 5
9

2. UKD.postcode ⊂1.0 R

Cases 2 & 11. This example is depicted in Figure 3.2(b) where the postcode
attributes from UKD and CA are disjoint. However, both have common values
with UKQ.
Distinct Values: V (CA.postcode) = 5, V (UKD.postcode) = 4,

V (R) = 5 + 4− 0 = 9, V (UKQ.postcode) = 6
Propagated inds:

1. UKD.postcode ⊂0.25 UKQ.postcode

2. UKQ.postcode ⊂0.1667 UKD.postcode
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Inferred inds:
1. R ⊂θR,UKQ.postcode UKQ.postcode, θR,UKQ.postcode = 5∗0.4+4∗0.25

9 = 3
9 = 0.334

2. UKD.postcode ⊂θUKQ.postcode,R R, θUKQ.postcode,R = 5∗0.4+4∗0.25
6 = 3

6 = 0.5

Cases 3 & 12. This example is depicted in Figure 3.2(c) where the postcode
values from UKD are fully included in the values of CA.postcode.
Distinct Values: V (CA.postcode) = 5, V (UKD.postcode) = 2,

V (R) = 5 + 2− 2 = 5, V (UKQ.postcode) = 6
Propagated inds:

1. UKD.postcode ⊂1.0 UKQ.postcode

2. UKQ.postcode ⊂0.334 UKD.postcode

Inferred inds:
1. R ⊂θR,UKQ.postcode UKQ.postcode, θR,UKQ.postcode = 5∗0.6

5 = 3
5 = 0.6

2. UKD.postcode ⊂θUKQ.postcode,R R, θUKQ.postcode,R = 5∗0.6
6 = 3

6 = 0.5

Cases 4 & 13. This example is depicted in Figure 3.2(d) where the postcode
values from CA are fully included in the values of UKD.postcode.
Distinct Values: V (CA.postcode) = 5, V (UKD.postcode) = 9,

V (R) = 5 + 9− 5 = 9, V (UKQ.postcode) = 7
Propagated inds:

1. UKD.postcode ⊂0.44(4) UKQ.postcode

2. UKQ.postcode ⊂0.571 UKD.postcode

Inferred inds:
1. R ⊂θR,UKQ.postcode UKQ.postcode, θR,UKQ.postcode = 9∗0.44(4)

9 = 4
9 = 0.444

2. UKD.postcode ⊂θUKQ.postcode,R R, θUKQ.postcode,R = 9∗0.44(4)
7 = 4

7 = 0.571

Cases 5 & 14. This example is depicted in Figure 3.2(e) where the postcode
values from UKD are fully included in the values of UKQ.postcode.
Distinct Values: V (CA.postcode) = 5, V (UKD.postcode) = 6,

V (R) = 5 + 6− 2 = 9, V (UKQ.postcode) = 9
Propagated inds:

1. UKD.postcode ⊂1.0 UKQ.postcode

2. UKQ.postcode ⊂0.667 UKD.postcode

Inferred inds:
1. R ⊂θR,UKQ.postcode UKQ.postcode, θR,UKQ.postcode = 6−6∗0.334+5∗0.4

9 = 6
9 =

0.667
2. UKD.postcode ⊂θUKQ.postcode,R R, θUKQ.postcode,R = 6−6∗0.334+5∗0.4

9 = 6
9 =

0.667
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Cases 6 & 15. This example is depicted in Figure 3.2(f) where the postcode
values from CA are fully included in the values of UKQ.postcode.
Distinct Values: V (CA.postcode) = 5, V (UKD.postcode) = 5,

V (R) = 5 + 5− 1 = 9, V (UKQ.postcode) = 8
Propagated inds:

1. UKD.postcode ⊂0.4 UKQ.postcode

2. UKQ.postcode ⊂0.25 UKD.postcode

Inferred inds:
1. R ⊂θR,UKQ.postcode UKQ.postcode, θR,UKQ.postcode = 5−5∗0.2+5∗0.4

9 = 6
9 = 0.667

2. UKD.postcode ⊂θUKQ.postcode,R R, θUKQ.postcode,R = 5−5∗0.2+5∗0.4
8 = 6

8 = 0.75

Cases 7 & 16. This example is depicted in Figure 3.2(g) where the post-
code values from UKQ are fully included either in the values of CA.postcode
or in UKD.postcode. We describe below the case where they are included in
CA.postcode, but the same applies for the other case.
Distinct Values: V (CA.postcode) = 8, V (UKD.postcode) = 5,

V (R) = 8 + 5− 1 = 12, V (UKQ.postcode) = 3
Propagated inds:

1. UKD.postcode ⊂0.2 UKQ.postcode

2. UKQ.postcode ⊂0.334 UKD.postcode

Inferred inds:
1. R ⊂θR,UKQ.postcode UKQ.postcode, θR,UKQ.postcode = 3

12 = 0.25
2. UKD.postcode ⊂θUKQ.postcode,R R, θUKQ.postcode,R = 3

3 = 1.0

Cases 8 & 17. This example is depicted in Figure 3.2(h) where the postcode
values from UKQ do not have any common values with CA.postcode, but both
UKQ and CA have overlapping values with UKD.
Distinct Values: V (CA.postcode) = 5, V (UKD.postcode) = 6,

V (R) = 5 + 6− 2 = 9, V (UKQ.postcode) = 5
Propagated inds:

1. UKD.postcode ⊂0.334 UKQ.postcode

2. UKQ.postcode ⊂0.4 UKD.postcode

Inferred inds:
1. R ⊂θR,UKQ.postcode UKQ.postcode, θR,UKQ.postcode = 6∗0.334

9 = 0.222
2. UKD.postcode ⊂θUKQ.postcode,R R, θUKQ.postcode,R = 6∗0.334

5 = 0.4

Cases 9 & 18. This example is depicted in Figure 3.2(i) where there are no
full inclusion dependencies between the three attributes, i.e., there are only partial
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overlaps between each pair of attributes. Given this, it is not possible to produce
an accurate estimate for the overlaps and the new overlaps are pessimistically esti-
mated, i.e., we assume that the number of common values between UKQ.postcode
and the resulting attribute R remains as small as possible. Another approach
would have been to estimate optimistically, i.e., assume that the overlap is as
large as possible. However, this optimistic approach could give rise to unhelpful
merge opportunities, as the latter are chosen based on the degree of overlap.

Distinct Values: V (CA.postcode) = 7, V (UKD.postcode) = 6,

V (R) = 7 + 6− 3 = 10, V (UKQ.postcode) = 6

Propagated inds:

1. UKD.postcode ⊂0.5 UKQ.postcode

2. UKQ.postcode ⊂0.5 UKD.postcode

Inferred inds:

1. R ⊂θR,UKQ.postcode UKQ.postcode, θR,UKQ.postcode = 6∗0.5+7∗0.428−6∗0.5
10 = 0.3

2. UKD.postcode ⊂θUKQ.postcode,R R, θUKQ.postcode,R = 6∗0.5+7∗0.428−6∗0.5
7 = 0.428

Based on the actual data, the real overlaps should have been θR,UKQ.postcode =
4
10 = 0.4 and θUKQ.postcode,R = 4

7 = 0.571. It can be observed that the estimated
overlaps are smaller than the real ones, i.e., are pessimistic in general.

Cases 10 & 19. This example is not depicted in the set of figures as, here,
the parent attribute is no longer an attribute that is being merged with another,
and given that the merge is lossless, then every other attribute that is not used
in the merge will keep exactly the same distinct values as before the merge, thus,
any overlap that the parent attribute had is propagated unchanged to the child.

Propagated inds:

1. UKD.county ⊂θ UKQ.county
2. UKQ.county ⊂θ′ UKD.county

Inferred inds:

1. X ⊂θ UKQ.county
2. UKD.postcode ⊂θ′ X
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(a) Cases 1 & 2 (b) Cases 3 & 4

Figure 3.3: Lossy merges - attributes overlaps

3.6.2.3 Lossy Merges

Table 3.3 is used in the case of a lossy merge, i.e., the merge operator is join, where
some of the attribute values from the referenced table are lost. For these examples,
we assume that there is a full inclusion dependency between UKD.postcode

(S) and CA.postcode (P ), i.e., θUKD.postcode,CA.postcode = 1, meaning that all the
postcode values in UKD are fully included in the values of CA.postcode. In
other words, according to this profile data, we consider that we only have crime-
rank information for some or all postcodes in Cambridge. In this case, R ←
UKD.postcode∩CA.postcode(S∩P ) as only the values that are common between
UKD.postcode and CA.postcode are output in R.

Distinct values. For computing the overlap, similarly to Section 3.6.2.2, the
number of distinct values on each attribute needs to be estimated. For this, we use
the formulas in Table 3.1 for the join operator considering θUKD.postcode,CA.postcode =
1:
• V (R) = V (UKD.postcode),
• V (X) = V (UKD.county), and

• V (Y ) =

|r|, if V (CA.county) > |r|

V (CA.county), otherwise
, where V (Y ) is an estimate of the

number of distinct values in CA.county that remain after the merge. The
intuition is that we assume the attributes keep as many distinct values as
possible without exceeding the estimated size for r.

Let us assume a set of simple example values for each attribute, and consider
the Venn diagrams in Figure 3.3.

Cases 1 & 2. The first two cases in Table 3.3 represent the cases where both
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parent mappings are involved in the propagated inclusion dependencies. This
propagation would create a link between each parent and their child mapping.
Here, two inclusion dependencies are inferred for each propagated inclusion depen-
dency (one for each parent), and there are no preconditions for propagating them.
An example is depicted in Figure 3.3(a) where the result of R is the intersection
of the two sets S and P , i.e., is equal to S ∩ P = S.
Distinct Values: V (CA.postcode) = 5, V (UKD.postcode) = 2, V (R) = 2
Propagated inds:

1. UKD.postcode ⊂1.0 CA.postcode

2. CA.postcode ⊂0.4 UKD.postcode

Inferred inds:
1. (a) UKD.postcode ⊂θUKD.postcode,R R, where θUKD.postcode,R = 1.0

(b) R ⊂θR,CA.postcode CA.postcode, where θR,CA.postcode = 1.0
2. (a) CA.postcode ⊂θCA.postcode,R R, where θCA.postcode,R = 2

5 = 0.4
(b) R ⊂θR,UKD.postcode UKD.postcode, where θR,UKD.postcode = 1.0

Cases 3 & 4. The two cases in Table 3.3 represent the cases where only
one parent relation is involved in the propagated inclusion dependencies. This
propagation creates a link between that parent and the child mapping. Here,
one inclusion dependency is inferred for each inclusion dependency, and there
are no preconditions for propagating it. An example is depicted in Figure 3.3(b)
where the result of R is the intersection of the two sets S and P , i.e., is equal to
S ∩ P = S.
Distinct Values: V (CA.postcode) = 5, V (UKD.postcode) = 2,

V (R) = 2, V (UKQ.postcode) = 5
Propagated inds:

1. (a) UKD.postcode ⊂0.5 UKQ.postcode

(b) UKQ.postcode ⊂0.2 UKD.postcode

2. (a) CA.postcode ⊂0.4 UKQ.postcode

(b) UKQ.postcode ⊂0.4 CA.postcode

Inferred inds:
For 1, 2(a): R ⊂θR,UKQ.postcode UKQ.postcode,

where θR,UKQ.postcode = θUKD.postcode,UKQ.postcode = 0.5
For 1, 2(b): UKQ.postcode ⊂θUKQ.postcode,R R,

where θUKQ.postcode,R = θUKQ.postcode,UKD.postcode = 0.2

Cases 5 & 6. This example is not depicted in the set of figures as, here,
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the parent attribute is no longer an attribute that is being merged with another.
Given that (i) the merge is lossy, (ii) the parent attribute is from the dependent
relation, and (iii) every attribute from the dependent table keeps the distinct
values it had before the merge, any overlap that the parent attribute had is
propagated unchanged to the child.
Propagated inds:

1. UKD.county ⊂θ UKQ.county
2. UKQ.county ⊂θ′ UKD.county

Inferred inds:
1. X ⊂θ UKQ.county
2. UKQ.county ⊂θ′ X

Cases 7 & 8. This example is not depicted in the set of figures as, here, the
parent attribute is no longer an attribute that is being merged with another. The
merge is lossy and the parent attribute is from the referenced relation, so every
attribute from the referenced table may lose some of the distinct values it had
before the merge. However, because there is no way to determine which values
are kept and which are lost (if any), any overlap that the parent attribute had
is propagated to the child using the estimates in Cases 7 and 8. The intuition
behind the proposed estimates is that the referenced attributes keep as many
distinct values as possible without exceeding the estimated size for r.

3.7 Dynamap Workflow

In the previous sections of this chapter, we described the main components in the
mapping generation algorithm, Dynamap. Figure 3.4 depicts the workflow of the
complete mapping generation process.
Input. The basic input comprises the input sources, the schema of the target
relation, and the source-to-target matches (generated with a matching tool or by
an expert user).
Preprocessing. This input undergoes a preprocessing step where a profiler (e.g.,
Metanome [Papenbrock et al. (2015)]) analyses the source data and produces
the postulated candidate keys and inclusion dependencies between sources. In
the same processing step, the metadata, and database statistics are read off the
sources, i.e., relation sizes, number of nulls and number of distinct values in the
attributes. Then, the last preprocessing step is to generate the base mappings
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Figure 3.4: Dynamap – Mapping generation workflow

representing the base solution (sub-solution for iteration 1) that bootstraps the
recursive search.
Mapping generation as search. The profile data and the base mappings are
input to the search process and the algorithm starts building the mappings in a
bottom-up fashion (recursively calling GenerateMappings - Algorithm 3).
At each iteration, thememoized mappings are merged to generate the intermediate
mappings for that iteration. Every pair of mappings from previous iterations are
considered for merging. The algorithm tries to find a suitable merge operator
(Algorithm 1 – ChooseOperator) using the available candidate keys and
inclusion dependencies on the two mappings. If a suitable operator was found, a
new mapping is created for which the algorithm computes the estimated size, nulls
and distinct values on attributes (using the formulas in Table 3.1). New profile
data is also inferred for the new mapping using the data from the parent mappings
(using the formulas in Tables 3.2, 3.3, and 3.4). The new profile data is then
used to create relationships between the child and the other memoized mappings
that had a relationship with (at least) one of the parents. These relationships
are needed in order to merge the child mapping further with other mappings in
subsequent iterations. In the next step, the algorithm uses the estimated metadata
and computes a fitness value for the new mapping (Algorithm 5 – Fitness).
Dynamap then retrieves previously generated mappings (if any) that stem from
the same initial source relations as the new mapping and compares the fitness
of the new mapping with that of the memoized mappings. If the fitness of the
new mapping is better than the one of the memoized mappings, then Dynamap
discards the previous mappings and memoize the new mapping for being the best
(up to this point in the search) for that subset of initial relations. The process of
merging mappings is repeated until all mappings that could be merged for that
iteration are combined and the sub-solution for that iteration is created.
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Output mappings. In Dynamap, in different iterations, too many plausible
candidate mappings may be identified. As a result, there is a need to select a
subset of these mappings. In the current approach, Dynamap outputs the best k
mappings that merge a maximum of r initial relations, where k is an integer and
1 ≤ r ≤ n, where n is the total number of input source relations. The parameter
k is given as input by the user to the mapping generation algorithm and it is used
at the end of the mapping generation process so as to filter the k best mappings
from the whole set of output mappings. The set of output mappings comprises
intermediate mappings that merge subsets of i source relations, 1 ≤ i ≤ r, that
were obtained in intermediate iterations, and that are ranked according to their
fitness (as explained in Section 3.5). In practice, the process of mapping selection
could also involve user preferences (e.g., Abel et al. (2018)).

Example 3.7.1. An example of an output mapping for the scenario in Figure 3.1
has the following form:

imapCA_MA ← CA ∪MA

imapCA_MA_UKD ← imapCA_MA ./ postcode UKD

output_map← imapCA_MA_UKD ./ county UKQ

where output_map has the same schema as the chosen target relation, e.g.,
CA_MA_statistics(postcode, price, street, income_rank, crime−rank). Note
that it can be seen as a combination of horizontal and vertical fragments, so to
speak.

3.8 Algorithm Evaluation

In this section, we evaluate the performance of Dynamap on various synthetic
scenarios (Section 3.8.1) and a part of a larger real-world scenario (Section 3.8.2).
The purpose of this section is to evaluate the extent to which Dynamap can tackle
mapping generation scenarios created by a state-of-the-art benchmark (iBench),
and representative real-world scenarios. Here, we only show results for a part of a
larger real-world scenario because we aim to follow step-by-step what Dynamap
does in this case for the workflow described in Section 3.7. The results on the
complete real-world scenario are described in Section 4.5.3.
Experimental setup. We run Dynamap over relational data sources and target
schemas. For storage, we used PostgreSQL 9.6. For the real-world scenarios,
in order to maintain a focus on mapping generation, matches were generated
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by a human expert. The profile data was generated through two Metanome
modules, i.e., HyUCC [Papenbrock and Naumann (2017)] for candidate keys, and
Sindy [Kruse et al. (2015)] for (partial) inclusion dependencies. In the case of
the synthetic scenarios, the matches, the profile data, the source and the target
schemas are generated automatically (without human input) by the scenario
generator. The experiments were run in an Intel Core i5 with 2×2.7 GHz, and 8
GB RAM.
Evaluation. The evaluation depends on the scenario type:
iBench scenarios. Given that here we test each basic integration scenario at
a time (named primitives by iBench), we compare the output of the mapping
created with Dynamap with the output of the mapping indicated by iBench
as being correct.
Real-world scenario. The result of the output mapping is compared with that
of a ground-truth mapping. Given that the scenario is of a reasonable size, the
comparison is done in terms of expected and generated operators between the
sources.

3.8.1 Benchmark Experiment - iBench

Motivation. iBench [Arocena et al. (2015)] is a tool that generates data inte-
gration/exchange scenarios where the sources have explicit keys and foreign keys.
Although not over autonomous data sources, i.e., not in the wild, these scenarios
are relevant for our purpose as they make use of a variety of data integration
primitives that mapping generation algorithms must (ideally) be able to tackle.
iBench denotes a primitive as a scenario that involves one source schema and
one target schema where a specific type of merge is needed to transfer the data
from the source to the target. The merge involves a variation of copying and/or
joining source relations to populate the target.
Scenarios. We have generated a separate scenario for each type of base case that
iBench is able to generate. Given that all the relationships between the sources
are automatically created as explicit foreign keys, there is no need to populate
the sources with data and analyze them with a profiler tool as the required profile
data is already specified. Also, the source-to-target matches are automatically
created by the generator. For generating the scenarios, we set the arity range to
[4-7], i.e., the source and target relations that are created can have between four
and seven attributes.
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The primitives that iBench makes use of are:
1. CP - Copy a relation.
2. HP - Horizontal partition a relation in multiple relations.
3. ADD - Copy a relation and add new attributes.
4. DEL - Copy a relation and delete attributes.
5. ADL - Copy a relation and add and delete attributes in tandem.
6. ME - Merge two source relations.
7. MA - Merge two source relations and add attributes.
8. VP - Vertical partitioning.
9. VHA - Vertical partitioning into a HAS-A relationship.
10. VIA - Vertical partitioning into an IS-A relationship.
11. VNM - Vertical partitioning into an N-to-M relationship.
12. SU - Copy a relation and create a surrogate key.
13. SJ - Copy a relation (S) and a relationship table (T ) through a self-join.

Results. We ran Dynamap over the iBench generated scenarios to ascertain
whether Dynamap correctly handles that scenario. The results can be seen in
Table 3.5. Dynamap correctly handles 7 out of 13 scenarios, which is the expected
outcome since these are the cases where either the source data needs merging
(through a foreign key) or simply copying the data (without any merge) to the
target relation. We now explain why Dynamap does not handle the remaining
six scenarios 1.

Vertical Partitioning. The VP primitive is described by the transformation
R(a, b) → S1(f(a, b), a) ∧ S2(f(a, b), b), S1.f(a, b) references S2.f(a, b), and vice
versa.

It can be observed that, in this primitive, the source data is transferred from
a single relation to two target relations linked through a foreign key. As stated
in the preamble of this chapter, Dynamap does not take into consideration target
constraints, and, as a result, in vertical partitioning scenarios, Dynamap cannot
make use of the specified foreign key relationship in the target, and therefore
creates two separate mappings to populate S1 and S2, separately.

The next three primitives, i.e., VHA, VIA, and VNM, are variations of vertical
partitioning (VP):
• (VH) Vertical partitioning in a HAS-A relationship:

1These types of scenarios are handled through the extended version of Dynamap, i.e.,
DynamapX , which we describe in Chapter 5.
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Primitive Transformation As Expected
CP R(a, b)→ T (a, b) Yes
HP R(a, b)→ T1(b), R(a, b)→ T2(b) Yes
ADD R(a, b)→ T (a, b, f(a, b)) Yes
DEL R(a, b)→ T (a) Yes
ADL R(a, b)→ T (a, f(a)) Yes
ME R(a, b) ∧ S(b, c)→ T (a, b, c), and S.b references R.b. Yes
MA R(a, b) ∧ S(b, c)→ T (a, b, c, f(a, b, c)), and S.b references R.b Yes
VP R(a, b)→ S1(f(a, b), a) ∧ S2(f(a, b), b), S1.f(a, b) references S2.f(a, b), and vice versa. No
VHA R(a, b)→ S(f(a), a) ∧ T (g(a, b), b, f(a)), T.f(a) references S.f(a) No
VIA R(a, b, c)→ S(a, b) ∧ T (a, c), where T.a→ S.a and S.a→ T.a are FKs No

VNM R(a, b)→ S1(f(a), a) ∧M(f(a), g(b)) ∧ S2(g(b), b) Nowhere M.f(a)→ S1.f(a) and M.g(b)→ S2.g(b) are FKs
SU R(a, b)→ T (f(a, b), b, g(b)), where T.f(a,b) is a key No
SJ R(a, b, c)→ S(a, b), R(a, b, c) ∧R(b, d, e)→ T (a, b), and R.b references R.a No

Table 3.5: Results for iBench primitives

R(a, b)→ S(f(a), a) ∧ T (g(a, b), b, f(a)), where T.f(a)→ S.f(a) is a FK
• (VI) Vertical partitioning in a IS-A relationship:
R(a, b, c)→ S(a, b) ∧ T (a, c), where T.a→ S.a and S.a→ T.a are FKs
• (VNM) Vertical partitioning in N-to-M relationship:
R(a, b)→ S1(f(a), b)∧M(f(a), g(b))∧S2(g(b), b), where M.f(a)→ S1.f(a)
and M.g(b)→ S2.g(b) are FKs

For these primitives, Dynamap’s behaviour, for the same reason as above, does
not handle them.

Surrogate Key. – The SU primitive is described by the transformation
R(a, b) → T (f(a, b), b, g(b)), where T.f(a, b) is a key that is expected to be

populated with labelled nulls created using a Skolem function over the source
attributes.

This primitive requires that the mapping generation algorithm detects the
need of unique values in the target on the declared key attribute that is, in fact,
not matched by the source. In order to tackle this scenario, it needs to create
unique values, i.e., labelled nulls, using the source data.

As in the case of the VP primitive, this scenario is not tackled by Dynamap
because the mapping generation algorithm would need to consider key constraints
on the target to produce the expected result. As before, Dynamap is not designed
to make use of this information and, as a result, it generates mappings that
transfer data from the matched source attributes to the target without generating
labelled nulls to satisfy the key constraint.

Self-join. The SJ primitive is described by the transformation
R(a, b, c)→ S(a, b), R(a, b, c) ∧R(b, d, e)→ T (a, b), and R.b references R.a.
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This primitive implies a scenario where a source relation (R) populates a target
that requires its self-join, i.e., R(a, b, c)∧R(b, d, e) means that R.b references R.a,
thus, if a join is performed as the following R(a, b, c) ./R.a=R.b R(b, d, e) then it
will correlate data within the same table R, and populate a target table T .

Here the issue is not whether constraints are taken into account, but rather
the fact that it is not straightforward to establish, with the evidence available
to Dynamap, when a mapping should involve a self-join. For example, assume a
relation Employee(eID, eID_manager, address) and assume that we would like
to find the correlation between where employees live and where their managers
live. This requires joining Employee(eID, eID_manager, address) with itself.
Suppose the target table is Target(addressManager, addressEmployee), then
there are only two matches from Employee.address to the two target attributes,
but this information does not imply the necessity of a self-join. It seems plausible
from the limited evidence available that this is a simple copy scenario. Thus,
one can say it is difficult to express such a scenario without explicitly stating the
self-join requirement, and such information is not expected to be available for
mapping generation in the wild.

3.8.2 Real-world Scenario - Schools Domain

Motivation. This section presents a part of a larger scenario, which is evaluated
in full in Section 4.5.2. Here, we run Dynamap over only part of that because we
aim to describe, in a step-by-step manner, the extent to which the algorithm is
able to generate profile-informed mappings given a set of independent sources.
Scenario. The data sources contain information about schools, more specifically,
about the facilities in those schools, and the target needs to gather data from all
input sources.

Data Sources. The sources contain open-government data from the United
Kingdom and do not have any declared relationships between them. Their content
is outlined in Table 3.6. The table shows: the type of information made available,
the attributes that each source has for the target, i.e., the matches, the number
of sources containing the same type of information, the arity range, and the
cardinality range.

Target schema. The target schema brings together the information about
each school with the information about its activities and facilities, i.e., school
name, school type, headteacher contact, and number of students with English as
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data.gov.uk source Data for the target #Data Sources Arity Range Size Range

All schools dfe code(dc), school name(sn), 1 16 99headteacher(ht)
Additional
languages

dfe code(dc), #students with English 2 3 - 6 24 - 88as additional language (adl)
Road and Safety training school name(sn), school type(st) 1 3 46

Table 3.6: Input source files - schools information

Figure 3.5: Schools scenario

additional language, dfe code:
Target(sn, st, ht, adl, dfe code)

Profile data. To obtain the profile data on the input sources, HyUCC [Papen-
brock and Naumann (2017)] were run to detect the candidate keys, and SINDY
[Kruse et al. (2015)] was run to obtain the (partial) inclusion dependencies. The
input profile data contains: 7 candidate keys, 11 partial inclusion dependencies,
and 1 full inclusion dependency. The relationships between the attributes are
shown in Figure 3.5. Note that the schemas represent only subsets of attributes
that either had matches to the target and/or had shared profile data with other
relations.

Matches. Given that the scenario is of modest size, and that we focus on
mapping generation, the matches were created by hand. There are a total of 9
matches from the sources to the target. The matched attributes for each source
are in the Data for the target column in Table 3.6.

Ground truth. Given that the sources do not have any explicit schema con-
straints, and given the numerous relationships that can be inferred using the
profile data, it is not obvious how to merge them in order to achieve good quality
results. A best-effort ground-truth mapping was created by hand, as follows: first,
the datasets with data about additional languages were unioned, as they contain
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the same type of information needed in the target, i.e., dfe code and number
of students with English as Additional Language. Then, the other two sources,
i.e., all schools and road and safety training, were outer joined using postcode
attributes as it seems to be the better option, given that they have the highest
overlap (0.869) across the two relations. Finally, the result of the union is merged
with the result of the full outer join using, again, a full outer join operator on dfe
code. The ground-truth mapping, therefore, corresponds to the relational algebra
expression:

gt← (AM17 ∪ AM16) ./ dc (AS ./ pc RST )

Mapping generation. We describe here the complete mapping generation
process, following the workflow depicted in Figure 3.4.

Pre-processing. The mapping generation process starts by analyzing the four
input sources w.r.t. the target, i.e., read the profile data, metadata and database
statistics and generate the base mappings which represent the sub-solution for
iteration 1 (SS1).

• Metadata:
– relation sizes:|AS| = 99, |RST | = 46, |AM16| = 70, and |AM17| = 86,
– nulls: nulls(AS.pc) = 0, nulls(RST.st) = 0, nulls(AM16.adl) = 0,
nulls(AM17.adl) = 0. The rest of the attributes are candidate keys,
i.e., they contain no nulls.

– distinct values: V (AS.pc) = 96, V (RST.st) = 8, V (AM16.adl) = 34,
V (AM17.adl) = 36. The rest of the attributes are candidate keys, i.e.,
they contain the same number of distinct values as the size of their
corresponding relations.

• Profiling data (as seen in Figure 3.5):
– 7 candidate keys, e.g., AS.pc, AM16.dc
– 11 partial inclusion dependencies, e.g., AS.dc ⊂0.86 AM16.dc
– 1 full inclusion dependency: AM16.dc ⊂1.0 AS.dc

• Base mappings (sub-solution for iteration 1 - SS1):
– All schools: imapAS ← πsn,ht,pc,dcAS

– R&S training: imapRT ← πsn,st,pcRST

– ADL May17: imapA17 ← πdc,adlAM17
– ADL May16: imapA16 ← πdc,adlAM16
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SS1

SS1 AS RST AM16 AM17

AS – – – –
RST imap2,1 ← AS ./ sn RST – – –
AM16 imap2,2 ← AS ./ dc AM16 NOF – –
AM17 imap2,3 ← AS ./dc AM17 NOF imap2,4 ← AM16 ∪AM17 –

NOF = no operator found

Table 3.7: Schools scenario - merges in iteration 2

Dynamic programming search. Next, the algorithm starts building the map-
pings in a bottom-up fashion. First, it calls GenerateMappings (Algo-
rithm 3) with i = 4, i.e., try to retrieve the mappings for the set of four sources.
At this point, there are no mappings generated (besides the base mappings), so
it will recursively call GenerateMappings for the pairs (i = 2, j = 2) and
(i = 1, j = 3) (lines 7-8, in Algorithm 3). Again, there are no mappings for
subsets of 2, and 3 sources, respectively. When it steps in GenerateMap-
pings with i = 2, it will recursively call GenerateMappings with i = 1
twice for which the base mappings will be returned. Now, it can start merging
pairwise the base mappings. The result of GenerateMappings with i = 2
will represent the mappings generated in iteration 2. After the mappings for
iteration 2 are created, the mappings for iteration 3 can be created, i.e., for the
call of GenerateMappings with input parameter i = 3 it will recursively
call GenerateMappings with i = 1 (corresponding to iteration 1) and
GenerateMappings with i = 2 (corresponding to iteration 2) for which
the base mappings and the iteration 2 mappings are returned, respectively. After
the mappings for each 3 sources are generated, the algorithm will return to the
initial call of GenerateMappings for i = 4, and now the set of mappings
for all 4 sources can be created. The mappings with all four relations are obtained
merging the mappings from iteration 3 with those in iteration 1, and pairwise the
mappings from iteration 2. After this last step, the recursive search ends. Below,
we will explain step by step each of the iterations in a bottom-up fashion.

Iteration 2 (for GenerateMappings(i=2))
Choose operator & create mappings. Table 3.7 shows the intermediate mappings
created in iteration 2. In most cases, Dynamap finds the expected merges ac-
cording to the ground truth. However, when deciding to merge AS with RST ,
it chooses the expected operator (full outer join), but it does not perform the
join on the expected condition, i.e., on postcode, instead it uses school_name.
The ground truth was set to join the two relations on postcode attributes as this
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pair has the highest overlap, i.e, θpostcode = 0.869. Referring back to Choose-
OperatorDiff (Algorithm 2), we can see that Dynamap prefers condition
attributes where both are candidate keys, and in this situation, between AS and
RST only the school_name attributes are both keys, not the postcode, thus, joins
on school_name. Looking closer into the data, we find that AS.postcode is not a
key, but AS.school_name is, then at least two different schools are based at the
same postcode, e.g., a highschool and a primary school are in the same building.
Merging AS and RST on postcode means that some tuples in AS are assigned
the wrong school_type (from RST ) as more than one institution has the same
postcode. This merge would lead to incorrectly aligned tuples. Moreover, merging
the two tables using keys ensures that the profile data is propagated more accu-
rately as the merged tuples do not produce duplicates on the attributes that are
not involved in the merge, e.g., AS.dfe_code would still have unique values after
AS and RST merged by school_name. To conclude, Dynamap prefers merges
based on pairs of keys to inclusion dependencies with higher overlaps. This leads
to fewer correlated tuples, but those tuples are all correctly aligned in terms of
semantics.

New metadata. For each of the intermediate mappings, e.g., imap2,i, i ∈ {1, 2, 3, 4},
new metadata is computed. We describe below how this is done for one of the
intermediate mappings, as it is the same for the others.

For imap2,4 ← AM16 ∪ AM17, the metadata is estimated using Table 3.1.
• |imap2,4| ← |πdc,adlAM16|+|πdc,adlAM17|−|AM16 ./dc,adl AM17|. However,
we do not know the size of the join result as the number of overlapping
values between pairs of attributes (dc,adl) from the two relations, AM16
and AM17, cannot be derived from the available information. Thus, the
result size is estimated considering the join as the empty set, assuming that
the mapping creates as many tuples as possible, i.e., |imap2,4| ← 156.
• nulls(imap2,4.dc)← 0, nulls(imap2,4.adl)← 0,
• V (imap2,4.dc)← 91, V (imap2,4.adl) = 52,

New profile data. For each of the intermediate mappings, new candidate keys and
inclusion dependencies are inferred from the parent mappings. We will describe
below how this inference is carried out for the intermediate mapping, imap2,4, as
the others are done in a similar fashion.

As imap2,4 is the result of a union operation, the merge is lossless, thus, Table
3.2 is used for propagating all 8 inclusion dependencies and Table 3.4 for the 2
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candidate keys.
The propagation of AS.dc ⊂0.86 AM17.dc to AS.dc ⊂θ imap2,4.dc is done

using the formula for Case 14 in Table 3.2: θ ← 86−86∗0.928+70∗0.928
99 , so θ = 0.718.

The propagation of AS.dc ⊂0.928 AM16.dc to AS.dc ⊂θ imap2,4.dc is done
using the formula for Case 15 in Table 3.2: θ ← 86−86∗0.928+70∗0.928

99 , so θ = 0.718.
Although two different inclusion dependencies were propagated (relating map-

pings AM16 and AM17 both to mapping AS), the two inferred inclusion depen-
dencies are, in fact, the same with the same inferred degree of overlap because
the new intermediate attribute (R ← AM17.dc ∪ AM16.dc) has both inclusion
dependencies relating to the same other attribute, AS.dc.

Fitness. The fitness function relies on the number of null values. Computing the
fitness of a new mapping depends on the chosen operator for its creation. For
instance, for imap2,4, which resulted from a union, there are no new nulls on the
attributes in the target, so the fitness of the new mapping is equal to its estimated
size, i.e., the number of largely complete tuples, so fitness(imap2,4) = 156. For
the other mappings, the fitness value depends on the number of nulls on the
attributes needed in the target. For instance, imap2,1 resulted from a full outer
join, so the fitness value is fitness(imap2,1) = 99 although its estimated size is
|imap2,1| = 124. This is because the total size of the mapping is not equal to the
estimated number of (largely) complete tuples, as we know that some tuples will
be sparse (viz., the ones that do not merge).

Memoize/Discard mappings. In iteration 2, all created mappings are memoized as
sub-solution SS2 as there are no other memoized mappings that are better than
the ones produced in this iteration.

The memoized mappings for sub-solution for iteration 2 is
SS2 = {imap2,1, imap2,2, imap2,3, imap2,4}
Iteration 3 (for GenerateMappings(i=3)):

Choose operator & create mappings. For computing the sub-solution in iteration
3, the memoized intermediate mappings from SS2 are merged with the ones in
SS1 (the base mappings). In Table 3.8, the merges that were found in this step
are described.

