
The University of Manchester Research

Analysis of the Usage Models of System Memory
Management Unit in Accelerator-attached Translation Units
DOI:
10.1145/3422575.3422781

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Paraskevas, K., Iordanou, K., Luján, M., & Goodacre, J. (2020). Analysis of the Usage Models of System Memory
Management Unit in Accelerator-attached Translation Units. Paper presented at 6th International Symposium on
Memory Systems, Washington,DC, United States. https://doi.org/10.1145/3422575.3422781

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:30. Jun. 2022

https://doi.org/10.1145/3422575.3422781
https://www.research.manchester.ac.uk/portal/en/publications/analysis-of-the-usage-models-of-system-memory-management-unit-in-acceleratorattached-translation-units(cfc03054-c94c-4fd7-bdf9-3ad6c4641d1b).html
https://doi.org/10.1145/3422575.3422781

Analysis of the Usage Models of System Memory Management
Unit in Accelerator-attached Translation Units
Kyriakos Paraskevas

School of Computer Science
University of Manchester

United Kingdom
kiriakos.paraskevas@manchester.ac.uk

Konstantinos Iordanou
School of Computer Science
University of Manchester

United Kingdom
konstantinos.iordanou@manchester.ac.uk

Mikel Luján
School of Computer Science
University of Manchester

United Kingdom
mikel.lujan@manchester.ac.uk

John Goodacre
School of Computer Science
University of Manchester

United Kingdom
john.goodacre@manchester.ac.uk

ABSTRACT
Including hardware accelerators to improve the performance while
reducing energy consumption is becoming ubiquitous in comput-
ing systems ranging from large System-on-Chips (SoCs) for data
centers to small embedded IoT devices. In accelerator-enabled en-
vironments, accelerator units are able to deliver a substantial in-
crease in performance through increased programming effort and
co-scheduling applications across the heterogeneous system. These
accelerators need to have frequent access to the application data
through the memory subsystem and therefore the need for efficient
memory management is crucial. The memory subsystem needs
to maintain the model of memory consistency between context
switching, where resources such as accelerators are reallocated
between applications and their defined memory space.

The consistency between the processor memory management
and any SystemMemoryManagement Unit (SMMU) is either through
the pinning of physical memory to specific virtual pages statically,
or tracking page allocations dynamically and ensuring consistency
at point of use of the memory between applications. Although the
implication of these two methods has obvious consequences, the
full implications on maintaining consistency of such translations
have not been studied.

In this paper, we carry out use case measurements and analysis
of three of the main usage models focused specifically on SoC level
translation. We analyze the generic structure on SoCs given the
example of the Zynq Ultrascale+ FPGA board that incorporates
the state-of-the-art and widely used Arm System Memory Manage-
ment Unit. We share our analysis and present the advantages and
disadvantages to provide guidance in optimizing the integration of
accelerators in a system. We also propose a usage model to utilize
the embedded SMMU in order to enable accelerator devices to di-
rectly access application memory, through exposing a reusable API
specific to the Zynq Ultrascale+ hardware.

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in The International
Symposium on Memory Systems (MEMSYS 2020), September 28-October 1, 2020, Wash-
ington, DC, USA, https://doi.org/10.1145/3422575.3422781.

CCS CONCEPTS
• Computer systems organization → Embedded systems; •
Software and its engineering→ Software libraries and repos-
itories.

KEYWORDS
Arm SMMU, Memory management, Memory Virtualisation, Accel-
erators, FPGA, Memory isolation

ACM Reference Format:
Kyriakos Paraskevas, Konstantinos Iordanou,Mikel Luján, and JohnGoodacre.
2020. Analysis of the Usage Models of System Memory Management
Unit in Accelerator-attached Translation Units. In The International Sym-
posium on Memory Systems (MEMSYS 2020), September 28-October 1, 2020,
Washington, DC, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/
10.1145/3422575.3422781

1 INTRODUCTION
The wide adoption of heterogeneous architectures with accelerators
capable of offloading workloads from a general-purpose processor
led to increased application performance while reducing the energy
consumption [12] [4, 13, 20, 26]. In the simplest usage model, the
application running on the local processor utilizes the deployed
accelerator(s) to achieve higher performance [24, 31, 32], but at
the same time, the accelerator device might need to access or mod-
ify application data that reside in memory regions owned by the
application.

Since accelerators are capable of accessing the memory space,
the system must be able to cope with any malicious or accidental
memory accesses. In the case of a single user application running
on the system, there is no security or safety concern since most of
the system resources such as available memory belong exclusively
to the application, and it is assumed that it is the responsibility of
the application to make reasonable use of it. But in cases where
many applications are present in virtualized memory environments,
the memory access model should provide memory isolation and
guarantee non-interference between application’s separate virtual
address spaces, as shown in Figure 1. In such environments, accel-
erators may need to be redeployed fast to be assigned to multiple
users.

https://doi.org/10.1145/3422575.3422781
https://doi.org/10.1145/3422575.3422781
https://doi.org/10.1145/3422575.3422781

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA K. Paraskevas, K. Iordanou, M. Luján and J. Goodacre

Figure 1: The implementation of the Arm System Memory Man-
agement Unit (SMMU). Client devices (accelerators) are connected
through the memory interconnect to the SMMU in the upstream
bus. The connection between the SMMU and the rest of thememory
system is the downstream bus. When the SMMU is set, the client de-
vices agnostically issue transaction requests to the SMMU. After a
successful translation, the SMMU performs the memory access and
returns a valid response, or fault otherwise. (Source: ARM [7])

Therefore, some features must be provided to enable virtualisa-
tion of accelerators, similar to the virtualisation of CPU resources.
These include:

• Memory management, through the aspects of virtual mem-
ory and dynamic memory allocation-deallocation.

• Memory and hardware protection from malicious memory
requests.

• Support for multiple application scenarios.
Accelerator-attached translation units can provide these features
and have become widely popular. Dedicated management software
can set up these accelerator-attached translation units on the event
of user-switching. This enables multi-user support by providing
the user virtual mappings through page tables to the translation
units, while these units are protected by blocking any invalid or
not permitted memory accesses issued from the accelerators. On
the other hand, the solution to the general problem of maintaining
memory consistency of virtual mappings between the accelerator
translation units and the actual CPU MMU mappings in virtualised
memory environments is not trivial. Userspace memory can change
dynamically through allocations or deallocations, causing inconsis-
tencies between the mappings in the CPU MMU and the attached
translation units. This case raises questions regarding how user
page table updates are provided to the translation units. Currently,
it is addressed by pinning and updating the page tables on RAM
or through dynamic memory tracking. But even when page tables
are pinned, it is unclear how the hardware Translation Lookaside
Buffers (TLBs) in the translation units are being updated.

