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Abstract 
             

 
The prevalence and incidence of asthma in children is continually rising and creating 

a burden on health systems due to high health care costs. Asthma is a heterogeneous 

disease however current definitions do not capture the heterogeneity of this complex 

condition as it is becoming increasingly clear that it is not a single disease but rather a 

collection of syndromes which consist of a number of disease subtypes (‘endotypes’) with 

similar observable and measurable clinical characteristics (‘phenotypes’). Identifying true 

endotypes of asthma and disaggregating the heterogeneity of the disease is required for 

achieving better pathophysiological mechanism-based treatment targeting, and thus 

delivering genuinely personalised pharmacological treatment in asthma.  

Methods of ascertaining these endotypes have ranged from investigator-led pattern 

identification in the clinical setting, to supervised and unsupervised statistical modelling 

techniques that utilize large scale data and computer algorithms to find the latent (hidden, 

unknown a-priori) patterns of observable features (such as symptoms, medication use, 

allergic sensitization, lung function). Data-driven approaches allow the data to essentially 

speak for itself without any a-priori hypotheses imposition guiding the analysis. This 

ultimately eliminates investigator bias and enables novel hypotheses to be generated.  

Using two different rich data sources (Turkish population cohort and Manchester 

Asthma and Allergy Study) both cross-sectionally and longitudinally, this thesis aimed to 

answer the following research questions: 1) Can we use data-driven methods to uncover 

patterns among asthma datasets and how can this help guide our further understanding of 

the disease? 2) What main features of the asthma syndrome can be used to ascertain the 

heterogeneity of the disease? 3) How can we exploit the wealth of data provided by 

longitudinal birth cohorts in order to understand the severity of asthma? 

Chapter 2 of the thesis introduced and explained in detail the use of machine 

learning methods such as cluster analysis and latent class analysis that have been 

increasingly frequently used in ascertaining patterns of asthma phenotypes. Chapter 3 then 

puts this data-driven methodology in context by discussing the advancements in knowledge 

acquired from the use of these algorithms.  Using cross-sectional data from Turkey, Chapter 
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4 creates a framework for the discovery of stable and clinically meaningful asthma subtypes 

by blending data with clinical expert domain knowledge to identify four main informative 

features (age of onset, atopy, exacerbations, severity). To that end, Chapters 5 and 6 used 

longitudinal data in order to explore exacerbations and asthma severity in more detail. Two 

independent exacerbation subtypes were identified (frequent and infrequent 

exacerbations) along with three wheeze severity states (mild/moderate wheeze, severe 

wheeze, and transitioning wheeze).  

 This thesis represents an advancement on our current knowledge of the 

heterogeneity of asthma by identifying novel results through the use of machine learning 

methodologies.   
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Chapter 1 General introduction 
             

 
1.1 Background and Rationale for Thesis 

 

1.1.2 What is Machine Learning? 
 

Machine learning is a data-driven class of algorithms with many applications in data 

mining. Machine learning methods work by uncovering hidden relationships between  

datasets by using models that classify or predict particular outcomes.1 These algorithms 

learn exclusively from data and so are able to adapt to new data being introduced. The most 

common methods use supervised learning and unsupervised learning. 

 

Supervised learning 

In supervised learning, the labels (or inputs and outputs of an algorithm) are known 

and the aim is to predict/model them. For example, in face recognition, a supervised 

learning algorithm would learn what a face is and what a face is not based on multiple 

images tagged “face-yes and face-no”. Once that is learned, it would be able to predict 

whether a new image is a face or not. Examples of supervised methods are: decision trees, 

random forests, support vector machines. 

 

Unsupervised learning 

In unsupervised learning, no labels are given and the model explores the data to 

differentiate underlying structures and connections. Referring to the same face recognition 

example, the model would not know what a face is, but would be able to group (cluster) 

different images based on characteristics (i.e. faces vs animals vs balls, etc). Clustering 

methods are the most common and will be used exclusively in this PhD thesis. 

 

1.1.3 Machine Learning and Utilisation in Understanding Asthma 
 

Big data and its utilisation through machine learning has been finding niches in all 

aspects of modern life. Companies like Google, Facebook, Netflix are using algorithms to 
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learn aspects of our day to day life in order to make improvements in their service. Over the 

last decade, the application of machine learning to health care data has been revolutionising 

the way we think and understand different disease mechanisms. Recent examples have 

demonstrated that data driven computer algorithms can perform on par with clinical 

decision making.2,3 

 

Machine learning methods have been gaining recognition in helping us understand 

the heterogeneity of asthma – a chronic disease inducing narrowing of small airways that 

creates great burden on both the patient and the health care system. Within this realm, we 

are inundated with a vast array of datasets, investigator and data led analyses that have 

provided answers to different questions. However, there have not been any unifying 

methodologies and so many results have been inconclusive. Machine learning can provide 

an unbiased data-driven method to ascertaining patterns among datasets as asthma is an 

extremely heterogeneous condition – an umbrella term for several diseases manifesting 

with common symptoms such as wheeze, cough, breathlessness, or chest tightness, but 

differing in aetiology, pathophysiologic mechanisms, and treatment response.4-6 The term 

‘asthma phenotype’ has been has been frequently used to describe observable 

characteristics and disentangling these different types will help us understand the 

underlying functional or pathophysiological mechanisms, genetics, and environmental 

factors, otherwise known as ‘asthma endotypes’ or subtypes.7 The aim of using data-driven 

approaches is to avoid pre-established hypotheses and better classify patients into these 

subtypes as they will share some common features. By using the wealth and quality of data 

provided to us by longitudinal birth cohorts, machine learning approaches can learn from 

the many patterns of the natural history of asthma in order to apply generalisations of the 

developmental profiles of the syndrome to a wider population. By utilising these statistical 

techniques, and taking into account between cohort heterogeneity, we can extrapolate 

endotypes with similar characteristics across wider populations in order to identify a more 

complete picture of the asthma syndrome. 

 

The rationale for this is that we are seeing varying levels of treatment response from 

patients and so by identifying these subtypes, we would be able to move away from a 
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unified “one size fits all” approach to a targeted personalised or stratified therapeutic 

approach.8 The clinical relevance of this is that we are yet to understand which currently 

available treatment strategies utilised in children are beneficial in the long term.9,10 

Therefore by targeting childhood, the aim would be to prevent the development or further 

progression into adulthood. However, current research has merely scratched the surface of 

this underlying complex problem and much remains to be done in moving from this current 

hypothetical construct to application in everyday clinical practice.  

 

1.2 Research Questions and Thesis Structure 
 

This thesis is structured in “journal format” (previously called “alternative format”), as a 

series of papers accepted in, pending submission, or already submitted to, peer-reviewed 

journals. It is aimed at answering the following research questions: 

1) Can we use data-driven methods to uncover patterns among asthma datasets and 

how can this help guide our further understanding of the disease? 

2) What main features of the asthma syndrome can be used to ascertain the 

heterogeneity of the disease? 

3) How can we exploit the wealth of data provided by longitudinal birth cohorts in 

order to understand the severity of asthma? 

 

The papers are arranged in a way that tries to answer each research question in 

sequential order. The thesis then concludes with a general discussion drawing the research 

together and thereby providing ideas for future work.  

 

1.3 Author Contributions 
 

As described by The University of Manchester guidance on journal format thesis 

presentations, the contributions made by each author to the herein published papers are 

given below. 

• Chapter 2: Identification of Asthma Subtypes using Clustering Methodologies. 

Pulmonary Therapy 2016, 2(1), 19-41 DOI: 10.1007/s41030-016-0017-z.  
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o MD facilitated the literature review and the organisation of the paper as well 

as writing the initial draft of the manuscript. MS, DB, AC critically reviewed 

the manuscript. 

• Chapter 3: Asthma Phenotypes in Childhood. Expert Rev Clin Immunol. 2017 

Jul;13(7):705-713. doi: 10.1080/1744666X.2017.1257940. 

o MD facilitated the literature review and the organisation of the paper as well 

as writing the initial draft of the manuscript. MS, DB, AC critically reviewed 

the manuscript. 

• Chapter 4: Features of Asthma Which Provide Meaningful Insights Into 

Understanding the Disease Heterogeneity. Clin Exp Allergy. 2017 Aug 22. doi: 

10.1111/cea.13014 

o MD, OK, and AC designed the study. TY collected all the data. MD conducted 

the analysis, interpreted the findings with AC and MS, and wrote the initial 

manuscript draft. All other writers reviewed the manuscript for intellectual 

content.  

• Chapter 5: Longitudinal Patterns of Asthma Exacerbations from Infancy to School 

Age. Clin Exp Allergy (Under review) 

o MD and AC designed the study. MD conducted the analysis, interpreted the 

findings with AC and MS, NG, SF, SH, and wrote the initial manuscript draft. 

All writers reviewed the manuscript for intellectual content. 

• Chapter 6: Patterns of wheeze severity from early childhood to late adolescence: 

Longitudinal transition analysis in a birth cohort study. Pending submission 

o MD and AC designed the study. SF and MD conducted the analysis. MD 

interpreted the analysis with AC, and SF and wrote the initial manuscript 

draft. All writers reviewed the manuscript for intellectual content. 
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Chapter 2 Identification of asthma subtypes using 
clustering methodologies 
             
 
Matea Deliu; Matthew Sperrin; Danielle Belgrave; Adnan Custovic 
Pulmonary Therapy 2016, 2(1), 19-41 DOI: 10.1007/s41030-016-0017-z 

 
1.1 Abstract 

 
Asthma is a heterogeneous disease comprising a number of subtypes which may be 

caused by different pathophysiologic mechanisms (sometimes referred to as endotypes), 

but may share similar observed characteristics (phenotypes). The use of unsupervised 

clustering in adult and paediatric populations has identified subtypes of asthma based on 

observable characteristics such as symptoms, lung function, atopy, eosinophilia, obesity, 

and age of onset. Here we describe different clustering methods and demonstrate their 

contributions to our understanding of the spectrum of asthma syndrome. Precise 

identification of asthma subtypes and their pathophysiological mechanisms may lead to 

stratification of patients with more precise therapeutic and prevention approaches.  

2.1 Introduction 

 
Asthma is a heterogeneous disease, and the most recent Global Strategy for Asthma 

Management and Prevention (GINA) consensus defines it as a condition characterised by 

the presence of respiratory symptoms such as wheeze, shortness of breath, chest tightness 

and cough that vary over time and in intensity, together with variable airflow obstruction 1. 

However, various definitions of asthma do not capture the heterogeneity of this common 

complex condition.  It is becoming increasingly clear that asthma is not a single disease, but 

a syndrome which consists of a number of disease subtypes with similar observable clinical 

characteristics2. These observable characteristics of the disease are often referred to as 

asthma phenotypes. The term asthma endotype is not synonymous with phenotype, and it 

should be used to refer to the distinct disease entity under the umbrella diagnosis of 

asthma, which has defined pathophysiological mechanisms that give rise to clinical 

symptoms3. It is worth emphasising that the same observable characteristic (i.e. phenotype) 

can arise as a consequence of different underlying pathologies (i.e. endotypes), which is 
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consistent with observations showing that there are subtypes of asthma that share similar 

clinical symptoms, but have differing underlying pathophysiological mechanisms4. There are 

numerous examples in other disease areas of a similar or identical clinical presentation 

arising as a consequence of different pathology (for example, fever in childhood can be 

caused by numerous different mechanisms). 

The traditional constructs of “asthma phenotypes” have been largely descriptive 

with little uniformity, and were usually informed by subjective observations of single 

dimensions of the disease, such as triggering factors (e.g. extrinsic and intrinsic asthma5, 

exercise-induced asthma6), patterns of airway obstruction (e.g. reversible and irreversible 

asthma7), or pathology (e.g. eosinophilic and non-eosinophilic asthma8).  

In paediatric asthma, change over time in symptoms such as wheeze has been used 

to define phenotypes of wheezing illness during childhood9.  For example, based on the 

clinical observation about changes in the temporal pattern of wheezing illness during 

childhood which was confirmed in the birth cohort study (Tucson Children’s Respiratory 

Study), Martinez et al divided children into three groups (or phenotypes) of wheezing - 

transient early wheezers, late-onset wheezers and persistent wheezers10. Although these 

phenotypes are clinically meaningful in their association with lung function and subsequent 

development of asthma11, their distinct underlying pathophysiological mechanisms have not 

been elucidated and confirmed – i.e., they cannot be considered as endotypes.  

Based on the expert opinion and consensus, Lotvall et al 4 suggested the existence of 

six asthma endotypes: aspirin-sensitive asthma, allergic broncho-pulmonary mycosis, 

allergic asthma, asthma predictive index-positive preschool wheezers, severe late-onset 

hypereosinophilic asthma and asthma in cross-country skiers. However, the well-defined 

pathophysiological mechanisms and biomarkers which differentiate between these 

proposed endotypes have not been discovered, and there is no universal agreement that 

these subtypes of asthma represent true endotypes12. At this time, the endotype concept 

remains largely hypothetical, but may have a tangible value in helping us to formulate 

strategies to better understand the mechanisms underlying different asthma-related 

diseases and, through this, identify more effective stratified treatment strategies13.  

In recent years, approaches to subtyping asthma have evolved from subjective expert 

opinion to more data-driven methodologies, such as machine learning14,15. Statistical 
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machine learning methods facilitate efficient data exploration in order to identify and 

analyse disease patterns. These methods are able to encompass the vast array of data 

generated from birth and patient cohorts, in order to cluster, classify, regress and make 

predictions from data based on inherent patterns within the large complex dataset. This is 

in contrast to the traditional methods based on human observation, and testing hypotheses 

using prior knowledge. Within the context of asthma subtyping, methods such as 

unsupervised clustering approaches, factor analysis, and principal component analysis have 

started to be widely used within the last decade. These methods are hypothesis generating, 

with the overarching notion that the inherent patterns within the data may be a reflection 

of different underlying aetiologies, genetic basis, and/or immunopathophysiologies, and 

that identified clusters may represent distinct endotypes of asthma. If this assumption is 

correct, clustering methodologies could facilitate better understanding of the disease 

mechanisms, identification of novel therapeutic targets and better clinical trial design 

incorporating group-specific targeted treatment, all of which are essential steps towards 

delivery of stratified medicine in asthma.  

Here we present a review of the different clustering methodologies - model-free and 

model-based – and their applications in asthma subtyping. We provide an overview of the 

major studies and discuss the implications and approaches used.  

 

2.2 What is clustering?  
 

Cluster analysis is a popular unsupervised machine learning method that seeks to 

identify similar characteristics in subjects (or variables) and group them together on that 

basis. When selecting groups, the primary aim is to minimize the intra-group variance, while 

simultaneously maximizing the inter-group variance. Clustering ‘classifies’ data by labelling 

objects with cluster ‘labels’ or giving each object a probability of belonging to a certain 

cluster. Cluster labels are not known a priori, and are derived solely from the data. This is in 

contrast to supervised methods such as logistic regression and support vector machines, 

which seek to derive rules for classifying new objects based on a set of already classified 

objects.  
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2.2.1 Selection of variables / features and dimension reduction 
 

Cluster analysis lacks the ability to differentiate between clinically relevant and 

irrelevant variables; thus, choosing the variables to input into the clustering algorithm is one 

of the most important considerations. Variable or feature selection can be performed 

subjectively or objectively. Subjective methods choose relevant variables based on expert 

advice and previous published work. In contrast, objective methods use data-driven 

approaches to variable/feature selection, the most common of which are stepwise methods 

(such as backward and forward selection), and dimension reduction techniques (such as 

principal components analysis [PCA], and factor analysis [FA]). Forward selection 

progressively adds variables of most significance (based on pre-set p-values) to the model. 

Backward selection starts with all variables and drops the least significant ones until all the 

remaining variables are statistically significant.  

To reduce the large number of variables, the majority of studies we reviewed 

employed manual extraction based on expert advice. For example, Moore et al16 manually 

reduced 600 variables to 34 by excluding variables with missing data, and those that were 

either deemed redundant because information was captured by another variable 

(multicollinearity), or considered to be not clinically relevant. Other studies used dimension 

reduction techniques such as PCA and FA, which are forms of data reduction that generate 

small subsets of generally uncorrelated variables from a large dataset of potentially 

correlated variables. It is useful when we assume there are underlying latent (unobserved) 

constructs (factors/components) in the data which cannot be measured directly and can 

influence responses on measured variables. Although these two methods have been used 

almost interchangeably in the literature we reviewed, there are differences between them. 

As a general rule of thumb, PCA can be used to reduce data into smaller subsets, while FA 

can be used to understand what unobserved factors explain the data. 

2.2.2 Clustering methods 
 

Three main clustering methods have generally been used in asthma subtyping, 

including hierarchical approaches, non-hierarchical or partitioning based approaches, and 

model-based or probabilistic approaches.  

 



 24 

Hierarchical clustering 

Hierarchical clustering aims to create a pyramidal or (as its name implies) 

‘hierarchical’ grouping of homogeneous clusters that can be displayed in a tree-like graph 

(dendrogram). It does not require the number of clusters to be specified a priori, and cluster 

assignment is based on similarity of measured characteristics. Within hierarchical clustering 

there, are two subcategories: agglomerative and divisive methods (Figure 2.1). 

 
Figure 2.1: Overview of the difference between agglomerative and divisive hierarchical clustering 

Agglomerative method 

The agglomerative method is a bottom-up approach that starts with each data point 

assigned to its own cluster and iteratively merges the two closest clusters together until all 

the data belongs to a single cluster 17. Once clusters are formed, there is no inter cluster 

switching. The choice of which clusters should be combined is determined by measuring 

distances, similarities/dissimilarities, and/or using linkage criteria.  

This method formulates decisions based on the pattern of variables used without 

accounting for the overall distribution.  

Divisive method 

This variant is a top-down approach whereby all objects initially belong to one 

cluster, which is then recursively divided into sub-clusters until the desired number of 

clusters is obtained. 18. By having a single cluster initially, the model gains insight into the 

spread and type of data and subsequently makes decisions on when and how to divide the 

sub-clusters.  
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Similarity/dissimilarity measures  

To determine whether objects within the same clustered group are similar or 

dissimilar, distance measures and linkage criteria (Table 2.1) are used. Distance metrics 

measure the distance between observations, while linkage criteria measure the distance 

between clusters. In order to define a similarity measure, the actual similarities between the 

objects can be evaluated using a distance measure. Choosing a measure for calculating the 

distance between data can sometimes be arbitrary, as there are no general theoretical 

guidelines. The Euclidean distance measure, which is the default method in most statistical 

packages, was used in all studies we reviewed here bar one19.  

Table 2.1: Most commonly used linkage criteria 

Linkage Criteria 
Centroid Measures distance between the central point of 

each cluster 
Ward’s 
method 

Measures the distance between clusters as the 
ANOVA sum of squares – i.e. combining information 
over all cluster members 

Complete Measures the distance between the members of 
clusters farthest apart 

 

Non-hierarchical clustering 

The prototype of non-hierarchical clustering is k-means (Figure 2.2). K-means is a 

partitioning method in which the number of clusters is specified a priori and the optimal 

solution is chosen. It is a variance minimizing algorithm whereby each subject is assigned to 

its nearest cluster based on the minimal squared Euclidean distance. This method is 

sensitive to outliers and generally limited to numeric attributes.  

 



 26 

Figure 2.2: A silhouette plot used for non-hierarchical clustering (k-means) (from20,21, with 
permission). A silhouette plot shows how close observations from neighbouring clusters are to each 
other using a measure of -1 to +1. A value of +1 indicates that that observations may be assigned to 
the wrong cluster 

Model-based clustering 

Model-based clustering (also known as latent class analysis or mixture models), is 

based on assuming that the observed data are generated by a collection of models, with 

each cluster corresponding to a different model. Each resulting cluster is represented by a 

(most commonly) parametric distribution and can be either spherical or ellipsoidal of 

varying sizes and variance. The advantage of model-based clustering is that it can produce 

probabilistic cluster assignments for individuals – i.e. it captures the uncertainty in assigning 

individuals to clusters. Bayesian extensions (e.g. Markov Chain Monte Carlo, expectation-

minimization) of model-based clustering can also be used to incorporate prior distributions 

to reflect uncertainty around model assumptions. 

One of the main challenges of model-based clustering is identifying and representing 

the underlying model assumptions with reasonable complexity. However, unlike a model-

free approach, log-likelihood-based statistics such as Bayesian Information Criteria and 

Model Evidence allow us to select the most parsimonious set of assumptions by penalising 

model complexity for accuracy. This is in contrast to model-free clustering where an 

arbitrary distance measure is used to find clusters. Of important note, choosing the best 

statistically fitting model is not enough; there needs to be an element of expert input into 

choosing the number of clusters to maximise the potential clinical relevance of the 

identified subgroups.  

2.2.3 Stability of resulting clusters 
 

Cluster stability is an important aspect of validity because cluster methods can 

generate groups in fairly homogenous data sets. Furthermore, there is always a risk of 

identifying less meaningful clusters. Stability in this context refers to clusters not 

disappearing when, for example, outliers are added, data is subset, or random error is 

introduced to every point to simulate measurement error22. The most common way of 

doing this is to apply the same cluster method to a sample dataset taken from the original 

one (also termed bootstrapping) and identifying similar clusters using similarity measures. 
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The similarity values are then compared and stability is taken to be the mean similarity in 

the new dataset22. 

2.3 Clustering methods in asthma subtyping 
 

2.3.1 The use of principal components analysis/ factor analysis in asthma subtyping 
 

Studies which used PCA/FA as stand-alone analyses for demonstrating the 

heterogeneity of asthma syndrome and its risk factors are summarised in Table 2.223-41. 

Sample sizes used in different analyses ranged from 69 to 16,635 and the number of 

variables used initially ranged from five to 97. The number of resulting components/factors 

ranged from one to six.  

In the context of asthma, the PCA was first used by Smith et al to examine whether 

syndromes of coexisting respiratory symptoms that can be discovered using the response to 

a large number of questions (>100) from validated questionnaires administered in a birth 

cohort (Manchester Asthma and Allergy Study - MAAS)23. The analysis demonstrated that 

symptom components (wheeze, cough, wheeze with allergens, wheeze with irritants, chest 

congestion) were better indicators of the presence and developmental changes in 

observable secondary asthma phenotypes (such as lung function, airway reactivity and IgE-

mediated sensitisation) than the presence of individual symptoms such as wheeze. 

Using factor analysis, Bailey et al33 found that intensity of asthma symptoms, asthma 

management and airflow impairment (FEV1) were independent components of the disease. 

This was also seen in the study by Grazzini et al37 where lung function (FEV1) was an 

independent factor from asthma symptoms in a mixed teenager-adult population of 69 

asthmatics. Lung function was also independent of inflammatory markers (FeNO, sputum 

eosinophils) in other studies34,40,41. The study by Juniper et al38, which included 763 patients 

older than 12 years who participated in clinical trials, showed that daytime and night-time 

symptoms despite medication were distinct and independent factors of asthma. Clemmer et 

al32 used PCA demonstrated that a clinical “endophenotype” relating to corticosteroid 

responsiveness best predicted corticosteroid response in all replication populations. Other 

studies in Brazilian27, British29, and Japanese42 children have shown that ‘Western diets’ 

were independently associated with an increased risk of wheezing by school age.  
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Table 2.2: Studies which used principal components analysis/ factor analysis in asthma subtyping. Avg: average, COREA(Korea): Cohort for Reality and 
Evolution of Adult Asthma in Korea, COPSAC(Denmark): Copenhagen Prospective Study on Asthma in Childhood, CAMP(US): Childhood Asthma Management 
Program, IMPACT(US): Improving Asthma Control Trial, PACT(US): Pediatric Asthma Controller Trial, CARE(US): Childhood Asthma Research and Education 
Network, SOCS(US): Salmeterol or Corticosteroids Study, ACRN(US): Asthma Clinical Research Network, MAAS: Manchester Asthma and Allergy Study 

 
Cohort/Data setting Year Age group Sample size # 

Variables 
Method, % variance  Resulting components 

(PCA)/factors (FA) 
Author 
Reference 

Manchester Asthma and Allergy Study 2008 3 
5 

946 
904 

21 
32 

PCA 
Age 3: 47.5% 
Age 5: 49.8%  

Age 3: 4 
Age 5: 5 

23 

59 rural communities in Ecuador 2011 7-15 Mean 73 29  
 
 

PCA 
Component 1: 54.4% 
Component 2: 50.1% 
Component 3: 50.7% 

2  
 

24 

3 Clinical Trials 2012 15-79 1114 21  
 
 

PCA 
76% cumulative 

6  25 

Generation R study 
 

2012  4 2173 21  PCA 
Component 1: 16.3% 
Component 2: 8.2% 

2  
  

26 

Education department Sao Francisco do 
Conde, Brazil 

2013 6-12 1307 22  PCA 
45.7% cumulative 

2  
 

27 

COREA  
 

2013 Avg age 70.2 
 
Avg age 44.2 

434 
 
1633 

11 PCA 
53.5% cumulative 

Elderly: 4  
 
Non-elderly: 4  

28 

Manchester Asthma and Allergy Study 2014 Children 1051 97 
 

PCA 
15.3% cumulative 

3  
 

29 

Riyadh Cohort Study 2014 7-17  195 6 PCA 
57.3% cumulative 

2  
 

30 

COPSAC  2015 Neonates 411 5 PCA 
41% cumulative 

1  
 

31 
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CAMP, CARE, PACT, ACRN, IMPACT, 
SOCS 

2015 Children  327 6  
 

PCA 
100% cumulative  

6 32 

University of Alabama at Birmingham 
Pulmonary Medicine Clinic 

1992 Adults 199 10 FA 
 

3  
 

33 

Institute of Immunoallergology, Florence 
IT 

1999 16-75 99 8 FA 
74.8% cumulative 

3  
 

34 

European Community Respiratory 
Health Study 

2000 20-44 16635 18 FA 
58% cumulative 

4  
 

35 

Tucson Children’s respiratory Study  2001 6-11 877 25 FA 
22.6% cumulative 

2  
 

36 

Stable chronic asthmatics 2001 Adults 69 - FA 
78% cumulative 

3  
 

37 

Salmeterol Quality of Life Study Group 2004 >12 763 21  FA 
80.8% cumulative 

4 
 

38 

Health Maintenance Organisation, 
Kaiser-Permanente US 

2005 18-56 2854 53 FA 
59% cumulative 

5 
 

39 

Paediatric outpatients, Chinese 
University of Hong Kong 

2005 7-18 92 12 FA 
64.6% cumulative 

5 40 

Childhood Asthma Management 
Program - Clinical trial, Boston USA 

2008 5-12 990 17 FA 
51.2% cumulative 

5  
 

41 
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More recently, both PCA and FA have been used as dimension reduction techniques 

to generate small subsets from a large number of variables; these small subsets 

(components/factors) were then used for further clustering. For example, Just et al used 

PCA to reduce 40 variables into 19 that characterised age and BMI, asthma duration, 

medication use, hospitalisation, atopy, and lung function43.These were then used in 

hierarchical clustering. This approach acts as feature extraction in that it can initially 

visualize/reveal clusters prior to the cluster analysis 

2.3.2 Asthma subtype classification with model-free approaches 
 

The studies identified from our literature search which used model-free approaches 

for subtyping asthma are shown in Table 2.316,19,43-62. Of 22 studies, twelve were carried out 

in the adult population. Population sample sizes ranged from 57 to 1,843. Method of choice 

was Ward’s hierarchical method with some form of data reduction, whether with PCA, 

multiple regression analysis, discriminant analysis, factor analysis, or decision trees. K-

means clustering was performed in nine out of twenty-two studies, but always as a 

supplementary method. The resulting number of clusters ranged from two to six.  

Paediatric studies 

The Trousseau Asthma Program (TAP) in France used Ward’s hierarchical clustering 

as the method of choice43,51,54. In the TAP preschool population of 551 wheezers, three 

clusters of wheezing were identified: mild episodic viral wheeze, atopic multiple-trigger 

wheeze, and non-atopic uncontrolled wheeze51. The mild episodic viral wheeze class was 

identified in one British63 and one French cohort64 using model-based approaches (see 

below),  and the non-atopic uncontrolled wheeze cluster was reproduced in a separate TAP 

cohort54. The multiple-trigger wheeze was previously identified using supervised methods in 

the Avon Longitudinal Study of Parents and Children (ALSPAC)65. This cluster described 

children with either early or late onset persistent wheezing characterised by atopy and poor 

lung function. Similar description of wheezing was used in the MAAS cohort to demonstrate 

that persistent wheezing and multiple early atopy were associated with diminished lung 

function by age 11 years66.  
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Table 2.3: Studies which used model-free approaches for subtyping asthma. PCA: principal components analysis, FA: factor analysis, Avg: average, SARP: 
Severe Asthma Research Program (USA), GLAD(UK): GPIAG [General Practitioners in Asthma Group] and Leicester Asthma and Dysfunctional breathing 
study, TAP: Trousseau Asthma Program (Paris, FR), COREA(Korea): Cohort for Reality and Evolution of Adult Asthma in Korea 

 
Cohort/Data setting Year Age group Sample size, 

N 
Data 
Reduction 
Technique 

Method of clustering Number of 
Clusters 

Author 
group 
reference 

Glenfield Hospital Difficult Asthma Clinic 
 
GLAD 
 
Glenfield Hospital clinical trial  

2008 Avg age: 49.2 
 
Avg age: 43.4 
 
Avg age: 52.4 

184 
 
187 
 
68 

PCA 
  

2-step: 
Ward’s hierarchical clustering 
 
k-means  

3  
 
4  
 
3  

44 

Random selection of patients in Wellington, NZ 2009 25-75 175  2-step: 
Agglomerative “agnes” 
clustering 
 
Divisive “Diana” 
 
Gower’s distance measure 
 
Clusters chosen from tree 
diagram subjectively to include 

10 subjects per cluster 

Agnes:  
5  
 
Diana: 
4  
 

45 

SARP 
 

2010 12-80 726  Ward’s hierarchical clustering 
 
Post-hoc 
Discriminant analysis for tree- 
analysis 

5 
 

16 

Asthma Severity Modifying Polymorphisms Project, USA 
 
 

2010 6-20  154 PCA  2-step: 
Hierarchical clustering 
 
k-means clustering 

3  
 
 

46 
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SARP 
 

2011 6-17 161  
 

Ward’s hierarchical clustering 
 
Centroid linkage 
 
post-hoc 
Fisher discriminant analysis-
predictors of cluster assignment 

4 
 

47 

John Hunter Hospital Ambulatory Care Clinic, Newcastle, 
Australia 
 

2011 19-75 72  Hierarchical clustering 
 
Complete linkage 

3 
 

48 

TAP 
 
 

2012 6-12 315 PCA  2-step: 
k-means clustering 
 
Ward’s hierarchical clustering 

3 
 
 
 

43 

Korean Genome Research Centre for Allergy and 
Respiratory Diseases cohort 
 

2012 Adults 86  2-step: 
Hierarchical cluster analysis 
 
k-means clustering 

4  
 
 

49 

NYUBAR, New York City, Bellevue Hospital Center Asthma 
Clinic 

2012 18-75 471  Ward’s hierarchical clustering 5  

 

50 

TAP 
 

2012 0-3 551  Ward’s hierarchical clustering 
 
post-hoc 
classification and regression 
trees 
Random Forest for predictors of 
cluster assignment 

3  
 

51 

TAP 2012 <36 mos 79  Ward’s hierarchical clustering 3 
 

52 

TALC and BASALT trials, US 2012 Avg age: 37.6 250  Ward’s hierarchical clustering 
 
post-hoc 
Discriminant analysis for 
predicting cluster membership 

4  
 

53 
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TAP 2013 5 150  Ward’s hierarchical clustering 4  54 

COREA  
 
Soonchunhyang University Asthma Genome Research 
Centre cohort 

2013 > 18 724 
 
1843 

 2-step: 
Ward’s hierarchical clustering 
 
k-means  

4  
 
4 

55 

University of Tsukuba Hospital, Hokkaido University 
Hospital 

2013 16-84 800  
 

 Ward’s hierarchical clustering 
 
post-hoc 
classification and regression 
trees 
Random Forest for predictors of 
cluster assignment 

6  
 

56 

Quebec City Case Control Asthma Cohort 
 

2013 Avg age: 35.7 377 Factor 
analysis  
 

2-step: 
Ward’s hierarchical clustering 
 
k-means 

4  
 

57 

Niigata University Hospital , Japan 2013 Avg age: 59.8 86 Step-wise 
multiple 
regression  

Ward’s hierarchical clustering 
 
Decision tree analysis for 
cluster assignment 

3  
 

58 

Paediatric Asthma Clinic, Hacettepe University, Ankara, 
Turkey 

2013 6-18 383 Factor 
analysis  
 
PCA 

Hierarchical clustering 
 
Gower, Jaccard distances 
 
Logistic models 

4  
 

19 

Dutch multicentre study  2013 Adults 200 Factor 
analysis 

Wards hierarchical clustering 
 
k-means  

3  
  

59 

The Epidemiology and Natural History of Asthma: 
Outcomes and Treatment Regimens, San Diego US 
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The clusters of wheezing described in the TAP cohort remained stable by age 5 

years54. However, at school age, the clusters were different: ‘asthma with severe 

exacerbations and multiple allergies’, ‘severe asthma with bronchial obstruction’, and ‘mild 

asthma’43. These accounted for two “phenotypes”: asthma with severe exacerbations, and 

multiple allergic severe asthma with bronchial obstruction43. However, it is important to 

note that not only were the children from a separate cohort within the TAP, but the 

clustering methodology was also different; PCA was used for data reduction and a two-step 

clustering approach including k-means43. Furthermore, differing post-hoc analyses were 

used.  

The Severe Asthma Research Program (SARP) is a US multi-centre study comprised 

of both children and adults with persistent asthma. The study by Fitzpatrick et al47 included 

161 children aged 6 to 17 years. Variables were selected subjectively with no data reduction 

technique, and the authors derived ‘composite variables’ from binary and questionnaire 

data discerned by physicians. After Ward’s hierarchical clustering, four clusters were 

identified: ‘late-onset symptomatic asthma’, ‘early onset atopic asthma and normal lung 

function’, ‘early onset atopic asthma with mild airflow limitation and comorbidities’, ‘early 

onset atopic asthma with advanced airflow limitation’. These results and the accompanying 

clinical characteristics exhibited by the children were consistent with the previously 

reported data using clinical observations68-70. However, these results differed from findings 

in a Turkish cohort of children aged 6-18 years with moderate-severe asthma19. In contrast 

to previous studies, the predictive ability of clusters and of original variables in relation to 

asthma severity in this population was relatively poor19. The authors concluded that the 

search for asthma subtypes needs careful selection of variables which should be consistent 

across different studies, and that a cautious interpretation of results is warranted19. 