Note the related case to the one explained above, in iteration 2: imap2,2 ←
AS ./ dc AM16 is a mapping built through a full outer join on the dc attributes.
Given this merge, candidate keys in both parent mappings are lost due to the
creation of nulls on the attributes not used in the join condition. The only
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SS1

SS2 imap2,1 imap2,2 imap2,3 imap2,4

AS CA CA CA imap3,7 ← AS ./ dc
imap2,4

RST CA imap3,3 ← RST ./pc imap3,5 ← RST ./ sn NOF
imap2,2 imap2,3

AM16 imap3,1 ← AM16 ./ dc CA imap3,6 ← AM16 ./ dc CA
imap2,1 imap2,3

AM17 imap3,2 ← AM17 ./ dc imap3,4 ← AM17 ./dc CA CA
imap2,1 imap2,2

NOF = no operator found
CA = mappings were not merged as they have a common ancestor

Table 3.8: Schools scenario - merges in iteration 3

candidate key remaining in imap2,2 is on dc. In iteration 2, we explained that a
merge between RST and AS is made on the school_name as it avoids aligning
incorrect tuples for schools with the same postcode. Now, for merging AS, AM16,
and RST , Dynamap has no other choice than to merge them using the postcode
attribute as this is the only candidate key (in RST ) that shares an inclusion
dependency between imap2,2 and RST . This leads to a case where some tuples
might align incorrect data, but avoiding this (as was done in iteration 2) is no
longer possible because the available profile data does not enable any other merge.
This shows that the design choice in the algorithm to prioritize the maintenance
of accurate profile data is a reasonable one as it postpones or completely avoids
merge decisions that might lead to semantic inconsistencies. A faulty mapping
that is generated early in the iterations can proliferate to more incorrect mappings.

New metadata. For each of the intermediate mappings, e.g., imap3,i, i ∈ {1, 2, 3, 4,
5, 6, 7}, new metadata is computed, as before, using Table 3.1.

New profile data. Profile data from the parent mappings are propagated to the
new intermediate mappings. The profile data from the parent mappings can either
come from the previously inferred profile data (e.g., in iteration 2), or from the
initial profile data if one of the parents was a base mapping.

Fitness. In this step, the differences between the fitness values and the size of the
mappings becomes more apparent, especially in the cases where full outer join
operators are nested, as these are prone to creating nulls on the attributes, thus,
the number of largely complete tuples is estimated to diminish.

For instance, imap3,5 is the result of one full outer join and one join operation.
Its fitness value is fitness(imap3,5) = 86 while its size is |imap3,5| = 111.

Memoize/Discard mappings. In this iteration, the algorithm starts discarding
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mappings for which it finds better mappings (in terms of fitness) which stem from
the same initial relations.

For example, in this scenario, imap3,5 and imap3,2 both stem from AS, AM17,
and RST , so the algorithm chooses the fittest one. In this case, the fittest one
is imap3,2 as fitness(imap3,5) = 86 and fitness(imap3,2) = 99, so imap3,5 is
discarded, while imap3,2 is memoized to be used in the next iteration(s).

At the end of the iteration, the memoized mappings for the sub-solution at
iteration 3 are SS3 = {imap3,2, imap3,3, imap3,7}.

Iteration 4 (for GenerateMappings(i=4)):
Choose operator & create mappings. This iteration is the last one as the total
number of input sources is four. For building the mappings for this iteration, the
mappings from SS1 are merged with the mappings from SS3 and then pairwise
the mappings from SS2. Tables 3.9 and 3.10 describe the merges that were found
in this step.

Looking at the merge between imap2,4 and imap2,1, one would say that it
was expected to (outer) join as they seem to have an overlap between them
on dfe_code. However, this does not happen because dfe_code is no longer a
candidate key in either of the two mappings as it was not propagated. For imap2,4,
it was not propagated because it can have duplicate values (due to the overlap
between the parent attributes) and, in the case of imap2,1, it is predicted to
contain nulls as the two parent mappings are merged using full outer join, so the
resulting dfe_code attribute is predicted to contain nulls.

New metadata. The metadata created here is still needed to compute the fitness
value of the mappings, so as to choose the fittest one among the created ones.
The procedure to compute the estimates is the same as in the previous iterations.

For comparing the mappings, we mention here their estimated sizes:
|imap4,1| = 129,
|imap4,2| = 110, and
|imap4,3| = 175.

New profile data. Given that this is the last iteration, the profile data is no longer
propagated as this is the last step and no further merges are necessary.

Fitness. Similar to iteration 3, at this step, the algorithm needs to compute the
fitness of the mappings w.r.t. populating the chosen target.

The fitness of the three generated mappings are:
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SS2

SS2 imap2,1 imap2,2 imap2,3 imap2,4

imap2,1 – CA CA NOF

imap2,2 CA – CA CA

imap2,3 CA CA – CA

imap2,4 NOF CA CA –

NOF = no operator found
CA = mappings were not merged as they have a common ancestor

Table 3.9: Schools scenario - merges (SS2, SS2) in iteration 4

SS1

SS3 imap3,2 imap3,3 imap3,7

AS CA CA CA

RST CA CA imap4,3 ← RST ./ pc imap3,7

AM16 imap4,1 ← AM16 ./ dc imap3,2 CA CA

AM17 CA imap4,2 ← AM17 ./ dc imap3,3 CA

CA = mappings were not merged as they have a common ancestor

Table 3.10: Schools scenario - merges (SS1, SS3) in iteration 4

fitness(imap4,1) = 99,
fitness(imap4,2) = 104, and
fitness(imap4,3) = 169.

Memoize/Discard mappings. This is the last step before returning the memoized
mappings as the solution to the complex problem the algorithm started with.

At the end of the iteration, the memoized mapping for the sub-solution of
iteration 4, which is the final solution, is SS4 = {imap4,3} as it has a better fitness
than both imap4,1 and imap4,2 which stem from the same initial relations.
Output mappings. In the output of the mapping generation process, with the
current approach (as mentioned in Section 3.7), the top k memoized mappings
are output. For this experiment, we set k = 100, so all intermediate mappings
that were kept will be output.

Our set ground truth mapping is:
gt← (AM17 ∪ AM16) ./ dc (AS ./ pc RST )
The mapping that was considered as being the fittest is imap4,3 mapping in

Table 3.10, which, using the previously generated mappings, unfolds into the
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following:
out_map← RST ./ pc (AS ./ dc (AM16 ∪ AM17)))
It can be observed that the two mappings are, in fact, equivalent, so the

extents produced by Dynamap’s mapping and the ground-truth mapping are the
same, thus, one can say that Dynamap generated the expected result.

3.9 Conclusions

In Section 2.3, we discussed assumptions on mapping generation that no longer
hold for mapping generation over autonomous sources. They are:
A1: data sources have well-defined schemas,
A2: all the available sources need to be integrated,
A3: the input data is mostly consistent,
A4: the global schemas have reasonable sizes.

In this chapter, we have addressed challenges arising from the violation of A1–A4

as follows:
1. We have addressed the challenge stemming from the violation of A1 by

devising a decision procedure that combines pairs of different sources using
profile data, metadata and statistics about the sources. The algorithm was
described in Section 3.3. In Section 3.8, we showed that the algorithm can
handle the mapping generation scenarios posed by state-of-the-art bench-
marks except for the case of complex target schema (which we address in
Chapter 5). These scenarios comprise (foreign key) merges between the
sources and/or copying of the data to a target without constraints. The
experiment on real-world data, in Section 3.8.2, shows that the designed
profile-informed technique leads to sensible decisions when building map-
pings for real-world independent data sources.

2. We have addressed the challenge stemming from the violation of A2 by
proposing a dynamic programming approach to explore the search space of
candidate mappings that is able to create complex mappings in a bottom-up
fashion, choosing the best merge opportunities on the basis of propagated
profiling data and a fitness measure that prefers largely complete tuples.
Section 3.4 described how the dynamic programming paradigm was adapted
to our search problem and the experiment in Section 3.8.2 shows how the
approach explores all possible merge combinations. Although the algorithm
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is capable of generating all combinations, we proposed a fitness function (in
Section 3.5) that allows the algorithm to keep only the mappings that are
predicted to satisfy the desiderata expressed through the fitness function.
The fitness function can, of course, be changed so that the algorithm can
support search on different criteria defined through the fitness function.

3. We have addressed the challenge stemming from the violation of A3, i.e.,
dealing with data inconsistencies, by accepting that data from different
origins (and/or domains) cannot be perfectly aligned, thus, making best-
effort decisions to merge such heterogeneous information is essential. In
Section 3.3, we discussed our design decisions for a set of merge conditions for
combining the relations in a best-effort manner using the available (possibly
scant) evidence. In Section 3.6, we introduce a profile data propagation
technique to infer relationships between non-materialized mappings, which
facilitates the search on profile-informed merge opportunities without the
need to materialize the intermediate mappings.

4. We have addressed the challenge stemming from the violation of A4 by
generating mappings over global schemas of any size in terms of number of
relations and/or arities. However, Dynamap is, by design, oblivious of the
existence of constraints on the target schema. We return to this issue in
Chapter 5, where we extend Dynamap to handle this case as well.

Discussion. In the past twenty years, mapping generation has been the subject
of constant research following the seminal work on Clio [Miller et al. (2000)].
However, until now, all proposals assume the sources to be well-behaved, i.e., they
have declared metadata including foreign key constraints [Mecca et al. (2009)]
and keys [Marnette et al. (2010)]. This assumption does not hold for mapping
generation in the wild, i.e., over sources that are autonomous and about which
not much is known (e.g., web-extracted data).

Mapping generation in the wild faces challenges brought by heterogeneous
data from (possibly) different domains. In the light of integrating autonomous
sources, the problem of finding related sources has been the focus of work such
as Das Sarma et al. (2012), Zhu et al. (2016), and Nargesian et al. (2018), where
methods are proposed for detecting relationships between sources. Das Sarma et al.
(2012) contribute a method for detecting various types of relatedness, among which
one for detecting if the sources from a repository of heterogeneous relations are
unionable and/or joinable. They translate this in terms of entity complementarity
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(i.e., candidates for union) or schema complementarity (i.e., candidates for join)
based on the combination of projections and selections. The problem they tackle
is that of finding the k tables that are most related to an input target table, where
the desired type of relatedness, i.e, entity or schema complementarity, is given. In
Zhu et al. (2016), they detect join paths between sources based on the domains
of the attributes. If the domains are similar, then they consider the sources to be
joinable on that pair of attributes. A similar idea can be found in Nargesian et al.
(2018), where they propose the idea of table unionability, i.e., if pairs of attributes
in different sources have similar domains, then the sources are considered as
being unionable. These approaches differ from ours as our focus is on building
bottom-up mappings between multiple sources w.r.t. to a target, while those
contributions focus on finding related sources w.r.t. a target. Other authors try
to address the challenges brought by heterogeneous data by proposing different
approaches such as aligning source attributes with counterparts in a mediated
schema [Sarma et al. (2008)]; by using feedback [Belhajjame et al. (2013)], or
through data fusion [Stonebraker et al. (2013); Fernandez et al. (2017)]. However,
these projects explore different aspects of a problem that has quite a few of them.



Chapter 4

Mapping Generation at Scale

"The computing scientist’s main challenge is not to get confused by
the complexities of their own making."
– Edsger W. Dijkstra (1930 - 2002)

Referring back to the objectives outlined in Section 1.3, this chapter addresses
Objective 2, viz., a method for generating mappings between a large set of source
schemas and one target schema (i.e., tackles the same mapping generation problem
as in Chapter 3), and describes techniques that allow Dynamap to perform
mapping generation at scale. By mapping generation at scale we mean that, with
the adoption of the pruning strategies presented in this chapter, Dynamap is
able to tackle input scenarios where the number of sources scales to hundreds
of sources. When a source repository contains thousands or millions of sources,
it is unlikely that they are all equally relevant, thus, we assume that mapping
generation is preceded by a dataset discovery method such as Castro Fernandez
et al. (2018). This chapter, therefore, describes a set of pruning strategies for the
search space traversed by Dynamap for profile data, the combination of which
contains the growth of the search space.
Motivation. In Chapter 3, we described Dynamap, a mapping generation al-
gorithm, that tackles the problem of generating mappings between autonomous
heterogeneous sources. At the core of Dynamap is a search process based on
the dynamic programming paradigm. However, dynamic programming performs
well when the number of combinations of sub-problems can be kept small [Aho
and Hopcroft (1974)]. Otherwise, it may attempt too many different ways of
solving the same (sub-)problem. This leads to a large number of combinations,
which compromises scalability. Since the mapping generation problem that we are

104
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discussing in this thesis is in the wild (i.e., we can expect a large pool of sources to
be given as input to the mapping generation algorithm), this scalability challenge
needs to be addressed in order that the candidate mappings are returned in a
timely manner even when the search space is large and complex.

In Section 4.1, we explain the complexity of Dynamap and conclude that,
as previously presented, it is not capable of handling large-scale scenarios. In
Section 4.3, we propose a set of pruning strategies to be applied on both the
intermediate mappings (in the sub-problem solutions) and the profiling data such
that the search space is contained. In Section 4.4.1, we discuss how integration
scenarios can be generated that allow us to evaluate our pruning strategies, and,
finally, in Section 4.5 we show that they are, indeed, effective in containing the
otherwise expensive growth of the Dynamap search space.

4.1 Algorithm Complexity

As explained in Section 3.4, we use dynamic programming for merging multiple
smaller mappings to create larger mappings until all relations are merged (if
possible) in the final iteration.

For an input of N source relations, in each iteration i (i ≤ N), the algorithm
generates intermediate mappings that merge subsets of i relations. As shown in
Algorithm 4, for each subset of initial relations just one fittest mapping is retained.
This being the case, the maximum number of kept mappings as a sub-solution
i (corresponding to an iteration i ) is the number of possible combinations of i
initial relations from the set of N initial relations:

Ci
N = N !

i!(N − i)! (4.1)

This upper limit can be reached in scenarios where all initial relations merge
pairwise, e.g., in a union-dominated scenario where all initial relations have
the same schema as the target. Although the maximum number of memoized
mappings for an iteration i is Ci

N , the algorithm tries to merge many more pairs
of mappings than are actually kept as a sub-solution for that iteration. For each
iteration i, the algorithm tries to merge pairwise the mappings from previous
iterations j and i-j, where 1 ≤ j ≤ i

2 . Considering the maximum number of
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mappings that can be generated in an iteration, and the number of pairs of sub-
solutions that are merged to compute the mappings for an iteration, the algorithm
makes a maximum total number of attempts at merging defined by:

N∑
i=1

i
2∑
j=1

Cj
NC

i−j
N (4.2)

where N is the total number of initial source relations.
This worst case behavior represents a combinatorial explosion in the search

space, so the approach can only be practical if: (i) the fraction of the mappings
that can be combined by MergeMappings is small; and (ii) the search space
is pruned to avoid the retention of less promising candidate mappings. Section
4.3 describes the pruning strategies, and Section 4.5 evaluates the approach for
different sizes of integration problem on both synthetic and real-world data.

4.2 Profiling Data Propagation Complexity

Consider a set of N source relations R1, R2, . . . , RN , where each of them is of the
form Rk(a1, a2,. . . ank), where k ∈ {1, 2, 3,. . . , N} and nk is the arity of relation
Rk and where is a finite integer, nk > 0.

For profile data propagation, in a worst-case scenario , all the attributes in
the sources are kept in the schemas of the generated intermediate mappings.

For example, if m relations merge, R1, R2, . . . , Rm m ∈ {1, 2, 3,. . . , N}, then
arity(schema(merged(R1, R2, . . . , Rm))) = n1 + n2 + · · · + nm. Here, merged
abstracts over the applied operations. Transferring all initial source attributes
to the child mapping means that all the initial inclusion dependencies that a
source attribute had are propagated to intermediate mappings that keep it in
their schema. This leads to the idea that in a worst-case scenario, all initial
source relations are (outer) joined as only through join the attributes of the
parent mappings are transferred to the schema of the resulting intermediate
mapping. In the case of a union, Dynamap needs to make the two operands schema
compatible by keeping only the unionable attributes in the schema of the newly-
generated intermediate mapping. Thus, not all initial inclusion dependencies
would be propagated for the child mapping, i.e., only the inclusion dependencies
corresponding to the transferred attributes are propagated.

Also, in a worst-case scenario, all attributes of each source relation have
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inclusion dependencies with all the attributes in the other relations:

At an iteration i < N , each source attribute aq ∈ schema(Rk) of a source
relation Rk with arity nk, where k ∈ {1, 2,. . . , N} and 1 ≤ q ≤ nk, has a
corresponding number of inferred inclusion dependencies given by the formula in
Eq. 4.3.

2 · (
i∑

j=1
(

N∑
q1,q1 6=k

· · ·
N∑

qj ,qj 6=k
(nq1 + · · ·+ nqj))) (4.3)

The intuition behind the formula is that the initial set of inclusion depen-
dencies does not contain inclusion dependencies between attributes of the same
relation (thus not counting the inferred inclusion dependencies between mappings
that involve relation Rk). The sum on j represents the number of previous it-
erations, thus considering all intermediate mappings that were generated in the
previous iterations. The sums on q1 . . . qj represent the combinations of initial
source relations in the intermediate mappings with which it will infer inclusion
dependencies. As explained above, each intermediate mapping will have as arity
the sum of arities of the initial sources that were combined to obtain an inter-
mediate mapping. The multiplication with 2 is due to the fact that each pair of
attributes has two inclusion dependencies (i.e., each inclusion dependency has a
mirroring one, as explained in Section 3.6.2).

Given that all sources are pair-wise mergeable, then each source relation is
merged Ci−1

N−1 times in an iteration i, where 1 ≤ i ≤ N and N is the number of
input source relations. Intuitively, each time a source is involved in a merge, all
inclusion dependencies of all its attributes are inferred to the newly-generated
intermediate mapping.

Thus, it can be computed that, for an iteration 1 ≤ i ≤ N and N input source
relations, the number of inclusion dependencies that are inferred for a source
attribute is given by the formula in Eq.4.4,

Ci−1
N−1 · 2 · (

i∑
j=1

(
N∑

q1,q1 6=k
· · ·

N∑
qj ,qj 6=k

(nq1 + · · ·+ nqj))) (4.4)

which leads to the number of inferred inclusion dependencies for a source relation
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with arity nk given by the formula in Eq.4.5,

nk · [Ci−1
N−1 · 2 · (

i∑
j=1

(
N∑

q1,q1 6=k
· · ·

N∑
qj ,qj 6=k

(nq1 + · · ·+ nqj)))] (4.5)

which leads to the number of inclusion dependencies that are inferred for all N
source relations given by the formula in Eq.4.6.

N∑
k=1

[nk · [Ci−1
N−1 · (

i∑
j=1

(
N∑

q1,q1 6=k
· · ·

N∑
qj ,qj 6=k

(nq1 + · · ·+ nqj)))]] (4.6)

Given the above, it can be concluded that for all N iterations, the worst-case
scenario for propagating all initial inclusion dependencies for all N initial source
relations can reach up to the number given by the formula in Eq.4.7, where i
represents the iterations (1 ≤ i ≤ N), k and q represent the index for each source.

N∑
i=1

(
N∑
k=1

(nk · (Ci−1
N−1 · (

i∑
j=1

(
N∑

q1=1,q1 6=k
· · ·

N∑
qj=1,qj 6=k

(nq1 + · · ·+ nqj)))))) (4.7)

Example 4.2.1. For example, assume a simple scenario with 4 sources:
R1(a1, a2, . . . , a10)
R2(b1, b2, . . . , b10)
R3(c1, c2, . . . , c10)
R4(d1, d2, . . . , d10), where, for simplicity, each has an arity of 10, i.e., ni =

10, i ∈ {1, 2, 3, 4}. Also, all attributes in each relation overlap with all the other
attributes in all relations. Considering the above setting, the initial number of
inclusion dependencies which is detected is between each attribute of a relation
Ri, i ∈ {1, 2, 3, 4}, with all attributes in all other relations Rj, j ∈ {1, 2, 3, 4},
provided that i 6= j.

Initial inclusion dependencies (i.e., here iteration index is i=1).
Using Eq. 4.3, the number of inclusion dependencies for

one attribute in
one mapping that involves
one relation Rk, k ∈ {1, 2, 3, 4} in
one iteration (i = 1) is:
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2 · (∑4
q1=1,q1 6=k nq1) = 2 · (10 + 10 + 10) = 60

Using Eq. 4.4, the number of inclusion dependencies associated for
one attribute in
all mappings that involve
one source relation Rk in
one iteration (i = 1) is:

C1−1
4−1 · 60 = 60 (as this is the first iteration so there are no merges)

Using Eq. 4.5, the number of inclusion dependencies for
all attributes for
all mappings that involve
one source relation Rk in
one iteration (i = 1) is:

nk · 60 = 10 · 60 = 600

Using Eq. 4.6, the number of inclusion dependencies for
all attributes in
all mappings that involve
all four relations in
one iteration (i = 1) is:∑4

k=1(nk · (C1−1
3−1 · (

∑1
j=1(

∑4
q1=1,q1 6=k · · ·

∑4
qj=1,qj 6=k(nq1 + · · ·+ nqj))))) =

4 · (10 · (1 · (∑4
q1=1,q1 6=k nq1))) = 4 · 10 · (10 + 10 + 10) = 1200

Second iteration (i.e., iteration index is i=2).
In this iteration, all sources are merged pairwise obtaining (C2

4 =)6 new
intermediate mappings:

m1,2 ← R1 ./ R2,m1,3 ← R1 ./ R3,m1,4 ← R1 ./ R4,
m2,3 ← R2 ./ R3,m2,4 ← R2 ./ R4,
m3,4 ← R3 ./ R4

The inclusion dependencies inferred to the each of these mappings are propa-
gated from the parent sources Rk, k ∈ {1, 2, 3, 4}.

Using Eq. 4.3, the number of inclusion dependencies for
one attribute in
one mapping that involves
one relation Rk, k ∈ {1, 2, 3, 4} in
one iteration (i = 2) is:

2 · (∑2
j=1(

∑4
q1,q1 6=k · · ·

∑4
qj ,qj 6=k(nq1 + · · ·+ nqj))) =
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2 · (∑4
q1,q1 6=k nq1 + (∑4

q1,q1 6=k
∑4
q2,q2 6=k(nq1 + nq2))) =

2 · (30 + (20 + 20 + 20)) = 120

Using Eq. 4.4, the number of inclusion dependencies associated for
one attribute in
all mappings that involve
one source relation Rk in
one iteration (i = 2) is:

C2−1
4−1 · 120 = 360

Using Eq. 4.5, the number of inclusion dependencies for
all attributes for
all mappings that involve
one source relation Rk in
one iteration (i = 2) is:

nk · 360 = 10 · 360 = 3600

Using Eq. 4.6, the number of inclusion dependencies for
all attributes in
all mappings that involve
all four relations in
one iteration (i = 2) is:∑4

k=1[nk · [C2−1
4−1 · (

∑2
j=1(

∑4
q1,q1 6=k · · ·

∑4
qj ,qj 6=k(nq1 + · · ·+ nqj)))]] =

4 · [10 · [3 · (∑2
j=1(

∑4
q1,q1 6=k · · ·

∑4
qj ,qj 6=k(nq1 + · · ·+ nqj)))]] =

4 · [10 · [3 · (∑4
q1,q1 6=k nq1 + (∑4

q1,q1 6=k
∑4
q2,q2 6=k(nq1 + nq2)))]] =

120 · (30 + (20 + 20 + 20)) = 120 · 90 = 10800

Third iteration (i.e., iteration index i=3)
In this iteration, all subsets of three sources are merged obtaining (C3

4 =)4
new intermediate mappings:

m12,3 ← m1,2 ./ R3,m12,4 ← m1,2 ./ R4,m13,4 ← m1,3 ./ R4,
m23,4 ← m2,3 ./ R4

Using Eq. 4.6, the number of inclusion dependencies for
all attributes in
all mappings that involve
all four relations in
one iteration (i = 3) is:∑4

k=1[nk · [C3−1
4−1 · (

∑3
j=1(

∑4
q1,q1 6=k · · ·

∑4
qj ,qj 6=k(nq1 + · · ·+ nqj)))]] =
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4 · [10 · [3 · (∑3
j=1(

∑4
q1,q1 6=k · · ·

∑4
qj ,qj 6=k(nq1 + · · ·+ nqj)))]] =

4 · [10 · [3 · (∑4
q1,q1 6=k nq1+∑4

q1,q1 6=k
∑4
q2,q2 6=k(nq1 + nq2)+∑4

q1,q1 6=k
∑4
q2,q2 6=k

∑4
q3,q3 6=k(nq1 + nq2 + nq3))]] =

120 · (30 + 60 + 30) = 14400

Fourth/Final iteration (i.e., iteration index i=4)
In this iteration, the set of four sources are merged obtaining (C4

4 =)1 new
intermediate mapping:

m123,4 ← m123 ./ R4

Using Eq. 4.6, the number of inclusion dependencies for
all attributes in
all mappings that involve
all four relations in
one iteration (i = 4) is:∑4

k=1[nk · [C4−1
4−1 · (

∑4
j=1(

∑4
q1,q1 6=k · · ·

∑4
qj ,qj 6=k(nq1 + · · ·+ nqj)))]] =

4 · [10 · (∑4
q1,q1 6=k nq1+∑4

q1,q1 6=k
∑4
q2,q2 6=k(nq1 + nq2)+∑4

q1,q1 6=k
∑4
q2,q2 6=k

∑4
q3,q3 6=k(nq1 + nq2 + nq3)+∑4

q1,q1 6=k
∑4
q2,q2 6=k

∑4
q3,q3 6=k

∑4
q4,q4 6=k(nq1 + nq2 + nq3 + nq4))] =

4 · [10 · (30 + 60 + 30 + 0)] = 40 · 120 = 4800

To conclude, after all iterations, the total number of inclusion dependencies
can be computed by summing up the totals from the four iterations:

1200 + 10800 + 14400 + 4800 = 31200
The same number can be computed using Eq. 4.7, to compute the total number

of inclusion dependencies for
all attributes in
all mappings that involve
all four relations in
all iterations:∑N

i=1(∑N
k=1(nk · (Ci−1

N−1 · (
∑i
j=1(∑N

q1=1,q1 6=k · · ·
∑N
qj=1,qj 6=k(nq1 + · · ·+ nqj)))))) =∑4

i=1(
∑4
k=1(nk · (C4−1

4−1 · (
∑i
j=1(

∑4
q1=1,q1 6=k · · ·

∑4
qj=1,qj 6=k(nq1 + · · ·+ nqj)))))) =∑4

i=1(
∑4
k=1(nk · (

∑i
j=1(

∑4
q1=1,q1 6=k · · ·

∑4
qj=1,qj 6=k(nq1 + · · ·+ nqj))))) =

4 · (10 · (1 · (∑4
q1=1,q1 6=k nq1)))+

4 · [10 · [3 · (∑4
q1,q1 6=k nq1 + (∑4

q1,q1 6=k
∑4
q2,q2 6=k(nq1 + nq2)))]]+
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4 · [10 · [3 · (∑4
q1,q1 6=k nq1+∑4

q1,q1 6=k
∑4
q2,q2 6=k(nq1 + nq2)+∑4

q1,q1 6=k
∑4
q2,q2 6=k

∑4
q3,q3 6=k(nq1 + nq2 + nq3))]]+

4 · [10 · (∑4
q1,q1 6=k nq1+∑4

q1,q1 6=k
∑4
q2,q2 6=k(nq1 + nq2)+∑4

q1,q1 6=k
∑4
q2,q2 6=k

∑4
q3,q3 6=k(nq1 + nq2 + nq3)+∑4

q1,q1 6=k
∑4
q2,q2 6=k

∑4
q3,q3 6=k

∑4
q4,q4 6=k(nq1 + nq2 + nq3 + nq4))] =

1200 + 10800 + 14400 + 4800 = 31200

4.3 Pruning Strategies

We aim to optimize the mapping generation algorithm presented in Chapter 3 by
implementing a set of pruning strategies that:

1. discard intermediate mappings that do not promise to yield better results
than other (to be) memoized mappings (Section 4.3.2); and

2. discard profiling data that is not predicted to be required for further merges
(Section 4.3.3).

Fewer memoized mappings lead to a smaller search space to be explored.
Less (useless) profiling data facilitates two aspects: (i) a faster search for merge
operators (as it loops through less profiling data), and (ii) a faster propagation
step as only potentially useful profiling data is inferred to the child mappings.
The efficiency and impact of the proposed strategies is evaluated in Section 4.5.8.

4.3.1 Preliminaries

In this section we define the notions and notations to be used in formalizing the
pruning strategies.

Let r,m1,m2 ∈M , where r ← merged(m1,m2, t),M is the space of mappings,
and t a target relation.

Let parents(r) ← {m1,m2}, where m1 and m2 are the two intermediate
mappings that were merged to create r.

Let ancestors(r) ← {m1, . . . ,mn}, where mi, i ∈ [1, n], are the initial input
relations that lie behind the generation of r.
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Let operations(r) ∈ {union, join,mixed, base} characterise the types of oper-
ation that were used to build r, e.g., if r was built by applying only union/join be-
tween its ancestor relations then operations(r) = union or join, respectively; if r
was built by applying both union and join operations between its ancestor relations
then operations(r) = mixed; if r is a base mapping then operations(r) = base.

Let mergeable(m, t) be the set of mappings with which a mapping m ∈ M
could possibly merge w.r.t. target t.

Let join_with(m1,m2, t), resp., union_with(m1,m2, t), be true ifm1 can join
(resp., union) with m2 w.r.t. target t, and false otherwise. For two mappings m1

and m2 and a target relation t, join_with(m1,m2, t) and union_with(m1,m2, t)
cannot simultaneously be true, as only one operator is chosen by the algorithm
to merge two mappings.

Let δ(U ⊂θ V ) be the degree of degradation associated with an inclusion
dependency, showing how many times the overlap has been approximated through
propagation. After a new inclusion dependency is propagated, the degree of
degradation grows whenever a new overlap cannot be accurately computed and
must be approximated, otherwise the new degree of degradation is equal to the one
of the inclusion dependency from which it was derived. For example, in Table 3.2
on rows 9 and 18, and in Table 3.3 on rows 7 and 8, the overlaps are approximated;
the degradation increases by 1 if an inclusion dependency is propagated using any
of these formulas.

Let preserved(r,m1, t) be the set of preserved mappings for child mapping r,
parent m1, and target t. We define the set of preserved mappings as the set of
mappings with which a parent mapping had an opportunity to merge, and now
those mappings are transferred as merge opportunities to the child mapping. The
conditions that need to be satisfied to qualify as a set of preserved mappings for
child mapping r, parent m1, and target t are:

preserved(r,m1, t) = {n|n ∈ mergeable(m1, t)∧
n ∈ mergeable(r, t) ∧ n /∈ parents(r)∧
δ(r.a1 ⊂ n.a2) = δ(m1.a1 ⊂ n.a2)}

The conditions in preserved(r,m1, t) can be described as follows: given a
mapping n with which the parent mapping m1 has a merge opportunity (n ∈
mergeable(m1, t)), then n may be a preserved mapping for the child mapping
r if n has a merge opportunity with r (n ∈ mergeable(r, t)), as well. Also,
n must not be a parent of r (n /∈ parents(r)). After it is established that
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n is a mapping with which r can merge, it is checked if the merge between
them is as good as the merge between m1 and n. A merge is considered as
good as the previous merge if the degree of degradation of the inferred inclusion
dependencies to the child r does not increase. This is checked in the last condition,
i.e., δ(r.a1 ⊂ n.a2) = δ(m1.a1 ⊂ n.a2). If the degree of degradation of the
inferred ind (δ(r.a1 ⊂ n.a2)) is equal with the degradation of the propagated ind
(δ(m1.a1 ⊂ n.a2)), then the merge opportunity m1 has with n is preserved under
similar conditions between n and r, thus n is a preserved mapping.

4.3.2 Pruning the Search Space

Motivation. In searching the space of candidate mappings, the sub-solutions
produced by each call to GenerateMappings (Algorithm 3) are memo-
ized, so that they can be reused in subsequent calls. As a result, a collection
of intermediate mappings is maintained, members of which are considered for
merging during successive iterations. As discussed in Section 4.1, the number of
intermediate mappings can grow rapidly, which in turn increases the search space.
This section identifies ways in which the search space can be pruned, by retaining
only intermediate mappings that compare well with related mappings.
Strategies. We define three major strategies for pruning the search space, which
we describe in the following sections:

1. Removing unnecessary parent mappings
2. Preventing creation of superfluous mappings

(a) Avoiding permutations
(b) Avoiding subsumption

3. Pruning subsumed union mappings

4.3.2.1 Removing Unnecessary Parent Mappings

After a merge, parent mappings are discarded if the child mapping (i) has better
fitness, and (ii) has the same merge opportunities as the parent. More formally,
a parent mapping m1 is discarded if:

mergeable(m1, t) ⊂ {preserved(r,m1, t)∪parents(r)}∧fitness(m1) ≤ fitness(r)
By discarding parent mappings, the sets of sub-solutions from previous itera-

tions become smaller, and the number of merge attempts decreases in subsequent
iterations.
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Example 4.3.1. Given the example in Figure 3.1, in iteration 2, after the base
mappings for Manchester and Cambridge relations are merged, mapping m2,1 ←
MA ∪ CA is created w.r.t. target t. Dynamap checks if the parents can be
discarded. The conditions for removing unnecessary parent mappings are checked.
First, Dynamap computes the following:

- parents(m2,1) = {MA,CA}, fitness(m2,1) = 8, fitness(CA) = 4
- mergeable(CA, t) = {UKD,UKQ,MA},
- mergeable(m2,1, t) = {UKD,UKQ}
- preserved(m2,1, CA, t) = {UKQ,UKD}

Now it checks if the same merge opportunities are preserved for m2,1. This is true
as

mergeable(CA, t) ⊂ {preserved(m2,1, CA, t) ∪ parents(m2,1)}
and, in addition, fitness(CA) ≤ fitness(m2,1).

The inclusion dependencies between m2,1 and UKD are propagated using
formulas in 2 and 11 in Table 3.2, and with UKQ they are propagated using
formulas 8 and 17 in the same table. These overlaps were not approximated,
thus, the degradation did not increase when the inclusion dependencies were
inferred. As both pruning conditions are met, it can be concluded that CA can
be discarded.

The same steps are followed for deciding whether MA should be discarded as
well.

4.3.2.2 Preventing Creation of Superfluous Mappings

This pruning technique exploits the associativity and commutativity of union
and join. We divide this strategy into two different pruning methods: avoiding
permutations and avoiding subsumption.
Avoiding permutations. Before a merge, the algorithm detects whether the
mapping that would be generated is a superfluous variation of another mapping
that has been memoized already.