Our work presents the potential usage models of the main consis-
tency mechanisms, while trying to tackle the following questions:

• What are the implications of multiple applications running
on the system (multiple users of accelerators) in maintaining
consistency, through linking assets to virtual memory. An
example is to attach accelerators to the application and mak-
ing sure that any accesses to memory from the accelerators
are within the application virtual memory space.

• How virtual address consistency is achieved.
• How memory protection is provided through the isolation
of memory mastering devices.

Following extensive literature reviews, we found no analysis
of the performance or complexity evaluation of implementing the
aforementioned. We leverage the latest Xilinx Ultrascale+ FPGA
which includes the Arm SystemMemoryManagement Unit (SMMU)
and we exploit its capabilities to evaluate how it can satisfy the
needs of virtualisation. Additionally, other than measuring the time
required to set up the SMMU to align the accelerator access rights
with the applications address space, we also contribute by creating
a testbed on real hardware and measured the overhead of using the
memory management subsystem on this generic FPGA platform in
various scenarios. The modified CPU agnostic allocator driver and
the implemented library that utilizes the driver has been released
as a Bitbucket repository [19].

This paper is organised as follows: Section 2 provides a descrip-
tion of the main usage models of the IOMMU, while also discussing
some of the implications and challenges faced in various scenarios.
Section 3 presents the platform and the methodology used to meet
the demands of virtualisation in a widely used SoC-FPGA platform.
In Section 4 we present and discuss the results of the experiments,
in Section 5 we discuss issues on mapping consistency on hetero-
geneous systems, current approaches and system considerations
and lastly, in Section 6 we conclude with remarks and discuss our
next steps.

2 USAGE MODELS OF AN IOMMU
The fundamental purpose of an IOMMU is to allow DMA-capable
masters such as accelerators to move or access data within a spec-
ified memory space. These devices can access several IOMMUs
included in a system design. Their purpose is to provide system-
level protection rather than application-level protection. Several
IOMMU specifications were published such as Intel Virtualization
Technology for Directed I/O (Intel VT-d) [3, 22], AMD-Vi [5] or
Arm SMMU [7] that enable device virtualization by controlling
any inbound-outbound transactions to memory or system devices.
Vendors extend the concept of protection domains in which each
I/O device in the system can be assigned to a specific protection do-
main and a distinct set of page tables, shareable to applications that
belong to that domain. Each protection domain can be defined by a
set of translation-protection policies. When an I/O device attempts
to read or write system memory, the IOMMU intercepts the access,
determines the domain to which the device has been assigned, and
uses the TLB entries associated with that domain or the I/O page
tables associated with that device. That helps to determine whether
the access is to be permitted as well as the actual location in sys-
tem memory that is needed to be accessed. The OS can restrict the
device accesses to specific memory addresses by configuring the
IOMMU appropriately, thereby protecting the system from errant
[15] or malicious devices [11, 36] or even drivers that utilize system
devices which are malfunctioned. [14].

Figure 4 depicts the usage model where applications on the
local CPU are offloading computations to accelerators while also
accessing memory. In response, the DMA capable accelerators may

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

Memory

Translation Tables

SMMUSetup
Interface

Accelerator 1 Accelerator 2 Accelerator N. . .

TLBs

CPU
MMU

MMU driver

Application
1

Application
2

Application
N. .

C
on

si
st

en
cy

.

SMMU driver

OS (Kernel)

Setup
Interface TLBs

Figure 2: The implementation and utilization of the Arm hardware memory management units (in bold). Applications (on the bottom) are
using system calls to utilize the SMMU driver and register accelerators, as well as specialized malloc functions. The kernel utilizes the SMMU
driver to 1. bind-unbind accelerators to the application, 2. enable the accelerators to access the applications address space and to maintain
consistency between the application PA andVA addresses by pointing the SMMU to the application translation tables. 3. Dynamically associate
and de-associate resources on a context switch event. The SMMU extends the system security by blocking any illegal accesses issued to or from
the accelerators. The dashed arrow between the MMU on the Arm CPU and the SMMU highlights where the mappings consistency must be
present.

require access to the application memory space to read or modify
data. This depicts a usage model for both accelerators and SMMU.

In another usage model, accelerator cards have their own private
memory distributed to accelerator devices deployed in the card,
as shown in Figure 3. A memory management unit (MMU) can
be set up by a hypervisor to allow each accelerator to access a
specific portion of the private memory by pointing the SMMU to
pinned page tables in memory. When an accelerator is redeployed
to another application, or when multiple applications are using
multiple accelerators, the memory management unit blocks any
intrusions and ensures non-interference between the applications’
memory spaces.

This paper discusses three use cases: i) where SDSoC tool, pro-
vided by Xilinx, is used to create a project that the application uses
DMA to move data between buffers. ii) where I/O page tables are
separate page tables used by each I/O devices and managed by each
application. iii) where the OS exposes and provides the application
page tables used by the MMU on the CPU to the Arm SMMU while
also keeping them consistent throughout the application lifespan.
This is accomplished through our implemented framework. In each
case, the main questions are around the consistency model and how
memory virtualization is maintained.

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA K. Paraskevas, K. Iordanou, M. Luján and J. Goodacre

2.1 Maintaining consistency between
translation units

Any application access to memory is monitored by the processor
MMU. In case of violation, the application is terminated by the
OS. On the other hand, the accelerator devices deployed to the
application do not natively use the application page tables when
they access memory. Without any imposed restrictions, they can
access the whole memory space, causing significant security issues
in environments hosting many applications e.g. linux, by corrupt-
ing system memory or accessing memory of another application.
Monitoring of accelerator memory accesses requires additional
hardware through SMMUs that stand between the accelerator and
the memory system.

Problems of maintaining this consistent view of applicationmem-
ory mappings between MMU and SMMU occur due to the dynamic
memory allocation or deallocation throughout the application lifes-
pan. While the processor MMU is automatically updated, the trans-
lation unit may not. This can cause significant problems. If the
translation unit resources are not updated when any update on the
application page table occurs, the consistency is broken, and the
accelerator can now access memory that has been recently freed
by the application and could have been reallocated to another ap-
plication. Similarly, the translation unit could be unaware of any
new memory allocation to the application, and therefore block any
accelerator access to this memory.

