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Abstract

This thesis concentrates on a shape based approach for seismic full waveform

inversion, especially a novel level set based shape estimation method for elas-

tic waveform inversion. Full waveform inversion is a numerical data processing

technique aiming at the reconstruction of subsurface structure of the earth using

collected seismic reflective data. However, traditional techniques using an acous-

tic or Helmholtz wave equation as forward model are faced with the limitation of

using simulated non-elastic wave data to numerically fit elastic waveform data,

which is physically incorrect and practically prone to obtaining wrong estimates;

the correct scheme for modelling seismic waves is using an elastic wave equa-

tion. We construct an elastic waveform inversion algorithm using a symmetric-

hyperbolic scheme, and a time-reversal adjoint-state method; in addition, we

introduce a Sobolev gradient method as a regularization method, with the goal

to smooth the gradient function and thereby obtain more regular boundaries

of the reconstructed shapes. However, the procedure of elastic waveform in-

version is a multi-parameter estimation, which will lead to the numerical error

of ‘cross-talk’; this phenomenon is particularly severe in high-contrast situations

and irregular shape boundary reconstruction problems, as expected to face in salt

dome estimation problems. Therefore we introduce a shape based method using

a level set technique to tackle specific seismic reconstruction problems, instead

of more traditional pixel-based schemes. We also introduce a stochastic gradient

descent method as an alternative to traditional gradient line search techniques

for level sets, in order to increase efficiency and to avoid certain local minima

in large-scale inversion problems. In addition, we introduce an additional inte-

grated internal-value reconstruction scheme; this will prove to be an interesting

and possibly necessary expansion of the shape based approach in order to deal

with more realistic 3D seismic reconstruction problems.
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Treeby, Jiri Jaros, Dominique Lesselier, Tristan Van Leeuwen, Ajinkya

kadu, Rossmary Villegas, Alex Hiles, who offers either direct help for my

research, or propose important ideas or inspiration of my work.

• Finally, I would like to thank to my family, including my father Wu Fang,

my mother Li Kaili; my brothers and sisters, Li Ying, Jie Xiao, Wei Li, Li

Ming, Wang Jing, Wu Tianyi, Zhang Ziyang, and all other family members.

Being alone in UK, away from family is never easy, especially that the study

of PhD is adds up the challenge. You not only support me financially with

the cost of living, but also encourages me, and be there for me when I am

down and fragile, which make me strong, and brave enough to overcome all

the difficulties.

14



1 Introduction

Full-waveform inversion (FWI) is a data processing technique to reconstruct

the quantitative characteristics of the sub-surface from seismic wave propagation

data. The numerical estimation procedure often relies on minimising the misfit

between the model data and real data. The procedure is to start with an initial

guess on a parameterized model, recording the wave propagation data and cal-

culating the misfit to the real data; then an update to the model is calculated

with a line search technique, so that the misfit is reduced. By repeating the same

procedure we obtain the final approximation of the true model.

The idea of full-waveform inversion has originally been developed by A. Taran-

tola in the 1980s; the inverse problem theory for acoustic and elastic waves were

separately developed by a number of researchers, among them A. Tarantola [70]

and J. Virieux [75]. They reported the various challenges of FWI; due to the

restriction of seismic reflection data, the optimization does not always recon-

struct the true sub-earth model adequately; the non-linearity of the inverse wave

equation problem often gives rise to local minima in the process of model updat-

ing. Only with a sufficiently accurate initial model does the inversion provide

a satisfactory approximation to the real sub-earth model. Therefore, different

techniques of regularization have been developed to refine the model result [4],

such as a penalty method [41], TV regularization [23], and others.

Historically, the numerical implementation of FWI first concentrated on acous-

tic and Helmholtz equations, for simplicity in modelling and numerical program-

ming. Compared to that, the mathematical formulation of elastic wave equation

contains more variables and parameters, therefore the numerical implementa-

tion requires more time and computing resources. In FWI which requires large

scale, and hundred or thousands times of wave propagation, the application of

elastic wave equations would increase the total computational time significantly.

Therefore, much of the recent technical research on FWI still uses either acoustic

or Helmholtz equation as the forward model instead of full elastics. However,

in geophysical applications of those simplified models, the elasticity of the true

earth material brings an inevitable problem namely that the modelled and true

data are constructed by different wave propagation models, therefore the correct

inversion becomes theoretically and practically impossible. Since the sub-surface

real data is assumed to be obtained from elastic media, the elasticity model of
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elastic waveform inversion becomes the only physically correct model.

The elastic wave equation could be constructed in time-domain or frequency-

domain, the same way as in acoustics. The time-domain and frequency-domain

model both have their advantages and disadvantages: in a frequency-domain

model, the acoustic wave model could be formulated by a Helmholtz equation;

since the model is time-independent, the time-step iteration scheme is avoided,

thus reducing the computational costs significantly if only few frequencies are

used.

Usually the seismic data are recorded as time series, the transformation of

data in time-domain to frequency-domain needs to be done by computers which

might introduce computational inaccuracies which might affect the accuracy of

the reconstruction; on the other hand, in a time-domain inversion method the

recorded data can be applied directly in the inversion process; this is the reason

why we opted for using a time-domain based inversion method in our approach.

It comes with the additional benefit that back-propagation (a standard concept

in waveform inversion) is directly linked to physical time-reversal, as we will point

out later in this thesis.

In order to put an emphasis on this time-reversal aspect, we will apply a

symmetric hyperbolic first order system formulation of waveform inversion as

proposed in [57] as an alternative model to traditional formulations, which often

are based on second order models [26]. This also has some links to first order

numerical implementations for elastic systems [11]; an additional advantage of

applying this particular formulation from [57] is that it contains a pressure term in

the model, which directly agrees with measured data by direct physical inspection.

No data conversion is needed, which should be a clear advantage for its link to

practical application in seismic imaging.

One of the principal complexities in elastic FWI is that it is a multi-parameter

estimation procedure; therefore updates of different parameters might compen-

sate their effects on the data for each other, and finally lead to cross-talk and

artificial local minimum [50]. In both acoustic and elastic waveform inversion,

some of the recent research tries to avoid this difficulty; some authors choose

to only recover the velocity, and set density to be constant. In our approach,

we choose a different simplifying approach which is based on geological structure

assumptions. In many physical applications, the topological (or geological) struc-
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ture of three parameters can be assumed to be closely correlated in the sense that

geological shapes of different parameters share the same boundaries. Therefore,

our idea is to propose a shape based method. As a starting point, we we assume

that the background values of parameters in different layers are approximately

known, and our objective is reduced to identify and characterize the shapes and

boundaries of embedded objects or bodies of interest inside each layer; in this

way, instead of recovering the entire pixel-based multi-parameter profile, we only

need to estimate the shape and boundary of embedded objects; moreover, the

internal parameters inside those bodies could be estimated accordingly, reducing

the difficulty in multi-parameter estimation.

A very flexible numerical simulation techniques for shape evolution is the level

set method. This technique has first been developed by S. Osher and J. Sethian

for the modeling in computational physics and image processing [52], [51], [61];

its objective is to automatically incorporate topology changes during computa-

tional shape evolution; It has been applied in various mathematical problems,

such as image processing, computational geometry, and biophysics. In imaging

problems, sometimes the model parameters have a large contrast between objects,

and the boundary between objects and background represent an irregular shape.

Traditional pixel based full waveform inversion methods are not well-suited to

reconstruct such models, even with added standard regularization terms. The

goal is to improve object reconstruction by applying a level set function formu-

lation in the modelling. Previously, this technique has already been successfully

applied in electromagnetic tomography [17], optical tomography [65], [53] or his-

tory matching [16], amongst many others. In seismic geophysical imaging, the

main application for shape estimation is the reconstruction of salt bodies, start-

ing by [31]; more research on different types of level set techniques has also have

been developed in [36]. Their research shows a successful level-set based recon-

struction which relies on the simplified model of a Helmholtz equation. So far

the gap between the elastic data and non-elastic forward modelling therefore still

remains.

Therefore, our main interest of study is to build up a level set based elastic

wave inversion model based on a 2D time-domain grid, which could be applied

in geophysical problems like salt reconstruction. This method has been applied

for reconstruction based on Helmholtz equation, but not applied in elastic wave
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equation as a forward model [30], [31], [36]. Certainly, some form of regularization

might still be necessary even in this model based approach. For regularization,

we apply a Sobolev gradient [49] based method as an alternative of traditional

L2 gradient, used as a smoothing process of gradient calculation and numerical

implementation. This will have the effect of producing shapes with more regular

boundaries.

We will employ a Kaczmarz type reconstruction technique in our approach in

order to deal with the usually vast amount of data available in seismic inversion.

However, traditional line search techniques for optimization methods such as

Armijo, Wolfe or strong Wolfe conditions applied for elastic waveform inversion

would not be well-suited since they rely on knowledge to the full gradient, whose

calculation is highly time-consuming; this limits its application for future large

scale problems, especially in 3D. Therefore, we will develop a novel line search

method more suited to single step (Kaczmarz) FWI and in addition consider

a stochastic gradient descent method (SGD) [13] in order to solve this large

scale FWI problem. The resulting method shows high similarity to Landweber-

Kaczmarz type methods [29] applied in non-linear inverse problems [38], [12].

The SGD method not only proves to be less time consuming, but also avoids

certain local minima which might occur when using a cyclic choice of partial

data sets for gradient estimation. We expect that its main power will become

invisible when moving to realistic 3D applications where many more data are

usually obtained which cannot be included in a small number of data packages.

SGD makes sure that the information content of the available data are explored in

an optimal way, without unnecessary repetition of the same data subsets multiple

times which might cause local minima. It also guarantees some form of unbiased

data selection during the inversion process. 3D applications, however, need to be

left to future research due to their highly increased complexity and the need for

significantly more expensive computing resources, going beyond a PhD project.

Concluding, we apply a SGD method in our model for level set full wave form

inversion, and apply a cross-validation misfit estimation technique that should be

able to detect if there occurs overfitting for our model. We also design an addi-

tional approach for internal parameter value reconstruction, which is sometimes

required to estimate the internal object value as well as the shape of salt domes.

This will help to analyse its properties more precisely.
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The structure of the remaining parts of our thesis is as follows:

Section 2 describes the theoretical formulation of 2D elastic waveform in-

version, including the elasticity theory, the symmetric hyperbolic scheme, the

adjoint-state method for gradient computation, the different line search tech-

niques, and their corresponding inverse problem algorithms. We also introduce a

regularization method that is based on Sobolev norm and Sobolev gradient, that

is applied as a smoothing term for level set gradient, where we will apply this

this smoothing technique in the following model tests in Section 4, 5 and 6, as a

method of regularization; We finally introduce different methods of line search,

and their pros and cons in full waveform inversion.

Section 3 describes a pseudo-spectral scheme that has been applied in the k-

wave package [71], [11]; we actually will modify this numerical scheme for our for-

ward problem for symmetric hyperbolic elastic wave propagation; we also present

a numerical technique called PML so as to simulate the ‘free-surface’ condition.

We need to consider the stability condition of elastic wave simulation such as CFL

and numerical dispersion; Finally, we implement our numerical model following

a numerical example that has been applied in SOFI2D [8] as to verify our wave

simulation.

Section 4 introduces the numerical test for our example used in a pixel based

scheme; we apply a high-contrast model that simulates a salt-dome condition. Af-

ter the numerical test, we analyse the advantages and limitations of this schemes

based on the obtained results; we also analyse the specific phenomenon called

‘cross-talk’ that occurs in multi-parameter estimation such as elastic wave inver-

sion.

Section 5 introduces the idea of a level set representation used in elastic wave

inversion. Firstly, we introduce the concept of a level set function, and then

develop a level set based steepest descent method for inverse problems, and a

narrow-band technique for extended velocity fields for the evolution [19]; we then

apply this technique in our inverse model, and design the corresponding numerical

tests for our case. Finally we compare the advantage of level set representation

to pixel based model, and analyse its limitations at this stage.

Section 6 introduces a stochastic gradient descent (SGD) method that is ap-

plied in our level set based inversion; we apply a pixel-count control as novel line

search strategy in a level set formulation to monitor the gradient descent, and
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then we apply a large scale model test case for the level set evolution in Chapter

5, in order to analyse the advantage of SGD method in level set based inversion.

We apply a hold-out validation (cross-validation) method for monitoring the data

misfit for each sweep, which helps to detect whether our reconstruction scheme

avoids over-fitting.

Section 7 considers a reconstruction of the actual contrast of the objects to the

background, in particular for salt domes; considering a multi-parameter scheme,

we make use of the expected correlation of interfaces of the related shapes and

apply an independent update technique for all the model parameters, in order to

simplify the parameter evolution, and use the same SGD method for the internal

parameter estimation.

Section 8 summarizes the results of our research described in this thesis, and

outlines some possible future research directions.
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2 The 2D time-domain elastic waveform inver-

sion

2.1 Introduction and methodology

As outlined above, FWI is a model reconstruction technique that uses the

recorded seismic data to recover the sub-surface material structure. In geophys-

ical application, researchers use air-guns to produce certain types of waves that

propagate inside the earth; while these waves propagate, receiving devices like

geophones are used to record the seismic data at discrete positions (usually lo-

cated at the surface or inside observation wells) as required. Full waveform in-

version has long been a key interest for seismic imaging; large oil companies like

BP, Shell, ExxonMobil or others are all building up their own research teams for

high-dimension, large-data seismic imaging research, that is applied for oil and

gas exploration.

We need to build up a model to facilitate the parameter estimation of the

earth, given the information of source and receivers, and the recorded data. The

FWI methodology proceeds as follows: first, we set up the forward model that

simulates the wave propagation, where the wave propagation parameters and

variables should provide quantitative characteristics of the experiment, like wave

velocity, density, pressure; we assume a starting model parameter distribution,

and implement the wave propagation on the starting model to obtain the model

data. Then we calculate the residual of the data, where we are able to obtain the

adjoint variable from adjoint-state equation using the Lagrange multiplier from

constrained optimization; in full waveform inversion, this procedure is also known

as backward propagation, since the adjoint state equation can be considered as a

computer realization of a time-reversal wave propagation [74]. We then compute

the gradient based on the adjoint variable with the method called adjoint-state

method [55]; we apply a Sobolev regularization technique for smoothing the gradi-

ent, as a refinement technique for numerical implementation. Finally we propose

a line search on the estimated parameter update, which results in an updated

new guess for the unknown parameters; we repeat the above procedure till we

finally obtain a sufficiently accurate data fit.

The structure of Chapter 2 is designed as follows: We start introducing the
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elasticity theory before we formally construct our model, and then demonstrate

the difference between acoustic and elastics, so to explain the importance of ap-

plying an elastic wave equation for seismic imaging. Then we introduce the basic

model formulation for the forward and inverse problem. We then introduce the

elastic wave equation in 2D, and derive its formulation in symmetric hyperbolic

form, which will be our forward model; we will also explain the reason for choos-

ing a symmetric hyperbolic form instead of traditional settings [26]. We apply

this in the governing form of a least-squares optimization scheme, resulting in a

time-reversal form of adjoint-state equation in a ‘free-surface’ condition; then we

calculate the gradient using the adjoint variable. We later introduce the idea of

Sobolev norm and Sobolev gradient, considered as an alternative gradient form

for smoothing the data. Finally, we introduce different methods for the required

line search, compare their advantages and disadvantages, and then show how we

will be applying these methods into our model.

2.2 Elasticity theory

The forward problem in full waveform inversion is generally formulated as a

wave equation problem. The most widely used wave equations are acoustic,

Helmholtz and elastic wave equations. Many of the previous researchers concen-

trate on acoustic and Helmholtz equations due to their simplicity in numerical

implementations; however, since the earth has elastic properties, it is generally

accepted that the application of a elastic wave equation for forward modelling is

vital when dealing with real data. Therefore we apply an elastic wave equation

as our forward model. We will do this in 2D due to computational limitations as

part of such a PhD project, mentioning however that general results are expected

to carry over with only minor modifications to more realistic 3D situations (re-

quiring more expensive computational environments for practical calculations).

Regardless whether 2D or 3D is considered, we need to first understand the

physics of elasticity for our model construction, which briefly will be outlined in

the following for the convenience of the reader. More details can be found in the

standard literature on elastic wave modelling.

In FWI, wave energy travels through the earth subsurface as seismic waves;

seismic waves can be a result of artificial or natural phenomena like earthquakes,

volcanic eruptions, landslides, or any sort of man-made releases of energy. Elastic
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wave propagation is the type of energy propagation that travels through an elastic

material or fluid, or its surfaces, without causing permanent structural or physical

changes. Examples of elastic waves are: waves travelling through water, sound

travelling through air, or elastic energy moving through solid materials, such as

artificial materials or the earth subsurface. When seismic wave travels through

the earth subsurface, it carries with it the energy to deform the medium it passes

through; the medium then produces the force to resist the change, so that the

medium will recover to its original shape; this property of the medium is called

elasticity.

The formulation of seismic wave propagation is complicated. Normally, we

divide seismic waves into body waves and surface waves. A surface wave is a type

of wave that travels along the surfaces of the earth, and it diminishes quickly

along the surface. Therefore there remains little energy when those waves reach

the distant receivers; our main focus is therefore on the body waves, which travel

through the interior of the earth. A body wave is a combination of many types of

waves; and the two main parts of a body wave is the pressure wave, also known

as primary wave, or P-wave; and the shear wave, also known as secondary wave,

or S-wave.

Therefore, a P-wave is a compressional wave that travels longitudinal in na-

ture, indicating that the displacement of the wave is in the same direction as,

or opposite direction to, the wave travel direction. Compressional waves travel

through any material made up of gas, liquids, or solids. Examples are sound

waves or acoustic wave. P-waves travel fastest in a seismic environment (which

is the main reason to often call it primary waves, since they usually arrive first

at the receivers).

The S-wave is a type of transverse waves, indicating that the displacement

is perpendicular to the wave travel direction. Unlike P-waves, S-waves do not

travel in gases or fluids, but only in truly elastic media. In most elastic media,

the speed of S-waves is approximately 60% of that of the P-waves; That is the

reason why they are also often called secondary waves, since they usually arrive

after the P-waves at the seismic receivers.
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2.3 Model set

In this section we will provide some notation and prerequisites used in our

model of FWI.

2.3.1 Time and space

We define Ω and T to be the model space and model time range; in physical

applications, Ω can be defined in two or three dimensions, depending on the

computational setup used; and T is normally defined as T = [0, T ], whereas T

represents the maximum model time.

2.3.2 Source and receiver notation

We define S to be set of wave source locations, usually produced by air-guns;

and s ∈ S represents one single wave source with starting point at one single

air-gun’s location. Comparatively, we denote the set of all receivers as R, and

r ∈ R defines an individual receiver.

2.3.3 Variables

We define the dynamic wave-field model variables as w = (w1, w2, ..., wn) ∈ U ,

considering that each component wi = wi(x, t) with i = 1, 2, ..., n satisfies that

wi ∈ Ω× T . Then we have the variable set U = (Ω× T )n.

2.3.4 Parameter

We defineM as the set of FWI static medium parametersm, such thatm ∈M.

Each element m should be considered as a space dependent function defined at

each point of Ω. In the level set formulation, we will modify this assumption and

instead use shapes and contrast values as model parameters.

2.3.5 Data space

The seismic data is usually recorded at different receiver locations throughout

physical time. We define the data space D, satisfying that d = (d1, d2, ..., dn)

and typically recording all or part of the dynamic model components, or simple

functions of those. Each component satisfies that di = di(xr, t), where we apply
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xr to define the location of the receiver r, xr ∈ Xr is the set of data locations

satisfying that R ⊆ Ω. This gives us the data space D = (Xr × T )n.

We also define the generalised variable-to-data mapping P : U → D. The

choice of mapping will be introduced in a later chapter.