Let r be a memoized mapping, where m3 and m4 are the current candidates
for merging. The merge is superfluous if:

- r covers the same initial relations as m3 and m4:
ancestors(r) = ancestors(m3) ∪ ancestors(m4)

- r contains only union or only join operations, and that same type of opera-
tion would be used to merge m3 and m4 w.r.t. target t:
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(operations(r) = operations(m3) ∨ operations(m3) = base)∧
(operations(r) = operations(m4) ∨ operations(m4) = base)∧
(

(operations(r) = join ∧ join_with(m3,m4, t))∨
(operations(r) = union ∧ union_with(m3,m4, t))

)

Example 4.3.2. Let us assume we extend the example in Figure 3.1 by adding
another agency relation for Oxford which matches the same target attributes
as Manchester and Cambridge sources, i.e., they all match street, postcode, and
price. In this setting, all three relations are expected to union as they contain the
same type of information needed in the target. Let us assume that we have the
following mappings for iteration 2 (n.b., these are just a subset of the possible
merges), where CA,MA and OX are base mappings:

m2,1 ←MA ∪ CA
m2,2 ← CA ∪OX

In iteration 3, let us assume that mapping m3,1 ← m2,1∪OX has already been
memoized. The algorithm tries to merge m2,2 with MA and detects that these
should be merged through union. It checks if their merge result is a superfluous
mapping using the pruning strategy conditions. Dynamap

- computes the ancestors:
ancestors(m3,1)← {MA,CA,OX}
ancestors(m2,2)← {CA,OX}
ancestors(MA)← {MA}

- checks first pruning condition:
check if ancestors(m3,1) = ancestors(m2,2) ∪ ancestors(MA), and it
is true.

- computes the operations values:
operations(m3,1)← union

operations(m2,2)← union

operations(MA)← base

- checks second pruning condition, i.e., check if:
(operations(m3,1) = operations(m2,2) ∨ operations(m2,2) = base)∧
(operations(m3,1) = operations(MA) ∨ operations(MA) = base)∧
(

(operations(m3,1) = join ∧ join_with(m2,2,MA, t))∨



4.3. PRUNING STRATEGIES 117

(operations(m3,1) = union ∧ union_with(m2,2,MA, t))
)
The condition is satisfied as the expected operation between m2,2 and
MA is a union, and it seems to be just another permutation of the
same mapping expressed by m3,1 as m3,1 is a union dominant mapping
that unions all three relations, but in a different order.

Avoiding subsumption. Building on the same properties, viz., associativity
and commutativity, we also prevent the generation of join or union mappings that
would otherwise be redundantly generated in subsequent iterations, as well as of
equivalent or subsuming mappings:

Let m1,m2,m3, r ∈M , where m1 and m2 are the candidates for merging. The
merge between m1 and m2 is superfluous if either of the following conditions is
satisfied:

1. the candidate join operation between m1 and m2 can be applied in a subse-
quent iteration on the union of m2 with another mapping m3, where m3 is
also joinable with m1 w.r.t. t:
join_with(m1,m2, t) ∧ join_with(m1,m3, t)∧ union_with(m2,m3, t)

2. the candidate union mapping between m1 and m2 would become subsumed
by a future mapping containing only union operations:
parents(r) = {m2,m3} ∧ operations(r) = union∧
union_with(r,m1) ∧ union_with(m1,m2)

Both conditions prove to be useful in union-heavy scenarios where many union
mappings are equivalent as, essentially, they are permutations of the same unioned
initial relations.

Example 4.3.3. Let us assume the same running example in Figure 3.1. With the
avoiding subsumption strategy, the algorithm avoids the creation of two mappings
that are subsumed by another:

In our scenario, for merging MA,CA and UKD, there are two options:
m3,1 ← (MA ∪ CA) ./postcode UKD
m3,2 ← (MA ./postcode UKD) ∪ (CA ./postcode UKD)

The two mappings are equivalent, but only one mapping is reached by Dy-
namap, as m3,2 does not satisfy the avoiding common ancestors condition (see
Algorithm 4) – which keeps the search space contained.

In a scenario where it is desirable to merge complex mappings (which merge
many sources), generating mappings (MA ./postcode UKD) and (CA ./postcode
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UKD) in iteration 2 is redundant as their results are included in m3,1 in iteration
3, andm3,2 is never reached in iteration 4 (as explained above). Thus, the separate
join of UKD with MA and CA in iteration 2 can be avoided as the same result
can be produced in iteration 3.

In this example, the pruning condition that is satisfied is the first one in
avoiding subsumption, i.e., the following condition is true when trying to merge
UKD with MA (or CA):

join_with(UKD,MA, t)∧join_with(UKD,CA, t)∧ union_with(MA,CA, t).

4.3.2.3 Pruning Subsumed Union Mappings

Previously generated mappings that are subsumed by a new mapping are discarded.
In union-dominated scenarios, mappings that are created in early iterations can
become subsumed in later iterations as the union operator gathers all their tuples
in larger extents. This type of pruning most often discards the parent mappings. In
this situation, no instance data is lost through the merge, however, the algorithm
does not check whether the child has the same merge opportunities so, in practice,
this strategy is useful if the algorithm is meant to explore and yield some mappings,
but not necessarily all possible mappings as some parent mappings are discarded
only based on the subsumption of their instances.

A union mapping m is discarded upon the creation of a new mapping r if:
- the initial relations used in the creation of mapping m are included in the
set of initial relations used for mapping r: ancestors(m) ⊂ ancestors(r),

- and bothm and r were created using only union operations: operations(m) =
union ∧ operations(r) = union.

Example 4.3.4. Assuming the example in Figure 3.1, after the merge of r ←
MA ∪ CA, for detecting whether to remove MA (or CA) from the search space,
Dynamap:

- computes the ancestors:
ancestors(r)← {MA,CA}
ancestors(MA)← {MA},

- checks if: ancestors(MA) ⊂ ancestors(r), which is true,
- computes the operations values:

operations(r)← union

operations(MA)← base
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- checks if: operations(r) = union∧ operations(MA) = union, which is false
as operations(MA)← base.

Given that the last condition is false, the MA (base) mapping is not dropped.
The same steps apply for CA, which is not dropped either.

The intuition behind keeping the base mappings is that these are the starting
point of the mapping generation, thus, they are used in all iterations to try to
compute the next sub-solutions, so eliminating them may lead to missed merge
opportunities.

Now, assume an extended example with the addition of the Oxford real-estate
agency, and that the mapping m2,1 ← MA ∪ CA has been memoized and the
algorithm is at the step where it computed r ← m2,1 ∪OX. The same steps are
taken as before, however, now operations(m2,1)← union, thus, the last condition
is satisfied when deciding whether to discard m2,1. Since m2,1 is subsumed by r,
Dynamap discards it.

4.3.3 Pruning the Profiling Data

Motivation. By removing inclusion dependencies, the complexity of finding a
merge operator decreases as there are fewer of them to be considered for the
join conditions. Also, pruning the profile data results in reduced runtime for
propagating profiling data to child mappings from their parents’ corresponding
profiling data.
Strategies. Let I be an inclusion dependency of the form I ← m1.S ⊂θ m2.P

where m1 and m2 are mappings and S and P are their attributes. I can be
discarded from the pool of profile data by any of the pruning strategies. We
define three strategies for pruning the profiling data, which are described in the
next sections:

1. Discarding idle inclusion dependencies
2. Discarding same-mapping inclusion dependencies
3. Minimum threshold overlap

4.3.3.1 Discarding Idle Inclusion Dependencies

As shown in Section 3.3, only full outer join and join operators depend on the
existence of inclusion dependencies to merge two mappings. However, a candidate
key is also needed to determine whether a merge is possible, thus, if an inclusion
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dependency I does not involve candidate keys can be safely discarded as it cannot
be used in a merge:

Discard I if:
θ > 0 ∧ ((m1.S not a candidate key in m1)∧

(m2.P not a candidate key in m2))

4.3.3.2 Discarding Same-mapping Inclusion Dependencies

Given that inclusion dependencies are only used in deciding whether to join two
mappings or not, having inclusion dependencies between the attributes of the same
mapping is useless as these are not used. This setting may arise when a mapping
is the result of two other mappings merging with shared inclusion dependencies,
thus, the newly inferred inclusion dependency I is between attributes of the same
mapping:

Discard I if m1 = m2.

4.3.3.3 Minimum Threshold Overlap

An inclusion dependency is discarded if both its overlap and the overlap of its
mirroring inclusion dependency are below a set minimum threshold. This type of
strategy steers the mapping generation in the sense of merging mappings only on
attributes which have a significant overlap between their values, thus, obtaining a
high fraction of correlated tuples. However, this type of pruning strategy can lead
to missed opportunities if the user decides to set a high minimum. Varying the
minimum threshold leads to a trade-off between run-time and explored mapping
combinations, as a higher threshold can eliminate merge opportunities. In this
way, a final mapping with a high correlation is returned sooner, but, if the sources
are from different domains, their attributes may not have high overlaps, and too-
high a threshold can lead to not having any generated mappings at all (excluding
the base mappings created in the preprocessing step).

If only one of the inclusion dependencies is below the threshold, then both
inclusion dependencies are kept as it could be the case that one source contains
a large amount of information and it includes the other source which contains
only a small subset of the large one, thus, a merge between the two would be
meaningful.

Let θmin be the set minimum threshold and I ′ be the mirroring inclusion
dependency of I, I ′ ← m2.P ⊂θ′ m1.S.
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Discard I and I ′ if θ′ < θmin ∧ θ < θmin.

4.3.4 Pruning Strategies in Dynamap

Figure 3.4 depicts the workflow of the mapping generation algorithm as it was
described in Chapter 3, i.e., without the pruning strategies. In Figure 4.1 we
show the workflow of Dynamap with the pruning strategies added to the previous
algorithm. We describe below how the pruning strategies are integrated to the
previously described mapping generation algorithm.
Integration into Dynamap. The input remains unchanged, while the output
may change in the light of the pruning component, i.e., output mappings may be
discarded by the pruning strategies. The preprocessing step is done as before with
the purpose of reading/generating profile data and creating the base mappings to
bootstrap the dynamic programming recursive method.

After the preprocessing step finishes, the first step in the core of the algorithm
is to filter the (initial) profiling data and keep the data that satisfies the pruning
strategies described in Section 4.3.3. After pruning the profiling data, the mapping
generation process calls, as before, GenerateMappings for each iteration.
In the process of merging two mappings (i.e., within MergeMappings, where
mappings from two sub-solution batches are pairwise merged), before trying to
choose an operator, the algorithm decides whether to search for an operator or
else postpone (or even avoid) the merge. The pruning strategy that this decision
step implements consists of the conditions described in Preventing creation of
superfluous mappings, in Section 4.3.2. If the two intermediate mappings are not
to be merged at that step, then the algorithm returns to the main method and
moves on to the next pair of mappings. Otherwise, mapping generation proceeds
as in the previous version (steps 5-10 in Figure 4.1).

After an iteration finishes generating candidate mappings, the newly created
mappings are filtered by discarding either unnecessary parent mappings or union-
subsumed mappings, as described, in Section 4.3.2, in Removing unnecessary
parent mappings and Pruning subsumed union mappings, respectively. After the
mappings (if any) are discarded, the algorithm proceeds to pruning profiling data.
The newly created intermediate mappings can include candidates for pruning
if they are not useful in subsequent merges. Once the profiling data is filtered,
Dynamap moves on to the next iteration.
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Figure 4.1: Dynamap – Mapping generation workflow with pruning strategies

4.4 Integration Scenarios

In this section, we briefly describe work on scenario generators with a view to
evaluating integration systems, including mapping generation. We then proceed
to discuss the need for an extension to these generators such that the created
scenarios can simulate mapping generation in the wild as existing generators tend
to take into consideration settings where there is a single well-defined (poten-
tially complex) source schema and a multi-relation target schema (often with
constraints).

4.4.1 Integration Generators

4.4.1.1 STBenchmark

STBenchmark [Alexe et al. (2008)] is a generator of integration scenarios
that provides various mapping scenarios with nested sources. For each scenario,
it proposes one or more sample source instances, and the corresponding ground-
truth solution. They provide 11 basic scenarios including copying, horizontal
and vertical partitioning, object fusion, identifier generation, normalization and
denormalization, flattening and nesting, and constant value assignment. For each
source, STBenchmark provides instance data that is extracted from real-world
data. STBenchmark can generate more complex scenarios where a set of input
parameters are expected such that they vary the level of nesting in the schemas,
the number of subelements of each schema element, the number of elements
involved in a join between two elements, the length of the join paths formed in
the schemas, the kind of joins (star or chain), etc. Complex scenarios are built
by combining the basic scenarios. All the generated mapping scenarios comprise
a source schema with its metadata, and a target schema exhibiting one (for basic
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scenarios) or more (for complex scenarios) data transformation patterns. Note
that STBenchmark-generated scenarios do not cater for key constraints on
the target schema.

4.4.1.2 iBench

iBench [Arocena et al. (2015)] is a tool that generates data integration/exchange
scenarios, where the sources have explicit keys and foreign keys. Similarly to
STBenchmark, these scenarios consist of a variety of base case primitives
that mapping generation algorithms should be able to tackle. iBench denotes
a primitive as a scenario that involves one source schema and one target schema,
where a specific type of merge is needed to transfer the data from the source to
the target. As described in Section 3.8.1, the type of merge involves a variation
of copying and/or joining source relations to populate the target. The input
parameters vary the number of source attributes; the number of added/deleted
target attributes w.r.t. the matching sources; the percent of reused generated
source/target relations, i.e., for complex scenarios the primitives can reuse already
generated relations instead of generating new ones; whether the generated sce-
narios are to be built on a stub scenario etc. In the cases where the parameters
are contradictory, e.g., reuse the target relations but the primitives cannot be
accommodated by the already generated relations, then iBench relaxes the con-
straints by prioritizing the creation of the sources as needed, and adapting the
target schema such that the primitive is correctly created.

The generated scenarios include one source schema and one target schema
together with their metadata which comprises key and foreign key constraints, and
matches (S-T tgds). iBench is publicly available and it proposes data generation
using ToXgene [Barbosa et al. (2002)].

4.4.1.3 ToXgene

ToXgene [Barbosa et al. (2002)] is a generator for synthetic XML data based
on a given template. The generator takes as input a template that comprises
the structure of the XML document to be generated. More precisely, it contains
annotations that describe the structure and the data values to be generated,
i.e., vocabularies and ranges used for generating values, and distributions used
for sampling of the values. The template specification language is similar to an
XML schema in the sense that it is extended with concepts that allow defining
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certain characteristics and constraints on the desired generated target. This
type of generator is useful for generating synthetic XML data. Its focus is not
on generating integration scenarios although their mechanisms for generating
data can prove useful in scenarios where one wants to create instance data for
specific types of merges, however, this implies that there are no automatically
generated transformations, i.e., ground-truth mappings, so the user needs to
steer the generation of the data (through the template annotations) based on the
corresponding metadata characteristics, e.g., iBench proposed using it together
with the metadata generator they propose in Arocena et al. (2015).

The output of the generator is an XML document with synthetic data values.

4.4.1.4 Thalia

Thalia [Hammer et al. (2005)] provides test scenarios along with data instances
extracted from real-world applications. The source information comes from 25
data sources from the academic domain, e.g., course catalogs, which have a
corresponding set of 12 queries, and a cost function for ranking the performance
of an integration system. The 12 queries are each between a reference schema
(source) and a challenge schema (target), thus, each query can be used as a
ground-truth mapping to transform the data from the reference in the format of
the challenge schema. This benchmark can prove useful in evaluating several types
of integration systems, not only for mapping generation, as the queries tackle
different integration challenges, e.g., evaluating a matches generator, detecting
data transformations, etc.

4.4.1.5 Amalgam

Amalgam [Miller et al. (2001)] is a test suit for schema integration comprising of
several databases with bibliographic information, but with different schemas and
the data extracted from four different sources. Given that the schemas are from
the same domain, but with slight information variations, similarly to Thalia,
Amalgam can be used for evaluating several data integration aspects such as
matching and mapping generation on real-world data.
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4.4.2 Synthegrate

In this chapter, we have extended the mapping generation algorithm with pruning
strategies for the purposes of scalability, i.e., so that it can take as input large
numbers of sources. We need, therefore, to evaluate the impact of specific proper-
ties of the integration scenarios on the runtime performance of Dynamap (Section
4.5). To this end, we developed Synthegrate1, a generator of integration
scenarios that provides control over the scale and composition of mappings in
generated scenarios.
Motivation. The motivation behind developing Synthegrate is that we
could not find a benchmark/generator to suit our requirements for evaluation
settings with stress tests, i.e., evaluating at scale a mapping generator that does
not rely on explicit constraints and that needs to infer join paths to merge the
autonomous sources, all the while keeping the target schema fixed to one relation,
as this is the setting under which Dynamap works (although it is extended in
Chapter 5 to multiple-relation schemas).

None of to the benchmarks/generators described in Section 4.4.1 are very useful.
Thalia and ST-Benchmark are no longer available, however iBench
is considered to be the successor of ST-Benchmark as a specification gen-
erator [Benedikt et al. (2017)]. Synthegrate complements the functionality
of iBench through its ability to create complex integration scenarios while
keeping the target schema fixed. In iBench, if the target schema is fixed then
the number of scenarios that can be created is rather limited. Complex iBench
scenarios are mostly generated by adapting the target schema to the new input pa-
rameters. Also, given that Dynamap tackles the problem of merging independent,
heterogeneous source relations, Synthegrate can create separate schemas
and provides automatically generated profile data that iBench is not intended
to produce. ToXgene does not necessarily address the problem of generating
scenarios for evaluating mapping generation as it does not create scenarios where
source data needs to be transformed into target data, and so it is not generating a
ground-truth mapping with which to compare the generated mappings. Thalia
and Amalgam are two benchmarks that could have been used to evaluate
Dynamap, but not at scale. However, the scenarios they propose are rather lim-
ited in number and the merge characteristics exhibited by the defined integration
scenarios (suitable for evaluating mapping generation) are more specific cases of

1https://github.com/MLacra/Synthegrate.git

https://github.com/MLacra/Synthegrate.git
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what iBench scenarios can describe. We use iBench-generated scenarios
wherever feasible.
Synthegrate. We developed Synthegrate as a generator of integration
scenarios that provides control over schema properties, such as arity, cardinality,
number of candidate keys, number of source/target relations, and number of
source schemas. It also allows control over the number of expected join and union
operations, reuse of join attributes in other merge opportunities, and ratio of
explicit foreign keys. Matches and profiling data are created automatically by
Synthegrate, reflecting the database schemas and the extents (which are
generated using Datafiller [Coelho (2013)]).

Synthegrate uses a top-down approach that starts with the creation of
the target and then uses the target table(s) to create the source table(s) – which,
at the end, are grouped in one or more source schemas. The target tables are
then populated using synthetic data. Using the target tables as starting point
for creating the source tables ensures that the generated ground-truth mapping,
when executed on the source tables, recreates the same tuples as in the target
table(s).

Appendix B provides a detailed description of the design decisions behind
Synthegrate and how the integration scenarios are built.

4.5 Scalability Evaluation

In this section, we evaluate the performance of Dynamap on two types of syn-
thetic scenario and two real-world scenarios1. The experimental results show how
Dynamap performs at large scale, and also the effect of the pruning strategies, as
follows:

1. In Section 4.5.1, Dynamap is compared against the current state-of-the-
art mapping generation algorithm (++Spicy [Marnette et al. (2010)]) on
standard scenarios generated by a state-of-the-art integration benchmark
(iBench [Arocena et al. (2015)]). Standard scenarios involve one single
source and one target schema with explicit and correct schema constraints
and matches as might be produced by a data scientist working with a tool
such as ++Spicy or Clio.

1The details of the experiments, including the data sets, are available from:
https://github.com/MLacra/mapping_generation_experiments

https://github.com/MLacra/mapping_generation_experiments
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2. In Sections 4.5.2 and 4.5.3, we compare Dynamap with ++Spicy on two
real-case examples where the candidate keys and inter-table relationships
are inferred using profiling data.

3. In Section 4.5.4 we evaluate the accuracy of the propagation rules described
in Section 3.6.

4. In Sections 4.5.5, 4.5.6, 4.5.7, we run Dynamap under a set of synthetic
scenarios (generated by Synthegrate) that are meant to merge multiple
sources through a variety of combinations of two relational operators, i.e.,
union and join.

5. In Section 4.5.8, we measure the impact of the pruning strategies described
in Section 4.3 by separately running Dynamap over the same scenarios with
different pruning strategies activated or deactivated at a time.

Comparison with ++Spicy. In both real-world and synthetic scenarios, Dy-
namap is compared to the state-of-the-art mapping generation algorithm, i.e.,
++Spicy [Marnette et al. (2010)]1. ++Spicy creates mappings and transforma-
tions that attempt to produce core solutions given as input a set of matches and
schema constraints, i.e., primary keys, foreign keys (as described in Section 2.1.4).

In this section, comparisons are drawn with ++Spicy in terms of result quality
and runtime performance. ++Spicy has been chosen as it is publicly available,
and represents the state-of-the-art in mapping generation for databases. We think
that ++Spicy does what it was designed to do rather well, but we note that
++Spicy was not designed to support mapping generation in the wild, and thus
that in places the comparison with Dynamap may not seem entirely fair. However,
this reflects the fact that mapping generation in the wild presents new challenges,
and we know of no other more suitable system with which to conduct comparative
evaluations.

Experimental setup. Dynamap and ++Spicy were run over the same data
sources, and the same target schemas. For storage, we used PostgreSQL 9.6. In
the case of the real-world scenarios, in order to maintain a focus on mapping
generation, matches were generated by a human expert. The profiling data was
generated through two Metanome modules, i.e., HyUCC [Papenbrock and Nau-
mann (2017)] for generating candidate keys and Sindy [Kruse et al. (2015)] for

1http://www.db.unibas.it/projects/spicy/

http://www.db.unibas.it/projects/spicy/
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generating (partial) inclusion dependencies. Given that ++Spicy uses explicit
schema constraints, based on the profiling data, foreign keys are inferred where pos-
sible, i.e., if a candidate key shares a (full) inclusion dependency with an attribute
from another relation then a foreign key is inferred. In the case of the synthetic
scenarios, the matches, the profiling data, the data sources, and the target schema
are generated automatically (without human input) by a scenarios generator. Tu-
ples in the synthetic scenarios were generated using Datafiller [Coelho (2013)].
The experiments were run over an Intel Core i5 with 2×2.7 GHz, and 8 GB of
RAM. We report the results over the average of 10 runs when runtime is measured.

Data quality evaluation metrics. Given that both algorithms are run over
complex scenarios that may contain data that can be combined in multiple correct
ways, we decided not to compare the generated mappings, but to compare the
output tuples of the mappings, executing the mappings over the same sources.

iBench scenarios. For the iBench scenarios we used metrics from Arocena et al.
(2015), viz., the number of constants and the number of nulls produced by the
mappings. In Arocena et al. (2015), mappings that output fewer constants and
fewer nulls are considered to be desirable. The intuition behind this metric is that
if the data is correlated as best as possible, then there are no (or few) redundant
tuples, while mappings that do not correlate (i.e., join) tables will create many
duplicate values and undesirable nulls. Thus, if the number of constants and nulls
is minimal then it means that the data has been correlated.

Realcase scenarios. There is no widely-accepted way of measuring the quality
of the output tuples against a ground truth. For example, Mecca et al. (2012)
suggest that the output of a transformation system can be analyzed based on the
number of identical tuples that are found in the output tuples, thus, assigning
a quality score based on the number of fully correct tuples. However, in our
experiments, we wanted to take into consideration both fully and partially correct
tuples, thus, our chosen metrics show results at a finer-grained level, i.e., based
on the overall number of correct values at attribute level, and the number of
correct values at tuple level. The output tuples and the ground-truth tuples are
correlated for comparison based on their values on key attributes.

Attribute level. The result of the output mapping is compared with that of
a ground-truth mapping, reporting the precision, recall and f-measure at the
attribute value level, based on the following definitions:

- A true positive (TP) is a correct non-null value in the output of the compared
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mapping.
- A true negative (TN) is a correctly output null, i.e., it was expected to be
null in the ground truth.

- A false negative (FN) is a missing value (a null) in the output of the
compared mapping.

- A false positive (FP) is an non-null incorrect value in the output of the
compared mapping.

Tuple level. Given that a tuple typically has several attribute values, the
correctness of the tuple is computed based on the dominant correctness label
among the labels for its attribute values.

- A true positive is an output tuple where all or the majority of its attribute
values are correct, i.e., a TP or a TN at the attribute level.

- A false positive is an output tuple where all or the majority of its attribute
values are not nulls, but incorrect, i.e., not as expected in the ground truth.

- A false negative is an output tuple where all or the majority of its values
are missing, i.e., are nulls.

- True negatives – We do not measure the true negative tuples as these would
represent the number of correctly eliminated tuples and this is not the focus
of the evaluation.

Level of completeness of tuples. The correctness of a tuple is determined by
using the dominant correctness in its attribute values, so we say that a tuple is
complete if all its attribute values have the same type of correctness label, and
incomplete if they are mixed. In Figures 4.3(b) and 4.4(b), the number at the top
of each bar represents the number of incomplete tuples, while the number below
it represents the number of complete tuples, e.g., a complete true positive tuple
has all the attribute values that the ground truth tuple has, and an incomplete
true positive tuple is one in which the majority (but not all) of the values were
as expected in the ground truth.

Mapping selection. In Dynamap, many plausible candidate mappings may be
produced, in different iterations. As such, there is a need to select a subset of these
mappings. In practice, this could involve declared user preferences [Konstantinou
et al. (2019)]. Dynamap uses a fitness function. In these experiments, mappings
were selected by choosing, from the fittest k mappings (Section 3.7), as few
mappings as possible such that all initial relations are involved. The mappings
are selected by applying the set-cover method [Aho and Hopcroft (1974)] to the
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subsets of initial relations merged in each mapping. We chose to have large
complex mappings that involve all source relations so that all input data is
transferred to the target, which makes it simpler to observe the quality of the
output tuples (originating from all sources) generated by the mappings. For
++Spicy, we used the generated SQL script that is considered to contain the
best mappings that populate the chosen target. In both cases, other mapping
selection techniques could be applied, e.g., considering properties of the extents
of the mappings [Abel et al. (2018)].
Runtime evaluation metrics. The measured runtime for Dynamap reflects
the processing time to output the mapping in the final iteration (if found) and
the runtime for ++Spicy includes the computation of core mappings. For both
algorithms, the runtime measurements include only the mapping generation and
the generation of SQL scripts (needed to evaluate the output). However, as
explained in Mecca et al. (2012), the generation of the SQL script by ++Spicy
can represent a significant amount of the total running time.

For all experiments, we fixed a timeout of one hour. If the experiment was
not completed by that time, it was stopped.

4.5.1 Benchmark Experiment - iBench

The iBench experiments follow the methodology presented in Arocena et al. (2015),
where iBench is used to compare several mapping generation algorithms. The
measures proposed in Arocena et al. (2015) imply that the mappings that produce
smaller target instances produce less incompleteness, so they measure the size of
the target which consists in the number of atoms [Alexe et al. (2012)] that could
be either a constant or a null.
Scenarios. The scenarios are built as follows.

Target schema. In order to keep the target schema fixed, we used a user
defined primitive where the target schema is given, and set the corresponding
iBench parameters to reuse 100% of the target schema. The target schema is a
nine-attribute target relation.

Input sources. Each generated scenario has 20 source relations with 4-12
attributes, each with 400-600 tuples that are generated with Datafiller [Coelho
(2013)]. We chose to create scenarios with only 20 input source relations as the
purpose of this experiment is to investigate specific mapping generation patterns,
not how the algorithm scales (which is investigated in Sections 4.5.5, 4.5.6, 4.5.7).
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Figure 4.2: Dynamap compared to ++Spicy on complex iBench scenarios with
various numbers of constraints

We used the following iBench primitives: add attribute, add-delete, delete, copy
and merge-add. As explained in Section 3.8.1, the only type of primitive that
Dynamap is not able to tackle as expected in this version, is when a source relation
is split into two target relations that can be joined through a foreign key. In this
case, Dynamap generates two mappings that populate the two target relations
since, as mentioned above, the foreign key relationships in the target are not used
in Dynamap. This type of scenario is revisited in Chapter 5, where we tackle
scenarios in which the target schema has constraints over multiple tables.

In generating the different scenarios, we varied the number of primitives so that
20 input source relations are created that have 0% to 60% of their relations linked
by inclusion dependencies. In other words, the generated scenarios depict cases
where the source relations are mostly unionable w.r.t. the target relation (but
having different matches to the target) and cases where the number of relations
that are joinable increases, i.e., by increasing the number of source relations that
are linked by inclusion dependencies. The reuse of the source relations is set to
0%, i.e., each primitive has its own associated source relations, as sharing the
same source relation for several primitives changes the target schema by adding
target relations.

Matches. All sources will match the target; the matches are generated by
iBench according to the primitives.

Profiling data. The profiling data is generated according to the inclusion
dependencies in each scenario and the defined primary keys in each relation. We
set the iBench parameters so as to vary the number of added and/or deleted
attributes, to reuse the target schema 100%.
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Results. The results are shown in Figure 4.2, where the output atoms of the
mappings generated by Dynamap are compared with the output of ++Spicy map-
pings. It can be observed that for the scenario with 0% INDs, their output is
identical in terms of number of constants and nulls, but once the scenarios start
having relations with inclusion dependencies, their output is slightly different.
This difference comes from the fact that for the merge-add primitives Dynamap
outputs only the joined tuples, while ++Spicy outputs all tuples, regardless of
whether the tuples could be combined or not. Dynamap chooses the mappings
that output only the merged tuples as it prefers mappings that have less incom-
plete tuples, thus, the mappings that produce tuples that bring more nulls than
constants are not produced. However, either of these outputs could be considered
to be reasonable.

In terms of atom values, all output values of Dynamap were identical with the
corresponding tuple values of ++Spicy.

4.5.2 Real-world Experiment - Real-estate Domain

Motivation. In this section we investigate how Dynamap performs on a real-
world scenario in which web-extracted datasets from the real-estate domain are
combined with data from the UK open government data portal. For the data
extraction we used OXPath [Furche et al. (2012)], following the representation of
the data on the web page. Additionally, open-government datasets were included
in the scenario, i.e., the indices of deprivation dataset that measures the rela-
tive deprivation in small areas in England, and freely available open-government
addresses data.
Scenario. The purpose of this scenario is to generate a mapping that associates
crime statistics with the properties information from the real-estate agencies.

Target schema. The target schema is a single table:
Target (postcode, city, street, price, crimerank)

Dataset Data for the target #Sources Arity Size
Manchester real-estate street, price, city, postcode 5 5-9 20-171
London real-estate street, price, city, postcode 2 6-13 20-35
Oxford real-estate price, postcode, street 4 10-14 28-152
Manchester deprivation postcode, crimerank 1 28 391
London deprivation postcode, crimerank 1 28 54
Manchester & Oxford addresses postcode, street, city 1 4 235

Table 4.1: Web-extracted and open government datasets
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Input sources. The input sources contain data from three categories: real-
estate data, deprivation and addresses. Details about the input datasets are
found in Table 4.1 where the first column states what the dataset is about, the
second lists which attributes from the dataset contribute to populating the target
(not necessarily all the available attributes in the source), the third column is the
number of input data sources that contain that type of data, the fourth is the arity
range, and the fifth the cardinality range. It can be observed that the real-estate
datasets comprise separate information from three UK areas: Oxford, Manchester,
and London, but the information about deprivation is from Manchester and
London areas only, while the addresses are from Manchester and Oxford only.
One can see that not all datasets should be merged with one another, e.g., London
deprivation with Oxford real-estate, while others could merge with more than one,
e.g., addresses could merge with both Oxford and Manchester properties.

Profiling data. To obtain the profiling data on the input sources, HyUCC
[Papenbrock and Naumann (2017)] was run to detect the candidate keys, and
SINDY [Kruse et al. (2015)] was run to obtain the (partial) inclusion dependencies.
The input profiling data contains: 68 candidate keys, 1734 partial inclusion
dependencies, and 510 full inclusion dependencies. Given that ++Spicy takes as
input only one schema and explicit schema constraints, all sources were transferred
to a common PostgreSQL schema and, based on the profiling data, a set of 68
unique constraints was added to the schema, and 7 foreign keys could be inferred
considering the standard foreign key conditions (a candidate key is referenced by
an attribute, and the values of the attribute need to be fully contained in the
values of the candidate key).

Ground truth. The ground truth mapping was created by hand. The map-
ping unions all four Oxford properties datasets and then (outer)joins them with
addresses. The result becomes schema compatible w.r.t. to the target matches
with Manchester real-estate so they are unioned, and then all information from
Manchester and Oxford is (outer)joined with Manchester deprivation. We chose
not to join Manchester real-estate with addresses because all the information
covered by addresses is already found in Manchester real-estate, while Oxford
needed information about city and this was found in addresses. Also, we chose
to merge Manchester deprivation after the union between Manchester and Ox-
ford properties because by merging Oxford properties with addresses, their merge
result will contain information from both Manchester and Oxford. In the end,
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information about London real-estate merged with London deprivation is unioned
with the information from Manchester and Oxford.

Comparison. Dynamap and ++Spicy were run over the same mapping task
with the same input sources, their output mappings were executed and the output
tuples are compared to the output of the ground-truth mapping.
Results. The results of the two mappings against the ground truth mapping can
be seen in Figures 4.3(a) and 4.3(b).
Attribute level. The results at attribute level are shown in Figure 4.3(a). Both
algorithms perform similarly in terms of precision, i.e., close to all the attribute
values that Dynamap and ++Spicy output are the same as in the ground truth.
The difference between their recall is caused by the fact that Dynamap manages
to correlate more data, which leads to fewer but more complete tuples, while
++Spicy does not merge relations that match the same target attributes unless
those attributes can be used in the join condition.
Tuple level. The results at tuple level are depicted by Figure 4.3(b). Both
algorithms perform similarly in terms of total number of true positive tuples,
i.e., Dynamap produces 947, and ++Spicy outputs 1075. The difference between
their results comes from the fact that Dynamap manages to correlate more data,
which leads to fewer but more complete tuples. Also, all the TP tuples from
Dynamap are complete, i.e., all attribute values are the same as in the ground
truth tuples, while ++Spicy identifies only 538 complete tuples and 537 incomplete
TP tuples. Incomplete TP tuples are expected in the ground truth, but they are
only partially correct as some attribute values are correct, but others are either
missing or incorrect.

The false positive tuples that both produce are due to the fact that there are
46 tuples in each of their outputs that have null on the key attribute and, thus,
could not be compared to any of the ground-truth tuples. This behavior reflects
the fact that the input sources are heterogeneous and disjoint so not everything
can be readily combined as in a well-behaved schema.

The false negative tuples that both Dynamap and ++Spicy produce stem
from missing key values in the sources. The additional false negatives produced
by ++Spicy are created because some of these tuples were candidates for joining,
but they were not merged, thus, producing more false negatives than Dynamap
(as they also have missing keys so cannot be correlated with ground-truth tuples).

One can observe that, overall, although Dynamap does not generate the exact
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(a) Attribute level (b) Tuple level

Figure 4.3: Performance of Dynamap and ++Spicy on a real-estate scenario

ground truth mapping, the output tuples show that the mapping is a variation of
the ground truth, thus, Dynamap produced better results than ++Spicy. This is
due to the fact that Dynamap combined as much data as possible by performing
full outer join operations where foreign key constraints could not be inferred, i.e.,
partial inclusion dependencies were taken into consideration for correlating data
that overlapped in the sources. In comparison, ++Spicy managed to combine
only the datasets that were linked through explicit foreign key constraints or
where egds could be used to remove redundancy (as explained in Section 2.1.4).

In the case of each algorithm, the method for producing the output is as follows:
++Spicy materializes 30 relations in the database, while Dynamap produces
a mapping that can run directly on the input sources, without materializing
intermediate relations, thus, the mapping that Dynamap produces is easier and
more efficient to execute.