Studies in adults  

The initial study that prompted further interest into clustering methodology was 

done by Haldar et al in Leicester, UK44. A two-step Ward’s hierarchical and subsequent K 

means cluster analysis was performed in three different datasets (refractory asthmatics 

from secondary care, primary care data, refractory asthmatics from clinical trial). After 

variable selection to identify ‘most clinically relevant’, PCA was performed which reduced 

the variables into five components. Results of the subsequent cluster analysis revealed 
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three clusters in the primary care dataset and four clusters in the secondary care data. Two 

clusters were identified in both datasets: ‘early onset atopic asthma’ and ‘obese female with 

no eosinophilic inflammation’. The primary care dataset identified a third ‘benign asthma’ 

cluster, while the secondary care set identified an ‘early-onset, symptom-predominant 

group with minimal eosinophils’ cluster as well as a ‘late-onset, male predominant, 

eosinophilic inflammation with few symptoms’ cluster. These results were then validated in 

the clinical trial dataset, which revealed a three-cluster model similar to that in the 

secondary care set.  

Expanding on Haldar’s findings, the SARP study16, which included 726 patients 

greater than 12 years of age, initially started with 628 variables that were reduced to 34 by 

excluding missing data, text data, redundant and ‘irrelevant’ variables. Half of the variables 

were composite. Ward’s method and post-hoc discriminant analysis for Tree analysis was 

performed to describe five clusters highly determined by frequency of symptoms, 

medication use, and lung function. Both studies identified a group of obese females with 

adult onset asthma and less atopy, as well as a group of severe late-onset atopic asthmatics 

with poor lung function. However, SARP did not use sputum eosinophilia which was an 

important feature in the study from Leicester. A few years later, the SARP group used a 

different approach and identified six clusters61. K-means clustering partitioned the 378 

subjects, while Ward’s method clustered the 112 variables into 10 INFOGAIN (measures 

how well variables predict clusters) ranked variable clusters based on symptoms, atopy, 

medication use, lung function, corticosteroid use and cause, Th2inflammation, inflammatory 

markers, and demographics. Pre-processing of the data included imputing variables with 

less than 5% missing data while excluding those with more than 5%. Markov blanket 

algorithms identified redundant variables. Three clusters overlapped with previous results 

(severe asthmatics, female late-onset with normal lung function) while two were novel 

(late-onset severe eosinophilic asthmatics with nasal polyps, severe atopic Hispanics). It is 

interesting to note that similar clusters were seen in children from SARP and Asthma 

Severity Modifying Polymorphisms46 project, though the degree of lung function 

impairment was less. 

Patrawalla et al50 based their clustering and variable selection technique on SARP 

and identified similar clusters to those found by Wu et al61, though the Hispanic females had 
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milder disease. This could be explained by the fact that the sample came from an urban 

New York City population that had a higher proportion of Hispanics.  

The results obtained in Leicester and SARP populations were in part reproduced in a 

Dutch cohort of severe asthmatic patients that included more thorough inflammatory 

markers59. The resulting three clusters confirmed the existence of two previously reported 

clusters: severe eosinophilic inflammation-predominant asthma with few symptoms and 

poor lung function, and obese late onset asthma with low eosinophils additionally provoked 

by comorbidities such as gastrointestinal oesophageal reflux disease (GORD). The third 

cluster in the Dutch cohort (mild adult-onset well controlled asthma) which was not found 

in Leicester and SARP was previously seen in studies in Asian populations which included 

smoking in their analysis55,56. 

The recurring obesity related subtypes were explored in more detail in two US trials 

comprising 250 adults53. Incorporating detailed data on inflammation, major differences 

were found between the obese and non-obese populations. Non-obese asthmatics had 

significantly better lung function. Obese asthmatics with early onset asthma and poor lung 

function had greater degrees of systemic inflammation (represented by the inverse 

association between hsCRP and GCR); this was directly associated with increased 

glucocorticoid resistance (measured by reduced MKP-1 expression via dexamethasone).  

2.3.3 Asthma subtyping and model-based approaches 
 
Latent variable modelling 

This topic has recently been reviewed in detail in another review article, which 

identified a total of 36 studies within the last five years which used model-based 

approaches to asthma subtyping (four in adult populations, 32 in children)70. Sample sizes in 

these studies ranged from 201 to 11,632. Latent class analysis (14 studies), longitudinal 

latent class analysis (11 studies), latent class growth analysis (one study), latent growth 

mixture modelling (8 studies), and mixture models (two studies) methods were used. The 

number of resulting classes ranged from three to eight, and were in most cases 

characterised either by physician diagnosed asthma, atopy, and/or fraction of exhaled nitric 

oxide (FeNO). The most common resulting outcome was “wheeze phenotype”64,72-83, 

followed by “atopy class”64,78,83-88.  
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Described wheeze classes (often referred to as “phenotypes”, although by definition 

these were not observable, but latent), were either early-onset (transient)80,89,90 or 

prolonged72), late-onset (characterised as wheeze after age three years persisting into later 

childhood)72,76,80,82,85, or persistent (controlled and troublesome), characterised by 

diminished lung function by school age9,76. Early-onset wheeze was found to be predictive of 

poor lung function, but not atopy, eczema, or rhinitis at age 6-8 years89. Late-onset wheeze 

was associated with bronchial hyperresponsiveness and in some cohorts poorer lung 

function at age 6 years65. The persistent wheeze phenotype was consistently characterized 

by diminished lung function by school age9,76. 

Atopic sensitisation was the second most common phenotype investigated by latent 

variable modelling, based on the hypothesis that distinct subtypes may be present. Simpson 

et al applied a hidden Markov chain model to cluster children in MAAS into five different 

sensitization classes using skin tests and  specific IgE data at ages 1, 3, 5, and 8 years85. The 

underlying assumption was that children in each class had the same probability of becoming 

sensitized or resolving sensitization at each age (and to a similar panel of inhalant and food 

allergens), and that this differed between classes. Children in one of the four classes 

(comprising ~25% of sensitised participants), which authors assigned as “multiple early 

atopy class” were much more likely to have asthma and worse lung function compared to 

children in all other classes66,85. Almost identical five-class model was identified by 

extending the analysis in MAAS through to age 11 years and in another British birth cohort 

(Isle of Wight study), indicating stability over time and across different populations 86,91. 

However, these classes of sensitisation can be identified only by using statistical inference 

on longitudinal data, and differentiation between classes at any single cross-sectional point 

is currently not possible. This emphasises the need to develop diagnostic tools that 

delineate different classes at any cross-sectional time point among the patient population, 

to facilitate the applicability of these findings in clinical practice91-94.  

In the adult population, Newby et al performed a cluster analysis using mixture 

models on a multi-centre longitudinal observational study of 349 asthmatics in the British 

Thoracic Society Severe Refractory Asthma Registry95. Variables were initially restricted to 

those with less than 30% missing data that were non-categorical, and then factor analysis 

was applied. The resulting five factors (airflow obstruction, exacerbation frequency, 
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IgE/BMI, treatment scaling, blood eosinophilia) were used in the cluster analysis to describe 

five clusters: 1) ‘early onset atopic’, 2) ‘obese, late onset’, 3) ‘normal lung function least 

severe asthma’, 4) ‘late onset, eosinophilic’, 5) ‘airflow obstruction’. The best fitting models 

were chosen by the AIC or BIC, and the clusters were validated using a classifier on a 

separate dataset from the same registry. Cluster stability for the whole group was only 52%, 

with cluster two accounting for 71% as the highest, while cluster four accounting for only 

25%. A significant proportion of subjects in clusters one, four and five moved to clusters two 

and three at follow-up indicating greater obesity, lower blood eosinophilia, better lung 

function, and less exacerbations. Acknowledging small differences in variables used, the 

results were broadly in accordance with previously reported clusters derived from model-

free approaches16,44. Gaussian mixture model clustering was also used to investigate 

cytokine patterns of peripheral blood mononuclear cells’ cytokine responses to mite 

allergens, and the results suggested that asthma is associated with a broad range of 

immunophenotypes96. Various machine learning approaches were also used to identify 

patterns of IgE responses to a large number of individual allergen molecules in component 

resolved diagnostics microarrays and associate these with asthma and allergic diseases14. 

2.4 Challenges in asthma clustering 
 

2.4.1 Mixed types of data 
 

Medicine generates many different types of data: binary, numerical, and categorical 

variables, non-normal distributions, missing values, outliers etc. It is challenging to apply a 

model that combines these. One possible solution would be to transform the raw variables 

into one type (i.e. all binary variables). Prosperi et al19 showed that although results were 

vastly different when comparing the raw and binary variables, they were still clinically 

consistent with each other. However, it is also important to note that changing continuous 

variables into binary ones in certain instances would require creating categories. For 

example, if we take FEV1 and categorise it based on levels of obstruction (80%, 60-80%, 

below 60%, above 80%, etc.), we assume that an FEV1 of 60% has the same clinical 

significance as an FEV1 of 79%, which is not necessarily true. Other issues with 

dichotomizing variables are loss of information leading to a reduction in statistical power, 

loss of linear relationships between two groups, and underestimation of variability in 
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outcome between groups97. Another way to minimize this is to create clinically meaningful 

categories, but this will likely introduce an element of subjectivity.  

2.4.2 Lack of robustness to choice of variables and clustering methods 
 

Different input parameters, even within the same dataset, may produce different 

results. For example, in the SARP, the same hierarchical clustering techniques on the same 

dataset produced different clusters16,47. The major differences were in the pre-processing of 

the data and the cluster input. Wu et al also included inflammatory markers in their 

analysis, which would account for better atopy delineation61.  

As mentioned previously, choice of variables has been generally limited to 

consideration of expert advice based on previous work. Furthermore, there is a practical 

consideration involved in that the variables chosen have to correspond to the type of data 

in the cohort given that some studies included all variables59,61,62 in the dataset while others 

chose ‘the most relevant ones’43,44,49,55,56,58. This has resulted in patient exclusion, 

particularly when there is a requirement to remove variables with missing data. Although 

some studies implemented imputation techniques in order to overcome this 61,95, the 

impact on the clinical outcome has not been fully explored, and therefore this should be 

taken into account when interpreting the results. 

In most studies, the choice of distance measure was not specified, thereby assuming 

the default ones in statistical packages were used (i.e. Euclidean distance). Only two 

studies19,45 specified that they varied the distance measures (Gower and/or Jaccard) to 

observe the effect. One study group used centroid linkage as their similarity measures, 

whereas the rest were based on Ward. Consequently, we cannot say that the methods 

employed are the most correct, as there is a repository containing hundreds of options. 

Prosperi et al hypothesized that resulting clusters from various studies differ due to 

varying investigator choice of factors, encoding/categorization/transformation of variables, 

and methodology used19. They proceeded to verify this by using different hierarchical 

clustering and data reduction approaches on a cohort of children aged 6-18 from the 

Paediatric Asthma Clinic in Ankara, Turkey. Data reduction was done by both FA and PCA, 

resulting in five ‘dimensions’ of variables accounting for 35% of the variance. Multiple 

hierarchical clustering analyses were performed by varying the variable encodings, distance 
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linkages, feature selection, and dimensionality reduction space. Although it was 

demonstrated that small variations in linkage-distance functions did not affect the resulting 

clusters19, they only tested two; it is possible that other linkage criteria could influence the 

results. What was significant was the fact that changes in variable encodings and 

transformations resulted in different clusters19. It is possible to test the strength of the 

employed methods by bootstrapping and/or multiple repetitions, however this does not 

necessarily translate into more plausible overall results. 

This is where model-free clustering runs into issues, and whereby a model-based 

approach might provide more structured methods, as MCMC and EM algorithms are 

applicable to all modelled distributions. However, in latent class analysis, there is no 

agreement on the optimal way of determining the number of classes. The most common 

method is the Bayesian Information Criterion, though other methods such as the Akaike 

Information Criterion, likelihood tests, bootstrapping, entropy, etc., have been used 

extensively, thus possibly accounting for the different classes across populations.   

2.4.3 Differing subtypes across populations 
 

It is evident that different clusters are identified across different populations (see 

tables 1 and 2). Other than different statistical methodologies, these disparities may be due 

to differences in features/variables selected to inform the mode (for example, the choice of 

lung function variables differed between the studies, and post-bronchodilator FEV1 was 

included only in few of these44). Of note, as well as influencing heterogeneity in identified 

clusters, the non-inclusion of some of the potentially important variables (e.g. post-

bronchodilator lung function) may result in a failure to capture some important underlying 

mechanisms. Additionally, most studies were done in severe or moderate-severe 

asthmatics, and the same subtypes may not be seen in the mild asthma population. 

It is also important to note that clusters identified cross-sectionally at a specific time point 

may not always be seen at different time points. Further longitudinal analysis is required to 

visualize how the clusters vary over time.  
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2.5 Conclusion 
The understanding of asthma has come a long way, and data-driven hypothesis-

generating clustering methods have aided in identifying distinct subtypes of asthma.  

However, we must be careful when translating these results into clinical practice, as one 

needs to use statistical inference on large data set to identify disease subtypes, and 

biomarkers that would allow differentiation of such subtypes at any cross-sectional time 

point are in most cases not available. Further challenges to the optimal use of clustering 

methodologies include tailoring models to individual datasets and incorporating genetic, 

epigenetic and more detailed molecular level data. Resulting models should then be able to 

accommodate large volumes of data in order to discern the developmental profiles of each 

individual, facilitating genuine personalised approach to asthma management.  
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3.1 Abstract 

 

Introduction: Asthma is no longer thought of as a single disease, but rather a collection of 

varying symptoms expressing different disease patterns. One of the ongoing challenges is 

understanding the underlying pathophysiological mechanisms that may be responsible for 

the varying responses to treatment.  

Areas Covered: This review provides an overview of our current understanding of the 

asthma phenotype concept in childhood and describes key findings from both conventional 

and data-driven methods.  

Expert Commentary: With the vast amounts of data generated from cohorts, there is hope 

that we can elucidate distinct pathophysiological mechanisms, or endotypes. In return, this 

would lead to better patient stratification and disease management, thereby providing true 

personalised medicine.  

 

3.2 Introduction 

 

Asthma is a common disease which has been rapidly increasing in both prevalence 

and incidence. The surge of new cases, particularly in the western world, can be in part 

attributed to rapid changes in lifestyle and environmental exposures. However, the exact 

extent of this environmental impact is yet to be fully understood. For the most part, asthma 

starts in early childhood, though some patients can develop more severe disease symptoms 

either in teenage years or adulthood; the incidence of new cases is lower in adults1,2. The 

variability in the expression of asthma symptoms observed within a clinical setting has 

prompted the move away from the concept that asthma is a single entity; it is now generally 

considered that asthma is an umbrella term for several distinct conditions that share 
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common clinical features such as wheezing, cough, shortness of breath, and variable airflow 

obstruction3.     

A phenotype is defined as an observable property or trait that arises from the 

interaction of genes and environmental exposures. Phenotypes are therefore characteristics 

that can be directly observed and measured (either biochemically or physically)4. For 

example, in clinical terms ‘trait’ may refer to wheeze or lung function; wheeze can be 

auscultated and lung function can be measured, e.g. by spirometry. However, these traits 

can vary drastically in terms of the manner in which they are manifested between different 

patients, and relating them to underlying mechanisms would be essential to understand the 

pathology of the disease(s). With such variation in the clinical expression of asthma, the 

concept of ‘endotype’ has been proposed5,6. Whereas the term ‘phenotype’ refers to an 

external, directly observable characteristic, an ‘endotype’ indicates a subtype of the disease 

with a distinct underlying pathophysiologic mechanism, which may in part explain the 

observed heterogeneity in phenotype manifestation7. As shown in Figure 1, our task in 

understanding asthma is to disentangle the multifarious phenotypes in an attempt to 

distinguish distinct subtypes which may in turn indicate the presence of distinct endotypes 

which have distinct causal mechanisms. Multiple ‘endotypes’ can therefore give rise to the 

same or similar phenotype7, and this endotype-phenotype connection itself may not be a 

static characteristic. A level of complexity is added by the fact that some of the key 

phenotypes (e.g. eosinophilic inflammation) are highly variable in childhood8.  

The importance of identifying asthma endotypes (or subtype) is primarily for 

understanding disease mechanisms. Our current treatment guidelines are still guided 

primarily by symptoms and lung function, yet we have all seen that similar symptoms have 

different levels of response to commonly used treatments. Deciphering the cause of this 

heterogeneity would lead to better treatment targeting, and would be a step towards 

“precision” medicine. Furthermore, there is hope that this knowledge would pave the way 

for better predictive modelling based on risk factors and disease progression. In other 

words, if we can correctly categorise children into different subtypes at a young age, we will 

have insight into the developmental trajectory of the disease in order to apply preventative 

strategies. However, we have yet to fully discover all the modifiable factors that influence 

the natural course of the asthma-related diseases. 
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A wide array of methodologies have been utilised to enhance subtypying of asthma 

and allergic diseases in childhood. Such methods range from expert investigator-led 

approaches to identifying patterns and co-occurrence of symptoms which mimics the 

approach used within a clinical setting, to supervised statistical modelling approaches which 

aim to test hypothesised frameworks for disease profiles, and unsupervised data-driven 

statistical methods which take an agnostic view of the data in order to infer structure based 

on pattern recognition computer algorithms9,10. Combinations of supervised and 

unsupervised models allow us to incorporate prior clinical knowledge within a data-driven 

approach and can also enable us to evaluate the likelihood that our observed data is aligned 

to prior hypotheses or clinical assumptions. All of these methods have advanced our 

knowledge in this field in different ways. Subjective expert-driven approaches have been 

able to describe and externally validate what is seen in clinic, while data driven machine 

learning approaches are capitalizing on the wealth of data available by seeking to find 

patterns of disease and then applying that to the general population.  

Our understanding of asthma heterogeneity is constantly evolving. In this review, we 

present our current knowledge of the subtypes in childhood asthma. We explain the clinical 

implications of phenotyping and subtyping asthma in childhood, as this is the critical period 

that is amenable to potential prevention strategies.  

 

 

 

 

 

Figure 3.1: Schematic drawing of the asthma syndrome. BMI: body mass index 
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3.3 Wheeze phenotypes 

 

The presence or absence of wheeze is one of the key determinants of asthma. 

Wheezing is associated with airflow obstruction due to airway narrowing. In children, this 

auscultatory finding is primarily an expression of large airway obstruction. Wheeze can 

manifest in various ways and at different time points in a child’s life. However, it should be 

noted that not all wheeze can lead to asthma, particularly in those children below the age of 

3 years. Within the last decade, there has been a surge of data describing various ways of 

identifying wheeze phenotypes in childhood. At the most general level, phenotypes have 

been characterised according to age of onset (early vs late), according to severity, or based 

on triggers (viral, allergen, or other).  

 

3.3.1 Wheeze phenotypes based on age of onset and remission (temporal pattern) 
 

Differentiating wheeze phenotypes by age of onset during childhood can give insight 

into the pattern of disease expression later in adulthood. The ability to predict both the 

timing (whether a child will develop wheezing early on or later in life) as well as subsequent 

profile of symptom development may allow us to pre-emptively manage such occurrence 

and severity. As a result, age of onset of wheeze and its persistence have become key 

determinants for identifying distinct wheeze subtypes.  

 

Early onset transient wheeze  

The first seminal paper to characterize wheeze and its natural history was by 

Martinez et al11 in an unselected birth cohort based in Tucson, AZ. Using a subjective clinical 

approach based on the observed patterns of wheeze over time, ‘transient-early onset 

wheeze’ was defined as wheeze with onset before the age of three years, with subsequent 

resolution by age six years11. The authors hypothesized that transient early wheeze may be 

triggered by viral infections. These children initially had poorer lung function in infancy 

which later improved, although remaining lower compared to the control group.  

 The Manchester Asthma and Allergy Study (MAAS) used a longitudinal latent class 

model integrating data from both parental questionnaires and medical records to ascertain 

children’s wheeze symptoms. This model represented a statistical data-driven approach 
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which assigns children to their most probable latent (unobserved) cluster based on the 

patterns of wheeze at multiple time-points (Figure 3.2). These clusters are hypothesised to 

represent distinct symptom profiles with distinct underlying pathophysiology. Using 

complementary data sources enabled the modelling of uncertainty in parental or physician 

diagnosis of wheeze. Similar to the Tuscon cohort, MAAS also identified a transient early 

wheeze group (wheezing from age 1-5). However, unlike Tuscon, they found that lung 

function in these children remained impaired compared to non-wheezers throughout 

childhood12.   

Using a similar statistical approach, but based only on parental reporting of wheeze, 

Henderson et al13 of the Avon Longitudinal Study of Parents and Children (ALSPAC) (see 

Figure 3.2) cohort identified a prolonged early wheezing group (wheezing from 6-54 

months). Compared to the findings from the Tucson study, the prolonged-early phenotype 

is thought to be a more severe form of transient-early wheeze based on observed 

diminished lung function at age 8-9 years for this group of children. However early-life lung 

function was not available thus hindering evaluation as to whether there is a distinction in 

pre-morbid lung function for this group of children compared to the transient early 

wheezers. Indeed, as lung function measurements are difficult to obtain below the age of 2 

years, many institutions are increasingly reluctant on labelling early wheeze as asthma. The 

results from the ALSPAC have been replicated using similar methodology in other cohorts 

12,14-17. Within the various studies described, the definition and prevalence of early-onset 

wheeze varied between study groups (in part likely a consequence of the age at which data 

was collected). For example, the prevalence of early-onset wheeze in the Tucson study11 

was 19.9%, and 23.5% in MAAS18. Using a solely data-driven approach, the proportion of 

children in MAAS19 rose to 29.3%, while ALSPAC reported 42.4%13.  

In most studies, the majority of children who wheezed early in infancy have 

symptom resolution in later childhood 11,20-23. Risk factors identified for transient early 

wheeze include exposure to tobacco smoke, day care attendance, virus infections, and 

family history of asthma14,24,25. Results have been inconsistent with regards to sex and 

position in sibship25-27. 
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Figure 3.2: Comparison of wheeze phenotypes from Manchester Asthma and Allergy Study (MAAS) 
and Avon Longitudinal Study of Parents and Children (ALSPAC) (adapted and modified from [12] and 
[28], with permission). 

 

Persistent wheeze 

Similar to transient wheezers, children with persistent wheeze start wheezing in 

early life; however, in contrast to transient wheezers, their symptoms do not resolve, but 

continue in later childhood11. One of the characteristics of persistent wheeze is diminished 

lung function by school age, with likely persistence to adulthood. Martinez et al11 found that 

compared to controls (non-wheezers), children with persistent wheeze initially had normal 

lung function, but that lung function significantly worsened by age six years. This was also 

seen at age 11 years in a follow-up study29. These children were more likely to be atopic, 

have higher IgE levels, and be sensitized early on. Using similar subjective methods to 

characterise children, study groups from New Zealand20 and Australia30, observed that 

children who were categorised as persistent wheezers continued to wheeze into adulthood 

and had consistently lower lung function. 

Availability of data from primary care medical records in the MAAS cohort31 allowed 

stratification of persistent wheeze into two distinct subgroups: persistent controlled and 

persistent troublesome wheeze. Children with “troublesome” wheeze were more likely to 

have a high symptom burden despite high doses of inhaled corticosteroids. Belgrave et al12 

found that being highly atopic (whether to food or inhalant allergens) and having 

concurrent eczema were strong predictors of this phenotype.  The persistent wheeze 

identified in ALSPAC showed a similar pattern though with weaker atopy associations13. 

Early identification of children who are at risk of persistent troublesome wheeze would 
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allow for better management, and possible prevention to reduce the likelihood of 

persistence of troublesome symptoms into adulthood. 

An intermediate onset wheeze (onset between 18-42 months) was identified in 

ALSPAC, though given the time of onset, this could be classified as early in other studies. 

Children in this category were more likely to be atopic (particularly to house dust mite and 

cat), have poor lung function, and subsequently be at risk of developing asthma in later 

childhood.  

Atopic sensitization is a well-documented risk factor for both persistent wheezing11-

13 and the persistence of asthma from school-age to late teenage years32. However, Simpson 

et al have demonstrated that atopic sensitisation may not be a simple dichotomous trait, 

but rather a collection of several different atopic vulnerabilities33. Of the four distinct 

sensitization classes identified in this study, there was a strong association between only 

one of these classes (assigned as multiple early atopy) and persistent wheezing. Similar 

structure within the data on sensitisation, and identical association with persistent 

wheezing and asthma has been reported in the Isle of Wight study34. Using a similar 

approach, similar atopic patterns were identified in the Childhood Asthma Prevention Study 

(CAPS) from Australia, and asthma at age 8 was associated with mixed food (predominantly 

peanut) and inhalant sensitization35. However, such stratification of atopic sensitization 

requires the use of complex machine learning models on rich longitudinal data, and cross-

sectional biomarkers of different atopic vulnerabilities will need to be discovered if this is to 

be translated into clinical practice. 

 

Late onset wheeze 

Late onset wheeze is generally described as wheeze with onset after age three years 

which persists into later childhood. Atopic sensitization is consistently associated with this 

phenotype of wheeze across the different studies12-14. In ALSPAC, this sensitisation was 

grass pollen induced13. However, the association between late onset wheezing, lung 

function and bronchial hyperresponsiveness has differed between different studies. For 

example, MAAS and ALSPAC found that late onset wheeze was significantly associated with 

increased bronchial hyperresponsiveness and lung function impairment at age 613,31 while 

Prevention and Incidence of Asthma and Mite Allergy (PIAMA)15 and Southampton Women’s 

Study (SWS)14 showed such association. Amongst environmental exposures, maternal 
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smoking  during pregnancy was risk factor for late onset wheezing in some11,36, but not all 

studies12,14.  

Little is known on the stability of this phenotype, and further longitudinal follow-up 

is required to determine whether late-onset wheeze persists into adulthood.    

 

3.3.2 Wheeze phenotypes based on triggers 
 

Treatment of early childhood wheeze has been generally limited by the lack of 

evidence for the efficacy of most currently available treatments. To facilitate management 

of young children with wheezing, the European Task Force37 proposed a clinical 

differentiation of early childhood wheezing into two subgroups: ‘episodic viral wheeze 

(EVW)’ and ‘multiple trigger wheeze (MTW)’. EVW is described as intermittent seasonal 

wheeze episodes with occasional periods of ‘feeling well’. Children labelled with episodic 

viral wheeze tend to be non-atopic with almost normal lung function, and symptoms tend 

to resolve by late childhood38,39. Multiple trigger wheeze (MTW) is defined as “wheezing 

that shows discreet exacerbations, but also symptoms in between episodes40.” Proposed 

triggers of MTW includes allergens, exercise, mist, crying, laughter etc.37. Of note, the major 

trigger of MTW are respiratory virus infections, making a clear distinction between EVW and 

MTW difficult. Both EVW and MTW are defined cross-sectionally at different ages, with 

severity of symptoms being accounted for by varying frequencies of wheezing episodes 

(more than three classified as frequent)41,42. This classification was based on expert opinion, 

rather than solid data, and the implications were that ICS treatment would be more 

appropriate and effective for the MTW compared to EVW. However, neither of these two 

proposed “phenotypes” have been shown to be stable. For example, Schultz et al43 showed 

that more than 50% of children change their phenotypic classification within 12 months of 

allocation into one of these two groups; EVW most frequently changed to MTW. However, a 

few years later, Schultz and Brand showed that regular use of corticosteroids had a modest 

effect on reducing symptoms in the EVW group44. Despite this, it is important to note that a 

phenotype-driven approach to treatment is still currently limited by our ability to accurately 

differentiate phenotypes and therefore the clinical utility is yet to be determined44.  

There have been attempts to validate this classification using data-driven 

techniques. For example, EVW was identified using latent class analysis in two studies from 
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the Trousseau Asthma Program (TAP)38,45, while one study from Leicester, UK39 suggested 

that the ‘transient early wheeze’ phenotype was very similar to EVW. A more severe type of 

EVW characterised by high FeNO levels and strong family history of asthma was described 

by Kappelle et al46, and these children were at an increased risk of developing asthma at age 

five to 10 years, which was found to persist into adulthood47. The TAP group identified an 

atopic MTW in boys that was associated with severe wheezing and allergic comorbidities45.  

There have been attempts to reconcile phenotypes described through temporal 

patterns of symptoms and those based on triggers. For example, it has been suggested that 

transient early wheeze may correspond to EVW, and persistent wheeze to MTW11,39.  

However, identifying children as having EVW/MTW is a relatively poor predictor of whether 

they would subsequently be classified as transient/persistent wheezers, with low positive 

predictive values41,48-50. Depner and colleagues16 sought to compare the data-driven wheeze 

phenotypes (early, transient, intermediate, late-onset, persistent) with the clinical 

classification of EVW/MTW by using a multi-country cohort of children from birth to 6 years 

of age and applying a longitudinal latent class model. Their results showed that 

approximately 60% of children with EVW were found to be within the transient early 

wheeze class implying that this phenotype is unlikely to encompass a chronic condition with 

poor lung function, but rather an initial response to viruses that eventually resolves16. 

However, the correlation with the LCA classes was poor. In contrast, 60-70% of children with 

MTW were either in the intermediate, late-onset, or persistent wheeze class. The 

correlation with the LCA classes was very high. Further to this, a variant of MTW was also 

identified and labelled recurrent unremitting wheeze (symptoms or wheeze without a cold 

on multiple occasions). This was characterised by impaired lung function, nonresponse to 

bronchodilators, and association with smoke exposure in utero. This group was also strongly 

correlated with late-onset thereby suggesting a distinct disease entity16. 

In the clinical community there is often an erroneous assumption that transient and 

EVW are relatively “benign”, and persistent and MTW more troublesome.  However, data 

from Manchester cohort have shown that almost 70% of all inhaled corticosteroids 

prescribed in the first year of life were prescribed to children in the transient wheeze group, 

although this class accounted for only one third of children who wheezed in the first year12. 

This would suggest that early-life transient wheezers may have more severe wheezing in 

infancy compared to those children who wheeze early, but go on to become persistent 
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wheezers, and does not support the notion that transient and EVW are benign.  These 

children may also be at risk of developing COPD in adulthood.  

 

3.4 Phenotypes of severe asthma 

 

The challenges in treatment of severe childhood wheezing/asthma due to high rates 

of non-responders suggests that children in the most severe category are either not taking 

their treatment, are undertreated, or do not respond to the currently available treatments. 

Although quantitatively small, this group of children consume a high proportion of 

resources51 and therefore represent a significant economic burden.  

In the US Severe Asthma Research Program (SARP), Fitzpatrick et al52 used 

hierarchical clustering to identify four subgroups of severe asthmatic children differing in 

age of onset, lung function, FeNO and medication use. All subgroups were atopic, however, 

there was large variation in the magnitude of atopy. It is of note that the definition of 

asthma severity proposed by the ERS/ATS task force53 was not fully applicable to any of the 

subgroups, despite initially using an ATS definition. In contrast, a study in Sweden did not 

find an association between atopy and severity of asthma54. They found that environmental 

factors, such as smoking, were significant risk factors for the severe asthma phenotype.  

The TAP group identified two other severe phenotypes, though within a more 

heterogeneous asthmatic population: ‘asthma with severe exacerbations and multiple 

allergies’, and ‘severe asthma with bronchial obstruction’55. The first phenotype showed 

marked eosinophilic and basophilic inflammation, but the baseline FEV1 values were within 

normal range, though slightly lower than those for the mild asthmatic group.  This is 

consistent with the observation that children can exacerbate frequently despite high 

medication use and yet still have relatively normal FEV1. The second phenotype was 

characterised by neutrophilia and high BMI. Additionally, this group of children had poorer 

lung function, though FEV1 was still within normal limits as depicted by guidelines, 

confirming that spirometry in children may not be a good marker of severe childhood 

asthma.  
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3.5 Use of biomarkers to identify phenotypes 

 

The heterogeneity of asthma with regards to symptom expression, response to 

therapy, and lung function has prompted the search for objective markers with better 

diagnostic value which are able to distinguish distinct subtypes of asthma. The gold 

standard for assessing the extent of airway inflammation is through the use of bronchial 

biopsies, bronchoalveolar lavage, and sputum induction. These techniques, however, are 

too invasive for children, and there has to be a clear clinical indication with intended benefit 

for this method of assessment to be employed56. As a result, biomarkers in childhood 

asthma/wheezing have mostly been limited to serum/blood and breath. These biomarkers 

primarily assess eosinophilic or Th2 inflammation57.  

 

3.5.1 Fractional concentration of exhaled Nitric Oxide (FeNO) 
 

Fractional concentration of Nitric Oxide has been widely used in children as it is non-

invasive and relatively simple. Several studies have shown strong correlations between 

FeNO levels and blood/sputum eosinophils58, IgE59-61, and serum eosinophilic cationic 

protein62,63, with higher levels of FeNO denoting Th2-mediated inflammation and good 

response to inhaled corticosteroids64. ‘Low’ FeNO levels are thought to represent non-

eosinophillic asthma subtypes that are less likely to respond to ICS treatment65. The optimal 

threshold to differentiate what constitutes ‘high’ or ‘low’ levels of FeNO is still up for 

debate. The most recent guidelines suggest FeNO <20ppb indicates poor response to 

inhaled corticosteroids, while FeNO >35ppb indicates good response66, but that serial 

measurements should be taken over time for monitoring. However, this recommendation is 

based on studies that had different cut off points and different positive/negative predictive 

values with respect to inhaled steroid effect. It is also important to keep in mind that FeNO 

levels reflect inflammation and not necessarily asthma, and so interpretation of results 

should be taken within context, particularly in the case of atopic comorbidities. As it stands, 

rather than identifying subtypes of wheezing, the clinical utility of FeNO is currently limited 

to that of a screening method for eosinophilic and Th2 mediated inflammation with some 

indication of steroid response, and may be used as a marker of adherence with ICS 

treatment.  
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3.5.2 Exhaled Breath Condensate 
 

Exhaled breath condensate (EBC), thought to mirror airway lining fluid67, is obtained 

by cooling exhaled air from children breathing normally for 10-15 minutes68. Potential 

biomarkers include pH, markers of oxidative stress (8-isoprostane, hydrogen peroxide, 

aldehydes) and airway inflammation (eicosanoids, cytokines). Despite the lack of a 

standardised method, reference values, or proper validation69, some interesting results 

have emerged. For example, 8-isoprostane has been found in increased quantities in both 

problematic and atopic asthmatic children despite ICS treatment70-71. Th2 Cytokines, such as 

IL-4, are also increased in asthmatic children, especially those with concurrent atopy72 and 

persistent wheeze73. This cytokine was also found to be a good marker for assessing asthma 

control72. Additionally, cytokine IL-5 has been shown to predict asthma exacerbations74. 