Another challenge arises in the event of a context switch when
an accelerator device is reassigned to another application. In this
case, the software must ensure that the SMMU contains the new
applications page tables to enable accesses to the new application’s
memory space.

Accelerator 1 Accelerator 2 Accelerator N. . .

Accelerator 1 memory Accelerator 2 memory Accelerator N memory

Accelerator card

Memory

PCI interface

SMMU

Page tables

Figure 3: An overview of a SMMU usage model. Deployed acceler-
ators on an FPGA accelerator card need to access local memory re-
sources. The memory can be partitioned to accelerators by loading
the page tables to a SMMU

2.1.1 Coherent page tables. In a coherence-enabled system, the
TLBs are considered coherent with a page table in memory if each
mapped entry of the TLB refers to the same place where the corre-
sponding entries in the page table data reside. Multiple TLBs for
example, the TLBs of the SMMU and the TLBs in the processor
MMU are considered coherent with each other if each TLB has a
coherent view of the same page table. UNITD [28] is a unified hard-
ware coherence framework that integrates translation coherence
into the existing cache coherence protocol. In UNITD coherence
protocols, the TLBs participate in the cache coherence protocol
just like the instruction and data caches, without requiring any
changes to the existing coherence protocol, but without provision
for virtualized systems and also high energy consumption. HATRIC
[38] provides translation coherence atop existing hardware cache
coherence protocols but it requires modifications to the translation
structures such as TLBs and MMU caches. Generally, coherence be-
tween translation structures require complex hardware and is also
not practical in heterogeneous NUMA systems with frequent page
remapping. The Zynq Ultrascale+ does not provide any coherent
TLBs or coherent page table walker.

2.1.2 Software-based consistency. It is known that the coherence
of I/O TLBs with their associated page tables can be maintained
through software, a common practice. Software maintenance of
coherence consumes significant processor cycles, affecting perfor-
mance. It is therefore desirable to improve, indeed automate, the
maintenance of TLB coherency. I/O page tables can be maintained
by the guest OS, but any update triggers a series of actions. In case
of any memory-related event, the page table is updated. Due to
the lack of coherence between TLBs, the TLBs of the accelerator-
attached translation units need to be invalidated. The Arm SMMU
contains specific registers that invalidate the TLBs of a selected
context bank. That also means that software on the host OS or the
hypervisor is responsible for the bookkeeping of the contents on
each context bank, invalidating when necessary. For example, in
the case when freeing a buffer, or when a context switch occurs
and another application uses the accelerators.

2.1.3 The Distributed Virtual Messaging bus. Lastly, Arm imple-
ments the Distributed Virtual Memory or DVM, as part of the
AMBA 4 ACE protocol [30]. DVM messages are generated from
a DVM source, such as an Arm CPU, and are broadcast to other
compatible DVM destinations for example, to the SMMU. The DVM
messages are distributed by a coherent interconnect and/or a DVM
network. Responses from the DVM sources or destinations are
merged into a single response, which is returned to the sending
DVM source. In the Zynq Ultrascale+, the DVM bus can be used to
broadcasting TLB maintenance operations to the SMMU. Clearing
TLB entries through broadcast messages can improve system per-
formance by freeing-up TLB entries compared to memory-mapped
invalidations, through automatic message broadcasts issued by the
CPU. Unfortunately, it is unclear how to enable the interface in the
Zynq Ultrascale+. For that reason, software managed invalidations
through writes to the SMMU registers are used instead.

Table 1 displays the methods for achieving mapping consistency,
along with the latency and implementation complexity factors.

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

Latency Complexity
Distributed Virtual Messages Low Medium
Software Solution (framework) High Small
Coherent page tables Low Large

Table 1: Adisplay of themethods for achievingmapping con-
sistency between the units. The factors of functional latency
and the implementation complexity are shown.

2.2 Multi-tenancy on FPGAs
In addition to maintaining memory consistency between applica-
tions in a virtual memory environment and an accelerator, this
issue is further compounded when the machine is further parti-
tioned to support multiple independent tenants, each with their
own independent virtualized memory environment.

In such environments, access control has been an important
aspect of resources deployed in the cloud system for security and
management purposes. It is often addressed with various ring level
privileges for stakeholders provided by Virtual Machine Monitors
(VMMs) and run-time systems [10, 18, 34]. These hypervisors man-
age a two-stage memory management translator. This translator
provides a two-stage translation that allows the hypervisor to con-
trol a view of memory in a VM through intermediate translations.

Recent implementations of FPGA runtime systems have pro-
vided multi-tenanted placement of FPGA accelerators but have
not provided security mechanisms to protect from rogue hardware
elements [8, 23] yet. In [23] Ng et al. provided FPGA memory vir-
tualization via the implementation of an MMU attached to a PCIe
bus. This enables memory translation for the FPGA accelerators but
without the provisioning of multiple partial reconfigurable FPGA
regions. In addition, this approach consumes FPGA resources and
increases latency due to low clock speed achieved for the MMU on
the FPGA. In [8], memory virtualization and isolation is achieved by

CPU

MMU

App App

App App

Application memory space

Accelerators

Computations offload
to accelerators

Application memory
accesses

Accelerator memory
accesses

Figure 4:An overview of another accelerator usagemodel. Applica-
tions on local CPU are offloading computations to accelerators and
also access data on memory. Accelerators may also need to access
or modify the application data

using Isolators and ID checkers on the PCIe bus. An improved ap-
proach is to use the hardware I/O Memory Management Unit, such
as System Memory Management Unit (SMMU) [6], that provides
virtualization and protection facilities between system components.

FPGA hardware security for multi-tenanted heterogeneous sys-
tems is still an open research area. Integrating FPGAs into multi-
tenanted heterogeneous systems along with CPUs and GPUs is
opening a large surface of attack which needs to be studied inten-
sively. Attacks are ranging from Denial-of-Service attacks [9, 17],
which can bring down FPGA services, to remote side-channel at-
tacks [16, 27, 29, 39], which aim at stealing data from other users in
multi-tenanted environments. Malicious users have utilised the abil-
ity of FPGA dynamic reconfiguration to launch such attacks. From
a practical point of view, using a SMMU protects against unautho-
rized accesses to sharedmemory. This concept has been successfully
exposed recently in multi-tenant enabled frameworks[25, 33], but
without provision for mapping consistency in cases of dynamic
changes in application memory mappings.

We expect that the analysis and the conclusions drawn on a single
translator can be directly applicable to such two-stage translators,
improving memory performance.