4.5.3 Real-world Experiment - Schools Domain

In this experiment we have used open-government data from data.gov.uk, with a
particular focus on heterogeneous and disjoint sources that could be correlated to
populate a target schema.
Motivation. As in Section 4.5.2, this type of evaluation investigates the extent
to which our proposed technique can tackle mapping generation cases where the
sources are not well behaved, i.e., do not come from the same database/schema
where tables are explicitly connected to one another through foreign keys.
Scenario. The data sources contain information about schools, more specifically,
about the facilities in those schools. The sources are outlined in Table 4.2.

https://data.gov.uk
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data.gov.uk source Data for the target #Sources Arity Size
All schools dfe code, school name, headteacher 1 16 99
Free meals eligibility dfe code, school name, #eligible students 1 4 85
Additional
languages

dfe code, school name, #students with 6 3-6 24 -
English as additional language 88

Defibrillators equipment school name,#defibrillators 1 7 29
Road and Safety training school name, school type 1 3 46
Bikeability courses school name, #courses 1 6 87

Table 4.2: Input source files - schools information

Target schema. The target schema brings together the information about
each school with the information about its activities and facilities, i.e., Bikeability,
Road and Safety training, English courses, Free meals programs, and Defibrillators.
Given this example, the target relation contains information to be gathered from
all input sources:

Target(dfe code, school name, school type, headteacher contact, no. bikeability
courses, no. students with English as additional lang., no. defibrillators, no.
students eligible for free meals).

Input sources. Part of the input sources were used in the experiment in
Section 3.8.2. We extended that set with an additional 7 sources that contain
open-government data about schools. Details about the input sources are found
in Table 4.2. It can be observed that the datasets contain different kinds of
information about the schools, thus, they should be merged with one another.

Profiling data. The same method as in Section 4.5.2 was used to obtain
the profiling data. The input contains 48 candidate keys, 681 partial inclusion
dependencies, and 47 full inclusion dependencies. A set of 48 unique constraints
was added to the schema, and 5 foreign keys were inferred. Although explicit
schema constraints were inferred, in this scenario, the way of merging the input
sources is less obvious than for the scenario in Section 4.5.2.

Ground truth. The ground truth mapping was created by hand, as follows.
First, the datasets with data about additional languages were unioned, as they
contain the same type of information, and then, the results were merged with the
remaining sources through sequential full outer join operations.

Comparison. After running Dynamap and ++Spicy over the same mapping
task, the output mappings are executed and the output attributes and tuples are
compared to the ground-truth output.
Results. The results of the two mappings against the ground truth can be seen
in Figures 4.4(a) and 4.4(b), for attribute-level and tuple-level, respectively.
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(a) Attribute level (b) Tuple level

Figure 4.4: Performance of Dynamap and ++Spicy on a schools scenario

Attribute level. The results at attribute level are depicted by Figure 4.4(a).
Similar to Section 4.5.2, the precision of both mappings is high, i.e., the majority of
their identified attribute values match the ground truth. The discrepancy in recall
happens because although ++Spicy makes use of explicit join paths, and removes
redundancy by using equality generating dependencies, this is not enough for a
scenario that is not well-behaved. In this scenario, ++Spicy merges the relations
with matches to attributes that are keys in the target, and this reduces redundancy
in the output, but relations that do not have matches with key target attributes
are not merged. For example, All schools, Free meals eligibility and Schools
with additional languages all match the key target attributes, and thus are joined,
but Defibrillators, Road and Safety Training and Bikeability only match non-key
target attributes, so ++Spicy does not consider them for merging. Dynamap
follows join paths defined by partial inclusion dependencies, and resorts to outer
joins when foreign keys cannot be inferred, and thus more fully combines data
from the source tables. For example, Road and Safety Training and Bikeability
are merged with the other relations through full outer joins.

Although Dynamap outputs almost all expected attribute values (its recall is
0.994), the output contains tuples that are only partially correct. This is because
of the low overlap between the data about defibrillators and other sources, and
after each iteration there is the pruning phase where the profile data that does
not seem helpful is discarded. In this situation, the source containing information
about defibrillators was overlapping in a very low proportion with the other
sources, thus, the partial inclusion dependencies that could have been used in
a full outer join operation were discarded, so the merge was no longer possible.
This type of pruning is performed in order to avoid merging sources where only
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a reduced number of tuples can be correlated, and the others padded with nulls.
Thus, Dynamap decides not to add defibrillators to other mappings through join
as a merge with a low overlap produces more nulls than it adds constants to the
target. However, the defibrillators source is added through union to the complex
mapping that is built through set-cover method as stated in the procedure of
mapping selection in Section 4.5.

Tuple level. Considering the completeness of the output tuples, it can be
observed that Dynamap outperforms ++Spicy, i.e., the number of complete true
positive tuples produced by Dynamap is 2.34 times higher than for ++Spicy. This
is because Dynamap combines the source tables almost as expected in the ground
truth, with only 8 partially correct tuples, whereas ++Spicy outputs 266 partially
correct tuples, and only 162 tuples with all information correct. This discrepancy
in the output quality happens for the same reason stated above (for attribute
level), i.e., ++Spicy makes use of explicit join paths, and removes redundancy by
using equality generating dependencies, but this is not enough in this scenario.
Dynamap follows join paths defined by partial inclusion dependencies, and resorts
to outer joins when foreign keys cannot be inferred, and thus more fully combines
data from the source tables. Thus, some information is aligned even when the
tuples in two sources only partially align. Due to this difference between the two
algorithms, ++Spicy is not able to correlate all the information so it outputs
mostly partially correct tuples (266), 40 tuples are considered incomplete false
negative tuples as they have a few correct values, but mostly null values where
in the ground truth there were expected non-null values.

For creating the output tuples, ++Spicy creates 24 intermediate tables, while
Dynamap generates a mapping that can run over the initial input sources to
populate the target schema.

4.5.4 Profiling Data Propagation - Accuracy at Scale

Motivation. In this section we investigate the accuracy of the propagated
inclusion dependencies (Section 3.6) for the scenarios in Sections 4.5.2 and 4.5.3,
i.e., how accurate the profiling data is after a set of iterations given that, as shown
in Tables 3.2 and 3.3, some of the overlaps are computed through estimations.
Experiment. To measure accuracy, we materialized the intermediate mappings
generated in all iterations, and we used SINDY [Kruse et al. (2015)] to obtain the
ground-truth inclusion dependencies with accurate overlap. Then, we compared
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Percentage of estimated overlaps with error in the range
[0.0, 0.1) [0.1, 0.2) [0.2, 0.3) [0.3, 0.4) [0.4, 0.5) [0.5, 0.6) [0.6, 0.7) [0.7, 0.8) [0.8, 0.9) [0.9, 1.0]

Realestate 93.3 3.1 1.1 0.8 0.6 0.5 0.4 0.3 0.1 0
Schools 56.6 19.4 10.3 8.7 2.4 1.8 0.5 0.3 0.1 0

Table 4.3: Error ranges

the estimated and ground-truth overlaps for the inclusion dependencies that
Dynamap propagated using the formulas in Tables 3.2 and 3.3.

Results. The results of the experiment can be seen in Table 4.3, which identifies
the percentage of the estimated overlaps in different error ranges.

Real-estate scenario. For this scenario, 112,147 inclusion dependencies were
compared to the ground truth that was generated using 785 materialized inter-
mediate mappings. 83,617 overlaps were equal to the ground truth overlaps, and
28,530 were different. The ones that were different were split into error ranges
that can be seen in Table 4.3. It can be observed that most differences were in
the range [0, 0.1), (i.e., 20,964 of the 28,530 estimates that were different from
the ground truth), meaning that the estimates were close to the true value. The
mean average error over all overlaps is 0.025.

Schools scenario. For this scenario, 36,917 inclusion dependencies were com-
pared to the ground truth which was obtained from 116 materialized intermediate
mappings. 9319 overlaps were equal to the ground-truth overlap, and 27,598 were
different. In Table 4.3, it can be observed that most estimates had no error or an
error below 0.1. The mean average error is 0.12.

In both scenarios, most of the erroneous overlaps stem from the usage of pre-
viously approximated overlaps, thus, one could say that once an inclusion depen-
dency degrades, its overlap will lead to other propagated inclusion dependencies’
degradations. Also, although the number of generated inclusion dependencies for
the schools scenario is smaller than in the real-estate scenario, the percentage
of different overlaps is greater in the schools scenario, i.e., 25% in real-estate
compared to 74% in schools. This is reflected by the mean average error values
as well because only ≈6% of the inclusion dependencies in the schools scenario
are full inclusion dependencies, c.f. ≈23% for the real-estate scenario. Full inclu-
sion dependencies are used in most conditions in Tables 3.2 and 3.3 that yield
accurate overlaps, and their absence leads to more cases where approximations
are necessary.
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(a) Instance complementarity (b) Schema complementarity (c) Mixed complementarity

Figure 4.5: Runtime of mapping generation for synthetic data scenarios

4.5.5 Instance Complementarity at Scale

Motivation. In this section we investigate the impact of specific properties of
union-dominant integration scenarios on the runtime performance of Dynamap
and ++Spicy. These scenarios are a synthetic representation of cases where the
relations that need to be merged contain the same type of information as is
needed in the target, e.g., by bringing together property data from many real
estate agencies. Referring to the example in Section 4.5.2, suppose the scenario
had various agency relations that contained street, price, postcode, and city from
different UK cities, and this information was needed in the target, thus the agency
relations are instance complementary w.r.t. to a target.
Scenario. In this type of scenario, we use Synthegrate to vary the number of
union operations in the correct mapping. The measured runtime for Dynamap
reflects the processing time to output the mapping in the final iteration (if found)
and the runtime for ++Spicy includes the computation of core mappings. For
both algorithms, the runtime measurements include only the mapping generation
and the generation of SQL scripts (needed to evaluate the output). A timeout of
one hour was set and the generation process was stopped if this time limit was
reached.
Results. The mapping generation times for different numbers of union operations
in the mapping scenario are in Figure 4.5(a). In terms of result quality, the result
tuples are exactly as in the ground truth for both algorithms. In Figure 4.5(a),
it can be seen that a mapping containing 500 unions has been generated by
Dynamap in less than a minute, while ++Spicy generates it in approximately
22 minutes. The time increase for both algorithms comes from the fact that, in
such scenarios, all permutations of the input relations are reasonable candidate
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mappings. For Dynamap, this type of scenario provides a significant test for the
pruning techniques that prevent creation of superfluous mappings, prune subsumed
union mappings and remove unnecessary parent mappings, without which the
search space for Dynamap would have grown following the formula in Section 4.1,
and thus more rapidly than is reflected in Figure 4.5(a).

4.5.6 Schema Complementarity at Scale

Motivation. In this section we investigate the impact of specific properties of
join-dominant integration scenarios on the runtime performance of Dynamap and
++Spicy. These scenarios are a synthetic representation of real-world cases where
the relations that need to be merged each contain different attributes that are
needed in the target, e.g., by bringing together information about a school from
many sources.
Scenario. In this type of scenario, we use Synthegrate to create scenarios in
which we vary the number of join operations in the correct mapping. In order to
avoid any unintentional inclusion dependencies between the sources, we set the
generator to always create a new pair of attributes to use in the join conditions
when splitting a table. Otherwise, reusing already created attributes could create
unwanted overlaps over which we would not have any control, thus, making it
difficult to correlate the runtime results with the merge opportunities.
Results. The results can be seen in Figure 4.5(b). In terms of result quality, the
result tuples that Dynamap produces are exactly as in the ground truth for all
scenarios. On the scenarios with fewer join operations, we were able to evaluate
the output of ++Spicy and observe that it produces all the merged tuples which
appear in the ground truth, but also the tuples that were not joined with other
tuples and these are considered false positives as they were not expected in the
output. For the large scenarios, the generated ++Spicy mapping could not be
run on the input database.

In Figure 4.5(b), it can be seen that Dynamap generates a mapping containing
50 joins in less than a minute, while ++Spicy runs in approximately 15 minutes.
However, it seems unlikely that mappings with upwards of 50 joins will be common
in practice. In this type of scenario both algorithms have a similar approach
for discovering the mapping, i.e., following foreign key join paths between the
sources. In this type of scenario the opportunities for combining relations are fewer
than in a union dominant case (Section 4.5.5) as not all sources can be merged
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with all others as they have overlapping attributes only with some of the other
sources. The time difference between Dynamap and ++Spicy comes from the
fact that Dynamap identifies opportunities for pruning that depend significantly
on preventing creation of superfluous mappings and removing unnecessary parent
mappings, whereas ++Spicy tries to remove redundancy by combining the same
sources in multiple variations which are, in fact, equivalent mappings.

4.5.7 Instance & Schema Complementarity at Scale

Motivation. In this section we investigate the impact of specific properties of
mixed-operation integration scenarios on the runtime performance of Dynamap
and ++Spicy. These synthetic scenarios represent real-world cases where some
but not all relevant source relations contain the same type of information. For
example, in the schools experiment (Section 4.5.3), several relations could contain
data about the schools in each county, and other relations contain data that can
supplement the basic data about all schools through joins.
Scenario. In this type of scenario, we use Synthegrate to vary the number
of union and join operations expected in the correct mapping. Through the
variation of operators, merge opportunities are created as union relations can
partially overlap with relations that are expected to merge with other relations, i.e.,
through the partial (or even full) overlap they can become candidates for joining
although this is not by design and it is not possible to avoid as in Section 4.5.6.
Results. The results are shown in Figure 4.5(c). Note, firstly, the different scale
in the horizontal axes in Figure 4.5(c). There is an order of magnitude difference
in values with unions much more frequent than joins. In practice, we could argue
that there could be cases where there are more sources that are union candidates
than join candidates, thus, this difference should be representative for real-world
scenarios as well.

For these scenarios, in terms of result quality, the result tuples that Dynamap
mapping produces are exactly as in the ground truth in 10 out of 11 cases.
++Spicy does not produce the expected tuples in any of the chosen scenarios
(that ran under one hour): it identifies the union opportunities, but not all
the correct join opportunities, leading to many output tuples padded with nulls.
++Spicy does not behave as expected because the majority of the join-condition
attributes do not match the target key attributes, thus, ++Spicy is unable to use
the target key constraints to decide to merge the sources, while Dynamap does
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not rely on matched target keys to identify merge opportunities. The case where
Dynamap generated only parts of the expected mapping was the case with 50
join and 450 union operations. This partial detection is due to the complexity
of the scenario. In some cases, the approximated profiling data is close to the
actual values, but not equivalent, i.e., the overlaps of the inclusion dependencies
can become partial instead of full, thus, an expected join opportunity is detected
as a full outer join.

In Figure 4.5(c), it can be seen that a mapping containing 550 join and union
operations was generated by Dynamap in less than 7 minutes, while ++Spicy
runs in over an hour. For the scenario with 50 join and 450 union operations, the
running time for Dynamap is significantly reduced. This is because, as explained
in Section 3.6, the propagation of the profiling data is influenced by the chosen
operators. In this case, some mappings became unavailable to merge with other
mappings as less profiling information was transferred to them from the parent
mappings because of the use of a full outer join instead of a join.

Unlike scenarios in Section 4.5.5, in this type of scenario, Dynamap is no longer
able to prune so many merges as not all input sources merge through union, i.e.,
some sources need to be joined as they contain different types of information than
the sources that are expected to union. Thus, the merge of all subsets of instance
complementary tables will be reasonable candidate mappings.

This scenario provides a significant test for the pruning techniques that prevent
creation of superfluous mappings, prune subsumed union mappings and remove
unnecessary parent mappings, without which the search space would have grown
much more rapidly than is reflected in Figure 4.5(c).

4.5.8 Efficiency of Pruning Strategies

Motivation. In this experiment we investigate the effectiveness of the pruning
strategies presented in Section 4.3.

4.5.8.1 Pruning the Search Space

Scenario. The scenarios were created with Synthegrate by increasing
the number of expected join and union operations, while keeping them equal, e.g.,
the smallest scenario (11 sources) contains 5 unions and 5 joins, and the largest
contains 11 of each type of operation (23 sources).
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Figure 4.6: Effectiveness of the pruning strategies for the search space

We measure and report the runtimes, the number of generated mappings and
the number of pruned mappings for the effectiveness of the pruning strategies for
the search space in five different cases: with all pruning strategies active (all),
with none active (none), and, with each pruning strategy activated separately,
i.e., removing unnecessary parent mappings (RUPM ), preventing creation of su-
perfluous mappings (PCSM ), and pruning subsumed union mappings (PSUM ). In
each case, the pruning of the profiling data is disabled. Dynamap generated the
expected mapping under all settings. The runtime results are shown in Figure 4.6
and the numbers for generated and pruned mappings are shown in Table 4.4.
Results. In Figure 4.6, it can be observed that for the smallest two scenarios,
the pruning strategies do not significantly improve the running time as the search
space is not especially large. However, once the number of sources increases
beyond 19, the runtime starts to be affected by the combinatorial properties of
dynamic programming, such that for the largest scenario (23 sources) the runtime
without pruning goes beyond one hour (depicted at 3600 seconds in Figure 4.6),
whereas with all pruning strategies active it runs in less than a second. The
PCSM strategy has the highest impact of all. This significant improvement is due
to the fact that it can prevent the creation of mappings, thus, the search space is
contained by not creating mappings that will be discarded in subsequent iterations.
PSUM and RUPM are effective at removing already created, but unnecessary
mappings. Nonetheless, the fact that mappings are created and added to the
search space in the first place considerably affects subsequent iterations, thus
increasing the runtime.

Table 4.4 shows the impact of each of the pruning strategies by comparing the
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Scenario
(sources
number)

Number of generated and pruned mappings per strategy
none RUPM PCSM PSUM all

generated pruned generated pruned generated pruned generated pruned generated pruned
11 2,045 0 1,614 16 37 292 1,424 42 37 265
13 5,795 0 3,994 32 55 496 3,164 99 54 443
15 16,921 0 9,860 96 71 774 8,355 219 68 699
17 48,275 0 21,671 222 89 1,135 20,219 466 85 980
19 138,263 0 59,183 450 109 1,608 52,896 968 104 1,400
21 396,302 0 178,963 769 122 2,163 144,997 1,981 122 1,787
23 N/A N/A N/A N/A 155 2,937 376,803 4,017 142 2,339

N/A - the numbers could not be computed as the mapping generation process exceeded one hour

Table 4.4: Impact of pruning strategies for the search space – number of generated
mappings (existed in the search space at some point during the mapping generation
process) compared to number of pruned mappings

number of generated mappings (i.e., mappings that exist as intermediate mappings
in the search space at some point) and the number of pruned mappings (i.e.,
mappings that are discarded from the search space considering their usefulness
for the end result). For the strategies where the runtime exceeded an hour, the
figures could not be computed as the process did not terminate (described as
not applicable, N/A, in Table 4.4) An interesting observation can be made here
for the scenario with 21 sources, comparing PCSM and PSUM strategies. Here,
although the numbers of pruned mappings are close (1,981 for PSUM and 2,163
for PCSM ), the number of generated mappings for PSUM is 1,188.5 times larger
than the number of generated mappings with the PCSM strategy active. As
stated above, a strategy that prevents the generation of mappings (PCSM ) is
more effective than a strategy that allows the generation of mappings (PSUM or
RUPM ) and then prunes them from the search space.

4.5.8.2 Pruning Profiling Data

Scenario. Given that the scenarios created by Synthegrate create some unin-
tentional merge opportunities, but not a significant number, we decided to use
the two real-world scenarios in Sections 4.5.2 and 4.5.3 where there are more
attributes with overlapping values:

Real-estate scenario:
• 14 web-extracted and open-government sources
• 68 candidate keys
• 1734 partial inclusion dependencies
• 510 full inclusion dependencies
Schools scenario:
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Figure 4.7: Effectiveness of the pruning strategies for the profile data

Scenario
Number of generated and pruned inclusion dependencies per strategy

none IDLE SMAP THR [t=0.5] all
generated pruned generated pruned generated pruned generated pruned generated pruned

real-estate N/A N/A N/A N/A N/A N/A 533,783 10,534 36,798 19,686
schools N/A N/A 659,737 258,460 N/A N/A 426,819 15,140 172,384 61,167

N/A - the numbers could not be computed as the mapping generation process exceeded one hour

Table 4.5: Impact of pruning strategies for the profiling data – number of generated
inclusion dependencies (inferred at some point during the mapping generation
process) compared to number of pruned inclusion dependencies

• 11 open-government sources
• 48 candidate keys
• 681 partial inclusion dependencies
• 47 full inclusion dependencies
We measure and report the runtimes, the number of generated and pruned

inclusion dependencies for the effectiveness of the pruning strategies for the pro-
filing data in five different cases: with all pruning strategies active (all), with
none active (none), and, with each pruning strategy activated separately, i.e., re-
moving idle inclusion dependencies (IDLE), removing inclusion dependencies with
overlap below a minimum threshold (THR), and pruning inclusion dependencies
between attributes in the same mapping (SMAP). In each case, the pruning of the
search space is disabled and the runtimes were capped to one hour. The runtime
results are in Figure 4.7, and the numbers of generated and pruned inclusion
dependencies for each strategy can be seen in Table 4.5.
Results. The runtime results are shown in Figure 4.7, where the cases that
exceeded one hour are plotted at 3600 seconds. One can observe that, for both
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scenarios, the pruning strategies significantly improve the running time if they
are all active at the same time, however, activated separately, only some of them
run under one hour.

For both scenarios, with all the pruning strategies for profiling data active (all
case), the runtime is less than five minutes. However, comparing with the pruning
strategies for the search space, the profiling data pruning is not as effective (as
can be seen in Figure 4.6 – all case). Nonetheless, it significantly changes the
runtime for the better as without any pruning strategies active, both real-world
scenarios run in over an hour (none case – depicted at 3600 seconds as it exceeds
one hour).

Moreover, the SMAP case runs in more than an hour (e.g., in SMAP case, for
the realestate scenario, Dynamap computes the sub-solution for iteration 4 in 2
hours, 54 minutes and 59 seconds). This is due to the fact that the purpose of
SMAP strategy is to prune inclusion dependencies that are between attributes
belonging to the same mapping, however, in the early iterations, this pruning
strategy has little effect, thus, most of the inclusion dependencies are kept. SMAP
and none runtimes are similar, i.e., they both exceed one hour, given the little
improvement that SMAP is able to make in early iterations.

In the IDLE case, the runtime for the schools scenario is significantly smaller
(approximately 40 minutes) than the runtime for real-estate scenario (over one
hour – e.g., Dynamap is able to compute the sub-solution for iteration 7 in 6
hours, 54 minutes and 8 seconds). The purpose of the IDLE strategy is to prune
inclusion dependencies that are not predicted to be used in further merges, i.e.,
which do not share candidate key attributes on either its referenced or dependent
sides. As seen in the scenarios details above, the real-estate scenario has almost
three times more inclusion dependencies (2244 inds) than the schools scenario
(728 inds). Moreover, the real-estate scenario has 20 more candidate keys than
in the schools one, meaning that more inclusion dependencies have a chance of
sharing candidate keys, thus, more inclusion dependencies are kept, instead of
discarded. Given these differences, one can say that the runtime discrepancy
comes from two reasons: i) the large difference of inclusion dependencies (that
need to be propagated and searched through), and ii) the difference of candidate
keys which are bound to accommodate more merge opportunities in the case of
real-estate.

For the THR case, the minimum threshold was set to 0.5, i.e., keep only
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inclusion dependencies that have an overlap above or equal to 0.5. It can be
observed that the strategy improves over the runtime, however, as explained in
Section 4.3.3, this strategy is a trade-off between timely results and the amount of
explored search space. Discarding inclusion dependencies could mean that merge
opportunities will not be reached without the profile data that is discarded during
pruning. For instance, in the real-estate scenario, with a minimum threshold set to
0.5, the ground-truth results are not reached as necessary inclusion dependencies
are discarded in intermediate iterations, but with a minimum threshold of 0.3 it
produces the results seen in Section 4.5.2.

As seen in this experiment, the results on the pruning strategies for profiling
data are highly dependent on the data values in the sources, thus, the more
overlapping involving sources with merge opportunities, the smaller the effect of
the pruning phase. By keeping profiling data, merge opportunities are kept which
leads to more mappings that are added to the search space. This considerably
affects subsequent iterations, thus increasing the runtime.

4.6 Conclusions

In this chapter, we have extended the work in Chapter 3 by adding a pruning
component to the mapping generation process. The pruning strategies that we
propose rely on (propagated) profiling data such that the mapping algorithm can
safely discard mappings and/or profiling data that are not promising in further
merges, thereby keeping the search space from growing to become infeasibly large
for even modest scenarios. We have evaluated the new version of Dynamap
against a set of complex scenarios generated by the state-of-the-art generator, i.e.,
iBench. We also have shown how Dynamap performs on real-world scenarios,
one of which is an extension of the experiment in Section 3.8.2, adding to it more
source schemas. Furthermore, for the experiments in Sections 4.5.5, 4.5.6, and
4.5.7 we used Synthegrate to generate large scale scenarios with controlled
properties. These scenarios are suitable for the integration settings on which we
have our focus, i.e., keeping the target schema fixed while the sources can become
quite complex to merge. They have shown that Dynamap performs well under
tests where hundreds of (possibly) autonomous sources are given as input. The
largest scenario on which Dynamap was tested was composed of 555 operations
(55 joins and 500 unions), i.e., 556 source relations, for which it produced the
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expected mapping in less than 7 minutes, while ++Spicy exceeded the set timeout
of one hour. Although ++Spicy was not designed to work at scale, in Mecca
et al. (2009), the algorithm was tested against a set of scenarios where the most
complex one contains 100 tables with an average join-path of 3 joins for which it
manages to create a mapping in approximately 12 seconds. Our closest test to
this scenario contained 116 relations where 100 unions and 15 joins are expected
(Figure 4.5(c)), where ++Spicy ran for 122.41 seconds while Dynamap’s runtime
was 2.96 seconds. The time difference between ++Spicy’s performance in Mecca
et al. (2009) and in our test could have various reasons, but the most obvious are
that the number of input sources is higher, i.e., 116 tables compared to 100, and
that the average join-path is 5 times shorter than the number of expected joins in
our test, i.e., 15 joins in the join-path compared to multiple join-paths averaging
at 3 joins.

The effectiveness of each pruning strategy was shown in Section 4.5.8, where
Dynamap was run under different settings where each of the pruning strategies
was tested against a set of scenarios that increase in terms of the number of
sources.

Throughout the evaluation section, Dynamap was compared to ++Spicy [Mar-
nette et al. (2010)] as we aimed to show that Dynamap is able to operate with
less cleanly integrated input sources than the current schema mapping generation
approaches, i.e., that it can handle new cases of mapping generation in the wild
providing good quality results in a timely manner.

The problem ofmapping generation at scale might seem like an over-engineered
process when (say) only two schemas are involved, however, the creation of map-
pings becomes a problem if tens/hundreds of sources are involved. Other ap-
proaches for merging independent sources, e.g., at Internet scale, were presented,
e.g., in Das Sarma et al. (2012), where a method is proposed for detecting if
source relations are either unionable or/and joinable. Their experiments were
run over a million sources from Wikipedia. Zhu et al. (2016) determine join
paths between the sources treating the problem as a domain search where each
attribute is considered a domain, thus, the search becomes a problem of finding
attributes from different sources which are pairwise similar, concluding they are
joinable. To this end, they use LSH Ensemble [Zhu et al. (2016)] for indexing
the domains in a pool of sources. Their experiments were run on relational data
comprising 10,635 relations. Nargesian et al. (2018) tackle the problem of attribute
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unionability where they present work on determining whether attributes in the
different sources come from the same domains, thus, it could be determined if
tables are candidates for unioning. Their experiments were driven on repositories
of up to 165,236 tables. The work on Skluma [Beckman et al. (2017)] stems
from the need to organize datasets by using their extracted metadata, thus, it
is presented as a system for organizing large-scale data which extracts deeply
embedded metadata, relationships between sources, and contextual metadata. It
is proposed that Skluma can be used to manage a large collection of files, e.g.,
more than half a million, allowing data to be manipulated by its content and
topics. These works advance in a similar direction to the work we conduct in
this thesis, i.e., data integration/management over autonomous sources, and they
could complement our work by, for example, integrating into Dynamap another
method for providing join-path information [Zhu et al. (2016)], or adding infor-
mation about which tables are candidates for unioning [Nargesian et al. (2018)],
or both [Das Sarma et al. (2012)]. These additions could extend our proposed
method for performing the operator search presented Section 3.3, while Skulma
could be used to create more intricate relationships between the sources and de-
termine which merges could be favoured based on their metadata labels, e.g., to
change the fitness function to a more complex one that can use various types of
metadata about the sources.

Mapping generation at scale is part of a larger problem, i.e., data integration at
scale, where numerous heterogeneous data sources are expected to be integrated,
thus, our tackled problem is closely related to a series of other issues involved by
data integration at scale. The problem of data integration at scale was recognized
in works such as Dong and Rekatsinas (2018) where a synergy between data inte-
gration and machine learning is presented given that machine learning algorithms
can rely on usefully integrated large-scale data for the training process, and vice
versa as data integration is being helped by recent machine learning advancements
such as highly-scalable inference engines and deep learning for improving entity
resolution, data fusion, schema alignment, etc. Also, another related problem was
studied in Pimplikar and Sarawagi (2012) where they show a method for applying
a graphical model to align web tables with a knowledge base, by concomitantly
aligning schemas and entities.

To conclude, there have been works on different facets of data integration at
scale, such as data discovery [Zhu et al. (2016); Nargesian et al. (2018)], entity
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resolution [Pimplikar and Sarawagi (2012); Trivedi et al. (2018)], however, there
hasn’t been much focus on mapping generation at scale. There are still multiple
problems to solve given that the landscape of the integration problem has shifted
to scale [Miller (2018)]. Some of the open issues in this direction are mentioned
in Chapter 6.



Chapter 5

Mapping Generation for a
Complex Target

"Simple things should be simple, complex things should be possible."
– Alan Kay (1940)

This chapter describes how we have extended Dynamap to a mapping gen-
eration technique (Dynamap(e)X(tended)) that tackles the problem of mapping
generation for a complex target by an extension to the work described in Chap-
ters 3 and 4. Bymapping generation for a complex target we mean that DynamapX

is able to tackle input scenarios where the target schema consists of several ta-
bles that can have candidate/primary key constraints and therefore be linked by
foreign keys.

Referring back to the objectives outlined in Section 1.3, this chapter addresses
Objective 3, i.e., tackling the problem of mapping generation over autonomous
sources for a complex target schema subject to constraints. To this end, it reports
two contributions: Contribution 3.1 describes an algorithm that populates target
attributes that are subject to constraints while avoiding violating them as much
as possible; and Contribution 3.2 describes a mechanism for characterizing the
generated mappings in terms of the degree of satisfaction of the target constraints.
Motivation. In Chapters 3 and 4, we described Dynamap, a mapping generation
algorithm that tackles the problem of generating mappings between a set of
autonomous, heterogeneous sources and a single-relation target schema without
constraints. In Section 4.5, we showed that the generated candidate mappings are
of good quality and are produced in a timely manner even when the search space
is large and complex. However, Dynamap is designed to handle a target schema
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without constraints. For a more complex target, comprising more than one table,
Dynamap generates a set of mappings for each target table independently from
the other target tables. If the target tables have primary-foreign key relationships,
then the output tuples in such mappings populate the target tables disregarding,
and hence violating the target constraints. This chapter extends the work on
Dynamap as described in Chapters 3 and 4 with techniques that allow mapping
generation between a (set of) source schema(s) and a multi-table target schema
such that the target constraints are taken into account.

Figure 5.1: Target schema with key and foreign key constraints

5.1 Example Scenario

We use one scenario to motivate the need to generate mappings between a reposi-
tory of autonomous sources and a complex target schema, i.e., with constraints,
for which we propose a solution in this chapter. The example is illustrated in
Figure 5.1, and it exemplifies two of the schema constraints that can appear in
various data integration scenarios.

Example 5.1.1. Consider a similar scenario as in Examples 1.1.1 and 1.1.2,
previously used. In those examples, a company delivers real-estate information
to a business partner, but the information needed by the partner is contained in



154 CHAPTER 5. MAPPING GENERATION FOR A COMPLEX TARGET

different data sources that do not contain the same kind of information, i.e., the
sources are schema complementary w.r.t. the required data.

Figure 5.1 depicts the above-described scenario, i.e., different source schemas
contain parts of information that is required.

The differences between this example and Examples 1.1.1 and 1.1.2 are that,
in the previous examples, all the data was in one target table and there were no
target constraints, while, here, the target schema contains two target relations
with declared primary keys linked by a primary-foreign key relationship between
the Area_ID attributes.

5.2 Overview of the Approach

Considered approaches. One approach to extending Dynamap to mapping
generation for complex targets could be to generate mappings for each target table
(separately) and then run a post-processing step that aims to reconcile the data
so as to satisfy the target constraints. In practice, detecting mappings that satisfy
the target constraints involves the materialization of the candidate mappings.
The separate generation of mappings for each target table loses uniqueness and
inclusion dependency relationships between the generated sets of mappings, so we
can no longer rely on propagated profile data. As a result, this approach involves
materializing all the data from candidate mappings, and then selecting from these
mappings subsets that meet the constraints. This is potentially expensive and
hinders our aim of producing quality results in a timely manner.

Another approach could be to pre-process the complex target schema and
transform its tables into a single universal target table that comprises all target
attributes. Then, Dynamap can generate a solution for populating the latter from
the sources. After the universal target table is materialized, existing mapping
generation methods for target schemas with constraints, such as ++Spicy [Mar-
nette et al. (2010)], can be run to extract the data from the materialized universal
target table transferring it to the tables of the complex target schema while satis-
fying the constraints on the latter. As described in Section 2.1.4, ++Spicy can
take as input target constraints which it tries to satisfy by using target egds to
remove redundancy and this could lead to satisfying target constraints. However,
we consider this approach infeasible in our setting because, as shown in Sections
4.5.2 and 4.5.3, the source data may only partially merge, so we cannot assume



5.2. OVERVIEW OF THE APPROACH 155

that after the merge, the output tuples do not violate the target constraints as
the source relations are not necessarily part of a well-behaved source schema, as
assumed by ++Spicy. In our setting, it is not safe to assume that all constraints
are satisfiable, let alone satisfied as the sources are not all designed for integration
and extraction.

In order to tackle this challenge, we describe a method for characterizing
the mappings based on the degree to which they violate the target constraints.
We do this by creating mappings that: (i) generate synthetic data values where
there are attributes with no/scarce source-extracted data and that have key and
foreign key constraints; and (ii) discard subsumed tuples before materialization.
Then, based on the method used to generate the synthetic values, DynamapX

estimates confidence scores for satisfying a set of attribute-level properties, i.e.,
attribute completeness, source-extracted ratio, and key consistency per attribute
(as described in Section 5.5). Using these scores, we can (i) estimate the quality of
the data that the mappings generate, and (ii) detect whether the target constraints
are guaranteed to be satisfied or not. In order to create these confidence scores,
the process of generating the synthetic data needs to be transparent such that
DynamapX is aware of the performed steps, thus, it is able to compute the scores.
Using ++Spicy would mean treating the process of synthetic data generation as a
black box which would not allow DynamapX to consider how the data is created,
thus, it would not be able to generate the confidence scores without materializing
the mappings ++Spicy generates, which is a post-processing step we aim to avoid.
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Figure 5.2: DynamapX workflow – approach for target schema with constraints
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Chosen approach. We extend Dynamap to DynamapX , which is capable of
taking target constraints into account. Thus, the mappings that DynamapX

generates aim to comply to the latter. Nevertheless, given that the mappings
are over autonomous, heterogeneous sources, one cannot expect any mapping
to perfectly align the data, and, although DynamapX tries to satisfy the target
constraints, some may not be satisfied. DynamapX generates a set of indicators
for each of the mappings that aim to convey the degree to which the mappings
are expected to satisfy the target constraints (as explained in Section 5.5).