2.3.6 Abstract wave equation formulation

Based on the previous setting, We define the general wave equation formulation

as

L(m)w = q (1)

where w = (wi) ∈ U is the partial differential variable, where wi ∈ Ω × T for

i = 1, 2, ..., n, and that U = (Ω× T )n is defined as the variable space. L defines

the partial differential operator, and q is defined as the vectorized source term

satisfying that q = (q1, q2, ..., qn), whereas for all i, qi ∈ Ω× T .

2.4 Elastic wave equation formulation

2.4.1 Generalized elastic wave equation

In this chapter we formulate the general equations for elastic wave propagation.

We consider the situation when a force is applied to a continuum, where every

point in such a continuum is influenced by this force. The force can be divided into

internal and external forces. The external force, also known as body force, will

lead to a deformation of the medium, which will result in the shape deformation.

The internal force, also known as the surface force, will resist the deformation,

and try to recover the shape towards the initial condition. In an elastic medium,

this recovery of the original form is considered to be perfect.

We consider the above three basic physic laws: equation of motion, relation

between strain and displacement, and Hooke’s law, demonstrated as follows [5]:

ρü = ∇ · σ + F (Equation of motion) (2)

ε =
1

2
(∇u+ (∇u)T ) (Strain-displacement relation) (3)

σ = Cε (Hooke’s law) (4)

where F is the body force per unit volume, ρ is the mass density, σ is the stress
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tensor, ε is the infinitesimal strain tensor, u is the wave displacement, and C is

the fourth order stiffness tensor specifically defined for elastic waves.

In the following we will apply the Einstein summation convention for tensors.

Consider (4) in the tensor form σij = Cijlmεlm; in isotropic media, the stiffness

tensor is formulated in tensor form as

Cijlm = λδijδlm + µ(δilδjm + δimδjl) (5)

where λ and µ are defined to be known as Lamé’s first and second parameters

[64]; those two parameters have been described by the French mathematician G.

Lamé (1795-1870), used to analyse the rock physics property; µ is also known as

shear modulus. It is generally considered that first and second Lamé parameters

have no direct physical interpretation. In this thesis, we restrict ourselves to

modelling elastic wave propagation in isotropic media.

We rewrite (2), (3) and (4) in Einstein summation convention to obtain the

general form of an elastic wave equation as

ρ∂ttui = σji,j + Fi (Equation of motion)

εij =
1

2
(ui,j + uj,i) (Strain-displacement relation)

σij = λδijεkk + 2µεij (Hooke’s law)

(6)

In the two dimensional case, we replace the general axes i, j, k by a more intuitive
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notation as x and y; then (6) gives us the two dimensional elastic wave formulation

ρ
∂2ux
∂t2

=
∂σxx
∂x

+
∂σxy
∂y

+ Fx

ρ
∂2uy
∂t2

=
∂σxy
∂x

+
∂σyy
∂y

+ Fy

εxx =
∂ux
∂x

εyy =
∂uy
∂y

εxy =
1

2
(
∂ux
∂y

+
∂uy
∂x

)

σxx = (λ+ 2µ)εxx

σyy = (λ+ 2µ)εyy

σxy = 2µεxy

(7)

Now we can derive the following form of a second-order wave equation which

has been used frequently in the literature, for example in [37]

ρ
∂2ux
∂t2

= (λ+ 2µ)
∂2ux
∂x2

+ µ(
∂2ux
∂y2

+
∂2uy
∂x∂y

) + Fx

ρ
∂2uy
∂t2

= (λ+ 2µ)
∂2uy
∂y2

+ µ(
∂2uy
∂2x2

+
∂2ux
∂x∂y

) + Fy

(8)

2.5 A symmetric hyperbolic scheme

Much of the previous research in two dimensional elastic wave equation inver-

sion uses the above formulation of (7), see for example [26], [37]; In particular, in

[37] the forward model is defined as (8); but the disadvantage of this formulation

in our setup is that its numerical implementation does not directly use wave pres-

sure as dynamic variable, which which is one of the main observables in practical

applications. Therefore, we prefer to introduce an alternative form of elastic wave

equation, where we will directly take wave pressure into consideration. This way

it is more convenient to extract pressure data as needed in practice.

Traditionally in wave propagation, the definition of wave pressure p is often

defined as p = λdiv(u) or similar [57]; such derivation is not directly achieved

in a second-order formulation with wave displacement (8). Alternative schemes

in first-order elastics are applied in [25], [11]; such a form has been applied for
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forward propagation, and has the advantage of simplicity and being numerically

less time-consuming; but its computation of adjoint-state operator for back prop-

agation is not identical to forward problem, making the application for inverse

problems difficult.

On the other hand, G. Papanicolaou et al. [57] have introduced a first-order

symmetric hyperbolic scheme for elastic wave propagation, which directly incor-

poraates the wave pressure as a dynamic variable; in [18] this scheme has been

linked to time-reversal where the adjoint state equation of this formulation is di-

rectly linked to physical time-reversal propagation, which adds to its convenience

for applying adjoint-state schemes for later gradient computation. In the follow-

ing chapter, we will use this formulation for deriving an inverse problem for the

symmetric hyperbolic scheme as applied to seismic FWI.

2.5.1 First-order elastic wave equation

To start with we derive the first-order elastic wave equation as an intermediate

form from (7). We introduce the velocity parameter v = ∂tu for axis x and y;

therefore we obtain the first-order elastic wave equation as

∂vx
∂t

=
1

ρ
(
∂σxx
∂x

+
∂σxy
∂y

+ Fx)

∂vy
∂t

=
1

ρ
(
∂σxy
∂x

+
∂σyy
∂y

+ Fy)

∂σxx
∂t

= (λ+ 2µ)
∂vx
∂x

+ λ
∂vy
∂y

∂σyy
∂t

= (λ+ 2µ)
∂vy
∂y

+ λ
∂vx
∂x

∂σxy
∂t

= µ(
∂vx
∂y

+
∂vy
∂x

)

(9)

This is the scheme applied by B. Cox and B. Treeby in a k-wave toolbox [25],

[11]. We will derive the symmetric hyperbolic system from this first-order elastic

scheme.
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2.5.2 Symmetric hyperbolic elastic equation

A key technique in the formulation of elastic waves in form of a symmetric

hyperbolic system has been applied by G. Papanicolaou [57] in 1996; the idea

is to separate the stress tensor into two components, where one component is

linear to the term of pressure, and the other part is considered λ-independent.

To achieve this, new variables are defined as (ηij, p) which replace (σij) in (9).

We will concentrate here on a 2D setup, where this new set of variables is

related to wave displacement ux, uy by

vx = ∂tux

vy = ∂tuy

p = λ(
∂ux
∂x

+
∂uy
∂y

)

ηxx = 2µ
∂ux
∂x

ηyy = 2µ
∂uy
∂y

ηxy = µ(
∂ux
∂y

+
∂uy
∂x

)

(10)

By applying this new set of variables to (9) we obtain the new formulation

∂vx
∂t

=
1

ρ
(
∂ηxx
∂x

+
∂p

∂x
+
∂ηxy
∂y

+ Fx)

∂vy
∂t

=
1

ρ
(
∂ηxy
∂x

+
∂p

∂y
+
∂ηyy
∂y

+ Fy)

∂ηxx
∂t

= 2µ
∂vx
∂x

∂ηyy
∂t

= 2µ
∂vy
∂y

∂ηxy
∂t

= µ(
∂vy
∂x

+
∂vx
∂y

)

∂p

∂t
= λ(

∂vx
∂x

+
∂vy
∂y

)

(11)

As already mentioned before, the advantage of this new formulation is not just

being a symmetric hyperbolic system. In practical application, the seismic data

are mostly recorded as wave pressure. However, in standard elastic wave equa-
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tions, the pressure is not directly included in the set of dynamic variables; the

most common way representing pressure is to use the average of diagonal terms of

stress tensor. In our new form, on the other hand, the included wave parameter

p is directly related to the physically measured wave pressure [57].

Let us consider now in general a multi-variable linear system with U : Rn ×
(0,∞) → Rm, for i = 1, 2, ..., n; furthermore, Γ, Φ, Ai are m×m matrices, and

F : Rn × (0,∞)→ Rm.

ΓUt +
n∑
i=1

AiUxi + ΦU = F (x, t) (12)

The system is defined to be a symmetric hyperbolic if Γ is symmetric, positive

definite; Ai are constant, symmetric matrices; and Φ is a semi-definite matrix.

(11) can be transformed into a symmetric hyperbolic general form as

Γ(m)wt +Dxwx +Dywy = q (13)

where m = (λ, µ, ρ) is the static parameter set for elastic wave propagation; q is

the source term q = (Fx/ρ, Fy/ρ, 0, 0, 0, 0)T ; w is the dynamic variable set where

w = (vx, vy, ηxx, ηyy, ηxy, p)
T ∈ U as U = (Ω× T )6. The precise formulations of

Γ, Dx, Dy are

Γ(m) =



ρ

ρ

1/2µ

1/2µ

1/µ

1/λ


(14)

Dx = −



0 0 1 0 0 1

0 0 0 0 1 0

1 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0
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and

Dy = −



0 0 0 0 1 0

0 0 0 1 0 1

0 0 0 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0


This constitutes our principal forward model for the remainder of the thesis.

2.6 From governing form to gradient derivation

2.6.1 Governing form

Now we will consider the inverse problem with the given forward model. Usu-

ally, FWI is mathematically modelled as the minimization of a L2 norm of misfit

for seismic data obtained from each source wave, recorded at all receivers. By

definition, the data misfit calculates the difference between observed data and

calculated data, which is based on the calculated dynamic wave variables. The

standard form is provided as follows:

minmE(m) =
1

2

∑
s

∑
r

‖dscal(xr, t)− dsobs(xr, t)‖2
D (15)

for all sources s ∈ S, where we have the variable-to-data mapping

PRw
s = dscal (16)

and constraints

L(m)ws = qs

where dscal, d
s
obs separately represents the calculated, and observed measurement

at receivers r ∈ Xr according to source s. L is the partial differential operator

for our symmetric hyperbolic system (11), (13), and E(m) : Ω→ R is the energy

functional defined to compute the 2-norm of data misfit.

We briefly consider the initial and boundary conditions for the forward model.

In seismic imaging, we can assume that the considered domain is sufficiently large,

such that the seismic wave never reaches its boundary; that is, from time zero to
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the maximum time T , the boundary values for the dynamic wave variables are

assumed to be zero; [18] defines such survey condition as ‘free-surface’. Moreover,

in practical application, we define that the initial time for the dynamic wave

variables is zero as well. Therefore, we add appropriate initial and boundary

conditions:

L(m)ws = q

ws(x, 0) = 0

ws(∂Ω, t) = 0

(17)

Combined with (15), this results in our final form of least square optimization:

minmE(m) =
1

2

∑
s

∑
r

‖PRws(x, t)− dsobs(xr, t)‖2
D (18)

with constraints

L(m)ws = qs

and the initial and boundary conditions

ws(x, 0) = 0

ws(∂Ω, t) = 0
(19)

The above is our final governing form for the inverse problem considered in the

following chapters.

2.6.2 An adjoint-state method for gradient computation

We apply an adjoint-state method to calculate the gradient of our least square

optimization problem (18), see for example [55] for a recent general overview; in

that paper, the Lagrangian technique is applied to obtain the state and adjoint

variables and to obtain the gradient from them; we apply the same technique

here to obtain the gradient for our (different) model.

Consider the governing form (18). We rewrite E(m) = E(ws). Then we are

able to obtain the Lagrangian as L(ws,vs) = E(ws)−
∑

s∈S〈vs,Lws−qs〉U ; here

ws is considered as the variable, and vs is said to be the Lagrange multiplier.

We need to calculate the minimum of the above functional; such a minimum
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should satisfy the following conditions for all s ∈ S:

δL

δvs
= 0→ Lws = qs (state equation)

δL

δws
= 0→ L∗vs = P ∗R(P ∗Rw

s − dsobs) (adjoint-state equation)

(20)

We call the second of these equations as the adjoint-state equation, and vs the

adjoint variable satisfying vs ∈ U for all s. Neglecting the source notation s, we

have the following

Theorem Given that the forward problem (13) satisfies the ’free-surface’ con-

dition (19). Then the adjoint-state equation (20) is provided by [18]:

Γ(m)vt +Dxvx +Dyvy = −P ∗R(PRw − dobs)

v(x, T ) = 0

v(∂Ω, t) = 0

(21)

Proof The definition for L∗ is provided by 〈L∗v,w〉U = 〈v,Lw〉U , as L is

considered to be the symmetric hyperbolic operator. This provides the following

〈v,Lw〉U =

¨
Ω

ˆ T

0

vT [(Γ∂t +Dx∂x +Dy∂y)w]

=

¨
Ω

ˆ T

0

vTΓ∂tw +

¨
Ω

ˆ T

0

vT (Dx∂x +Dy∂y)w

(22)

The first term of (22) yields

¨
Ω

ˆ T

0

vTΓ∂tw

=

¨
Ω

[vTΓw]
∣∣T
0
−
¨

Ω

ˆ T

0

wTΓ∂tv

(23)

The second term gives rise to

¨
Ω

ˆ T

0

vT (Dx∂x +Dy∂y)w

=

¨
Ω

ˆ T

0

(vTDx,v
TDy) · ∇w

(24)
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Denote that V = (vTDx,v
TDy). Consider the boundary condition w(∂Ω, t) = 0.

Then from the divergence theorem, we obtain that

¨
Ω

ˆ T

0

(vTDx,v
TDy) · ∇w

=

¨
Ω

ˆ T

0

(V · ∇w)

=

ˆ
∂Ω

ˆ T

0

wT [V · n]

−
¨

Ω

ˆ T

0

wT∇ · V

= −
¨

Ω

ˆ T

0

wT (Dxvx +Dxvy)

(25)

Consider the stated boundary condition. Notice that the condition ensures that at

the initial time w(x, y, 0) = 0. Now if we provide a time-reversal initial condition

for the adjoint-state such that v(x, y, T ) = 0, then the first term of (23) will also

be zero. Combine (22), (23), (24), (25); we obtain the following form

〈v,Lw〉U = −
¨

Ω

ˆ T

0

wTΓ∂tv −
¨

Ω

ˆ T

0

wT (DT
x ∂x +DT

y ∂y)v

=

¨
Ω

ˆ T

0

wT (−Γ∂t −Dx∂x −Dy∂y)v = 〈−Lw,v〉U
(26)

Given that 〈v,Lw〉U = 〈L∗v,w〉U , the adjoint operator is derived such that

L∗ = −L. Combining this with the adjoint-state equation

L∗v = P ∗R(PRw − dobs)

we obtain the adjoint-state equation to be

− (Γ(m)∂t +Dx∂x +Dy∂y)v = qv (27)

subject to

qv = −P ∗R(PRw − dobs)

v(x, y, T ) = 0
(28)
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Therefore the adjoint operator satisfies that L∗ = −L, indicating a skew-symmetric

relation. This shows that the implementations of the forward and adjoint oper-

ator are basically identical, and the adjoint state equation can be considered as

the time-reversal problem with its source term being given by the data resid-

uals recorded at all receivers; this procedure is commonly also known as back

propagation [74].

Next we will dervive an expression for the gradient from the state and adjoint

state equations above. Related work in the literature includes Fitchner’s deriva-

tion for gradient descent which satisfies a formation of symmetry [26]. Moreover,

[37] applies the same technique in his model for 2D elastic wave inversion. How-

ever, we emphasize that Fitchner’s derivation is based on a second order elastic

wave equation which is fundamentally different from the formulation of our first-

order scheme. Therefore we need to recalculate the gradient that is suited for our

model.

The gradient related to our minimization problem (18) is defined by the func-

tional derivative δE
δm

, given as [22]:

lim
ε→0

E(m+ εδm)− E(m)

ε
=

¨
Ω

δE(m)

δm(x)
εδ(m(x))dx (29)

for any δm.

Notice that our previous definition is a general form valid for all possibilities

of data measurements. For our more detailed model, we choose our observed

data dobs as the values of wave variables at receiver points, as in (11) provided

from an initial model. This indicates that PR in (18) is a projection map from

wave variables to their values at the receiver set R. Also, we rewrite the dynamic

variable w = (vx, vy, ηxx, ηyy, ηxy, p) as w = (w1, ..., w6), and we define that dobs =

(d1
obs, ..., d

6
obs) accordingly. We therefore obtain the following derivation

E(m) =
1

2

∑
s∈S

∑
r∈R

6∑
i=1

¨
Ω

ˆ T

0

(wsi (xr, t)− d
i,s
obs(xr, t))

2dxdt

Define the function E(m), such that E(m) =
˜

Ω
E(m)dx. This gives rise to

E(m) =
1

2

∑
s∈S

∑
r∈R

6∑
i=1

ˆ T

0

(wsi (xr, t)− d
i,s
obs(xr, t))

2dt
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From previous definitions it follows that δE
δm

= ∂E
∂m

. This provides that

∂E
∂m

=
∑
s∈S

∑
r∈R

6∑
i=1

ˆ T

0

(wsi − d
i,s
obs)(xr, t)

∂wsi
∂m

(xr, t)dt

Rewrite this in a form with PR in (16). We therefore obtain

δE

δm
=
∂E
∂m

=
∑
s∈S

〈P ∗R(PRw
s − dsobs),

∂ws

∂m
〉τ

=
∑
s∈S

〈L∗vs, ∂L
−1qs
∂m

〉τ

given the inner product

〈r1, r2〉τ =
∑
i

ˆ T

0

ri1r
i
2dt (30)

for r1, r2 ∈ U . Consider the operator property

L−1L = I
∂

∂m
L−1L = 0

L−1 ∂L
∂m

+ L∂L
−1

∂m
= 0

∂L−1

∂m
= −L−1 ∂L

∂m
L−1

For every s, which yields

〈L∗vs, ∂L
−1qs

∂m
〉τ = 〈L∗vs,−L−1 ∂L

∂m
L−1qs〉τ

= −〈vs, ∂L
∂m

ws〉τ

Sum up the above for all source terms to obtain the gradient formulation

δE

δm
= −

∑
s∈S

〈vs, ∂L
∂m

ws〉τ (31)

This derivation broadly follows the outline provided in R. Plessix [55]; However,
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the difference is that in that paper, Plessix uses a second-order time-domain

acoustic equation as example; In our case, we apply the general technique to our

tailor made model which uses a first-order symmetric hyperbolic system form.

In particular, for the elastic wave equation, we need to calculate the partial

derivative with respect to model parameters m = (λ, µ, ρ); the gradient δE
δm

can

then be written as δE
δm

= ( δE
δλ
, δE
δµ
, δE
δρ

). Therefore we have the following derivation

from (31) for the chosen model parameters:

δE

δλ
= −

∑
s∈S

〈vs, ∂L
∂λ
ws〉τ

δE

δµ
= −

∑
s∈S

〈vs, ∂L
∂µ
ws〉τ

δE

δρ
= −

∑
s∈S

〈vs, ∂L
∂ρ
ws〉τ

(32)

Recall now the symmetric hyperbolic elastic scheme (11). We deduce that

L(m) = Γ(m)∂t +Dx∂x +Dy∂y; the above yields

∂L
∂m

=
∂Γ

∂m
∂t

We obtain the partial derivative for each parameter of m where m = (λ, µ, ρ):

∂Γ

∂λ
=



0

0

0

0

0

−1/λ2



∂Γ

∂µ
=



0

0

−1/2µ2

−1/2µ2

−1/µ2

0
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∂Γ

∂ρ
=



1

1

0

0

0

0


Recall the definition of the state variable w = (vx, vy, ηxx, ηyy, ηxy, p); now define

the adjoint-variable v = (v∗x, v
∗
y, η
∗
xx, η

∗
yy, η

∗
xy, p

∗). With this notation we obtain

the gradient from (32) in the form

δE

δλ
=
∑
s∈S

〈vs, ∂L
∂λ
ws〉τ =

∑
s∈S

ˆ T

0

(vs)T
∂L
∂λ
wsdxdt

= − 1

λ2

∑
s∈S

ˆ T

0

(ps)∗
∂ps

∂t
dxdt

δE

δµ
=
∑
s∈S

〈vs, ∂L
∂µ
ws〉τ =

∑
s∈S

ˆ T

0

(vs)T
∂L
∂µ
wsdxdt

= − 1

2µ2

∑
s∈S

ˆ T

0

((ηsxx)
∗∂η

s
xx

∂t
+ (ηsyy)

∗∂η
s
xx

∂t
+ 2(ηsxy)

∗∂η
s
xy

∂t
)dxdt

δE

δρ
=
∑
s∈S

〈vs, ∂L
∂ρ
ws〉τ =

∑
s∈S

ˆ T

0

(vs)T
∂L
∂ρ
wsdxdt

=
∑
s∈S

ˆ T

0

((vsx)
∗∂v

s
x

∂t
+ (vsy)

∗∂v
s
y

∂t
)dxdt

(33)

We define now gm = ( δE
δλ
, δE
δµ
, δE
δρ

) to represent the gradient, which will be applied

in the following chapters.