3 DESIGN METHODOLOGY
To evaluate the use cases and expose any implications of maintain-
ing mapping consistency in each of the three cases, we selected the
Zynq Ultrascale+ FPGA as a modern integrated device, it is widely
used from many users, and it incorporates a hard block of the Arm
SMMU that can be set to meet the demands of virtualized memory
environments. The CPU of the MPSoC runs on 1.2 GHz. The SMMU
was designed to use I/O page tables pinned on memory, but through
our implemented framework in the third case, we are able to expose
the user application page tables used by the local processor, while
maintaining the mapping consistency in every case.

3.1 Using the SDSoC
SDSoC Development Environment is a platform from Xilinx [1]
which provides easy development of applications for heteroge-
neous Zynq SoC and MPSoC deployment. SDSoC offers application
and system level profiling, automated software acceleration in pro-
grammable logic, automated system connectivity generation, and
ready-to-use libraries that offer to developers the opportunity to
implement SW/HW co-design solutions. For end-users SDSoC is an
HDL based on C-Code and uses PRAGMA directives to direct the
compilation and synthesis of the hardware kernel or to optimise the
function of the data mover operating between the processor and
the hardware logic. By specifying the board type and the operating
system (bare-metal environments, linux or a FreeRTOS real-time
operating system), the user can create a project. All the device
drivers are handled by the tool. In addition the communication
between the Processing System (PS) side and the Programmable
Logic (PL) side, is generated from the development environment.

The SDSoC Development tool uses the notion of data movers in
order to move data from the PS to PL. Typically every data mover
is defined by the amount of data that is responsible to transfer,
the access pattern expectations that the hardware function creates,
and the characteristics of the memory being transferred. The users

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA K. Paraskevas, K. Iordanou, M. Luján and J. Goodacre

of the tool can specify the behavior of the data movers by setting
PRAGMA in their source code. For instance, there are PRAGMA that
specify that the hardware function will access the data from shared
memory through an AXI master bus interface. It is obvious that this
environment provides an enhanced advantage to the developers
and tackles the problem of generating the peripheral components
in order to create all the levels of an SW/HW co-design [2].

3.2 Leveraging the Arm System Memory
management Unit

The SMMU core is an industrial standard provided byArm [6]which
provides a common view on the memory to all system components
and that takes charge of all memory management issues including
caching and memory virtualisation.

It is an Arm implementation of an IOMMU [6], a computer hard-
ware unit in which all memory references pass through, performing
the translation of virtual memory addresses to physical addresses
and providing at the same time memory protection and isolation
when configured. If left unconfigured, no checks are performed
and the SMMU is essentially bypassed. The SMMU implementation
in Zynq Ultrascale+ supports a 48-bit physical address width in
various page size granularities. It performs address translation of
an incoming AXI address and AXI ID (mapped to context) to an
outgoing physical address. It also supports the concept of transla-
tion regimes such as two-stage translation which can be set up by
hypervisors.

Each client SoC device to the SMMU generates a StreamID which
is unique for each client device and may be associated with an
SMMU context (the context bank) that contains the configuration
of the SMMU on how transactions should be processed. The imple-
mentation on the Ultrascale+ supports 16 context banks. Stream
matching is used to find the appropriate context for a particular
StreamID inside the SMMU. By inserting StreamIDs in different
Stream Match Registers (SMR), the dynamic association of SMR
registers to different context and lastly the ability of having a dif-
ferent setup for each context are allowing us to achieve several
configuration combinations, such as fully isolated contexts or even
shared memory regions between client devices. In Ultrascale+, 48
such registers have been implemented. The Arm SMMU driver is
responsible for the handling of the SMMU. It can also call functions
that create I/O page tables and I/O groups, implemented for the Arm
architecture. These groups are the smallest sets of devices which
can be considered isolated from the perspective of the IOMMU.
Devices within a group can also share the same page tables.

Since all transactions to and from the accelerator devices pass
through the SMMU, we ran measurements using the Integrated
Logic Analyzer (ILA) to check if the usage of the SMMU induced
any overhead. The ILA is a customizable IP core that monitors the
signals in a hardware design. We monitored the signals responsible
for the initiation and completion of a transfer, and compared them
versus a design where the SMMU was set to bypass.

3.3 Utilising the Virtual Function
Input-Output (VFIO) framework

The linux kernel includes a Virtual Function Input-Output (VFIO)
driver that enables us to virtualise and expose direct device access in

userspace. We choose to enable this framework and see how it can
satisfy the needs of virtualisation andmemorymapping consistency.
The VFIO [21] [35] driver is an IOMMU/device agnostic framework
for exposing direct device access to userspace in a secure IOMMU
protected environment. It allows the modern IOMMUs to drive a de-
vice directly from the userspace without any additional specialized
kernel drivers. The framework is utilizing the Arm SMMU API, an
implementation specific to the Arm architecture. The API enables
device region mapping and DMA mapping. Before the user can set
up the VFIO to bind a device to a virtual machine or a userspace
driver, all the devices that are under the same IOMMU group must
be unbound from the host kernel and their respective drivers and
bind to the VFIO. A description of the VFIO flow can be found on
[21]. It can be considered as an extension of the aforementioned
"group" concept of the IOMMUs, by implementing the concept of
"containers". Several groups can be added to a single container and
share the same configuration or page tables. We used VFIO because
of its user friendly interface that makes use of the SMMU driver
and it can also satisfy the needs for virtualization on heterogeneous
systems.

3.4 The FPGA hardware design
The testbench hardware design deployed on FPGA was imple-
mented in Vivado[37], a software suite by Xilinx for synthesis
and analysis of Hardware Description Language (HDL) designs. An
overview of the designs is found in Figure 5. We leverage the accel-
erator IP generated by the SDSoC tool to compare the performance
between use cases. The aim is to retain the same application func-
tionality as if using the SDSoC, while measuring the performance
(execution time) of the application.

The design contains the generated IP, which is an IP block that
does DMA transfers. The accelerator is using I/O virtual addresses
that correspond to DMA buffers allocated by the application. The
addresses are being translated by the SMMU before reaching the
physical address. To measure the impact of using the SMMU in
system performance, an ILA core was deployed to measure the
latency of the issued transactions by the accelerator.

3.5 A direct approach
In conjunction with the aforementioned hardware, we designed a
framework that provides to accelerator devices secure and direct
access to the virtual address space of the application. While most
of the aforementioned hardware capabilities have been discussed
by various researchers and engineers in several online forums, our
work integrates them into a usable framework providing a rich and
expanding tool that can be used in any potential usage model. The
framework includes both kernel drivers and userspace libraries.
The kernel driver can be called by the wider application flow to
request and associate resources to the application by satisfying any
requirements for consistency.