However, other studies have questioned the utility of EBC (in particular measuring EBC pH) 

in childhood asthma75.  

 

3.5.3 Periostin  
 

Periostin is an emerging biomarker in Th2 inflammation in studies in adults. It is 

induced by IL-4 and IL-13 in airway epithelial cells and lung fibroblasts and thought to 

mediate collagen synthesis and fibrillogenesis76,77. It has been suggested that high periostin 

is associated with good clinical response to corticosteroids in Th2 inflammation78. Recently, 

it has been used in clinical trials as a predictor of response to lebrikizumab (anti IL-13)79. 

However, periostin levels are higher in children compared to those in adults and change 

developmentally (likely due to bone turnover and growth), and it remains unclear whether 

periostin will be of use in phenotyping childhood wheezing and asthma.  

 

3.6 Asthma phenotypes and genetic studies 

 

Approaches for discovering genes connected to asthma have ranged from candidate 

gene association studies and genome-wide linkage studies, to more recent genome-wide 

association studies (GWAS). Several large studies (e.g. European GABRIEL consortium80 and 

US EVE consortium81) identified a number of genetic associates of asthma in children (in 
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particular in the region 17q21). However, the predictive value of these is low, with 

specificity being 75% and sensitivity only 35%. Other genes (IL33, IL1RL1, IL18R1) have also 

been implicated in asthma development82.  Most genetic studies defined “asthma” as 

parentally or patient-reported “doctor-diagnosed asthma”.  Unless genetic studies find 

better ways to distinguish between different asthma subtypes under this umbrella diagnosis at 

a population level, it will be difficult (if not impossible) to discover their unique underlying 

genetic risk factors, as any signal will be diluted by phenotypic heterogeneity83. It is worth 

emphasizing that when a much more precise and specific definition of early-life onset 

asthma with recurrent, severe exacerbations in pre-school age was used in a GWAS, 

identified associations had a considerably greater effect size (e.g. in 17q21 region), and 

novel susceptibility genes such as CDHR3 (cadherin-related family member 3, rs6967330, 

C529Y]) were identified84. Subsequent studies have shown that CDHR3 may be a receptor for 

rhinovirus-C, and that the same genetic variant which was linked with hospitalizations for 

early-onset childhood asthma in birth cohort studies also mediates enhanced RV-C binding 

and replication85.  These studies provide indirect evidence that we need to move away from 

using umbrella term of “doctor-diagnosed asthma” in genetic studies, and that investigation 

of genetic associates of different wheeze phenotypes may render more informative 

findings. As an example, the ALSPAC investigators extended genetic association studies to 

include wheeze phenotypes which they identified previously, and found that 17q21 locus 

was associated with persistent and intermediate wheeze, but not with transient wheeze, 

atopy or lung function86. Combining data from the ALSPAC and the PIAMA cohort, Savenije 

et al found that IL1RL1 and IL33 SNPs were associated with intermediate and late-onset 

wheeze and that this was in the presence of early sensitization, thus suggesting that allergic 

sensitization, through the IL33-IL1RL1 pathway, may be the key driver to wheeze and 

subsequent asthma development87.  

A different approach using transcriptomic analysis of peripheral blood in children 

with viral induced wheeze and exacerbations has shown that there are distinct microRNA 

profiles in CD8+ T cells, with reduced regulation of microRNA146a/b and microRNA28-5p88. 

Although we have been able to enhance our knowledge of genetic associations of 

wheeze phenotypes and asthma at a population level, we have still not been able to 

translate this knowledge to an individual level. This is partly due to the heterogeneous 

nature of childhood wheezing and asthma described above, but is also a consequence of 
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gene-environment interactions whereby the genetic effect on asthma may be modified by 

certain environmental factors. Classical examples of the role of gene-environment 

interaction in modifying disease is finding that the impact of environmental endotoxin 

exposure on non-atopic wheeze and atopic sensitization was dependent on and modified by 

genetic variants in CD1489,90, and studies demonstrating that the effect of day care on atopic 

wheezing is opposite among children with different variants of the TLR2 gene91. The 

approach to understanding asthma within the complex context of gene-environment 

interactions may be an incentive utilise a candidate gene approach based on sound 

epidemiological principles of causality92.  

 

3.7 Conclusion 
 

3.7.1 Lack of cohesive methodology for understanding asthma phenotypes in childhood 

 

There is clear lack of standardisation in defining childhood wheezing illness and 

asthma which is leading to the inconsistent findings with respect to the genetic, 

environmental and physiological risk factors associated with this disease. In the last few 

years, a plethora of divergent statistical methods have been used in an attempt to 

understand the natural history of childhood wheezing illness. Although, by definition, all 

these techniques find patterns within a dataset and categorise them accordingly, there is no 

unified statistical method, leading to inconsistency in results of studies using different data-

driven approaches. This is exacerbated by the problem of inconsistent use of variables in 

different analyses and inconsistencies in the data collection process itself. Indeed, this could 

explain the sizeable variation in the proportion of children assigned to these wheeze 

phenotypes among published studies (see Belgrave et al83 for table breakdown). This may 

be a reflection of both the different time points at which data was collected and the 

inherent symptom patterns among the dataset due to differences in population. Therefore, 

results from statistical and machine learning approaches need to be interpreted within a 

larger clinical context, and it needs to be emphasized that although such an approach can 

be used to generate hypotheses, it remains an exploratory rather than confirmatory 

approach to understanding subtypes of disease, and therefore clinical interpretation and 

external epidemiological validation is essential.  
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The large quantity and ready availability of data, while posing many challenges, also 

presents an opportunity to understand underlying disease heterogeneity with greater 

certainty. This is because a quantitatively increased volume of data gives us the ability to 

distinguish between “data signal” from “noise due to random variation” more accurately.   

Advances in computational power facilitate data visualisation and pattern recognition in 

high-dimensional data with greater speed and accuracy. Combined with increased 

computational power and advances in statistical methods, the emerging field of systems 

biology, which combines biomarkers, genomics, metabolomics, proteomics and 

computational mathematics, may enable better identification of pathophysiology 

underpinning disease subtypes. Integrating all these components from different cohorts and 

datasets, while including developmental patterns of symptoms, may initially identify 

common characteristics on a wider population level, with the ultimate goal of better 

understanding the disease on an individual level.   

 

3.7.2 Clinical implications of defining asthma phenotypes in childhood  

 

There has been considerable progress in our understanding of the heterogeneity of 

asthma. Phenotyping asthma has started to provide a framework for further research into 

subtyping based on specific mechanisms. What has been shown here is that asthma can no 

longer be considered a single disease. Phenotyping in children can be either based on age of 

onset, triggers, severity, or symptoms. The clinical relevance of this would then be seen 

taking it one step further and analysing how each child’s disease pattern develops over time 

and tailoring treatment accordingly. This is in stark contrast to the current approach where 

it is assumed that one drug treats all.  

 Classifying children into groups of similar observable characteristics and features will 

enable better understanding and subsequent classification into subtypes that represent the 

genetic, environmental, and biomarker make-up of the disease. Once this has been 

achieved, we can then follow-up longitudinally over time in order to assess stability, 

remission, and new onset of disease.   

The ultimate aim is to be one step closer to personalised medicine which would 

provide early prevention and/or tailored treatment leading to more efficient use of 
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resources and more efficacious control of disease in children. However, we are still not 

ready to apply this to every day clinical practice.  
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4.1 Rationale for the study 

 

The rationale for this study was to analyse a data-rich cross-sectional cohort in order 

to ascertain clinical features of asthma subtypes. The dataset has very little missing data and 

so removes the need to impute, thereby providing robust and stable results. Although cross-

sectional studies are limited in their ability to draw conclusions about causality or 

association since the risk factors and outcomes are measured at the same time point, they 

are good starting points for descriptive analytics and generating hypotheses. With that, this 

chapter serves as a framework for ascertaining key features of disease that are then 

expanded upon in the subsequent chapters.  

 
4.2 Abstract 

 
Background: Data-driven methods such as hierarchical clustering (HC) and principal 

component analysis (PCA) have been used to identify asthma subtypes, with inconsistent 

results.  

Objective: To develop a framework for the discovery of stable and clinically meaningful 

asthma subtypes.  

Methods: We performed HC in a rich dataset from 613 asthmatic children, using 45 clinical 

variables (Model 1), and after PCA dimensionality reduction (Model 2).  Clinical experts then 

identified a set of asthma features/domains which informed clusters in the two analyses.  In 

Model 3, we re-clustered the data using these features to ascertain whether this improved 

the discovery process. 

https://www.ncbi.nlm.nih.gov/pubmed/28833810
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Results: Cluster stability was poor in Models 1 and 2.  Clinical experts highlighted four 

asthma features/domains which differentiated the clusters in two models: age of onset, 

allergic sensitization, severity, and recent exacerbations.  In Model 3 (HC using these four 

features), cluster stability improved substantially.  The cluster assignment changed, 

providing more clinically interpretable results.  In a 5-cluster model, we labelled the clusters 

as: “Difficult asthma” (n=132); “Early-onset mild atopic” (n=210); “Early-onset mild non-

atopic: (n=153); “Late-onset” (n=105); and “Exacerbation-prone asthma” (n=13).  

Multinomial regression demonstrated that lung function was significantly diminished among 

children with “Difficult asthma”; blood eosinophilia was a significant feature of “Difficult”, 

“Early-onset mild atopic”, and “Late-onset asthma”.  Children with moderate-severe asthma 

were present in each cluster. 

Conclusions and clinical relevance: An integrative approach of blending the data with 

clinical expert domain knowledge identified four features, which may be informative for 

ascertaining asthma endotypes.  These findings suggest that variables which are key 

determinants of asthma presence, severity or control, may not be the most informative for 

determining asthma subtypes. Our results indicate that exacerbation-prone asthma may be 

a separate asthma endotype, and that severe asthma is not a single entity, but an extreme 

end of the spectrum of several different asthma endotypes. 

 

4.3 Introduction 

 
The evidence is mounting that asthma is an umbrella diagnosis for a collection of 

distinct diseases (endotypes), with varying phenotypic expression of characteristic 

symptoms (ranging from wheezing and shortness of breath, to cough and chest tightness), 

and accompanying variable airflow obstruction.1-3 It is important to make a clear distinction 

between asthma phenotypes (which are observable and measured characteristics of the 

disease)9 and asthma endotypes (which is a term that refers to the subtype of the disease 

with a clearly defined underlying mechanism).1,2,10 It is of note that similar symptoms and 

observable features can arise through different pathophysiological mechanisms, and that 

consequently different endotypes may have similar, or even the same phenotype.  

Identifying true endotypes of asthma and their underlying mechanisms is a pre-

requisite for achieving better mechanism-based treatment targeting, and ultimately delivery 
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of genuinely stratified medicine in asthma.10   However, although the current consensus in 

the medical community is that different asthma endotypes do exist, there is little 

agreement on what these are and how best to define them.5  

Approaches utilized in the search for asthma endotypes have ranged from 

investigator-led pattern identification in the clinical setting, to supervised and unsupervised 

statistical modelling techniques that utilize large amounts of data and computer algorithms 

to find the latent (hidden, unknown a-priori) patterns of observable features (such as 

symptoms, medication use, allergic sensitization, lung function), either in cross-sectional 

studies11-14 or over time. Data-driven approaches allow interrogation of data without 

imposing a-priori hypotheses, hence eliminating investigator bias and enabling novel 

hypotheses to be generated.5 In most previous studies which used such approaches, the 

selection of variables used for subtype discovery was either pre-determined by clinical 

advice,11,13,20 or by the use of statistical data reduction techniques such as principal 

component analysis (PCA).12,21,22 Although valuable information has been gained, and there 

was some (but not complete) resemblance between the results, most studies reported 

different disease clusters; several recent reviews have summarized these findings.6,16-18,23 

These inconsistencies may be explained by the inherent heterogeneity among different 

populations, the differences in clustering techniques used, the lack of consistency in 

selecting variables, their encodings and transformations,  or the use of excessive numbers of 

variables which may result in subtype ‘signals’ being drowned in the noise.24   

When selecting the variables for unsupervised analyses, the investigators rely on the 

data which is available (e.g. in birth cohorts14,15,19 or studies of adults and children with 

established disease11-13). In most clinical studies, the assessment and monitoring of study 

participants focuses on measures which aim to ascertain asthma presence, severity, control, 

and responsiveness to treatment. We hypothesise that these may not necessarily be the 

variables or features which are most informative for the discovery of disease endotypes. We 

propose that a careful synergy of data-driven methods and clinical interpretation may help 

us to better understand the heterogeneity of asthma and enable the discovery of true 

asthma endotypes.   In this study, we aimed to ascertain whether a framework for data 

interrogation which utilises an integrative approach that brings together the data and bio-
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statistical expertise, with a clinical expert domain knowledge and clinical experience, can 

facilitate the identification of stable and clinically meaningful asthma subtypes.   

 

4.4 Methods 
 

4.4.1 Study design, setting and participants 
 

We used anonymized data from a cross-sectional study which recruited children with 

asthma aged 6-18 years from two hospitals in Ankara, Turkey (Hacettepe and GATA 

University Hospitals); the study is described in detail elsewhere.24-26  Briefly, children who 

presented to the Paediatric Allergy and Asthma Units completed skin prick tests, spirometry, 

and measurement of bronchodilator reversibility (BDR).  Amongst children with a negative 

BDR test (<12% increase in FEV1 following administration of 200 µg of albuterol), airway 

hyper-responsiveness (AHR) was assessed using methacholine or exercise challenge test.  

Asthma was defined as all three of the following: (1) physician-diagnosed asthma; (2) 

current use of asthma medication; and (3) either BDR or AHR (positive methacholine or 

exercise challenge test).  Children with other known systemic disorders such as cystic 

fibrosis or immunodeficiency, and those who had a severe exacerbation requiring systemic 

corticosteroids or hospital admission within the previous four weeks were not included. 

4.4.2 Data sources/measurements  
 

We recorded a total of 47 variables for each study participant; of those, 45 were 

used in the analysis (Table E4.1). 

Symptoms, exacerbations and prescribed medications: A modified ISAAC questionnaire was 

interviewer-administered to ascertain the age of onset, the presence of asthma-related 

symptoms within the past 4 weeks, the number of asthma exacerbations within the past 

year, and hospitalizations for acute asthma (ever). 

Asthma severity: Categorised as mild, moderate or severe based on GINA guidelines 

(www.ginasthma.org); a detailed description is published elsewhere.25 Briefly, we allocated 

patients to severity group based on the assessment of clinical symptoms before the 

treatment was initiated; when the patient was already receiving treatment, the severity was 

http://www.ginasthma.org/)
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assigned based on the clinical features and the step of the daily medication regimen (for 

details, please see Online supplement). 

Lung function: We performed spirometry, methacholine and/or exercise challenge tests 

according to ATS/ERS guidelines;29,30 FEV1 (% predicted), FVC, FEV1/FVC and FEF25–75, were 

recorded.32,33 

Allergic sensitization: We carried out skin prick testing to a battery of allergens including 

dust mite, tree, grass and weed pollens, moulds, cat, dog, cockroach and horse. Wheal 3 

mm greater than negative control was considered a positive reaction. We also measured 

total serum IgE. 

Objective measurements: Height, weight, body mass index (BMI; standardized for age and 

growth and sex), and blood eosinophils.  

4.4.3 Statistical methods 
 

All analyses were performed in R software (www.r-project.org/).34 For a detailed 

description of statistical methods please see the online supplement. Briefly, we performed a 

hierarchical cluster analysis (HC) using three different models:  

1. HC after PCA dimensionality reduction: We first performed PCA on all variables in the 

dataset, and then carried out HC using principal components with eigenvalues>1.  

2. HC using all available variables: We performed HC on raw data, without removing or 

modifying any of the variables. 

3. Identification of a subset of potentially important features, and clustering using the 

informative subset: The results of the first two models were reviewed by clinical experts to 

identify features (domains) in the data set which may drive cluster allocation.  We then used 

these informative features in a further HC.  

Cluster stability was tested with bootstrapping methods.  The data were resampled 

and the Jaccard similarities of the original clusters to the most similar clusters in the 

resampled data were computed. The mean of the similarities were used as an index of 

stability, and a mean greater than 0.75 was deemed as stable.35  

We used logistic regression to identify variables which differed between the clusters.  

http://www.r-project.org/)
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All study procedures were done in accordance with a protocol previously approved 

by the Ethics Committee of Hacettepe University Ethics committee (# FON 02/24-1) and the 

Ethics Committee of Gulhane School of Medicine (05.06.2013/21). All parents provided 

written informed consent and children provided assent for the study procedures. 

 

4.5 Results 
 

4.5.1 Participants and descriptive data 
 

The study population comprised of 613 asthmatic children (64% male, median age 9 

years, 49% with physician-diagnosed allergic rhinitis, 39% exposed to tobacco smoke, 59% 

atopic, all receiving SABA as needed, 61% receiving ICS, 15% experiencing 2 or more asthma 

exacerbations in the previous year, with mean FEV1 % predicted of 87%). The characteristics 

of the study population are shown in Table 4.1. Asthma was classified as mild, moderate, or 

severe in 78%, 20%, and 2% of cases, respectively. 

 

Table 4.1: Demographic characteristics of the study population. Definition of abbreviations: BMI = 
body mass index, FEV1 = forced expiratory volume in 1 second, FVC = forced vital capacity, *ICS = 
inhaled corticosteroid dose represented as BDP equivalent, LABA = long acting beta2-agonist, SABA = 
short acting beta2-agonist. Continuous variables are given as mean and standard deviation, binary 
variables are given as percentages with absolute values 

N=613 Mean (SD) 

% (N) 

Age at follow-up (years) 9 (3.0) 

Sex (male) 64% (392) 

BMI 18.4 (3.6) 

Age of asthma onset (years) 5 (3.4) 

Family history of asthma (yes) 30% (184) 

Exposure to tobacco smoke (yes) 39% (240) 

Skin prick test positivity 59% (361) 

FEV1 % predicted 87 (14.3) 
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FVC % predicted 96 (15.1) 

FEV1/FVC (%) 86 (7.0) 

Bronchodilator Reversibility (%) 17.1 (12.9) 

Total IgE (kU/L) 228 (458) 

Blood eosinophil (%) 4.4 (3.5) 

Asthma Severity 

Mild 78% (476) 

Moderate 20% (126) 

Severe 2% (11) 

Using regular ICS 61% (375) 

ICS dose >400mcg* 18% (113) 

Using regular Montelukast 8% (51) 

Using regular controller medication 
(ICS/LABA and/or Montelukast) 

63% (385) 

Using regular ICS/LABA 8% (51) 

2 or more asthma attacks within the last year  15% (95) 

2 or more hospitalizations for asthma ever 5% (29) 

Presence of rhinitis 49% (302) 

Presence of eczema 6% (37) 

 

 

4.5.2 Data-driven analyses: Dimensionality reduction vs. clustering using all available 
variables 
 

HC after dimensionality reduction: Dimensionality reduction using PCA identified 19 

components with eigenvalues above 1, which accounted for 73% of the variance within the 

dataset.  The correlation matrix of the variables is shown in Figure E4.1. Variables describing 

atopy correlated highly, as did those relating to lung function and medication use. Table 
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E4.2 shows the eigenvalues and variance explained by 19 components, and Table E4.3 the 

variable contribution/loading to each of the first five components.  

A five-cluster model in HC after PCA dimensionality reduction provided the most 

clinically interpretable results.  Table E4.4 shows clinical features/variables which differed 

across the clusters.  Based on their dominant features, we labelled the clusters as: Cluster 1 

(n=102),  “Moderately-severe asthma with poor lung function, high symptom burden and 

medication use”; Cluster 2 (n=70), “Middle school-age onset, predominantly male, with high 

symptom burden despite normal lung function”; Cluster 3 (n=117), “Late-onset, multiple 

sensitization, mild asthma with diminished lung function”; Cluster 4 (n=149), “Early-onset 

atopic mild asthma, predominantly female”; Cluster 5 (n=175), “Mild atopic asthma”.  

Children in Cluster 1 had the lowest lung function, with FEV1 21% lower compared to those 

in Cluster 5.  Clusters 2 and 3 comprised of predominantly boys, while those in Cluster 4 

were mostly girls. Allergic comorbidities were significant features of Cluster 3. 

HC using all available variables:  As in the previous model, a five-cluster solution 

provided the most clinically interpretable results. However, the clusters were different, both 

in terms of clinical characteristics and the number of children in each cluster. Table E5 

highlights clinical features and variables which differed across the clusters. We labelled the 

clusters as: Cluster 1 (n=168), “Early-onset severe asthma, predominantly female”; Cluster 2 

(n=100), “Late-onset mild atopic asthma”; Cluster 3 (n=103), “Moderate-severe atopic 

asthma”; Cluster 4 (n=223), “Mild non-atopic asthma, predominantly male”; Cluster 5 

(n=19), “Middle-school age of onset, atopic, with frequent exacerbations”. Children in 

Cluster 3 had the poorest lung function (mean FEV1 72.6%), Cluster 2 was associated with 

allergic comorbidities, and Cluster 5 was predominantly associated with exacerbations 

(Table E4.5).  

Cluster stability: Cluster stability was generally poor for both models, with HC on 

principal components producing only one stable cluster (Cluster 1), and HC using all 

available data producing two stable clusters (Clusters 2 and 5).  

4.5.3 Blending the data and bio-statistical expertise with clinical expert domain knowledge 
 

Identification of stable features which distinguish the clusters: We first compared the 

subject allocation between the two analyses to ascertain the overlap which could indicate 
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similarity (Table E4.6). However, there was little overlap (apart from one cluster pair, Cluster 

5 in HC after PCA, and Cluster 4 in HC using all variables).  We therefore proceeded with the 

comparison of the characteristics of clusters which we identified using the two methods. 

Clinical domain experts reviewed the results (Tables E4.4-E4.6) to highlight features and 

variables which characterized each cluster, and similarities and differences between the 

clusters (Table E4.7).  We then used clinical expert domain knowledge and experience to 

identify four disease features/domains common to each cluster in both models: 1. Age of 

onset; 2. Allergic sensitization; 3. Asthma severity; and 4. Recent exacerbations.  We 

assigned these four features as an “informative set”, and proceeded to ascertain whether 

using this set may help distinguish asthma subtypes.   

HC using the informative set of features: In HC using this informative subset of 

features, a five-cluster solution provided the most clinically interpretable results.  Compared 

to previous analyses, the cluster assignment changed, but the cluster stability improved 

substantially (Table E4.8, bootstrap mean>0.99). Table 4.2 shows clinical features which 

differed across the clusters.  Based on the dominant features of each cluster, we labelled 

them as: Cluster 1 (n=132), “Difficult asthma”; Cluster 2 (n=210), “Early-onset mild atopic 

asthma”; Cluster 3 (n=153), “Early-onset mild non-atopic asthma”; Cluster 4 (n=105), “Late-

onset asthma”; and Cluster 5 (n=13), “Exacerbation-prone asthma”.  

By varying the definition of allergic sensitization from the dichotomous 

(sensitized/not sensitized; Table 4.2), to ordinal (non-atopic, mono-sensitized, poly-

sensitized; Table E4.9) and continuous (IgE titre; Table E4.10), we found that the clusters 

remained very similar despite some changes to cluster allocation. However, the cluster 

stability slightly decreased. 

We validated the clusters in relation to lung function (FEV1, FEV1/FVC, BDR), blood 

eosinophils, allergic comorbidities (eczema or rhinitis), family history and environmental 

exposures (Table 4.3). Multinomial regression model using children in Cluster 3 (with 

mildest asthma) as the reference has indicated that lung function was significantly 

diminished only among children in Cluster 1 (“Difficult asthma”).  High blood eosinophilia 

was a significant feature of “Difficult asthma”, “Early-onset mild atopic asthma” and “Late-

onset asthma” clusters, while family history of asthma and concurrent rhinitis were most 

common among children in “Early-onset mild atopic asthma” cluster. Exposure to tobacco 



 79 

smoke was highest among children in the “Difficult asthma” cluster, although this did not 

reach statistical significance (p=0.09). There was no difference in pet ownership and eczema 

between the clusters. Children with moderate/severe asthma were present in each of the 

clusters (Cluster 1, 65%; Cluster 2, 10%; Cluster 3, 8%; Cluster 4, 13%; Cluster 5, 38%).  
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Table 4.2: Univariate logistic regression analysis showing the clinical features that differed across the clusters derived by HC using the four informative 
features/domains (dichotomous definition of allergic sensitization).Quantitative variables are represented as mean (95% CI). Ordinal variables are 
represented as proportions (%).*Coeff: The coefficient translates into a value of how likely a child is assigned to that cluster based on the variable response. 

 

 

 

Feature/domain 

Cluster 1 (n=132) 

“Difficult asthma” 

Cluster 2 (n=210) 

“Early-onset mild 
atopic asthma” 

Cluster 3 (n=153) 

“Early-onset mild non-
atopic asthma” 

Cluster 4 (n=105) 

“Late-onset asthma” 

Cluster 5 (n=13) 

“Exacerbation-prone 
asthma” 

Coeff* 

Mean 
(95%CI) or 
frequency 

(%)  

P-
value 

Coeff 

Mean 
(95%CI) or 
frequency 

(%) 

P-
value 

Coeff 

Mean 
(95%CI) or 
frequency 

(%) 

P-
value 

Coeff 

Mean 
(95%CI) or 
frequency 

(%) 

P-
value 

Coeff 

Mean 
(95%CI) or 
frequency 

(%) 

P-
value 

Age of Onset  -0.03 0.04 -0.10 <0.001 -0.12 <0.001 0.26 <0.001 -0.008 0.14 

Years 4.9 (2.3-7)  4.4 (3-6)  3.8 (2-6)  10.7 (9-12)  4.1 (2-5)  

Asthma attacks  0.008 0.96 -0.04 0.04 -0.04 0.02 -0.04 0.007 0.12 <0.001 

Number, previous year 1.0 (0-1)  0.8 (0-1)  0.9 (0-1)  0.4 (0-1)  3.5 (0-7)  

Allergic sensitization -0.002 0.88 0.29 <0.001 -0.29 <0.001 0.01 0.26 -0.002 0.71 

Sensitized 77/132 
(58%) 

 183/210 
(87%) 

 27/153 
(18%) 

 67/105 
(64%) 

 7/13 (54%)  

Asthma Severity 0.38 <0.001 -0.17 <0.001 -0.13 <0.001 -0.08 <0.001 0.006 0.27 

Mild 46/132 
(35%) 

 190/210 
(90%) 

 141/153 
(92%) 

 91/105 
(87%) 

 8/13 (62%)  

Moderate/severe 86/132(65%)  20/210 
(10%) 

 12/153 (8%)  14/105 
(13%) 

 5/13 (38%)  
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Cluster stability 1.00 0.99 0.99 1.00 1.00 

 
 
 
Table 4.3: Multinomial logistic regression analysis showing lung function, blood eosinophils, tobacco smoke exposure, pet ownership, family history of 
asthma, and comorbidities across the five clusters derived by HC using the four informative features/domains. Quantitative variables are represented as 
mean (95% CI). Ordinal variables are represented as proportions (%); RR: relative risk, CI: confidence interval 

 

 Cluster 3 (n=153) 

“Early-onset mild 
non-atopic asthma” 

Cluster 1 (n=132) 

“Difficult asthma” 

Cluster 2 (n=210) 

“Early-onset mild atopic 
asthma” 

Cluster 4 (n=105) 

“Late-onset asthma” 

Cluster 5 (n=13) 

“Exacerbation-prone 
asthma” 

FEV1 % 
predicted 

 

Mean (95%CI) 88.4 (86-91) 83.0 (74-91)  88.0 (80-96)  87.9 (78-97)  83.2 (74-90)  

RR (95% CI) N/A (Reference group) 0.68 (0.53-0.86) P<0.001 0.97 (0.79-1.20) P=0.82 0.85 (0.75-1.25) P=0.81 0.82 (0.39-1.22) P=0.19 

FEV1/FVC (%) Mean (95%CI) 86.6 (85.5-87.7) 84.8 (83.5-86.1)  86.3 (85.4-87.2)  85.4 (84.1-86.8)  83.7 (78.8-88.5)  

RR (95% CI) N/A (Reference group) 0.77 (0.61-1.09) P=0.03 0.95 (0.77-1.18) P=0.65 0.83 (0.65-1.08) P=0.17 0.67 (0.39-1.14) P=0.14 

Bronchodilator 
reversibility 
(BDR), % 

Mean (95%CI) 16.5 (14.7-18.4) 18.9 (17.6-20.2)  16.6 (14.8-18.4)  17.5 (14.6-20.5)  12.5 (9.4-15.6)  

RR (95% CI) N/A (Reference group) 1.18 (0.93-1.49) P=0.16 1.00 (0.79-1.36) P=0.98 1.08 (0.83-1.39) P=0.55 0.58 (0.25-1.37) P=0.22 

Blood 
eosinophils, % 

Mean (95%CI) 3.2 (2.8-3.7) 4.4 (1.8-5.65)  5.1 (2.4-7.1)  4.9 (2.5-6.6)  4.2 (1.9-4.7)  

 RR (95% CI) N/A (Reference group) 1.62 (1.20-2.17) P=0.001 1.94 (1.48-2.54) P<0.001 1.88 (1.40-2.54) P<0.001 1.51 (0.79-2.87) P=0.20 

Frequency (%) 57/153 (37%) 62/132 (47%)  75/210 (36%)  41/105 (39%)  5/13 (38%)  
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Exposure to 
tobacco smoke 

RR (95% CI) N/A (Reference group) 1.49 (0.93-2.39) P=0.09 0.93 (0.61-1.44) P=0.76 1.08 (0.65-1.79) P=0.77 1.05 (0.32-3.37) P=0.93 

Pet ownership Frequency (%) 10/153 (7%) 10/132 (8%)  15/210 (7%)  15/105 (14%)  1/13 (8%)  

RR (95% CI) N/A (Reference group) 1.06 (0.43-2.58) 

 

P=0.90 0.99 (0.44-2.23) 

 

P=0.99 2.15 (0.95-4.89) 

 

P=0.07 0.006 (0.0001-
2278) 

P=0.68 

Family history 
of asthma 

Frequency (%) 35/153 (23%) 37/132 (28%)  78/210 (37%)  31/105 (30%)  3/13 (23%)  

RR (95% CI) N/A (Reference group) 1.13 (0.88-1.45) P=0.32 1.37 (1.11 – 1.70) P=0.004 1.17 (0.90-1.52) P=0.23 1.01 (0.54 – 1.86) P=0.98 

Current eczema Frequency (%) 8/153 (5%) 8/132 (6%)  17/210 (9%)  3/105 (3%)  1/13 (8%)  

RR (95% CI) N/A (Reference group) 1.17 (0.43-3.21) 

 

P=0.76 1.59 (0.67-3.80) 

 

P=0.29 0.53 (0.13-2.06) 

 

P=0.36 1.51 (0.17-13.11) P=0.71 

Current rhinitis Frequency (%) 42/153 (27%) 51/132 (39%)  147/210 (70%)  56/105 (53%)  6/13 (46%)  

RR (95% CI) N/A (Reference group) 1.66 (1.01-2.74) 

 

P=0.04 6.17 (3.89-9.78) 

 

P<0.001 3.02 (1.79-5.09) 

 

P<0.001 2.26 (0.72-7.13) 

 

P=0.17 
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4.6 Discussion 
 

Our integrative approach of blending the data and bio-statistical expertise with clinical 

expert domain knowledge identified a framework for the discovery of stable and clinically 

meaningful asthma subtypes. Using two common clustering approaches (clustering after 

dimensionality reduction, and using all available variables) resulted in different clusters, which 

were not stable.  We identified four features of asthma which exemplified the differences and 

similarities between the clusters in our initial analyses: age of onset, allergic sensitization, 

asthma severity and recent exacerbations. When we re-clustered the data using these four 

features, the cluster stability dramatically increased, and the analysis identified five clinically 

meaningful asthma subtypes (early-onset mild atopic asthma, early-onset mild non-atopic 

asthma, late-onset asthma, difficult asthma and exacerbation-prone asthma).  

 

4.6.1 Limitations/strengths  
 

One limitation of the clustering methodologies (including our analyses) is that for the 

selection of variables, the investigators rely on the data which is available. The majority of 

previous studies used similar data sources (e.g. detailed questionnaire responses, sensitization 

and lung function), but the variable choice for input into the model has varied.18 We relied on a 

detailed clinical assessment carried out in our study.  However, we cannot exclude the 

possibility that some potentially important variables were not collected. 

Another limitation is that our study is cross-sectional, and precise information about the 

time dimension (particularly in relation to the age of onset of asthma) may be unreliable. 

However, cross-sectional datasets are ideal settings for data exploration and finding latent 

patterns. We could test various methodologies to ascertain the most robust one for our 

dataset. We acknowledge that adding more accurate information on onset and remission of 

symptoms to account for longitudinal changes could further improve asthma classification. 

The strengths of our study include large number of phenotypically well-defined patients 

across the spectrum of asthma severity (from mild to severe), which improves generalizability.  
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Furthermore, to our knowledge, this is the first unsupervised analysis among children from a 

developing country, which offers a unique perspective on asthma subtypes in a population with 

different environmental exposures (and likely different genetic susceptibility) compared to 

studies in developed countries. 