2.6.3 A wave velocity gradient parameterization

The elastic wave has two main parts: the compressional wave , or P-wave, with

wave displacements in the same direction as the wave propagates. This part is

broadly related to pressure. The P-wave velocity is denoted as Vp. The other

type of wave at the shear waves, or S-waves, with displacements perpendicular

to the wave direction; this wave force comes from the shear strength of elastic

medium. The S-wave velocity is denoted as Vs.

In Appendix 1 (9.1) we show that Vp and Vs can be derived from lamé pa-
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rameters:

Vp =

√
λ+ 2µ

ρ

Vs =

√
µ

ρ

(34)

This derivation is crucial in numerical modelling. In numerical simulation, the

Lamé parameters λ and µ do not have a direct physical interpretation. Therefore,

to monitor the medium properties most of tests choose to use wave velocity

Vp, Vs instead of the Lamé parameters as measurements; therefore, a relationship

between those quantities would be very convenient for geophysicists to estimate

the composition from approximated seismic images.

We consider therefore now an alternative parameter set (Vp, Vs, ρ
′). The pa-

rameter transformation (34) provides

λ = ρ(V 2
p − 2V 2

s )

µ = ρV 2
s

ρ = ρ′

We apply a chain-rule to obtain the corresponding gradient for (Vp, Vs, ρ
′) as

δE

δVp
= 2Vpρ

δE

δλ

δE

δVs
= −4Vsρ

δE

δλ
+ 2Vsρ

δE

δµ
δE

δρ′
= (V 2

p − 2V 2
s )
δE

δλ
+ V 2

s

δE

δµ
+
δE

δρ

(35)

In our model update, we apply (33) as the gradient to compute λ, µ, ρ, then com-

pute and demonstrate Vp, Vs, ρ
′ correspondingly. Numerical comparison of such

different model parametrizations are for example provided in [37]; although D.

Köhn’s numerical example claims that the model set with wave velocity looks

better than with Lamé parameters, the approximation is still far away from the

true model; moreover, the data misfit does not show a very satisfactory conver-

gence. Due to time limitations, in our model we only consider the model set with

Lamé parameters, and apply Vp and Vs as parameter measurements, as to better
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simulate practical seismic surveys. We will leave the application with (35) as a

possibility for future work.

2.7 Regularization with Sobolev gradient

In full waveform inversion, the use of standard gradients for the calculation

of descent directions (neglecting any artificial regularization terms) often gives

rise to very rough updates. In shape based models, this corresponds to rough

boundaries, especially in high-contrast models; Therefore, we should consider

applying regularization methods to refine our numerical computation. Different

regularization methods have been applied in several other areas of research. In

our thesis, we consider the idea of Sobolev gradient [49] that is used for calculat-

ing smoothed versions of gradients based on function space projections. Those

gradients are also often called Sobolev gradients. Such techniques have been ap-

plied elsewhere in the literature with good success, see for example a level set

approach to electromagnetic tomography in [20].

2.7.1 Sobolev gradient

The definition of Sobolev gradient uses the concepts of a Sobolev space con-

taining functions satisfying a Sobolev norm condition [2]; in our application, its

primary use is to apply a least-squares functional as a solution to a nonlinear

differential equation, but define the norm to be a Sobolev norm instead of an

L2 norm (18). The corresponding gradient based on such a variational form is

called Sobolev gradient [49]. The Sobolev gradient has been used historically a

lot in the numerical solution for partial differential equations. However, it has

been widely applied also for the solution of inverse problems in various fields, like

optical tomography [53], history matching [58], magnetic induction tomography

[20], image processing [60], e.t.c.

In the following we briefly outline the use of the Sobolev gradient in our

application.

We recall the Sobolev space H1(Ω) := {m ∈ Ω, ∂m ∈ Ω} (notice that here, m

is defined differently from previous sections without risk of confusion); then the

Sobolev norm is provided that

‖m‖H1 = (‖m‖2
Ω + ‖∇m‖2

Ω)1/2 (36)
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and the inner product

〈m1,m2〉H1 = 〈m1,m2〉Ω + 〈∇m1,∇m2〉Ω

In particular, we can introduce a weight parameter γ > 0 for obtaining a moder-

ated Sobolev-norm

‖m‖H1,γ = (‖m‖2
Ω + γ‖∇m‖2

Ω)1/2 (37)

and the associated inner product

〈m1,m2〉H1,γ = 〈m1,m2〉Ω + γ〈∇m1,∇m2〉Ω

We apply the above variational form in (18), (64) and compute the Sobolev

gradient from the well-understood L2 gradient. We apply the Sobolev norm

condition for the state variable w and adjoint-state variable v, such that

‖w‖H1(U),γ = (‖w‖2
U + γ‖∇w‖2

U )1/2 (38)

and the corresponding inner product

〈w1,w2〉H1(U),γ = 〈w1,w2〉U + γ〈∇w1,∇w2〉U

Firstly, we compute the corresponding adjoint operator L∗H1,γ
. Recall (18);

this time, we define the Lagrangian form corresponding to Sobolev norm as

L(w,v)H1(U),γ = E(w)−
∑
s∈S

〈vs,L(m)ws − qs〉H1(U),γ (39)

Define rs = L(m)ws − qs, with the boundary condition rs(∂U) = 0; then the

Sobolev norm satisfies

〈vs, rs〉H1(U),γ = 〈vs, rs〉U + γ〈∇vs,∇rs〉U

= 〈vs, rs〉U + γ(

ˆ
∂U

∇vs · rs −
ˆ
U

∆vs · rs)

= 〈(I − γ∆)vs, rs〉U

(40)

41



Substitute this into (39); we obtain the Sobolev-based adjoint-state equation that

L∗H1,γ
v = −(I − γ∆)−1P ∗R(P ∗Rw

s − dsobs) (41)

It could also be deduced that L∗H1,γ
= (I − γ∆)−1L∗ = −(I − γ∆)−1L, which

provides a link to the L2 adjoint operator. We apply the same gradient derivation

(31) to the Sobolev gradient, defined as gH1,γ; therefore the Sobolev gradient can

be obtained from the standard gradient by a simple post-processing step [19]:

gH1,γ = (I − γ∆)−1gm (42)

as gm is the calculated gradient provided by (32). Practically, it can be shown that

this postprocessing step can be implemented in form of a modified heat-kernel

solution, which will be outlined in Appendix 2 (9.2). In the following chapter

we will apply both, the Sobolev gradient and the L2 gradient, for a numerical

model update, and compare their numerical results in order to demonstrate the

smoothing affect of the Sobolev gradient.

2.8 Techniques on line search

In optimization approaches for the solution of nonlinear inverse problems, the

next step after gradient computation usually is the design of a line search for

model update, to obtain a good descent direction and step size. For parameter

updates, a line search method can be written in the form [47]:

mn+1 = mn + αnpn

where m is the parameter, n is the iteration step, α is the step length or step

size, and p is the descent direction. The line search method aims to compute the

optimum of αn and pn as to obtain the best reduction in cost for a given search

direction; This procedure is started with an initial guess of parameter m0.

The most widely applied line search methods are based on first-order gradient

schemes such as the steepest descent method, the conjugate gradient method, and

high-order methods such as Newton method and Quasi-Newton method. Next

we will introduce all these methods and analyse their pros and cons as to our

model of elastic wave inversion.
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Even though those techniques are classical and well understood, we will im-

plement some of them here for reference and for verifying whether the above

derived gradient directions actually do perform well in such a classical setup.

This will ensure that they also will work when integrated in our novel level set

based schemes.

2.8.1 Steepest descent methods

The steepest descent method can be derived by considering a perturbation on

the energy functional E(m0 + ∆m). The first order Taylor expansion provides

that

E(m0 + ∆m) = E(m0) +
δE

δm
·∆m+ o(∆m)2 (43)

In FWI, for any iteration n, we consider a line search that mn+1 = mn + αnpn,

and that gn = δE
δm

(mn). Then the model update is given by

E(mn+1) ≈ E(mn) + αnp
T
ngn

where pn is considered to be the normalised descent direction, and α is considered

to be the step length; the descent direction must satisfy the descent property

pTngn < 0.

The most straightforward technique is the steepest descent method with the

descent direction pn = −gn. Here pTngn = −gTngn which guarantees a descent

direction. Combining this with a suitable choice of step sizes provides us with the

steepest descent algorithm. Recall that all the following algorithms for different

line search techniques are applied with the choice of a Sobolev gradient instead
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of the standard gradient.

Algorithm 1: Steepest descent algorithm

Initial m0, g0, α, N ;

for n = 0, 1, 2, ..., N do

Forward propagation;

Adjoint-state backward propagation;

Compute gradient gn;

if Apply Sobolev gradient then

Obtain Sobolev gradient gH1,γ
n ;

Apply that gn = gH1,γ
n ;

end

Define the descent direction pn = −gn;

Compute step length αn;

Update mn = mn−1 + αnpn;

Check the stopping criterion;

end

In this algorithm, we consider the Sobolev gradient as the regularization

method; the same procedure also applies for the following line search techniques.

The line step calculation could be derived from back-tracking scheme with an

Armijo, Wolfe or stong Wolfe condition. For shape based methods, a derivation

for steepest descent method in level set update could be referred to in [19]; we will

apply this derivation in the level set iteration in Chapter 5, but for the moment

concentrate on pixel based schemes.

We mention that single-step Kaczmarz type variants of the gradient method

have been developed as well in the literature using steepest descent directions for

subsets of the full data set as descent directions. This is also closely related to

the co-called Stochastic Gradient Method. Those techniques will be considered

as well in this thesis and will be discussed in more details in later chapters for

shape based inversion problems.

2.8.2 Conjugate gradient methods

The steepest descent method is widely considered the most straightforward

method in line search techniques. However, it also has a major disadvantage:
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the convergence speed is usually relatively low. An alternative for that is the

conjugate gradient method; a conjugate gradient method for linear optimization

reaches exact minimum in a finite number of iterations (neglecting imperfect pre-

cision of operations). This is not the case for nonlinear schemes, and often a

reinitialization is required. However, even in the non-linear case, conjugate gra-

dient methods normally converge much faster than the steepest descent method

(A good example is named by Rosenbrock’s valley).

The conjugate gradient method can be implemented as follows:

Algorithm 2: Conjugate gradient algorithm

Initialise m0, p0 = −g0, α, β, N ;

for n = 0, 1, 2, ..., N do

Forward propagation;

Adjoint-state backward propagation;

Compute gradient gn;

if Apply Sobolev gradient then

Obtain Sobolev gradient gH1,γ
n ;

Apply that gn = gH1,γ
n ;

end

Compute descent pn = −gn + βnpn−1;

Compute step length αn;

Update mn = mn−1 + αnpn;

Check the stopping criterion;

end

where βn is a scalar guarantees that pn are approximately conjugate to each

other. In practical applications, different formulas for β can be applied:

βFRn =
∆mT

n∆mn

∆mT
n−1∆mn−1

(Fletcher-Reeves);

βPLn =
∆mT

n (∆mn −∆mn−1)

∆mT
n−1∆mn−1

(Polak-Ribière);

βHSn = −∆mT
n (∆mn −∆mn−1)

pTn−1(∆mn −∆mn−1)
(Hestenes-Stiefel);

βDLn = − ∆mT
n∆mn

pTn−1(∆mn −∆mn−1)
(Dai-Yuan)
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However, despite the increased efficiency, conjugate gradient methods also have

some of the same weaknesses as other gradient based schemes; the descent direc-

tions show high sensitivity to the initial condition and the iterations can easily

fall into a local minimum. In full waveform inversion, such result is not sufficient.

Also, in non-linear inverse problem, when reaching a certain step of iteration, the

conjugate gradient will reach a point where it loses conjugacy.

Therefore, recent research on the line search technique improvement has been

divided into two research fields; one method is by setting up a preconditioning

matrix to each descent direction to accelerate the convergence speed, known

as preconditioned conjugate gradient method, or PCG; another research field

concentrates on the second order convergence based Newton method.

We will apply conjugate a gradient method in Chapter 4, as a comparison to

steepest descent method in pixel-based full waveform inversion; but in level set

evolution, a conjugate gradient scheme would require more sophisticated consid-

erations (with uncertain gains in efficiency) due to its shape-based nature such

that we will not apply a conjugate gradient scheme there. More details are pro-

vided in Chapter 5.

2.8.3 Newton-type and Quasi-Newton methods

The first order line search technique is insufficient in many cases of numeri-

cal implementation; so some research considers the application of higher-order

methods for line search techniques, such as the Newton method, which is briefly

outlined here for completeness.

Consider the nonlinear optimization equation E(m). A second order Taylor

expansion is considered

E(m+ ∆m) ≈ E(m) +∇E(m)∆m+ ∆mTH∆m

where ∇E(m) is the gradient functional, and H is considered to be the Hessian

matrix. Minimising E(m+ ∆m)− E(m), we obtain the relation that

∆m ≈ −H−1∇E(m)

where H is a symmetric matrix. Specifically, the case where H equal to identity

implies a steepest descent line search.
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The direct calculation for Hessian matrix is extremely difficult, especially for

nonlinear large scale optimization problems, where computation of second-order

derivative is difficult and extremely time-consuming; Newton based algorithms

therefore concentrate on the approximation of the Hessian matrix. We define

that B is the approximation of the Hessian matrix, where it updates for every

iteration. Therefore the algorithm is constructed as follows:

Algorithm 3: Newton method algorithm

Initialise m0, g0, B0, α, N ;

for n = 0, 1, ..., N do

Forward propagation;

Adjoint-state backward propagation;

Compute gradient gn;

if Apply Sobolev gradient then

Obtain Sobolev gradient gH1,γ
n ;

Apply that gn = gH1,γ
n ;

end

Update Bn (or B−1
n );

Compute descent direction pn = −B−1
n gn;

Compute αn;

Update parameter mn+1 = mn + αnpn;

Check the stopping criterion;

end

The Newton method is mostly avoided in practical large-scale inverse prob-

lems, due to the cost of repeated calculation of the inverse of the Hessian matrix.

An alternative method is known as Gauss-Newton algorithm; however, for non-

linear systems, the calculation of Gauss-Newton steps still involves the computa-

tion of large scale matrices, often involving adjoint techniques; for large scale full

waveform inversion, the computational cost is still considerable but it has been

applied in the literature for pixel or voxel based FWI.

One popular alternative method is known as a Quasi-Newton method, aiming

to approximate the Hessian matrix and updating this approximation in each

iteration based on first order derivatives only. For Quasi-Newton methods, we

define a gradient difference yk = gk+1 − gk, and ∆mk = mk+1 − mk. Also,
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it requires an initial set up for B0 symmetric, and positive definite; normally,

choosing B0 as identity matrix would be adequately sufficient. The most popular

iteration formula for the inverse of Bk are as follows:

B−1
k+1 = B−1

k +
∆mk∆m

T
k

∆mT
k yk

− B−1
k yky

T
kB
−1
k

yTkB
−1
k yk

(Davidon - Fletcher - Powell)

B−1
k+1 = (I − ∆mky

T
k

yTk ∆mk

B−1
k (I − yk∆m

T
k

yTk ∆mk

) +
∆mk∆m

T
k

yTk ∆mk

(BFGS)

B−1
k+1 = B−1

k +
(∆mk −B−1

k yk)∆mkB
−1
k

∆mkB
−1
k yk

(Broyden)

B−1
k+1 = B−1

k +
(∆mk −B−1

k yk)(∆mk −B−1
k yk)

T

(∆xk −B−1
k yk)TB

−1
k

(SR1)

(44)

Substituting this into Algorithm 3 we obtain the different forms of a Quasi-

Newton algorithm. The advantage of the Quasi-Newton method is that the com-

putation of Bk avoids extra computation of a second order Hessian matrix in

wave propagation. It only requires gradient and function evaluations in succes-

sive steps. Therefore it could prove to be an efficient method for FWI. Recent

research compares a limited memore form of the quasi Newton method, L-BFGS,

to other methods [44] in FWI; [54] applies a Gauss-Newton type method into

frequency based FWI, but only consider small-scale examples for the numerical

analysis. Since our focus is on shape based methods, where such Quasi-Newton

approaches are not yet well-understood, we will not consider the corresponding

Quasi-Newton scheme in this thesis.
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3 Numerical implementation on forward mod-

elling

3.1 Brief introduction

In the previous chapter, we constructed a symmetric hyperbolic system based

elastic waveform inversion model in a 2D setup. Iterative inversion methods re-

quire the repeated solution of forward problems which are numerical realizations

of the underlying PDEs. The implementation for such a symmetric hyperbolic

system on a computer is another challenge. Due to the complexity and com-

putational cost of an elastic wave model, only few wave modelling open source

codes could be found at the moment of writing this thesis. None of them exactly

matched the setup which we planned to follow here. However, some were close

and served as a basis for what we will explain in the following.

There exists a variety of traditional numerical schemes for wave equations,

amongst them finite difference methods, finite element methods, or spectral meth-

ods. Of the above, finite difference methods are the most straightforward tech-

niques; first order and higher order finite difference schemes have been widely

applied to all types of PDE simulations. They result in fast codes in either time-

domain or frequency-domain FWI. However, finite difference methods are not

considered the most accurate numerical schemes. Some other research applies

high-order finite difference methods instead [37]; this formulation increases the

accuracy of computation, but might also cause significant error in discontinuous

regions.

Finite element methods, on the other hand, are formulated for solving a weak

solution for partial differential equations by constructing finite element functions

and solving a linear system for computing all coefficients of those elements to

representing the solution. This is a popular numerical technique able to adjust

easily to complicated geometries, but its advantage is that for large scale problems

the calculations are relatively complex and slow.

An alternative to the above two methods are pseudo-spectral methods [26]; A

pseudo-spectral method is a Fourier based numerical technique; it shows higher

efficiency and accuracy in wave simulation [40], [27], [25]. However, Its main dis-

advantage is that it doesn’t do well with the boundary value problem in irregular
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domains; in that case, the grid refinement seems to be difficult. However, in our

model of geophysical free-surface domains, the problem of boundary conditions

and irregularity of the domain can be considered of minor importance.

Therefore, our numerical implementation will be based on a forward elastic

wave propagation module of the k-wave toolbox [71], [11], which is available as

an open source code; as already menioned, we will not be able to directly use

that code due to the differences of the underlying hyperbolic PDEs. Instead, we

will modify this tool-box module so that it is suited for our symmetric hyperbolic

scheme for both forward and backward propagation. We will test this MATLAB

based program on some example problems to analyse the results, and then com-

pare our results to other research [25] to see if the forward propagation should

be satisfactory for modelling elastic wave simulation.