The testbench application utilizes the framework to bind accel-
erator devices to it and to allocate heap memory, through standard
malloc() and free() functions, that is consistent with the accelerator
memory view. In our testbench, the application configures the accel-
erator to do DMA transfers between two buffers on the application
virtual address space. To deploy the framework we used Xilinx

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

Petalinux, which includes a tool to customize, build and deploy
embedded linux solutions on Xilinx processing systems. We used
the linux image provided by Xilinx and customized it by adding
our framework. The following sections describe each framework
component and the challenges addressed.

3.5.1 Kernel Driver. The driver layer provides an interface to al-
locate and associate resources such as memory and accelerator
device stream mappings to the application. The driver creates a
mmap endpoint in the /dev file system that is restricted to those
accelerators owned by the user. The driver is responsible for:

• Associating new StreamIDs or invalidating existing entries
in the SMR registers of the SMMU.

• Configuring the page table pointer of a particular SMMU
context to point to the exposed application page table on a
similar way to a context switch.

• Setting the appropriate cacheability attributes for the user
page table. This is exceptionally useful in cases where cache
coherence is needed. By changing the cacheability attributes
of a page table, the behaviour of data accesses is changed
and any modification on the data can be coherent with the
CPU caches.

• Flushing the page table from the CPU cache, due to lack of
coherent page table support by the platform. By default, the
page table structure is cacheable. This poses a concern for
the memory mapping when other translation units try to
access it, or when it is modified, as argued below.

During the SoC design process, IOMMU implementations such
as the SMMU on the ZynqMPSoC utilize a non-coherent Page Table
Walker (PTW). This decision is usually taken to conserve resources
on the die as the coherency mechanisms require additional com-
plexity in the cache coherent interconnect. In addition, memory
regions accessed via the IOMMU are usually static and long-lived in
e.g., kernel allocated ring buffers for devices and also, the memory
regions committed to the accelerators are usually non-cacheable
and therefore coherency of the PTW is deemed unnecessary. This
poses a challenge when providing accelerator access to userspace
memory where allocations can be dynamic during the life cycle of
the application. To overcome this we provide the userspace with
an API for page table management.

3.5.2 Userspace library. The userspace library utilizes the kernel
driver and implements the API that is exposed to the user. The user
can use the library to bind to the endpoint created by the driver
and wraps a number of system calls to provide an abstraction. The
purposes of the library are to:

• Create handles that are used to associate the application
page table and accelerators to the SMMU.

• Allocate and pin cacheable memory that can be coherently
used by both application and accelerators.

• Free and de-associate application memory and accelerators.

The user-level library utilizes the driver to extend the functionality
of the malloc() and free() functions so that any modifications to the
application memory space are also consistent with the SMMU.

ARM Cortex A53 FPGA

Application

Our framework
(API + driver)

Kernel

Cache Coherent Interconnect (CCI-400)

System Memory

AXI transactions

AXI transactions

DMA engine
accelerator

SMMU

Figure 5: A depiction of the hardware design. An accelerator de-
vice (Xilinx Central DMA IP) is deployed on FPGA. The application
running on local CPU (A53) is configuring the accelerator device to
issue DMA transfers within the application virtual address space.
The configured SMMU proceeds with the translation of the virtual
addresses into physical. The Cache Coherent Interconnect fetches
the requested data directly from the processor cache if cached, or di-
rectly from the systemmemory, and updates the cache accordingly.

4 EVALUATION
The main contribution of this paper is to evaluate the functionality
and performance in every design methodology that described in the
previous versions. In parallel, we explore how the necessary mem-
ory mapping consistency between translation units is achieved by
each framework, an also see how multi-tenancy requirements can
be satisfied. It is also important to measure any induced overhead
when using the SMMU, by monitoring the memory transactions
issued by accelerators. We, therefore, evaluate the following use-
cases:

(1) Device memory allocation using the Xilinx SDSoC develop-
ment environment.

(2) Device memory allocation using the VFIO framework to
attach hardware devices to applications and allocate memory.
This method creates I/O page tables used by the device.

(3) Allocating memory through our implemented framework.
In this case, the device can access application memory di-
rectly, without any additional buffers, by using the existing
application page tables.

4.1 Use-cases
In this section, we present, explore, and quantify the different design
methodologies discussed in the previous sections by implement-
ing simple use-cases. We measure the induced latency of binding

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA K. Paraskevas, K. Iordanou, M. Luján and J. Goodacre

devices, allocating memory and setting up the SMMU, to measure
different parameters of the design and quantify the user effort of
every approach.

The target of this use-case is not to create a computationally
intensive hardware accelerator but a simple design that will help
us to explore the memory limitations and apply the design method-
ologies. For our experiments we implemented a simple hardware
accelerator which copies an array of integers from one memory
location to another. Specifically, on the software side of the test-
bench application we allocate two buffers of twenty 4K pages each,
with data. The hardware side retrieves the buffer and copies the
data to another buffer. After this step, the application reads the data
written to the destination buffer to ensure that the data is written
correctly.

Figure 6 presents a breakdown of the application total running
time for each of the three use cases. The measurements are in-
dicative of the overheads of the testbench application that do data
copying by using DMA accelerators. Each use case is described in
the following paragraphs.

SDSoC Implementation. As mentioned above, SDSoC is the
state-of-the-art tool from Xilinx. With this approach, we port the
application to the tool’s editor and the tool decides on the number of
DMAs that will be used, automatically instantiates them, and moves
the data from software to hardware. For our design we allocate
our buffers with the sds_alloc which yields better performance
due to the data being allocated and stored in physically contiguous
memory. We allocated physically separated contiguous memory
spaces for each buffer. The sds compiler creates separate DMAs for
each buffer in order to improve the performance. The compiled C
code which produces the hardware IP is shown below. For this case,
the latency of using the sds_alloc function is measured.