 

4.6.2 Interpretation 
 

Data-driven methods have been used in both case/patient18 and birth cohort studies,16 

and are invaluable tools for discovering complex patterns and structures in datasets. However, 

there has been little consistency in the results between different studies and no unified 

methodology, leading to a degree of scepticism in the clinical community about the value of 

these techniques.5,23  

PCA has been used as both a standalone analysis,14,36-38 and a data reduction technique 

prior to clustering.12,21,24,39 Results from our PCA are consistent with previous studies in 

children, showing diversification with respect to lung function, demographics, medication use, 

symptom burden, and environmental factors.11,21 One of the benefits of PCA is the reduction in 

dimensionality, which allows the description of the complex data using a smaller number of 

uncorrelated variables, while retaining as much information as possible.  However, in our 

dataset, PCA has not substantially reduced dimensionality (from a total of 47 variables we 

identified 19 components with eigenvalue>1, which suggests that most variables may have 

been informative about different disease domains). PCA can be viewed as a method which 

separates signal and noise: the first dimensions extract the essential information, while the last 

ones are restricted to noise.40 Intuitively, the reduction in noise should create more stable 

clusters; however, in the current study, inputting the principal components into the HC model 

yielded unstable clusters, which suggests that PCA did not differentiate between informative 

and non-informative variables. This could be a reflection of the dataset or the inherent 

heterogeneity of the disease.   

It is generally considered that there is a linear relationship between the number of 

variables and stability of the model.4 However, the clusters which emerged in the HC based on 
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all available variables remained unstable, suggesting that it may not be useful to input all 

variables into the clustering algorithm, as the overloaded model may not be fully informative.  

Increasing the number of input variables increases the odds of the variables no longer being 

dissimilar (a feature important in differentiating clusters).18 This introduces high degrees of 

collinearity among the variables, making it more difficult for the model to identify unique 

features, and some domains may be over-represented.  

One of areas that remains to be addressed in statistical research is how to identify a 

meaningful set of features for cluster analysis using an unsupervised approach. In this study, we 

found that HC on PCA and HC on the raw data were less stable than HC on four selected 

features. This could be an artefact of the heterogeneity in the number of features. However, 

having a more meaningful semi-automated approach to feature selection for clustering is an 

area of machine learning research which may have a considerable impact on understanding 

disease heterogeneity. 

In our study, by utilizing four informative features/domains of the disease which were 

identified by clinical experts who interpreted the results of the unsupervised analyses markedly 

increased cluster stability, and the results in clinical terms appeared much more meaningful. It 

is likely that these domains provide important information about asthma heterogeneity, which 

may be lost in the noise when using all collected variables or principal components.  This may 

be analogous to our previous findings in a population-based birth cohort, in which 

dimensionality reduction suggested that out of >100 item responses in validated 

questionnaires, only 28 were informative for the discovery of disease subtypes.14 Questions 

used to determine the presence of disease in most epidemiological studies (current wheezing, 

and wheezing apart from colds) were found to be redundant for understanding disease 

heterogeneity. This does not mean that these questions are not informative; they are key for 

ascertaining the presence of asthma syndrome, but are not informative when trying to uncover 

asthma subtypes. Thus, different domains of the disease may be required to identify disease 

subtypes than those used to diagnose asthma, or assess the control or response to treatment. 

Our results are consistent with the findings from the Childhood Asthma Management Program 

(which did not include children with severe asthma), which has reported that reproducible 
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clusters with distinct clinical trajectories and different response to anti-inflammatory 

medications could be differentiated based on three groups of features (atopic burden, degree 

of airway obstruction, and history of exacerbation).41 

In our study, severity was one of the key features for disaggregating the asthma 

syndrome, but there were children with moderate/severe asthma in each of the clusters.  In the 

US Severe Asthma Research Program (SARP), a similar HC method was used to identify four 

subtypes of severe asthma in childhood, differing in age of onset, lung function, FeNO and 

medication use, but with an even distribution of severity among the clusters.11  The Trousseau 

Asthma Program (TAP) identified a neutrophilic-driven severe asthma cluster that seemed to be 

resistant to corticosteroids.21  In all three studies, severe asthma was not identified as an 

independent cluster.  Rather, severe asthmatics were present in all clusters; in TAP, the 

proportion of severe asthmatics ranged from 5-10% across the clusters,21 in SARP from 61-84% 

based on ATS criteria and 4-16% according to GINA,11 and in our study the occurrence of 

moderate/severe asthmatics ranged from 8% in Cluster 3 to 65% in Cluster 1. The results from 

the current and other studies suggest that severe asthma is not a single entity, but rather the 

extreme end of spectrum of several different asthma endotypes. 

Our study identified an exacerbation-prone cluster, which may be a separate endotype 

with unique underlying aetiology. A severe exacerbation cluster (which was predominantly 

allergy driven) was also described in the TAP cohort.21 Recent analysis amongst SARP 

participants (both adults and children) has suggested that exacerbation-prone asthma may 

indeed be a distinct susceptibility phenotype, with implications for the targeting of 

exacerbation prevention strategies.42  Exacerbation-prone asthma is not characterized only by 

asthma severity or control, and among SARP participants and in our study, a proportion of 

patients with exacerbation-prone asthma had non-severe asthma and normal lung function.42 

The age at which a child initially wheezes has been described as a key discriminator of 

childhood wheeze phenotypes in multiple birth cohort studies, and our results which identified 

an early-onset and a late-onset asthma subtype are consistent with other previously published 

work.7,15,19  However, unlike most previous studies, we identified both an early-onset non-

atopic subtype and an early-onset atopic subtype.  
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Varying definition of allergic sensitization resulted in no material changes in our results.  

Using a model-based cluster analysis, Simpson et al have shown that sensitization comprises 

several different subtypes, each with unique association to asthma presence and severity,43 and 

this finding was confirmed in another birth cohort.44 For the prediction of future development 

of asthma, or asthma severity among patients with established disease, subtyping of 

sensitization may be crucially important.8,43-45  However, our current analysis suggests that for 

the purpose of asthma subtyping, a simple definition of allergic sensitization would likely 

suffice. 

In our study, most children with asthma had normal lung function. Although lung 

function was significantly diminished among children in the “Difficult asthma” cluster, most 

patients in this cluster had normal lung function, which is consistent with other populations.46  

Our analysis suggests that lung function may be less important for subtyping asthma, despite its 

perceived clinical importance for diagnosing and managing the disease.  Our data also indicate 

that phenotyping asthma based on a single dimension of the disease (e.g. “eosinophilic” vs. 

“neutrophilic”) is unlikely to be fully informative in the search for endotypes, or for precise 

treatment stratification.  Blood eosinophilia was a significant feature of “Difficult”, “Early-onset 

mild atopic” and “Late-onset asthma” clusters, suggesting that there are important shared 

mechanisms across different asthma subtypes.8  Thus, while by definition each asthma 

endotype has a unique component in its pathophysiology,1,2 these data indicate that some 

important mechanisms (e.g. T2-high) overlap between most endotypes.5,8  This may also be 

reflected in the responses to treatment, and patients across different endotypes may display a 

spectrum of responses to therapies which target shared mechanisms.5,41 

In conclusion, we identified four key features of asthma (age of onset, allergic 

sensitization, severity and exacerbations in the previous year), which may be informative for 

ascertaining asthma subtypes.  This could represent a potential future framework to facilitate 

the discovery of endotypes in childhood asthma.  Our results highlight that factors which are 

key determinants of asthma presence, severity or control may not be the most informative for 

determining disease endotypes.  



88 
 

4.7 References 
1. Anderson GP. Endotyping asthma: new insights into key pathogenic mechanisms in a 
complex, heterogeneous disease. Lancet 2008; 372(9643): 1107-19. 
2. Lotvall J, Akdis CA, Bacharier LB, et al. Asthma endotypes: a new approach to 
classification of disease entities within the asthma syndrome. J Allergy Clin Immunol 2011; 
127(2): 355-60. 
3. A plea to abandon asthma as a disease concept. Lancet 2006; 368(9537): 705. 
4. Hennig C. Cluster-wise assessment of cluster stability: Department of Statistical Science, 
University College London, UK, 2006. 
5. Belgrave D, Henderson J, Simpson A, Buchan I, Bishop C, Custovic A. Disaggregating 
asthma: Big investigation versus big data. J Allergy Clin Immunol 2017; 139(2): 400-7. 
6. Belgrave D, Simpson A, Custovic A. Challenges in interpreting wheeze phenotypes: the 
clinical implications of statistical learning techniques. Am J Respir Crit Care Med 2014; 189(2): 
121-3. 
7. Belgrave DC, Custovic A, Simpson A. Characterizing wheeze phenotypes to identify 
endotypes of childhood asthma, and the implications for future management. Expert review of 
clinical immunology 2013; 9(10): 921-36. 
8. Custovic A, Sonntag HJ, Buchan IE, Belgrave D, Simpson A, Prosperi MC. Evolution 
pathways of IgE responses to grass and mite allergens throughout childhood. J Allergy Clin 
Immunol 2015; 136(6): 1645-52 e1-8. 
9. Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular approaches. 
Nat Med 2012; 18(5): 716-25. 
10. Custovic A, Ainsworth J, Arshad H, et al. The Study Team for Early Life Asthma Research 
(STELAR) consortium 'Asthma e-lab': team science bringing data, methods and investigators 
together. Thorax 2015; 70(8): 799-801. 
11. Fitzpatrick AM, Teague WG, Meyers DA, et al. Heterogeneity of severe asthma in 
childhood: confirmation by cluster analysis of children in the National Institutes of 
Health/National Heart, Lung, and Blood Institute Severe Asthma Research Program. J Allergy 
Clin Immunol 2011; 127(2): 382-9 e1-13. 
12. Haldar P, Pavord ID, Shaw DE, et al. Cluster analysis and clinical asthma phenotypes. Am 
J Respir Crit Care Med 2008; 178(3): 218-24. 
13. Moore WC, Meyers DA, Wenzel SE, et al. Identification of asthma phenotypes using 
cluster analysis in the Severe Asthma Research Program. Am J Respir Crit Care Med 2010; 
181(4): 315-23. 
14. Smith JA, Drake R, Simpson A, Woodcock A, Pickles A, Custovic A. Dimensions of 
respiratory symptoms in preschool children: population-based birth cohort study. Am J Respir 
Crit Care Med 2008; 177(12): 1358-63. 
15. Henderson J, Granell R, Heron J, et al. Associations of wheezing phenotypes in the first 6 
years of life with atopy, lung function and airway responsiveness in mid-childhood. Thorax 
2008; 63(11): 974-80. 
16. Howard R, Rattray M, Prosperi M, Custovic A. Distinguishing Asthma Phenotypes Using 
Machine Learning Approaches. Curr Allergy Asthma Rep 2015; 15(7): 38. 
17. Deliu M, Belgrave D, Sperrin M, Buchan I, Custovic A. Asthma phenotypes in childhood. 
Expert review of clinical immunology 2016: 1-9. 



89 
 

18. Deliu M, Sperrin M, Belgrave D, Custovic A. Identification of Asthma Subtypes Using 
Clustering Methodologies. Pulm Ther 2016; 2: 19-41. 
19. Belgrave DC, Simpson A, Semic-Jusufagic A, et al. Joint modeling of parentally reported 
and physician-confirmed wheeze identifies children with persistent troublesome wheezing. J 
Allergy Clin Immunol 2013; 132(3): 575-83.e12. 
20. Patrawalla P, Kazeros A, Rogers L, et al. Application of the asthma phenotype algorithm 
from the Severe Asthma Research Program to an urban population. PLoS One 2012; 7(9): 
e44540. 
21. Just J, Gouvis-Echraghi R, Rouve S, Wanin S, Moreau D, Annesi-Maesano I. Two novel, 
severe asthma phenotypes identified during childhood using a clustering approach. Eur Respir J 
2012; 40(1): 55-60. 
22. Benton AS, Wang Z, Lerner J, Foerster M, Teach SJ, Freishtat RJ. Overcoming 
heterogeneity in pediatric asthma: tobacco smoke and asthma characteristics within 
phenotypic clusters in an African American cohort. J Asthma 2010; 47(7): 728-34. 
23. Belgrave D, Custovic A. The importance of being earnest in epidemiology. Acta Paediatr 
2016; 105(12): 1384-6. 
24. Prosperi MC, Sahiner UM, Belgrave D, et al. Challenges in identifying asthma subgroups 
using unsupervised statistical learning techniques. Am J Respir Crit Care Med 2013; 188(11): 
1303-12. 
25. Sackesen C, Karaaslan C, Keskin O, et al. The effect of polymorphisms at the CD14 
promoter and the TLR4 gene on asthma phenotypes in Turkish children with asthma. Allergy 
2005; 60(12): 1485-92. 
26. Sahiner UM, Semic-Jusufagic A, Curtin JA, et al. Polymorphisms of endotoxin pathway 
and endotoxin exposure: in vitro IgE synthesis and replication in a birth cohort. Allergy 2014; 
69(12): 1648-58. 
27. Crapo RO, Casaburi R, Coates AL, et al. Guidelines for methacholine and exercise 
challenge testing-1999. This official statement of the American Thoracic Society was adopted by 
the ATS Board of Directors, July 1999. American journal of respiratory and critical care medicine 
2000; 161(1): 309-29. 
28. Crapo RO, Casaburi R, Coates AL, et al. Guidelines for methacholine and exercise 
challenge testing-1999. This official statement of the American Thoracic Society was adopted by 
the ATS Board of Directors, July 1999. American journal of respiratory and critical care medicine 
2000; 161(1): 309-29. 
29. Popa V. ATS guidelines for methacholine and exercise challenge testing. American 
journal of respiratory and critical care medicine 2001; 163(1): 292-3. 
30. Miller MR, Hankinson J, Brusasco V, et al. Standardisation of spirometry. European 
respiratory journal 2005; 26(2): 319-38. 
31. Beydon N, Davis SD, Lombardi E, et al. An official American Thoracic Society/European 
Respiratory Society statement: pulmonary function testing in preschool children. American 
journal of respiratory and critical care medicine 2007; 175(12): 1304-45. 
32. Stanojevic S, Wade A, Cole TJ, et al. Spirometry centile charts for young Caucasian 
children: the Asthma UK Collaborative Initiative. Am J Respir Crit Care Med 2009; 180(6): 547-
52. 



90 
 

33. Quanjer PH, Stanojevic S, Cole TJ, et al. Multi-ethnic reference values for spirometry for 
the 3–95-yr age range: the global lung function 2012 equations. European Respiratory Journal 
2012; 40(6): 1324-43. 
34. Team RC. R: A language and environment for statistical computing. Vienna, Austria: R 
Foundation for Statistical Computing; 2016. 
35. C H. Cluster-wise assessment of cluster stability. London UK: University College London, 
2006. 
36. Rodriguez A, Vaca M, Oviedo G, et al. Urbanisation is associated with prevalence of 
childhood asthma in diverse, small rural communities in Ecuador. Thorax 2011; 66(12): 1043-50. 
37. Chawes BL, Stokholm J, Bonnelykke K, Brix S, Bisgaard H. Neonates with reduced 
neonatal lung function have systemic low-grade inflammation. J Allergy Clin Immunol 2015; 
135(6): 1450-6 e1. 
38. Clemmer GL, Wu AC, Rosner B, et al. Measuring the corticosteroid responsiveness 
endophenotype in asthmatic patients. J Allergy Clin Immunol 2015; 136(2): 274-81 e8. 
39. Weatherall M, Travers J, Shirtcliffe PM, et al. Distinct clinical phenotypes of airways 
disease defined by cluster analysis. Eur Respir J 2009; 34(4): 812-8. 
40. Husson F JJ, Pages J. Principal component methods - hierarchical clustering - partitional 
clustering: why would we need to choose for visualizing data? Agrocampus Ouest, FR: 
Agrocampus Ouest, 2010. 
41. Howrylak JA, Fuhlbrigge AL, Strunk RC, et al. Classification of childhood asthma 
phenotypes and long-term clinical responses to inhaled anti-inflammatory medications. J 
Allergy Clin Immunol 2014; 133(5): 1289-300, 300 e1-12. 
42. Denlinger LC, Phillips BR, Ramratnam S, et al. Inflammatory and Comorbid Features of 
Patients with Severe Asthma and Frequent Exacerbations. Am J Respir Crit Care Med 2017; 
195(3): 302-13. 
43. Simpson A, Tan VY, Winn J, et al. Beyond atopy: multiple patterns of sensitization in 
relation to asthma in a birth cohort study. Am J Respir Crit Care Med 2010; 181(11): 1200-6. 
44. Lazic N, Roberts G, Custovic A, et al. Multiple atopy phenotypes and their associations 
with asthma: similar findings from two birth cohorts. Allergy 2013; 68(6): 764-70. 
45. Simpson A, Lazic N, Belgrave DC, et al. Patterns of IgE responses to multiple allergen 
components and clinical symptoms at age 11 years. J Allergy Clin Immunol 2015; 136(5): 1224-
31. 
46. Bush A, Saglani S. Management of severe asthma in children. Lancet 2010; 376(9743): 
814-25. 
 
 
 
 
 
 
 



91 
 

4.7 Supplementary Material/ Appendix 

 
4.7.1 Methods 
 
Statistical Methods 

Variables used 

1) Binary variables 

a. Interview-derived: sex, physician diagnosed allergic rhinitis, allergic 

conjunctivitis, eczema, family history of asthma, exposure to tobacco, pet 

ownership 

b. Medications: use of Long-acting 2- agonist, use of montelukast, inhaled 

corticosteroid dose (0, less than 400, greater than 400 *BDP equivalent to 

beclomethasone), use of short acting 2 - agonist 

c. Atopy: wheel 3mm greater than negative control to at least one of: cat, dog, 

cockroach, tree, weed, grass, house dust mite, moulds, serum total IgE 

d. Eosinophil % (0-0.15, 0.15-0.30, 0.3-0.5, >0.5) 

2) Count variables 

a. Number of asthma exacerbations within the last 12 months, number of 

hospitalizations for asthma ever 

3) Continuous variables 

a. Age, age of asthma onset, BMI (standardised for age, growth, sex) 

b. Lung function: 

i. FEV1 % predicted, FVC % predicted, FEV1/FVC, FEF25-75 

ii. Bronchodilator reversibility: greater than or equal to 12% increase in FEV1 

following administration of 200g inhaled albuterol 



92 
 

iii. Airway hyperresponsiveness: concentration of methacholine required to 

produce a 20% decline in FEV1 (PC20) less than or equal to 8mg/mlE1 or 

greater than or equal to 10% reduction in FEV1 following exercise 

challengeE2. 

Variables were used in their raw format apart from: (1) ‘inhaled corticosteroid use’ 

which was categorised with equal frequency binning and projected into a dummy variable (ICS 

=0, ICS <400mg, ICS>400 BDP equivalent); (2) ‘blood eosinophil count’ (<0.15, 0.15-0.30, 0.30-

0.5, >0.5); (3) ‘asthma severity (mild, moderate, severe); (4) ‘asthma attacks’ (0,1,≥2); (5) ‘age of 

onset’(<5, 5-11, >11); and (6) ‘asthma hospitalizations’ (<2, ≥2). Our dummy variables were 

created using clinically meaningful categories, except for age of onset which was arbitrarily 

chosen. Dummy variables were only used in model 1. 

Continuous variables were transformed into z-scores to simplify interpretation (whereby 

coefficients refer to a change of 1 standard deviation), and remove skew. No missing values 

were present apart from ‘methacholine challenge’ and ‘exercise challenge test’ (which were 

only available for approximately half of the children). These two variables were not included in 

the analysis. 

Model 1: Hierarchical clustering after dimensionality reduction  

Principal component analysis was performed on 45 variables in the dataset (which 

included aforementioned dummy variables). Variables with loadings above 0.3 on a particular 

principal component were chosen to represent that component. The loadings threshold was set 

lower than what is seen in most literature to take into account the large amount of binary data, 

as these naturally load lower. Orthogonal/varimax rotation was performed.  

Hierarchical clustering using Ward’s method and Euclidean distance was performed on 

principal components. As sensitivity analysis, other distance measures (such as Minkowski, etc.) 

and methods (single-link, centroid, average) were also tested.   

Model 2: Hierarchical clustering using raw data 
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In Model 2, dummy variables (except inhaled corticosteroid use) were removed leaving 

38 raw variables. Hierarchical clustering was then performed and results were compared to the 

clusters identified in Model 1.  

Model 3: Identification of key stable/important features and re-clustering 

Clusters in Models 1 and 2 were generally not stable. After comparing the results, four 

key features were identified: age of onset, asthma severity, exacerbations, atopy. We 

performed a series of hierarchical cluster analyses on these four features, each time varying 

measures of atopy: atopic, polysensitised, monosensitized, total number of positive skin prick 

tests, total IgE. Specifics of atopic variables: 

o Atopic: binarised variable, atopic (positive skin prick test to any allergen) yes/no 

o Sensitization: categorical variable (0, 1, 2), 0=non atopic, 1=monosensitized 

(positive skin prick test to only one allergen), 2=polysensitized (positive skin prick 

test to more than 1 allergen) 

o Total IgE: quantitative variable for total IgE levels in blood (scaled) 
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4.7.2 Results 
 
Figure E4.1: Correlation matrix of dataset 

 
 
BMI = Body mass index, FEF = forced expiratory flow, ICS = inhaled corticosteroids, SPT = skin prick test. Large blue circles show 
high positive correlation while red circles show negative correlation. Empty boxes denote a non-significant correlation.   
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Table E4.1:  Variables in the dataset used for analyses.* Variables in dataset but not directly used for 
analysis: methacholine challenge, exercise induced fall in FEV1, number of eosinophils, total number of 
positive skin prick tests.    

 

Variables in HC on PCA (Model 1) Variables in HC on raw data (Model 2) 

Sex Sex 

Mother with allergic disease Mother with allergic disease 

Father with allergic disease Father with allergic disease 

Exposure to tobacco smoke Exposure to tobacco smoke 

Pet ownership Pet ownership 

Atopic Atopic 

Sensitized to house dust mite Sensitized to house dust mite 

Sensitized to grass Sensitized to grass 

Sensitized to trees Sensitized to trees 

Sensitized to weeds Sensitized to weeds 

Sensitized to moulds Sensitized to moulds 

Sensitized to cat Sensitized to cat 

Sensitized to dog Sensitized to dog 

Sensitized to cockroach Sensitized to cockroach 

Blood Eosinophil % 0.15-0.3 Blood Eosinophil % 

Blood Eosinophil % 0.3-0.5 IgE total 

Blood Eosinophil % >0.50 Use of long-acting beta2 agonist 

IgE total Use of Montelukast 

Use of long-acting beta2 agonist Use of regular controller medication 

Use of Montelukast No use of inhaled corticosteroids 

Use of regular controller medication Inhaled corticosteroid dose <400 

No use of inhaled corticosteroids Inhaled corticosteroid dose >400 

Inhaled corticosteroid dose <400 BMI 

Inhaled corticosteroid dose >400 Presence of allergic rhinitis 

BMI Presence of allergic conjunctivitis 

Presence of allergic rhinitis Presence of eczema 



96 
 

Presence of allergic conjunctivitis Age at follow-up 

Presence of eczema FEV1 % predicted 

Age of onset below 5 years  FEV1/FVC % predicted 

Age of onset 5-11 years  FEF 25-75 

Age of onset above 11 years  FEV1 post bronchodilator % predicted 

FEV1 % predicted Reversibility 

FVC % predicted FEV1 % predicted 

FEV1/FVC % predicted Number of hospitalizations for asthma 
ever 

FEF 25-75 Number of asthma attacks within last year 

FEV1 post bronchodilator % predicted Mild asthma 

Reversibility Moderate-severe asthma 

Less than 2 hospitalizations for asthma 
ever 

Severe asthma 

2 or more hospitalizations for asthma ever  

No asthma attacks within last year  

1 asthma attack within last year  

2 or more asthma attacks within last year   

Mild asthma  

Moderate-severe asthma  

Severe asthma  
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Table E4.2: Eigenvalue and variance of the first 19 components with eigenvalues >1 

 
  

Eigenvalue Percentage 
of variance 

Cumulative 
percentage 
of variance 

Component 1 4.29 8.95 8.95 

Component 2 3.19 6.66 15.61 

Component 3 2.56 5.34 20.96 

Component 4 2.34 4.88 25.84 

Component 5 2.11 4.40 30.24 

Component 6 2.09 4.37 34.62 

Component 7 1.93 4.04 38.66 

Component 8 1.86 3.89 42.55 

Component 9 1.80 3.76 46.32 

Component 10 1.69 3.52 49.84 

Component 11 1.49 3.11 52.96 

Component 12 1.39 2.91 55.87 

Component 13 1.38 2.87 58.75 

Component 14 1.21 2.53 61.29 

Component 15 1.17 2.45 63.74 

Component 16 1.15 2.41 66.16 

Component 17 1.10 2.30 68.46 

Component 18 1.07 2.23 70.69 

Component 19 1.05 2.19 72.89 
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Table E4.3: Variable loadings on first 5 components 

a) Principal components 1 and 2 
 

Dimension 1 Dimension 2 

Variable Loading Variable Loading 

Use of regular controller 
medication 

0.66 Atopic 0.71 

Moderate-severe asthma  0.55 Sensitized to grass 0.65 

Reversibility 0.48 Presence of allergic rhinitis 0.55 

Use of long-acting beta2 agonist 0.43 Age at follow-up 0.51 

ICS dose <400 0.39 Presence of allergic 
conjunctivitis 

0.47 

ICS dose > 400 0.33 Less than 2 hospitalizations ever 0.32 

1 asthma attack within last year 0.32 Sensitized to tree 0.32 

Use of Montelukast 0.3 Sensitized to cat 0.31 

FEV1/FVC -0.33 Age of onset above 11 years 0.3 

FEV1post bronchodilator % 
predicted 

-0.47 More than 2 hospitalizations for 
asthma ever 

-0.32 

FVC % predicted -0.54 Age of onset below 5 years -0.36 

FEF2575 -0.58  

Mild asthma  -0.62 

No use of ICS -0.66 

FEV1%pred -0.72 

ICS: inhaled corticosteroid 
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b) Principal components 3 and 4 
 

Dimension 3 Dimension 4  

Variable Loading Variable Loading 

Mild asthma 0.64 More than 2 hospitalizations for 
asthma ever 

0.49 

Presence of allergic conjunctivitis 0.44 Male 0.47 

Use of regular controller 
medication 

0.39 FEV1%pred 0.47 

1 asthma attack within last year 0.36 FVC% pred 0.42 

Reversibility 0.35 FEV1 post bronchodilator % pred 0.4 

FEV1 post bronchodilator % pred 0.34 Blood Eo >0.5% -0.3 

Use of long-acting beta2 agonist -0.39 Female -0.47 

No use of ICS -0.4 Less than 2 hospitalizations for 
asthma ever 

-0.49 

Moderate-severe asthma -0.62  

 
 

c) Principal component 5 
 

Dimension 5 

Variable Loading 

No use of ICS 0.41 

More than 2 hospitalizations for 
asthma ever 

0.33 

Presence of allergic rhinitis 0.31 

Atopic 0.31 

Blood Eo >0.50% -0.3 

BMI -0.3 

Less than 2 hospitalizations for 
asthma ever 

-0.33 

Use of regular controller 
medication 

-0.4 

ICS dose < 400 -0.48 
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Table E4.4: Characteristics of each cluster for model 1 (HC after PCA dimensionality reduction).Quantitative variables are represented as mean 
(standard deviation and interquartile range). Binary and categorical variables are represented as proportions (%). Binary and categorical 
variables are calculated using chi-squared test of significance; continuous variables are calculated using Kruskal-Wallis test of significance. 

 
 

Variable Cluster 1 
n = 102 

Cluster 2 
n = 70 

Cluster 3 
n = 117 

Cluster 4 
n = 149 

Cluster 5 
n = 175 

p-value 

Sex        Male 61/102, 59% 56/70, 80% 84/117, 72% 72/149, 48% 95/175, 54% <0.001 

Female 41/102, 41% 14/70, 20% 33/117, 28% 77/149, 52% 81/175, 46% <0.001 

Mother with allergic 
disease 

8/102, 7% 19/70, 28% 36/117, 31% 30/149, 20% 24/175, 15% 0.002 

Father with allergic 
disease 

6/102, 5% 40/70, 57% 35/117, 30% 20/149, 13% 19/175, 11% 0.01 

Exposure to tobacco 
smoke 

28/102, 27% 52/70, 74% 52/117, 44% 60/149, 40% 48/175, 27% 0.15 

Pet ownership 7/102, 6% 37/70, 53% 16/117, 14% 23/149, 15% 12/175, 7% 0.28 

Atopic 75/102, 75% 31/70, 48% 105/117, 89% 49/149, 32% 102/175, 58% <0.001 

Sensitized to house dust 
mite 

45/102, 41% 7/70, 10% 25/117, 21% 22/149, 15% 65/175, 37% <0.001 

Sensitized to grass 30/102, 9% 17/70, 25% 90/117, 77% 19/149, 13% 56/175, 32% <0.001 

Sensitized to trees 7/102, 6% 0/70 15/117, 13% 2/149, 1% 5/175, 3% <0.001 

Sensitized to weeds 5/102, 5% 0/70 7/117, 6% 0/149 14/175, 8% 0.008 
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Sensitized to moulds 8/102, 7% 2/70, 3% 12/117, 10% 4/149, 3% 12/175, 7% 0.03 

Sensitized to cat 11/102, 10% 0/70 21/117, 18% 2/149, 1% 15/175, 9% <0.001 

Sensitized to dog 3/102, 3% 1/70, 1% 9/117, 8% 0/149 2/175, 1% <0.001 

Sensitized to cockroach 2/102, 2% 0/70 3/117, 3% 1/149, 1% 5/175, 3% 0.6 

Blood Eosinophil % 0.15-
0.3 

8/102, 8% 9/70, 13% 0/117 1/149, 1% 0/175 0.5 

Blood Eosinophil % 0.3-
0.5 

17/102, 16% 16/70, 23% 8/117, 7% 10/149, 7% 4/175, 2% 0.006 

Blood Eosinophil % >0.50 83/102, 81% 44/70, 64% 109/117, 93% 130/149, 87% 173/175, 99% <0.001 

IgE total 365.5 (534.9, 34-
440.3) 

79.1 (115.5, 
11.5-83.5) 

293.8 (582, 49-
272) 

108.8 (276.1,12-
106) 

233.1 (476,42-
221.5) 

<0.001 

Use of long-acting beta2 
agonist 

43/102, 41% 4/70, 6% 3/117, 3% 0/149 0/175 <0.001 

Use of Montelukast 24/102, 23% 10/70, 14% 8/117, 7% 2/149, 0.01% 7/175, 4% <0.001 
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Use of regular controller 
medication 

76/102, 72% 61/70, 88% 105/117, 89% 133/149, 90% 10/175, 6% <0.001 

No use of inhaled 
corticosteroids 

30/102, 29% 8/70, 12% 10/117, 9% 15/149, 10% 174/175, 99% <0.001 

Inhaled corticosteroid 
dose <400 

55/102, 52% 44/70, 64% 74/117, 63% 83/149, 56% 6/175, 3% <0.001 

Inhaled corticosteroid 
dose >400 

22/102, 22% 10/70, 14% 33/117, 28% 49/149, 33% 1/175, 0.01% <0.001 

BMI 18.6 (3.6, 16-
22.2) 

19.2 (3.9, 16.3-
22.2) 

16.9 (3.1, 15.8-
19.1) 

17.5 (3.4, 15.4-
19.2) 

17.9 (3.4, 15.9-
21.1) 

0.08 

Presence of allergic 
rhinitis 

50/102, 50% 15/70, 21% 92/117, 78% 35/149, 24% 110/175, 63% <0.001 

Presence of allergic 
conjunctivitis 

6/102, 6% 6/70, 9% 71/117, 61% 8/149, 5% 21/175, 12% <0.001 

Presence of eczema 9/102, 9% 3/70, 4% 11/117, 9% 6/149, 4% 8/175, 5% 0.35 

Age of onset below 5 
years 

39/102, 39% 19/70, 19% 25/117, 21% 88/149, 61% 64/175, 36% <0.001 

Age of onset 5-11 years 38/102, 37% 56/70, 81% 30/117, 26% 56/149, 38% 95/175, 54% 0.02 
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Age of onset above 11 
years 

25/102, 24% 1/70, 1% 62/117, 53% 3/149, 2% 16/175, 9% 0.02 

FEV1 % predicted 75.6 (10.9, 
70.25-82) 

93.8 (11.7, 86-
102) 

82 (11.8, 74-90) 83.8 (11.2, 77-
90) 

96.7 (11.3, 90-
104) 

<0.001 

FVC % predicted 89.9 (14.4,81-
99.8) 

100.4 (12.7, 91-
111.8) 

90.4 (16.9, 81-
102) 

92 (11.4, 84-99) 105.1 (11.3, 97-
112) 

<0.001 

FEV1/FVC % predicted 80.8 (8.8, 74.3-
86.8) 

86.7 (6.0, 78.7-
90.3) 

86.2 (5.6, 78.6-
90.2) 

86.8 (5.9, 85.7-
91.2) 

87.6 (6.8, 85-92) <0.001 

FEF 25-75 88.3 (11.2, 83-
96) 

82 (21.9, 76-88) 72.4 (17.7, 61-
84) 

84.6 (22.9, 77-
89.1) 

97.5 (6.8, 80-
111) 

<0.001 

FEV1 post bronchodilator 
% predicted 

65.3(22.8, 50-
75.5) 

108.1 (12.4, 
101-115) 

100.2 (10.7, 
99.7-105.2) 

100.3 (11.9, 
99.8-108.2) 

105.2 (12.6, 97-
113.3) 

<0.001 

Reversibility 17.9 (10.1, 8.1-
18.6) 

18.7 (10.3, 9.1-
19.6) 

24.4 (18.1, 13.1-
29.3) 

18.1 (13.7, 8.2-
21.8) 

9.8 (12.6, 0-
14.4) 

<0.001 

Less than 2 
hospitalizations for 
asthma ever 

104/102, 99% 40/70, 58% 0/117 0/149 171/175, 98% <0.001 

2 or more 
hospitalizations for 
asthma ever 

1/102, 1% 29/70, 42% 0/117 0/149 1/175, 0.6% <0.001 

No asthma attacks within 
last year 

54/102, 53% 29/70, 42% 71/117, 61% 96/149, 64% 140/175, 80% <0.001 

1 asthma attack within 
last year 

15/102, 15% 14/70, 20% 42/117, 36% 37/149, 25% 13/175, 7% <0.001 
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2 or more asthma 
attacks within last year  

23/102, 22% 27/70, 39% 4/117, 3% 16/149, 11% 22/175, 13% <0.001 

Mild asthma 2/102, 2% 59/70, 85% 103/117, 88% 142/149, 97% 174/175, 99% <0.001 

Moderate-severe asthma 95/102, 90% 10/70, 14% 14/117, 11% 6/149, 3% 1/175, 1% <0.001 

Severe asthma 8/102, 8% 1/70, 1% 1/117, 1% 1/149, 1% 0/175 <0.001 
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Table E4.5: Characteristics of each cluster for model 2 (HC using all available variables).Quantitative variables are represented as mean (standard 
deviation and interquartile range). Binary and categorical variables are represented as proportions (%). Binary and categorical variables are 
calculated using chi-squared test of significance; continuous variables are calculated using Kruskal-Wallis test of significance.  