3.2 Discretization of the wave equation

3.2.1 Numerical scheme

We need to discretize our forward model (11) for the numerical implementation

of our first-order symmetric hyperbolic scheme. We assume that the spatial grid

for Ω has Nx × Ny grid points, and that each grid has a size of ∆x ×∆y along

the x and y axes; for time domain [0, T ], we provide a time difference ∆t and the

corresponding time grid point Nt such that T = ∆t(Nt − 1).

3.2.2 Staggered grid

In elastic wave modeling, one of the biggest challenges is to accurately denote

and keep track of all the variables and parameters of the accurate displacements

in a grid setting. In order to improve the accuracy of the forward modelling,

J. Virieux introduced a staggered grid approach [33] for the discretization, rem-

iniscent to similar codes in electromagnetics, such that the implementation is

point-wise accurate; B. Cox et al [11] modified that so that it satisfies a first-

order elastic wave equation scheme. We apply the staggered grid formulation

from [11], and modify it so that it is suitable for the discretization of our sym-

metric hyperbolic system (11).

Recall the formulation (11); firstly, we obtain the staggered grid for the time
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derivative. It deduces the following numerical scheme:

v
t+∆t/2
x − vt−∆t/2

x

∆t
=

1

ρt
(
∂ηtxx
∂x

+
∂pt

∂x
+
∂ηtxy
∂y

+ F t
x)

v
t+∆t/2
y − vt−∆t/2

y

∆t
=

1

ρt
(
∂ηtyy
∂y

+
∂pt

∂y
+
∂ηtxy
∂x

+ F t
y)

ηt+∆t
xx − ηtxx

∆t
= 2µt+∆t/2∂v

t+∆t/2
x

∂x

ηt+∆t
yy − ηtyy

∆t
= 2µt+∆t/2∂v

t+∆t/2
y

∂y

ηt+∆t
xy − ηtxy

∆t
= µt+∆t/2(

∂v
t+∆t/2
x

∂y
+
∂v

t+∆t/2
y

∂x
)

pt+∆t − pt

∆t
= λt+∆t/2(

∂v
t+∆t/2
x

∂x
+
∂v

t+∆t/2
y

∂y
)

(45)

such that for all parameters, the updated variables lie at the correct location. A

clear view of the grid geometry for the corresponding parameters and variables

on the spatial domain is displayed in the following graphic.
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x

y
(i,j) (i+1,j)

(i,j+1) (i+1,j+1)

vx, ρ ηxx, ηyy, p, λ, µ

ηxy, µ
′

vy, ρ
′

Figure 1: Grid geometry for a staggered grid in 2D Cartesian coordinates suited
for implementing the discretized symmetric hyperbolic system

provided with the notation

vx = vi,jx

vy = vi+1/2,j+1/2
y

ηxx = ηi+1/2,j
xx

ηyy = ηi+1/2,j
yy

ηxy = ηi,j+1/2
xy

p = pi+1/2,j

λ = λi+1/2,j

µ = µi+1/2,j

µ′ = µi,j+1/2

ρ = ρi,j

ρ′ = ρi+1/2,j+1/2

(46)
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Define i = 1, 2, ..., Nx on the x-axis, and j = 1, 2, ..., Ny on the y-axis. We

also denote ξ
t+∆t/2
1 = ξ+, ξ

t−∆t/2
1 = ξ− for ξ1 ∈ (vx, vy), and ξt+∆t

2 = ξ+
2 , ξ

t
2 = ξ−2

for ξ2 ∈ (ηxx, ηyy, ηxy, p); combining the above, we obtain the final staggered grid

formulation in the full domain:

v+,i,j
x − v−,i,jx

∆t
=

1

ρi,j
(f−,i,jx +

p−,i+1/2,j − p−,i−1/2,j

∆x

+
η
−,i+1/2,j
xx − η−,i−1/2,j

xx

∆x
+
η
−,i,j+1/2
xy − η−,i,j−1/2

xy

∆y
)

v
+,i+1/2,j+1/2
y − v−,i+1/2,j+1/2

y

∆t
=

1

ρi+1/2,j+1/2
(f−,i+1/2,j+1/2
y +

p−,i+1/2,j+1 − p−,i+1/2,j

∆y

+
η
−,i+1,j+1/2
xy − η−,i,j+1/2

xy

∆x
+
η
−,i+1/2,j+1
yy − η−,i+1/2,j

yy

∆y
)

η
+,i+1/2,j
xx − η−,i+1/2,j

xx

∆t
= 2µi+1/2,j v

+,i+1,j
x − v+,i,j

x

∆x

η
+,i+1/2,j
yy − η−,i+1/2,j

yy

∆t
= 2µi+1/2,j v

+,i+1/2,j+1/2
y − v+,i+1/2,j−1/2

y

∆y

η
+,i,j+1/2
xy − η−,i,j+1/2

xy

∆t
= µi,j+1/2(

v+,i,j+1
x − v+,i,j

x

∆y
+
v

+,i+1/2,j+1/2
y − v+,i−1/2,j+1/2

y

∆x
)

p+,i+1/2,j − p−,i+1/2,j

∆t
= λi+1/2,j(

v+,i+1,j
x − v+,i,j

x

∆x
+
v

+,i+1/2,j+1/2
y − v+,i+1/2,j−1/2

y

∆y
)

(47)

We consider the forward and backward operator D+ and D−, respectively, on

the spatial domain. For any variable u, these operators are applied to compute

the spatial derivatives:

D+
x ux =

u(x+∆x) − ux
∆x

D−x ux =
ux − u(x−∆x)

∆x

D+
y uy =

u(y+∆y) − uy
∆y

D−y uy =
uy − u(y−∆y)

∆y

We apply this formulation in (47) to obtain a simplified numerical scheme of the
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forward model:

1

∆t
(v+
x − v−x ) =

1

ρ
(f−x +D−x p

− +D−x η
−
xx +D−y η

−
xy)

1

∆t
(v+
y − v−y ) =

1

ρ′
(f−x +D+

y p
− +D+

x η
−
xy +D+

y η
−
yy)

1

∆t
(η+
xx − η−xx) = 2µD+

x v
+
x

1

∆t
(η+
yy − η−yy) = 2µD−y v

+
y

1

∆t
(η+
xy − η−xy) = µ′(D+

y v
+
x +D−x v

+
y )

1

∆t
(p+ − p−) = λ(D+

x v
+
x +D−y v

+
y )

(48)

This derivation gives us a more straight-forward implementation on a staggered

grid based numerical scheme.

3.3 A k-wave modelling applying pseudo-spectral method

As mentioned, we will build our code on an open source forward modelling

code known as k-wave designed by B. Cox, B. Treeby and J. Jaros [71]; This code

has been initially constructed for acoustic modelling in ultrasound propagation

in a biomedical application, aiming at simulating the wave propagation inside

body vessels or tissue. An elastic forward propagation simulation has also been

developed as part of that code in 2015, incorporating an elastic module into the

k-wave toolbox [11].

The k-wave toolbox applies a pseudo-spectral method by using Fourier trans-

forms to calculate the spatial derivatives for the wave variables, and the finite

difference scheme for the time derivative; In this subsection, we will introduce the

pseudo-spectral method for first-order spatial derivatives applied in the k-wave

approach, and apply it in the numerical scheme in (48). We apply the same

pseudo-spectral method algorithm to our own model implementation, and then

alter the program code so that it is suitable for the symmetric hyperbolic form.

We apply the modified code in our forward modelling, extend it to the adjoint or

time-reversed setup, and then use both as part of our FWI gradient calculation.
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3.3.1 A k-wave based spatial derivative

Before getting into technical details of the pseudo-spectral scheme, we must

first understand the basic idea of pseudo-spectral methods. the k-wave toolbox

[71] applies a pseudo-spectral method based on Fourier transformation in a non-

periodic domain. Let us consider a 1D function f(x), such that f : [0, L] → R,

with an expansion

f(x) =
N−1∑
n=0

fnφn(x)

with fn = 〈f, φn〉; here φn is an orthonormal basis. Consider the Fourier basis

functions on [0, L] such that

φn(x) =
1√
L
e−iknx

where kn is considered to be the wave number with k = [k0, k1, ..., kN−1], such

that

k = [−N
2
,−N

2
+ 1, ...,

N

2
− 1]

2π

L
for N even

k = [−N − 1

2
,−N − 1

2
+ 1, ...,

N − 1

2
]
2π

L
for N odd

(49)

Therefore we obtain the Fourier transform in the form

F(k) =
1√
L

ˆ L

0

f(x)e−ikxdx

and

F−1(x) =
1√
L

N−1∑
k=0

F(k)eikx

The above formulation provides a Fourier based representation for first-order

derivatives such that

∂xf = F−1(ikF(k)) (50)

We apply the pseudo-spectral method for first-order spatial differences, as an

alternative to traditional finite difference methods. Notice that this is the same

formulation as applied in k-wave toolbox [71].
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3.3.2 Updated numerical scheme with pseudo-spectral method

Recall the staggered grid numerical scheme (48); consider the pseudo-spectral

first order derivative (52); then we have that F(f(x+ d)) = e−ikdF(f(x)). From

the above formulation, we introduce the pseudo-spectral based operators such

that

DF
x vx = F−1

x {ikxeikx∆x/2Fx{vx}}

DF
x vy = F−1

x {ikxe−ikx∆x/2Fx{vy}}

DF
y vx = F−1

y {ikye+iky∆y/2Fy{vx}}

DF
y vy = F−1

y {ikye−iky∆y/2Fy{vy}}

DF
x ηxx = F−1

x {ikxe+ikx∆x/2Fx{ηxx}}

DF
y ηyy = F−1

y {ikye+iky∆y/2Fy{ηyy}}

DF
y ηxy = F−1

y {ikxe−iky∆y/2Fy{ηxy}}

DF
y ηxy = F−1

y {ikye−iky∆y/2Fy{ηxy}}

DF
x px = F−1

x {ikxe+ikx∆x/2Fx{px}}

DF
y py = F−1

y {ikye+iky∆y/2Fy{py}}

(51)

where kx, ky are defined as the wave numbers computed for Fourier transforms

along the x and y axes, with the corresponding grid numbers Nx, Ny from (49).

The above provides the pseudo-spectral based elastic scheme

v+
x = v−x +

∆t

ρ
(f−x +DF

x p
− +DF

x η
−
xx +DF

y η
−
xy)

v+
y = v−y +

∆t

ρ′
(f−y +DF

y p
− +DF

x η
−
xy +DF

y η
−
yy)

η+
xx = η−xx + 2∆tµDF

x v
+
x

η+
yy = η−yy + 2∆tµDF

y v
+
y

η+
xy = η−xy + ∆tµ′(DF

y v
+
x +DF

x v
+
y )

p+ = p− + ∆tλ(DF
x v

+
x +DF

y v
+
y )

(52)

Therefore we obtain the discretization of the symmetric hyperbolic form using a

pseudo-spectral method.
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3.3.3 Perfectly matched layer

In our wave model, we assume that the elastic wave travels in domain with

a free surface; this implies that there should be no reflection at the boundary

of the domain. In order to simulate this, we will set up a layer such that the

wave attenuates towards zero inside this layer, and the energy disappears at the

boundary, so that there will be no reflected waves at the boundaries, and no wave

energy can enter from the outside of the domain.

This method is known as the perfectly matched layer (PML) technique. Per-

fectly matched layers are defined as thin absorbing boundary layers surrounding

the domain, that give rise to anisotropic absorption inside these layers. The

construction of PML is designed to satisfy the following conditions

• The PML must provide sufficient absorption such that wave propagating

toward its outer boundary contains almost no energy.

• The layer itself should not cause any wave reflection.

The setting of PML’s requires two parameters: the layer width and the ab-

sorption coefficient. We define α to be the anisotropic absorption coefficient of

the PML. In the k-wave toolbox [71], the setting of PML applies the split-field

formulation by J. Berenger [6]; we apply the same approach in our model.

We assume that α is independent of the wave variable; the definition of the

PML suggests that α is an attenuation coefficient inside PML, and zero else-

where. Consider a generalised first-order partial differential equation with α as

attenuation

Vt = M − αV (53)

where V , M are arbitrary real function. We recall the relation that

(∂t + α)V = e−αt∂t(e
αtV )

Consider the staggered grid finite difference scheme in time domain; we obtain

that

eα(t+∆t/2)V t+∆t/2 = eα(t−∆t/2)V t−∆t/2 + eαt∆tM t

V t+∆t/2 = e−α∆t/2(e−α∆t/2V t−∆t/2 + ∆tM t)
(54)
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We should apply the same attenuation in the numerical scheme of (52). Substi-

tuting (54), we obtain the refined numerical scheme with PML setting as

v+
x = e−α∆t/2(e−α∆t/2v−x +

∆t

ρ
(f−x +DF

x p
− +DF

x η
−
xx +DF

y η
−
xy))

v+
y = e−α∆t/2(e−α∆t/2v−y +

∆t

ρ′
(f−y +DF

y p
− +DF

x η
−
xy +DF

y η
−
yy))

η+
xx = e−α∆t/2(e−α∆t/2η−xx + 2∆tµDF

x v
+
x )

η+
yy = e−α∆t/2(e−α∆t/2η−yy + 2∆tµDF

y v
+
y )

η+
xy = e−α∆t/2(e−α∆t/2η−xy + ∆tµ′(DF

y v
+
x +DF

x v
+
y ))

p+ = e−α∆t/2(e−α∆t/2p− + ∆tλ(DF
x v

+
x +DF

y v
+
y ))

(55)

Notice that the parameter α should be chosen properly for the wave propagation.

For very small α, the thickness of the PML layer might not be sufficient in order

to attenuate the wave enough; on the other hand, a large value of α results in a

large gradient between the PML boundary and the adjacent grid point inside the

domain next to the PML boundary, which will cause a reflection of the incoming

wave. One way to address this tradeoff is to set α as a function of position within

the PML, where αξ = αξ(ξ), where ξ is defined to be the coordinate inside the

PML perpendicular to the PML-domain interface. The detailed choice of this

functional relationship is a matter of ongoing research. One option of this PML

definition by [72] has been applied in the k-wave toolbox [71]; we apply the same

PML function in our model:

αξ = αmax(
ξ − ξ0

ξmax − ξ0

)4 (56)

where ξ0 is the coordinate at the internal boundary of the PML, and ξmax is the

coordinate at the external boundary; αmax is the maximum of the wave absorption

parameter. For convenience, we set αmax = 2 in our simulations.

3.4 Stability analysis

In order to complete the wave propagation model, we need to consider also

the stability of the numerical scheme. Two of the main conditions to be satisfied

in FWI are the Courant instability and the numerical dispersion [26]. We will

briefly discuss these two conditions in the following.
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3.4.1 Courant instability

Our wave propagation should satisfy the condition of numerical convergence

during the simulations; a necessary condition is called the Courant-Freidrichs-

Lewy (CFL) condition. This condition states that for first-order schemes in two

dimensions, the grid setting should satisfy

√
2|Vmax

∆t

∆x
| < 1

We define the Courant number

CFL = Vmax
∆t

∆x

where Vmax is taken as the maximum value of compressional wave speed Vp.

Theoretically, a good choice of ∆x and ∆t should satisfy CFL ≤ 1, to guarantee

the convergence of simulation; but practically, that is not sufficient. Numerical

tests suggest that an upper bound for the CFL condition for convergence should

be that CFL ≈ 0.45.

3.4.2 Numerical dispersion

In addition to the Courant instability, numerical dispersion is also an important

factor that may serious affect the accuracy of the elastic wave propagation [26].

In signal processing with discretized time steps and spatial grids, sometimes the

signal may not be able to record all the information of the full waveform. The

Nyquist-Shannon sampling theorem provides a criterion for a good choice for

the grid length. It is ∆x = λ/2, here λ is the wave length provided by λ =

V/f . However, in most cases this condition is still insufficient for a good wave

simulation. We choose a simple example to demonstrate the inaccuracy caused

by numerical dispersion. Consider the wave displacement for the example ux =

sin(2πx/λ); At x = 0, the analytical calculation for ∂ux/∂x is

∂ux
∂x
|x=0 =

2π

λ
cos(2πx/λ)|x=0 = 2π/λ
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The staggered grid numerical scheme requires

∂ux
∂x
|x=0 =

sin(2π(∆x/2)/λ)− sin(2π(−∆x/2)/λ)

∆x

The grid setting with ∆x = λ/2 acquires the result that ∂ux
∂x
|x=0 = 4

λ
, which

is incorrect compared to the analytical result of 2π
λ

. However, if we set that

n = λ∆x larger, the computational accuracy would be improved. For example,

if we set ∆x = λ/16, for λ = 1, the numerical result will be ∂ux/∂x ≈ 6.2429,

which amounts to a much higher accuracy.

In elastic wave simulation, We define the dispersion number n = λ
∆x

= Vmin

f∆x
,

as n = 2 satisfies the Nyquist criterion; in elastic wave propagation, we consider

that Vmin is the minimum of the shear wave velocity Vs.

3.5 Forward modelling test

3.5.1 A SOFI2D example

We test our model on a homogeneous medium example, borrowed from a test

example in [8], where Vp = 3500(m/s), Vs = 2000(m/s), ρ = 2000(kg/m3); the

grid size is set to be 54× 54(m2), and the grid number is set to be 100× 100. We

consider as wave source a Ricker wavelet of the form

R(τ) = (1− 2τ 2) exp(−τ 2), as

τ = πf(t− td)− kπ
(57)

We select the fixed parameter td = 0, and the central frequency f alters with the

grid dispersion number for cases that n = 2, n = 4, and n = 8; the corresponding

central wave frequencies (Hz) are calculated as f2 = 18.5185, f4 = 9.2593, f8 =

4.6296. k is defined according to f such that the starting time of the Ricker wave

is approximately the same while f changes.

The time step is automatically set to fit the CFL number such that CFL =

0.3, below the numerical upper bound for numerical convergence that CFL =

0.45; the computation finally obtains that ∆t = 0.0046. The time length is set

to be 472, so that it guarantees the maximum time that elastic wave travels

throughout the domain for any initial conditions. The parameter setting follows

the formulation provided by (56).
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In the following figures, we demonstrate the results of the simulations con-

centrating on wave pressure p as part of the numerical implementation of (11).

In the following figures we display the wave-fronts at different time steps, with

different wavelet set-ups corresponding to different grid dispersion numbers.
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Figure 2: Wave propagation at t=100, n=2
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Pressure term (p) at t=180
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Figure 3: Wave propagation at t=180, n=2

Pressure term (p) at t=260
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Figure 4: Wave propagation at t=260, n=2
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Pressure term (p) at t=100
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Figure 5: Wave propagation at t=100, n=4
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Figure 6: Wave propagation at t=180, n=4
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Pressure term (p) at t=260
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Figure 7: Wave propagation at t=260, n=4
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Figure 8: Wave propagation at t=100, n=8
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Pressure term (p) at t=180
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Figure 9: Wave propagation at t=180, n=8
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Figure 10: Wave propagation at t=260, n=8

We can see clearly that in our numerical experiments, when n = 2 the affect

of numerical dispersion is relatively strong around the wave-front; while with
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n = 4 and n = 8, the wavefront seems sufficiently sharp, and the affect of disper-

sion diminishes; this indicates that the wave propagation information has been

relatively well recorded. This wave-front character shows good similarity to the

wave-front simulation demonstrated in SOFI2D [8] with the same test example,

demonstrating that the wave simulation accuracy increases when the dispersion

number n increases. Even though this is not a strict proof of equivalence with the

SOFI2D results, this test however tends to confirm the accuracy of our modified

forward model.