#pragma SDS da t a zero_copy
(i n p u t P t r [0 : ARRAY_SIZE] ,
o u t pu t P t r [0 : ARRAY_SIZE])

void simpleDMA (in t i n pu tP t r , in t ou t pu t P t r)
{

in t buf [ARRAY_SIZE] ;
/ / copy t h e da ta from th e f i r s t b u f f e r
for (in t i = 0 ; i < ARRAY_SIZE ; i ++)

buf [i] = i n p u t P t r [i] ;
/ / copy t h e da ta t o t h e s e c o nd b u f f e r
for (in t j = 0 ; j < ARRAY_SIZE ; j ++)

ou t pu t P t r [j] = buf [j] ;
}

Listing 1: The C code compiled by the sds compiler to gen-
erate the hardware design. The pragma SDS data zero_copy
means that the hardware function accesses the data directly
from shared memory through an AXI master bus interface.

VFIO and I/O page tables. In this use case, we used the hard-
ware IP generated by Vivado High Level Synthesis tool and used
by the SDSoC, to achieve identical functionality compared to the

SDSoC implementation described above. An application was inte-
grated on Petalinux with the same source code as on the SDSoC
case. Since setting up the SMMU and the devices required ioctl()
system calls, we measured the individual latency for setting up the
VFIO framework and binding the devices to it. That includes:

(1) The setting up the VFIO framework to be used by the de-
vice. This latency occurs only once in the beginning of the
application.

(2) The latency of binding accelerator devices to the VFIO driver
and to the testbench application.

It was also important to measure the latency of mapping and
pinning or unmapping memory buffers.

Application native page tables - The direct approach. Lastly,
in this case we demonstrate the capabilities of our implemented
framework. For results to be consistent, we used the same hardware
design as in the previous cases. We modify the application page
tables and expose them directly to the SMMU. The difference in
this approach is the bypass of software layers, such as the creation
of new I/O page tables and the association of these to the SMMU.
Instead, the application uses the userspace API to:

• Create "handles" that contain a pointer to a buffer, the size of
the buffer as well as the value of the StreamID. The StreamID
is exposed by combining the base address of the FPGA port
with the value provided in the Zynq Ultrascale+ Technical
Reference Manual. The PS interconnect assigns the master
ID bits and transfers these bits on the AxUSER bits of the
associated AXI transaction.

• Configuring the page table pointer of the SMMU context
that the application is using. Upon completion, the pointer
points to the exposed application page table on a similar way
to a context switch.

• Setting the appropriate cacheability attributes for the pages
on the user page table. This is exceptionally useful in cases
where cache coherence is needed. By changing the cacheabil-
ity attributes of a page table, the behavior of data accesses
is changed. For instance, the pages can be marked as device
memory type, which by default is non cacheable, or normal
type, that stands for normal cacheable memory.

• The last and most important step is the flushing of the page
table from the CPU cache, due to lack of memory coherence
support by the platform. By default, in contrast to I/O page
tables, the application page table structure is cacheable. This
poses a concern for the memory mapping when other trans-
lation units try to access it, or when it is altered, breaking
the mapping consistency between the translation units.

We measure the latency of using the driver, by putting times-
tamps before and after using our API, that corresponds to the time
required to allocate memory, register the device to the application
and unmap the memory.

Lastly, by using the ILA deployed in the design we monitored the
signals of a DMA transaction to measure the impact of using the
SMMU. Table 2, presents the results of DMA iterations on the same
source and destination buffer. It shows that for the very first trans-
action of a DMA transfer that is consisted of many transactions,
the latency of the first transaction is almost five-fold higher than

https://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA
ex

ec
ut

io
n

tim
e

in
 u

s

0

2500

5000

7500

10000

SDSoC VFIO Direct

(a) SDSoC, achieves a 12-fold decrease in total execution time

%
 b

re
ak

do
w

n
of

 to
ta

l e
xe

c
tim

e

0%

25%

50%

75%

100%

SDSoC
total exec time:

723 us

VFIO
total exec time:

9015 us

Direct
total exec time:

1660 us

Application Body Hardware call Unmap
buffer allocation and Device Binding

(b) Breakdown of the total execution time

Figure 6: Total execution time of the three use cases and a % breakdown of the total execution time

With SMMU (ns) Without translation (ns)
First transaction ∼900 ∼200
Next transaction ∼200 ∼200

Table 2: The overhead of using the SMMU. In the first iteration of
a DMA transfer, DMA read was completed in 90 PL cycles (900 ns to-
tal, 10 ns per cycle using a 100 Mhz clock) on average, where all fol-
lowing iterations took 20 cycles (200 ns) to complete. When SMMU
is not used, the completion times are identical, but the anomaly of
the first iteration is absent.

the rest. This is attributed to the page fault that triggers the SMMU
to fetch the page table that the table pointer points to. After the
first "cold miss", all the following transactions take the same time
as if the SMMU was not configured. In the latter case, all the trans-
actions would again go through the SMMU, without any checking
or translation.

5 DISCUSSING THE RESULTS
This section will expose the implications and the consequences of
maintaining the mapping consistency across the use cases described
above. We will also discuss and present the advantages and disad-
vantages for each aforementioned use case, providing guidance in
optimizing the integration of accelerators in a system.

In Figure 6(a), there is a large differentiation in the total execution
time measured in each case. Breaking down this time reveals that:

• The SDSoC provides the best performance. The total execu-
tion time is the lowest of all three cases, while still providing
memory virtualisation through the SMMU. While the exact
mechanism of binding accelerator devices to applications is
unclear, the sds_alloc() function utilises the Arm drivers to
map and pin memory to the application. Also, the SDSoC de-
ploys additional data movers to ensure optimal performance.
This explains why the execution time of the application body
is lower than the other cases, something verified by the ILA
core deployed in the hardware design.

• VFIO consumes a considerable amount of the total execu-
tion time in memory and device mapping to the application.
Ioctl and mmap system calls are used to map, pin and mark
memory buffers as DMA, initiate the VFIO, unbind devices
from their associated drivers to bind them to VFIO so that,
in turn, be mapped to the user application.

• Our direct approach provides direct access of application’s
memory space to accelerators, while leveraging the SMMU
to prevent memory corruption. Themeasured execution time
of the application body is identical to the VFIO use case, since
they share the same hardware, but the total execution time
is lower compared to VFIO. This is attributed to the removal
of redundant system calls, such as mapping and marking
memory as DMA. It is also possible though to meet the low
application body execution time of the SDSoC approach, by
also using additional hardware such as data movers.

5.1 Achieving mapping consistency
All use cases were able to maintain mapping consistency. The Ul-
trascale+ platform does not provide a coherent PTW that can track
any page table changes, therefore, the utilised SMMU relies on the
SMMU driver provided by Arm for any invalidation. The driver can
invalidate a range of entries or all the entries inside a TLB. After
invalidation, any page fault will trigger a PTW to update the TLB
with the missing translation information. This stalls the transaction
for 700 nanoseconds, as measured.