 
Variable Cluster 1 

n = 168 
Cluster 2 
n = 100 

Cluster 3 
n = 103 

Cluster 4 
n = 223 

Cluster 5 
n = 19 

p-value 

Sex        Male 76/168, 55% 62/100, 62% 72/103, 70% 149/223, 67% 13/19, 68% 0.07 

Female 92/168, 45% 38/100, 38% 31/103, 30% 74/223, 33% 6/19, 32% 0.07 

Mother with allergic 
disease 

43/168, 26% 24/100, 24% 16/103, 16% 32/223, 14% 4/19, 21% 0.04 

Father with allergic 
disease 

28/168, 17% 12/100, 12% 17/103, 17% 24/223, 11% 2/19, 11% 0.40 

Exposure to 
tobacco smoke 

78/168, 46% 36/100, 36% 47/103, 46% 72/223, 32% 7/19, 37% 0.03 

Pet ownership 10/168, 6% 13/100, 13% 9/103, 9% 18/223, 8% 1/19, 5% 0.41 

Atopic 110/168, 65% 81/100, 81% 68/103, 67% 86/223, 39% 16/19, 84% <0.001 

Sensitized to house 
dust mite 

52/168, 31% 39/100, 39% 31/103, 31% 42/223, 19% 13/19, 68% <0.001 

Sensitized to grass 64/168, 38% 58/100, 58% 44/103, 43% 52/223, 23% 9/19, 47% <0.001 

Sensitized to trees 9/168, 5% 7/100, 7% 5/103, 5% 5/223, 2% 2/19, 11% 0.81 

Sensitized to weeds 8/168, 5% 3/100, 3% 3/103, 3% 12/223, 5% 1/19, 5% 0.20 
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Sensitized to 
moulds 

14/168, 8% 6/100, 6% 5/103, 5% 12/223, 5% 1/19, 5% 0.75 

Sensitized to cat 13/168, 8% 8/100, 8% 16/103, 16% 13/223, 5% 1/19, 5% 0.06 

Sensitized to dog 5/168, 3% 1/100, 1% 6/103, 6% 4/223, 2% 0/19 0.17 

Sensitized to 
cockroach 

3/168, 2% 2/100, 2% 3/103, 3% 3/223, 1% 0/19 0.85 

Blood Eosinophil %   
2.0 (3.4, 0.7-5.8) 

 
4.1 (2.4, 1.7-6.7) 

 
2.8 (3.1, 1.1-6.1) 

 
2.2 (2.1, 0.8-4.5) 

 
6.1 (4.5, 2.1-15.7) 

 
0.23 

IgE total 136.1 (167.4, 
24.8-172.5) 

240.6 (296.2, 
55.7-245) 

250.5 (294.9, 31-
345.5) 

121.4 (153.4, 21-
157.5) 

2152.9 (1005.3, 
1680-2169) 

<0.001 

Use of long-acting 
beta2 agonist 

19/168, 11% 8/100, 8% 12/103, 12% 7/223, 3% 5/19, 26% <0.001 

Use of Montelukast 20/168, 12% 7/100, 7% 9/103, 9% 14/223, 6% 1/19, 5% 0.33 

Use of regular short 
acting beta2 agonist 

134/168, 80% 62/100, 62% 76/103, 76% 98/223, 44% 14/19, 74% <0.001 

No use of inhaled 
corticosteroids 

34/168, 20% 41/100, 41% 27/103, 27% 130/223, 58% 5/19, 26% <0.001 

Inhaled 
corticosteroid dose 
<400 

82/168, 49% 52/100, 52% 52/103, 50% 66/223, 30% 10/19, 53% <0.001 

Inhaled 
corticosteroid dose 
>400 

51/168, 30% 
 

7/100, 7% 24/103, 23% 27/223, 12% 4/19, 21% <0.001 
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BMI 18.2 (3.8, 15.5-
20.1) 

18.3 (3.6, 15.5-
20.9) 

17.9 (3.5, 15.7-
19.9) 

18.8 (3.4, 16.1-
21.3) 

19.2 (3.6, 15.7-
22.4) 

<0.001 

Presence of allergic 
rhinitis 

88/168, 52% 69/100, 69% 50/103, 49% 84/223, 38% 11/19, 58% <0.001 

Presence of allergic 
conjunctivitis 

39/168, 23% 34/100, 34% 20/103, 20% 17/223, 8% 2/19, 11% <0.001 

Presence of eczema 12/168, 7% 3/100, 3% 8/103, 8% 13/223, 6% 1/19, 5% 0.63 

Age at follow-up 3.1 (2.1, 2.5-4.8) 11.2 (3, 7-10.7) 5.8 (2.1, 1.8-7.2) 9.2 (2.7, 7.2-10.7) 6.6 (2.2, 3.4-8.2) <0.001 

FEV1 % predicted 79.92 (10.8, 74-
87) 

94.0 (10.7, 85.8-
101.3) 

72.6 (9.8, 68-78) 95.2 (9.5, 87-102) 91.2 (17.3, 80.5-
99.5) 

<0.001 

FVC % predicted 85.6 (11.5, 78-
93.25) 

106.0 (14.6, 94.8-
115.3) 

89.1 (15.9, 81-
100) 

102.1 (9.5, 94.5-
108) 

102.2 (15.1, 94-
109.5) 

<0.001 

FEV1/FVC % 
predicted 

88.9 (5.3, 85.8-
92) 

85.7 (6.1, 83-90) 78.1 (7.3, 73-83) 87.3 (5.3, 84-90) 84.6 (6.9, 81-89) <0.001 

FEF 25-75 81.8 (22.8, 68-90) 86.2 (24.2, 70-
103) 

54.8 (13.6, 45.5-
61) 

92.8 (21.4, 76.5-
107) 

82.5 (22.5, 69-89) <0.001 

FEV1 post 
bronchodilator % 
predicted 

92.8 (11.4, 86-
100.8) 

106.2 (10.8, 98.5-
112) 

94.2 (12.1, 86-
101) 

105.7 (11.5, 97-
113) 

103.6 (18.9, 92.3-
105.8) 

<0.001 
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Reversibility 16.6 (6.3, 12.9-
20) 

14.3 (7.1, 12.1-
17.9) 

31.6 (21.8, 14.1-
43.2) 

11.9 (6.8, 5.15-
15.7) 

14.6 (6.3, 12.5-
15.8) 

<0.001 

Number of 
hospitalizations for 
asthma ever 

 
0.8 (0.2, 0.4-2.2) 

 
0.4 (0.2, 0-1.1) 

 
0.5 (0.3, 0.1-1.9) 

 
0.1 (0.2, 0-1.8) 

 
0.1 (0.2, 0-1) 

 
0.63 

Number of asthma 
attacks within last 
year 

 
0.8 (1.8, 0.4-1.7) 

 
0.6 (2.3, 0-7) 

 
0.7 (2.3, 0.2-1.3) 

 
0.2 (1.7, 0.1-1.3) 

 
2.5 (2.2, 0.9-4.8) 

 
<0.001 

Mild asthma 117/168, 69% 92/100, 92% 47/103, 46% 202/223, 90% 11/19, 58% <0.001 

Moderate-severe 
asthma 

43/168, 26% 8/100, 8% 54/103, 52% 20/223, 9% 8/19, 42% <0.001 

Severe Asthma 8/168, 5% 0/100 2/103, 2% 1/223, 1% 0/19 0.01 
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Table E4.6: Crosstabs of cluster subject allocation. Results are presented as proportions. The columns 
represent the cluster membership from the analysis done on principal components. Rows represent 
cluster membership from the analysis done on raw data. Highlighted values indicate highest overlap 
and likely corresponding clusters. Association was measured by the chi-squared test.  

 
 

 HC after PCA dimensionality reduction  

 

 

HC using all 

available 

variables 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Total 

Cluster 1 37 (22%) 

p=0.26 

17 (10%) 

P<0.001 

34 (20%) 

p=0.02 

65 (39%) 

p<0.001 

15 (9%) 

p<0.001 

168 

Cluster 2 5 (5%), 

p=0.82 

6 (6%) 

p=0.06 

45 (45%) 

p<0.001 

8 (8%) 

p<0.001 

36 (36%) 

p<0.001 

100 

Cluster 3 45 (44%) 

p<0.001 

8 (8%) 

p=0.01 

29 (28%) 

p=0.22 

16 (15%) 

p=0.008 

5 (5%) 

p<0.001 

103 

Cluster 4 8 (4%), 

p0<0.001 

37 (16%) 

p=0.002 

6 (3%)  

p<0.001 

58 (26%) 

p=0.51 

114 (51%) 

p<0.001 

223 

Cluster 5 7 (37%) 

p<0.001 

2 (11%) 

p<0.001 

3 (16%) 

p=0.001 

2 (11%) 

p=0.04 

5 (26%) 

p<0.001 

19 

Total  102 

17% 

70 

11% 

117 

19% 

149 

24% 

175 

29% 

613 

100% 
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Table E4.7: Clinical comparison of outcomes based on the univariate analysis. Clinical comparison of 
outcomes based on the univariate analysis. The bolded parts indicate the major differences between 
the two results 

 

HC after PCA dimensionality reduction HC using all available variables 

Cluster 1 

- Moderate-severe asthma 
- Diminished lung function 

 
- 2 or more exacerbations, less than 

2 hospitalizations  
- High IgE 

 
- High medication use 

       -     Mild eosinophilia  

Cluster 3 

- Moderate-severe asthma 
- Diminished lung function 

 
- 1 attack 
- Sensitized to cat, dog and tree 

 
-  Reversible airways 

 

Cluster 2 

- Frequent hospitalizations 
- Frequent attacks  
- Late-onset 

 
- Moderate eosinophilia 
- Moderate medication use 
- Male 
- Family history 
- Normal lung function 

Cluster 5 

- Frequent attacks 
- Late-onset 

 

 

- Atopic 
- High IgE  
- On LABA 

 

Cluster 3 

- Late- onset 
- Multiple atopy 
- High BMI 
- Allergic rhinitis/conjunctivitis 
- Mild asthma 

 
- 1 attack, less than 2 hospitalizations 

 
- Diminished lung function and high 

reversibility 
 

- Male 
- Normal eosinophils 
- Family history 
- Exposure to tobacco 
- Low medication use 

Cluster 2 

- Late- onset 
- Multiple atopy 
- High BMI 
- Allergic rhinitis/conjunctivitis 
- Mild asthma 

 
- No attacks 

 
- Good lung function 

 

Cluster 4 Cluster 1 
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- Early onset  
- Female 
- Non atopic 
- High steroid doses 
- Slightly diminished lung function 

 
- Mild asthma 

 
- 1 attack per year 

 

- Early onset 
- Female  
- Slightly atopic; lower total IgE 
- High steroid and medication use 
- Diminished lung function 

 
- Severe asthma 

 
- Family history 
- Exposed to tobacco 

Cluster 5 

- Mild asthma 
- Good lung function  
- Low medication use 

 

- Sensitized to HDM, weed  
 

- No attacks 
- Less than 2 hospitalizations 
- Hypereosinophilic 

Cluster 4 

- Mild asthma 
- Good lung function 
- Low medication use 

 

- Non-atopic 
- Low IgE 

 

- Male 
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Table E4.8: Cluster stability for the HC after PCA dimensionality reduction, HC using all available 
variables, and HC using the “informative” subset of features. The mean values for the bootstrapping 
samples indicating stability. Good stability is considered to have a bootstrap mean>0.75. Stable 
clusters highlighted in bold: HC on principal components producing only one stable cluster (Cluster 1), 
HC using all available data producing two stable clusters (Clusters 2 and 5), while in HC using the 
“informative” subset of features, all clusters were stable. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

HC after PCA 
dimensionality 

reduction 

HC using all available 
variables 

HC using the 
“informative” subset 

of features 

Cluster 1: 0.98 

Cluster 2: 0.23 

Cluster 3: 0.41 

Cluster 4: 0.60 

Cluster 5: 0.19 

  

 Cluster 1: 0.59 

Cluster 2: 0.82 

Cluster 3: 0.53 

Cluster 4: 0.61 

Cluster 5: 0.86 

 

  Cluster 1: 1.00 

Cluster 2: 0.99 

Cluster 3: 0.99 

Cluster 4: 1.00  

Cluster 5: 1.00 
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Table E4.9: Univariate logistic regression analysis using sensitization status as ordinal variable (non-atopic, monosensitized, polysensitized). 
*Coeff: The coefficient translates into a value of how likely a child is assigned to that cluster based on the variable response.  

 

Variable Cluster 1 (n=132) Cluster 2 (n=135) Cluster 3 (n=181) Cluster 4 (n=151) Cluster 5 (n=14) 

Coeff p-value Coeff p-value Coeff p-value Coeff p-value Coeff p-value 

Age of Onset  -0.03 0.04 -0.15 <0.001 0.31 <0.001 -0.12 <0.001 -0.006 0.25 

Asthma attacks  0.0008 0.96 -0.03 0.04 -0.05 0.009 -0.04 0.01 0.12 <0.001 

Sensitization status -0.004 0.79 0.15 0.003 0.10 <0.001 -0.26 <0.001 0.004 0.45 

Asthma Severity 0.39 <0.001 -0.11 <0.001 -0.15 <0.001 -0.12 <0.001 0.005 0.35 

Cluster Stability 0.98 0.64 0.57 0.82 0.83 
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Table E4.10: Univariate logistic regression analysis using sensitization as continuous variable (IgE titer). *Coeff: The coefficient translates into a 
value of how likely a child is assigned to that cluster based on the variable response. 

 
 

Variable Cluster 1 (n=132) Cluster 2 (n=339) Cluster 3 (n=109) Cluster 4 (n=18) Cluster 5 (n=14) 

Coeff p-value Coeff p-value Coeff p-value Coeff p-value Coeff p-value 

Age of Onset  -0.03 0.03 -0.21 <0.001 0.25 <0.001 -0.00005 0.99 -0.004 0.48 

Asthma attacks  0.005 0.74 -0.10 <0.001 -0.03 0.02 -0.003 0.52 0.13 <0.001 

Total IgE -0.003 0.86 -0.06 0.003 -0.05 0.01 0.11 <0.001 0.0005 0.99 

Asthma Severity 0.39 <0.001 -0.29 <0.001 -0.09 <0.001 -0.01 0.05 -0.01 0.86 

Cluster Stability 0.97 0.81 0.67 0.70 0.67 
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Chapter 5 Longitudinal trajectories of wheeze 
exacerbations from infancy to school age and their 
association with early-life risk factors and late asthma 
outcomes 
              
Matea Deliu MD, Sara Fontanella PhD, Sadia Haider PhD, Matthew Sperrin PhD, Nophar 
Geifman PhD, Clare Murray MD, Angela Simpson MD PhD, Adnan Custovic MD PhD FAAAI 

Clin Exp Allergy (under review) 2019 

 

5.1 Rationale for this study 
Using the data from a well-defined and almost complete dataset from Turkey, we 

identified exacerbations to be one of the key features of understanding the heterogeneity of 

asthma. However, it is not possible to perform any longitudinal analysis as there is no follow-up 

data. The Manchester Asthma and Allergy Study (MAAS) provided an ideal setting in order to 

utilise complex longitudinal methodology as it is a birth cohort that contains multiple follow up 

points, detailed data on exposures and biomarkers, genetics (though not used in this thesis), 

and associated detailed lung function and sensitization data. This would allow us to ascertain 

the trajectories of exacerbations from early onset to late childhood.  

 
5.2 Abstract 

 
Introduction: Exacerbation-prone asthma subtype has been reported in studies using data-

driven methodologies. However, longitudinal patterns of exacerbations throughout childhood 

have not been studied. 

Objective: To investigate distinct longitudinal trajectories of wheeze exacerbations from 

infancy to school-age. 

Methods: We applied longitudinal k-means clustering to derive exacerbation trajectories 

among participants in a population-based birth cohort with confirmed exacerbations in primary 
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healthcare records.  We examined the association of derived clusters with lung function, airway 

hyperreactivity and inflammation, allergic sensitisation, and use of asthma medication.  

Results: 498/887 children (56%) had physician-confirmed wheeze in medical records up to age 

8 years, of whom 160 had at least one confirmed severe exacerbation.  A two-cluster model 

provided the optimal solution for exacerbation trajectories among these 160 children. We 

assigned clusters as “Early-onset frequent exacerbations (FE)” (n=10, 6.3%) and “Infrequent 

exacerbations (IE)” (n=150, 93.7%). Shorter duration of breastfeeding was the strongest risk 

factor for FE (median weeks, 0 [IQR: 0-1.75] vs IE 6 (IQR: 0-20), p<0.001). When we compared 

children in the exacerbation clusters with those who never wheeze (n=389), or wheeze but 

have no exacerbations (n=338), the proportion of allergic sensitization was highest in those that 

have exacerbations. By adolescence, children who have exacerbations were more likely to have 

a diagnosis of asthma, require more inhaled corticosteroids, and have diminished lung function.  

Conclusion: We have identified two distinct patterns of asthma exacerbations during childhood 

with different late-childhood asthma outcomes, early-life risk factors, and lung function. These 

results indicate that exacerbations represent a distinct susceptibility phenotype. 

5.3 Introduction 

 
Asthma is the most common chronic disease in children. Despite advances in treatment 

and changes in guidelines, severe exacerbations continue to occur, thus creating a major 

burden on not only the child and the child’s family, but also on health care resources.1 Notably, 

a small proportion of children with frequent exacerbations account for the majority of the total 

exacerbation burden in childhood.2 Recent studies utilizing data-driven methods have shown 

that exacerbations may provide meaningful insight into understanding asthma heterogeneity.3,4 

Identified risk factors for severe exacerbations include younger age, male sex, race, parental 

smoking history, socioeconomic status, diminished lung function, severe exacerbation in 

previous year, respiratory virus infections, and synergistic effects of allergen sensitisation, 

exposure and virus infection.5-11  
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Exacerbations encompass the crux of the definition of severe asthma, in that a child’s 

asthma is considered to be severe if they’ve had frequent severe (use of oral steroids) or 

serious (hospital admission) exacerbations along with poor symptom control and airflow 

limitation.12  However, although exacerbations have long been known to be an element of the 

severe asthma ‘phenotype’, it is increasingly clear that children can have asthma attacks 

despite good adherence with treatment and relatively good asthma control.13,14 Studies using 

data-driven methods have shown that exacerbations are present within different asthma 

clusters of varying disease severity,4 and that patients with mild disease can have high rates of 

severe exacerbations, whereby decreasing symptoms may not always mean a decrease in the 

number of exacerbations.7,15 Using data driven techniques, we have recently identified an 

exacerbation-prone asthma cluster that contained a proportion of children with mild asthma 

and normal lung function.16 This data suggests that patients with exacerbations may account 

for a separate susceptibility phenotype, relatively independent of whether or not a child is 

deemed to have severe asthma, with a likely unique aetiology. 

Despite the current advancement of knowledge and treatment options in this domain, 

clinicians are still able to only partly prevent an impending exacerbation.17 A recent clinical trial 

in children tested the hypothesis that substantially increasing the dose of inhaled 

corticosteroids (ICS) in the period just before an exacerbation when symptom control weakens 

would prevent a full-blown exacerbation.18 However, the results were disappointing and the 

side effects outweighed any benefit.  

We hypothesised that there are distinct patterns of severe exacerbations of wheezing 

during childhood, and that uncovering such patterns may help ascertain whether there are 

different mechanisms contributing to exacerbations.  To address our hypothesis, within an 

unselected birth cohort, we identified longitudinal trajectories of severe exacerbations of 

wheezing by analysing exacerbation patterns from birth to school-age. We then identified their 

early life risk factors, and asthma−related outcomes and lung function measures in late 

childhood. 
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5.4 Methods 

 
5.4.1 Study Population 
 

The Manchester Asthma and Allergy Study is a population-based birth cohort, and is 

described in detail elsewhere.2,19 Subjects were recruited prenatally and followed prospectively. 

The study was approved by the Local Ethics Committee. Parents provided written informed 

consent. For more details about methods and variable definitions please see Online 

supplement.  

 

5.4.2 Data sources and definition of variables to identify exacerbation trajectories  
 

We extracted data from electronic and paper-based primary care medical records, 

including prescriptions of any medication (type, dose, and indication) including oral 

corticosteroid prescriptions, episodes of wheeze, emergency department admissions, and 

asthma or wheeze-related admissions to hospital. Age in days at the time of each event was 

recorded.20 This data was available from birth to age 8 years.  

Severe exacerbation of wheeze/asthma: Defined from primary care records as either  receipt of 

oral corticosteroids (OCS) for at least 3 days or hospital admission or emergency department 

visit because of asthma/wheeze requiring OCS.21 We recorded age (in days) of each 

exacerbation to provide an accurate account of each episode. 

 

5.4.3 Data sources and definition of variables to validate exacerbation trajectories 
 

Children attended clinical follow-ups at ages 1, 3, 5, 8, 11, and 16 years. Validated 

questionnaires were interviewer-administered to collect information on symptoms, 

environmental exposure and treatments received. Early life risk factors, including 

environmental tobacco smoke (ETS) exposure, pet ownership, length of breastfeeding, day-care 

attendance, presence of siblings, and family history of asthma were ascertained during the last 

trimester of pregnancy and in the first year of life.  Allergic sensitization was ascertained using 

skin prick tests (SPT; ages 3-16) to common inhalant and food allergens.  
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Current asthma at age 16 years: Defined as the presence of any two of the following three 

features: 1) Current wheeze; 2) Current use of asthma medication; and 3) Physician-diagnosed 

asthma ever.22   

Asthma severity: We created a composite variable to represent symptom control and step in 

medication as based on the British Thoracic Society (BTS) guidelines.23 BTS step 1 and 2 are 

considered to be ‘Mild asthma’, step 3 and 4 are considered as ‘Moderately severe asthma’, 

and step 5 is considered to be ‘Severe asthma’. 

Lung function, airway hyperreactivity and airway inflammation 

We measured lung function using spirometry at ages 8, 11 and 16 years using a Lilly 

pneumotachograph system with animated incentive software (Jaeger, Würzburg, Germany), or 

for home visits, a flow turbine spirometer (Micro Medical, UK).24  FEV1 % predicted25 and 

FEV1/FVC ratio were recorded.  Specific airway resistance (sRaw) was measured using whole-

body plethysmography (Masterscreen Body 4.34; Jaeger, Würzburg, Germany) 

plethysmography at ages 3, 5, 8, 11, 16.19,26  Airway hyperreactivity (AHR) was measured using 

standard quadrupling doses of methacholine in a 5-stage process at ages 8 and 11 years.27 

Children were considered to have AHR if there was a 20% decrease in FEV1 by the final stage 

(16mg/mL). We also calculated a dose-response slope.28 Airway inflammation was recorded at 

age 8, 11, and 16years as a measure of Fractional Exhaled nitric oxide (FeNO) and performed 

according to the American Thoracic Society guidelines using either a chemiluminescence 

analyser or an electrochemical analyser (NIOX, Solna, Sweden) .29 Data were expressed in parts 

per billion (ppb).  

5.4.4 Statistical Analysis 
 

For ascertaining exacerbation patterns, we used primary care records data (ages 1-8) as 

this provided an objective account of hospital admissions, receipt of oral corticosteroids and 

presence of wheeze.  

Exploratory analysis to identify patterns of exacerbations: We used cluster analysis for 

longitudinal data to identify whether there are subgroups of patients with similar exacerbation 

patterns.  We applied a longitudinal extension of the k-means algorithm (KmL)30 to “number of 
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exacerbations”.  The KmL30 technique is a partitional clustering method. The optimal number of 

clusters was assessed using the Calinski-Harabatz criterion31. Results for post-hoc longitudinal 

cluster analysis were obtained through the KmL package developed in R software32. Technical 

details are provided in the online supplement. 

To assess differences between exacerbation clusters, we used either a t-test, χ2 test, 

Mann-Whitney test, or one-way ANOVA as appropriate. To check which early-life risk factors 

predict trajectory membership, we used multinomial logistic regression models up to age 8.  

In order to identify differences between children with different exacerbation trajectories, those 

with wheezing but no exacerbations, and children who have never wheezed, we used a 

multinomial logistic regression model with lung function, AHR, atopy, asthma severity, and 

asthma medication as outcomes. All analysis was performed using R software (www.r-

project.org/).33  

 
5.5 Results 

 
5.5.1 Population characteristics and participant flow 
 

Of 1184 children born into the cohort, 984 families gave consent for the review of 

medical records, of whom we extracted data for 887 children20. Of those, 498 (56%) had 

physician-confirmed wheeze in their medical records on at least one occasion up to age 8 years, 

and 389 never wheezed. Of 498 children with confirmed wheezing, 160 (32%) had at least one 

confirmed severe exacerbation in the first 8 years, and 338 had no exacerbations.  The median 

age of the first recorded wheeze episode was 676 days (IQR: 187-863), and of the first 

exacerbation 893 days (IQR: 343-1238).  The annual incidence of exacerbations ranged from 5% 

during ages 1-5, to 1.5% by age 8.  Descriptive characteristics of 160 children who had at least 

one severe exacerbation of wheezing are shown in Table E5.1; 68 (43%) had a physician 

diagnosis of asthma in the same period, and 116 (73%) were prescribed ICS at some point.  

Current use of ICS among current exacerbators in each 12-month period from birth to age 8 

increased from 31% in the first year of life to 79% in year 8. Among children with 
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exacerbation(s), on average 11% per annum had ≥3 exacerbations in the preceding 12 months 

(frequent exacerbators); all but one of these children received asthma medication.  

5.5.2 Identification of exacerbation trajectories and their associates 
 

To identify exacerbation trajectories, we analysed data from 160 children who had at 

least one confirmed exacerbation from birth to age 8 years. According to the Calinski-Harabatz 

index (Figure E5.1), the optimal model that best described the data was a 2-class solution. 

Figure 5.1 shows the exacerbations patterns of the children in these two trajectories. We 

assigned trajectories as “Early-onset frequent exacerbations (FE)” (n=10, 6.3%, median =4) and 

“Infrequent exacerbations (IE)” (n=150, 93.7%, median =1).  

The associations of exacerbation trajectories with risk factors and clinical features in the 

first 8 years of life are presented in Table E5.2. Shorter duration of breastfeeding was the 

strongest risk factor for FE (median weeks, 0 [IQR: 0-1.75] vs IE 6 (IQR: 0-20), p<0.001). Family 

history of asthma and tobacco smoke exposure did not differ between clusters. 

Children in FE cluster were significantly more likely to have eczema in the first 3 years of 

life, but not thereafter. Co-morbid rhinitis and allergic sensitization did not differ between the 

clusters.  Children in FE cluster were more likely to have persistent wheeze (90% vs 47%, 

p=0.03, Table E5.3), and by age 8 years, 90% of children in the FE cluster (vs. 39% in IE) had 

doctor diagnosed asthma (p=0.002). Although the majority of children in both clusters had mild 

asthma (BTS step 1 or 2), children in FE cluster accounted for the highest percentage of more 

severe asthma (Table E5.4). It is of note that 41% of children in IE cluster and 10% of children in 

FE cluster at age 3 received no asthma treatment. These figures were similar at age 5 (37% IE 

and 10% FE) and age 8 (25% IE, 10% FE). 

We observed significant differences in lung function and airway inflammation by age 8 

between the two exacerbation trajectories (Table 5.1). Children with FE had significantly lower 

FEV1 % predicted and FEV1/FVC, and significantly higher FeNO and AHR compared to IE. 

Similarly, sRaw was markedly and significantly higher in FE compared to IE cluster throughout 

childhood (Figure E5.1).    
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Figure 5.1: Longitudinal trajectories of exacerbations. Cluster 1: infrequent exacerbations, 
N=150 (93.7%). Cluster 2: Early-onset frequent exacerbations, N=10 (6.3%). Each line represents 
an individual trajectory. 
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Table 5.1: Differences in lung function, airway inflammation and airway hyper-reactivity between early onset frequent exacerbations and 
infrequent exacerbations. FEV1= forced expiratory volume in 1 second, FeNO= fraction of exhaled nitrogen oxide; t-test used for differences 
between means 

 

 Cluster 1 (Infrequent 

Exacerbations); n=150 

Cluster 2 (Frequent 

Exacerbations); n=10 

p-value 

FEV1, mean (95%CI), age 8 95.6 (93.3-97.9) 91.1 (80.9-101.3) <0.001 

FEV1/FVC, mean (95%CI), age 8 85.1 (83.9-86.2) 78.1 (72.8-83.4) <0.001 

sRAW, mean (95%CI), age 3 1.1 (0.9-1.2) 1.5 (1.3-1.6) <0.001 

sRAW, mean (95%CI), age 5 1.2 (1.0-1.3) 1.3 (1.1-1.4) <0.001 

sRAW, mean (95%CI), age 8 1.2 (1.0-1.3) 1.8 (1.5-1.9) <0.001 

Methacholine DRR slope, mean (95%CI), 

age 8 

11.9 (4.9-17.4) 14.9 (2.5-21.3) 0.08 

FeNO, mean (95%CI), age 8 11.5 (7.8-19.5) 58.5 (24.2-79.3) <0.001 
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5.5.3 Comparison of children who never wheezed, wheezers with no exacerbations, and 
exacerbation clusters  
 

In a further analysis, we compared children who wheezed, but have not had 

exacerbations (WNE), with those in the two exacerbation clusters (IE and FE), using children 

who never wheezed (NW) as reference (Table 5.2). The duration of breastfeeding was 

significantly shorter among the two exacerbation clusters, with a median of 0 weeks (RR 0.92, 

(95%CI: 0.85-0.99), p<0.001) in FE class. Maternal smoking during pregnancy significantly 

increased the risk of all three groups characterised by the presence of wheezing, with the 

magnitude of risk being highest among children in the FE cluster.   

Figure 5.2 shows trajectories of allergic sensitization from age 1 to age 16 years across 

the four groups. The proportion of children who were sensitized in the FE cluster steadily 

increased at each age and remained markedly higher than children with infrequent 

exacerbations and those that have never had an exacerbation.  
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Table 5.2: Associations of exacerbation clusters with early-life risk factors, skin test responses and co-morbidities: multinomial logistic regression 
using children who never wheezed (NW) as the reference. SPT: skin prick test; quantitative continuous variable presented as median (IQR); ordinal 
variables represented as frequencies (%); RR=relative risk; CI=confidence interval. Bold values represent significant p-values. 

 
 

 
NW (reference) (n=389) 

 

WNE (n=338) 

RR (95%CI) 

p-value 

IE  (n=150) 

RR (95%CI) 

p-value 

FE (n=10) 

RR (95%CI) 

p-value 

Gender (boys) 162, (42%) 166, (49%) 

1.5 (1.1-2.0) 

0.01 

82, (55%) 

2.5 (1.7-4.0) 

<0.001 

5, (50%) 

1.2 (0.3-4.1) 

0.81 

Family history of asthma 

 

91, (23%) 121, (36%) 

1.8 (1.3-2.4) 

<0.001 

51, (34%) 

1.6 (1.1-2.2) 

0.01 

3, (30%) 

1.2 (0.4-4.3) 

0.74 

Younger sibling 165, (42%) 136, (40%) 

0.91 (0.64-1.22) 

0.54 

48, (32%) 

0.65 (0.43-0.98) 

0.04 

3, (30%) 

0.76 (0.18-3.23) 

0.71 

Older Sibling  208, (53%) 170, (50%) 

0.88(0.65-1.2) 

0.39 

93, (62%) 

1.5 (1.0-2.3) 

0.03 

5, (50%) 

0.87 (0.25-3.1) 

0.83 

Breastfeeding (weeks), 

median (IQR)* 

10 (0-28) 8 (0-24) 

0.99 (0.98-1.0) 

0.08 

6 (0-20) 

0.98 (0.97-0.99) 

0.006 

0 (0-1.8) 

0.92 (0.85-0.99) 

0.009 
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Day care attendance 280, (72%) 212, (63%) 

0.76 (0.55-1.1) 

0.11 

78, (52%) 

0.59 (0.39-0.91) 

0.01 

7,  (70%) 

1.3 (0.25-6.2) 

0.77 

Maternal smoking during 

pregnancy 

 

101, (26%) 125, (37%) 

1.6 (1.2-1.9) 

<0.001 

53, (35%) 

1.4 (1.1-1.9) 

0.02 

5, (50%) 

2.8 (1.3-6.3) 

0.01 

Tobacco exposure, age 1y 96, (25%) 116, (34%) 

1.6 (1.2-2.2) 

0.004 

46, (31%) 

1.4 (0.9-2.1) 

0.14 

4, (40%) 

2.0 (0.6-7.4) 

0.28 

Tobacco exposure, age 3y 89, (23%) 116, (34%) 

1.9 (1.4-2.7) 

<0.001 

46, (31%) 

1.8 (1.2-2.8) 

0.005 

4, (40%) 

2.6 (0.7-9.9) 

0.15 

Tobacco exposure age 5y 91, (23%) 119, (35%) 

1.8 (1.3-2.5) 

<0.001 

42, (28%) 

1.3 (0.9-2.5) 

0.19 

5, (50%) 

3.2 (0.9-11.3) 

0.07 

Atopic sensitization (SPT), 

age 3y 

65, (17%) 61, (18%) 

1.2 (0.8-1.8) 

0.4 

50, (33%) 

3.2 (2.1-5.1) 

<0.001 

5, (50%) 

10.9 (2.1-57.7) 

0.004 

Atopic sensitization (SPT), 

age 5y 

75, (19%) 95, (28%) 

1.6 (1.2-2.3) 

0.005 

67, (45%) 

3.4 (2.2-5.1) 

<0.001 

4, (40%) 

4.8 (1.0-22.2) 

0.04 
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Dog ownership, birth 54, (14%) 62, (18%) 

1.4 (0.9-2.1) 

0.09 

20, (13%) 

1.0 (0.6-1.8) 

0.88 

3, (30%) 

3.1 (0.7-12.8) 

0.12 

Cat ownership, birth 72, (18%) 76 , (22%) 

1.3 (0.9-1.9) 

0.15 

24, (16%) 

0.9 (0.5-1.5) 

0.70 

4, (40%) 

3.5 (0.9-13.4) 

0.06 

Rhinitis, age 5y 65, (17%) 103, (30%) 

2.3 (1.6-3.2) 

<0.001 

55, (37%) 

3.2 (2.0-4.9) 

<0.001 

5, (50%) 

7.9 (1.8-34.2) 

0.005 

Eczema, age 1y 119, (31%) 122, (36%) 

1.3 (0.9-1.8) 

0.06 

54, (36%) 

1.6 (1.1-2.5) 

0.02 

7, (70%) 

15.3 (1.9-126.2) 

0.01 

Eczema, age 3y 78, (20%) 81, (24%) 

1.3 (0.9-1.9) 

0.13 

47, (31%) 

2.3 (1.5-3.5) 

<0.001 

6, (60%) 

11.5 (2.3-58.1) 

0.004 

Eczema, age 5y 105, (27%) 105, (31%) 

1.2 (0.9-1.7) 

0.26 

56, (37%) 

1.6 (1.1-2.5) 

0.01 

4, (40%) 

2.6 (0.6-10.4) 

0.19 
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Figure 5.2: Trajectories of atopic sensitization from age 1- age 16 years among children who never 
wheezed, those who wheeze but had no exacerbations, and two exacerbation clusters 

 
 

 

5.5.4 Late lung function and asthma outcomes 
 

Trajectories of lung function from age 8 to age 16 years in the four groups are shown in 

Figure 5.3. Compared to NW, children with wheeze and/or exacerbations had significantly 

diminished lung function from mid-school age to adolescence (Figure 5.3, Table E5.5). Table 5.3 

shows lung function and FeNO at age 16 years in the four groups and Figure E5.3 shows 

trajectories of airway inflammation from age 8 to age 16 years. FEV1/FVC was significantly 

lower in the FE cluster compared to all other groups, while FeNO was significantly increased in 

both exacerbation groups.    