3.5.2 PML test

In order to demonstrate the functioning of our PML approach, we will now

compare the numerical results of the wave propagation with and without PML;

our setting of PML is [10,10] in x and y axis.
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Figure 11: Wave propagation at t = 100, no PML
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Pressure term (p) at t=180
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Figure 12: Wave propagation at t = 180, no PML

Pressure term (p) at t=260
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Figure 13: Wave propagation at t = 180, no PML
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Pressure term (p) at t=100
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Figure 14: Wave propagation at t=100, PML = [10,10]
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Figure 15: Wave propagation at t=180, PML = [10,10]
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Pressure term (p) at t=260
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Figure 16: Wave propagation at t=260, PML = [10,10]

We compare the wave propagation with and without PML; in figures 11, 12

and 13, we present a simulation without a PML at the boundary of the domain; it

can be observed that a reflective wave exists close to the boundary of the domain.

In figures 14, 15 and 16, we introduce a PML with parameters [10, 10] in the x-

axis and y-axis. The results clearly demonstrate that reflections are suppressed

at the boundary, which indicates the importance of using such a PML; the wave

energy close to the boundary has been well absorbed, and therefore it produces no

reflection wave back into the domain, so that it guarantees a good ‘free-surface’

simulation for the wave propagation.

3.5.3 Tests on numerical dispersion

Previous tests show that numerical dispersion can significantly affect the sim-

ulation for wave propagation in elastics wave modeling. We would like to be

able to avoid any sort of artificial oscillations which would affect the accuracy of

wavelet simulation; but the choice of the grid numbers should both consider com-

putational cost and accuracy. Generally speaking, smaller dispersion numbers n

indicate more grid and higher accuracy, but the closer n is to Nyquist number 2,

the wavelet is more likely to be affected by dispersion. Faccioli [24] states that
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a good choice of numerical dispersion should be that n ≥ 4, so that less number

is required to avoid grid dispersion. Therefore, our goal would be to determine a

numerical condition as to avoid such grid dispersion.

E. Faccolini [24] presents a similar numerical test on elastic wave propaga-

tion using pseudo-spectral methods, also applying a Ricker wavelet as the source

form; we should expect that our numerical test would obtain a similar result.

Considering the survey being homogeneous, we should expect the wavelet form

similar to that in [24].

Based on the previous tests, we alter the Ricker wavelet so that its central

frequency satisfies the grid number n = 2, 2.5, 3, 4, 8. We then record the seismo-

gram for all 6 wave variables from 11 at [60, 60]; with PML set up to be [10,10],

this sensor is located close to the boundary region, and therefore the wave-front

would not be affected. We demonstrate the following results:
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Figure 17: Seismogram of wave variables: from up to bottom are p, vx, vy, ηxx,
ηyy, ηxy, with n = 2
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ηyy, ηxy, with n = 2.5
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ηyy, ηxy, with n = 3
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Figure 21: Seismogram of wave variables: from up to bottom are p, vx, vy, ηxx,
ηyy, ηxy, with n = 8

For result of n = 2, 2.5, the seismogram shows clear wave oscillation, which

would seriously affect the accuracy of our numerical result; with n = 3 the

wavelet is relatively stable. As n increases, this phenomenon seems to be weaker.

Therefore we could reach a conclusion that n = 3 is considered the lower boundary

of good dispersion number. In FWI, however, we should consider the case where

the good wave condition changes with the wave model updates; therefore to

ensure avoiding wave dispersion, we would choose to set the central frequency

so that n ≥ 4, as to avoid the possible instability during the model update as

numerical dispersion number n changes.

3.6 Conclusion

This section shows a numerical implementation for the elastic wave propaga-

tion using a modified version of a module available in the k-wave toolbox [71],

[11]; we introduce the pseudo-spectral method in spatial derivatives, a staggered
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grid, a perfectly matched layer (PML), the selection of the source wavelet, CFL

and grid dispersion that might affect the accuracy of numerical implementation.

Finally, we simulate some test cases using some examples from [8], and obtain

similar results as presented there; we then compare our seismogram to other

wave propagation tests [24], where we also obtain similar results. This indicates

that our modification of the k-wave toolbox for our elastic wave forward model

is successful.

In the next chapter, we will be concentrating on the numerical implementation

of inverse problem based on the above forward model; we will introduce different

groups of numerical tests on the simulation of seismic imaging that detect various

objects inside the seismic background (salt domes), and compare different line

search techniques and Sobolev gradients on a pixel based setup.
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4 Inverse implementation for a pixel based case

4.1 Overview

In FWI, the inversion theory with respect to elastic wave equations has been de-

veloped in the 1980s [75]; however, due to the computational limitations and the

complexity of elastic modelling, the development of elastic FWI codes has been

slow. Even nowadays, most advanced research in inverse problems is still concen-

trating on simpler models such as the acoustic wave equation or the Helmholtz

equation; in the previous chapters we have generated an elastic wave propagation

model for the forward problem; now we will develop it further to be used as part

of practical FWI codes.

The general mathematical model for solving the nonlinear FWI problem is

displayed in the following chart:

Algorithm 4: Full waveform algorithm methodology

Model setting;

Initial condition;

for Iteration i do

Forward propagation (Using k-wave);

Adjoint-state Backward propagation (Using k-wave with time-reversal);

Compute gradient;

Apply line search technique;

Update model parameter;

Check stopping criterion;

end

Accept final approximation;

Based on the above workflow, we will implement groups of numerical tests for

pixel based and level set based full waveform inversion for our model.

4.2 Model set

We discretize the 2D domain of interest into a grid of size 30× 120 pixels each

having dimension ∆x×∆y = 100m× 100m. With this the modelled domain has

a length of 12km and depth of 3km, which serves to simulate a simplified seismic

setup.
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In this thesis, we will focus on specific situations where our domain contains

one or several objects with a high contrast of parameter values to the background;

a practical example for such case can be found in salt dome reconstruction. To

simulate a more practical seismic environment, we design the parameters of the

background, Vp, Vs, and ρ, to be increasing linearly with the depth; and for

the embedded objects, such as salt domes, we assume that the parameters are

constant inside. In our test cases, the choice of parameters is defined as follows:

Objective Background at top Bottom

Vp(m/s) 5000 3000 4000

Vs(m/s) 2700 1200 2000

ρ(kg/m3) 3000 2100 2500

(58)

We design two separate test cases containing one or two objects within a given

background; figure 22 shows the two test models.
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Figure 22: Up: Test model with one object. Down: Test model with two
objects. From top to bottom subfigures denote the parameter Vp, Vs and ρ for
both test models.
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Given that ∆x, ∆y are defined as above, we define the time length ∆t as to

satisfy the CFL condition that CFL = 0.3 for the initial model; the time step is

set automatically to satisfy that this condition is met. We set up this number in

an appropriate way to make sure that even after several model updates the wave

propagation still remains stable as the maximum of Vp updates.

4.3 Source and receiver

For testing our algorithms, we define two different sets of sources and receivers.

In seismic imaging, practically source and receiver locations are limited to the

surface positions and are in particular distributed on just one side of the domain.

However, for verifying the general capabilities of a new algorithm, more general

distributions of sources and receivers yield very useful insights as well. Therefore,

we are actually considering two different setups of sources and receivers in this

thesis.

In particular, we consider two groups of sources and receivers: Group 1 defines

both sources and receivers are near the top of our survey (neglecting PML), on

the same side of the object domain; in Group 2 we select the sources at the top,

but the receivers are near the bottom, on the opposite side of the object. This

case is only set to compare the general performance of our algorithms using only

reflected or both, reflected and transmitted, waves.

To start with, we select 81 receivers, which continuously form a line in the

survey near the surface, as to simulate a practical case in seismic imaging.
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Figure 23: Up: Source and receivers both at the top. Down: Source and
receivers separately located at top and bottom. The blue cross denotes the
source location, and the red dot denotes the receiver acquisition.

We apply the Ricker wave formulation in equation (57), and define as central

frequency f = 1.5, and td = 0, k = 2 as displayed in the following graph:
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Figure 24: Corresponding Ricker wave

Notice that this Ricker wave central frequency also satisfies the numerical

dispersion condition number with n = 8.

4.4 Numerical results

We implement the pixel based elastic FWI code following the algorithm in

4.1; for the steepest descent method, we construct the numerical model using

Algorithm 1. We set up the line search step size to be α = 5× 1011, and fix the

maximum iteration to be 100; the stopping criterion is that the relative error is

smaller or equal to 5 × 10−4. We also add in a 5% noise to the data to avoid

the inverse crime. For both cases, we set up the initial model as the correct

background without any object embedded in the domain.
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4.4.1 Test results

We test the above 2 models by using 2 different source and sensor set-ups,

and analyse the final results accordingly; the following experiments apply the

pixel-based steepest descent method for all test cases.
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Figure 26: Data misfit; source and sensors located at the top; reached stopping
criterion at iteration 49
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Figure 28: Data misfit; source located at the top, sensors at the top; reached
stopping criterion at iteration 31

85



T
ru

e
 V

p

2
0

4
0

6
0

8
0

1
0

0
1

2
0

5

1
0

1
5

2
0

2
5

3
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

3
5

0
0

4
0

0
0

4
5

0
0

5
0

0
0

5
5

0
0

In
it
ia

l 
V

p

2
0

4
0

6
0

8
0

1
0

0
1

2
0

5

1
0

1
5

2
0

2
5

3
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

3
5

0
0

4
0

0
0

4
5

0
0

5
0

0
0

5
5

0
0

F
in

a
l 
a
p
p
ro

x
im

a
te

d
 V

p

2
0

4
0

6
0

8
0

1
0

0
1

2
0

5

1
0

1
5

2
0

2
5

3
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

3
5

0
0

4
0

0
0

4
5

0
0

5
0

0
0

5
5

0
0

T
ru

e
 V

s

2
0

4
0

6
0

8
0

1
0

0
1

2
0

5

1
0

1
5

2
0

2
5

3
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

3
5

0
0

4
0

0
0

4
5

0
0

5
0

0
0

5
5

0
0

In
it
ia

l 
V

s

2
0

4
0

6
0

8
0

1
0

0
1

2
0

5

1
0

1
5

2
0

2
5

3
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

3
5

0
0

4
0

0
0

4
5

0
0

5
0

0
0

5
5

0
0

F
in

a
l 
a
p
p
ro

x
im

a
te

d
 V

s

2
0

4
0

6
0

8
0

1
0

0
1

2
0

5

1
0

1
5

2
0

2
5

3
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

3
5

0
0

4
0

0
0

4
5

0
0

5
0

0
0

5
5

0
0

T
ru

e
 

2
0

4
0

6
0

8
0

1
0

0
1

2
0

W
id

th

5

1
0

1
5

2
0

2
5

3
0

Depth

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

3
5

0
0

4
0

0
0

4
5

0
0

5
0

0
0

5
5

0
0

In
it
ia

l 

2
0

4
0

6
0

8
0

1
0

0
1

2
0

5

1
0

1
5

2
0

2
5

3
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

3
5

0
0

4
0

0
0

4
5

0
0

5
0

0
0

5
5

0
0

F
in

a
l 
a
p
p
ro

x
im

a
te

d
 

2
0

4
0

6
0

8
0

1
0

0
1

2
0

5

1
0

1
5

2
0

2
5

3
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

3
5

0
0

4
0

0
0

4
5

0
0

5
0

0
0

5
5

0
0

F
ig

u
re

29
:

F
in

al
re

su
lt

fo
r

m
o
d
el

2:
th

e
su

b
fi
gu

re
s

fr
om

le
ft

to
ri

gh
t

sh
ow

th
e

tr
u
e

m
o
d
el

,
in

it
ia

l
m

o
d
el

an
d

fi
n
al

ap
p
ro

x
im

at
io

n
;

fr
om

to
p

to
b

ot
to

m
th

ey
re

p
re

se
n
t
V
p
,
V
s

an
d
ρ

86



0 10 20 30 40 50 60 70 80 90 100

Iteration

200

300

400

500

600

700

800

900

1000

1100

E
(m

)
Misfit from iter 1 to 100

Figure 30: Data misfit; source and sensors located at the top
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Figure 32: Data misfit; source located at the top, sensors at the bottom

Our numerical results show that the sensor locations do have a great impact

on the numerical reconstructions; for tests in figures 25, 27, the sensor locations

are at the top of the survey; the final results show a good estimation of the near-

surface boundary of the object, but they fail to provide the correct information

in deeper earth regions; it could be deduced that the model has reached a local

minimum. For figures 29, 31, the shapes of the embedded objects seem generally

close to the true model, although there still remains some blurs near the object

boundaries. The final misfit seems to be sufficiently reduced.

However, in geophysical applications it is practically difficult to locate the

sensors in the opposite direction of object domain (salt domes) (ignoring novel

developments of horizontal wells); this means that we could only observe the

seismic waves showing the reflected wave information close to the surface. As

expected, in our test cases this proves to yield inferior reconstructions compared

to those incorporating transmitted wave information. Also, there seems to be

other problems with the final approximation related to the cross-talk of different
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physical parameters; we will discuss that aspect in more details in Section 4.4.4.

4.4.2 Applying Sobolev gradient

Using the Sobolev gradient in the field of partial differential equations is con-

sidered to be a smoothing technique for numerical refinement; we also apply this

technique in our inverse model to see how it affects the final solution, and compare

the results with those obtained by using the normal L2 gradient. For simplicity,

we only compare the results with figures 29, 31.

A challenge when applying the Sobolev gradient is the choice of the weight

parameter γ; a bad choice of this weight, either too small or too large, will either

diminish the smoothing effect, or it overshadows the actual information of the

data in the model updates. In our experiments, we choose two cases where γ = 1

and γ = 10;

0 10 20 30 40 50 60 70 80 90 100

Iteration

200

300

400

500

600

700

800

900

1000

1100

E
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Misfit from iter 1 to 100

Figure 34: Misfit for model 1 test result using Sobolev gradient, with parameter
γ = 1
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Figure 36: Misfit for model 2 test result, using Sobolev gradient, γ = 1
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Figure 38: Misfit for model 1 test result, using Sobolev gradient, γ = 10
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Figure 40: Misfit for model 2 test result, using Sobolev gradient, γ = 10

A deeper comparison of Vp and the misfit is demonstrated for two models,

with Sobolev gradient and L2 gradient:
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Figure 42: Data misfit for model 1 tests with L2 gradient, Sobolev gradient with
γ = 1, Sobolev gradient with γ = 10.
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Figure 44: Data misfit for model 2 tests with L2 gradient, Sobolev gradient with
γ = 1, Sobolev gradient with γ = 10

The numerical results show that in pixel based FWI, the difference between

applying Sobolev gradients and L2 gradients is not very big. The key reason is

that Sobolev gradients are constructed by using a form of Sobolev norm instead

of L2 norm. This tends to smoothen out the individual updates with increasing

weight parameter. however in pixel based inversion, the model update is mostly

sufficiently smooth already, such that the added smoothness of the gradients has

little impact on the result.

4.4.3 A Conjugate gradient method comparison

In addition to the steepest descent method, we will also compare the numer-

ical results on different line search approaches for other gradient based search

directions. Theoretically, the conjugate gradient method is considered a much

faster technique than steepest descent, especially in highly non-linear cases; but

applying conjugate gradients carries also the risk of losing conjugacy at some
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point. Our choice is to apply a reinitialization for conjugate gradients every 5

steps, and then re-initialize this process [47]; Our numerical implementation of

the conjugate gradient line search scheme is based on Algorithm 2; we apply the

Fletcher-Reeves form for scalar β.

In this example, we examine the difference of using the conjugate gradient

and the steepest descent method. Both have been applied traditionally to FWI,

but to our knowledge not in the form of the symmetric hyperbolic system as

used here. We compare the results at different iterations for the same tests as

figures 29, 31, and compare the compressional wave speeds obtained. We set the

maximum iteration to be 100, and as line search step size we use α = 5×1011 for

both cases. In addition, the iteration stops at a relative error bound of 5× 10−4.

In the following test, we demonstrate the numerical results of a conjugate

gradient method, compare Vp for in different line search techniques in different

iteration steps, and compare the data misfit for both cases.
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Figure 46: Numerical results for model 1 with conjugate gradient: Data misfit
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Figure 48: Numerical results for model 2 with conjugate gradient: Data misfit
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Figure 50: The data misfit using different line search techniques
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Figure 52: The data misfit using different line search techniques

Notice that the misfit for conjugate gradients decreases faster than steepest

descent. Nevertheless, we will compare the values after 100 steps of each of the

techniques, when both appear to become stationary. Our comparison demon-

strates that for both test cases, using the conjugate gradient method shows a

faster convergence than steepest descent method, when using the same step length

in each iteration.

4.4.4 Cross-talk

From the previous results, we observed a general difficulty of multi-parameter

reconstructio. When comparing all the numerical tests above in figures 29, 31

using different gradient based line search methods, we observed that the approx-

imated internal values of Vp, Vs insded the detected objects seem close to the

true model, but the value of ρ seems not to provide a reliable approximation for

this value; We believe that this phenomenon is due to the phenomenon called

‘cross-talk’ [50] which tends to guide the multi-parameter reconstruction into lo-
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cal minima where different parameters influence the reconstructions of each other.

We demonstrate this by selecting in the following figures a cross section at depth

y = 20 in the test of figures 29, 31, and monitor the parameter values of the final

approximations.

In our numerical tests, we noticed that this ‘cross-talk’ happens in both test

cases; and in both of our test model, it seems that the value of ρ is in particular

updating in an incorrect way when combined with updates of the other parame-

ters. When only updating ρ with correct and unchanged remaining parameters,

on the other hand, updates for this parameter are far more reliable.

Is this a common phenomenon in all pixel based problems in elastic wave

inversion? If so, then this might be one crucial limitation of pixel based methods

applied in inverse problems using elastic wave equation when recovering all the

parameters simultaneously; moreover, we also need to consider the possibility

that these three parameters may not share the same topology. Some alternative

methods will be introduced in the following chapter, in order to solve the problems

above.

4.5 Conclusion

In this chapter, we introduced a numerical implementation for a traditional

elastic FWI technique; we applied the k-wave method [71], [11] for elastic wave

modelling for the forward and backward propagation, and made some modifica-

tions to the original toolbox module so that it is suited for being applied in the

case of our symmetric hyperbolic scheme for forward and backward propagation.

We designed an algorithm for addressing the pixel-based FWI problem in section

2, and implemented different sets of test cases for different source and sensor pat-

terns and different line search techniques; we discovered some serious drawbacks

when using traditional elastic wave inversion techniques.

Certainly, in practical seismic imaging, the acquisition of air-guns (sources)

and geo-phones (receivers) is usually restricted to the surface of the earth; this

means that the information we obtain comes only from so-called reflected waves,

and the information contained in the large proportion of non-reflected waves has

to be neglected. This results in a biased representation of sub-earth information

in the data, and affects the accuracy of parameter estimation.

In addition, we have to deal with the phenomenon of ‘cross-talk’, where the
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reconstruction of some parameters is highly influenced by updates of the other

parameters which yields artificial local minima. This might or might not affect

the shapes of the reconstructed objects, but it does definitely affect the estimation

of the internal parameter values even in a shape-based inversion approach where

all three parameters are assumed to have highly correlated shapes.

In order to exploit further the advantages of shape-based inversion, the next

chapter will introduce an alternative method applying the so-called level set tech-

nique; we will use this technique to simulate the same seismic reconstruction prob-

lem as addressed so far by using the traditional pixel based FWI reconstruction

schemes.
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5 A level set parameter representation for full

waveform inversion

The level set method is a numerical technique applied to the numerical mod-

eling of the propagation of surfaces and shapes; it has been developed in 1988,

by S. Osher and J. Sethian [52]; initially, this method has been applied mainly

as an alternative for describing topological changes for curves and shapes [51],

[62]; traditional methods for the evolution of shapes and interfaces concentrated

on the parametrization of edges, curves, or domains; however, when topological

changes happen, for example when one object is split into two, those methods

have difficulties modeling such changes. The advantage of using level sets is that

such changes of topolgies can be computed easily. Therefore level set techniques

have been widely used in various fields of interface propagation, as an alternative

to other classical techniques of front propagation [61]. In particular when address-

ing inverse problems where the topology of the unknown objects is unknown a

priori, this is of great advantage.