The workflow of DynamapX is shown in Figure 5.2. DynamapX has an addi-
tional preprocessing step w.r.t. Dynamap (called Generate UT ) that generates
a UTR for the target schema, i.e., the universal target relation whose columns
consist of all the attributes in every target relation as are linked by foreign keys,
i.e., in a join chain. After the creation of the UTRs (one for each join chain in
the target schema), DynamapX searches for mappings for each of these UTRs as
in the previous approach, taking one UTR (i.e., only one target table) at a time.

After the UTR mappings are created, there is a post-processing step where the
algorithm alters the UTR mappings in order that they generate labelled nulls (i.e.,
skolems) when executed (post-processing – step 1 ). The creation of the labelled
nulls helps satisfy candidate key and foreign key constraints in the target schema.
Then, in the subsequent post-processing step (step 2 ), projections are applied on
the views of the mappings for the UTR such that the mappings for the initial
target relations that were bundled, so to speak, in that UTR are obtained. The
last post-processing step (in Figure 5.2, post-processing - step 3 ) aims to modify
the candidate mappings such that, when executed, redundancy is reduced by
removing subsumed output tuples. In the post-processing steps, the algorithm
alters all the candidate mappings without materializing any data, so, based on
the corresponding profile data and metadata information, we contribute a method
to characterize the output candidate mappings without executing them.
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Algorithm 6 Generate UT
1: function compose(ts)
2: output_uts← []
3: target_graph← ()
4: for each tr in ts.relations do
5: target_graph.addNode(tr)
6: for each fk in ts.foreign_keys do
7: target_graph.addEdge(fk)
8: conn_graphs← FindConnGraphs(target_graph)
9: for each cg in conn_graphs do

10: utg ← cg
11: utr ← ()
12: for each tr in cg.nodes do
13: utr.addAttributes(tr.attributes)
14: output_uts.addPair(utr, utg)
15: return output_uts

5.3 Universal Target Composition

This section describes the method for composing the universal target. This is
formalized in Algorithm 6 and corresponds to Generate UT step in Figure 5.2.
The universal target has two representations: as a relation (UTR) and as a graph
(UTG). Each representation has a different purpose in creating the mappings
for the initial target relations: the UTR is used in the mapping generation with
Dynamap, where the UTR is the single target relation for which mappings are
sought, whereas the UTG is used in the decomposition of the Dynamap-generated
UTR mappings. The method for transforming a UTR mapping into mappings for
the target relations it bundles up is described in Section 5.4.

In Algorithm 6, Compose takes as input a target schema (ts) and outputs
a (set of) pair(s) of universal target relation(s) together with the corresponding
universal target graph(s), i.e., the output (output_uts, on line 15) is of the form
[(utr1, utg1), (utr2, utg2), . . . , (utrn, utgn)], where n is the number of (disjoint and
exhaustively explored) join paths in the target schema. DynamapX therefore
generates a separate set of mappings for each pair (utr, utg) by running Dynamap
each time. The algorithm first creates the UTG, then uses it to create the UTR.

5.3.1 Universal Target Graph

Motivation. The purpose of the UTG is to determine how to compose and
decompose the UTR mappings. The universal target graph not only preserves
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the initial format of the target relations, but provides an order for altering each
UTR mapping, which is important for creating labelled nulls, and subsequently
for preserving inclusion dependencies between the initial relations.
Directed graph notions [Aho and Hopcroft (1974)]. For completeness, we out-
line below the notions for directed-acyclic graphs which we use in the description
of our approach.

A directed graph is a pair G = (V,E) with the following properties:
1. The first component, V , is a finite, non-empty set. The elements of V are

called the vertices of G.
2. The second component, E, is a finite set of ordered pairs of vertices, i.e.,

(v, w) ∈ E, where v, w ∈ V , v is called tail and w the head. That is
E ⊆ V × V . The elements of E are called the edges of G.

3. In a DAG, for an edge (v, w) ∈ E, we say w is adjacent to v.
4. The out-degree of a vertex v is the number of vertices adjacent to v, i.e., for

which v is the tail.
5. The in-degree of a vertex v is the number of edges for which v is the head.
6. A path is a sequence of edges of the form (v1, v2), (v2, v3), ... , (vn−I , vn),

where we say that the path is from v1 to vn and is of length n− 1.
7. A cycle is a path of length at least 1 which begins and ends at the same

vertex.
8. A direct acyclic graph (DAG) is a directed graph with no cycles.

Universal Target Graph as DAG. In our setting, the universal target graph
(UTG) is a direct acyclic graph, where:

- the nodes are (different) initial target relations,
- the edges are represented by foreign key relationships,
- the direction of an edge is given by the foreign key in the sense that the
direction is from the referenced to the dependent relation. The direction of
the edges determines the order in which the labelled nulls are created for
each initial target relation. The description of the labelled nulls generation
is in Section 5.4.2.

Creation of UTG(s). The creation of the universal target graphs is part of the
Generate UT pre-processing step (Create UTG, in Figure 5.2) and corresponds to
lines 4-10 in Algorithm 6. In lines 4-5, DynamapX adds all initial target relations
to a single graph, target_graph. If the provided input target is well-behaved, i.e.,
the desired keys and foreign keys are explicitly stated, in lines 6-7, it uses the
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declared foreign keys in the target schema to create the directed edges between
the nodes. In line 8, FindConnGraphs1 takes target_graph as input and finds all
its connected graphs (there is one connected graph per join path). Notice that
each created UTG that is so created does not have common nodes with other
UTGs because the join paths in each graph are exhaustively explored and included
in the graph.

5.3.2 Universal Target Relation

Motivation. The UTR is used as the target in the generation of mappings using
Dynamap (as described in Section 3.4). We use a UTR so as to have a single table
as target, a requirement for Dynamap. In this way, the data in the sources is first
aligned in the format of the UTR and, then, we use the UTR mappings to obtain
the mappings for the initial target relations bundled up in the UTR. Relative
to the initial target tables, the schema of the UTR represents the schema of the
source key-foreign key joins from the join path to which the UTR corresponds.
Populating the UTR first, and then splitting its data into the format of the target
tables ensures that the source data is first correlated, and then the correlation
between different tuples is maintained after the data is split for populating the
target tables.

Creation of UTR(s). The creation of the universal target relations is done in
a pre-processing step (Create UTR, in Figure 5.2) and corresponds to lines 11-13
in Algorithm 6. In order to create the universal target relations, the algorithm
uses the already created universal target graph (which is a representation of a
join path). By following the join graphs in the UTGs, the algorithm creates each
UTR as a single new relation comprising all target attributes in all the relations
in the join graph (lines 12-13).

In Algorithm 6, the (UTR, UTG) pairs are created and added to the final
output (in line 14) which returns in line 15.

Example 5.3.1. In Figure 5.1, the target schema comprises two target relations:
Area Info and UK Realestate tables. There is only one join path that connects the
two relations as there is only one foreign key, viz., UK_Realestate.Area_ID →
Area_Info.Area_ID. The corresponding UTR has the following schema:

1In this thesis, if a method call is typeset in sans-serif, then it is a helper method. All helper
methods are written and described in more detail in Appendix A.



5.4. UNIVERSAL TARGET DECOMPOSITION 161

UTR(Area_ID, IncomeRank,City, Crimerank,
Prop_ID, Postcode, Street, Price)

Notice that the attributes in the foreign key relationship are represented by
the referenced attribute only, viz., Area_ID.

If there were no foreign key between the relations, then the algorithm would
create two separate UTRs, one for each target relation, and Dynamap would be
run twice, i.e., once for each UTR.

5.4 Universal Target Decomposition

This section describes the method for decomposing the UTRs, i.e., the modification
of the UTR mappings as DynamapX aims to satisfy the target constraints through
the creation of labelled nulls and removal of subsumed tuples. Once the latter
tasks are completed, DynamapX applies a projection on the modified mappings,
thereby creating a new mapping for each initial target relation. The decomposition
is done in the post-processing step in Figure 5.2 and is formalized in Algorithm 7.

Algorithm 7 (Decompose) takes as input a UTR mapping (utr_map) and
its corresponding universal target graph (utg). The number of output mappings
is equal to the number of initial target tables that were used in the creation
of the universal target. Each output mapping in output_maps corresponds to
one node (i.e., one target table) in the UTG. In line 3, the algorithm sorts the
set of nodes in utg in topological sorted order (described in Section 5.4.1). The
ordering is important for the generation of labelled nulls as this ensures that no
dependent relation is processed before its referenced relations (more details in
Section 5.4.2). In lines 4-7, the algorithm sequentially modifies the UTR mapping
so that the attributes in the UTR that correspond to keys in the initial target
tables are populated with labelled nulls (where source-extracted data is missing).
The Alpha method for modifying the mappings to create labelled nulls is
explained in Section 5.4.2. In lines 8-11, the algorithm uses the UTR mapping
to apply projection on it according to the attributes in the initial target tables
(Projection, in line 9). Then, it alters the resulting projected mapping so
that it does not produce subsumed tuples when executed (Beta, in line 10).
The Beta method for avoiding redundant tuples is explained in more detail in
Section 5.4.3. The mappings for the initial target tables are added to the output
set (line 11) which is returned (line 12).
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Algorithm 7 Decomposition of UTR mappings
1: function decompose(utg, utr_map)
2: output_maps← []
3: sorted_nodes← TopoSort(utg.nodes)
4: for each tr in sorted_nodes do
5: key ←FindPKey(tr)
6: skolem_atts← tr.attributes− {key}
7: utr_map←Alpha(skolem_atts, utr_map)
8: for each tr in sorted_nodes do
9: target_map←Projection(utr_map, tr.attributes)

10: target_map←Beta(target_map)
11: output_maps.add(target_map)
12: return output_maps

5.4.1 Topological Sort using Kahn’s Algorithm

Kahn’s algorithm. Kahn’s Algorithm [Kahn (1962)] is an application of breadth-
first search for topological sorting in a DAG. Topological sorting is used to deter-
mine the sequence in which a set of nodes (representing real-world concepts, e.g.,
events) can be parsed given that some might depend on others (e.g., that some
events cannot occur before other events). The resulting ordered list represents a
path such that each node can be reached from a previous node in that order and
where (at least) one node is expected to have the in-degree of 0 as such a node is
the starting point of the ordered list. A DAG can have one or more topological
orderings.
Motivation. For the creation of the labelled nulls, the order of the relations is
important so that tables with referenced attributes are processed before the tables
with corresponding dependent attributes (Section 5.4.2 describes the method for
the generation of skolems). For this purpose, we use Kahn’s algorithm. This
method ensures that the (full) inclusion dependencies between pairs of constrained
target attributes are satisfied.
Application on our problem. In our case, the UTG contains the target
relations as nodes, and the foreign key relationships between them as edges: from
the referenced relation to the dependent one. Given that the DAG is built in
this manner, when Kahn’s algorithm is run on it, the output will be a node path
where the target relations are ordered based on their foreign key dependencies,
such that in the first position in the list is a target table with no dependencies,
in second position the tables that reference it and so on until all initial target
relations that are connected by foreign keys in the DAG are output.
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Example 5.4.1. Given three relations: T1(a, b), T2(a, c, x), and T3(x, y), where
T2.a→ T1.a and T3.x→ T2.x are foreign keys, the corresponding UTG is:
T1 → T2 → T3, where the three tables are nodes,
and the topological sort is: T1, T2, T3 as T1 has an in-degree equal to 0, i.e.,

does not reference any other relations, T2 is dependent on T1 and, at the same
time, referenced by T3, and T3 is only dependent on T2.

In the example in Figure 5.1, the topological order for the two target tables is
Area Info, then UK Realestate.

5.4.2 Labelled Nulls Generation

Prior work. The notion of explicit object identifiers was first proposed in
Goldberg and Robson (1983), and was further advanced in the context of relational
databases in Khoshafian and Copeland (1986) and Kuper and Vardi (1984). In
Hull and Yoshikawa (1990), the problem of generating labelled nulls was studied
with the purpose of creating object identifiers, a.k.a. surrogates, using Skolem
functors (introduced by Thoralf A. Skolem, 1920s). More recently, Popa et al.
(2002); Fuxman et al. (2006); Mecca et al. (2009); Alexe et al. (2012), and Arocena
et al. (2013) use labelled nulls in the context of mapping generation to express
correlations between attribute values, i.e., merging data, or to create new values
where there is missing data in order to help satisfy target constraints on attributes
that cannot be null.
Motivation. In the context of mapping generation, creating labelled nulls is
driven by the need for a value for an attribute that is not matched but is involved
in a schema constraint, e.g., as a candidate key or a foreign key. In Popa et al.
(2002), they describe that a target element E is needed if E is (part of) a key
or a foreign key or is both not nullable and not optional. Otherwise, if the target
attribute is unmatched, but does not have a constraint on it, then it is not crucial
for the integrity of the target constraints. The reason we choose to generate
skolems is significantly overlapping with the reasons in prior work, i.e., to help to
satisfy the target constraints. However, it was shown in Sections 4.5.2 and 4.5.3
that in the context of mapping generation over autonomous sources, not all sources
are readily available to merge as in a well-behaved source schema. This requires the
generation method (i) to try to cover the case where the target attributes are only
partially populated and (ii) to avoid creating redundant tuples. Moreover, in case
the mapping cannot be guaranteed to satisfy the target constraints, DynamapX
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outputs an estimation of the degree to which the constraint is expected to be
satisfied (more details in Section 5.5).
Skolem functions. A skolem function is used when a formula of the following
format:
∀x∃yφ(x, y) is transformed through skolemization into
∃f∀xφ(x, y), where y ← f(x). This means that the existential variables y are

replaced by the values produced by the new existentially quantified function f
(skolem function) applied on the set of universally quantified variables in x [Aro-
cena et al. (2013)]. We say that the skolem function f depends on the set of
variables in x.
Labelled nulls generation. We now describe two methods for generating
labelled nulls used by prior work on mapping generation. Popa et al. (2002)
propose a method for generating labelled nulls for foreign key dependencies by
applying a skolem function on target attributes that have a match in the sources,
i.e., that are expected to be populated. Mecca et al. (2009) have a similar
approach (implemented in ++Spicy) to the one in Popa et al. (2002): they use
skolem functions to generate skolem strings, which are further used to generate
unique integer identifiers.

Example 5.4.2. Consider a simplified version of the example in Figure 5.1 where
we focus on the source relation of Manchester (i.e., we disregard the matches in
the other two source tables). The Area_ID attributes are used in the foreign key
constraint between the two target tables, but it is not matched by the source
table (Manchester) in either of the two target tables. Thus, in order to correctly
align the tuples in the two target tables (according to the declared foreign key),
labelled nulls can be invented as follows:

1. Using Popa et al. (2002), if the mapping involves only the Area Info re-
lation, then a new unique value Area_ID (Aid below) is created for each
combination of values in the mapped attributes, e.g., in City:

(a) For a mapping between Manchester and Area Info of the form:
M(c, le, a, bcy, bn, pc, s, pr)→ ∃Aid, Ir, Co, Cr : AI(Aid, Ir, c, Co, Cr)
where Aid, Ir, Co, Cr are not matched, we need to infer values for Aid
as it is both a key and a referenced attribute in a foreign key. Following
Popa et al. (2002) Aid becomes fAid(c), where fAid is a skolem function,
as city is the only matched attribute in the mapping.
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(b) For a mapping between Manchester and Area Info with UK Realestate:
M(c, le, a, bcy, bn, pc, s, pr)→ ∃Aid, Ir, Co, Cr, P id :

AI(Aid, Ir, c, Co, Cr), UKR(Pid,Aid, pc, s, pr)
where more attributes are matched, Aid becomes fAid(c, pc, s, pr). This
means that the skolem function fAid depends on all matched attributes
in the mapping, regardless of the fact that they belong to different
target relations.

2. Using Mecca et al. (2009), the skolem functions take three arguments:

(i) the sequence of facts generated by firing the tgd (without the existential
variables),

(ii) the encoding on the sequence of joins imposed by existential variables,
and

(iii) a reference to the specific variable for which the function is used.

For a mapping between Manchester and the AI and UKR target tables
M(ci, le, a, bcy, bn, pc, s, pr)→ ∃Aid, Ir, Co, Cr, P id :

AI(Aid, Ir, ci, Co, Cr), UKR(Pid,Aid, pc, s, pr),

Mecca et al. (2009) create the following values using skolem strings:

Aid← fsk({AI(C : ci), UKR(C : pc,D : s, E : pr)},

{AI.A = UKR.B},

{AI.A = UKR.B})

Note that the set elements must be encoded in the lexicographic order so
that the skolem function is not affected by the order in which the atoms
appear in the tgd.

In both proposals, the generation technique produces unique values for the
correlated tuples in the two target relations, but can produce redundant data
when there is no evidence that two tuples represent two different entities.

Example 5.4.3. Let us consider the example tuples in Table 5.1 for the Manch-
ester source relation (excluding attributes that are not matched).

The target schema comprises the two tables in Figure 5.1:
AI(Aid, Ir, Ci, Co, Cr) and UKR(Pid,Aid, Pc, St, Pr),
with a foreign key UKR.Aid→ AI.Aid.
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City Postcode Street Price

Manchester M3 1NN Mirabel St. 725pcm
Manchester M3 1NP Mirabel St. 800.00
Manchester M3 1NN Mirabel St. 950
Manchester M3 7NG 100 Greengate 1300 pcm

Table 5.1: Manchester – example tuples

Using either method in Example 5.4.2, the tuples transferred to the target
relations are of a similar form as shown in Tables 5.2 and 5.3 (again, excluding
the unmatched attributes, which will be padded with nulls).

Note that although, through the join on Aid, the data from the two tables
reproduces the data from the initial source table, there are redundant tuples in
the Area Info target table due to the labelled nulls that were created in Aid
(as each output of fAid is unique for each tuple). In this situation, there is no
evidence that the city of Manchester is a different city for each entry, e.g., a way
to distinguish between them could be to consider the information for the other
attributes IncomeRank, County, or Crimerank, but these are populated with nulls
in this scenario as they are unmatched. In the mapping generation context that
is addressed in this thesis, i.e., over autonomous sources that were not made to
merge, it is undesirable to generate data where there is no evidence that these
are necessary in the target. Because of this, we aim to generate mappings that
populate target schemas avoiding redundant data.

Chosen approach. We describe an algorithm that populates a multi-relation
target schema where constraints such as candidate keys and foreign keys are
tackled by populating their corresponding attributes in ways that take account of
the constraints. In order to avoid redundant tuples, when labelled nulls are created,
we consider for each table all the attributes in the tuple (without extending to any
dependent/referenced relations). The labelled nulls only replace null values, and
leave the data as it is if it comes from merged sources. The generation of labelled
nulls does not tamper with source data: it only replaces missing information. If
an attribute is only partially populated, then the labelled nulls only replace the
missing information on that attribute. Using a generic example, we now describe
the behaviour of Alpha (line 7) in Algorithm 7, i.e., our method for creating
labelled nulls:

Consider a generic UTR schema of the form
UTR(a1, a2, .., an, x1, x2, .., xm, y1, y2, .., yp, z1, z2, .., zq). The UTR comprises
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Aid City

fAid(Manchester||M31NN ||MirabelSt.||725pcm) Manchester
fAid(Manchester||M31NP ||MirabelSt.||800.00) Manchester
fAid(Manchester||M31NN ||MirabelSt.||950) Manchester
fAid(Manchester||M37NG||100Greengate||1300pcm) Manchester

Table 5.2: Area Info tuples

Aid Postcode Street Price

fAid(Manchester||M31NN ||MirabelSt.||725pcm) M3 1NN Mirabel St. 725pcm
fAid(Manchester||M31NP ||MirabelSt.||800.00) M3 1NP Mirabel St. 800.00
fAid(Manchester||M31NN ||MirabelSt.||950) M3 1NN Mirabel St. 950
fAid(Manchester||M37NG||100Greengate||1300pcm) M3 7NG 100 Greengate 1300 pcm

Table 5.3: UK Realestate tuples

attributes from four target relations, T1, T2, T3, and T4, some of which form a join
path that has both the chain and the star join patterns (shown in Figure 5.3) as
follows:

T1(a1, a2, .., an), T2(x1, a1fk, x2, .., xm), T3(y1, x1fk, y2, .., yp), and T4(z1, x1fk, z2, .., zq)
where the (primary) keys are T1.a1, T2.x1, T3.y1, T4.z1, and the foreign keys

are:
- T2.a1fk → T1.a1,
- T3.x1fk → T2.x1,
- T4.x1fk → T2.x1.
In the first post-processing step in Figure 5.2, using Algorithm 7 (lines 4-7),

DynamapX populates both the (primary/candidate) keys and the foreign key
attributes as follows:

1. Compute the topological orderings of the initial target tables:
(a) T1, T2, T3, and T4;
(b) T1, T2, T4, and T3.
Notice that, if (at least) one star-join pattern is present, there can be more
than one topological order. In this situation, the four relations are in a star-
join pattern where T2 is the central relation. In Algorithm 7, the sorting is
done on line 3, through TopoSort.

2. Alter the UTR mapping by starting with the first initial table in the
topological-ordered list: for computing labelled nulls, add a skolem func-
tion that takes as parameters all attributes except the key, a1, in T1, e.g.,
T1.a1 ← fskT1(a2, a3, ..an). Given the foreign key T2.a1fk → T1.a1, altering
the UTR mapping to populate T1.a1 means that T2.a1fk is populated with
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Figure 5.3: Topological order example

data from the same set of generated labelled nulls (when materialized). The
UTR mapping becomes:
mapUTR(fskT1(a2, ...an), a2, ..an,

x1, x2, .., xm, y1, y2, .., yp, z1, z2, .., zq).
3. Alter the UTR mapping by continuing with the next initial table in topo-

logical order, viz. T2: add a skolem function that takes as parameters all
attributes except the key, x1, in T2, e.g., T2.x1 ← fskT2(a1fk, x2, .., xm). No-
tice that, by sequentially altering the UTR mapping in topological order,
a1fk has labelled null values from the previous step, and these values are
used in the creation of the new labelled nulls for T2.x1. Also, populating
T2.x1 means T3.x1fk draws its values from the same set of labelled nulls as
it references T2.x1. After this step, the modified UTR mapping is:
mapUTR(fskT1(a2, ...an), a2, ..an,

fskT2(fskT1(a2, ...an), x2, .., xm), x2, .., xm,

y1, y2, .., yp, z1, z2, .., zq)
4. Alter the UTR mapping by continuing with the next initial table in topo-

logical order, viz. T3. Let us assume the algorithm proceeds in topological
order from 1a): add a skolem function that takes as parameters all attributes
except the key, y1, in T3, e.g., T3.y1 ← fskT3(x1fk, y2, .., yp). Similarly, x1fk

has labelled nulls from the previous step, and these values are used in the
creation of the new labelled nulls for T3.y1. After this step, the modified
UTR mapping is:
mapUTR(fskT1(a2, ...an), a2, ..an,

fskT2(fskT1(a2, ...an), x2, .., xm), x2, .., xm,
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fskT3(fskT2(fskT1(a2, ...an), x2, .., xm), y2, .., yp), y2, .., yp,

z1, z2, .., zq)
5. Alter the UTRmapping by continuing with the next (and last) initial table in

topological order, viz. T4: add a skolem function that takes as parameters
all attributes except the key, z1, in T4, e.g., T4.z1 ← fskT4(x1fk, z2, .., zq).
Again, x1fk has labelled null values from previous steps, and these values
are used in the creation of the new labelled nulls for T4.z1, while computing
the nulls for T3.y1 beforehand does not affect the creation of values in T4.
After this step, the modified UTR mapping is:
mapUTR(fskT1(a2, ...an), a2, ..an,

fskT2(fskT1(a2, ...an), x2, .., xm), x2, .., xm,

fskT3(fskT2(fskT1(a2, ...an), x2, .., xm), y2, .., yp), y2, .., yp,

fskT4(fskT2(fskT1(a2, ...an), x2, .., xm), z2, .., zq), z2, .., zq)
6. The algorithm continues creating labelled nulls until it reaches the last

initial target relation in the list (which is not referenced by others), e.g., T4

(or T3), where it stops adding skolem functions.

Example 5.4.4. Considering the scenario in Example 5.4.3, i.e., with the same
source tuples and the same target schema. Following our approach, the resulting
populated target relations are in Tables 5.4 and 5.5 (for simplicity, we exclude
the other target attributes as they are unmatched so they are padded with nulls).

Note that the initial source data is gathered through the join of the two target
tables on Aid attributes, and that there is only one tuple representing Manchester
city in Area Info relation. This is due to the fact that there is no other evidence
to help distinguish whether there is more than one Manchester city corresponding
to the tuples in UK Realestate. Were there more information on the tuples in
Area Info, the algorithm would generate different labelled nulls for the different
cities regardless of the name being the same.

After the Aid attributes are populated with labelled nulls, the algorithm can
proceed to create the labelled nulls for UKR.P id as this is the primary key in
the UKR target table. For this, the algorithm uses the values already computed
for UKR.Aid. The final output tuples for UKR are depicted in Table 5.6.
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Aid City

fAid(Manchester) Manchester

Table 5.4: Area Info tuples

Pid Aid Postcode Street Price

null fAid(Manchester) M3 1NN Mirabel St. 725pcm
null fAid(Manchester) M3 1NP Mirabel St. 800.00
null fAid(Manchester) M3 1NN Mirabel St. 950
null fAid(Manchester) M3 7NG 100 Greengate 1300 pcm

Table 5.5: UK Realestate tuples

Pid Aid Postcode Street Price

fPid(fAid(Manchester)|M31NN |MirabelSt.|725pcm) fAid(Manchester) M3 1NN Mirabel St. 725pcm
fPid(fAid(Manchester)|M31NP |MirabelSt.|800.00) fAid(Manchester) M3 1NP Mirabel St. 800.00
fPid(fAid(Manchester)|M31NN |MirabelSt.|950) fAid(Manchester) M3 1NN Mirabel St. 950

fPid(fAid(Manchester)|M37NG|100Greengate|1300pcm) fAid(Manchester) M3 7NG 100 Greengate 1300 pcm

Table 5.6: UK Realestate tuples

5.4.3 Subsumed Output Tuples

Prior work. The problem of identifying subsumed tuples has been a research
topic for a while [Galindo-Legaria (1994); Galindo-Legaria and Rosenthal (1997);
Bleiholder et al. (2010)]. The aim is to identify redundant tuples in an instance
of a relation. In Bleiholder et al. (2010), they study the possible applications of
operators which extend the work on subsumption to minimum and complement
union where they describe scenarios where data is fused. Through data fusion,
source data could be modified through techniques such as replacing missing in-
formation with average column values, or use majority voting to find possible
values etc. However, in this thesis, our focus is not on data fusion, but on gen-
erating mappings that aim to yield quality results without modifying any of the
transformed initial data.
Subsumed tuples. Bleiholder et al. (2010) define a subsumed tuple as:

A tuple t1 ∈ T , where T is a relation, subsumes another tuple t2 ∈ T if:
1. t1 and t2 have the same schema,
2. t2 contains more null values than t1, and
3. t2 coincides in all non-null attribute values with t1.
Tuple subsumption is similar to set containment. A tuple t1 subsumes another

tuple t2, if t2 ⊂ t1. Tuple subsumption is a transitive relationship, so if t2 ⊂ t1 and
t3 ⊂ t2, then also t3 ⊂ t1. Tuple subsumption is neither symmetric nor reflexive.
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Example 5.4.5. Consider the schema of the target relation Area Info in Figure 5.1
with the following tuples in Table 5.7:

Aid IncomeRank City County Crimerank

1 131 782 Manchester Lancashire ⊥
1 ⊥ Manchester Lancashire ⊥
1 ⊥ Manchester Greater Manchester ⊥
1 ⊥ Manchester Lancashire 925

Table 5.7: Area Info with subsumed tuples

Based on the definition of subsumed tuples, the first tuple t1:

1 131 782 Manchester Lancashire ⊥

subsumes the second tuple t2:

1 ⊥ Manchester Lancashire ⊥

as t1 and t2 have the same schema (belong to the same relation), t2 has equal
values for the non-null values in attributes Aid, City, County as t1 and nulls in
the same positions, e.g., in Crimerank, while t2 has one more null in IncomeRank
than t1, thus t2 is subsumed by t1.
The third tuple t3:

1 ⊥ Manchester Greater Manchester ⊥

has similar data to t1 and t2, but the value on County attribute is not the same,
thus, it cannot be concluded that it is subsumed by either of these.
The fourth tuple t4:

1 ⊥ Manchester Lancashire 925

coincides with the data in t1 on some non-null values, but t4, on Crimerank,
has a non-null value, e.g., 925, where in t1 it is null, thus t1 and t4 complement
each other, so the output mapping will not discard either of these based on this
information as this particular fact is not in the scope of this thesis. The tuple
complementarity problem is studied in Bleiholder et al. (2010) as a data fusion
problem, which can exist as a subsequent step after mapping generation in a data
integration work-flow. In this situation, it can be concluded that t4 subsumes t2.
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Motivation. Our aim is to devise an algorithm that generates mappings that
satisfy as much as possible the target constraints given the source data. By elimi-
nating subsumed tuples, the generated mappings may come to satisfy candidate
key constraints, whose attributes would otherwise contain duplicate values.

Prior work on detecting subsumed tuples, e.g., Galindo-Legaria (1994); Blei-
holder et al. (2010), is not conducted in the context of mapping generation, i.e.,
on non-materialized data, so they make the assumption that the data is already
generated and that analysis on the whole relation can be done. In our context
of mapping generation, the data is not (yet) materialized. Thus, we propose a
method to modify the mappings such that, when executed, the subsumed tuples
are not produced for the initial target relations.
Chosen approach. Our algorithm builds on the projections of the modified
UTR mappings (for the generation of labelled nulls) such that subsumed tuples
are discarded when the mappings for the initial target tables are materialized.
This step is shown in Figure 5.2 as the third post-processing step and as Beta
in line 10 in Algorithm 7. Here, we describe how to alter the mappings so that
they do not produce subsumed tuples. We consider a tuple to be subsumed if it
satisfies the conditions in Bleiholder et al. (2010).

Consider the same generic example as in Section 5.4.2, where there are four
target tables with the same schema constraints:

T1(a1, a2, .., an),
T2(x1, a1fk, x2, .., xm),
T3(y1, x1fk, y2, .., yp),
T4(z1, x1fk, z2, .., zq).

Their UTR mapping is modified to include skolemization, but, for simplicity,
we ignore this detail below:

mapUTR(a1, a2, .., an, x1, x2, .., xm, y1, y2, .., yp, z1, z2, .., zq).
To avoid producing subsumed tuples, the following method is used:
For a target table Ti, i ∈ {1, 2, 3, 4}, with Ti.X its set of attributes, the

mapping is generated following the steps:
1. Retain in a new mapping the projected UTR mapping on the attributes of
Ti, i.e., mapTi ← πTi.X(mapUTR)

2. Modify the newly created mapping mapTi such that it does not produce the
subsumed tuples, i.e., mapTi ← β(mapTi). We define β later in this section.

The generation of the mappings for each of the target tables is independent from
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one another, thus, the order in which these mappings are generated is not essential
and these steps could run in parallel if needed.

Example 5.4.6. Consider the example in Figure 5.1, the UTR for the two target
tables as expressed in Example 5.3.1, and the projected UTR mapping for Area
Info:

mapAI ← πAid,IncomeRank,City,County,Crimerank(mapUTR)
For simplicity, let us consider the tuples produced by mapAI as the ones in

Table 5.7. To eliminate the subsumed tuples, the algorithm modifies mapAI to
mapAI ← β(mapAI), β(map) is defined as:

β(map) = {t|t ∈ map,X ∈ schema(map), 6 ∃t′ ∈ map s.t. |nulls(t′)| ≤ |nulls(t)|∧
t[X] = t′[X] ∧ t[X] 6= null}

In other words, if the mapping resulting from β(map) is executed, then for
each tuple t that it outputs, there are no other tuples t′ with less nulls and with
equal values on the non-null attributes.

mapAI represents the final mapping, whereby Area Info can be populated.

5.5 Mapping Characteristics

Motivation. Sections 4.5.2 and 4.5.3 show that mapping generation over au-
tonomous sources means that the sources might not merge as well as they would in
a well-behaved setting because one cannot count on correct and complete source
schema constraints for them. Based on the inferred (possibly relaxed) foreign
keys, the source data may only partially merge. The consequence is that the
target constraints such as (candidate) keys and foreign keys may not be satisfied
by the tuples generated by the mappings. In aiming to satisfy target constraints
with data from autonomous and heterogeneous sources, the mappings need to
be ranked according to how well the data they would yield populates the target
schema. In this chapter, we have described two methods for addressing the chal-
lenge of generating mappings that satisfy the target constraints. However, these
may not be enough and the target constraints can still be violated. We propose,
therefore, a set of characteristics for the mappings that aim to reflect the degree
to which the mappings are likely to satisfy the target constraints.

Prior work. There has been prior work on characterizing mappings [Gottlob
and Senellart (2010); Alexe et al. (2011a,b)]. In Gottlob and Senellart (2010),
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instance-level data is used in a search for optimal schema mappings based on
the structure and occurrences of constants in the instances. They describe a
cost function for schema mappings that has different criteria such as validity,
explanation, zero-repair, etc, where each criterion is a numerical value. The
computation of these characteristics is based on the source and target instances
and measures the number of repairs that are needed to correctly transform the
data from the source to the target format. Similarly, Alexe et al. (2011a,b) propose
an approach that uses two kinds of evidence: instance-level data and user feedback
for refinement. They consider a set of mappings expressed as source-to-target
tgds and a set of data examples, and they characterize these mappings in terms
of a finite set of positive and negative data examples of what the mapping can
generate. These proposals rely on the fact that, in a data integration workflow, the
mapping generation has ended and the data their output can be materialized and
compared with a set of ground-truth tuples. However, in our setting, mappings
need to be characterized without being materialized as Dynamap can generate
thousands of mappings making it infeasible to materialize them just for computing
the characteristics.

Mapping characteristics. In this thesis, we contribute a set of mapping char-
acteristics that are computed without materializing the data. They are based
instead on the propagated profile data, taking into account the methods of gen-
erating labelled nulls and discarding subsumed tuples described in this chapter.
They are:

1. Attribute completeness is quantified with the percentage of non-nulls in
an attribute.

2. Source-extracted values ratio is the fraction of the values of a target
attribute that come from the data sources, i.e., non-null values that are not
labelled nulls.

3. Key consistency is a score that measures the extent to which the unique
constraints are satisfied on the target attributes that are expected to be
candidate keys. If the key consistency score indicates that the attribute
satisfies the key, then foreign keys are satisfied to the same extent as both
the referenced and the dependent attributes draw values from the same
UTR attribute.
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5.5.1 Attribute Completeness

The purpose of this criterion is to show how complete the attributes are. The
attribute completeness score measures the ratio between non-null values and nulls.
The non-null values can be either source-extracted or labelled nulls generated
through skolemization (as described in Section 5.4.2).