At age 16 years, children who had exacerbations were more likely to have a diagnosis of 

asthma than those who wheezed alone (80% in FE and 52% IE vs 25% WNE, p<0.001) (Table 

5.4). Based on BTS guideline treatment steps, children with exacerbations were more likely to 

have moderately-severe asthma, particularly those in the FE cluster. Similarly, the proportion of 
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children on inhaled corticosteroids was significantly higher in children with exacerbations than 

those who wheezed but did not exacerbate.  

 

Figure 5.3: Trajectories of lung function from age 8 to age 16 years among children who never wheezed, 
those who wheeze but had no exacerbations, and two exacerbation clusters 

a) FEV1/FVC % predicted  
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Table 5.3: Lung function at age 16 years among children who never wheezed (NW), those who wheezed, but have not had exacerbations (WNE), 
and children in the two exacerbation clusters (IE and FE). Children with lung function tests, N=559. See online supplement for visualisation. FEV1= 
forced expiratory volume in 1 second, FeNO= fraction of exhaled nitrogen oxide. Quantitative variables represented as mean (95% confidence 
interval).  

 
 

 
 
 
 

NW (reference) 

(n=247) 

WNE (n=217) 

N (%) 

IE  (n=88) 

N (%) 

FE (n=7) 

N (%) 

p-value 

FEV1, mean (95%CI), age 16y 101.4 (99.8-102.1) 97.9 (96.5-99.2) 95.5 (93.1-97.9) 87.3 (78.9-

95.7) 

0.64 

FEV1/FVC, mean (95%CI), age 16y 89.9 (89.3-90.5) 88.1 (87.3-88.8) 85.1 (83.4-86.7) 74.7 (61.5-

87.8) 

0.001 

sRAW, mean (95%CI), age 16y 0.9 (0.91-1.0) 1.0 (0.9-1.01) 1.0 (0.9-1.1) 1.5 (1.4-1.6) 0.09 

FeNO, mean (95%CI), age 16y 21.7 (19.7-23.8) 30.9 (27.4-34.4) 43.1 (34.6-51.5) 52.6 (19.9-

85.3) 

0.01 
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Table 5.4: Asthma-related outcomes at age 16 years among children who wheezed, but have not had exacerbations (WNE), and children in the 
two exacerbation clusters (IE and FE). *Fisher’s exact test for asthma treatment due to small numbers. Chi-squared used for binary data. 

 

 WNE (n=244) 

N (%) 

IE  (n=97) 

N (%) 

FE (n=9) 

N (%) 

p-value 

Current asthma, age 16 years 32, (13%) 29, (30%) 6, (67%) 0.02 

Use of inhaled corticosteroids at 

age 16 years 

45, (18%) 37, (15%) 7, (77%) 0.04 

Ever doctor-diagnosed asthma 

by age 16y 

86, (35%) 78, (89%) 8, (89%) <0.001 

Asthma severity 

No asthma treatment 202, (83%) 61, (69%) 1, (11%)  

 

<0.001 

Step 1 24, (9%) 15, (15%) 1, (11%) 

Step 2 14, (6%) 14, (14%) 3, (33%) 

Step 3 4, (2%) 7, (7%) 4, (44%) 
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5.6 Discussion 

 
5.6.1 Key findings 
 

To the best of our knowledge, this is the first study that has mapped trajectories of 

numbers of exacerbations over time. In our birth cohort study, with the use of data-driven 

methodology, we identified two distinct trajectories of exacerbations of wheezing in childhood 

with different outcomes, early-life risk factors, and lung function. We have shown that the 

frequent exacerbations subtype has an early high-intensity onset which then subsides 

somewhat, but then persists through childhood. Infrequent exacerbation subtype tends to be 

stable throughout. Both these subtypes are associated with the persistent wheeze phenotype. 

In a further analysis comparing children with exacerbations and children who wheeze but do 

not exacerbate, children with exacerbations were more likely to be sensitized to any allergen, 

have a diagnosis of asthma, and require more inhaled corticosteroids for symptom control. 

These children also had significantly diminished lung function and greater airway inflammation 

by late childhood. Despite this, we also found that a large subset of children that exacerbate 

also have mild asthma with good symptom control, normal lung function and relatively low 

medication use.   

5.6.2 Limitations and strengths 
 

One limitation of our study arises from the number of children included in the initial 

analysis to determine the longitudinal trajectories. Given the relatively small number of 

children in FE class, the study may not have picked up all significant differences, but rather only 

the highly significantly ones. However, exacerbations are rare events and children who 

exacerbate make up 18% of our population, which is similar to other cohorts.1,34 We did not 

have a replication population, as another birth cohort with transcribed data from health-care 

records could not be identified to allow objective ascertainment of severe exacerbations.  

Future research would include validating our results in other populations.  

A major strength of our study is that the data was extracted from primary care records 

which presents the most accurate account of exacerbation frequency. Our primary care records 
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also contain precise information on prescriptions. We have not had to rely on the recollection 

of parents. Another strength is the data-driven methodological approach used in a large well-

defined prospective birth cohort study which has removed any a priori assumptions.  

5.6.3 Interpretation 
 

This study builds upon our previously published work in a well-defined patient cohort.3 

Using similar methodology, we identified an exacerbation-prone asthma subtype, independent 

of asthma severity or control, as one of the key features for disaggregating asthma and 

identifying disease subtypes. Although there is general consensus that there are different 

asthma subtypes, only focusing on key determinants of asthma presence are not enough to 

uncover the heterogeneity.  

Duration of breastfeeding was the most significant early life risk factor for 

exacerbations, particularly frequent exacerbations. Children from mothers who had the 

shortest duration of breastfeeding were more likely to experience exacerbations in childhood. 

Various studies have reported the protective nature of breastfeeding on asthma development, 

or reduction in severity35-37, including a recent study by Ahmadizar et al showing a lower risk of 

exacerbations later in life.38 These results suggest that breastfeeding may have an 

immunomodulatory effect on exacerbations. Breastmilk contains high levels of 

immunoglobulins, lactoferrin, cytokines, and prebiotic structures that influence the 

development of  immune systems.39 Furthermore, it has been shown that breastmilk can alter 

the composition of the gut microbiome.40 However, further prospective research is required to 

clarify the underlying mechanisms. Other early-life risk factors such as day care attendance, 

position in sibship, and exposure to tobacco smoke were significantly associated with 

exacerbations throughout childhood. These children were also more likely to have co-morbid 

rhinitis and eczema as well as being allergically sensitized. In particular, children who 

exacerbate were significantly and markedly more likely to be sensitized to any allergen 

throughout childhood and adolescent years. This is in concordance to a similar allergy-driven 

exacerbation cluster identified by the Trousseau Asthma Programme which could suggest that 

similar risk factors may be contributing to atopy and exacerbations41  
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Looking more closely at the children who exacerbate in childhood within our cohort, it is 

evident that they are more likely to have the persistent wheeze phenotype. This could be 

explained in two ways: either our children were not on adequate therapy (only 50% of children 

in with FE were on inhaled corticosteroids by age 8) and were therefore having exacerbations, 

or, that these children were on correct therapy at the time of follow-up, but still exacerbated 

due to some other underlying mechanism. The fact that many children with well-controlled 

asthma and normal lung function still frequently exacerbate emphasizes the need for directed 

research into the pathophysiological mechanisms underlying this process as we are still unable 

to prevent impending exacerbations.42 Furthermore, increasing inhaled corticosteroid therapy 

in order to prevent exacerbations or prolong the time to first exacerbation has been shown to 

be ineffective.18 

The proportion of children with the most ‘severe’ asthma in our cohort was highest in 

children who had frequent exacerbations. Our results also show that a large subset of children 

that exacerbate have mild asthma with good symptom control and relatively low medication 

use. This provides evidence that exacerbation-prone asthma may represent a separate subtype, 

not necessarily associated with severe disease or severe airway obstruction. Other recent 

studies using similar approaches have added value to the notion of a separate exacerbation-

prone subtype independent of asthma severity or control.3,7   

We found that exacerbations were associated with more airway inflammation, airway 

hyper-responsiveness, and poorer lung function, which is in line with previous studies.4,7,34 

These effects were even more pronounced in those children that had frequent exacerbations. It 

is interesting to note that the majority of children with exacerbations had normal FEV1. 

However, when we looked at the ratio of FEV1/FVC, which is a measure of airway obstruction, 

these values dropped significantly in children who had frequent exacerbations, indicating that 

FEV1/FVC ratio may be a better predictor of those at risk of exacerbations in this age group. 

Nevertheless, it is evident that children who exacerbate have poorer lung function when 

compared to those who just wheeze. In a recent longitudinal multi-cohort study, children with 

recurrent early life exacerbations were more likely to persist in having poor lung function by 

adulthood43 which is an important factor in the development of chronic obstructive pulmonary 
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disease (COPD).44,45 Therefore targeting the prevention of exacerbations may alter this 

persistently low lung function in order to prevent ongoing decline by the time the physiological 

plateau is reached in early adulthood.  

Studies have shown that viral respiratory infections, particularly rhinoviruses, are major 

triggers of asthma exacerbations by mounting a large type-2 inflammatory response mediated 

by eosinophils.8  A recent study which used machine learning applied to 28 rhinovirus-16 

induced cytokines and chemokines induced by stimulation of blood mononuclear cells of 

children described six immunophenotypes of anti-virus responses46. The IFNlowestInflamhighTh2-

chemlowRegmod cluster (lowest interferon induction and highest proinflammatory cytokine 

response) was associated with early-onset asthma and sensitization, and the highest risk of 

asthma exacerbations46. These characteristics resemble other exacerbation prone asthma 

subtypes.34,41 However, treatments to reduce eosinophils, and thereby the surmounting 

inflammatory response, using corticosteroids and biologics have not been able to fully prevent 

exacerbations, suggesting that other cells and mechanisms are likely involved. New data from 

Touissant et al has provided some new insight into the role of neutrophils and the formation of 

neutrophil extracellular traps as major contributors in initiating viral induced asthma 

exacerbations, perhaps suggesting a novel therapeutic target.47 

In conclusion, we have identified two distinct patterns of asthma exacerbations during 

childhood with different late-childhood asthma outcomes, early-life risk factors, and lung 

function when compared to children who never wheeze and those that wheeze, but have no 

exacerbations. These results indicate that exacerbations represent an independent 

susceptibility phenotype. Furthermore, ascertaining the stability of exacerbation frequency in 

asthma is important, as it could help identify patients at risk of having future exacerbations. 

This would encourage more in-depth initial clinical evaluations, closer longitudinal follow-up, 

optimizing adherence to currently available treatment strategies, or the development of novel 

prevention strategies. 
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5.8 Supplementary Material 

 
5.8.1 Methods 
 
Study design: Unselected birth cohort 

Setting: A mixed urban-rural population within 50 square miles of South Manchester and 

Cheshire, United Kingdom located within the maternity catchment area of Wythenshawe and 

Stepping Hill Hospitals 

Screening and recruitment: All pregnant women were screened for eligibility at antenatal visits 

(8-10th week of pregnancy). Of the 1499 couples who met the inclusion criteria (≤10 weeks of 

pregnancy, maternal age ≥18 years, and questionnaire and skin prick data test available for 

both parents), 288 declined to take part in the study and 27 were lost to follow-up between 

recruitment and the birth of a child. A total of 1184 children born into the study had at least 

some evaluable data.  

Data from primary care medical records: Eligible GP practices were invited to participate in the 

study by postal information packs and telephone calls. Data access and manual extraction were 

performed during arranged visits to each GP practice. A trained paediatrician extracted data 

from electronic and paper-based primary care medical records, including prescriptions, acute 

wheeze episodes, hospital admissions for asthma/wheeze, oral steroid prescriptions. Timing, 

type of visit, symptoms, indication and prescriptions were noted for each encounter.  

Definition of variables  

Wheeze phenotypes1,2: (1) No wheezing: no wheeze ever; (2) Transient early wheezing: 

wheezing during the first 3 years, no wheezing in the previous 12 months at subsequent follow-

ups; (3) Late-onset wheezing: no wheeze during the first 3 years, reported wheezing in the 

previous 12 months at age 5 years or later; and (4) Persistent wheezing: wheezing throughout 

childhood. 

Current rhinitis: Positive answer to “In the past 12 months, has your child had a problem with 

sneezing or a runny or blocked nose when he/she did not have a cold or the flu?”  
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Current eczema: Positive answer to “Has your child had eczema within the past 12 months?” 

Atopic sensitisation:  Mean diameter (MWD) 3mm larger than the negative control to at least 

one allergen.  

Current wheeze: physician confirmed wheeze as documented in primary care records available 

each year up to age 8. From ages 11-16, current wheeze is documented as a positive answer to 

the question “Has your child had wheezing or whistling in the chest in the last 12 months?”  

Asthma medication: The use of inhaled corticosteroids and/or other asthma medication was 

recorded in primary care records.  

Statistical Analysis 

Identification of Exacerbation clusters 

We used a k-means longitudinal model to ascertain the longitudinal trajectories of 

exacerbations in childhood. The KmL4 technique belongs to the class of partitional clustering. 

The main advantages of these methods are that no distributional assumptions within clusters 

are required, no assumptions regarding the shape of the trajectories are made, and they are 

independent from time-scaling.  

Formally, consider a set S of n subjects and let 𝑥𝑖𝑡 be the value of variable 𝑋 measured 

for each subject 𝑖 at time 𝑡. The sequence x𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑡) is then called a trajectory. The 

aim of KmL is, then, to divide S into g homogeneous sub-groups. Several distance measures can 

be chosen to assign trajectories to clusters. We used the Manhattan distance, which is more 

robust to outliers4. The optimal number of clusters is assessed using the Calinski and Harabatz 

criterion, which evaluates cluster validity based on the average between- and within-cluster 

sum of squares. Using all time points from 1-8, two optimal models were identified: a 2-cluster 

solution and a 4-cluster solution, with a slight preference to a 2-cluster solution (Figure E1). We 

then collapsed the time points to 1-3-5-8 years in order to reduce the variability and to 

correspond to clinical follow up.  

To test the validity of exacerbation classes, we created a separate dataset that included 

the entire population with complete data (n=887). We allocated children to 2 extra a priori 
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identified subgroups which we identified as “children with no wheeze at baseline” and 

“children with wheeze but no exacerbations”. We compared early and late childhood risk 

factors and lung function between the exacerbation subgroups and the aforementioned a priori 

ones.  
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5.8.2 Results 
Figure E5.1: Selection of number of clusters using the Calinski-Harabatz method.

Optimal solution 
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Table E5.1: Descriptive characteristics of children who ever had an exacerbation based on primary care records. ICS: inhaled corticosteroid 

 

Age (years), n=160 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 

Current ICS in current exacerbators 14/45, 

31% 

18/44, 

41% 

20/44, 

45% 

27/54, 

50% 

20/30, 

67% 

14/20, 

70% 

10/20, 

50% 

11/14, 

79% 

Current asthma 

medication in current 

exacerbators 

All 

exacerbations 

33/45, 

73% 

36/44, 

82% 

41/44, 

93% 

47/54, 

87% 

27/30, 

90% 

19/20, 

95% 

17/20, 

85% 

12/14, 

86% 

≥3 5/5, 

100% 

6/7, 

86% 

10,  

100% 

1/1, 

100% 

2/2, 

100% 

1/1, 

100% 

2/2, 

100% 

1/1,   

100% 

Gender (boys) 108/160, 67% 

Ever asthma in ever exacerbators 68/160, 43% 

Ever ICS in ever exacerbators 116/160, 73% 
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Table E5.2: Early-life characteristics and clinical features of exacerbation clusters. IF: Infrequent 
exacerbations; FE: Early-onset frequent exacerbations; SPT: skin prick test, Quantitative variable 
presented as median (IQR), Ordinal variables represented as frequencies (%). *Mann-Whitney test for 
medians. Chi-squared for binary variables  

 

 Cluster 1 (IF) 
n=150 

Cluster 2 (FE) 
n=10 

p-value 

Gender (boys) 103, (67%) 5, (50%) 0.38 

Family history of asthma 51, (34%) 3, (30%) 0.86 

Younger sibling 48, (32%) 3, (30%) 0.84 

Older sibling  93, (62%) 5, (50%) 0.59 

Breastfeeding (weeks), median (IQR)* 6 (0-20) 0 (0-1.75) <0.001 

Day care attendance 78, (52%) 7, (70%) 0.36 

Tobacco exposure, birth 53, (35%) 5, (50%) 0.64 

Tobacco exposure 1y 46, (30%) 4, (40%) 0.80 

Tobacco exposure 3y 46, (30%) 4, (40%) 0.88 

Tobacco exposure 5y 42, (28%) 5, (50%) 0.31 

Atopic sensitization (SPT), age 3y 50, (33%) 5, (50%) 0.27 

Atopic sensitization (SPT), age 5y 67, (45%) 4, (40%) 0.94 

Atopic sensitization (SPT), age 8y 69, (46%) 6, (60%) 0.83 

Dog ownership, birth 20, (13%) 3, (30%) 0.29 

Cat ownership, birth 24, (16%) 4, (40%) 0.34 

Presence of rhinitis, age 5y 55, (37%) 5, (50%) 0.36 

Presence of rhinitis, age 8y 51, (34%) 6, (60%) 0.13 

Presence of eczema, age 1y 54, (36%) 7, (70%) 0.03 

Presence of eczema, age 3y 47, (31%) 6, (60%) 0.03 

Presence of eczema, age 5y 56, (37%) 4, (40%) 0.54 

Presence of eczema, age 8y 48, (32%) 5, (50%) 0.24 

Doctor-diagnosed asthma ever 59, (39%) 9, (90%) 0.002 

Use of inhaled corticosteroids, age 3y 33, (22%) 8, (80%) <0.001 

Use of inhaled corticosteroids, age 5y 46, (31%) 6, (60%) 0.11 

Use of inhaled corticosteroids age 8y 41, (27%) 5, (50%) 0.13 
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Table E5.3: Wheeze phenotypes and their association with exacerbation clusters. IF: Infrequent 
exacerbations; FE: Early-onset frequent exacerbations; Chi-squared for binary variables 

 

Wheeze phenotype Cluster 1 (IF) 
n=150 

Cluster 2 (FE) n=10 p-value 

No wheeze 7, (21%) 0, (0)  

 

0.65 

Late onset wheeze 50, (33%) 1, (10%) 

Transient early wheeze 15, (10%) 0, (0%) 

Persistent wheeze 70, (47%) 9, (90%) 

 
 

 
Table E5.4: The distribution of asthma severity by exacerbation clusters. IF: Infrequent exacerbations; 
FE: Early-onset frequent exacerbations; BTS: British Thoracic Society step in asthma treatment. 
**Fisher’s exact test used due to low numbers. Bolded values represent significant p-values  

 

 Cluster 1 (IF) 
n=150 

Cluster 2 (FE) 
n=10 

p-value 

BTS age 3y** 

No asthma treatment 62, (41%) 1, (10%)  

 

0.04 

Step 1 48, (32%) 3, (30%) 

Step 2 31, (21%) 5, (50%) 

Step 3 1, (0.7%) 1, (10%) 

BTS age 5y** 

No asthma treatment 55, (37%) 1, (10%)  

 

0.19 

Step 1 33, (22%) 3, (30%) 

Step 2 40, (27%) 5, (50%) 

Step 3 6, (4%) 1, (10%) 

BTS age 8y** 

No asthma treatment 37, (25%) 1, (10%)  

 

0.31 

 

Step 1 18, (12%) 3, (30%) 

Step 2 32, (21%) 4, (40%) 

Step 3 8, (5%) 1, (10%) 
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Table E5.5: Associations of exacerbation clusters with lung function: multinomial logistic regression using children who never wheezed (NW) as the 
reference. FEV1= forced expiratory volume in 1 second, FVC= forced vital capacity, FeNO= fraction of exhaled nitrogen oxide 

 
 

 NW (reference) 
(n=389) 

 

WNE (n=338) 

RR (95%CI) 

p-value 

IE  (n=150) 

RR (95%CI) 

p-value 

FE (n=10) 

RR (95%CI) 

p-value 

FEV1, mean (SD), age 8y 103.9 (11.9) 98.9 (11.7) 
0.97 (0.95-0.98) 

<0.001 

95.6 (14.6) 
0.95 (0.03-0.97) 

<0.001 

91.1 (14.6) 
0.93 (0.87-0.99) 

0.02 

FEV1/FVC, mean (SD), age 8 87.9 (5.2) 86.3 (5.8) 
0.94 (0.91-0.97) 

0.001 

85.1 (7.6) 
0.91 (0.88-0.95) 

<0.001 

78.1 (6.9) 
0.80 (0.71-0.89) 

<0.001 
sRAW, mean (SD), age 3y 1.1 (0.2) 1.2 (0.2) 

2.6 (1.1-6.3) 
0.04 

1.2 (0.3) 
12.5 (4.3-36.3) 

<0.001 

1.5 (0.3) 
86.7 (1.1-743.2) 

<0.001 

sRAW, mean (SD), age 5y 1.1 (0.2) 1.2 (0.2) 
5.3 (2.5-11.2) 

<0.001 

1.2 (0.2) 
9.8 (4.1-23.7) 

<0.001 

1.3 (0.2) 
77.8 (11.4-532) 

<0.001 

sRAW, mean (SD), age 8y 1.1 (0.2) 1.2 (0.2) 
1.99 (1.07-3.73) 

0.03 

1.2 (0.3) 
4.4 (2.0-9.3) 

<0.001 

1.8 (0.2) 
62.5 (11.1-353.4) 

<0.001 

FeNO, mean (SD), age 8 9.4 (13.3) 9.6 (20.3) 
1.01 (0.99-1.03) 

0.08 

11.5 (19.5) 
1.02 (1.00-1.03) 

0.01 

65.3 (31.0) 
1.05 (1.02-1.08) 

<0.001 
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Figure E5.2: Trajectories of sRAW in from age 3 to age 8 years among children in two exacerbation trajectories. 
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Figure E5.3: Trajectories of airway inflammation from age 8 to age 16 years among children who never 
wheezed, those who wheeze but had no exacerbations, and two exacerbation clusters. 
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Figure E5.4: Lung function at age 16 years among children who never wheezed (NW), those who 
wheezed, but have not had exacerbations (WNE), and children in the two exacerbation clusters (IE and 
FE). Children with lung function tests, N=559. FEV1= forced expiratory volume in 1 second, FeNO= fraction 
of exhaled nitrogen oxide. Quantitative variables represented as mean (95% confidence interval). 
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c) sRAW (kPa/s) 
 

 
 
d) FeNO (ppb) 
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Chapter 6 Patterns of wheeze severity from early 
childhood to late adolescence: Longitudinal transition 
analysis in a birth cohort study 
 
____________________________________________________________________________ 
 
Matea Deliu MD, Sara Fontanella PhD, Clare Murray MD, Angela Simpson MD PhD, Adnan 
Custovic MD PhD FAAAI 

 
6.1. Rationale for this study 
 

Characterising asthma severity has implications on guiding management and identifying 

children at risk of severe exacerbations. There is no universal consensus on how to define 

asthma severity, however the majority of national guidelines view asthma severity according to 

current treatments and so a stepwise management approach is employed.1,2 Consequently, our 

initial approach to analysing patterns of asthma severity was taken from a treatment modality 

perspective using British Thoracic Society (BTS) guidelines.2 

Using the Manchester Asthma and Allergy cohort, as in the previous chapter, we 

analysed 816 children from ages 3-16 who had data for at least three time points. Missing data 

was imputed using the k-nearest neighbour imputation algorithm.3 We used the variable “BTS” 

which corresponded to the BTS treatment guidelines: 1) no asthma treatment, 2) step 1 (short 

acting bronchodilator), 3) step 2 (inhaled corticosteroid), 4) step 3 (add on long acting 

bronchodilator +/- leukotriene receptor blocker +/- increase inhaled corticosteroid). We did not 

have any children on higher steps of the treatment algorithm. Using latent class analysis and 

the BIC for model of best fit (Figure Intro 6.1), a 3 class model emerged. Figure Intro 6.2 shows 

the distribution of children per class: Class 1: n=635, class 2: n=104, class 3: n= 77. We labelled 

class 1: no asthma treatment, class 2: mild asthma, class 3: moderate asthma. Figure Intro 6.3 

shows the trajectories of the classes. Children in class 1 remain on no asthma treatment 

throughout childhood. Children in class 2 consistently have mild asthma. Children in class 3 

start having moderate asthma from age 5.  
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Figure Intro 6.1: BIC model of best fit showed that a 3-class model best described the data. 
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Figure Intro 6.2: Distribution of children per class and the probability of belonging to that class. 
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Figure Intro 6.3: Trajectories of asthma severity classes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The next three figures (Intro 6.4a-c) show the probability of belonging to each class. It is 

evident that children allocated to class 1 have a high probability of remaining in that class. In 

other words, children with no asthma treatment remain on no medication. Children in class 2 

are a little more heterogeneous in that there is a large proportion of children that are on short 

acting bronchodilators, but also a sizeable proportion on no asthma treatment. Children in class 

3 have a high probability of being on the BTS step 2 ladder by age 16, but also a smaller portion 

being on the BTS step 3 ladder starting from age 8 and continuing throughout childhood.  
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Figure Intro 6.4a: Probability of belonging to class 1. 
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Figure Intro 6.4b: Probability of belonging to class 2 
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Figure Intro 6.4c: Probability of belonging to class 3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We then looked at the associations of the classes to lung function throughout childhood 

and essentially found no differences (Table Intro 6.1). 
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Table Intro 6.1: Associations of severity classes with lung function: multinomial logistic regression using 
children who are not on treatment (Class 1) as the reference. FEV1= forced expiratory volume in 1 second, 
FVC= forced vital capacity, FeNO= fraction of exhaled nitrogen oxide 

  Class 1, 
n=638 
Mean (SD) 
  
reference 

Class 2, n=101 
Mean (SD) 
RR(95%CI) 
P-value 

Class 3, n=77 
Mean (SD) 
RR(95%CI) 
P-value 

FEV1, mean 
(SD), age 5 

96.6 (12.4) 95.6 (12.4) 
0.99 (0.98-1.01) 
p=0.39 

96.8 (12.9) 
1.00 (0.98-1.02) 
p=0.88 

FEV1, mean 
(SD), age 8 

99.0 (11.8) 98.7 (14.3) 
0.99 (0.97-1.01) 
p=0.87 

98.7 (10.2) 
0.99 (0.97-1.02) 
p=0.83 

FEV, mean (SD), 
age 11 

98.2 (11.5) 99.7 (12.4) 
1.01 (0.99-1.03) 
p=0.27 

99.1 (11.6) 
1.00 (0.98-1.03) 
p=0.57 

FEV, mean (SD), 
age 16 

98.7 (12.2) 99.5 (11.9) 
1.00 (0.98-1.03) 
p=0.65 

100.3 (13.4) 
1.01 (0.98-1.04) 
p=0.43 

sRAW, mean 
(SD), age 3 

1.1 (0.2) 1.1 (0.3) 
1.06 (0.33-3.40) 
p=0.92 

1.1 (0.3) 
1.37 (0.41-4.60) 
p=0.61 

sRAW, mean 
(SD), age 5 

1.1 (0.2) 1.1 (0.2) 
1.09 (0.43-2.78) 
p=0.84 

1.2 (0.3) 
1.37 (0.51-3.63) 
p=0.53 

sRAW, mean 
(SD), age 8 

1.2 (0.3) 1.2 (0.3) 
0.78 (0.32-1.91) 
p=0.59 

1.2 (0.3) 
0.96 (0.39-2.34) 
p=0.93 

sRAW, mean 
(SD), age 11 

1.2 (0.3) 1.2 (0.4) 
0.85 (0.40-1.79) 
p=0.67 

1.3 (0.4) 
1.43 (0.71-2.90) 
p=0.31 

sRAW, mean 
(SD), age 16 

0.9 (0.4) 0.9 (0.2) 
0.90 (0.25-3.26) 
p=0.87 

1.0 (0.2) 
2.34 (0.54-10.07) 
p=0.25 

Methacholine 
ddr slope, mean 
(SD), age 8 

72.8 (556.9) 58.5 (165.9) 
0.99 (0.98-1.00) 
p=0.85 

149.3 (940.9) 
0.99 (0.98-1.00) 
p=0.42 

Methacholine 
ddr slope, mean 
(SD), age 11 

128.9(581.6) 97.3 (188.4) 
0.99 (0.98-1.00) 
p=0.76 

190.4 (465.9) 
1.00 (0.99-1.01) 
p=0.55 
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FEV1/FVC, 
mean (SD), age 
8 

86.7 (6.0) 86.4 (6.5) 
1.00 (0.96-1.04) 
p=0.86 

86.5 (5.8) 
1.00 (0.96-1.05) 
p=0.74 

FEV1/FVC, 
mean (SD), age 
11 

86.4 (7.3) 88.1 (5.2) 
1.04 (1.00-1.08) 
p=0.04 

86.6 (6.3) 
1.00 (0.96-1.04) 
p=0.92 

FEV1/FVC, 
mean (SD), age 
16 

87.8 (8.1) 89.1 (6.7) 
1.02 (0.98-1.07) 
p=0.21 

88.1 (5.2) 
1.01 (0.96-1.05) 
p=0.81 

FeNO, mean 
(SD), age 8 

15.4 (17.1) 18.9 (18.3) 
1.00 (0.99-1.03) 
p=0.26 

24.7 (27.2) 
1.02 (1.00-1.03) 
p=0.009 

FeNO, mean 
(SD), age 11 

18.6 (22.1) 20.1 (23.9) 
1.00 (0.99-1.01) 
p=0.64 

22.1 (9.9) 
1.00 (0.99-1.02) 
p=0.30 

FeNO, mean 
(SD), age 16 

27.2 (30.2) 29.2 (29.6) 
1.00 (0.99-1.01) 
p=0.69 

29.5 (35.9) 
1.00 (0.99-1.01) 
p=0.68 

 
These results demonstrate that using current treatment steps is not a robust enough 

way of classifying asthma severity as it hasn’t captured the heterogeneity of the disease. It isn’t 

necessarily capturing symptom control and the level of treatment is independent of the level of 

symptoms. Indeed, severity is not a static feature of asthma but rather a dynamic process that 

changes with time (as will be demonstrated with the next analysis). Furthermore, 

responsiveness to treatment is not uniform, even among patients with similar severity.4-7 

Therefore, the use of severity as a single outcome measure has limited value in ascertaining 

which treatment is required and predicting its response.8  As a result, a different approach was 

taken focusing on severity of symptoms. 
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6.2 Abstract 
 
Background: Wheeze phenotypes are dynamic and children can transition between different 

phenotypes and severity states.  

Aim: To investigate patterns and wheezing severity from early childhood to late adolescence. 

Methods: In an unselected birth cohort, we applied a longitudinal latent transition (Markov) 

model to ascertain patterns of wheezing severity throughout childhood.  

Results: The optimal solution in a multivariate latent Markov model was a 3-state model with 

homogeneous transition probabilities: a healthy-no symptom state, and two states of severity 

and: mild/moderate wheeze, and severe wheeze. Children with severe wheeze tend to remain 

in the severe wheeze state. Children with mild wheeze tend to transition frequently throughout 

childhood particularly in the no wheeze/healthy state. Children with severe wheeze are more 

likely to be atopic, have greater airway resistance and lung inflammation, and poorer lung 

function by late childhood when compared to children with mild/wheeze and those that 

transition frequently between wheeze states. Furthermore, children assigned to a persistent 

wheeze phenotype (persistent troublesome and persistent controlled) have a low tendency of 

transitioning into healthier, or less severe states.  

Conclusion: Utilizing a data-driven method, we have shown that presence or absence of 

wheeze is not a robust enough feature to ascertain phenotypes of disease. Furthermore, 

wheeze phenotypes are not static but rather dynamic processes involving children transitioning 

between states of no symptoms to mild/moderate and severe symptoms. This provides a 

framework for identifying the heterogeneity of disease severity occurring at a population level.   
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6.3 Introduction 

 
Wheeze is amongst the most common symptoms in childhood, with parents of almost a 

third of children reporting that their child has wheezed on at least one occasion before age 31,2.  