In particular, in our application of FWI the level set method can be applied

to solve the problem of estimating shapes of high-contrast objects embedded in

more homogeneous backgrounds, such as in salt dome reconstruction [31], [36].

In these cases, pixel based inversion methods have major problems. Firstly, they

do not seem to do well due to the high contrast between the salt domes and

the background environment, which makes it difficult to obtain a clear shape of

the estimated salt dome. This is especially so when the salt domes are scattered

into subbodies of irregular shapes. Secondly, in the elastic wave inversion with

the need to estimate multiple parameters simultaneously, we have to expect a

‘cross-talk’ as outlined in Chapter 4. It means that during the iterations updates

for some variables will influence the updates of the others at the same or nearby

locations. This phenomenon often leads to local minima, due to the complexity

of elastic wave model.

The greatest advantage for level set inversion in such applications can be

drawn from the possibility of incorporating additional geological prior informa-

tion on shape structure in the inversion process. For example, it is reasonable

to assume that the interfaces of different physical parameters due to salt bodies

share a well-defined common boundary towards the background, namely the in-
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terface between salt body and background. Therefore, the complex problem of

parameter reconstruction can be split into one of finding the correct shape of the

salt domes (which applies to all parameters simultaneously), and then of identify-

ing the internal values of the different physical parameters which often even can

be considered being constant. Thereby, the dimensionality of the inverse problem

is considerably reduced.

In this chapter, we will first introduce the basic idea of level set representa-

tions of shapes, the level set evolution and its application in FWI; we develop a

parameter estimation approach for such a level set representation in FWI. Next

we apply some numerical implementations of this method to the test cases already

considered in previous chapters. Special techniques for level set evolution, such

as narrow-band, re-initialization and Sobolev regularization, will be developed as

well, together with efficient line search techniques. We will then present results of

the numerical test cases for level set based FWI with and without incorporating

the Sobolev regularization scheme.

5.1 A level set based full waveform inversion

5.1.1 Introduction to level set

We apply a shape based approach for estimating embedded objects in the

seismic background from FWI data. As a start, we introduce a level set function

for shape representation [52].

Let us consider a given domain D ⊆ Ω, with its boundary Γ = ∂D; then we

define a level set function φ(x), such that

φ(x) > 0 x ∈ D

φ(x) = 0 x ∈ Γ

φ(x) < 0 x ∈ Ω\D

(59)

where φ(x) ≥ 0 describes the interface D.
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Ω

D : φ > 0

φ < 0

Γ : φ = 0

Compared to traditional front propagation techniques for example parameter-

izing the moving front or discretizing the interior [52], [61], the level set technique

is particularly suited for modelling topological changes, but also to accurately

track the interfaces. Therefore it has been widely applied for shape based front

propagation problems, especially for complex interfaces.

5.1.2 A Hamilton-Jacobi form of level set evolution

For interface propagation, we normally consider a level set evolution in the con-

figuration space φ(x, t) with a pseudo-evolution time t ∈ [0, τ ]. By differentiating

φ, we obtain

dφ = ∇φ · dx+
∂φ

∂t
dt

We define a velocity field V (x, t) = dx
dt

. Consider the evolving boundary of an

object where φ(x, t) = 0; then for a small time step, we have that dφ = 0. Then

the above yields that
∂φ

∂t
+ V (x, t) · ∇φ = 0 (60)
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We consider the expression for the outward normal n = ∇φ
|∇φ| ; we apply this to

obtain a Hamilton-Jacobi equation for the level set evolution [19], [61], [51];

∂φ

∂t
+ F (x, t)|∇φ| = 0 (61)

with F = V · n.

The discretization of the Hamilton-Jacobi form of the level set evolution can

be viewed as an iteration scheme for the level set function

φn+1 = φn − αFn|∇φn| (62)

where α is defined as the pseudo-time step (or simply step-size) and that φn =

φ(x, tn), Fn = F (x, tn). We will later calculate a velocity choice of F which

guides the evolution into a descent direction of a properly chosen cost functional

in order to obtain a good level set evolution for our model.

5.1.3 A steepest descent approach by level set

Now we consider our governing model for FWI (18). Moreover, we consider a

situation where the parameter m is comprised by two pieces; the object and the

background, and we denote the domain by D ⊆ Ω. The parameter is therefore

considered of the form

m = mobj(x) x ∈ D

m = mback(x) x ∈ Ω\D

where mobj and mback are defined from the model setup. Consider a characteristic

function χD, such that χD(x) = 1 for x ∈ D, and χD(x) = 0 for x ∈ Ω\D;

Then the model representation can be formulated also as m = mobj(x)χD(x) +

mback(x)(1 − χD(x)). Applying the level set definition in (59), we consider the

one-dimensional Heaviside functional satisfying H(φ(x)) = χD(x). This gives a

level set based representation

m = mobj(x)H(φ) +mback(x)(1−H(φ)) (63)

augmented by the ‘free-surface’ condition.

Now we reconsider the governing form based on a level set representation of
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m. This yields the following form

minφE(m(φ)) =
1

2

∑
s

∑
r

‖PRws(x, t)− dsobs(xr, t)‖2
U (64)

with constraints

L(m(φ))ws = qs

m = mobj(x)H(φ) +mback(x)(1−H(φ))

For the case of a level set representation, we notice that all parameters con-

tained in m = (λ, µ, ρ) can be written using such a level set representations (63).

This indicates that the evolution of φ and the estimation of m can be considered

equivalent.

We need to derive a suitable level set iteration for φ; In [19] a ‘Shape recon-

struction by steepest descent’ method is introduced for level set based inverse

problems; In that work a Maxwell equation is applied to electromagnetic imag-

ing, which has some similarities to our elastic setup; we therefore apply the same

technique for seismic imaging in our model. We recall the pseudo-time t ∈ [0, τ ]

for the level set evolution; applying then the chain rule for the derivative of the

energy functional E with respect to t we obtain

∂E

∂t
=
δE

δm

∂m

∂φ

∂φ

∂t

= ((mobj −mback)gm · δ(φ))
∂φ

∂t

(65)

where gm is the parameter gradient defined in (31), and where δ(φ) = H ′(φ) is a

Dirac delta functional. We assume for simplicity that the level set function φ is

continuously differentiable on D and that |∇φ| 6= 0 on the boundary. Then we

use that

δ(φ) =
δ∂D(x)

|∇φ(x)|
(66)

Now we define the steepest descent direction as

∂φ

∂t
= −gm · |∇φ| (67)

on the boundary Γ. Theoretically, we still need to find a suitable ‘extension

velocity’ [19] so that the evolution of the level set function it is defined on the
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entire domain Ω. We assume a velocity field FSD defined on Ω, such that FSD =

−gm ·(mobj−mback) on Γ, and arbitrary elsewhere; this gives us a Hamilton-Jacobi

equation so that it is identical to steepest descent evolution

∂φ

∂t
+ FSD|∇φ| = 0 (68)

Define gφ = −(mobj−mback)gm·|∇φ|; then we obtain the steepest descent iteration

by

φn+1 = φn − αngφ(φn) (69)

which finally defines our steepest descent shape evolution scheme.

5.1.4 Narrow band approach

The above gradient descent formulation has a major problem; the gradient

direction for its level set evolution is only defined at the boundary Γ of the

current object representation, where the level set function is strictly zero; also,

the gradient of level set function is strictly defined non-zero by this standard.

However in numerical implementation, the zero contour boundary region would

be difficult to detect, and it is difficult to define numerically the outward normal

direction. Also, the condition that |∇φ| 6= 0 is difficult to guarantee during

evolution. Some authors apply the technique of re-initialization [39] to ensure

that the level set gradient is approximately smooth during the evolution such

that |∇φ| = 1; We will instead use a narrowband technique as outlined below

which has proven to provide very good results when applied in the solution of

inverse problems.

A narrow band approach has been produced by D. Adalsteinsson and J.

Sethian [1] as to only compute the level set evolution in a narrow band close

to Γ, as to reduce the computational cost, but still keeps the characteristics of

the object boundary as to ensure its front propagation still follows the required

velocity field. We define the narrow band region Dnbd(φ, d) as follows

Dnbd(φ, d) = {x|∃x0, such that |x− x0| < d, φ(x0) = 0} (70)

In an extended narrow band, the assumption of |∇φ| 6= 0 might not be easy to

achieve. Some additional research applies a re-initialization technique so as to
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evolve φ such that |∇φ| ≈ 1, so as to ensure the level set evolution would not

experience instability problems; but it would risk breaking the structure of zero

contour γ [39]. Therefore we remove the term of |∇φ| in our descent direction,

and obtain the following definition as [19]:

∂φ

∂t
= −gm · χDnbd(φ,d)(mobj −mback) (71)

where χ is the characteristic function. Therefore we arrive at the iteration with

narrow-band

φn+1 = φn − αngφ(φn) (72)

with

gφ(φn) = −(mobj −mback)gm · χDnbd(φn,d) (73)

Notice that those modifications conserve the descent property of the shape evo-

lution which is the main objective when deriving our speed functions.

5.1.5 A level set based full waveform inversion algorithm

We apply a smoothing technique using Sobolev regularization method in Chap-

ter 2.7.1, as a smoothing term for the level set gradient; this method is also ap-

plied in other research [19], [20]. Different other regularization techniques such

as DRLSE, or a Mumford-Shah functional, could be applied as well [39], [45],

[19], but we will not consider those in this thesis. We finally obtain the following
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algorithm for level set based full waveform inversion:

Algorithm 5: Level set based full-waveform inversion algorithm

Initial m0,φ0, α, source and receivers, narrow band Dnbd(φ0) with defined

bandwidth d;

for i = 1, 2, ... do

mi;

Forward wave propagation;

Adjoint-state Backward propagation;

Compute pixel based gradient gim = δE
δm

(mi);

Compute level set gradient giφ (L2 or Sobolev gradient);

Define narrow band Dnbd(φi);

Update αi with backtrack line search technique; Update φi+1, such that

φi+1 = φi − αigiφ in narrow band;

Update related level set representation of mi+1 = m(φi+1);

if Stopping criterion satisfies then

break;

end

end

5.2 Numerical tests

5.2.1 Model set

We introduce a numerical test case for verifying the above algorithm in level

set based FWI using Algorithm 5. The following results have been published as

a conference paper ‘A level set method for shape reconstruction in seismic full

waveform inversion using a linear elastic model in 2D’ [76].

We test our algorithm by using two different reference set-ups displayed in

figures 56, 58, both addressing the imaging of salt domes buried in the ground

with FWI. The left hand column shows a profile where only one salt dome is

included in the ground. The right hand column shows a slightly more complicated

set-up with two separate salt domes hidden in the ground. The top row of this

figure shows the p-wave velocities Vp, the center row the s-wave velocities Vs,

and the bottom row the densities ρ for both cases; the model is displayed on a

30× 120 domain.
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We apply a source distribution of 21 equidistant seismic locations along a

horizontal line to the surface, and the source wavelet given in a Ricker-type

wavelet; for sensors, we choose a set of 81 equidistant locations also along the

horizontal line, as to record the time series of arriving seismic waves. This means

that we have only a top view on the domain of interest available for gathering

data, which should simulate a practical experiment in seismic surveys. Specially,

we apply a 5% of Gaussian noise in the misfit data, in order to avoid the inverse

crime.

10 20 30 40 50 60 70 80 90 100 110 120

5

10

15

20

25

30
Source and Sensor

Figure 55: Source and sensor: the blue crosses denotes the source positions, and
the red dots represent the sensor location

We apply the same object and background parameter as in (58), and obtain

the following 3 models with different set up of level set representation describing

different salt dome information:
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Figure 56: Left: true model for model 1; Right: initial model for model 1. From
top to bottom are model values of parameters of Vp, Vs, ρ123
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Figure 57: Left: true model for model 2; Right: initial model for model 2. From
top to bottom are model values of parameters of Vp, Vs, ρ124
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Figure 58: Left: true model for model 3; Right: initial model for model 3. From
top to bottom are model values of parameters of Vp, Vs, ρ125



5.2.2 Some settings concerning level set evolution

We also need to specify some numerical implementation details concerning the

level set evolution.

Level set construction The level set functions φ that represent the initial and

true models are defined here as a linear expansion of a radial basis functions [3]

φ =
∑
i

αiψ(‖βi(x− xi)||)− c (74)

where αi, βi, c are weight scalars, xi are the center locations of every basis

function. We define the radial basis function (RBF) in the form of Gaussians

with

ψ(r) = exp(−r2) (75)

In this form we can generate a sufficiently big set of artificial level set functions

representing initial and true shapes. During the shape evolution, however, this

RBF parameterization is not used here.

Heaviside function The numerical approximation of the Heaviside function

is given in by following definition

H(φ) = 0, φ < ε

=
1

2
(1 +

φ

ε
+

1

π
sin

πφ

ε
), −ε < φ < ε

= 1, φ > ε

(76)

with ε sufficiently small.

5.2.3 Numerical Results

We apply the above level set evolution scheme for FWI following Algorithm 5;

we set the maximum iteration number to be 30 for model 1, model 2, and 50 for

model 3 (which is slightly more complex); we set up the appropriate line search

step size for different tests, and the stopping criterion is linked to the error bound

reaching 5×10−6. Notice that using the level set method significantly increases the

sensitivity of steepest descent direction falling into a local minimum; therefore the
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choice of the initial line search step size has to be extremely cautious. Therefore

we choose the appropriate initial step size for each different test case individually,

and the results are given next.

0 5 10 15 20 25 30

Iteration

1700

1800
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)

Misfit from iter 1 to 30

Figure 60: Misfit for model 1
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Figure 62: Misfit for model 2
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Figure 64: Misfit for model 3

5.2.4 Sobolev gradient in level set technique

The previous test cases show that, as expected, compared to pixel based meth-

ods, a level set representation with prescribed parameter values inside the inclu-

sions and only updating the common shape avoids the problem of ‘cross-talk’.

The final approximation is improved, but boundaries tend to be fractured and

small holes are visible inside the salt bodies which are most likely not justified

by the data but need to be considered artifacts of the reconstruction scheme. In

order to address this shortcoming, we apply now the Sobolev gradient method to

smooth the level set function before applying the updates; the weight parameter

is set to γ = 0.2 for model 1, and γ = 1 for model 2 and model 3. Notice that

increasing γ will certainly smooth the level set function and the object boundary,

but it comes with the risk of losing other details of the shapes or of blocking some

topological changes (splitting) necessary to reach the final solution; we choose the

above value for smoothing as a trade-off between those different aspects.

132



T
ru

e
 V

p

2
0

4
0

6
0

8
0

1
0

0
1

2
0

5

1
0

1
5

2
0

2
5

3
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

3
5

0
0

4
0

0
0

4
5

0
0

5
0

0
0

5
5

0
0

In
it
ia

l 
V

p

2
0

4
0

6
0

8
0

1
0

0
1

2
0

5

1
0

1
5

2
0

2
5

3
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

3
5

0
0

4
0

0
0

4
5

0
0

5
0

0
0

5
5

0
0

F
in

a
l 
a
p
p
ro

x
im

a
te

d
 V

p

2
0

4
0

6
0

8
0

1
0

0
1

2
0

5

1
0

1
5

2
0

2
5

3
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

3
5

0
0

4
0

0
0

4
5

0
0

5
0

0
0

5
5

0
0

T
ru

e
 V

s

2
0

4
0

6
0

8
0

1
0

0
1

2
0

5

1
0

1
5

2
0

2
5

3
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

3
5

0
0

4
0

0
0

4
5

0
0

5
0

0
0

5
5

0
0

In
it
ia

l 
V

s

2
0

4
0

6
0

8
0

1
0

0
1

2
0

5

1
0

1
5

2
0

2
5

3
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

3
5

0
0

4
0

0
0

4
5

0
0

5
0

0
0

5
5

0
0

F
in

a
l 
a
p
p
ro

x
im

a
te

d
 V

s

2
0

4
0

6
0

8
0

1
0

0
1

2
0

5

1
0

1
5

2
0

2
5

3
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

3
5

0
0

4
0

0
0

4
5

0
0

5
0

0
0

5
5

0
0

T
ru

e
 

2
0

4
0

6
0

8
0

1
0

0
1

2
0

W
id

th

5

1
0

1
5

2
0

2
5

3
0

Depth

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

3
5

0
0

4
0

0
0

4
5

0
0

5
0

0
0

5
5

0
0

In
it
ia

l 

2
0

4
0

6
0

8
0

1
0

0
1

2
0

5

1
0

1
5

2
0

2
5

3
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

3
5

0
0

4
0

0
0

4
5

0
0

5
0

0
0

5
5

0
0

F
in

a
l 
a
p
p
ro

x
im

a
te

d
 

2
0

4
0

6
0

8
0

1
0

0
1

2
0

5

1
0

1
5

2
0

2
5

3
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

3
5

0
0

4
0

0
0

4
5

0
0

5
0

0
0

5
5

0
0

F
ig

u
re

65
:

T
es

t
re

su
lt

fo
r

m
o
d
el

1:
S
ob

ol
ev

gr
ad

ie
n
t

w
h
er

e
γ

=
0.

2.
T

h
e

su
b
fi
gu

re
s

fr
om

le
ft

to
ri

gh
t

sh
ow

th
e

tr
u
e

m
o
d
el

,
in

it
ia

l
m

o
d
el

an
d

fi
n
al

ap
p
ro

x
im

at
io

n
;

fr
om

to
p

to
b

ot
to

m
th

ey
re

p
re

se
n
t
V
p
,
V
s

an
d
ρ

133



0 5 10 15 20 25 30

Iteration

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

E
(m

)
Misfit from iter 1 to 30

Figure 66: Misfit for model 1: Sobolev gradient where γ = 0.2
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Figure 68: Misfit for model 2: Sobolev gradient where γ = 1
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Figure 70: Misfit for model 3: Sobolev gradient where γ = 1

In the following figures we compare the numerical results for Vp with and

without Sobolev gradient.
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Figure 72: Vp comparison for model 1: Misfit evolution
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Figure 74: Vp comparison for model 2: Misfit evolution
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Figure 76: Vp comparison for model 3: Misfit evolution

5.3 Conclusion

The numerical tests presented above show that applying a Sobolev gradient has

a vital impact to the smoothing of the boundaries in the level set evolution, which

is significantly different compared to the pixel based method. How can we explain

this difference? Compared to the pixel based method in 4.4.2, our model test for

the level set representation divides the seismic survey into domains of object and

background, which creates a clear sharp boundary. This is strictly defined by

the level set function. Therefore, irregularities around the object boundary are

diminished by the incorporation of a Sobolev gradient.

Compared to pixel based methods, using a level set method seems to avoid the

inaccuracies caused by the insufficient information from the limited data problem;

it helps solving the problem of ‘cross-talk’, since the object value and background

information can be assumed approximately known for salt domes, and therefore

can be better controlled. For those reasons, the level set based inversion scheme
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shows a clear advantage over pixel based inversion, especially when sharp bound-

aries are present and for irregular shape reconstruction problems such as salt

dome characterization. There might be some irregular distributions with tradi-

tional L2 gradient, but the application of Sobolev gradient solves that generally

well.

The application of the Sobolev gradient also comes up with a side effect, that

the smoothing technique may damage the seismic information provided in the

previous update; therefore a good choice for weight parameter γ for Sobolev gra-

dient remains crucial. However, numerical results also show that using traditional

line search techniques in a level set evolution can be extremely time consuming,

especially when initial guesses are poorly chosen; Also, considering that the line

search applied for reducing the data misfit also requires massive computation,

the choice of initial line step should be done carefully.

Note that O. Dorn and A. Hiles [20] provide an alternative line search tech-

nique using the idea of Landweber-Kaczmarz type. See also [38] in a different

field of level set based imaging; this single step idea updates the level set function

by using gradients for subsets of data, for example corresponding to individual

source terms. Notice that this single step method is also very similar to the

stochastic gradient method discussed frequently in the literature nowadays for

big data problems, where its idea has also been applied for full waveform inver-

sion [42].