For the SDSoC, Xilinx provides a level of abstraction to the user,
between the communication of the software and the hardware
through data movers. Due to the nature of the SDSoC, it is not
trivial to track the system calls when using the sds_alloc, since
Xilinx uses the xlnk drivers. The memory management, accelerator
control and the data movement performed from the SDSoC tool
without any end-user involvement. The tool through its compiler
interacts with the SMMU driver to set it up, achieving a software
mapping consistency.

In our direct approach, the implemented framework is using a
custom driver to manage the SMMU. Whenever the application

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA K. Paraskevas, K. Iordanou, M. Luján and J. Goodacre

leverages our API, the driver keeps the mapping consistency by
flushing any page table entries out of the cache, and invalidating
the TLBs on the SMMU. Instead of mapping DMA memory, a costly
procedure, we allocate memory from the heap. This is a much faster
approach than both the VFIO and the SDSoC approach, where
mmap and file descriptors are used instead. However, flushing the
application page tables takes a 97% (1.26 out of the 1.3 milliseconds)
of the total time required to allocate buffers and bind the device.
Nevertheless, albeit slower than the SDSoC use case, is much faster
than if VFIO was used.

5.2 Enabling memory virtualisation
The reason why both SDSoC and VFIO are allocating DMA-mapped
memory instead of directly accessing application memory is the
SMMU itself. The main reason of using the SMMU is to prevent
memory corruption, rather than accelerating access. This satisfies
the needs of memory virtualisation, but at a performance cost due
to the system calls required. Instead, the direct approach utilises the
SMMU to provide direct access of memory to accelerator devices
through our API. Additionally, the direct approach provides a good
compromise between performance and flexibility. The API can be
used by a scheduler to support acceleration binding to multiple
applications running on the system, a feature of the VFIO, while
removing much of the VFIO induced overhead. We therefore hope
that it can be useful on many cases, as argued in Section 6.

6 CONCLUSIONS - FUTUREWORK
Concluding, the SDSoC is a potent tool that can ease the program-
ming effort to generate a optimised system design that meets the
specific application need. However, there is no native provision for
virtualisation due to the restrictive nature of the drivers provided
by Xilinx. It also requires the movement of data between buffers
during allocation. On the other hand, VFIO is a more flexible in-
terface that can be used to share a FPGA across Virtual Machines.
However, it is much slower since it heavily relies on system calls to
make memory available to accelerators as well as to bind devices
to applications.

Lastly, the direct approach that we propose is able to merge
accelerator memory access with the actual memory space of an
application, removing the cost of setting up and tearing down the
bindings, while enabling virtualisation by setting up and using
the SMMU. The accelerator is able to interact directly or through
additional data movers to further optimise the application as done
in SDSoC. With the application memory space accessed directly
rather than using dedicated buffers we remove the overhead from
buffer allocation and memory registration required when using a
DMA engine. We also released a git repository [19] of the direct
scenario to act as template for the development community. As a
future work, it will be interesting to see how our proposed direct
method can be overlaid into the VFIO framework. The benefits of
VFIO can then be extended to support the direct placement of page
mappings, merging the full flexibility of VFIO regarding virtualised
memory mapped environments with the benefits of direct memory
mapping.

REFERENCES
[1] [n.d.]. SDSoC Development Environment Guide. https://www.xilinx.com/support/

documentation/sw_manuals/xilinx2017_4/ug1027-sdsoc-user-guide.pdf
[2] [n.d.]. SDSoC Environment Optimization Guide. https://www.xilinx.com/

support/documentation/sw_manuals/xilinx2017_2/ug1235-sdsoc-optimization-
guide.pdf

[3] Darren Abramson, Jeff Jackson, Sridhar Muthrasanallur, Gil Neiger, Greg Regnier,
Rajesh Sankaran, Ioannis Schoinas, Rich Uhlig, Balaji Vembu, and John Wiegert.
2006. Intel Virtualization Technology for Directed I/O. Intel technology journal
10, 3 (2006).

[4] Amazon. [n.d.]. Amazon EC2 F1 Instances. ([n. d.]). https://aws.amazon.com/
ec2/instance-types/f1/

[5] I AMD and O Virtualization. 2007. Technology (IOMMU) Specification. (2007).
[6] ARM. [n.d.]. System Memory Management Units. ([n. d.]). https:

//developer.arm.com/ip-products/system-ip/system-controllers/system-
memory-management-unit

[7] ARM-Holdings. 2013. ARM system memory management unit architecture
specification—SMMU architecture version 2.0.

[8] Mikhail Asiatici, Nithin George, Kizheppatt Vipin, Suhaib A Fahmy, and Paolo
Ienne. 2017. Virtualized Execution Runtime for FPGA Accelerators in the Cloud.
IEEE Access 5 (2017), 1900–1910.

[9] C. Beckhoff, D. Koch, and J. Torresen. 2010. Short-Circuits on FPGAs Caused by
Partial Runtime Reconfiguration. In FPL. https://doi.org/10.1109/FPL.2010.117

[10] S. Byma, J. G. Steffan, H. Bannazadeh, A. L. Garcia, and P. Chow. 2014. FPGAs
in the Cloud: Booting Virtualized Hardware Accelerators with OpenStack. In
FCCM.

[11] Brian D Carrier and Joe Grand. 2004. A hardware-based memory acquisition
procedure for digital investigations. Digital Investigation 1, 1 (2004), 50–60.

[12] Fabien Chaix, Aggelos Ioannou, Nikolaos Kossifidis, Nikolaos Dimou, Giorgos
Ieronymakis, Manolis Marazakis, Vassilis Papaefstathiou, Vassilis Flouris, Mi-
hailis Ligerakis, Georgios Ailamakis, et al. 2019. Implementation and impact
of an ultra-compact multi-FPGA board for large system prototyping. In 2019
IEEE/ACM International Workshop on Heterogeneous High-performance Reconfig-
urable Computing (H2RC). IEEE, 34–41.

[13] Seonil Choi, Ronald Scrofano, Viktor K. Prasanna, and Ju-Wook Jang. 2003.
Energy-efficient Signal Processing Using FPGAs. In FPGA. https://doi.org/10.
1145/611817.611850

[14] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson Engler.
2001. An empirical study of operating systems errors. In Proceedings of the
eighteenth ACM symposium on Operating systems principles. 73–88.