The completeness score FC is computed by taking into consideration the
mapping and its propagated profile and metadata information.

Computing the attribute completeness score for a mapping m:
Input

- the (estimated) number of tuples in the mapping result (|m|)
- the (estimated) number of nulls for attribute m.X (nulls(m.X)). For com-
puting the estimated score, the number of nulls is the one estimated before
altering the UTR mappings to create labelled nulls.

Attribute completeness function for attribute m.X

FC(m.X) =

1− nulls(m.X)
|m| , if m.X is not (part of) a candidate key in the target

1.0, otherwise
Output
Let cX ← FC(m.X), cX ∈ [0.0, 1.0], be the attribute completeness score for the
input attribute m.X. If cX = 1.0, it means that all values are non-nulls, otherwise
we say m.X contains (cX ∗ 100)% non-nulls. The score cX is always equal to 1.0 if
m.X is (part of) a candidate key because the remaining nulls in m.X are replaced
with labelled nulls (after altering the UTR mapping), so m.X contains mixed
non-null data (skolems and source-extracted). DynamapX detects this and the
score becomes 1.0.

Example 5.5.1. For a mapping m of the UTR for relations Area_ID and UK
Realestate (see Example 5.3.1), assume the data produced by m has the following
metadata information:

1. nulls(Aid) = 0
2. nulls(Pid) = 4
3. nulls(IncomeRank) = 3
4. |m| = 4
The example tuples in Table 5.8 could represent the data produced by m.
In the target schema, attributes Aid and Pid are primary keys, thus, DynamapX

detects that these are populated with labelled nulls if there is missing information
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Aid IncomeRank City County Crimerank Pid Postcode Street Price

1 782 Manchester Lancashire ⊥ ⊥ M3 1NN Mirabel St. 725pcm
1 ⊥ Manchester Lancashire ⊥ ⊥ M3 1NN Mirabel St. 800.00
1 ⊥ Manchester Greater Manchester ⊥ ⊥ M3 1NN Mirabel St. 950
1 ⊥ Manchester Lancashire 925 ⊥ M3 7NG 100 Greengate 1300 pcm

Table 5.8: UTR example tuples

Aid Income City County Crime Pid Postcode Street Price
Rank rank

1 782 Manchester Lancashire ⊥ fP id(1|M31NN|MirabelSt.|725pcm) M3 1NN Mirabel St. 725pcm
1 ⊥ Manchester Lancashire ⊥ fP id(1|M31NN|MirabelSt.|800.00) M3 1NN Mirabel St. 800.00
1 ⊥ Manchester Greater Manchester ⊥ fP id(1|M31NN|MirabelSt.|950) M3 1NN Mirabel St. 950
1 ⊥ Manchester Lancashire 925 fP id(1|M37NG|100Greengate|1300pcm) M3 7NG 100 Greengate 1300 pcm

Table 5.9: UTR example tuples – with labelled nulls

in them. Hence, it detects that after mapping m is modified, it outputs the tuples
in Table 5.9.

For attribute completeness, the algorithm computes:
- for Aid: the number of nulls is 0, so cAid = 1.0.
- for Pid: the number of nulls is 4, so, according to the formula on Pid,
FC(Pid), cPid = 0.0. However, Pid is expected to be a candidate key in
the target schema, so the algorithm detects that the modified mapping
generates skolems for this attribute. Given these satisfied conditions, cPid
becomes cPid = 1.0.

- for IncomeRank: the number of nulls is 3, so cIncomeRank = 1− 3
4 = 0.25

The attribute completeness scores for Aid and Pid attributes that are expected to
be candidate keys in the target is 1.0, i.e., they are fully populated in the target.
On the other hand, IncomeRank is not expected to be (part of) a candidate key
in the target, thus, its completeness score remains 0.25, meaning that a quarter
of its values are expected to be non-nulls.

5.5.2 Source-extracted Values Ratio

The purpose of this criterion is to show how much source data makes it to the
populated target attributes. The source-extracted values ratio measures the frac-
tion of non-null source-extracted values in the attribute. The difference between
attribute completeness and source-extracted values ratio is that the measured
non-null values can only be source-extracted (i.e., labelled nulls are not counted).

Similarly to attribute completeness, the source-extracted values ratio FS is com-
puted by considering both the mapping and its propagated profile and metadata
information:
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Input
- the (estimated) number of tuples in the mapping result (|m|)
- the (estimated) number of nulls for attribute m.X (nulls(m.X)). For com-
puting the estimated scores, the number of nulls is the one estimated before
altering the UTR mappings to generate labelled nulls.

Source-extracted values ratio function for attribute m.X
FS(m.X) = 1− nulls(m.X)

|m|

Output
Let sX ← FS(m.X), sX ∈ [0, 1.0], be the source-extracted values ratio for the
input attribute m.X. We say m.X contains (sX ∗ 100)% source-extracted values,
e.g., sX = 1.0 (all values are source-extracted) if the estimated nulls number is 0.

Example 5.5.2. Continuing Example 5.5.1, the algorithm computes the source-
extracted values ratio for each of the attributes in the UTR mapping m as follows:

- for Aid: the number of nulls is 0, so sAid = 1.0.
- for Pid: the number of nulls is 4, so sPid = 0.0.
- for IncomeRank: the number of nulls is 3, so sIncomeRank = 1− 3

4 = 0.25.
In this case, even if Pid is expected to be a candidate key in the target schema

and the algorithm detects that the modified mapping generates skolems for this
attribute, the generated labelled nulls are not source data, so the source-extracted
values ratio has a lower value than the attribute completeness score. For instance,
for Pid, the attribute completeness is cPid = 1.0, while the source-extracted values
ratio is sPid = 0.0. This is due to the fact that Pid only contains labelled nulls
(as shown in Table 5.9). On the other hand, for Aid and IncomeRank the two
scores coincide.

5.5.3 Key Consistency

The key consistency criterion is not focused on the quality of the data, but on
the violation of schema constraints. This criterion shows to which degree the (set
of) attribute(s) is expected to violate the key constraints in the target.

In using a UTR, foreign key attributes are represented by the same UTR
attribute. Thus, if a UTR attribute has a high score on key consistency and that
attribute is part of a foreign key relationship, then it can be concluded that the
foreign key relationship is likely to be satisfied given that the referenced attribute
is (likely to be) a key and the full inclusion dependency condition is satisfied given
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that both attributes draw their values from the same UTR attribute.
The key consistency score FK is computed by taking into consideration the

mapping and its propagated profile and metadata information:
Input

- the (estimated) number of tuples in the mapping result (|m|)
- the (estimated) number of distinct values for attribute m.X (V (m.X)). For
computing the estimated score, the number of distinct values is the one
estimated before altering the UTR mappings to create labelled nulls.

Key consistency function for attribute m.X

FK(m.X) =


nulls(m.X)+V (m.X)

|m| , if m.X is (part of) a candidate key in the target
V (m.X)
|m| , otherwise

Output
Let kX ← FK(m.X), kX ∈ [0.0, 1.0], be the key consistency score for the input
attribute m.X. If m.X is (part of) a candidate key then DynamapX detects that,
when the mapping is materialized, the remaining nulls in m.X are replaced with
labelled nulls (after altering the UTR mapping), so m.X contains mixed non-
null data (skolems and source-extracted). The key consistency on the column is
nulls(m.X)+V (m.X)

|m| as the nulls in m.X become labelled nulls, e.g., if nulls(m.X) +
V (m.X) = |m|, then kX becomes kX ← 1.0 as the non-null distinct (source-
extracted) values together with the created skolems fully populate column m.X
with distinct values. If m.X is not (part of) a candidate key, we say m.X contains
(kX ∗ 100)% unique values, e.g., kX = 1.0 (all values are unique) if the number of
estimated distinct values is the same as the estimated cardinality of the mapping
m; or kX = 0.0 means that the number of distinct (source-extracted) values
V (m.X) = 0 and no labelled nulls populate it.

Example 5.5.3. Continuing Examples 5.5.1 and 5.5.2, the algorithm computes
the score for key consistency for each attribute of mapping m that is expected to
be a key as follows:

- for Aid: the number of distinct values is 1. DynamapX detects that the
Aid column will be padded with labelled nulls so kAid = nulls(Aid)+V (Aid)

|m| =
0+1

4 = 0.25.
- for Pid: the number of distinct values is 0. DynamapX detects that all nulls
in Pid column become labelled nulls, so kPid = nulls(Pid)+V (Pid)

|m| = 4+0
4 = 1.0.

After discarding the subsumed tuples in Table 5.9 for each initial target table,
the data in the two target tables will look as in Tables 5.10 and 5.11.
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Aid IncomeRank City County Crimerank

1 782 Manchester Lancashire ⊥
1 ⊥ Manchester Greater Manchester ⊥
1 ⊥ Manchester Lancashire 925

Table 5.10: Area Info tuples (populated initial target table)

Pid Aid Postcode Street Price

fPid(1|M31NN |MirabelSt.|725pcm) 1 M3 1NN Mirabel St. 725pcm
fPid(1|M31NN |MirabelSt.|800.00) 1 M3 1NN Mirabel St. 800.00
fPid(1|M31NN |MirabelSt.|950) 1 M3 1NN Mirabel St. 950

fPid(1|M37NG|100Greengate|1300pcm) 1 M3 7NG 100 Greengate 1300 pcm

Table 5.11: UK Realestate tuples (populated initial target table)

Using key consistency scores, DynamapX is able to detect whether foreign
key constraints are guaranteed to be satisfied or not. In this scenario, there is
one foreign key, UKR.Aid → AI.Aid. Given that the key consistency score for
AI.Aid = 0.25, it detects that AI.Aid has duplicates. However, the score shows
only a pessimistic approximation of how many duplicates are in the materialized
tuples as, through subsumption, some tuples may be discarded. This is the case
in this scenario, i.e., one tuple (the second tuple in Table 5.9) from Area Info is
discarded as it is subsumed by both the first tuple and the last one (as explained
in Example 5.4.5). The algorithm can predict that, although the full inclusion
dependency requirement is satisfied, the foreign key constraint is violated as the
referenced attribute is not a candidate key.

5.6 Algorithm Evaluation

In this chapter, so far we have described DynamapX , an extension of Dynamap
that can handle scenarios where target schemas have multiple tables related by
schema constraints. In this section, we evaluate the performance of DynamapX

on two types of scenarios: (i) synthetic scenarios created with a state-of-the-
art scenarios generator (iBench); and (ii) two real-world scenarios that are
variations on the scenarios in Sections 4.5.2 and 4.5.3.

Experimental setup. As with the previous experiments, we compare the results
of DynamapX with the results of ++Spicy. DynamapX and ++Spicy are run
over the same data sources, and the same target schemas. For storage, we used
PostgreSQL 9.6. In the case of the real-world scenarios, in order to keep the focus
on mapping generation, matches were hand-crafted by a human expert. Profiling
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data was generated through two Metanome modules, i.e., HyUCC [Papenbrock
and Naumann (2017)] for generating candidate keys and Sindy [Kruse et al. (2015)]
for generating (partial) inclusion dependencies. Given that ++Spicy uses explicit
schema constraints, based on the profile data, foreign keys are inferred where
possible, i.e., if a candidate key shares a (full) inclusion dependency with an
attribute from another relation then a foreign key is inferred. In the case of the
synthetic scenarios, the matches, the profile data, the data sources, and the target
schema are generated automatically (without human input) by the generator.
Tuples in the synthetic scenarios were generated using Datafiller [Coelho (2013)].
The experiments were run over an Intel Core i5 with 2×2.7GHz, and 8GB of RAM.

Evaluation metrics. As in previous chapters, we compare the output tuples
of the mappings over the same input sources. In these scenarios, the focus is
on generating mappings for target tables that have constraints. For this reason,
generating data that is correlated between the tables is essential. Taking this into
consideration, the comparison between the ground-truth tuples and the output
mappings is based on the outerjoin of the base target tables. We decided to con-
duct the comparison in this manner as each algorithm may produce labelled nulls
for the purpose of keeping the tuples correlated and we need to avoid comparing
differently generated synthetic data (skolems) as each mapping algorithm does
it differently and still be correct. Our focus is on comparing correctly correlated
source data.

iBench scenarios. For the iBench scenarios we used the same metrics
as in Section 4.5.1 and previously used in Arocena et al. (2015), viz., the number
of constants and the number of nulls produced by the mappings were computed.
In Arocena et al. (2015), mappings that output fewer constants and fewer nulls
are considered to be desirable. The intuition behind this metric is that if the data
is correlated as best as possible, then there are no (or few) redundant tuples, while
mappings that do not correlate (i.e., join) tables will create many duplicate values
and undesirable nulls. Thus, if the number of constants and nulls is minimal then
it means that the data has been correlated.

Real-world scenarios. As in the previous chapters, for the two experiments
with real-world data, we compare the data output by DynamapX mappings, and
that returned by ++Spicy mappings with the data in the ground-truth mappings.
We analyze two aspects on the generated data:

1. Data correlation: We ascertain whether the source data remains correlated
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across the target tables (i.e., the relationships between the data values
are not lost once the target is populated). The purpose here is to detect
whether the mappings generated by the two systems maintain the source
data linked through foreign key values across multiple target tables. In the
experiments in Chapters 3 and 4, the target contains one relation only so
all the source data that is correctly correlated is transferred in the same
target tuple. For a target schema with multiple tables with foreign key
constraints, data correlation must be measured across all target relations.
We do this by performing a full outer join on the tables that result from each
of the three sets of mappings, i.e., DynamapX , ++Spicy, and the ground-
truth mapping. We then perform the comparison between the outer-joined
tables of the two systems against the outer-joined ground-truth tables. We
define the notions of true positive, true negative, false positive, and false
negative attribute/tuple values in the same way as we did for experiments
in Sections 4.5.2 and 4.5.3.

2. Mapping characteristics: We compare the (estimated) attributes scores (i.e.,
attribute completeness, source-extracted values ratio and key consistency
per each attribute) on the data produced by the DynamapX , ++Spicy, and
the ground-truth mappings. This serves three purposes:
(a) To determine the accuracy of the attribute scores that DynamapX

estimates for the non-materialized mappings. We do this by comparing
the estimated scores with the real scores for the materialized data.

(b) To determine how well DynamapX performs against the state-of-the-art
mapping generation system in terms of populating the target attributes
and satisfying the target constraints. We do this by comparing its
attributes scores on the materialized data with the scores for the data
materialized by the ++Spicy mappings.

(c) To determine how well DynamapX performs against the ground-truth
in terms of populating the target attributes and satisfying the target
constraints. We do this by comparing its scores on the materialized
data with the scores for the ground-truth data. We consider the ground-
truth mappings as the best-effort solution that an expert can design
without using intermediate materialized relations. Thus, if the ground-
truth data cannot satisfy the target constraints, we say that the source
data does not allow the generation of mappings that satisfy them.
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5.6.1 Benchmark Experiment - iBench

Motivation. As explained in Section 3.8.1, iBench is a tool that generates
data integration/exchange scenarios where the sources and target have explicit
keys and foreign keys. These scenarios are relevant for our purpose as they make
use of a variety of data integration primitives that mapping generation algorithms
must (ideally) be able to tackle.

In the experiments in Sections 3.8.1 and 4.5.1, we have shown that Dynamap,
as described and evaluated in, respectively, Chapters 3 and 4, is able to tackle
input scenarios that are complex on the sources (e.g., multiple join patterns), but
have only one target relation. In this chapter, the aim of the experiments is to
show that DynamapX can tackle the scenarios that Dynamap was (as expected)
not able to tackle, viz., vertical partitioning and variations thereof. As explained
in Section 3.8.1, the only type of primitive that Dynamap is not able to handle
as expected is when a source relation is split into two target relations that are
linked by a foreign key. In such cases, Dynamap would generate mappings that
populate but not link the two target relations since it is not designed to consider
the foreign keys in the target.
Scenarios. We have tried to reproduce as closely as possible one of the experi-
ments in the iBench paper [Arocena et al. (2015)], where they vary the number
of foreign keys in the target schema using different primitives for vertical parti-
tioning: VH, VI, and VNM primitives. In Arocena et al. (2015), they describe
these primitives as part of Ontology scenarios because they involve primitives that
mimic IS-A, M-to-N, and HAS-A relationships. In the experiments, we use the
same primitives that they use for building the Ontology scenario. These are the
following:

1. (ADD) Add-attribute transformation:
R(a, b)→ T (a, b, f(a, b))

2. (VH) Vertical partitioning in a HAS-A relationship:
R(a, b)→ S(f(a), a) ∧ T (g(a, b), b, f(a)), where T.f(a)→ S.f(a) is a FK

3. (VI) Vertical partitioning in a IS-A relationship:
R(a, b, c)→ S(a, b) ∧ T (a, c), where T.a→ S.a and S.a→ T.a are FKs

4. (VNM) Vertical partitioning in N-to-M relationship:
R(a, b)→ S1(f(a), b)∧M(f(a), g(b))∧S2(g(b), b), where M.f(a)→ S1.f(a)
and M.g(b)→ S2.g(b) are FKs

The scenarios are built as follows.
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Figure 5.4: Dynamap compared to ++Spicy on iBench scenarios (rich target
schemas)

Primitive Transformation As Expected
CP R(a, b)→ T (a, b) Yes
HP R(a, b)→ T1(b), R(a, b)→ T2(b) Yes
ADD R(a, b)→ T (a, b, f(a, b)) Yes
DEL R(a, b)→ T (a) Yes
ADL R(a, b)→ T (a, f(a)) Yes
ME R(a, b) ∧ S(b, c)→ T (a, b, c), and S.b references R.b. Yes
MA R(a, b) ∧ S(b, c)→ T (a, b, c, f(a, b, c)) Yes
VP R(a, b)→ S1(f(a, b), a) ∧ S2(f(a, b), b), S1.f(a, b) references S2.f(a, b), and vice versa. Yes
VH R(a, b)→ S(f(a), a) ∧ T (g(a, b), b, f(a)) Yes
VI R(a, b, c)→ S(a, b) ∧ T (a, c) Yes

VNM R(a, b)→ S1(f(a), a) ∧M(f(a), g(b)) ∧ S2(g(b), b) Yes
SU R(a, b)→ T (f(a, b), b, g(b)) Yes
SJ R(a, b, c)→ S(a, b), R(a, b, c) ∧R(b, d, e)→ T (a, b), and R.b references R.a No

Table 5.12: Results for iBench primitives

Target schema. We set the number of target tables to 40, so regardless of the
combination of primitives, there are always that many target relations. We set
the corresponding iBench parameters to reuse 0% of the target schema, i.e., every
primitive creates new target relations. The arities of the target relations vary
between 3 and 7 attributes. For each iBench scenario, we varied the number of
target constraints (foreign keys) from 0% to 50%. This means that the scenarios
shift from an ADD-dominant scenarios (the majority of the primitives are ADD)
to VP-dominant scenarios (the majority of the target relations are generated by
the VH, VI and VNM primitives).

Input sources. Given that the number of target relations is fixed to 40 and
that the primitives vary, the number of source relations will change as well, as
the number of primitives causes the variation: from 40 source relations (with
0% target INDs) to 28 relations with (50% target INDs). The arities range from
3 to 7 attributes and each relation has 400-600 tuples that are generated with
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Datafiller [Coelho (2013)].
Matches. All sources match the target; the matches are generated by iBench

according to the primitives.
Profile data. The profile data is generated according to the inclusion depen-

dencies in each scenario and the defined primary keys in each relation.
Results. The results are shown in Figure 5.4, where the output values of the
DynamapX mappings are compared with those of the ++Spicy mappings. The
two algorithms perform identically in terms of number of constants and nulls (to
avoid clutter, there are no figures on the plot, but the numbers are equal in all
situations). Their performance is the same because the scenarios do not present
any challenges, i.e., there are no alternative ways of merging the sources: the
sources are disjoint, they are only vertically partitioned into two (for VI&VH
primitives) or three (for VNM primitive) foreign key tables, tasks which both
algorithms are able to perform successfully.

In terms of attribute values, all output values of DynamapX were identical
with the corresponding ones of ++Spicy. The only inessential difference is in the
format of labelled nulls.

Analyzing the results in this experiment, along with the results described in
Sections 3.8.1 and 4.5.1, one can say that DynamapX can tackle all primitive
cases (proposed by iBench) that might occur in mapping generation scenarios
where user input is not essential for further guidance. The iBench primitives
is presented in Table 5.12. There is one primitive, viz., self-join, that DynamapX

does not tackle but this type of scenario is not expected to happen in the context
of which DynamapX was developed, viz., in the wild. We have explained in
Section 3.8.1 why we believe that this kind of scenario is an isolated case in
mapping generation where further human input is essential, input on which one
cannot rely when the mapping generation context is over large repositories of
autonomous data sources.

5.6.2 Real-world Experiment - Real-estate Domain

Motivation. As in the experiment in Section 4.5.2, DynamapX is run over real-
world data from autonomous sources to populate a single-relation target. Here,
we evaluate how DynamapX performs on a scenario where the target has many
relations subject to multiple key and foreign key constraints that their instances
must try to satisfy. Our motivation for this experiment is to show how DynamapX
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performs on real-world data, considering the following aspects:
i) data correlation: to analyze how well DynamapX is able to merge the sources

and transfer the information into a target schema with constraints, while
maintaining the data correctly correlated across the foreign key relations;

ii) mapping characteristics: to use the mapping characteristics (which we define
at attribute level, as scores for completeness, source-extracted ratio, and
key consistency), as means to measure:
(a) the accuracy of the scores that DynamapX computes (as described in

Section 5.5, including the likelihood of the constraints’ satisfaction);
(b) how well DynamapX performs in terms of populating the target rela-

tions in comparison to ++Spicy, and to the ground-truth data, i.e., the
best-effort solution constructed by hand for this mapping generation
problem.

Scenario. The purpose of this scenario is to generate a set of mappings that
associate crime statistics with properties web-extracted from real-estate websites,
where the target consists multiple relations linked into a chain by foreign keys.

Target schema. The target schema is depicted in Figure 5.5, and contains four
relations with the following schema constraints:

- P.Pid, CR.postcode, S.street_id, and C.city_id are primary keys for their
corresponding relations,

- P.postcode → CR.postcode foreign key
- CR.street_id → S.street_id foreign key
- S.city_id → C.city_id foreign key
Input sources. In this section, we investigate how DynamapX performs on the

same real-world sources, where web-extracted datasets from the real-estate domain
are combined with data from the UK open-government data portal, and open-
government datasets that contain information about English indices of deprivation
that measure the relative deprivation in small areas in England and freely available
open-government addresses data. Details about the input datasets are the same

Dataset Data for the target #Sources Arity Size
Manchester real-estate s_name, price, c_name, postcode 5 5-9 20-171
London real-estate s_name, price, c_name, postcode 2 6-13 20-35
Oxford real-estate price, postcode, s_name 4 10-14 28-152
Manchester deprivation postcode, crimerank 1 28 391
London deprivation postcode, crimerank 1 28 54
Manchester & Oxford addresses postcode, s_name, c_name 1 4 235

Table 5.13: Web-extracted and open-government datasets
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Figure 5.5: Real-estate target schema

as in Table 4.1, but the matched data is different. Table 5.13 provides information
on the sources with the updated matches for the changed target schema.

Matches. Given that the focus is on mapping generation, the matches that
were given as input were created by hand, thus making sure that the matches
are correct and that mapping generation is not hindered by faulty matches. Note
in Table 5.13 (second column), that not all target attributes are matched by the
sources. The target attributes that are not matched are:

1. for relation P: Pid,
2. for relation CR: street_id,
3. for relation S: street_id, city_id,
4. for relation C: city_id, population.
Nevertheless, each source contributes to the target schema by way of at least

two matched attributes.
Profile data. The profile data on the input sources is the same as for the

previous experiment (as the sources do not change). It contains 68 candidate
keys, 1,734 partial inclusion dependencies, and 510 full inclusion dependencies.

Ground truth. The ground-truth mappings were created by hand as follows.
Given that it is difficult to create separate mappings for each target relation and
then try to reconcile the data so as to maintain the data correlations according to
the target constraints, we decided to group all attributes in a compound relation.
Then, a mapping was created such that the sources were merged as best as
possible considering their attribute-value overlaps. The mapping created for the
compound relation unions the real-estate data from Manchester real-estate and
Oxford real-estate, which is then merged through full outer joins with Manchester
deprivation data and Manchester & Oxford addresses. The same is done with
the London data: the London real-estate data is unioned, and then outer joined
with London deprivation. This result is unioned to the data from Manchester
and Oxford. Then, for the unmatched attributes that have constraints, e.g., Pid,
street_id and city_id (excluding C.population attribute), we created hash values
based on the remaining values in the corresponding target relations. Nevertheless,



5.6. ALGORITHM EVALUATION 187

the procedure for creating these synthetic values is not essential as it can differ
from algorithm to algorithm and different methods can be considered as being
correct as long as the source data is not tampered with when transferred. The
hash values are important, though, for creating common values between foreign
key attributes such that the tuples in different tables are still correlated to one
another. Lastly, we populated the initial target tables with projections on the
view that the mapping for the compound table creates.

Comparison. DynamapX and ++Spicy were run over the same mapping task
with the same input sources and target schema. The respective output mappings
were executed and the output tuples were used to materialize the target tables.
As stated above, we compare the two systems on data correlation and on mapping
characteristics, and we do so as follows:

i) For data correlation, we ascertain whether the data in the target is still
correlated. We performed a full outer join between the four tables on
all three materialized versions, i.e., the ground-truth data, the data pro-
duced by DynamapX mappings, and the data produced by ++Spicy. Then,
we compared the outer-joined tuples of the ground truth tables, with the
outer-joined tuples in the tables produced by the DynamapX and ++Spicy
mappings. The quality of the results is evaluated in the same manner as
described in Section 4.5, i.e., at attribute level and at tuple level. The
labelled nulls that were produced by either approach were not considered
in the comparison as their purpose is only to correlate the tuples, i.e., we
compare only source data.

ii) For mapping characteristics, we measure how DynamapX performs in terms
of populating the target attributes and satisfying the target constraints (i.e.,
attribute completeness, source-extracted values ratio and key consistency
per each attribute), as follows:
(a) We determine the accuracy of the attribute scores that DynamapX

estimates for the unmaterialized mappings by comparing the estimated
scores with the real scores for DynamapX materialized data.

(b) We determine how well DynamapX performs against ++Spicy in terms
of populating the target attributes and satisfying the target constraints
by comparing the attributes scores on DynamapX materialized data
with the scores for the data obtained through ++Spicy.

(c) We determine how well DynamapX performs against the ground truth
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in terms of populating the target attributes and satisfying the target
constraints by comparing the attribute scores in DynamapX material-
ized data with the scores that we compute for the ground-truth data.

These characteristics can reveal any differences between the strategies the
two algorithms pursue when it comes to generating mappings that aim to
satisfy target constraints.

Results. The results are described in terms of data correlation and on the
mapping characteristics of the output mappings.

For generating the mappings, ++Spicy ran in 10 min, 7 sec, 728 ms, and
DynamapX ran in 0 min, 7 sec, 458 ms. For populating the target tables, ++Spicy
materialized 119 intermediate tables, while DynamapX does not need to materi-
alize any.

Results on data correlation. The results are shown in Figures 5.6(a) and
5.6(b) at attribute level and at tuple level, respectively.

In this scenario, the mapping generated by DynamapX first merges the de-
privation sources from London and Manchester using a union. Then the Oxford
data is outer joined with the addresses data set since its result becomes schema-
compatible with the real-estate data from Manchester and London. The output
of the deprivation datasets is further merged through full outer join with the
unioned data from all real-estate agencies, i.e., Oxford, Manchester, and London.
Although this mapping is not the same as the ground-truth mapping, it yields
almost all tuples as expected. In fact, given that the postcode attribute was used
to correlate tuples from the output to tuples in the ground truth, the only output
tuples that were not considered to be as expected are those that did not have
data (or had labelled nulls) on the postcode values, thus, they were not compared
to any ground-truth tuples as no ground-truth tuple could be assigned to them.

On the other hand, ++Spicy uses egds as it detects that postcode needs to be
a primary key in crimerank info target relation. The manner in which ++Spicy
uses the egds was explained in Section 2.1.4. In this scenario, for generating
the mappings, it produces all possible merges on the postcode values for all rela-
tions that have a match to that attribute (which is all sources in this situation).
Thus, it manages to correlate most of the sources given that they all have post-
code attributes and some have overlapping values, e.g., Manchester agencies and
Manchester deprivation.

Attribute level. Figure 5.6(a) shows the results at attribute level. In this
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(a) Attribute level (b) Tuple level

Figure 5.6: Performance of DynamapX and ++Spicy on real-estate data

scenario, the results for the two algorithms are not significantly different as
they both manage to align most of the source tuples and populate the target as
expected. Some tuples produced by both algorithms were not expected because
there are agency properties that do not have a corresponding postcode in the
sources. Because of this, there is no value on postcode to compare it to the ground
truth tuples. However, they are the same (and correctly transformed from the
sources) for both algorithms. The low recall on the performance of ++Spicy is
due to false negatives. We explain below (at tuple level) why these occur.

Tuple level. The results at tuple level are depicted in Figure 5.6(b). At
tuple level, it can be observed an increase in false negative tuples for ++Spicy.
The false negative tuples are actually tuples that ++Spicy manages to discard
as they are subsumed by other tuples. It manages to do so by using egds on the
postcode attribute and by materializing various combinations of tables, thus, it
manages to eliminate from the output the tuples that had overlapping postcode
values. However, this is not possible without materializing data as one needs to
cache different views representing combinations between all sources that share
matches to key attributes, e.g., postcode. The SQL script that ++Spicy creates
materializes 119 intermediate relations in order to discard subsumed tuples. It
would be unfeasible for a human to hand craft such complicated scripts for the
creation of the ground truth, thus, the created ground truth is designed to correlate
data as best as it can without using materialized intermediate data.

DynamapX generates a mapping that creates similar data to the ground-truth
data, i.e., all true positive tuples are as expected in the ground truth (complete),
while ++Spicy generates almost all data as in the ground truth, but there are
20 tuples whose data was not aligned as expected. Out of the 46 false positive
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and the 46 false negative tuples, 40 tuples (from both the output and the ground
truth) could not be compared because, although full outer join was used to align
the target data, the tuples contain null values on postcode, i.e., there are agency
properties that do not have a postcode value in the sources, thus, they could
not be compared to the ground truth. For the remaining 6 tuples labelled as
either false positive or false negative tuples, DynamapX generated skolem values
so that it does not lose the correlation between the tuples in the target, i.e., some
source data in the UTR was aligned (e.g., price and street_name), but there was
no value on postcode, so DynamapX generated a labelled null for it so that the
initial source data remains correlated. This problem can be a common problem in
mapping generation over autonomous sources, so DynamapX tries to preserve as
much information as possible from the sources. ++Spicy makes the assumption
that the source data is coming from a well-behaved source schema, thus, it does
not pad with labelled nulls any missing information, rather it assumes that all
data is present for all matched attributes in the target. For the same reason,
++Spicy outputs 20 false positive tuples, as it does not preserve the correlations
between different attributes in the sources, e.g., between price and street_name
if the postcode value is missing.

Comparing the populated target tables separately, one major difference be-
tween the two approaches is on the labelled nulls they generate. Due to this
difference, there are discrepancies between the tuples created by DynamapX and
those created by ++Spicy. For instance, the size of the city relation populated
by DynamapX has 117 tuples compared to 850 tuples in the case of ++Spicy.
Of those ++Spicy tuples, 97 have only the created labelled null for the primary
key and then an entirely empty row and others have repeating values on the
city_name (e.g., Manchester appears 512 times). The creation of such redundant
labelled nulls happens because, even though the city information is missing, there
is information for the other attributes, e.g., for streets, so it links a tuple in City,
even though there is no information in it. The approach taken by ++Spicy [Mar-
nette et al. (2010)] for generating labelled nulls was explained in Section 5.4.2.
The creation of duplicate values happens because, the ++Spicy method for cre-
ating labelled nulls generates a separate entry in City relation for each tuple that
has different information in it, e.g., price, or street name, in Manchester.

Results on mapping characteristics. In our proposal, the mapping charac-
teristics are given by the attribute scores that are computed based on the output
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(a) Attribute Completeness (b) Source-extracted Values (c) Key Consistency

Figure 5.7: Attribute characteristics on real-estate data

data. Using the method presented in Section 5.5, DynamapX predicts attribute
scores based on the propagated profile data and metadata on the mappings (i.e.,
size) and their attributes (i.e., nulls and distinct values) without materializing
the mappings. Figures 5.7(a), 5.7(b), and 5.7(c) show the predictions made by
DynamapX for attribute completeness, source-extracted values ratio, and key
consistency (if needed), together with their corresponding real scores computed
on the materialized mappings of DynamapX , ++Spicy, and the ground-truth.
The attributes that are expected to be (primary) keys or foreign key in their
corresponding tables are marked on the plots with [K] and [F], respectively.

Attribute completeness. Figure 5.7(a) shows the attribute completeness score
for each attribute in the target schema. The method for computing these scores
was described in Section 5.5.1. The attribute completeness score per attribute
represents the ratio between non-null values, i.e., either source-extracted or la-
belled nulls, in that attribute and the total number of tuples in the table. A
(predicted) score of 1.0 means that the attribute is (likely to be) fully populated
with non-null data, i.e., either source data or skolems.

In Figure 5.7(a), it can be observed that, for most attributes, DynamapX ’s
predicted scores are close to the real values of the scores produced on DynamapX ’s
materialized mappings. The three cases where the prediction is lower than the real
values are C.city_name, CR.crimerank, and S.street_name. This is due to the
fact that the size of the base tables obtained by projections on the view produced
by the UTR mapping, cannot be derived from the size of the UTR mapping. Thus,
for computing the scores, the approximated size of the UTR mapping is used. In
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this scenario, the estimated size of the UTR mapping (1,138 tuples) proved to be
significantly larger than the sizes of the materialized target tables, e.g., |C| = 117,
|CR| = 864, |P | = 985, and |S| = 670.

For the foreign key attributes P.postcode, CR.street_id, S.city_id, DynamapX

predicts a slightly larger score, as it predicts that almost all entries on these
attributes will have a value, but they do not, as the real completeness score is
smaller than predicted. This is because the mappings that DynamapX generates
create skolems on foreign key attributes only if the foreign key can be used to link
more source-extracted information (from referenced tables). For example, in some
tuples in Street Info relation (S) it does not create labelled nulls on S.city_id
because there are no city names in the referenced table City(C) which could be
linked to those tuples. This way, it avoids creating redundant data (both tuples
in City table and attribute values in Street Info table) that would not correlate
more source-extracted information. The same is the case for attribute P.postcode
and CR.street_id, i.e., they are all foreign key attributes.

On attribute P.price, it can be observed that the ratio of non-null data with
which ++Spicy populates the attribute is higher than the one corresponding to
the DynamapX and the ground-truth mappings. This is an example where egds in
++Spicy’s mapping generation strategy are successful at eliminating redundant
information. Using the intermediate materialized tables and the egds correspond-
ing to postcode attributes, it manages to merge the source tables in a variety of
ways such that it does not produce tuples in the output that are subsumed by
others and whose subsumption can be detected only through combinations of
materialized tables.