In the next chapter we will apply a very similar technique to our level set evo-

lution for our 2D model. This will serve as a starting point for future application

in 3D full waveform inversion which represent a big data problem.
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6 A Stochastic gradient technique for 2D level

set based full waveform inversion

The stochastic gradient method (SGD) is an iterative method applied to solve

optimization problems based on unbiased stochastic gradient computation; it is

orginigated by the work ‘A Stochastic Approximation Method’ by H. Robbins

and S. Monro in 1951 [56]; now it has been widely applied in large-scale prob-

lems, especially in machine learning [9]. Its basic idea is by randomly taking

gradients from independent sources from data sets as descent direction, instead

of traditional methods which compute the standard gradient from all sources.

While one gradient descent direction may not represent a standard gradient in-

formation, the complete iteration should generally follow the standard descent

direction from a bird-eye perspective. In large-scale FWI, this method can be

expected to be much more efficient than computing standard gradients. T. van

Leeuwen [42] introduces a stochastic optimization method in full waveform inver-

sion; however, the application of SGD method in full waveform inversion is still

at an early stage.

O. Dorn and A. Hiles [20] presented a nonlinear Landweber-Kaczmarz type

method applied in level set based electromagnetic imaging, which shows high

similarity to the stochastic gradient descent method; we will compare a variant

of the SGD to Landweber-Kaczmarz type algorithm to find out their relations;

then we will apply a stochastic gradient descent algorithm in level set based

full waveform inversion for our model. We test our model reconstruction with a

relatively large scale set of sources and sensors, and apply a holdout method for

cross validation to measure our data estimation.

6.1 Stochastic gradient descent

We briefly review the generalised stochastic gradient descent method. Consider

the optimization problem

min
m

F (m) =
1

N

Ns∑
s=1

Fs(m) (77)
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where Fs(m) is the energy least square functional denoting data misfit based on

source s; Ns is the number of sources. The standard gradient descent method

gives a steepest descent direction, written as ∇mF . This could be written as

mn+1 = mn −
αn
N

Ns∑
i=1

∇mFs(mn) (78)

where α is given as the step length, sometimes called learning rate. For this

method, the computation of the gradient with respect to m requires all sources

evaluated at Fs; with a large source number of Ns, especially in practical appli-

cations where the source number is generally of the order of several thousands,

this computation would be extremely expensive.

In SGD, one computes only one single source version of the gradient∇mFγ(s)(m),

where γ(s) is a randomized selection of sources s from (1, 2, ..., Ns) with a prob-

ability density p(s). This gives the simple form of SGD iteration written as

mn+1 = mn − αn∇mFγ(s)(mn) (79)

This descent direction does not need to represent a descent direction for the full

data misfit, but it only represents one for a single source; therefore the com-

putational cost is significantly reduced. This gives SGD a clear advantage in

large-scale problems, such as full waveform inversion.

6.1.1 Weighted SGD

Some additional research [46] applies a normalized weight function w(s) as to

weight gradient component that

F (w)
s (m) =

1

w(s)
Fs(m) (80)

This gives us an equivalent stochastic representation for F (m)

F (m) = E(Fs(m)) = E(F (w)
s (m))/E(w(s)) (81)

147



where E represents the expectation with respect to s ∈ S, and E(w(s)) = 1.

With this we weigh the gradient component according to

∇F (w)
s (m) =

1

w(s)
∇Fs(m). (82)

Therefore we obtain a weighted SGD from (79), (82) with

mn+1 = mn − αn
1

w(γ(s))
∇mFγ(s)(mn) (83)

6.1.2 Relation to randomized Landweber-Kaczmarz method

From the above idea, we can derive that the idea presented in [20] is actually

a variant of a stochastic gradient descent method. So, what is the relationship

between SGD and Landweber-Kaczmarz method?

The Kaczmarz method is applied in the nonlinear Algebraic Reconstruction

Technique (ART) [29], extending the linear ART technique to nonlinear problems.

It has originally be developed as an iterative model for solving linear systems

arising in tomography, but lately it has also been considered as a promising

technique for solving non-linear ill-posed problems [20], [38], [12].

A generalised linear least square problem is given to solve the linear system

Ax = b such that

min
x
F (x) =

1

2
‖Ax− b‖2

2 (84)

whereA is an m×n matrix, and x, b are corresponding vectors. ConsiderA with

rows ai such that i = 1, 2, ...,m, which provides the linear system 〈ai,x〉 = bi

with b = (bi). The randomized Kaczmarz method for solving such a system

therefore proceeds as [46], [77], [66], [32]:

xk+1 = xk − α
〈ai,xk〉 − bi
‖ai‖2

2

ai (85)

where i is the randomized selection from 1, 2, ...,m. In [46], a randomized Kacz-

marz method is considered as a specialised case for weighted SGD method (83),
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where the weight function is defined as:

w(i) =
m‖ai‖2

2∑m
i=1 ‖ai‖2

2

(86)

As for nonlinear Landweber-Kaczmarz method mentioned in [20], [38], [12],

this approach follows the same formulation of (79) or (83), such that it can also

be considered as an application of the SGD method.

6.2 A level set based SGD algorithm for full waveform

inversion

6.2.1 SGD gradient

In the following part, we apply a SGD method for full waveform inversion

based on level set; for simplicity, we set the weight function to be that w(s) = 1,

assuming that the information from all sources are unbiased. Recall the data

misfit of the level set based FWI E(φ) (64), and the level set gradient gφ based

on steepest descent. We can rewrite them as the sum of s sources such that

E(φ) =
∑

sEs(φ), and gφ =
∑

s g
s
φ. Consider the chain rule for level set gradient

gφ = gm
∂m

∂φ
(87)

and the gradient form of (31)

gm = −
∑
s∈S

〈vs, ∂L
∂m

ws〉τ (88)

This gives us the s component of gradient information

gsφ = 〈vs, ∂L
∂m

ws〉τ
∂m

∂φ
(89)

We consider the random selection of γ(s), and apply the SGD gradient from

(79) as to obtain the algorithm; we apply the narrow band technique for extending

the level set evolution as in 5.1.4. However, the estimation of step length α can

be a challenge. we will discussing the determination of the step length in the

following part, and then construct our algorithm.
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6.2.2 Estimating step length

In standard gradient problems, the search for a suitable step length (learning

rate) α is normally controlled by traditional conditions such as an Armijo, Wolfe

or strong Wolfe condition, as to ensure that the step length is suitable for line

search. Stochastic gradient descent directions, however, as well as Kaczmarz de-

scent directions, do not contain the full gradient information in one search; there-

fore a large step length (also known as learning rate) would provide misleading

results. Most researchers tend to take a sufficiently small step length, but then

the convergence speed can be relatively slow. This happens most commonly with

the artificial selection of step lengths, such as the adaptive learning rate method;

alternative methods such as Adagrad or Adadelta try to provide a monotonically

decreasing learning rate; but for nonlinear problems, its computation would be

too time-consuming.

Another alternative idea is to apply a residual based method to simulate

the data control of the step length; this can give a good control for generalised

problems, but it also has high risk of over-fitting the model, especially for noisy

data. The above considerations outline the difficulty of finding an optimum

estimation for step length.

Pixel count control In level set reconstructions, specifically, we could apply a

pixel-count based inexact backtracking line search technique as proposed in [20].

This technique controls the evolution of shapes to be restricted by relatively small

amounts. in addition, any additional forward or backward solves are avoided

in the step length selection, in order not to increase the computational cost;

Certainly, without additional forward solves it is difficult to monitor the evolution

of the data misfit accurately.

In our approach following that of [20], we record the number Nj of pixels that

changes value in each update, where j is defined as the source index; such change

occurs when the level set value at certain pixels evolves changes sign (either

direction). The goal is to identify a step length which delivers a shape evolution

where the number of pixels that change value is restricted between certain upper

and lower bounds.

We define an upper and lower bound Nmax, Nmin for the number of pixels

that change value in each update. Then for any update for a source j inside a
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given sweep, we make sure that Nj ∈ [Nmin, Nmax]. For the step size α, we apply

a backtracking line search where we monitor the pixel change Nj (instead of the

data misfit as in traditional backtracking schemes) which avoids time-consuming

data misfit calculation; we assume that τ1, τ2 are the step length decrease and

increase ratio such that 0 ≤ τ1 ≤ 1, and τ2 ≥ 1. For a more detailed description

of the technique, together with further numerical evidence of its performance, we

refer the reader to [20].

6.2.3 Validation method

In machine learning, validation is a process of evaluating the behaviour of

model reconstruction. We should introduce some of the basic concepts of machine

learning, and derive their equivalent explanations in FWI, before we go into the

details of validation methods.

Training set Training set indicates the data sets that are used to run the

model. For example, in FWI the training set is the source set for running the

wave propagation simulation.

Test set Test set indicates the data sets that are used to validate the model.

In FWI, the test set refers to the source set that is used for measuring the data

from receivers.

In machine learning, one of the most common model error is known as over-

fitting. In statistics, over-fitting refers to the result that the model fits the training

data too well, such that even some of the residual variation (noise, for example)

also fits into the data estimation, which reduces its accuracy for future observation

prediction.

Over-fitting commonly happens in data mining process; in linear regression,

for example, over-fitting mostly happens when one fits noisy linear data by a

high-order polynomial function; this regression could fit very well for the given

noisy data, even better than the linear estimation; but it has lost its value in

prediction, therefore estimating a new set of data would most likely cause a very

large error. In full waveform inversion, data measurements normally come with

a certain proportion of noise. Therefore it is very likely that for a certain model,
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one obtains a reconstruction where the modelled data fit the noisy observed data

extremely well, but the result fails to approximate the true model. In validation

techniques, we try try to apply a different set of sources to detect and measure

this error.

Most of the over-fitting happens when the iteration procedure starts to ‘mem-

orize’ the data fitting process rather than to ‘learn’ the right way of iteration.

In FWI, each individual step of the SGD does not represent the full gradient;

therefore the case of over-fitting happens frequently. Over-fitting also happens

sometimes if we fail to separate the test set from the training set during the

simulation; then the model will try to ‘memorize’ the test set data in the future

steps. This happens more commonly with residual evaluation, meaning that the

model updates with a criterion involving data residual measurement.

How do we prevent over-fitting? The most common idea is to apply a vali-

dation method; validation method is a numerical model validation technique to

test how good the numerical results actually are from a group of validation sets.

In order to avoid over-fitting, we need to separate the training set from the test

set. Different methods of validation are applied in all sorts of data mining prob-

lems; we will in the following introduce three of the most common methods, and

analyse their pros and cons in suitability for FWI.

Hold-out method Holdout method is considered as the simplest validation

form; its basic idea is to separate the original data set S into training set S1 and

test set S2; the set up of S1 and S2 is somehow artificial, and fixed for all model

tests. To avoid over-fitting, it is normally defined that the size of test set S2

should be sufficiently smaller than the size of the training set S1. The advantage

of the hold-out method is its simplicity and consistency in data evaluation; but

the evaluation can also turn out to be highly dependent on the division of training

set and test set. In FWI, considering a large scale source set, data information

from different source terms vary significantly. Therefore the selection of training

sources and test sources should be done very carefully.

K-fold validation K-cross validation is considered an improvement to the

hold-out method. Its basic idea is to separate the data set S into k different

subsets S1, S2, ..., Sk. One of the k subsets is defined as test sets, and the other

k − 1 are training sets. We should repeat the model evaluation k times, so that
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each subset of S are used both for training and test set. The advantage of K-fold

validation is that, each observation is used for training and testing for repeated

tests; in a large sample, the data variation would be reduced as k increases. How-

ever, it requires at least k times of model tests, therefore it requires k times more

computation to validate our model result. In FWI, considering that one model

test would normally require a significant amount of computation, the application

of k-fold validation might become very time-consuming.

Leave-p-out cross-validation Leaving p-out cross validation is considered to

using p observations for validation among the n data sets; these p validations are

test sets and other n − p are training sets. This validation requires Cp
n times of

model tests; specifically, p = 1 gives an equivalent form of k-fold validation where

k = |S| is the observation number of data set. Leave-p-out validation generally

requires more model tests.

6.2.4 SGD algorithm

In FWI, we apply a randomized source evaluation process; one iteration should

sample over all sources in a randomized order. We repeat the iteration until the
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model update suits the stopping criterion. The algorithm is given next.

Algorithm 6: SGD level set inversion algorithm

Initial model m0, initial level set φ0;

Iteration i = 1, 2, ...N ; Source set S, training set S1, test set S2;

Source s = 1, 2, ..., |S1|;
Initial set up for step length search: pixel change bound Nmin, Nmax, initial

step length αstart, the line step decrease and increase ratio τ1, τ2;

for i = 1 : N do

for j = 1 : |S1| do

Randomized order γi(j);

Forward and backward propagation on source γi(j);

Compute corresponding level set gradient: g
γi(j)
φ ;

Initialize αstart;

Find step length αj such that pixel change lies in Nmin, Nmax;

if j ≤ |S1| − 1 then

φ
(j+1)
i = φ

(j)
i − αjg

γi(j)
φ ;

end

if j = |S1| then

φ
(1)
i+1 = φ

(j)
i − αjg

γi(j)
φ ;

end

Update m; Validation on S2;

Verify stopping criterion;

end

end

Notice that in the validation procedure the test set is independent from the

training set.

6.3 Numerical results

6.3.1 Hold-out validation tests

For our model, we will apply the SGD algorithm above for our model update;

we will also implement our numerical tests on the models considered in Chapter

5. Notice the SGD method is expected to show its real power when moving to

large scale 3D problems where many more source and receiver locations are usu-
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ally considered and each individual computation requires considerable computing

time. This makes full gradient based methods extremely slow, and even cyclic

Kaczmarz type methods might take a long time to even complete one single sweep

(addressing the entire data set).

For source and sensors, we apply in our 2D test case a larger set of sources

as to better describe the application of SGD. In particular, we use 101 sources,

defined as our training set. The sensors are set up in the same location as in

Chapter 5, with 81 equidistant sensors at the same level near the surface.

We apply a hold-out method for validation to monitor the model reconstruc-

tion, so as to add to its simplicity in validation and reduce computation cost.

Our test set is provided be an independent set of sources; In particular, we set up

5 different test receivers located 1 grid cell beneath the line of source locations,

equality distributed beneath the sources 1, 26, 51, 76, 101; so that this test data

should be independent from observed data, but could also give a relatively fair

validation on the model reconstruction. This is sufficient for our test case, but in

practical applications any other selection might be possible. The distribution of

sources in the test sets are given in the following figure.
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Figure 77: Training and test set. Blue cross: Training set distributed at 101
source locations. Black circle: Test set located below source locations 1, 26, 51,
76, 101

We set up the total iteration number to be 10 for model 1, and 5 for models

2, model 3 from 5.2.1; For each iteration, we do 101 sweeps of data estimation

as for 101 sources. As step length control, we consider a technique as described

above, counting pixels that change between inside and outside the objects and

restricting their number to lie inside an interval with upper and lower bounds as

[0, 10]. Moreover, the ratio number for reducing and increasing the step length

to be τ1 = 0.5, τ2 = 1.5, with initial step lengths α = 2 × 107 for model 1,

5 × 106 for model 2 and model 3. Considering that the descent direction is not

controlled by the full gradient, and the entire data set is never really considered as

a whole, we cannot set up the stopping criterion related to the total data misfit,

which actually proves to be more time saving than numerical test in Chapter 4

and Chapter 5. Instead, we apply an error-bound on the norm of source based

gradient ‖gsφ‖.
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We will start our validation after the model test ends; in validation, we add

in a 5% noise in both the training data and test data; we need to test the data

residual of our approximated model and denoised test data to find out whether

the evaluation avoids over-fitting successfully.

Our numerical results are presented in the following figures.
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Figure 79: Validation misfit from test sets on Model1: iteration 1 to 10

We can clearly see some rather sharp oscillations of the data misfit, especially

in the starting sweeps; this is due to random selection of gradient descent direc-

tions. But after a certain burn-in stage, the evolution of the data misfit becomes

more stable. We should make a diagnosis of this result, to ensure that our ap-

proximation successfully avoids over-fitting. Considering that our data misfit for

the validation set includes noisy data, we apply a random sample of generation

of data misfit between measured noisy data and validation on the true model es-

timation; we compute the ’average noise misfit’ for a sufficiently large sample. In

our test, we select the sample length to be 20. Therefore we compare the ‘average

noise misfit’ to our validated data misfit. Over-fitting happens when validation

of data misfit is significantly smaller, which indicates that the model simulation

is severely affected by data noise.
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Figure 80: Model1: Comparison of validation data misfit and ‘Average’ noisy
misfit

The result is that during the model estimation, the data misfit is generally

close to noisy data misfit; this indicates that our model reconstruction is not

affected by data noise. Therefore it indicates that our model simulation success-

fully avoids the result of over-fitting. For model 2 and model 3, the results show

high similarity.
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Figure 82: Model2: Comparison of validation data misfit and ‘Average’ noisy
misfit
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Figure 84: Model3: Comparison of validation data misfit and ‘Average’ noisy
misfit

For these 2 model sets, considering that the initial model is relatively better

and the starting step length relatively small, the possible overshooting in the

starting sweeps does not occur; the parameter iteration is relatively stable and

provides a good approximation.

Our conclusion is that: based on three model tests, we are able to verify that

applying the stochastic gradient descent (SGD) method generally delivers a good

and stable approximation for the model estimation for a level set based problem,

with a large scale of source distribution where traditional line search technique

tend to be too time-consuming. Also, our hold-out cross validation approach

shows that the data misfit keeps relatively close to ‘average noisy misfit’ during

the model estimation; this indicates that our model test successfully avoids over-

fitting.

164



6.4 Conclusion

In this chapter, we have introduced the basic idea of stochastic gradient method

(SGD) and its application to our FWI problem; notice that for the SGD method,

we are not required to compute the full gradient in each step of gradient com-

putation and backtracking line search compared to traditional methods. This

indicates that the gradient computation potentially is much cheaper than stan-

dard gradient methods; therefore we could expect that applying SGD in level

set based FWI would be much more time-saving, especially for large-data min-

ing problems for 3D extensions of our technique. However, considering that our

problem of waveform inversion often applies with the reconstruction of noisy data,

sometimes the data reconstruction will obtain a too precise approximation that

also includes the information of noisy data; this comes with the risk of over-fitting.

To avoid this, we apply a hold-out cross validation method to monitor our model

reconstruction using SGD. We construct a 2D model reconstruction test case

with the same model as in Chapter 5, but considering a larger set of 101 equally

distributed sources near the top of our survey; we apply a 5% of noise to the data

and apply a hold-out method for validation. Our numerical results show that

applying SGD in the above models provide a very good approximation overall,

and it also successfully avoids over-fitting. From the above test results, we expect

that especially in potential future applications to 3D situations, SGD methods

appear extremely promising for being applied to large scale FWI problems.
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7 Internal value reconstruction

In the level set approaches presented so far we have assumed that the value

inside the object is approximately known a priori. However for salt dome recon-

struction, there might be some cases where the parameters inside are not quite

accurate, indicating that more detailed information needs to be explored. In

those cases, we also need to update the parameters inside of the salt domes in

order to obtain a reliable estimate.

Therefore, in this section, we will explore the method of internal parameter

value reconstruction; for this purpose, we consider that the estimated internal

value of the objects are incorrectly chosen in the starting guess. This implies

that we need to also estimate this value in our shape reconstruction algorithm.

7.1 Reconstructing internal value

We recall that the level set representation in (63), jointly with the internal

parameter, are defined as λobj, µobj, ρobj; we assume also here that the internal

parameters are constant, but unknown.