Wheezing in childhood is highly heterogeneous,1,3-5 and although the majority of children stop 

wheezing by school age, a proportion of them have wheeze persisting into late childhood and 

adulthood6. However, it is difficult to predict which of these children will stop and which will 

persist or develop asthma7.  

The seminal work in identifying wheeze phenotypes from Martinez et al used clinical 

observations to identify three ,mutually exclusive wheeze phenotypes: transient early, late-

onset, and persistent1. This work was then expanded by various research groups using data-

driven methodologies such as the latent class analysis (LCA), which assigns individuals to latent 

classes based on their membership probability1,3,4,8,9. Applying this methodology to the 

presence or absence of current wheezing over time, a further one or two intermediate 

phenotypes have been identified4,10, and incorporation of the data from health care records has 

divided persistent wheeze into persistent controlled and persistent troublesome classes (of 

which persistent troublesome wheeze was associated with poor lung function, and severe 

exacerbations despite treatment)3. However, a recent study which pooled data from five birth 

cohorts has shown that more than 10% of the population cannot be assigned to a specific 

wheeze class with high certainty ascertaining, that there are individuals whose patterns of 

wheezing do not fit well within the assigned phenotypes (particularly within the late-onset 

class), and that a notable proportion of transient wheezers have asthma in later life, thereby 
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concluding  that presence or absence of wheeze is unlikely to be robust enough to deriving 

internally homogenous phenotypes10. Incorporating information on the severity of wheezing 

may offer additional valuable information to help our understanding of the heterogeneity and 

progression of childhood wheezing and asthma. However, there is no consensus on how to 

define asthma severity, and the majority of national guidelines view asthma severity according 

to current treatments requirements11,12. It is likely that the presence and severity of respiratory 

symptoms are not static features of asthma but rather dynamic processes that changes with 

time within individual patients, and that individuals may transitions over time from one state to 

another.   

While LCA has been used extensively to derive wheeze phenotypes, few studies have 

explored how children transition during childhood. Latent transition analysis (LTA) has been 

used in the Isle of Wight cohort to simultaneously identify classes of asthma and wheezing and 

characterize transition probabilities over time13, and in a study by Garden et al to incorporate 

several asthma domains and show that transition between asthma phenotypes was common in 

early childhood but less common in later childhood14.  We hypothesise that wheeze phenotypes 

are not static during childhood, but rather a dynamic process involving individual children 

transitioning into different states of symptoms presence and severity, and that these transitions 

may be an important feature of the disease. To address our hypotheses, we used LTA 

methodology to ascertain the heterogeneity of wheezing patterns and severity from early 

childhood to late adolescence. We also sought to examine how children within different 

wheeze phenotypes determined using LCA transition between states of symptom expression 

and states of control/severity.  
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6.4 Methods 
 

6.4.1 Study Population and data source 
 

The Manchester Asthma and Allergy Study is a population-based birth cohort.15,16 

Subjects were recruited prenatally and followed prospectively to age 16 years. The study was 

approved by the Local Ethics Committee. Parents provided written informed consent.  

Children attended clinical follow-up at ages 1, 3, 5, 8, 11, and 16 years. Validated 

questionnaires were interviewer administered and parents provided information on symptoms, 

treatments received, and environmental exposures. If study participants were unable to attend 

clinic, home visits were carried out.  

6.4.2 Definition of variables 
 
Current wheeze: Parentally reported positive answer to the question: “Has your child had 

wheezing of whistling in the chest in the past 12 months”?  

Asthma: At least two of the following three features: 1) current wheeze; 2) current use of 

asthma medication; 3) physician-diagnosed asthma ever (flexible criterion). We also utilized a 

strict criterion (positive answer to all three features). Data was available from ages 3-16. 

6.4.2.1 Variables used to ascertain patterns severity of wheeze/asthma 
 
Wheeze attacks: Parentally reported quantifiable answer to the question: “How many attacks 

of wheezing has your child had in the past 12 months? None, 1-4, more than 4.” 

Sleep disturbance: Parentally reported quantifiable answer to the question: “In the past 12 

months, how often, on average has your child’s sleep been disturbed due to wheezing? Never, 

1 night per week, more than 1 night per week. 
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Speech limitation: Parentally reported positive answer to the question: “In the past 12 months, 

has wheezing been severe enough to limit your child’s speech to only one or two words at a 

time between breaths?” 

Exercise induced wheeze: Parentally reported positive answer to the question: “In the past 12 

months has your child’s chest sounded wheezy during or after exercise?” 

We defined severe wheeze as having all four symptoms at the most severe spectrum. 

These variables were available from ages 5-16 years. 

6.4.2.2 Wheeze phenotypes  
 

Using a longitudinal latent class item response model, children were assigned to 5 

classes3: (1) No wheezing (NW), (2) Transient early wheezing (TEW), (3) Late-onset wheezing 

(LOW), (4) Persistent controlled wheezing (PCW) and (5) persistent troublesome wheezing 

(PTW). 

6.4.2.3 Variables used to test the validity of severity patterns 
 

At age 16 years, we measured specific airway resistance (sRaw) using plethysmography 

at ages. FEV1 and forced vital capacity (FVC) were measured by using spirometry; we recorded 

percent predicted FEV1 and the FEV1/FVC ratio. Airway hyperreactivity (AHR) was assessed in a 

5-step protocol by using quadrupling doses of methacholine; children were categorized as 

having AHR after a 20% decrease in FEV1 by the final stage of the challenge (16 mg/mL). We 

calculated the dose-response slope16 to include all evaluable data as a continuous variable. 

Atopic sensitization was ascertained by using skin prick tests (SPTs) to a panel of inhalant and 

food allergens (details can be found in the Methods section in this article's Online Repository); 



170 
 

we defined atopy as a wheal 3 mm larger than that elicited by the negative control to at least 1 

allergen. 

6.4.3 Statistical Analysis 
 
Latent Markov Models to investigate wheeze severity 

We applied Latent Markov (LM) models17 to define the evolution of wheeze and its severity 

using the following variables: current wheeze (binary), number wheeze attacks (categorical), 

wheeze disturbing sleep (categorical), wheeze limiting speech (binary), and exercise induced 

wheeze (binary). LM models consider the analysis of longitudinal data when the response 

variables measure a phenomenon of interest that is not directly observable. The characteristic 

of interest and its evolution in time are described by a latent process that is assumed to follow 

a Markov chain with a certain number of states, typically referred to as latent states, and, given 

this process, the response variables are assumed to be conditionally independent. The basic 

idea related to this assumption, which is referred to as local independence, is that the latent 

process fully explains the observable behaviour of a subject17. Model selection was performed 

using the Bayesian Information Criterion (BIC) index. Statistical analyses were performed in R 

through the LMest package18.   
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6.5 Results 
 

6.5.1 Participant Flow and Demographic Data 
 

1184 children born into the cohort had some evaluable data. Of those, we excluded 133 

children who were randomised into the environmental control arm19. From the remaining 

children, 545 had complete data on parentally reported current wheeze and severity symptoms 

at all four follow-up visits. Demographic characteristics were similar between children with and 

without complete data (Table 6.1 and E6.1). Current wheeze was present in 14-20% of children 

at any one time during the follow-up. At least a third of our population had comorbid eczema 

and/or rhinitis.  
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Table 6.1: Demographics of our study population, n=545, with complete dataset 

 

Boys (whole population) 
Girls (whole population) 

290, 53% 
255, 47% 

Family history of asthma 149, 27% 

Family history of atopy 444, 81% 

 Age 3  Age 5  Age 8 Age 11  Age 16 

BMI, median (IQR) 16.6 (15.7-17.4) 16.2 (15.3-17.1)  16.5 (15.4-17.9) 18.3 (16.7-20.5) 21.3 (19.7-23.6) 

Maternal smoking 72, 13% 75, 14% 74, 14% 66, 12% 64, 12% 

Paternal smoking 106, 19% 104, 19% 97, 18% 71, 13% 64, 12% 

Asthma ever 118, 22% 197, 36% 150, 28% 153, 28% 79, 14% 

Atopic sensitization (SPT) 111, 20% 138, 25% 158, 29% 164, 30% 235, 43% 
Current rhinitis n/a 147, 27% 161, 29% 186, 34% 216, 40% 

Current eczema 142, 26% 179, 33% 124, 23% 102, 18% 99, 18% 

Any current asthma medication  58, 11% 91, 17% 81, 15% 92, 17% 74, 14% 

Current wheeze, parentally reported 110, 20% 101, 18% 91, 17% 83, 15% 78, 14% 

Current asthma, parentally reported 63, 12% 89, 16% 82, 15% 92, 17% 80, 15% 

 Asthma severity symptoms 

Number of wheeze attacks       

none n/a 445, 81% 454, 83% 462, 85% 468, 86% 

1-3 n/a 69, 13% 63, 12% 49, 9% 52, 10% 

4 or more n/a 31, 6% 28, 5% 34, 6% 25, 4% 

Exercise induced wheeze  35, 6% 36, 7% 49, 9% 45, 8% 

Wheeze affecting sleep      

none n/a 493, 91% 491, 90% 505, 93% 518, 95% 

<1 night per week n/a 28, 5% 36, 7% 27, 9% 18, 3% 

More than 1 night per week n/a 24, 4% 18, 3% 13, 2% 9, 2% 

Wheeze limiting speech n/a 19, 3% 16, 3% 79, 14% 9, 2% 

Children considered to be severe n/a 18, 3% 14, 2.5% 13, 2% 7, 1.3% 
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6.5.2 Descriptive statistics: Current wheeze and asthma from early childhood to adolescence  
 

We first mapped the presence/absence of current wheeze and asthma during childhood 

in the whole study population (n=1051), and presented it as a heatmap in Figure 6.1. Children 

transitioned into and out of having wheeze at various stages throughout childhood (Figure 

6.1a). The majority of wheeze occurred early on by age 3, and only a proportion of children 

(15.3%) continue to persistently wheeze throughout childhood. Using a flexible criterion for 

asthma definition resulted in almost identical heatmap as that for current wheeze (Figure 6.1b). 

As expected, the strict criterion reduced the number of children with asthma diagnosis but also 

resulted in a more uniform pattern throughout childhood (Figure 6.1c).  

We then proceeded to investigate the longitudinal patterns of wheeze severity among 

545 children with a complete data set. Of these, 151 (28%) experienced current wheeze at 

some point throughout childhood, of whom 18 (3.3%) had wheeze at every time point 

throughout the follow-up period. 
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Figure 6.1: A heatmap showing the presence of current wheeze (a), current asthma (b) and current 
asthma (strict criteria) (c) among our entire population from age 3-16, N=1051.Each line represents a 
child. White spaces indicate missing response.  

a) 
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b) 
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c) 
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6.5.3 Latent Markov Models to investigate wheeze severity states throughout follow-up 
 

We adopted a multivariate basic LM model, and the BIC indicated that the optimal 

solution was a 3-state model with homogeneous transition probabilities (Table E6.2).  The 

estimates of the conditional response probabilities, shown in Table 6.2, suggested the following 

interpretation of the states: State 1,  Mild/moderate wheeze (characterised by 1-3 wheeze 

attacks, 1 night per week of sleep disturbance due to wheeze, and some exercise induced 

wheeze); State 2, Severe wheeze (characterized by the presence of all symptoms and by a large 

number of subjects presenting at the most severe spectrum (>4 wheeze attacks, frequent 

exercise induced wheeze, >1 night per week of sleep disturbance due to wheeze); and State 3, 

healthy/no wheeze state, characterised by the absence of any of the considered symptoms.  

At the beginning of the study, most (82%) of the subjects belong to the healthy latent 

state, whereas a small percentage (5.5%) of subjects belong to state 2 (severe wheeze) (Table 

E6.3).  Figure 6.2 shows that 2% of children (n=10) remained in the severe wheeze state 

throughout the follow up period. Table 6.3 shows the descriptive characteristics of children 

who consistently remained in the different states (No Wheeze, n=366; Mild/Moderate, n=5; 

and Severe wheeze state, n=10) along with 162 children who transitioned frequently 

throughout the follow-up period. The highest prevalence of comorbidities (eczema and rhinitis, 

40% and 90% respectively) was seen among the severe wheeze children. 100% and 70% of 

children who were sensitised to any aeroallergen were from the mild/moderate and severe 

states, respectively.  



178 
 

Transition probabilities (Table E6.4) show that children with no wheeze in the State 3 

(healthy latent state) tend to remain in this state throughout childhood. Similarly, children with 

Severe wheeze (State 2) tend to remain in the state of severe wheeze, but to a lesser extent.  

Table 6.2: Estimates of the conditional response probabilities 

 States 

1 2 3 

Current wheeze 0 0.000 0.000 1.000 

1 1.000 1.000 0.000 

Number of wheeze attacks: 0, 1-3, 

>4 

 

0 0.006 0.000 1.000 

1 0.807 0.344 0.000 

2 0.187 0.656 0.000 

Exercise induced wheeze 

 

0 0.645 0.286 1.000 

1 0.355 0.714 0.000 

Wheeze disturbing sleep: never, 1 

night/week, >1 night/week 

 

0 0.672 0.155 1.000 

1 0.236 0.469 0.000 

2 0.092 0.376 0.000 

Wheeze limiting speech 

 

0 0.899 0.508 0.976 

1 0.101 0.492 0.024 
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Table 6.3: Descriptive table of children who consistently remained in the no wheeze state, the 
mild/moderate wheeze state, the severe state, as well as those that were frequently transitioning 
between states. Data taken at age 16. 

 No Wheeze 
(n=366) 

Mild/Moderate 
(n=5) 

Severe wheeze 
state (n=10) 

Children who 
transitioned 
between states 
(n=162) 

Boys (whole 
population) 
 
Girls (whole 
population) 

184, 50.2% 
 
 
182, 49.7% 
 

4, 80% 
 
 
1, 20% 

5, 50% 
 
 
5, 50% 

90, 56% 
 
 
72, 44% 

Maternal smoking 106, 29% 4, 80% 7, 70% 81, 50% 

Paternal smoking 19, 5% 1, 20% 2, 20% 19, 12% 
Presence of 
asthma ever 

37, 10% 5, 100% 9, 90% 87, 54% 

Atopic 
sensitization (SPT) 

134, 37% 5, 100% 7, 70% 89, 55% 

Current rhinitis 118, 32% 2, 40% 9, 90% 87, 54% 
Current eczema 52, 14% 1, 20% 4, 40% 42, 26% 

 

6.5.4 Severity states and their associations with sensitisation and lung function 
 

Using a multinomial logistic regression model (reference category children with no 

wheeze), we proceeded to analyse the associations of sensitisation, lung function and airway 

inflammation with the different wheeze states (Table 6.4). Children with severe wheeze and 

those children who transitioned frequently between states were significantly more likely to be 

sensitized, RR (95%CI): severe wheeze, 9.5 (1.2-78.5) p=0.03, children who transition, 2.3 (1.5-

3.4) p<0.001. Children with severe wheeze were significantly more likely to have poorer lung 

function, had significantly higher FeNO, and greater airway resistance when compared to 

children with mild/moderate wheeze and children who transitioned between wheeze states 

(Table 4). 
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Figure 6.2: Estimated posterior distribution of the latent states for each subject and each time occasion 
stratified by wheeze severity. Each line represents a child. 

 

6.5.5 Severity of clinical symptoms across latent wheeze phenotypes 
 

We then looked at the latent state transitions between wheeze classes derived using 

LCA3. Figure 6.3 shows the transition of the severity of wheeze symptoms of each individual 

among the wheeze classes throughout childhood. Severe wheeze state was primarily present in 

the persistent controlled, persistent troublesome, and late onset wheeze class. About a quarter 

(23%) of children in the persistent troublesome wheeze class and 9% in the persistent 

controlled wheeze class remained in the severe wheeze state throughout the follow-up period. 

The majority of severe wheeze in the persistent controlled class occurred by age 3. Although 

the results indicated a lower tendency of transitioning to the healthy state in the PCW and PTW 
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phenotypes, there was high within-class variability. The majority of children in transient early 

wheeze had no symptoms until age 8 after which a few children transition into expressing mild 

symptoms. Children associated only with the healthy state (state 3) were found in both TEW 

and LOW phenotypes.   
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Table 6.4: Mutinomial logistic regression using wheeze severity states and asthma outcomes, lung function, sensitisation, airway resistance, and 
level of lung inflammation at age 16 years. No wheeze as reference.  

 No Wheeze  
(n=366)  
– reference 
 
 
Mean (95% CI) 
RR (95% CI) 

Mild/Moderate 
Wheeze (n=5) 
 
 
 
Mean (95% CI) 
RR (95% CI) 

P -value Severe Wheeze  
(n=10) 
 
 
 
Mean (95% CI) 
RR (95% CI) 

P value Children who 
transitioned 
between states 
(n=162) 
 
Mean (95% CI) 
RR (95% CI) 

P-value 

Atopic 
sensitization 
(SPT)  
(n, %) 

37, 10% 
N/a reference 

5, 100% 
- 

0.7 9, 90% 
9.5 (1.2-78.5) 

0.03 87, 54% 
2.3 (1.5-3.4) 

<0.001 

Presence of 
asthma ever 
(n %) 

134, 37% 
N/a reference 

5, 100% 
169 (-) 

0.80 7, 70% 
630 (-) 

0.82 89, 55% 
3.5 (0.6-21.9) 

0.18 

FEV1/FVC 
%pred 

89.3 (88.6-89.9) 
N/a reference 

83.2 (72.4-93.9) 
0.92 (0.8-0.99) 

0.03 83.0 (79.1-86.9) 
1.1 (0.8-1.25) 

0.008 86.8 (85.5-88.2) 
0.95 (0.92-0.98) 

0.001 

FeNO, ppb 21.2 (19.5-23.0) 
N/a reference 

55.0 (17.5-127.5) 
1.02 (1.00-1.04) 

0.007 56.7 (18.5-95.0) 
1.03 (1.01-1.04) 

<0.001 34.5 (28.3-40.9) 
1.01 (1.00-1.02) 

<0.001 

sRAW 0.95 (0.91-0.96) 
N/a reference 

0.98 (0.5-1.4) 
3.5 (0.03-183) 

0.67 1.14 (0.94-1.34) 
30.9 (1.5-602) 

0.02 1.06 (1.01-1.09) 
8.7 (3.3-22.8) 

<0.001 

Quantitative variables are represented as mean (95%CI); ordinal variables are represented as frequencies (%). RR relative risk, CI, confidence interval. Bolded 
values represent significant p-values. (-) signifies numbers too big to quantify. 
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Latent Markov Models to investigate severity of clinical symptoms amongst wheeze classes 
 

 
Figure 6.3: Estimated posterior distribution of the latent states for each subject and each time occasion 
stratified by wheeze phenotype. 

 
 

6.6 Discussion 
 

6.6.1 Main findings 
 

Our results suggest that wheeze presence and severity are dynamic processes 

throughout childhood. Not all children with current wheeze have a diagnosis of asthma, though 

this is dependent on the definition used. The use of a Latent Markov model demonstrates the 

influence of wheeze and symptom severity on the probability and the rate of change between 

latent states thereby capturing the heterogeneity of disease severity. Children with severe 
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wheeze tend to remain in the severe wheeze state throughout childhood. Children with mild 

wheeze, on the other hand, tend to transition frequently throughout childhood, particularly in 

the no wheeze/healthy state.  

Children in the severe wheeze class were significantly more likely to be sensitized and 

have poorer lung function, greater airway resistance, and more lung inflammation. Having a 

diagnosis of asthma was not significantly different in the varying wheeze states.  

Children assigned to wheeze classes can exhibit varying levels of symptom severity at 

different times in their lives, though only a small number of children persistently wheeze 

throughout childhood. Severe wheeze state was present in the persistent controlled, persistent 

troublesome, and late onset wheeze class. A sizeable proportion of children in the persistent 

troublesome class, and a smaller portion in the persistent controlled class, have a low tendency 

of transitioning into healthier, or less severe states.  

6.6.2 Limitations 
 

The main limitation is the study is relatively small sample size. However, this sample 

provided the most complete dataset for us to use and strength is added with the use of data at 

multiple time points. This allows the LTA model to better define the transition states.20 Further 

validation in other cohorts would be necessary.  

We acknowledge that the definition of current wheeze is based on parental reports 

using standardised questionnaires. This is also true for wheeze severity, and may thus lead to 

overestimation.21 However, most other epidemiological studies utilise similar definitions and 

we have incorporated other features of wheeze manifestations.   
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Finally, it is worth noting that phenotypes and ‘states’ discovered using data-driven 

methods are not observed but rather latent by nature and that the methodology is still 

exploratory. As such, our results should be interpreted in context and with a degree of caution.    

6.6.3 Interpretation 

Our study expands upon our previously published work3 which identified four distinct 

wheeze classes within our population3. To the best of our knowledge, this is the first study that 

has looked at within class heterogeneity and transition probabilities using longitudinal data-

driven methodology. The latent transition model is a relatively novel method of identifying how 

heterogeneous manifestations change over time. It differs from other longitudinal analyses of 

wheeze phenotypes by explicitly modelling transitions rather than trajectories, thereby 

avoiding the assumption that all children within a certain phenotype transition equally over 

time. In our model, membership of a wheeze class (phenotype) does not change as the child 

ages, but rather temporal changes in symptomatology becomes a characteristic of the 

individual phenotype and is expressed as either healthy, mild, or severe wheeze.  

Our results can be compared to previous studies using similar approaches, though not 

all data-driven. The Melbourne Asthma study prospectively followed children with asthma from 

age 7 to adulthood and looked at their transitions. They found that those in the least or most 

severe disease groups had the highest chance of staying in those groups over time whereas 

those in the milder groups tended to transition between groups over time.22 This is in 

concordance to the results we found and suggests that those children with severe disease have 

different underlying pathophysiological mechanisms that have yet to be fully understood and 

are likely not fully responding to current treatment strategies. These children could be 
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considered as similar to those who have severe asthma.23-25 Although these children make up a 

small proportion of the asthmatic population (10-30% depending on the cohort), they are an 

important subgroup as they utilise a disproportionate amount of health resources and have a 

significantly reduced quality of life.24,26  

Our study can also be compared to previous studies looking at the history of wheezing 

patterns in early to mid-childhood years. One study, fitting separate models at each follow-up 

time point, found that episodic viral wheeze and multiple trigger wheeze was not stable.27 A 

further study showed that children with mild disease were likely to go into remission while 

those with nonatopic uncontrolled wheeze transitioned to atopic uncontrolled wheeze and 

were less likely to go into remission.28 Our study shows that children with severe wheeze were 

more likely to be atopic by late childhood. However, as previously mentioned, these studies 

were done by fitting separate models at each age which is in contrast to our longitudinal model. 

Furthermore, they did not examine transition probabilities and so within this context, our 

results represent an advance on previous knowledge. 

Our results have similarly demonstrated that the presence of wheeze is very dynamic in 

each phenotype and that ascertaining severity through symptom expression shows a better 

picture. Furthermore, one can see from our data as well that a proportion of children in each 

phenotype have more severe disease than the other members suggesting that these children 

may actually represent different entities that do not fit the identified patterns. Despite having a 

high probability of belonging to a certain phenotype, children display varying levels of severity. 

Oksel et al10 also found that the majority of children in all phenotypes had diminished 

FEV1/FVC, though much more so in the persistent wheeze class which corresponds to a study by 



187 
 

Belgrave et al who identified a persistently low longitudinal FEV1 trajectory in throughout 

childhood associated with recurrent wheeze and severe wheeze exacerbations.29 This is an 

important aspect to be aware of as recent studies have shown that children with low FEV1 and 

persistent asthma in childhood are at risk of developing COPD in adulthood.30-32 Our results 

show that children in the severe wheeze state have lower FEV1 and diminished FEV1/FVC by age 

16 compared to children in the mild/moderate wheeze state and the children that frequently 

transition between states suggesting that perhaps this is the group of children we should target 

with personalised treatment strategies in order to prevent the worsening of disease and 

possible subsequent development of COPD. Nevertheless, it is this pattern of wheeze 

heterogeneity and late outcomes that should be monitored closely in order to develop 

preventative strategies that can be utilised in early life. It is interesting to note that there was 

no significant difference in the presence of an asthma diagnosis among the different wheeze 

states suggesting that severity of wheeze is not a good indicator of whether someone develops 

asthma.  

In conclusion, with the use of relatively novel data-driven methodology in this field, we 

have shown that presence or absence of wheeze is not a robust enough feature to ascertain 

phenotypes of disease. Furthermore, wheeze phenotypes are not static but rather dynamic 

processes involving children transitioning between states of no symptoms to mild/moderate 

and severe symptoms. This analysis has given us a framework of what is happening at the 

population level and that the pattern of severity can be identified using multiple clinical 

symptoms as markers. Further research is needed to identify what is occurring at an individual 

level in order to derive personalised approaches to prevention and treatment strategies. 
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6.8 Supplementary Material 
 

6.8.1 Methods 
 
Study design: Unselected birth cohort 

Setting: A mixed urban-rural population within 50 square miles of South Manchester and 

Cheshire, United Kingdom located within the maternity catchment area of Wythenshawe and 

Stepping Hill Hospitals 

Screening and recruitment: All pregnant women were screened for eligibility at antenatal visits 

(8-10th week of pregnancy). Of the 1499 couples who met the inclusion criteria (≤10 weeks of 

pregnancy, maternal age ≥18 years, and questionnaire and skin prick data test available for 

both parents), 288 declined to take part in the study and 27 were lost to follow-up between 

recruitment and the birth of a child. A total of 1184 children born into the study had at least 

some evaluable data.  

Definition of variables 

Current rhinitis: Positive answer to “In the past 12 months, has your child had a problem with 

sneezing or a runny or blocked nose when he/she did not have a cold or the flu?”  

Current eczema: Positive answer to “Has your child had eczema within the past 12 months?” 

Atopic sensitisation:  Mean diameter (MWD) 3mm larger than the negative control to at least 

one allergen.  

Maternal /Paternal Smoking: Positive answer to “Does your child/’s mother, father smoke?” 

Lung function, airway hyperreactivity and airway inflammation 

We measured lung function using spirometry at ages 8, 11 and 16 years using a Lilly 

pneumotachograph system with animated incentive software (Jaeger, Würzburg, Germany), or 

for home visits, a flow turbine spirometer (Micro Medical, UK)1.  FEV1 % predicted2 and 

FEV1/FVC ratio were recorded.  Specific airway resistance (sRaw) was measured using whole-

body plethysmography (Masterscreen Body 4.34; Jaeger, Würzburg, Germany) 

plethysmography at ages 3, 5, 8, 11, 16.3,4  Airway hyperreactivity (AHR) was measured using 
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standard quadrupling doses of methacholine in a 5-stage process at ages 8 and 11 years.5 

Children were considered to have AHR if there was a 20% decrease in FEV1 by the final stage 

(16mg/mL). We also calculated a dose-response slope.6 Airway inflammation was recorded at 

age 8, 11, and 16years as a measure of Fractional Exhaled nitric oxide (FeNO) and performed 

according to the American Thoracic Society guidelines using either a chemiluminescence 

analyser or an electrochemical analyser (NIOX, Solna, Sweden) .7 Data were expressed in parts 

per billion (ppb). 

6.8.2 Results 
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Table E6.1: Descriptive characteristics of the remaining 506 children without a complete dataset 

Boys (whole population) 
Girls (whole population) 

357, 71% 
282, 39% 

Family history of asthma 134, 26% 

Family history of atopy 392, 77% 

 Age 3  Age 5  Age 8 Age 11  Age 16 

BMI, median (IQR) 16.1 (15.2-17.9) 16.3 (15-16.9)  16.6 (15.8-18.1) 18.5 (16.9-20.5) 21.4 (19.8-
23.7) 

Maternal smoking 125, 25% 125, 25% 97, 19% 58, 11% 20, 4% 

Paternal smoking 158, 31% 155, 31% 118, 23% 77, 15% 18, 4% 

Asthma ever 92, 18% 159, 31% 100, 20% 98, 19% 63, 12% 
Atopic sensitization (SPT) 114, 23% 156, 31% 156, 31% 116, 23% 45, 9% 

Current rhinitis n/a 147, 29% 136, 27% 136, 27% 52, 10% 

Current eczema 131, 26% 165, 33% 120, 24% 70, 14% 22, 4% 

Any current asthma medication  84, 17% 165, 33% 103, 20% 95, 19% 36, 7% 

Current wheeze, parentally reported 153, 30% 146, 29% 94, 19% 90, 18% 30, 6% 

Current asthma, parentally reported   63, 12% 64, 12% 24, 5% 

 Asthma severity symptoms 

Number of wheeze attacks       

none n/a 280, 55% 281, 56% 212, 42% 476, 94% 

1-3 n/a 68, 13% 48, 9% 34, 7% 15, 3% 

4 or more n/a 49, 10% 23, 4% 30, 6% 13, 3% 

Exercise induced wheeze  58, 11% 35, 6% 42, 8% 22, 4% 

Wheeze affecting sleep      

none n/a 317, 63% 306, 60% 238, 47% 495, 98% 

<1 night per week n/a 33, 7% 31, 6% 24, 5% 9, 2% 

More than 1 night per week n/a 34, 7% 14, 3% 16, 3% 2, 1% 

Wheeze limiting speech n/a 31, 6% 8, 2% 61, 11% 0 

Children considered to be severe n/a 28, 6% 7, 1% 14, 3% 0 
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Latent Markov Models to investigate patterns of wheeze 

We firstly applied a univariate LM model to investigate the prevalence of wheeze over 

time where we look at the transition analysis and its accompanying measurement errors. The 

main assumption is that the “true state” characterizing a sample unit at a certain occasion may 

be affected by measurement error. The “true states” corresponding to the latent states and 

transitions between each pair of these states are studied through the transition probabilities8.  

In this study, we interpret the latent states as the true presence or absence of wheeze. By 

looking at the transition probabilities, we can verify how each subject progresses in the true 

wheeze state, whereas the conditional response probabilities indicate how the reported 

current wheeze state depends on the true one.  

Model selection was based on the BIC index (Table E6.5), which indicated a 2-state 

solution with homogeneous transition probabilities. 

Table E6.6 shows the estimates of the conditional response probabilities, whereas the 

estimates of the initial and transition probabilities are reported in Tables E6.7 and E6.8, 

respectively. Results in Table E6.6 show that the latent states are related to the presence of 

wheeze. The first state clearly corresponds to the absence of wheeze symptoms, while the 

second state corresponds to an increased tendency of wheezing. Results in Table E6.7 show 

that the majority of subjects belong to the first latent state, no wheeze, at the beginning of the 

study. Transition probabilities (Table E6.8) show high persistence in state 1 (no wheeze) and 

moderate persistence in state 2 (current wheeze).   
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Table E6.2: Multivariate latent Markov model selection using BIC index 
 

Number of states BIC 

Time homogeneous 1 7197.96 

2 4241.27 

3 4187.42 

Time heterogeneous 1 7197.96 

2 4258.83 

3 4211.29 

 

Table E6.3: Estimates of the initial probabilities 

States Initial probabilities 

1 0.129 

2 0.055 

3 0.816 

 

Table E6.4: Estimates of the transition probabilities between the latent states. 

States 1 2 3 

1 0.360 0.032 0.608 

2 0.125 0.655 0.220 
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3 0.068 0.013 0.919 

 

Table E6.5: Model selection using BIC index. 

 Number of 

states 

BIC 

Time 

homogeneous 

1 3093.45 

2 2617.95 

Time 

heterogeneous 

1 3093.46 

2 2645.57 

 

Table E6.6: Estimates of the conditional response probabilities. 
 

Current wheeze 

States 0 1 

1 0.966 0.034 

2 0.266 0.735 

 

Table E6.7: Estimates of the initial probabilities. 

States Initial 

probabilities 

1 0.714 



196 
 

2 0.286 

 

Table E6.8: Estimates of the transition probabilities between the latent states. 

States 1 2 

1 0.969 0.031 

2 0.223 0.777 
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Chapter 7 Discussion 
_____________________________________________ 
 

Chapter specific discussions and conclusions have been given at the end of each chapter 

and will not be expanded upon here. Rather, this discussion chapter aims to relate the findings 

back to the research questions and provide some ideas for future work.  

 

7.1 Research question 1: Can we use data-driven methods to uncover patterns 
among asthma datasets and how can this help guide our further understanding of 
the disease? 
 

Through this PhD, we have demonstrated that the use of data-driven machine learning 

methods such as cluster analysis, latent class analysis and latent transition analysis can be 

useful tools in ascertaining subtypes of disease. Chapter 1 of this PhD brings this all into context 

by describing the evolution of ascertaining asthma phenotypes and subtypes; first using expert 

observations and then evolving to the use of data driven methods. The various work described 

has helped identify clinically meaningful asthma subtypes. The number and types of clusters 

can vary depending on the sample size, timing of follow-up, data transformations, or method 

which has largely contributed to somewhat different study conclusions. However, this has also 

revealed hidden structures within complex data sets that contribute to the heterogeneity 

between subjects within specific classes (or subtypes) that should, in theory, be homogenous. 

Chapter 2 introduced the current knowledge on asthma phenotypes in childhood and 

the implications of clinical subtyping of childhood asthma. Briefly, various approaches, from 

modelling single or multiple symptoms (such as wheeze), lung function, biomarkers, allergic 

sensitization, genetics, to multi-variate models cross-sectionally or longitudinally have 

identified different subtypes of asthma. The information gathered and presented in this chapter 

demonstrates that there is a clear lack of standardization of statistical methods and which 

variables to use for defining childhood wheezing and asthma, which has led to inconsistencies 

in findings relating to genetic and environmental risk factors.  
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7.2 Research question 2: What main features of the asthma syndrome can be used 
to ascertain the heterogeneity of the disease? 
 

Within the scope of this PhD, using an almost complete dataset from a population 

cohort and applying a framework of blending data driven methods and clinical expertise, we 

identified four main features that are useful in disaggregating asthma subtypes: age of onset, 

atopy, exacerbations, and severity; the results of which are described in chapter 4. Our 

conclusion from this set of analyses is that not every variable in a dataset is informative when 

ascertaining possible asthma subtypes. Our hierarchical cluster model did not yield stable 

clusters when inputting all variables despite a general acceptance that models become more 

stable with linear increases in variables. When performing dimensionality reduction in order to 

reduce all variables to a smaller number of uncorrelated components that should, in theory, 

retain as much information about the dataset as possible, our resulting hierarchical cluster 

model was still unstable. Instead, our semi-automated approach where clinical experts 

compared the post-analysis results from the two HC models identified four informative 

features/domains of the disease that markedly increased cluster stability and produced a more 

clinically meaningful picture. Putting this into context in order to disaggregate the 

heterogeneity of asthma, common questions used to determine the presence of disease in 

other studies may not be informative when uncovering asthma subtypes and so in chapter 4 we 

propose a framework focusing on the domains we identified.  