In some other cases, e.g., P.prop_id, the completeness scores for ++Spicy are
smaller as it generates nulls on them when the columns that are used for the
generation of the skolems are nulls, e.g., P.postcode is null, even though other
attributes in the same relation are not nulls, e.g., P.price. On the other hand, for
the same example, DynamapX uses all available data in the tuples to generate a
skolem value for the key attributes, e.g., P.prop_id as this avoids the violation of
the target constraint.

Source-extracted values. Figure 5.7(b) shows the source-extracted data ratio
for each attribute in the target schema. The method for computing these scores
was described in Section 5.5.2. The source-extracted values ratio per attribute rep-
resents the ratio between non-null source-extracted data (i.e., excluding skolems)
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in that attribute and the total number of tuples in the table. The difference
between Figure 5.7(a) and Figure 5.7(b) is on the attributes with constraints, i.e.,
primary key and foreign key attributes (marked on the plots with [K] and [F]).
These show a decreased score compared to the scores from attribute completeness
as the labelled nulls are no longer considered.

Key consistency. Figure 5.7(c) shows the key consistency score for each at-
tribute in the target schema. The method for computing these scores was de-
scribed in Section 5.5.3. The key consistency score per attribute represents the
ratio between number of non-null distinct values, i.e., either source-extracted or
labelled nulls, in that attribute and the total number of tuples in the table. A
(predicted) score of 1.0 means that the key constraint is (likely) to be satisfied.

The key consistency score is important for detecting if the primary key at-
tributes contain unique values or if the constraint is expected to be violated. In
this scenario, DynamapX can accurately predict the outcome on the violation of
the constraints on the primary key attributes that are not matched as it relies on
the method for generating the labelled nulls to populate these with unique values.

In some cases, it can be observed that there are discrepancies between the key
consistency score predicted by DynamapX and the actual scores. For example, al-
though not a key, in the case of C.city_name, the predicted score is approximately
0.1 while the real score is 1.0. This is for the same reason as mentioned above
for attribute completeness, i.e., the large difference between the estimated size of
the UTR mapping and the real size of the base table led to a decreased predicted
value. For C.city_name the size of the base table is |C| = 117, the estimated
size of the UTR mapping is 1,138, and the number of distinct non-null values on
C.c_name is 117 (which amounts to approximately 10% in 1,138). For the same
attribute, C.city_name, the key consistency score computed on the materialized
data with ++Spicy mappings is rather low as well. This is due to the method
they choose to generate the skolem values (as explained in Section 5.4.2). More
precisely, they choose to generate labelled nulls even for tuples that do not have
a city name and which leads to rows which contain one attribute with a labelled
null (the city_id value), followed by null values on the rest of the attributes.

Although it is not a primary key, for attributes such as S.city_id and CR.street_id
(which are foreign key attributes), DynamapX predicts that the key consistency
score is high (equal to 1.0), while the actual score is lower. This is due to the
same reason, i.e., after projection, it cannot be detected how data per attribute
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changes in terms of unique values, so it assumes the same key consistency score as
for their corresponding referenced attributes which have a key consistency score
of 1.0.

Furthermore, for the postcode attributes in P and CR, ++Spicy manages to
achieve higher scores than DynamapX and the ground truth because it uses the
egds to remove subsumed tuples (as explained above). Removing subsumed tuples
leads to fewer duplicates which leads to a higher score.

For the cases where ++Spicy achieves lower scores than Dynamap and the
ground truth, the attributes have nulls even if they are primary key attributes,
e.g., P.prop_id. For example, as explained above, for P.prop_id it generates 42
null values because the property entries are missing postcode values, thus, the
skolem functions have null parameters outputting null values as postcode is the
only considered attribute.

Using the key consistency scores and given the fact that both the foreign key
and the primary key attributes (in the base tables) draw values from the same
UTR attribute, it can be ascertained if the foreign key constraints are satisfied
as well. The key consistency score is used to detect if the referenced attribute
is (likely) to contain unique values, while the second fact shows that the full
inclusion dependency condition is satisfied, thus, the two conditions necessary for
satisfying foreign key constraints can be checked and a conclusion in this respect
can be drawn.

To conclude, in this experiment:
1. For data correlation: DynamapX mapping is close to the data that the

ground truth mappings generate, as Figures 5.6(a) and 5.6(b) show that
almost all its output tuples are (entirely) correct. ++Spicy produces less
redundant tuples as it exhaustively merges all source relations and eliminates
duplicate values for postcode attributes by aligning equal values.

2. For mapping characteristics we conclude the following:
(a) DynamapX ’s predicted scores for attribute completeness (Figure 5.7(a)),

in most cases, are close to the real scores. Source-extracted ratios and
key consistency (Figures 5.7(b) and 5.7(c)) can diverge from the real
scores due to the fact that for the estimated size of the UTR mapping
can be significantly larger than the size of the target tables.

(b) DynamapX and ++Spicy perform similarly in terms of populating the
target as (i) Figures 5.7(a) and 5.7(b) show that they can populate the
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target close to the expected ground truth; and (ii) Figure 5.7(c) shows
that, in terms of satisfying key constraints, DynamapX outperforms
++Spicy for some key attributes (S.street_id, P.prop_id) where there
is a need for labelled nulls, and, for one target key (CR.postcode),
++Spicy outperforms DynamapX as it manages to discard subsumed
values, e.g., removes duplicates on CR.postcode.

(c) DynamapX performs similarly to the ground-truth as Figures 5.7(a),
5.7(b) and 5.7(c) show that the scores for DynamapX ’s data are equal
(or close) to the scores for the ground truth.

5.6.3 Real-world Experiment - Schools Domain

Motivation. In the experiment in Section 4.5.3, Dynamap is run over real-world
data from autonomous sources that can merge with respect to a chosen single-
relation target schema. In this experiment, we use a target that, instead, has
multiple tables linked by constraints, i.e., primary keys and foreign keys, which
DynamapX aims to satisfy. Our motivation for this experiment is similar to the
one in Section 5.6.2, i.e., to show how DynamapX performs on various real-world
scenarios, considering the same aspects: data correlation (i.e., how well the data is
correlated across multiple foreign key target tables) and mapping characteristics
(i.e., DynamapX ’s performance in terms of (i) predicting the attribute scores for
the generated data; and (ii) populating the target relations in comparison to
++Spicy’s data and the ground-truth data).
Description of scenario. The purpose of this scenario is to generate a set of
mappings between open-government data sources and a target describing schools
in the format of multiple relations linked through foreign keys.

Target schema. The target schema is depicted in Figure 5.8 and contains four
relations with the following schema constraints:

- H.h_id, SI.s_id, DFE.dfe_code, and ST.s_type_id are primary keys for
their corresponding relations,

- SI.h_id → H.h_id foreign key
- SI.dfe_code → DFE.dfe_code foreign key
- DFE.s_type_id → ST.s_type_id foreign key
Input sources. In this section, we investigate how DynamapX performs on

the same real-world sources as in Section 4.5.3 where datasets from the UK
open-government data portal from the schools domain are combined. Table 5.14
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Figure 5.8: Schools data - target schema

data.gov.uk source Data for the target #Sources Arity Size
All schools dfe_code, s_name, ht_name 1 16 99
Free meals eligibility dfe_code, s_name, pupils_FSM_eligible 1 4 85
Additional languages dfe_code, s_name, pupils_EAL 6 3-6 24 - 88
Road and Safety training s_name, type_name 1 3 46
Bikeability courses s_name, bikeability_courses 1 6 87

Table 5.14: Input source files - schools information

provides information on the sources: the first column states what the data rep-
resents, the second outlines which information from the dataset is necessary to
populate the target (but that are not all available in the sources), the third column
represents the number of input data sources that contain that type of data, the
fourth is the arity range, and the fifth represents the cardinality range.

Matches. As with the previous experiments, given that the focus is on mapping
generation, the matches that were given as input were created by hand, thus
making sure that the matches are correct and that mapping generation is not
hindered by faulty matches. In Table 5.14 (second column), it can be observed
that not all target attributes are matched by the sources. The target attributes
that are not matched are:

1. for relation H : h_id, phone
2. for relation SI : s_id, h_id,
3. for relation DFE : s_type_id,
4. for relation ST : s_type_id.
Each source contributes to the target schema by way of at least two matched

attributes.
Ground truth. The ground-truth mappings were created by hand following a

similar method to the one used in Section 5.6.2: given that it is difficult to create
separate mappings for each target relation and then to reconcile the data so as to
maintain the data correlations according to the target constraints, we grouped all



5.6. ALGORITHM EVALUATION 197

attributes in a compound relation. Then, a mapping was created such that the
sources were merged as best as possible considering their attribute-value overlaps.
The mapping created for the compound relation unions the six relations with
Additional languages information, which is then sequentially merged through full
outer join with the other four source relations. For the unmatched attributes that
have constraints, e.g., h_id, s_id, and s_type_id (excluding H.phone attribute),
we created hash values based on the remaining values in the corresponding target
relations. As stated before, we consider that the specific procedure for creating
these synthetic values does not necessarily compromise correctness. The hash
values are important for creating common values between foreign key attributes
such that the tuples in different tables are still correlated to one another. Lastly,
the initial target tables were populated using the corresponding projections on
the view that the mapping for the compound table creates.

Profile data. The same method as in Section 4.5.3 was used to obtain the profile
data. The input contains 48 candidate keys, 681 partial inclusion dependencies,
and 47 full inclusion dependencies.

Comparison. DynamapX and ++Spicy are run over the same mapping task.
After the respective output mappings are executed and the target tables are
populated, we compare the two systems on data correlation and on mapping
characteristics, and follow the same methodology as in Section 5.6.2:

i) For data correlation, we ascertain whether the data in the target is still
correlated. We performed a full outer join between the four tables on all
three materialized versions, i.e., the ground-truth data, the data produced
by DynamapX mappings, and the data produced by ++Spicy. Then, we
compared the outer-joined tuples of the ground truth tables, with the outer-
join tuples in the tables produced by the DynamapX mappings and the
++Spicy mappings. The quality of the results is evaluated in the same
manner as described in Section 4.5, i.e., at attribute level and at tuple
level. The labelled nulls that were produced by either approach were not
considered in the comparison as their purpose is only to correlate the tuples,
i.e., we compare only source data.
In order to correlate the ground truth tuples with the output tuples, the
school name attribute was used, as this attribute can be found in all source
relations, i.e., it is expected that the majority of the generated tuples will
have a value for this attribute.
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ii) For mapping characteristics, we measure how DynamapX performs in terms
of populating the target attributes and satisfying the target constraints, as
follows:
(a) We determine the accuracy of the attribute scores that DynamapX

estimates for the unmaterialized mappings by comparing the estimated
scores with the real scores for DynamapX materialized data.

(b) We determine how well DynamapX performs against ++Spicy in terms
of populating the target attributes and satisfying the target constraints
by comparing the attributes scores on DynamapX materialized data
with the scores for the data obtained through ++Spicy.

(c) We determine how well DynamapX performs against the ground truth
in terms of populating the target attributes and satisfying the target
constraints by comparing the attribute scores on DynamapX materi-
alized data with the attribute scores that we compute for the ground-
truth data.

These characteristics flush out any differences between the strategies the
two algorithms pursue when it comes to generating mappings that aim to
satisfy target constraints.

Results. The results are described in terms of data correlation and on the
mapping characteristics of the output mappings.

For generating the mappings, ++Spicy ran in 0 min, 3 sec, 999 ms and
DynamapX ran in 0 min, 1 sec, 162 ms. For populating the target tables, ++Spicy
materialized 21 intermediate tables, while DynamapX does not need to materi-
alize any. We explain below why ++Spicy is so much faster in this experiment
(compared to the one in Section 5.6.2).
Results on data correlation. The results are shown in Figures 5.9(a) and
5.9(b), at attribute level and at tuple level, respectively. Comparing the results
in Figures 5.9(a) and 5.9(b) to the ones in Section 4.5.3, one can say they are
similar at both attribute and tuple level. This similarity, given the fact that the
information needed in the target is essentially the same as in that experiment,
shows that DynamapX does not detract from the quality of the chosen merges
between the sources obtained by Dynamap. Hence, the details on the experimental
results in this section focus on the differences brought by the target schema with
constraints, not on the complexity of the sources.

In this scenario, the mapping generated by DynamapX first merges the six
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(a) Attribute level (b) Tuple level

Figure 5.9: Performance of DynamapX and ++Spicy on a schools scenario

Additional languages sources using union. Then, the output is sequentially merged,
using full outer join, with the remaining source relations on either the dfe_code
or the s_name attributes (if merges on both attributes are available, DynamapX

compares the overlaps between pairs of attributes and chooses the one with greater
overlap, as explained in Section 3.3). This mapping is almost the same as the
ground-truth mapping, the only difference is in the way the relations are joined,
e.g., join attributes differ on two conditions in the ground truth: DynamapX

joins on school name (s_name) whereas in the ground truth the join is on dfe
code. This is due to the fact that the school name may have higher (estimated)
overlap than dfe code, or that dfe code is no longer a key as it can be lost through
propagation (as explained in Section 3.6). Even so, many of the aligned tuples are
correctly aligned where the school names are in the same format in both tables,
but in some cases, the names differ even though they refer to the same entity.

On the other hand, ++Spicy has a different approach: for merging some
source relations, ++Spicy uses egds as it detects that dfe_code is the primary
key in DFE target relation. The manner in which it uses the egds was explained
in Section 2.1.4. For generating the mappings, it produces all possible merges
between the tables that have dfe_code attributes, i.e., All schools, Free meals
eligibility, and Additional languages (in this scenario, not all sources have this
attribute). Thus, it manages to correlate the tuples from sources that have a match
to the dfe_code primary key, but not the others (e.g., Road and Safety training,
and Bikeability courses). However, these sources could have been correlated using
the school name (s_name attributes) as they have overlapping values, but the
school name is not a key in the target, so ++Spicy is oblivious to this merge
opportunity and it does not use egds on it.
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In this experiment, ++Spicy took approximately 4 seconds, while in the
previous scenario (Section 5.6.2) it took approximately 10 minutes. This is due
to the fact that, here, it does not merge exhaustively all the sources as not all
sources match target keys. This is reflected by the small number of intermediate
relations as well, i.e., 21, compared to 119 intermediate relations in the real-estate
scenario.

Attribute level. Figure 5.9(a) shows the results at attribute level. The two
systems behave similarly in terms of precision, but do not achieve the maximum
for the same reasons as stated in Section 4.5.3.

In Figure 5.9(a), it can be observed that ++Spicy seems to outperform
DynamapX by 0.013 in precision. This is because ++Spicy produces more tu-
ples that have the same school name than DynamapX as ++Spicy fails to do
the expected joins with the sources that do not match target keys (Road and
Safety training, and Bikeability courses). However, although the data produced
by ++Spicy is missing some correct non-null values on those uncorrelated tuples,
some null values are considered as correct more than once (the ones that are
expected to be nulls in the ground truth), thus, increasing the number of true
negatives. For instance, assume the (fragment of) a ground-truth tuple from
School Info table:

gt1(5300, Calderdale, 3, 7, null, null)
And two output tuples that correspond to gt1:

t1(5300, Calderale, null, 7, null, null),
t2(5300, Calderale, 3, null, null, null).

Here, both t1 and t2 are compared to gt1 as they have the same value on s_name
(Calderdale). It can be observed that, were t1 and t2 merged, they would have
aligned the data better, instead of having complementary information for the third
and fourth attributes. However, in this situation, the tool that counts the results
outputs that t1 contains (at attribute level) 3 true positives, 1 false negative, 2
true negatives, and that t2 contains the same. Nevertheless, the last two null
values in each tuple are counted twice as being true negatives. Thus, instead of
choosing just one correct output tuple for each ground-truth tuple, we consider
that showing the results at both attribute-level and tuple-level can outline such
behaviors of the mappings.

In terms of recall, ++Spicy has a poorer performance than DynamapX by
0.276. DynamapX does not achieve the maximum because it produces 249 false
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negatives (the reasons are the same as stated above). ++Spicy has a lower recall
because it fails to do the expected joins, thus, the number of false negative cell
values is 3.6 times higher (907 FNs) than for DynamapX (249 FNs).

Tuple level. Figure 5.9(b) shows the results at tuple level which depict the
ability of both algorithms to correlate data in the target. The discrepancy between
the results of DynamapX and ++Spicy is caused by the same reason as explained
above.

Also, in Figure 5.9(b), it can be observed that DynamapX produces 39 false
positives. This is because of the nature of the source data in which the same
entity has different representations, i.e., the names of the schools (although correct)
differ, in the output of DynamapX , but chosen from another source to represent
the same entity. Hence, there are 39 DynamapX tuples that do not have a school
name corresponding to the ground truth because of variations in the name. The
tuples without a ground-truth counterpart are considered false positives in their
entirety. One would say that this can be a common scenario when doing mapping
generation over autonomous sources as many sources can contain data about the
same entities, but in different formats.

Results on mapping characteristics. Figures 5.10(a), 5.10(b), and 5.10(c)
show the predictions made by DynamapX , i.e., attribute completeness, source-
extracted values ratio, and key consistency (if needed), together with their cor-
responding real scores computed on the materialized mappings of DynamapX ,
++Spicy, and the ground truth. The attributes that are expected to be (primary)
keys or foreign keys in their corresponding tables are marked on the plots with
[K] and [F], respectively.

Attribute completeness. Figure 5.10(a) shows the attribute completeness score
for each attribute in the target schema. The method for computing these scores
was described in Section 5.5.1.

In Figure 5.10(a), it can be observed that, for most attributes, the predicted
scores are close to the real values on materialized mappings. The four cases
where the prediction is significantly lower than the real scores are for attributes
H.ht_name, SI.bikeability_courses, SI.pupils_FSM_eligible, and ST.type_name.
The reason is the same as explained in Section 5.6.2: the size of the base tables
obtained by projections on the view produced by the UTR mapping cannot be
derived from the size of the UTR mapping. Thus, for computing the scores it
is used the estimated size of the UTR mapping. In this scenario, the estimated



202 CHAPTER 5. MAPPING GENERATION FOR A COMPLEX TARGET

(a) Attribute Completeness (b) Source-extracted Values (c) Key Consistency

Figure 5.10: Attribute characteristics on schools data

size of the UTR (539 tuples), proved to be significantly larger than the sizes of
the materialized base tables, e.g., |DFE| = 121, |SI| = 358, |HT | = 99, and
|ST | = 8.

For foreign key attributes such as DFE.s_type_id, SI.dfe_code, and SI.ht_id,
DynamapX predicts a larger score, as it predicts that almost all entries on these
attributes will have a value, but they do not, as the real completeness score is
smaller than predicted. This is because the mappings that DynamapX generates
create skolems on foreign key attributes only if the foreign key value can be
used to link more source-extracted information (from referenced tables). For
example, in some tuples in School Info relation (SI ) it does not create labelled
nulls on SI.ht_id because there is no source-extracted data for headteacher names
(H.ht_name) in the referenced table Headteacher(H ) which could be linked to
those tuples. This way, it avoids the creation of redundant data (under the
form of either tuples in H table and attribute values in SI table) that would not
correlate more source-extracted information. The same is the case for attributes
SI.dfe_code, and DFE.s_type_id, i.e., the labelled nulls do not help correlating
more extracted data, thus, they are not created in the foreign key attributes
for some tuples. Moreover, because of this strategy, it can be observed that,
on attributes SI.dfe_code and SI.ht_id, the ratio of non-null data with which
++Spicy populates is higher than the one corresponding to the DynamapX and
the ground-truth mappings. This is due to the fact that ++Spicy generates a
labelled null for the foreign key attributes regardless of whether there is source-
extracted information across multiple target tables that need to be correlated or
not, thus, the foreign key attributes have more labelled nulls than the attributes
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populated by DynamapX .
Also, ++Spicy populates the key attributes in the same manner as previously

explained, thus, it produces a labelled null for primary key attributes in refer-
enced tables (e.g., ST.s_type_id) where there is no source-extracted data (e.g.,
ST.type_name are nulls), thus, it produces many tuples which are empty. This
strategy leads to an increase in size of the materialized base tables, e.g., the size of
the ST relation materialized with ++Spicy mappings is |ST | = 247, out of which
201 tuples have nulls on ST.type_name and a skolem on ST.s_type_id, whereas
the materialized ST tables using the ground truth and DynamapX mappings
contain 8 tuples with the same number of source-extracted data for type_name.

Source-extracted values. Figure 5.10(b) shows the source-extracted data ratio
for each attribute in the target schema. The method for computing these scores
was described in Section 5.5.2. The difference between Figure 5.10(a) and Fig-
ure 5.10(b) is on the attributes with constraints, i.e., primary key and foreign key
attributes (marked with [K] and [F] on the plots). These show a decreased score
compared to the scores from attribute completeness as the labelled nulls are no
longer considered.

On the DFE.dfe_code attribute (where there is a primary key constraint)
there are both labelled nulls and source-extracted data using both DynamapX

and ++Spicy strategies. The difference between the two scores comes from the
fact that DynamapX does not generate a tuple in DFE relation (with a labelled
null on DFE.dfe_code) unless there is a tuple in SI relation that needs to be
linked to a source-extracted value in ST.type_name. Otherwise, it considers it
to be redundant to create such tuples. This strategy is different from ++Spicy’s,
which creates a new labelled null for each entry in SI that does not have a dfe
code value. The creation of such skolems is done regardless of whether there is
data in ST.type_name or not (leading to the increased size in ST relation as
explained for attribute completeness).

Moreover, it can be observed that the dependent attribute of DFE.dfe_code,
i.e., SI.dfe_code, has a similar outcome: the real score for the source-extracted
ratio on DynamapX ’s data is higher than the score for ++Spicy data, although, for
attribute completeness, ++Spicy’s score is higher. This reflects the large number
of skolems that ++Spicy generates and which DynamapX avoids generating,
unless they are necessary for data linkage.

Besides the dfe code attributes in relations DFE and SI, the other constrained
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attributes are populated with skolems, thus, the source-extracted ratios become 0.

Key consistency. Figure 5.10(c) shows the key consistency score for each
attribute in the target schema. The method for computing these scores was
described in Section 5.5.3.

It can be observed that DynamapX was not able to accurately predict the
violation of some of the target constraints. This is due to the fact that the key
constraint consistency is achieved only after the projection is applied on the view
of the UTR mapping. This (pessimistic) prediction is used because the algorithm
cannot detect if projecting several attributes from a table will achieve uniqueness
for the new projected tuple values. For example, on DFE.dfe_code, where there
is a primary key, DynamapX predicts a lower score (approximately 0.22) while
the key constraint is actually satisfied by the materialized data (the real score is
equal to 1.0). This is because of the same reason mentioned above for attribute
completeness, i.e., the large difference between the estimated size of the UTR
mapping and the real size of the base table led to a decreased predicted value.
For DFE.dfe_code the size of the base table is |DFE| = 121, the estimated
size of the UTR mapping is |mapUTR| = 539, and the number of distinct non-
null values on DFE.dfe_code is V (DFE.dfe_code) = 121 (which amounts to
approximately 22% in |mapUTR| = 539 – as shown in Figure 5.10(c)). The reason
for the difference of the scores on attributes H.ht_name, SI.pupils_FSM_eligible,
and ST.type_name is the same.

For foreign key attributes such as SI.ht_id, and DFE.s_type_id DynamapX

predicts that the key consistency score is high (equal to 1.0), while the actual
score is lower. This is due to the same reason, i.e., after projection, it cannot be
detected how data per attribute changes in terms of unique values, so it assumes
the same key consistency score as for their corresponding referenced attributes
which have a key consistency score of 1.0. The lower key consistency score can
be caused by the duplicate values on the foreign key attributes (which can be
expected), but, also, because of the nulls that are kept unchanged by DynamapX

as there is no source-extracted data to link to the referenced tables. The predicted
score indicates that there is always a source-extracted value that will be linked to
foreign key tuples, thus, for which DynamapX predicts it generates a labelled null.

To conclude, in this experiment:
1. For data correlation: Figures 5.9(a) and 5.9(b) show that the data gener-

ated by DynamapX mappings is close to the data that the ground-truth
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mappings generate. The differences come from the different join conditions
that DynamapX chooses w.r.t. the ones used in the ground truth. On the
other hand, ++Spicy is not able to find some joins with two data sources
if those data sources do not match target key attributes (to enable egds),
thus, it is not able to correlate all source data as expected.

2. For mapping characteristics, we conclude the following:
(a) The accuracy of DynamapX ’s predicted scores for attribute complete-

ness (Figure 5.10(a)), is, in most cases, close to the real scores. Source-
extracted ratios and key consistency (Figures 5.10(b) and 5.10(c)) can
diverge from the real scores due to the fact that the estimated size
of the UTR mapping can be significantly larger than the size of the
target tables.

(b) DynamapX outperforms ++Spicy in terms of populating the target
as (i) Figures 5.10(a) and 5.10(b) show that DynamapX can populate
the target with fewer redundant attribute values by creating labelled
nulls only if they are necessary for correlating source-extracted data;
and (ii) Figure 5.10(c) shows that DynamapX and ++Spicy perform
similarly in terms of satisfying key constraints.

(c) DynamapX performs similarly to the ground-truth as Figures 5.10(a),
5.10(b) and 5.10(c) show that the scores for DynamapX ’s data are
equal (or close) to the scores for the ground truth.

5.7 Conclusions

In this chapter, we have extended the work presented in Chapters 3 and 4 by
adding two components to the mapping generation process that enable DynamapX

to tackle scenarios where the target schema is complex, i.e., it has schema con-
straints. One component is added to the pre-processing step. It relies on join
paths in the target schema to create a universal target relation (UTR) that com-
prises all relations linked by foreign key relationships. Then the universal target
relation is used as a target in the mapping generation process (which remains
unchanged from the version presented in Chapter 4). After the UTR mappings
are generated, a set of post-processing steps are performed where the UTR map-
pings are further refined as the algorithm aims to satisfy the target constraints
by creating labelled nulls and removing subsumed tuples where necessary.
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In Section 5.6.1, we have evaluated DynamapX against a set of complex
scenarios generated by the state-of-the-art generator, i.e., iBench, where we
show that DynamapX is able to tackle scenarios that are expected to be handled
by mapping generation algorithms. The scenarios were created following the
methodology in Arocena et al. (2015), where several primitives are used to create
complex scenarios where the target is rich with constraints. The results show that
DynamapX can generate the expected mapping for all the scenarios but the one
centered on self-join, which, we have argued, cannot be automated in the wild.

In Sections 5.6.2 and 5.6.3, we have shown how DynamapX performs on
real-world scenarios where the target comprises multiple relations with differ-
ent primary key and foreign key constraints. In all experiments, we compared
DynamapX with ++Spicy. In Marnette et al. (2011), it is described how ++Spicy
relies on target constraints in the form of egds to align source data for target
attributes that are primary keys. Hence, in these scenarios where many source
and target constraints are explicitly stated, one can say that ++Spicy performs
fairly well as the scenarios became quite close to well-behaved scenarios. On the
other hand, there are source relationships that ++Spicy is oblivious to, causing
it to fail to produce all expected merges, while Dynamap relies less on explicit
schema constraints and more on source profile data to detect merge opportunities.

The problem of mapping generation for a complex target has been studied
before, building on Clio [Miller et al. (2000)], by works such as Popa et al. (2002);
Bonifati et al. (2008); Fagin et al. (2009), and Mecca et al. (2009). For tackling the
problem of generating mappings for target schemas with constraints, Popa et al.
(2002) introduce the notion of semantic translations, which are interpretations of
value correspondences for satisfying target constraints. These interpretations are
named logical mappings. Their approach is discussed in Section 2.1.4. Also, Clio
was at the basis of (++)Spicy which is described in Bonifati et al. (2008)(Spicy),
Mecca et al. (2009)(+Spicy), and Marnette et al. (2010)(++Spicy). The approach
of ++Spicy is to rewrite the s-t tgds so that the tuples generated by subsumed
mappings are avoided, i.e., they use egds that rely on the existence of primary
keys in the target. These approaches were discussed in Section 2.1.4. These
mapping generation algorithms produce reasonable results as long as there are
explicit source and target schema constraints. However, under the setting of
mapping generation over autonomous sources, it is not always possible that the
source data will comply to them. DynamapX was developed under this setting
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and although it aims to satisfy the target constraints, the source data might not
allow it. Hence, we propose a set of mapping characteristics based on which the
user can understand which target constraints are guaranteed to be satisfied and
which are not guaranteed (but might be satisfied). The characteristics that we
propose rely on the profile data and the metadata of the generated mappings.

Characterizing schema mappings has been studied by Gottlob and Nash (2008);
Alexe et al. (2011a,b). Their approaches rely on the fact that the output data of
the generated mappings can be materialized and compared with a set of ground
truth tuples which were given as input. In our setting, the mappings need to
be characterized before the user chooses to materialize them as DynamapX can
generate thousands of mappings, i.e., it becomes unfeasible to materialize all of
them in order to perform the comparison. Moreover, in the context of mapping
generation over autonomous sources, it might not be obvious what is a suitable set
of ground-truth tuples given that the pool of sources can be large, and without the
ground-truth tuples, the characteristics cannot be computed with the previously
proposed approaches.

To conclude, there have been works on generating mappings for scenarios where
the target is complex in terms of constraints and they produce reasonable results
on well-behaved source schemas where there are explicit join paths. However, the
focus in these works is not to transform source data that was not meant to merge,
and in such scenarios the target constraints might not be satisfied. Given this
problem, in this chapter, we describe a method for creating mappings that aim
to satisfy the target constraints, for which we propose set of characteristics that
determine to which degree the target constraints are expected to be satisfied. If
a user is interested in selecting mappings based on the degree to which the target
constraints are satisfied, DynamapX is able to detect which are more suited to the
given priorities. Such priorities can become essential when one wants to merge
multiple data sources that were not designed to be merged and bring them in a
format which needs to satisfy keys and foreign keys, thus, constraint violations
can be expected and this can become a criterion in filtering the mappings further.



Chapter 6

Conclusions and Open Issues

"We can’t solve problems by using the same kind of
thinking we used when we created them."

– Albert Einstein (1879–1955)

6.1 Concluding Discussion

Schema mapping generation is the data management task that, given a set of
sources and a target schema, generates a set of executable transformations, i.e.,
schema mappings, that transform source data into the format of the target schema.
In this thesis, we propose a new mapping generation system, Dynamap(X), which
enables the creation of mappings over repositories of autonomous sources that are
assumed to not have been, on the whole, created with a view to being integrated.
The thesis has been structured in terms of three major contributions, which we
summarize.
Contribution 1. We contribute a technique for generating mappings in settings
where there are no explicitly declared relationships between the sources. This
contribution was described in Chapter 3 where we have proposed three methods
for solving different facets of the problem:
1.1) We described a method for merging sources that match the same single

target table and that share schema properties as inferred from on profiling
data, e.g., candidate keys and (partial) inclusion dependencies. The profiling
data is used to infer (relaxed) foreign key constraints by using candidate
keys and (partial) inclusion dependencies, where inclusion dependencies
with higher overlap are preferred.

208
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1.2) We described a dynamic programming algorithm for exploring the search
space of mappings that are combined using the method in (1.1). The
algorithm searches for various ways to merge the input sources based on
profiling data. A dynamic programming approach was adopted because of
the need to devise a technique that explores all possible merges (as there
are no explicitly declared join paths, i.e., foreign keys). Because of this,
most of the time, there is no obvious way of merging the sources so the
algorithm needs to explore a variety of ways for doing so. Moreover, the
mapping generation problem that we have tackled is a difficult problem
to solve without relying on a methodology that builds solutions bottom-
up. Mappings are combined in a bottom-up fashion in the sense that the
algorithm starts by creating mappings for small subsets of initial relations
and, then, based on those mappings, builds other mappings that merge larger
subsets of sources. The merging process stops when all initial sources are
merged (if possible). However, the combinatorial nature of the search comes
with performance challenges that need to be addressed through pruning.
We addressed this challenge in Contribution 2 (below).

1.3) The method in (1.1) needs profiling data in order to make informed decisions
for combining mappings. However, the bottom-up fashion in which the
solutions are built creates intermediate mappings for which the same type
of profile data that existed for the input mappings is needed, since they
would not be able to be merged further without it. We describe a method
for assigning profiling data to the intermediate mappings created during the
mapping generation search process. This is done by propagating the already-
known profiling data from the inputs to output, i.e., to the intermediate
mapping. The propagation takes into consideration (i) the type of merge
operator that was chosen for the creation of the new mapping, and (ii) the
type of profile data that needs to be propagated, i.e., (partial) inclusion
dependencies or candidate keys.

Other proposals view mapping generation as a search problem, using either
generic or bespoke strategies. In relation to generic strategies, Fletcher and Wyss
(2006) describe Tupelo, a mapping discovery algorithm that performs search
within the transformation space of example instances based on a set of mapping
operators. These are operators which help create more complex mappings that
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carry out structural transformations or manipulate the data by creating relation-
ships between schema components, e.g., attributes. The mapping discovery is
done using only the syntax and structure of the input examples. The search is
done using best-first search which is a strategy that evaluates the most promising
step to follow in solving a problem (instead of considering all steps equally promis-
ing). Clio [Miller et al. (2000)] and (++)Spicy [Mecca et al. (2009); Marnette
et al. (2010)] do not use a classical search strategy. These are custom to solving
the problem of mapping generation. Their approaches are based on using key
and foreign key constraints from the source or/and the target schemas so as to
merge the sources with a view to satisfying the schema of the target subject to
constraints on it. For example, ++Spicy uses egds to join the sources in various
ways such that the target key constraints are populated with unique data values.

In Chapter 3, the experiments show that Dynamap is able to tackle a set
of mapping generation scenarios generated with the state-of-the-art integration-
scenario generator, iBench. However, this version of Dynamap is not able to
tackle vertical partitioning scenarios, i.e., where the target contains foreign key
constraints. This challenge is tackled in Contribution 3.

Contribution 2. In order for the dynamic programming technique applied to
our problem to scale to repositories with tens/hundreds of sources, we described a
set of strategies for pruning the search space and the profile data. The proposed
strategies on the search space rely on (possibly propagated) profile data. For the
purpose of pruning, the profiling data is treated as an indicator of how promising
a mapping is for further merges, as the merge operator is chosen based on profile
data. By keeping the search space from growing too fast, the algorithm no longer
needs to explore paths that do not promise to lead to (better) solutions. The
second type of pruning is on profiling data. This is done by considering the
usefulness of the profiling data, i.e., if the data is likely to be used in further
merge conditions or if it is kept without the prospect that it will be used. The
two reasons behind pruning the profiling data are: (i) Dynamap no longer needs
to explore merge opportunities that are unsuitable, and (ii) the propagation step
infers only profiling data when doing so seems promising for the creation of new
potentially good quality intermediate mappings.

The experiments in Chapter 4 show the impact that the proposed pruning
strategies have. We run Dynamap against stress tests that can comprise scenarios
with up to 556 source relations capable of being merged through either union or
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join. For a scenario with 556 sources, without any active pruning strategies, in the
second iteration of the dynamic programming algorithm, if each two relations can
be merged pairwise, the number of created intermediate mappings can reach up to
(C2

556 =)154,290, which then need to be merged further in the next 554 iterations
to create other mappings. The search space can therefore grow quite rapidly. The
proposed pruning strategies performed reasonably in the test with 556 sources,
Dynamap keeps only 304 intermediate mappings for iteration 2. The results on
real-world data were reasonable in terms of both data quality and processing time
and, using the real-world data, we have shown that the accuracy of the propagated
profile data is preserved for further merges, i.e., the possible uncertainty caused by
the approximated overlap values did not hinder the mapping generation process
and the desired mappings were still generated.