In this chapter, we consider the situation where also λobj, µobj, ρobj are scalar

variables that need to be estimated. We recall the parameter gradient gm (31)

and its component with respect to a given source s; using the chain rule and

the level set representation (63), we obtain the gradient on internal parameter

(neglecting s in the notation) as follows.

gλobs = g · ∂m
∂λobs

= gλ ·H(φ)

gµobs = g · ∂m
∂µobs

= gµ ·H(φ)

gρobs = g · ∂m
∂ρobs

= gρ ·H(φ)

We also apply a stochastic gradient descent type algorithm for the determi-

nation of these internal parameters; we define θ to be the step length, and the

initial internal values λ0
obs, µ

0
obs, ρ

0
obs follow the same formulation as in (79). Then

the internal update for iteration n is formulated as
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λn+1
obs = λnobs − θngλobs(φn)

µn+1
obs = µnobs − θngµobs(φn)

ρn+1
obs = ρnobs − θngρobs(φn)

(90)

The above update will be applied inside each sweep after the update of level

set function in Algorithm 6. Considering parameter updates, a straight-forward

idea is to update the three parameters simultaneously; but the selection of step

length θ will be difficult, considering the complexity of the different gradient

information and the possibility of ‘cross-talk’. Since the value of λobs, µobs and

ρobs are scalar, we could use a separate update technique in a bilinear SGD-type

case. We apply the implementation that for 3 consecutive updates, we update one

parameter each time in a sweep; this way after 3 updates, all of the 3 parameters

have been updated once. We need to keep the step length θ small enough to

ensure that the information from previous updates are conserved. We also need

to choose a good line step for each internal parameter. Notice that the data

misfit Es(m) corresponding to source s can be considered as a quadratic form

of λobs, µobs, ρobs; therefore if we update only one parameters of three at a time,

this corresponds to a coordinate descent scheme. Also, we could obtain a general

formulation of second-order function that Es(mobs) = am2
obs + bmobs + c, for any

m ∈ (λ, µ, ρ).

One possible practical approach for calculating updates is to use 2nd order

interpolation in order to obtain a quadratic regression of the function, and then

choose the minimum of this local quadratic approximation to be the next update;

however, forming the exact quadratic is still time-consuming. Therefore, we apply

a simpler two-way type iteration by comparing the misfit from two directions: for

sufficiently small θ, we only need to select the direction where the data misfit is
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reduced. Therefore we practically consider the following procedure for update:

Algorithm 7: Internal value update

Initialize θ, parameter 0 < τ < 1;

for i = 0, 1, ..., s = 1 : S do

Denote sweep s, internal parameter λi,sobs, µ
i,s
obs, ρ

i,s
obs, and source based

data misfit Es;

Choose one parameter mtemp from three internal parameters for the

update, and the corresponding weight function w(mtemp);

Update m1
temp = mtemp − θw(mtemp),m

2
temp = mtemp + θw(mtemp);

Compute the corresponding data misfit on source s E1
s (mtemp),

E2
s (mtemp); compare with Es;

if Es is the smallest then

θ = τθ;

else
Accept the minimal of E1

s (mtemp), E
2
s (mtemp), and accept the

corresponding update m1
temp or m2

temp;

end

Keep the other two parameters the same;

Update λi,s+1
obs , µi,s+1

obs , ρi,s+1
obs (λi+1,1

obs , µi+1,1
obs , ρi+1,1

obs if s = S);

end

From the above, we obtain the following algorithm for level set based inversion
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with internal value update:

Algorithm 8: Level set inversion with internal value update

Initial level set φ0, m0 = (λ0
obs, µ

0
obs, ρ

0
obs), internal value step length θ, SGD

step length α, training set S1 and test set S2 ;

for i = 0 : N , s = 1 : |S1| do

Shuffle γ(s);

Forward propagation;

Backward propagation;

Compute g
i,γ(s)
φ , g

i,γ(s)
λobs

(φi), g
i,γ(s)
µobs (φi), g

i,γ(s)
ρobs (φi);

For 3 consecutive terms;

Select one of three parameters to update from λi,sobs, µ
i,s
obs, ρ

i,s
obs; all three

parameters should be updated once for each 3 consecutive terms;

Keep the other two parameter values;

Choose line search θsi and corresponding descent direction;

Update mobs = (λi,s+1
obs , µi,s+1

obs , ρi,s+1
obs ) (λi+1,1

obs , µi+1,1
obs , ρi+1,1

obs if s = |S1|)
with Algorithm 7;

Search step length αs;

Update φi,s+1 = φi,s − αsgi,γ(s)
φ ;

(if s = |S1|, φi+1,1 = φi,s − αsgi,γ(s)
φ );

Update ms+1
i = mbackH(φi,s+1) +mobs(1−H(φi,s+1);

Verifying stopping criterion;

end

We will apply the above algorithm for internal value reconstruction with a

level set evolution applying SGD method.

7.2 Numerical tests

Vp Vs ρ

Background [3000,4000] [1200,2000] [2100,2500]

True internal 5000 2700 3000

Initial internal 5500 3000 2700

When starting the evolution we need to take into account that, during early

iterations where the shapes are still far away from the correct one, the internal
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value might be updating towards the wrong direction to compensate the misfit

caused by inaccurate shape; therefore we set up the maximum iteration number

of the total scheme to be 10, but the iteration for the internal parameter value

starts not earlier than at iteration 5; We measure the internal value of Vp, Vs and

ρ, based on the computed parameterization λ, µ and ρ. Also here, the data are

polluted artificially by 5% noise. We use as step size Θ = 0.1, and the weight

parameter wVp = 500, wVs = 300, wρ = 300, defined as the absolute difference of

initial and true internal value of 3 parameters. We apply the Sobolev gradient

where λ = 1 (Sobolev gradient coefficient) as to smooth the gradient, so as to

obtain a smoother and more stable model reconstruction.

0 100 200 300 400 500 600 700 800 900 1000

Update

4500
5000
5500
6000
6500

V
p

Internal value of V
p

0 100 200 300 400 500 600 700 800 900 1000

Update

2500

3000

3500

V
s

Internal value of V
s

0 100 200 300 400 500 600 700 800 900 1000

Update

2500

3000

3500

Internal value of 

Figure 86: The internal value reconstruction. Top to bottom: the internal value
record of Vp, Vs and ρ. Red line records the true value, blue line records the
approximated internal value
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Figure 87: The validation misfit for model 1
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Figure 89: The internal value reconstruction. Top to bottom: the internal value
record of Vp, Vs and ρ. Red line records the true value, blue line records the
approximated internal value
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Figure 90: The validation misfit for model 2
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Figure 92: The internal value reconstruction. Top to bottom: the internal value
record of Vp, Vs and ρ. Red line records the true value, blue line records the
approximated internal value
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Figure 93: The validation misfit for model 3

We choose the total iteration count to be 10, for a large scale of source terms

in Chapter 6; for all tests above, the starting iteration count for internal value

reconstruction is set to be iteration 5 which ensures that the shape approximation

has obtained an acceptable accuracy when this part of the optimization starts,

so that the internal value updates do not try to compensate for the shape error.

The reconstruction show that the SGD type internal value reconstruction

produces good results for our test problems. Certainly, our initial guess for the

internal value is relatively close to the true internal parameter which however

is justified for the intended application of salt dome reconstruction. In theory,

we have not yet considered the case where the initial guess is relatively far away

from the true object parameters; this may cause a change in waveform structure,

which might give rise to local minima or to erratic convergence behaviours. Such

local minima are a general difficulty in FWI and are usually avoided by starting

with an initial guess constructed by using all available prior information.
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7.3 Conclusion

The construction of the internal values shows a good approximation to the

true value for all three different tests, regardless of some oscillation during early

iterations; as expected, the accuracy of shape reconstruction is not seriously

affected by this additional search. This is mainly because that we start evolving

the internal value at half time, when the level set evolution has already converged

suffiicently and the guess for the shape is already relatively close to the true

model; this avoids the possibility that the internal value updates might try to

compensate for the misfit caused by incorrect shapes. However, the also means

that the internal value reconstruction is expected to work only if the level set

reconstruction is successful as well.

Overall, this chapter introduced a complimentary test for internal parameter

reconstruction based by SGD in level set FWI adding to the techniques already

considered in Chapter 6.
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8 Summary and future prospect

In this thesis, we have developed novel shape based techniques for elastic FWI

with a special emphasis on seismic imaging; we apply a symmetric hyperbolic

scheme for the forward modelling which contains explicitly the pressure term often

used for data measurement; in a first-order scheme, our calculation suggests that

the adjoint-state operator is skew-symmetric and represents a time-reversal back

propagation feature, which adds to its simplicity in its numerical implementation

and physical interpretation of the gradient. We apply an adjoint-state method

[55] for the gradient computation to obtain a least square solver for our governing

model. Next, we have implemented a numerical method called pseudo-spectral

method based on a similar scheme used in the open source k-wave package; we

modified that code so that it is suited to deal with our specific elastic forward

and backward propagation model. We also develop a level set representation for

special types of seismic imaging problems such as salt reconstruction, in order

to compensate for the limitations that come with more standard pixel based full

waveform inversion. Then we introduced a level set based method for parameter

representation, so as to ensure that all parameters are topologically identical;

we also introduced a narrow-band technique for numerical implementation. We

applied a Sobolev gradient as a regularization term to refine our model results.

Then, we investigated numerical techniques such as stochastic gradient descent

method in order to reduce computational expenses in large scale inversion prob-

lems. Instead of calculating the full gradient, it randomly computes the gradient

on individual source components for each iteration; our test examples in 2D in-

dicated that this method is expected to be much less time-consuming for large

problems, which makes it well suited for future work of large-scale inversion in

3D. In addition, we considered the problem of internal parameter value estima-

tion in order to solve the inverse problem where the internal values of the initial

objects are not accurately known;

Most research of full waveform inversion up to now concentrates on simpler

waveforms such as acoustic or Helmholtz equation; both of them fail to consider

the elasticity of seismic environments in their model, and therefore the corre-

sponding inverse model cannot accurately reconstruct a seismic survey using the

generated data. One of the original idea of our thesis is apply a first-order sym-

metric hyperbolic system, which is suggested from [57], [18], such that it contains
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a pressure term that could be directly linked to practical seismic measurements,

which is an advantage compared to traditional formulations of second-order wave

displacement relationships [26], [37], and also could be linked to other first-order

elastic wave propagation research such as [11]. We generated an adjoint-state

method following general ideas outlined in R. Plessix [55] to obtain the adjoint-

state equation and calculated the gradient involving back propagation; for sym-

metric hyperbolic systems, the back propagation operator is skew-symmetric to

the forward operator, and is applied with a time-reversal initial condition in a

‘free-surface’ condition. We then computed the gradient specifically for the sym-

metric hyperbolic form. We constructed a Sobolev regularization technique for

smoothing the gradient computation; then we computed the gradient based on

the adjoint-state form [55], and then compared the different line search tech-

niques on steepest descent and conjugate gradient techniques for full waveform

inversion.

For numerical implementation for elastic wave inversion, we applied a mod-

ification of the k-wave toolbox [71] which originally was designed for acoustic

wave modeling, but later was adjusted to incorporate an elastic wave scheme;

We apply a staggered grid and a pseudo-spectral technique for the spatial deriva-

tive of all the variables, which is proved to be numerically more accurate; also,

we need to add a PML at the boundary of our domain, so that it simulates a

free-surface environment just like in practical applications; our numerical tests

show the significant difference of boundary wave performance with and without

PML. Furthermore, we need to consider the influence of CFL and grid dispersion

that may reflect the convergence and smoothness of wave propagation; we also

designed different numerical tests that show the negative affect of grid dispersion

when we do not define the source wavelet properly. A numerical test was im-

plemented following an example in a previous elastic forward model package of

SOFI2D [8].

Then we designed two different test models simulating a simple seismic en-

vironment with objective such as salt domes; we firstly considered the original

algorithm, which is pixel based. The challenge in seismic imaging is that, the

acquisition of receivers is usually only at the surface of the earth, which means

that the wave information we gather from the data only contains the reflection

of seismic wave. However, how does such limitation affect the reconstruction?
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We designed two different cases for receiver locations, and compared the result

in final approximation; there was clear evidence that when we set the receivers

at the bottom (which is impossible in practice), the final approximation shows a

much better approximation to the true seismic, indicating that most of the wave

information is contained at the bottom of the survey, meaning that there is a

clear limitation for real world seismic reconstruction. Moreover, applying elastic

wave forward model means that we need to estimate three parameters Vp, Vs and

ρ instead of Vp in previous research; this may result in a ‘cross-talk’ phenomenon,

meaning that three of the parameters may compensate for each other to reduce

the data misfit error. Our numerical implementation also indicated this problem

in both test examples, showing that this type of update happens mainly in ρ.

The results of Chapter 4 show the clear disadvantage of pixel based full wave-

form inversion applied in certain problems such as salt dome reconstruction; [30],

[31] provide an alternative method of using level set representations of salt domes

to solve the problems with high-contrast, irregular shaped full waveform inver-

sion. Considering level sets, we introduced a level set representation to divide

the seismic environment into two layers that describe background and object

information.

In Chapter 5, our numerical results show that the level set representation

avoids the ‘cross-talk’ phenomenon, and is able to obtain a more accurate shape

reconstruction; we also apply an application of Sobolev gradient which helps

us to smooth the boundaries in level set iteration, and therefore shows some

good refinement in our test models. Considering that the internal parameter

values of the objects are known, the parameters are topologically identical defined

by the level set evolution; however, the computation of level set inversion is

quite time-consuming, due to the computation of the full gradient, repeated wave

propagation implementation in line search, for calculation of data misfit; this

makes it extremely difficult to be applied for a larger scale problem, especially in

3D.

Therefore, we considered a stochastic gradient descent (SGD) method in

Chapter 6, as a representative line search technique, which avoids the expen-

sive calculation of the full gradient, and the data misfit computation during the

traditional backtrack line search technique. However, this also came with the

challenge that finding the suitable line step would be challenging; instead we
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considered a pixel-count procedure, monitoring the pixel change in object do-

mains before and after one iteration, so that level set updates for each source

would not deteriorate the previously obtained shape information.

We designed our 2D example test based on the same model test in Chapter 5,

and chose a relatively large source set of 101 sources equally distributed on the

surface line, comparing to the numerical test with 21 sources in Chapter 4 and

Chapter 5. Our results demonstrated that the numerical implementation of SGD

was much less time-consuming than using traditional line search techniques, and

also able to obtain a good accuracy; moreover, we applied a hold-out validation

method as to compare the validation data to noisy data, so as to confirm that

our test model successfully avoids over-fitting. The results indicated that our

test of SGD method was considered a successful method for level set based full

waveform inversion, and could be extended to a 3D application for addressing

large-scale problems.

In Chapter 7, we introduced a complimentary test with internal parameter

value reconstruction, where our initial guess for the internal value was not far

away from the true value; our approach applied an internal value evolution and

level set evolution together. To solve the problem where the internal value might

compensate for inaccurate level set evolution, we started our internal value re-

construction relatively late, to make sure that there would be no side affect from

compensation. Our test results showed that due to the small difference in ini-

tial and true value, the internal value reconstruction worked fairly well; this also

helped us to expand our model application into a more general case of tracking

the correct parameter value of salt dome.

As possible future research pathway, we would like to mention expanding our

elastic waveform inversion algorithm to a more realistic scenario. Our research

introduces a relatively novel elastic waveform inversion technique to the commu-

nity that is applied in salt dome reconstruction; we apply level set representa-

tion, Sobolev gradient, and stochastic gradient descent as numerical approaches

to solve the ‘cross-talk’ problem, and overcome the limit in reflective wave infor-

mation, reduce the time-cost for large-scale approximation. Numerical results of

our model demonstrate that our algorithm provides a good final approximation;

but so far numerical results have been obtained only in a 2D domain. We should

consider applying our model to a more complicated 3D environment, with larger
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scales and more complicated background and object information. In addition,

we may want to investigate in more details different regularization techniques.

In our case, we only consider the Sobolev gradient as regularization, but there

are also other regularization techniques such as DRLSE [39], Mumford-Shah [45]

functionals that have been applied successfully in other level set applications of

image segmentation; but could they be applied in elastic wave inversion?

Finally, we have observed that level set techniques for seismic imaging have be-

come more and more popular these days; and elastic full wave inversion, although

in comparison less investigated due to its complexity to acoustic and Helmholtz

equation, is widely known to be more accurate in describing seismic wave in-

formation. This thesis is only a starting point of level set techniques in elastic

wave inversion, but the obtained and presented results in 2D look promising and

show a good example of combining the ideas of mathematical contributions from

different fields, therefore it could be extended to a 3D case for real application.

Let us look forward to see more work on this in the near future.
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9 Appendices

9.1 Appendix 1. Derivation of wave velocity from Lamé

parameters

In elastodynamics, the wave displacement u can be decomposed in the form of

P and S wave potentials, known as Helmholtz decomposition. We state that [35]

u = ∇φ+∇×ψ (91)

where φ is the potential for the P-wave, and ψ is the potential for the S-wave.

Also, the shear potential satisfies the condition that ∇ · ψ = 0. For λ and µ

homogeneous, we form a vectorised elastic scheme [35]

ρ∂ttu = (λ+ 2µ)∇∇ · u− µ(∇×∇× u) (92)

Therefore, with (91) it follows

ρ∂tt(∇φ+∇× ψ) = (λ+ 2µ)∇∇ · (∇φ+∇× ψ)− µ(∇×∇× (∇φ+∇× ψ))

= (λ+ 2µ)∇(∆φ+∇ · ∇ × ψ)− µ(∇× (∇×∇φ+∇×∇× ψ))

We consider that ∆φ = ∇·∇φ is the Laplacian operator. Applying the properties

of gradient, divergence and curl, we obtain that

∇× (∇φ) = 0

∇ · (∇× ψ) = 0

∇×∇× ψ = ∇(∇ · ψ)−∆ψ

= −∆ψ

Substituting the above into (92), we obtain two separate equations on P and

S potential, namely

∂ttφ = V 2
p ∆φ

∂ttψ = V 2
s ∆ψ
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Therefore P and S wave velocities are computed as

Vp =

√
λ+ 2µ

ρ

Vs =

√
µ

ρ

(93)

This is the derivation of the wave velocities Vp, Vs from the Lamé parameters.

9.2 Appendix 2: A heat-kernel solution

Noted that solving the Sobolev regularization equation (42) requires an inver-

sion of a Laplacian-related operator; we will introduce a heat kernel solution that

approximates the above solution. We assume that Sobolev gradient method is a

time-depending procedure in pseudo evolution time, and define the initial func-

tion Φ, and the expected approximation Ψ that satisfies Ψ = (I− γ∆)−1(Φ). We

consider a heat kernel where we implement the function ψ on the pseudo-time

line [0, τ ], where the heat-type equation states

ψt + (I − γ∆)ψ − Φ = 0, t ∈ [0, τ ]

ψ(0) = Φ
(94)

The above equation asks that ψ(∞) = Ψ, therefore we could use a finite-difference

scheme to approximate the expected approximation. Numerical discretization

provides that

ψ0 = Φ

ψn+1 = ψn − θ(ψn − γ∆ψn − Φ)
(95)

where θ is considered the pesudo-time step equivalent to ∆t. Recall the gradient

and Sobolev gradient gm, gH1,γ in (42); we can apply the same technique by

defining that Φ = gm, and Ψ = gH1,γ. We obtain the practical algorithm for

186



Sobolev gradient as

Algorithm 9: Sobolev transform algorithm

Initialize gradient gm, γ, ψ0, pesudo-time step length θ, pseudo iteration

number N ;

for i = 0 : N do

ψn+1 = ψn − θ(ψn − γ∆ψn − gm);

end

Accept Sobolev gradient that gH1,γ = ψN ;

This should apply a quick numerical scheme to approximate Sobolev gradient.
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