Within the scope of these four domains, our study identified an exacerbation-prone 

cluster that is likely a separate endotype with a unique, still not fully understood, aetiology that 

is not solely characterised by asthma severity or symptom control, as even decreasing 

symptoms may not always mean a decrease in the number of exacerbations.1,2 This has 

significant potential in targeting exacerbation prevention strategies particularly as a recent 

clinical trial could not demonstrate the effect of increasing the dose oh inhaled corticosteroids 

when symptom control worsens prior to an attack in order to prevent the impending 

exacerbation.3  

Severity was another one of the key features found to be informative for asthma 

subtyping. Among the clusters, severity was pretty evenly split with children with the most 
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severe asthma found in each cluster. This finding, in line with other recent studies4,5 showing 

even distribution of severity among clusters rather than an independent cluster. 

Despite a common acceptance among the clinical community that lung function is a key 

determinant of asthma, our analysis actually found that the majority of children had normal 

lung function suggesting that lung function is likely less important for subtyping.  

This cross-sectional study gave us a snapshot of the heterogeneity that was then 

expanded on in subsequent chapters.  

This is evidenced in the next two chapters (5 and 6) where we looked at some of the key 

features (severity and exacerbations) in greater detail using a well-defined, comprehensive, 

population-based birth cohort.  

 

7.3 Research question 3: How can we exploit the wealth of data provided by 
longitudinal birth cohorts in order to understand the severity of asthma? 
 

The use of birth cohort studies has provided the additional benefit of allowing us to 

incorporate systematic observation prior to disease onset which facilitates the exploration of 

the natural history of disease. With longitudinal, repeated-measure data from birth cohorts, the 

development of disease can be followed over time, which essentially parallels clinical diagnosis 

and follow-up observations. Additionally, it allows researchers to estimate distributions and 

prevalence rates in the population as well as attributable risks. A representative sample of the 

population is the ideal setting to analyse relationships between subjects and confounders to 

exposures and outcomes.6  

Longitudinal studies allow subjects to be followed prospectively over time in order to 

monitor risk factors and/or observed outcomes. It allows us to see the development or changes 

of certain population characteristics over time. Chapters 5 and 6 are extensions from chapter 4 

as the goal was to try and map the trajectories of each of these domains in a well-defined birth 

cohort. Chapter 5 of this PhD focused on wheeze exacerbations and utilised longitudinal data 

from primary care data associated with four follow-up points to identify two distinct 

independent trajectories of wheeze exacerbations: infrequent and frequent exacerbations. 

Children who frequently exacerbate are more likely to require more inhaled therapy for 
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symptom control, be sensitized, and have a diagnosis of asthma by late childhood. These 

children are also more likely to have poorer lung function, though it is important to look not 

only at FEV1 (as the majority of our children had normal FEV1 values) but rather the ratio of 

FEV1/FVC which would be a better predictor of those at risk of exacerbations. This is a crucial 

finding as it has been shown that children with recurrent early life exacerbations were more 

likely to persist in having poor lung function by adulthood which is also an important risk factor 

in the development of chronic obstructive pulmonary disease (COPD).7 Duration of 

breastfeeding (those with minimal breastfeeding) was found to be the strongest early life risk 

factor for exacerbations. Given that many studies have shown the protective nature of 

breastfeeding on asthma development, asthma severity, and asthma exacerbations8-10, this 

modifiable aspect could be prevented in order to decrease the associated risk. 

However, another key finding is that a large proportion of children with well-controlled 

mild asthma and normal lung function still have frequent exacerbations implying that there are 

likely some unknown underlying pathophysiological mechanisms that may contribute to this. It 

is thus possible that exacerbation prone asthma may represent an independent subtype. 

Although the sample size was small, limiting the interpretation of results, the proportion of 

exacerbating children is a representative sample of our population in line with other reported 

studies. Furthermore, strength is attributed to the fact that data was extracted from primary 

care records and not solely from parentally recollected answers to questionnaires. 

Using a relatively novel method in this field, latent transition analysis based on a latent 

Hidden Markov model, we demonstrate in chapter 6 that wheeze severity is a dynamic process 

throughout childhood and that the majority of children transition between different states of 

severity. The latent transition model is able to identify how heterogeneous manifestations 

change by modelling transitions over time. This chapter showed how temporal changes in 

wheeze symptoms are actually characteristics of individual wheeze phenotypes in the form of 

healthy, mild, or severe wheeze. Children who start off in the severe state early on tend to 

remain in the severe state by late childhood. These children are also more likely to have poorer 

lung function, more airway inflammation and resistance. This suggests that different 

mechanisms are responsible in contributing to a variable response to current treatment 
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strategies with inhaled corticosteroids.11,12 It has been suggested that severe asthma in 

childhood is characterised by steroid-insensitive eosinophilia likely owing to the lack of 

successful response.13,14 Children with mild wheeze tend to transition frequently particularly 

within no wheeze/no symptom state. This suggests that the current methods to ascertain 

wheeze patterns (using presence or absence of wheeze) are not robust enough to capture the 

heterogeneity of wheeze. When looking at wheeze phenotype classes from previously 

published work within MAAS15, this model has shown that wheeze classes ascertained through 

standard latent class analysis are not actually static and that children with persistent 

troublesome wheeze have similar severity patterns as those with persistent controlled wheeze. 

Furthermore, despite common assumptions, wheeze severity is not a good indicator of whether 

or not a child will have a diagnosis of asthma. 

Age of onset of wheeze, as one of the other key features, has already been mentioned 

in previous chapters and was derived by Belgrave et al15 using latent class analysis and so this 

was not expanded on in the thesis. Briefly, they discovered four main wheeze phenotypes: 

transient early, late onset, persistent controlled, persistent troublesome. Results from chapter 

4 have shown that age of wheeze onset is a key discriminator for endotypes however children 

assigned to each class show different levels of symptom severity as chapter 6 has 

demonstrated. Although the majority of severe wheeze was in the persistent wheeze classes 

(controlled and troublesome), only a small proportion of children actually remained in the 

severe wheeze state during childhood and the greatest amount of severity occurred early on. 

This can, in one way, be explained by the preschool effect whereby children are first exposed to 

infections and viruses which lead to the development of respiratory symptoms.16 Within the 

other classes, the majority of children either mild or no symptoms. This suggests that labelling 

children as having specific phenotypes is not the way forward as there is a vast amount of 

within class heterogeneity. Children can transition through phenotypes highlighting the 

importance of age when defining asthma subgroups. Results from this thesis suggest that we 

should not solely use the presence or absence of wheeze as a marker of wheeze trajectory as it 

is evident that a large proportion of children do not fit their allocated wheeze phenotype 
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patterns. Instead we should be looking at different symptom expressions and how it varies from 

age to age.  

With respect to children who frequently exacerbate, not surprisingly, we found that 

they were more likely to have persistent wheeze suggesting that there are likely undiscovered 

pathophysiological mechanisms working synergistically.  One explanation could be that there 

are multiple triggers contributing. A study by Spycher et al showed that multi trigger wheeze 

(MTW) was associated with higher severity wheeze (which includes those children who have 

frequent attacks) and that it tends to persist throughout childhood.17  

This thesis did not look at the atopy domain separately as it has been previously 

investigated. Using a Hidden Markov Model (a model that our LTA in Chapter 6 is also based 

on), Simpson et al from the MAAS group identified four atopy phenotypes: multiple early, 

multiple late, dust mite, and non-dust mite, along with a no latent variability class. Multiple 

early sensitization phenotype was highly associated with asthma, significantly reduced lung 

function, and increased risk of hospital admissions.18 Although these clusters were not 

incorporated into an analysis within the thesis as the numbers were too small, we used the 

presence or absence of any sensitization variable as a late childhood outcome. We found that 

children with severe wheeze state and children with frequent exacerbations were more likely to 

be sensitised by late childhood. This is an important finding as a recent study showed that 

children with atopic uncontrolled wheeze were more likely to continue having high symptom 

burden.19 This also reflects the acquisition of allergic sensitization with age.20 Furthermore, 

children with frequent exacerbations were more likely to be sensitized suggesting that similar 

risk factors and mechanisms may be contributing to atopy and exacerbations. This has 

implications on treatment strategies as it has been found that low interferon induction and high 

proinflammatory cytokine response to rhinovirus-16 increased the risk of wheeze and lower 

respiratory tract infections in early life21, which has been found to drive frequent asthma 

exacerbation phenotypes.22,23 Children who display this lack of type I/II interferon immune 

response are also more likely to be sensitized throughout childhood due to a synergistic weak 

Th2 cytokine response to PHA thereby increasing susceptibility to virus infection.21 Further 
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research is required in identifying the underlying immunophenotype in order to develop novel 

biologic therapies.  

It is evident that the same pattern of symptoms among different children does not 

necessarily equate to the same underlying pathophysiological mechanisms underpinning this 

heterogeneity. Given that different mechanisms are not exclusively independent, it is entirely 

possible that children with the most severe disease expression may indeed have multiple 

mechanisms working synergistically.  

There is a great amount of diversification in results among different studies owing to 

different number of clusters, sample sizes, frequency and timing of data collection, and 

statistical methodology which have demonstrated variability in study conclusions. Results from 

this thesis indicates considerable heterogeneity among children within the same classes which 

could be used as an explanation for the lack of consistent results. It is also likely that different 

pathophysiological mechanisms are responsible for expressing similar patterns of symptoms 

among different children.  

Placing patients in a ‘one size fits all’ treatment box is no longer becoming optimal as it 

has demonstrated not only a large proportion of treatment failure but an increase in the risk 

side effect vs benefit ratio. We need to move away from symptom/diagnosis/lung function 

based treatments towards mechanism-based strategies. Data driven methods have been 

paramount in identifying patterns within datasets that cannot be seen by simple observation. 

This thesis has shown how machine learning can facilitate endotype discovery by identifying 

latent (hidden) structures within the chosen datasets. However, there is a lack of certainty in 

calling these subgroups (clusters/classes) ‘true endotypes’ and so results need to be interpreted 

in context as they are not yet translatable to clinical care. To put in perspective, a randomised 

control study could not show significantly different treatment responses when children were 

grouped into clusters suggesting that treatment is likely not endotype-specific.24 What is 

needed is pooling of data not only from observational birth cohorts, but also from different 

patient studies and randomised control trials in order to triangulate the knowledge obtained to 

pinpoint disease mechanisms, biomarkers, genetics, predictors of future disease, and response 

to treatment.25 The emergence of biologic treatments can substantially improve our endotype 
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discovery by identifying treatment responders and therefore detecting possible underlying 

pathways of disease expression in different subgroups.26 Therefore integration of clinical trial 

and cohort data, endotypes, biomarkers, -omics data, in vitro mechanistic studies using human 

samples, in vivo experimental models, along with advanced computer algorithms using ‘big 

data’, could help identify novel targets and bring about true stratified personalised medicine. 

This would bring us one step closer from analysing data at a population level to analysing at a 

person level. 

 

7.4 Future work 
 

 While each chapter of this thesis presents important advances in understanding the 

asthma syndrome, several areas warrant further investigation. Future work that is beyond the 

scope of this PhD will consist of the following: 

 

1) Creating a framework and model that could combine the four features (age of onset, 

atopy, exacerbations, severity). Given the complexity of the different variables (mixed 

data consisting of ordinal, binary, continuous and categorical variables), there is yet to 

be a model that can handle this as it would have to encompass all original variables used 

in ascertaining the clusters and classes. It is not yet possible to combine the different 

classes/clusters as variables since they were identified using cluster analysis and latent 

class analysis (LCA) and using different clinical follow-up points. As mentioned 

previously, LCA allocates probabilities of group membership while cluster analysis 

divides based on distance measures and so conceptually, this is very difficult to 

comprehend. However, it would be very informative to see how each child moves from 

one class to another. 

2) Replicating these results in other cohorts, particularly within STELAR (Study Team for 

Early Life Asthma Research)27 consortium. However, data from the other cohorts has 

been collected at different timepoints, some measures are completely missing in some 

studies, different drop-out rates and at different time points among studies, and the 
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lack of precise information on symptoms and timing of exacerbations. The challenge lies 

in finding algorithms that could blend all this data. 

3) Blending in results from different study types (birth cohorts, patient studies, 

randomised control trials) with genomics, transcriptomics, and proteomics in order to 

further disaggregate the scope of the asthma syndrome. The use of biomarkers could 

enable targeted prescribing methods.  

 

7.5 Conclusion  
 

In conclusion, this thesis has shown that data driven algorithms such as cluster analysis, 

K-means longitudinal analysis, and latent transition analysis are useful methods in 

disaggregating the heterogeneity of the asthma syndrome. Utilising these methods in clinical 

context through different rich data sources, we have identified main features useful in 

identifying subtypes of disease. We identified exacerbation prone asthma in one cohort and 

mapped the trajectory throughout childhood through two independent subgroups in a birth 

cohort. The relatively novel method used to identify wheeze severity patterns could be used as 

a future methodological framework for visualising the dynamic processes of respiratory 

symptoms throughout childhood. Overall, this thesis has demonstrated the utility of data driven 

methods in understanding the patterns of asthma symptoms in childhood.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



207 
 

7.6 References 
 
1. Kupczyk M, ten Brinke A, Sterk PJ, et al. Frequent exacerbators--a distinct phenotype of 
severe asthma. Clin Exp Allergy 2014;44:212-21. 
2. O'Byrne PM, Barnes PJ, Rodriguez-Roisin R, et al. Low dose inhaled budesonide and 
formoterol in mild persistent asthma: the OPTIMA randomized trial. Am J Respir Crit Care Med 
2001;164:1392-7. 
3. Jackson DJ, Bacharier LB, Mauger DT, et al. Quintupling Inhaled Glucocorticoids to 
Prevent Childhood Asthma Exacerbations. N Engl J Med 2018;378:891-901. 
4. Fitzpatrick AM, Teague WG, Meyers DA, et al. Heterogeneity of severe asthma in 
childhood: confirmation by cluster analysis of children in the National Institutes of 
Health/National Heart, Lung, and Blood Institute Severe Asthma Research Program. J Allergy 
Clin Immunol 2011;127:382-9 e1-13. 
5. Just J, Gouvis-Echraghi R, Rouve S, Wanin S, Moreau D, Annesi-Maesano I. Two novel, 
severe asthma phenotypes identified during childhood using a clustering approach. Eur Respir J 
2012;40:55-60. 
6. Szklo M. Population-based cohort studies. Epidemiol Rev 1998;20:81-90. 
7. Belgrave DCM, Granell R, Turner SW, et al. Lung function trajectories from pre-school 
age to adulthood and their associations with early life factors: a retrospective analysis of three 
population-based birth cohort studies. Lancet Respir Med 2018;6:526-34. 
8. Azad MB, Vehling L, Lu Z, et al. Breastfeeding, maternal asthma and wheezing in the first 
year of life: a longitudinal birth cohort study. Eur Respir J 2017;49. 
9. Ahmadizar F, Vijverberg SJH, Arets HGM, et al. Breastfeeding is associated with a 
decreased risk of childhood asthma exacerbations later in life. Pediatr Allergy Immunol 
2017;28:649-54. 
10. Dogaru CM, Nyffenegger D, Pescatore AM, Spycher BD, Kuehni CE. Breastfeeding and 
childhood asthma: systematic review and meta-analysis. Am J Epidemiol 2014;179:1153-67. 
11. Szefler SJ, Phillips BR, Martinez FD, et al. Characterization of within-subject responses to 
fluticasone and montelukast in childhood asthma. J Allergy Clin Immunol 2005;115:233-42. 
12. Lemanske RF, Jr., Mauger DT, Sorkness CA, et al. Step-up therapy for children with 
uncontrolled asthma receiving inhaled corticosteroids. N Engl J Med 2010;362:975-85. 
13. Miranda C, Busacker A, Balzar S, Trudeau J, Wenzel SE. Distinguishing severe asthma 
phenotypes: role of age at onset and eosinophilic inflammation. J Allergy Clin Immunol 
2004;113:101-8. 
14. Phipatanakul W, Mauger DT, Sorkness RL, et al. Effects of Age and Disease Severity on 
Systemic Corticosteroid Responses in Asthma. Am J Respir Crit Care Med 2017;195:1439-48. 
15. Belgrave DCM, Simpson A, Semic-Jusufagic A, et al. Joint modeling of parentally 
reported and physician-confirmed wheeze identifies children with persistent troublesome 
wheezing. J Allergy Clin Immunol 2013;132:575-83 e12. 
16. Ball TM, Castro-Rodriguez JA, Griffith KA, Holberg CJ, Martinez FD, Wright AL. Siblings, 
day-care attendance, and the risk of asthma and wheezing during childhood. N Engl J Med 
2000;343:538-43. 
17. Spycher BD, Cochrane C, Granell R, et al. Temporal stability of multitrigger and episodic 
viral wheeze in early childhood. Eur Respir J 2017;50. 



208 
 

18. Simpson A, Tan VY, Winn J, et al. Beyond atopy: multiple patterns of sensitization in 
relation to asthma in a birth cohort study. Am J Respir Crit Care Med 2010;181:1200-6. 
19. Just J, Saint-Pierre P, Gouvis-Echraghi R, et al. Wheeze phenotypes in young children 
have different courses during the preschool period. Ann Allergy Asthma Immunol 
2013;111:256-61 e1. 
20. Kulig M, Bergmann R, Klettke U, Wahn V, Tacke U, Wahn U. Natural course of 
sensitization to food and inhalant allergens during the first 6 years of life. J Allergy Clin Immunol 
1999;103:1173-9. 
21. Custovic A, Belgrave D, Lin L, et al. Cytokine Responses to Rhinovirus and Development 
of Asthma, Allergic Sensitization, and Respiratory Infections during Childhood. Am J Respir Crit 
Care Med 2018;197:1265-74. 
22. Gill MA, Bajwa G, George TA, et al. Counterregulation between the FcepsilonRI pathway 
and antiviral responses in human plasmacytoid dendritic cells. J Immunol 2010;184:5999-6006. 
23. Wark PA, Johnston SL, Bucchieri F, et al. Asthmatic bronchial epithelial cells have a 
deficient innate immune response to infection with rhinovirus. J Exp Med 2005;201:937-47. 
24. Chang TS, Lemanske RF, Jr., Mauger DT, et al. Childhood asthma clusters and response 
to therapy in clinical trials. J Allergy Clin Immunol 2014;133:363-9. 
25. Saglani S, Custovic A. Childhood Asthma: Advances Using Machine Learning and 
Mechanistic Studies. Am J Respir Crit Care Med 2019;199:414-22. 
26. Custovic A, Henderson J, Simpson A. Does understanding endotypes translate to better 
asthma management options for all? J Allergy Clin Immunol 2019;144:25-33. 
27. Custovic A, Ainsworth J, Arshad H, et al. The Study Team for Early Life Asthma Research 
(STELAR) consortium 'Asthma e-lab': team science bringing data, methods and investigators 
together. Thorax 2015;70:799-801. 



209 
 

7.7 Addendum: The Academic Journey 
 

7.7.1 Evolution of the statistical journey 

 

The rapid review of chapter 2 led to the realisation that there were 2 main aspects 

surrounding the use of machine learning data-driven methods in asthma studies: pre-

processing of the data and the choice of cluster method. Healthcare data is comprised of mixed 

type of data and it has been shown in this PhD that different pre-processing methods can lead 

to heterogeneous results. The most commonly used methods of choosing the variables for the 

model are generally subjective investigator choice and dimensionality reduction using principal 

component analysis or factor analysis (depending on the dataset used). The next step is to 

choose the clustering method, and the most commonly used methods are hierarchical 

clustering using Ward’s method, k-means clustering, and latent class analysis. Only k-means and 

latent class analysis can be also used longitudinally. Hierarchical clustering and k-means (this 

method is very sensitive to outliers and numerical variables) assign subjects to only one cluster, 

whereas latent class analysis assigns probabilities of class allocation which can display the 

uncertainties as some subjects may be borderline between classes. However, all of these 

methods assume that the resulting subgroups are static.  

For both data selection and clustering method, there is no standardised and validated 

choice for ‘best practice’ and so chapter 4 was based on the most commonly used methods 

which allowed me to understand my dataset best. The first approach was to reduce the dataset 

into smaller, informative components as, in theory, this should provide the most stable results. 

However, the resulting clusters were not stable and so the model was re-run with all variables 

in raw format, yet this yielded similar results. A decision was made to then look at the resulting 

clusters from both models simultaneously with four experts in order to reduce inter-researcher 

variability and bias. It became evident that four main features were driving the cluster 

allocation which were: age of onset, atopy, asthma exacerbations, and asthma severity. In 

order to look at each of these domains in more detail, a birth cohort would provide the better 

platform as chapter 4 was a cross sectional analysis only.  
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Chapter 5 aimed at identifying trajectories of exacerbations throughout childhood. The 

methodological choice for this was a challenging one as I did not want to categorise 

exacerbations (i.e. categorising to 3 assumes that a child with 3 exacerbations is the same as a 

child with 10, which is not necessarily true), but rather keep them in their raw numerical 

format. The most applicable cluster method was k-means longitudinal (kML) which is capable of 

handling numeric data and the element of longitudinal time variability. The model identified 

two distinct exacerbation subgroups with different late childhood outcomes.  

Chapter 6 aimed at identifying patterns of wheeze severity. Wheeze severity was 

initially defined using the British Thoracic Guidelines step in treatment as this is the most 

common definition found in literature. The initial methodology used was latent class analysis as 

it is very sensitive to categorical variables such as the step of treatment. The model identified 

three classes as “No wheeze” (no treatment), “mild wheeze” (BTS step 1), “moderate-severe 

wheeze” (BTS step 2-3). There were no children on step 4. Looking at each class closely, there 

were no distinguishing features and, in some cases, the lung function for children with no 

treatment was worse than those on treatment which was not clinically intuitive. As a result, it 

became evident that the use of treatment step as a marker of severity was not a robust enough 

way to distinguish severity subgroups in our dataset.  

The use of four severe symptoms as a proxy of wheeze severity was then an evolution as 

symptoms are a sign of disease control and expression. Furthermore, previous research studies 

have made me realise that wheeze is not a static state but rather a dynamic process that likely 

changes over time. However, none of the clustering models that were previously used in this 

PhD would capture this phenomenon; a latent transition model would be most applicable. This 

model looks at intra group variability over time and shows how subjects transition from 

different states. The model identified three states of symptom expression which were labelled 

as “no wheeze”, “mild/moderate wheeze”, and “severe wheeze” and showed that children with 

mild/moderate wheeze most frequently transition through states of severity in childhood. This 

model was then applied to the previous wheeze phenotypes identified using latent class 

analysis and showed the dynamic transitions of symptom expression between each phenotype 

class suggesting that wheeze classes are not static.  
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7.7.2 Influence of external factors such as adherence and external environment on results 

presented 

Adherence 

Adherence to medication is an important aspect to consider in those children with 

difficult to treat severe asthma. Non-adherence is a major reason  for  increased asthma-related 

emergency admissions, poor control, increased oral steroid use, and persistent eosinophilic 

inflammation.1,2 Adequate assessment of adherence would potentially differentiate genuine 

severe disease, inadequacy of treatment, or failure to take medication. As yet, no method exists 

that can monitor adherence with 100% certainty.  

Adherence to inhaled corticosteroids is generally relatively poor, likely due to the 

absence of immediate relief.3 Current methods of measuring adherence include prescription 

data, parental reports, diaries,  and canister weighing, however, these are generally considered 

inaccurate.4 Fraction of exhaled Nitric Oxide (FeNO), a proposed biomarker for eosinophilia/Th2 

inflammation, has been gaining momentum in its possible use as a marker of both response to 

therapy and adherence.5-7 Studies have shown that FeNO levels fall with directly observed 

inhaled corticosteroid treatment. However, it should be noted that this will apply only to those 

children with Th2 driven eosinophilic inflammation and above the age of 5 years due to the 

technique involved.  

In the MAAS cohort used in this thesis, non-adherence could have accounted for some 

of the severity/exacerbation subgroups identified. In chapter 5, it could be argued that children 

with frequent exacerbations were likely not taking their inhaled corticosteroids. The greatest 

exacerbation burden occurred between birth and age 4 when FeNO was not able to be 

measured. Almost all of the children with frequent exacerbations were on inhaled 

corticosteroids. Although these children were more likely to have higher FeNO levels at age 8, it 

is not possible to conclude that this would be the same earlier in childhood. Furthermore, given 

that it is a birth cohort with follow-ups at different age points, it is very difficult to correctly 

ascertain adherence between visits without relying on parental recall and prescription data 

which, as stated earlier, is inaccurate. Nevertheless, it is entirely possible that the children were 
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not using their inhalers and were thus having exacerbations, but likewise it is possible that 

some underlying mechanism that we are not aware of is also contributing to this effect. 

Consequently, it is important to be aware of the high rates of non-adherence and so a way 

forward would be to design a study incorporating strict adherence criteria (i.e. using electronic 

monitoring devices +/- FeNO).  

External factors 

This thesis has shown that there is a lot of heterogeneity in asthma, however, data on 

social and environmental factors was not available. Several studies have shown that 

socioeconomic status (SES) may be a risk factor for the development of asthma.8-13 Generally, 

children from lower socioeconomic status are more likely to develop asthma with a greater 

symptom, though the definition of SES varied from study to study. It has been suggested that 

low income, low parental education level, higher likelihood of parental smoking in this group, 

and less likely to send children to day care centres were some of the causative factors.14,15 

However, it seems that the setting of these studies and the geographical location plays a role as 

results from Singapore, China, and South Africa showed an opposite effect.16-18 Other factors 

such as decreasing family size, small sibling number, and birth order have been found to be 

associated with asthma likely in some sort of indirect way that is associated with microbial 

exposure in infancy and childhood.19,20 In other words, children who are exposed to more 

microbes are less likely to develop asthma. This is further seen in those living on farms. The 

PARSIFAL and GABRIELA studies found correlation between farming environments and 

increased microbial burden associated with decreased asthma outcomes.21,22 They found that 

farm living was associated with a greater number of gram-positive and gram-negative microbes, 

as well as bacterial and fungal toxins in mattresses.21,23,24 A potential explanation for this is a 

connection between farming exposure and the activation of Toll-like receptor recognition 

signalling pathways which enhance the Th1 response, as opposed to the Th2.24,25 

 Exposure to air pollution has been shown to both exacerbate childhood asthma and also 

play a role in asthma development.26,27 Studies looking at air pollution exposure during 

pregnancy and early life have shown that it is associated with changes in immune responses as 

well as structural remodelling of the lung parenchyma.28,29 Early childhood exposure to traffic 
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related air pollution, of which the main constituents are NO2, PM2.5, and PM10
30, has been 

shown to increase the levels of proinflammatory cytokines associated with asthma, as well as 

elevated expression of the Clca330 gene that leads to mucous cell metaplasia and hyper-

reactivity owing to the development of episodic recurrent airway obstruction.31-33 Traffic 

related air pollution has also been associated with the transient and persistent wheeze 

phenotypes.34  

 Within the scope of this PhD, it is difficult to comment on the effects of these elements 

on the results presented as the data was not there to analyse.  

 

7.7.3 Systematic Review 

Using data-driven methods to ascertain patterns of asthma symptoms in childhood has 

led to large heterogeneity in results published by various individual studies. This disparity can 

be due to biases in the way the studies are conducted or designed, use of methodology that 

hasn’t yet been standardised, misinterpretation or misrepresentation of results, or possibly the 

inherent heterogeneous nature of the disease that is yet to be fully understood. As such, it can 

be difficult to ascertain which results are the most reliable. 

A systematic review aims to identify, evaluate, and summarise the findings of all studies 

relevant to the proposed topic, in order to report the best available research evidence that 

could aid in public policy, guideline creation/modification, and to guide future research based 

on identifying gaps in knowledge. Systematic reviews can be of interventions (randomised 

control trials) or observations (case studies, population cohorts, birth cohorts, etc). If done for 

interventions, it can provide high level evidence on the effectiveness of that intervention. The 

method of undertaking a systematic review adheres to a strict scientific design based on 

explicit, pre-specified and reproducible methods so that conclusions can be justified. They can 

often, but not always, include a meta-analysis which utilises statistical methodology to 

synthesize the results from different studies into a single quantitative estimate or summary 

effect size. 

A systematic review differs from a narrative or rapid review in that rapid reviews are 

mainly descriptive, do not involve a protocol driven systematic search of the literature, usually 
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have only one author choosing a subset of studies based on some less defined criteria. 

Although informative, they can often include an element of selection bias.35 The process for 

undertaking a systematic review involves 7 steps which are summarised below. 

Identify and formulate a review question 

The first step is to formulate a review question that could be based on some background 

knowledge and use of an expert group opinion would be beneficial. A search of the DARE 

(Database of Abstracts of Reviews of Effects) and/or the CDSR (Cochrane Database of 

Systematic Reviews) databases can identify if such a review has previously been undertaken 

and to ensure a new review is justified.   

Defining inclusion and exclusion criteria 

The most common method of identifying inclusion/exclusion criteria is using the PICOS 

(population, intervention, comparison, outcomes, study design) method. Furthermore, a 

decision needs to be made on what type of studies will be included, how old the studies can be, 

any language restrictions, and whether using published/unpublished work. In the case of this 

PhD, no randomised control studies would be included as they are not available. 

Population 

- Who does this pertain to? 

- Deciding on a minimum number of participants per group  

- Deciding on the age, gender, ethnicity, deprivation status, co-morbidities, 

socioeconomic status, and geographical area (in the case of chapter 2 and 3 of this PhD, 

all children under age 18 were chosen. There were no limitations on the other 

demographic factors) 

- The chosen population should have relevance to the population where the review 

findings will be applicable 

- The severity of the disease in the population 

Intervention 

- What is the intervention or cause? 

- Nature and setting of the intervention given 

Comparison 
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- For comparative studies, then a decision needs to be made on what elements are 

considered as comparisons (ie. Methodology, data input, choice of population, etc) 

- Is there something to compare the intervention to? 

Outcomes 

- A clearly defined set of relevant outcomes with corresponding justification 

- In the case of chapter 2 and 3 of this PhD, primary outcomes are wheeze phenotypes by 

age, triggers and classification of asthma severity. 

Study Design 

- Randomised control trials, non-randomised control trials, observational studies (cohort, 

case-control, case series) 

- Selected or unselected cohort 

- Cross-sectional or longitudinal 

Developing search strategy  

Search strategies usually start with a list of key terms (MeSH) related to each of the 

PICOS components. It is necessary to develop a search strategy that can balance sensitivity 

(high proportion of relevant studies) and specificity (low proportion of irrelevant studies). 

Having at least one more person would be beneficial so that a consensus can be achieved. The 

MeSH list is a dynamic process where terms can be added whilst going through the literature. 

Common databases used for searching are: Medline, Ovid, PsychNet, Cochrane Library, Scopus. 

Study selection 

At least two reviewers (for increased inter-rater reliability) should screen titles/abstracts 

that arise from the search criteria and choose those that appear to meet the inclusion criteria. 

This leads to the creation of a list of papers to be read in more detail. If there is a lack of 

agreement on certain articles, then a third person can be introduced.  

Data extraction 

This should be done by at least two reviewers whereby a table is created to organise 

relevant information extracted from each study (i.e. Authors, publication year, population size, 

age range, study design, outcomes, included/excluded). 
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Assessing study quality 

Assessing study quality is still rather subjective. Although there are now some 

standardised guides on the reporting of studies, there is no consensus on what constitutes 

good quality. For randomised control trials, the CONSORT (Consolidated Standards of Reporting 

Trials) Statement (http://www.consort-statement.org) is used. Guidelines used for reporting 

different study designs can be either EQUATOR (http://www.equator-network.org) or STROBE 

(http://www.strobe-statement.org). With regards to study quality, key aspects assessed are: 1) 

appropriateness of study design to research objective, 2) risk of bias, 3) choice of outcome 

measure (s), 4) statistical methodology, 5) quality of reporting, 6) quality of intervention, 7) 

generalisability.  

Analysing and interpreting the results 

The main calculable measure is the effect size for meta analyses. Effect sizes are 

represented as a value with a 95% confidence interval. A heterogeneity value can also be 

calculated to indicate whether individual studies are similar enough to compare. The final step 

would then be to summarise these results and provide recommendations for further clinical 

work or research.  

 

7.7.4 Information Governance and Data Ethics 

Information governance is a framework that allows researchers to handle personal and 

sensitive information in a transparent manner while upholding confidentiality and security. It 

mandates that information is held securely and confidentially, obtained in a fair manner, 

recorded accurately and reliable, used effectively and ethically, and shared appropriately and 

lawfully (https://www.hra.nhs.uk). With the introduction of the General Data Protection 

Regulation (GDPR), emphasis is placed on how to handle personal data. One of the key 

elements of this is consent, which is sought for participation in research studies, and 

participants need to be informed of how their information will be used. Consent can be 

withdrawn at any point. Patient identifiable data is of particular importance as it can reveal the 

identity of the participant. Patient identifiable data includes name, address, date of birth, 

hospital/NHS number. The data should then either be fully anonymised (information which 

http://www.consort-statement.org/
http://www.equator-network.org/
http://www.strobe-statement.org/
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cannot be reasonably used for identification) or pseudonymised (a unique code given to each 

participant that only those who have access to original data would be able to identify while the 

rest see it as anonymised). Subjects whose data was collected must be informed of the purpose 

of the data collection. If the purpose of the data changes, the subjects must be informed. 

However, an exception for research purposes exists whereby there are organisational measures 

in place that respect the principle of data minimisation (by removing patient identifiable data), 

or if giving information to data subjects would be impossible or would involve ‘disproportionate 

effort’. 

Health Research Authority and Research Ethics Committee approval 

HRA approval includes the assessment of governance and legal compliance as well as 

the ethical opinion of the Research Ethics Committee. All projects classed as research require 

approval, and this includes: clinical trials of an investigational medicinal product, clinical 

investigation of a medical device, randomised control trial, basic study involving procedures 

with human participants, studies with questionnaires or interviews, studies with human tissue 

samples, and studies limited to working with data.  
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