Addressing the problem of integrating heterogeneous sources from large repos-
itories, the problem of finding related sources at scale has been the focus of work
by Das Sarma et al. (2012); Zhu et al. (2016); Castro Fernandez et al. (2018), and
Nargesian et al. (2018), where methods for detecting relationships between the
sources are proposed, e.g., whether they are joinable or unionable. Das Sarma
et al. (2012) contribute a method for detecting various types of relatedness. Their
experiments show that their proposed methods can run over a million sources from
Wikipedia. Zhu et al. (2016) detect join paths between the sources based on the
domains of the values in the attributes. Their experiments were run on relational
data comprising 10,635 relations. A similar idea can be found in Nargesian et al.
(2018), where the idea of table unionability (based on pairs of attributes possibly
from different sources that have similar domains) is proposed. Their experiments
were performed on repositories of up to 165,236 tables.

These approaches are complementary to the work we present in this thesis,
in the sense that they can provide information regarding the necessary evidence
for deciding when to merge two relations and in which manner they could be
merged. Their focus is on discovering relationships between materialized sources
which means that their content can be analyzed. Our contributions go beyond
relationship discovery to perform fully fledged mapping generation replacing the
need for materialized data with techniques for profiling data propagation.

Contribution 3. Chapters 3 and 4 described Dynamap as a mapping generation
technique that can handle scenarios where there is a single-relation target schema
without constraints. In Chapter 5, we extend that work by contributing a method
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for integrating multi-relation targets taking into consideration target constraints
giving rise to what we refer to as Dynamap(e)X(tended).

The extensions serve complementing purposes: one component creates a univer-
sal target relation (UTR) comprising all attributes in all relations linked through
primary-foreign keys, and the second decomposes the UTR mappings into map-
pings to populate the target tables. The UTR composition is a pre-processing
step and decomposition is a post-processing step. For the decomposition step, we
proposed a methodology for generating labelled nulls and removing subsumed
tuples with a view to satisfying the target constraints. Given that the mapping
generation context that we focus on implies autonomous sources that might not
(always) satisfy the target constraints, we must accept that it may not be pos-
sible to satisfy all constraints. For this reason, we proposed a set of mapping
characteristics that rely on measuring the quality of the data at attribute level,
viz., attribute completeness and source-extracted ratio, and the degree to which
the target constraints might be satisfied, i.e, key consistency from which foreign
key consistency can be derived as well.

In the experiments in Chapter 5, we have shown that DynamapX is now
able to tackle the iBench scenarios that involve vertical partitioning, i.e., with
foreign keys in the target schema. Using real-world data, we have shown that
the proposed techniques for creating mappings that generate labelled nulls and
discard subsumed tuples yield reasonable results in terms of correctly preserving
the information correlated across multiple target tables that are linked through
foreign keys and in terms of satisfying target constraints. The experiments have
shown that:

i) DynamapX mappings produce results that are close to the results generated
through the mappings designed by hand (the ground truth).

ii) DynamapX mappings produce results that satisfy the target constraints as
often as possible.

iii) The predicted attribute scores are often close to the real values, showing
that they could be used for selecting which mappings to prefer.

The problem of generating mappings for a target schema with constraints has
been the focus of work by Popa et al. (2002); Bonifati et al. (2008); Fagin et al.
(2009), and Mecca et al. (2009). This body of work advances the seminal insights
that resulted in Clio [Miller et al. (2000)]. One difference between their approach
and ours is that DynamapX does not rely on or assume the existence of target
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constraints and, therefore, sources are integrated using a best-effort ethos built
upon opportunities that may emerge from the profiling data. In other words, our
mapping generation approach is focused on the complementarity of the sources
and merge opportunities with respect to the required target and not on enforcing
target constraints. In our approach, after the sources are combined in (UTR)
mappings, the post-processing step takes into consideration the target constraints
and decomposes these mappings for separate target tables. This ensures best-effort
merges between the sources. For instance, in Marnette et al. (2011) they use egds
that enforce target keys. Their method relies on exhaustively merging all source
relations that match the same target keys, thus obtaining unique values for the
key attributes. However, if the sources do not match any of the target keys, then
the sources are merged by using the declared source foreign keys. Nevertheless,
over autonomous sources, one cannot assume that the target constraints exist or
that their attributes are always matched and satisfied by the sources.

6.1.1 Impact of Dynamap

Dynamap has been integrated into the VADA (Value-Added DAta Systems)
system [Konstantinou et al. (2017, 2019)], for data wrangling. VADA is an
automated data preparation tool that is the result of a joint collaboration of
several pieces of research work that tackle different wrangling tasks, e.g., data
discovery, schema matching, mapping generation [Mazilu et al. (2019)], mapping
selection [Abel et al. (2018)], format transformation [Bogatu et al. (2018, 2019)],
and data repair based on data context [Koehler et al. (2017)]. The project started
with the purpose of creating a tool that does not require extensive information
about the sources and only asks the user to define the desired target. The tool fully
automates the production of data products tailored to a set of user preferences
that can be set before-hand. The mapping generation component is responsible
for merging the relevant relations in the source repository (typically a data lake)
using only profiling data. The output data products can then be further refined
through user feedback, or the user can revise the preferences, for which VADA
computes a revised product.

The work on VADA evolved into a commercial product named Data Preparer1

where Dynamap is used as the prototype for the mapping generation component
that lies at the core of the data wrangling process.

1https://www.thedatavaluefactory.com/

https://www.thedatavaluefactory.com/
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6.2 Open Technical Challenges

The experiments on Dynamap(X) against different scenarios reveal a set of direc-
tions for outstanding issues and future work that are now described and discussed.

6.2.1 Mapping Fitness

The fitness function for mapping generation plays an important role in steering
the process into generating a set of tuples with certain characteristics.

The fitness function described in Section 3.5, which was used across all ex-
periments, performed reasonably on the data used for evaluation. However, as
mentioned there, the fitness function can be changed so as to prefer mappings
with different characteristics. Using the profiling data available, other options
could favour mappings with (i) the lowest ratio of estimated nulls, which would
prefer results with as few sparse tuples as possible; or (ii) the highest number
of distinct values on matched attributes, which would rank higher the mappings
that gather data from sources that are as disparate as possible; or (iii) the highest
cardinality, which would favor mappings that merge data from (possibly) many
sources; or (iv) the best coverage for the chosen target, which aims to populate
as many attributes as possible; or, finally, (v) the degree to which the target
constraints are satisfied, thus, driving the mapping generation towards this aim.
Other options may, of course, exist.

We consider that further work in this direction could explore whether a more
complex fitness function could be used, e.g., one that could incorporate a com-
bination of the above suggestions and adapt to a set of user preferences (if any).
Also, other profiling data, e.g., functional dependencies, could be passed to the
algorithm so that the fitness function could consider the likelihood of satisfaction
of target constraints into the fitness value.

6.2.2 Characterizing Mappings without Materialization

Mapping characteristics can influence the way a target is populated as the map-
pings that have a certain set of characteristics may be filtered and ranked higher.

As noticed in the experiments in Sections 5.6.2 and 5.6.3, the formulas for
computing the quality of the data on the attributes can, in some cases, diverge
from the real scores. This is due to the fact that, in this thesis, the scores for
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attribute completeness, source-extracted values ratio and key consistency scores are
computed using the estimated size of the UTR table, which, in many situations,
differs from the actual size of the resulting base target tables, thus leading to
discrepancies between the predicted and the real scores. In such situations, in
order to achieve accurate scores, materializing the data would be the solution,
however, this may not always be feasible as it can become costly if the number of
mappings is large.

Further work on computing the proposed scores could consider adding a set
of conditions to bring the predicted scores closer to the real values. An example
of an added condition could be as follows. Assume the schema of a UTR table
U(X, a1, a2, . . . , an) and one of its base tables T (a1, a2, . . . , an), where U.X is a
set of attributes from other base tables, T.a1 is a key, and where T.an is the only
attribute matched by the sources in T . In this setting, DynamapX computes
the attribute scores using the estimated size of the UTR table. Assuming that
the estimated size of U is significantly larger than the real size of T , |U | > |T |,
then the predicted scores of the attributes will be smaller than the real values.
However, the predicted values could be brought closer to the real scores, if, with
the estimated number of distinct values on T.an in hand, check if other attributes
besides T.an in T are matched. In our example, T.an is the only matched attribute.
This leads to the conclusion that the size of the materialized table T is (close to
or) equal to the estimated V (T.an). One can draw this conclusion because T.an
is the only matched attribute, i.e., the only one that can have source-extracted
data, and the skolems the key attribute T.a1 are computed using those values
only (as explained in Section 5.4.2). Thus, it can be concluded that T cannot
have more tuples than the number of distinct values in T.an.

The above example condition is safe to draw conclusions from only if the
base table does not share any foreign keys in which it is the dependent rela-
tion. Being a dependent relation means that some of the attributes will be
populated with skolems (from the referenced attributes), thus, taking into consid-
eration just matched attributes is no longer enough. For instance, assume that,
for the above example, there is another target relation R(y1, y2, . . . , ym), where
T.a2 → R.y1 is a foreign key. Accordingly, the UTR table is of the following form:
U(X, y1, y2, . . . , ym, a1, a3, . . . , an), where a2 is now omitted as it is represented by
its referenced key, viz., U.y1. Given that U.y1 (representing both R.y1 and T.a2)
is a non-matched key attribute, skolem values will be generated on it. The skolem
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values are created with the method described in Section 5.4.2. After the skolems
for U.y1 are created, the algorithm proceeds to generating labelled nulls for the
key U.a1 (representing T.a1): the function takes as parameters both T.an and
T.a2 as now, T.a2 contains labelled nulls from the previous step for generating
skolems (from U.y1). The challenge of correlating the possible number of distinct
values with the estimated sizes of the base tables would improve the accuracy
scores computed by DynamapX .

6.2.3 Finding Merge Opportunities

The current method for finding the merge opportunities between intermediate
mappings is based on matches and profile data, i.e., (partial) inclusion dependen-
cies and (at least) one candidate key. However, in some situations, the conditions
that the algorithm is guided by are not enough to decide whether to merge or
not because there may be an inadvertent overlap that could lead to semantic
inconsistencies. For instance, there may be an overlap between Location and City.
Although some tuple alignment on these might make sense, it could also lead to
erroneous correlations as they do not mean the same thing. This observation leads
to the idea of a possible extension of Algorithm 1 by the use of semantic informa-
tion, e.g., ontologies. The added information could make possible more complex
comparisons between attributes that have value overlaps, i.e., comparisons at the
semantic level.

In Sections 4.6 and 5.7, we briefly described the work done in this direction
by Zhu et al. (2016); Castro Fernandez et al. (2018), and Nargesian et al. (2018),
all of whom aim to find related sources based on the domain of the attribute
values. A possible step further could be to adapt (one of) these techniques so that
choosing the merge operator within Dynamap is done based on more informative
descriptions of the relations and their attributes, where these descriptions are
generated by (one of) their proposed methods.

6.3 Future Work

6.3.1 Adapting to More Data Formats

Dynamap(X) was developed assuming tabular data, but it includes only a subset of
the possible relational transformations. Further work could extend the capabilities
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of DynamapX to tackle scenarios that need more complex transformations on
the sources. For instance, one future direction would be to adapt the mapping
generation algorithm to detect the necessity of pivoting, i.e., transforming the
unique values from one column into multiple columns in the output. This type of
transformation would allow more complex merges between two sources become
possible through pivoting. Also, a natural extension to DynamapX would be the
addition of new relational operators, e.g., aggregators, selections. For example,
selection could be used to filter out the tuples that do not match a potential set of
target requirements, e.g., output real-estate entries that have at least 2 bedrooms,
excluding studios and 1-bedroom properties. With the current approach, for such
a scenario, DynamapX outputs mappings that correlate all sources (with all their
information), and then, the output tuples generated with the mappings need
post-processing to filter out the unnecessary information.

In a real-world data lake, the sources can have various formats, i.e., semi-
structured, unstructured, not only relational. Probably one of the most natural
directions in which the work in this thesis can be moved further is to adapt
the algorithm to data models at the sources and/or the target. Tackling new
data formats and adapting the current mapping generation approach would mean
generating the same or similar types of merges between the sources of the same
format (e.g., semi-structured), but also finding a way to merge two sources that
have different data formats as this would mean bringing them in a common
format so that a merge operation can be applied between them. Another possible
path would be to abstract over the merge operators and introduce a translation
methodology that would translate the abstract mappings to executable query
languages according to the underlying data sources.

6.3.2 Mapping Generation Reuse

As seen in the results of the pruning experiments, the search space can grow quite
rapidly so regenerating the mappings from scratch for each run can become time-
consuming. A natural idea would be to cache mappings that can be reused in other
mapping generation runs (e.g., with target schemas that are different, but similar,
to what has been run before). This could improve with processing time as (parts of)
sub-solutions could be loaded from cache, instead of regenerated. However, given
that the mappings are generated with respect to a target schema and on the basis
of profiling data computed for one particular state of dataset, caching the mapping
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would mean that these should be stored under a set of characteristics which would
define them as either suitable or unsuitable for reuse in certain scenarios with
different (but similar) target schemas. Otherwise, reusing mappings that are not
suitable for populating a target would lead to merge choices between sources
that would erroneously populate the target. Also, the identification of the most
effective and manageable extensions to this search space might be considered in
future work, i.e., build a search space comprising reusable mappings that are
easier to parse and to combine instead of searching through specific mappings (as
it is done now).

This has already been the focus of recent work by Atzeni et al. (2019), where
a method for generating meta-mappings is proposed. Meta-mappings are generic
mappings over specific initial mappings. They propose a fitness function that
characterizes and checks when a meta-mapping is suitable for a reuse scenario.
An idea worth investigating could be to study the possibility of integrating the
meta-mappings [Atzeni et al. (2019)] with the contributions of this thesis.

6.3.3 Mapping Generation Refinement

The open challenges mentioned in Sections 6.2.1 and 6.2.3 show a focus on keep-
ing the mapping generation process automated, but with the addition of more
informed decisions. However, it may not always be possible to fully automate the
process in a setting where the input may not be correct, e.g., the matches are
erroneous, or the profiling data is misleading with semantically incorrect attribute
overlaps. In such a situation, the mapping generation would yield erroneous re-
sults and two ways of identifying the errors are through user input or a form of
reference data (that is considered to be correct by definition). Feedback could be
obtained in two ways: at the end of the mapping generation process, on the final
output; or on intermediate results, thus, suppressing wrong decisions earlier in
the process.

In the case of user feedback, the challenges brought by this research direction
imply designing a suitable visualization of the mappings on which the feedback can
be given; a method for providing user feedback on the mappings (or on the output
data) considering the expertise level of the user; and a method of incorporating the
feedback into the refinement process of the mappings, e.g., reusing the mappings
that satisfy the user criteria and discarding the mappings that are build on merge
opportunities that the user annotated as being incorrect.
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6.3.4 Processing Optimization

Given the fact that the dynamic programming paradigm is at the core of the al-
gorithm, Dynamap (without active pruning) does not scale over large repositories.
In Chapter 4, we proposed a set of pruning strategies to address this challenge.
However, this is only one type of optimization that can be done to improve the
processing time. Some Dynamap components can run in parallel. For instance,
the generation of the intermediate mappings (per iterations) can be done in par-
allel as long as other active threads (running for other iterations) do not depend
on the one processed. The current algorithm would need a refactoring in terms
of parallelism so as to improve the processing time, but without hindering the
mapping generation.
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Appendices

A Helper Functions

A.1 CommonAncestors

This method is used in Algorithm 1 on line 3. Its purpose is to return the number
of common ancestor relations for two input mappings. Two mappings can merge
2 or more initial source relations. CommonAncestors takes as input two
mappings and checks how many initial relations have in common.

Considering the mappings as sets, CommonAncestors returns the num-
ber of elements in the intersection of the two sets.

Input: two mappings m1,m2

Output: integer

A.2 DiffMatches

This method is used in Algorithm 1 on line 11. Its purpose is to return a boolean
which is:

• true if the two input mappings match different target attributes

• false if the two input mappings match the same target attributes

Two mappings can match one or more target attributes. DiffMatches
takes as input two sets of matches corresponding to two different mappings and
checks if they match different target attributes.

Considering the matches of the two mappings as sets, DiffMatches re-
turns true if the number of elements in the difference of the two sets is not equal
to 0, and false otherwise.
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Input: two mappings m1,m2

Output: boolean
This method is the opposite of SameMatches method.

A.3 FindConnGraphs

This method is used in Algorithm 6 on line 8. Its purpose is to return a set of
connected graphs from the input graph which may be disconnected.

For this method, we consider the input graph as an undirected graph (although
it is a DAG - as it is the monolithic target graph), then a connected graph is a
graph where there is a path from any point to any other point in the graph.

If the input graph is a connected graph, then the input and output will
contain the same entity. Otherwise, the result is set of objects where an object is
a connected graph.

Input: a (undirected) graph
Output: set of connected graphs

A.4 FindMatchesAttr

This method is used in:
• Algorithm 9 on lines 3-4, and
• Algorithm 1 on lines 5-6.
Its purpose is to return the set of matches of the input mapping to the input

target relation.
Input: one mapping m, a target relation t
Output: the set of matches of mapping m to the target t

A.5 FindMatchedKeys

This method is used in Algorithm 2 on lines 26-27 . Its purpose is to return
the set of keys for one input mapping where the source attributes match target
attributes.

Each candidate mapping can have associated candidate keys that were assigned
to it either through propagation or read from the input (on the base mappings).
This method loops through the profile data, more specifically, through the set of
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candidate keys for all mappings, and retrieves the ones that correspond to the
input mapping.

Input: a mapping m, a target relation target_relation
Output: set of keys in m that have a matches to the input target relation
The difference between this method and FindKeys is that in the latter, the

algorithm does not check if the returned keys have matches to the target or not,
where in the former, the returned keys need to be matching to the target.

A.6 FindPKey

This method is used in Algorithm 7 on line 5 . Its purpose is to return the set
of primary key for one input relation. If there are no primary keys in the input
relation, the method returns null.

Input: a (target) relation tr
Output: the primary key key

A.7 FindKeys

This method is used in Algorithm 2 on lines 8-9 . Its purpose is to return the
of keys for one input mapping. Each candidate mapping can have associated
candidate keys that were assigned to it either through propagation or read from
the input (on the base mappings). This method loops through the profile data,
more specifically, through the set of candidate keys for all mappings, and retrieves
the ones that correspond to the input mapping.

Input: sets of keys (part of profile data), and a mapping m
Output: set of keys in m

A.8 IsFittest

Algorithm 8 is used to decide if the intermediate mapping has the highest fitness
among the mappings that stem from the same initial relations, i.e., with exactly
the same ancestor relations.

IsFittest is used in MergeMappings (on line 9) to determine whether
to discard the newly generated mapping or not. This method takes as input the
newly generated mapping and other mappings that stem from the same input



A. HELPER FUNCTIONS 235

Algorithm 8 Check if a mapping has the highest fitness compared to mappings
that stem from the same initial source relations.

1: function IsFittest(map, old_maps)
2: \\ t is the target relation and it’s a global variable
3: isF ittest← true
4: fitness← Fitness(map, t)
5: memoizedMaps← GetMemoizedMaps(map)
6: insert memoizedMaps in old_maps
7: for each imap in old_maps do
8: if fitness(imap) > fitness then
9: isFittest ← false

10: return isFittest

relations and that were generated in the same iteration as the new map. First,
on line 4, the fitness of the intermediate mapping is computed according to the
fitness function. Then the intermediate mappings that stem from the same source
relations, but were already memoized are retrieved (line 5). The fitness of each
mapping is compared to the fitness of the new mapping, and if at least one pre-
vious mapping has a fitness higher than the new mapping (line 8), then we can
decide that the new mapping is not the fittest (line 9) and it will not be memoized,
i.e., will not be kept for further merges.

A.9 IsSubsumed

Algorithm 9 Predict subsumption between two mappings
1: function IsSubsumed(map1, map2,t_rel)
2: subsumedMap← null
3: matchAttr1← FindMatchesAttr(map1, t_rel)
4: matchAttr2← FindMatchesAttr(map2, t_rel)
5: ind← MaxInd(pd,matchAttr1,matchAttr2)
6: if ind.overlap = 1.0 then
7: subsumedMap← map1
8: else
9: ind← MaxInd(pd,matchAttr2,matchAttr1)

10: if ind.overlap = 1.0 then
11: subsumedMap← map2
12: return subsumedMap

IsSubsumed (Algorithm 9) is used by ChooseOperatorDiff to
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predict whether one mapping is subsumed by another mapping. First, in lines 3
and 4, it retrieves those attributes from the given mappings that have a match
to the target, i.e., matchAttr1 and matchAttr2 for map1 and map2, respectively.
In line 5, the algorithm searches in the profile data for inclusion dependencies
that establish that the values of matchAttr1 attributes are (partially) included
in the corresponding values of matchAttr2. If the overlap is equal to 1.0 (line 6),
we conclude that the matched attributes of map1 are subsumed by the matched
attributes of map2 (line 7), otherwise, in lines 8 to 11, the same process is
repeated for the reverse case. The output of the algorithm is either the subsumed
mapping, or null if neither is subsumed. Note that the definition is approximate,
as table subsumption is assumed to exist where each attribute is subsumed by its
counterpart.

A.10 MaxInd

This method is used in:
• Algorithm 9 on lines 5 and 9, and
• Algorithm 2 on line 10, and lines 17-18.
Its purpose is to return the inclusion dependency with maximum overlap

between the two batches of attributes.
MaxInd loops strough the input profile data, more specifically through the

pool of inclusion dependencies, and searches for one inclusion dependency whose
referenced attribute is in one input batch, e.g., attributes1, and the dependent
attribute is from the other input batch, e.g., attributes2.

Input: profile data (containing inclusion dependencies), two sets of attributes
batch1 and batch2

Output: one inclusion dependency, e.g., I = S ⊂θ P , where S ∈ batch1, and
P ∈ batch2, or vice versa, i.e., where S ∈ batch2, and P ∈ batch1, where θ is
the maximum value out of overlaps of the set of inclusion dependencies that have
both the referenced and dependent attributes in the two input batches.

A.11 SameMatches

This method is used in Algorithm 1 on line 8. Its purpose is to return a boolean
which is:
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• true if the two input mappings match exactly the same target attributes
• false if the two input mappings do not match the same target attributes.
Two mappings can match 1 or more target attributes. SameMatches

takes as input two sets of matches corresponding to two different mappings and
checks if they match the same target attributes.

Considering the matches of the two mappings as sets, SameMatches
returns true if the number of elements in the difference of the two sets is equal to
0, and false otherwise.

Input: two mappings m1,m2

Output: boolean
This method is the opposite of DiffMatches method.

B Synthegrate

Synthegrate2 approach. The methodology behind Synthegrate is a top-down
approach that starts with the creation of the target and then uses the target
table(s) to create the source table(s) – which, at the end, are grouped in one or
more source schemas. The target attributes are annotated such that they are
populated with specifically created synthetic data using Datafiller [Coelho (2013)].
The algorithm starts the creation of the sources by using a target relation and
its annotated target attributes. The relation is divided into two tables which,
when merged, can recreate the table that was split. The resulting tables from
the divisions become source relations in the integration scenarios. Having the
top-down approach we can be sure that the generated ground-truth mapping,
when executed on the source tables, recreates the same tuples as in the target
table(s).
Datafiller. Datafiller [Coelho (2013)] is a tool that is used to generate synthetic
data for relational instances. The method that Datafiller uses for creating syn-
thetic data is by annotating the relations and/or the attributes in a relational
schema, and based on those annotations, it creates synthetic data in a specific
manner. In our settings, we use the annotations such that the data created on
each attribute does not violate any required candidate keys, or any inclusion
dependencies. Moreover, for each (partial) inclusion dependency, the annotations
help in creating data with the indicated overlap over the attribute values involved

2https://github.com/MLacra/Synthegrate.git

https://github.com/MLacra/Synthegrate.git
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in the inclusion dependency. The annotations that we use in defining the rules
for the creation of the synthetic data are:

- relation annotation:
- specify relation size:

--df: size=<input size>
- attribute annotations:

- use dictionary (this is a file with a list of words):
--df: use=<input file>

- how to parse the dictionary:
∗ specify offset in the dictionary, i.e., the offset of the first word used

to populate the attribute:
offset=<input offset>

∗ the step with which the input dictionary is parsed, i.e., this will
determine with which number the index of the words is modified:
step=<input step>

∗ size of the dictionary – this helps when the parser reaches the end
of the dictionary and it needs to circle back to the beginning of
the dictionary list:
size=<input dictionary size>

- prefix of data values in an attribute;
- in order to control the creation of the attribute values complying to the
inclusion dependencies constraints, all attributes involved in inclusion
dependencies will have unique and not null constraints assigned. Oth-
erwise, it becomes difficult to accurately compute values that respect
the set overlaps for the required inclusion dependencies.

The above annotations are used in the step where the profile data is generated
for the created source relations.

B.1 Synthegrate Workflow

In this section we describe the workflow in Synthegrate for creating an integration
scenario. Figure 1 shows the main steps in the generation of the components that
comprise a scenario.
Input parameters. The parameters that Synthegrate expects are the ones that are
used for varying the types of integration scenarios:

1. number of target relations (minimum of 1);
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Figure 1: Synthegrate Workflow

2. maximum number of source relations;
3. number of source schemas (minimum of 1 and a maximum equal to the

number of source relations as we avoid creating empty schemas);
4. number of keys in the target schema;
5. cardinality ranges: minimum/maximum number of tuples;
6. number of join operations in the ground-truth mapping;
7. number of union operations in the ground-truth mapping;
8. maximum number of explicit foreign keys in the source schemas as foreign

keys can be inferred between source relations of different schemas, but those
are not explicitly stated;

9. arity range: minimum/maximum number of attributes in a (source or target)
relation;

10. number of expected union candidates which are disjoint;
11. whether to reuse attributes for creating join conditions (in a split);
12. in a nested mapping, whether the union operations are expected to be

performed first;
13. in a nested mapping, whether the join operations are expected to be per-

formed first;
Target schema generation. For generating the target schema, Synthegrate uses
the parameters specific to creating the target and the tables, i.e., cardinality and
arity ranges, the number of target relations, and the number of foreign keys and
primary keys in the target schema.

The first step is to create a target relation that has i) the arity equal to or
greater than the number of required join operations, and ii) the size equal to or
greater than the number of required union operations. The number of required
join operations is equal to the number of join operations desired to appear in
the ground-truth mapping (each target attribute might become a join condition
attribute, for a foreign key), together with the number of foreign keys in the
target schema. The number of required union operations is the number of union
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operations desired to appear in the ground-truth mapping. After the first table
is created, the algorithm loops into iteratively splitting a target table which is
randomly chosen from the pool of created tables (at first it will be just one table)
to create the target tables linked through foreign key constraints, i.e., it will create
the target tables for a chain join comprising the required number of target foreign
keys. After the required number of foreign keys is created, then Synthegrate
incorporates them into a schema which represents the target schema.

In our setting, Synthegrate was used to create only single-table target schemas,
thus, each scenario comprises a target schema that contains one target relation
with a number of attributes equal to or greater than the number of required
join operations in the ground-truth mapping. The created target relation is then
used to create the source relations by splitting it, such that the source relations
reconstruct it using the desired merge operations (we explain this step below).
Synthegrate annotates the target relation and its attributes with parameters
that are required by Datafiller for creating synthetic data. Given that we are
fully controlling the creation of the synthetic data in the sense that we make
sure all required profile data is created without any violations, Synthegrate will
generate annotations that can accommodate the creation of the desired ground-
truth mapping. For example, if the number of union operations is a large one, and
we set the scenarios to create only disjoint union tables, then the cardinality of
the created target relation cannot be smaller than the number of union operations
as each table needs to comprise at least one tuple, otherwise it will create empty
relations after splitting a table, e.g., as splitting one table with one tuple into two
tables then one resulting table is empty and the other has the same tuple as the
split table.

Source schema(s) generation. For the generation of the sources, Synthegrate
has a similar approach to the one for creating target relations linked through
foreign keys, i.e., chooses an already created table and splits it. For this step,
it takes into consideration the parameters that determine the number and type
of operations, i.e., joins or unions, how these should appear in the ground-truth
mapping, i.e., whether it is expected for the sources to union first and then join
or vice versa; how many sources to create, their arity and cardinality ranges;
number of explicit foreign key constraints, i.e., the ones that are not declared
explicitly are expected to be inferred through profile data even if the relations
are part of different schemas; if the unionable relations are disjoint or not; and if



B. SYNTHEGRATE 241

the attributes in the join conditions are already created attributes or if new ones
need to be created.

At the beginning of this step, if both union first and join first parameters are
false, then Synthegrate will randomly pick the next operation to be created; if
either join or union are desired to be performed first in the ground-truth mapping,
then the algorithm will choose the next operation accordingly. After the type of
operation is chosen, it needs to pick the next relation to split. At the beginning,
there are no source relations to choose from, but Synthegrate will use the target
relation(s) to split as the target relations are the starting point for the creation
of the sources. In our setting, there will be only one target relation to split, so, in
the first loop, the target is split into two relations which, if merged through the
chosen operation, recreate the target relation. Before starting to split the relation,
the algorithm checks if the chosen relation is suitable for that type of split:

• the relation is join-extensible if the relation is not referenced by other tables
(in a foreign key relationship) as it might preclude the inference of the
(already created) foreign key,
• the relation is union-extensible if its size is at least two, as having just one

tuple means one of the resulting relations will have no tuples.

After the relation is split, the attributes of the two relations are created and
annotated such that they have the desired attribute overlaps, e.g., full inclusion
dependencies for foreign keys, 0 overlap for disjoint unions, partial for overlapping
unions. The annotations are done with the parameters specified in Section 4.4.2
for Datafiller. The values for these Datafiller parameters are computed to obtain
the desired overlaps as following:

• for disjoint unions: randomly choose two numbers that add up to the
cardinality of the split relation to be the cardinalities of the two newly
created tables, while the offset for the first remains the same as the parent’s
and the offset of the second becomes offset plus the new size of the first
relation; the step and dictionary remain the same.
• for overlapping unions: randomly choose two numbers that add up to more

than the cardinality of the split relation to be the cardinalities of the two
newly created tables, while the offset for the first remains the same as the
parent’s and the offset of the second becomes offset plus the new size of
the first relation minus the difference between their sum and the parent’s
cardinality (as that difference represents the number of overlapping values);
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the step and dictionary remain the same.
• for inferred/explicit foreign key constraints: the cardinality of the split

relation will be equal to the cardinality of the foreign key relation, while
the cardinality of the referenced relation has a minimum value equal to the
same number and maximum equal to the maximum of the cardinality range
given as a parameter. The offset, step, and dictionary remain unchanged,
the only thing that changes is the cardinality of the second relation.

The set of source relations in the output scenario is the set of relations that
were not split. These relations are randomly spread across the specified number
of source schemas (in the input parameters), provided that tables with explicit
foreign keys are kept in the same schema.
Unmatched attributes creation. This step follows the creation of the source rela-
tions as all the attributes in the source relations are either needed in the target or
needed to merge the relations. In this step, a random number of source attributes
is added to the source relations, provided that their arity is within the range
specified in the input parameters.
Profile data generation. In this step, Synthegrate generates profile information
corresponding to the sources, i.e., candidate keys and (partial) inclusion depen-
dencies.

The candidate keys are the primary keys or the attributes used in the creation
of the join condition attributes, while the source attributes that do not have a
match to the target or are not used in the merge conditions will not be candidate
keys.

For inclusion dependencies, the overlaps between attributes need to be com-
puted, and to this end, we use the relation and attribute annotations for Datafiller
as these will define which type of synthetic data is generated for the attributes.
In computing the overlaps, these annotations are used as described below:

Given two relations r1 and r2 with their attributes X and Y , respectively, and
their annotations:

For r1.X:
• dictionary = dict

• offset = o1,
• step = st1,
• size = ds1 (the size of dict),
• size = rs1 (the size of the relation r1 – this will correspond to the total
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number of distinct values for r1.X).
For r2.Y :
• dictionary = dict

• offset = o2,
• step = st2,
• size = ds2 (the size of dict),
• size = rs2 (the size of the relation r2 – this will correspond to the total

number of distinct values for r2.Y ).
One can assume that the two attributes might have some overlapping values

as they draw values from the same dictionary dict and they have the same step
value, thus, we compute their (possible) overlap:

1. compute the number of common values between r1.X and r2.Y :
cv = min(o1+rs1∗st1,o2+rs2∗st2)−max(o1,o2)

s1

2. compute the overlap:
θX,Y = cv

rs1

Example B.1. Given two annotated relations:

CREATE TABLE schema_1.relation_1 ( --df: size=150
attribute_10 text,--df: use=dictionary_26 offset=299 step=1 shift=0 size=1102
attribute_11 text,--df: use=dictionary_64 offset=299 step=1 shift=0 size=1102
attribute_20 text--df: prefix=p7
);

CREATE TABLE schema_1.relation_2 ( --df: size=599
attribute_1 text,--df: use=dictionary_26 offset=0 step=1 shift=0 size=1401
attribute_7 text,--df: use=dictionary_119 offset=0 step=1 shift=0 size=601
attribute_18 text,--df: prefix=FkAn
attribute_19 text--df: prefix=Cb
);

Characteristics of the relations:
• the sizes of the relations are |relation_1| = 150 and |relation_2| = 599,

given by the first annotation, e.g., --df: size. These will correspond to
the number of distinct values in all matched attributes of the two relations.
• it can be deduced that attributes attribute_20, attribute_18, and attribute_19

are attributes that do not match the target as they will have random values
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attached to the set prefixes, i.e., their values are not drawn from a dictio-
nary, hence, they are not manipulated not to violate any constraints that
are necessary for recreating the attribute values in the relation that was
split for their creation.
• two inclusion dependencies will be generated between attribute_1 and
attribute_10 as they have values drawn from the same dictionary, e.g.
dictionary_26, and they have the same step value, e.g., step=1. The
overlaps are computed as following:

For θattribute_1,attribute_10:
1. cv = min(0+599∗1,299+150∗1)−max(0,299)

1 = min(599,449)−299
1 = 449 −

299 = 150
2. θattribute_1,attribute_10 = 150

599 = 0.2504
For θattribute_10,attribute_1:
1. cv = min(0+599∗1,299+150∗1)−max(0,299)

1 = min(599,449)−299
1 = 449 −

299 = 150
2. θattribute_10,attribute_1 = 150

150 = 1.0
Based on the two resulting overlaps, it is concluded that attribute_1 is partially

included in attribute_10 as approximately a quarter of it is included, while the
values of attribute_10 are fully included by the values of attribute_1.

Output scenario. The output scenario comprises:
• two SQL scripts for the creation of the target schema and source schema(s);
• two SQL scripts annotated with the Datafiller parameters. These are the

input to the Datafiller executable script, based on which Datafiller automat-
ically populates the empty schemas.
• one SQL script with the ground-truth mapping (used to evaluate the cor-

rectness of any other mappings);
• matches between the sources and the target;
• profile data on the source relations, i.e., (partial) inclusion dependencies

and candidate keys.
Given that the output scenario contains scripts, the source and target relations

can be materialized in a relational database in order to run queries on them.
After they are materialized, it can be checked that the output of the ground-truth
mapping is exactly the same as the materialized target relation(s).
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