[15] John Criswell, Nicolas Geoffray, and Vikram S Adve. 2009. Memory Safety for
Low-Level Software/Hardware Interactions.. In USENIX Security Symposium.
83–100.

[16] Ilias Giechaskiel, Kasper B. Rasmussen, and Ken Eguro. 2018. Leaky Wires:
Information Leakage and Covert Communication Between FPGA Long Wires. In
ASIACCS.

[17] D. R. E. Gnad, F. Oboril, and M. B. Tahoori. 2017. Voltage Drop-based Fault
Attacks on FPGAs using Valid Bitstreams. In FPL.

[18] J.Weerasinghe et al. 2016. Network-Attached FPGAs for Data Center Applications.
In FPT. https://doi.org/10.1109/FPT.2016.7929186

[19] Andrew Attwood Kyriakos Paraskevas. 2018. arm-user-space-page-table-
project. https://bitbucket.org/kiriakos1992/arm-user-space-page-table-project/
src/master/.

[20] Iakovos Mavroidis, Ioannis Papaefstathiou, Luciano Lavagno, Dimitrios S
Nikolopoulos, Dirk Koch, John Goodacre, Ioannis Sourdis, Vassilis Papaefstathiou,
Marcello Coppola, andManuel Palomino. 2016. ECOSCALE: Reconfigurable Com-
puting and Runtime System for Future Exascale Systems. In DATE.

[21] Antonios Motakis, Alvise Rigo, and Daniel Raho. 2014. Platform device assign-
ment to KVM-on-ARM virtual machines via VFIO. In 2014 12th IEEE International
Conference on Embedded and Ubiquitous Computing. IEEE, 170–177.

[22] Jun Nakajima. 2007. Intel virtualization technology roadmap and VT-d support
in Xen. Intel Open Source Technology Center (2007).

[23] Ho-Cheung Ng, Yuk-Ming Choi, and Hayden Kwok-Hay So. 2013. Direct Virtual
Memory Access from FPGA for High-productivity Heterogeneous Computing.
In FPT.

[24] Kyriakos Paraskevas, Nikolaos Chrysos, Vassilis Papaefstathiou, Pantelis
Xirouchakis, Panagiotis Peristerakis, Michalis Giannioudis, and Manolis Kateve-
nis. 2018. Virtualized Multi-Channel RDMAwith Software-Defined Scheduling.
Procedia Computer Science 136 (2018), 82–90.

[25] Khoa Dang Pham, Kyriakos Paraskevas, Anuj Vaishnav, Andrew Attwood, Malte
Vesper, and Dirk Koch. 2019. ZUCL 2.0: Virtualised Memory and Communication
for ZYNQ UltraScale+ FPGAs. In FSP Workshop 2019; Sixth International Workshop
on FPGAs for Software Programmers. VDE, 1–9.

[26] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou, Kypros Con-
stantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth
Gopal, Jan Gray, Michael Haselman, Scott Hauck, Stephen Heil, Amir Hormati,
Joo-Young Kim, Sitaram Lanka, James Larus, Eric Peterson, Simon Pope, Aaron

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug1027-sdsoc-user-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug1027-sdsoc-user-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_2/ug1235-sdsoc-optimization-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_2/ug1235-sdsoc-optimization-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_2/ug1235-sdsoc-optimization-guide.pdf
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://developer.arm.com/ip-products/system-ip/system-controllers/system-memory-management-unit
https://developer.arm.com/ip-products/system-ip/system-controllers/system-memory-management-unit
https://developer.arm.com/ip-products/system-ip/system-controllers/system-memory-management-unit
https://doi.org/10.1109/FPL.2010.117
https://doi.org/10.1145/611817.611850
https://doi.org/10.1145/611817.611850
https://doi.org/10.1109/FPT.2016.7929186
https://bitbucket.org/kiriakos1992/arm-user-space-page-table-project/src/master/
https://bitbucket.org/kiriakos1992/arm-user-space-page-table-project/src/master/

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

Smith, Jason Thong, Phillip Yi Xiao, and Doug Burger. 2014. A Reconfigurable
Fabric for Accelerating Large-scale Datacenter Services. In ISCA.

[27] Chethan Ramesh, Shivukumar B. Patil, Siva Nishok Dhanuskodi, George Prove-
lengios, Sébastien Pillement, Daniel Holcomb, and Russell Tessier. 2018. FPGA
Side Channel Attacks without Physical Access. In FCCM.

[28] Bogdan F Romanescu, Alvin R Lebeck, Daniel J Sorin, and Anne Bracy. 2010. UNi-
fied instruction/translation/data (UNITD) coherence: One protocol to rule them
all. In HPCA-16 2010 The Sixteenth International Symposium on High-Performance
Computer Architecture. IEEE, 1–12.

[29] F. Schellenberg, D. R. E. Gnad, A. Moradi, and M. B. Tahoori. 2018. An Inside Job:
Remote Power Analysis Attacks on FPGAs. In DATE.

[30] Ashley Stevens. 2011. Introduction to AMBA® 4 ACE™ and big. LITTLE™
Processing Technology. ARMWhite Paper, CoreLink Intelligent System IP by ARM
(2011).

[31] Anuj Vaishnav, Khoa Dang Pham, and Dirk Koch. 2019. Heterogeneous Resource-
Elastic Scheduling for CPU+ FPGA Architectures. In Proceedings of the 10th
International Symposium on Highly-Efficient Accelerators and Reconfigurable Tech-
nologies. 1–6.

[32] A. Vaishnav, K. D. Pham, D. Koch, and J. Garside. 2018. Resource Elastic Virtual-
ization for FPGAs using OpenCL. In FPL.

[33] Anuj Vaishnav, Khoa Dang Pham, Joseph Powell, and Dirk Koch. 2020. FOS:
A Modular FPGA Operating System for Dynamic Workloads. arXiv preprint
arXiv:2001.09990 (2020).

[34] W. Wang et al. 2013. pvFPGA: Accessing an FPGA-based Hardware Accelerator
in a Paravirtualized Environment. In CODES+ ISSS.

[35] Alex Williamson. 2012. VFIO: A user’s perspective. In KVM Forum.
[36] Rafal Wojtczuk et al. 2008. Subverting the Xen hypervisor. Black Hat USA 2008

(2008), 2.
[37] Xilinx. 2014. UG910 - Vivado Design Suite User Guide.
[38] Zi Yan, Ján Veselỳ, Guilherme Cox, and Abhishek Bhattacharjee. 2017. Hardware

translation coherence for virtualized systems. In Proceedings of the 44th Annual
International Symposium on Computer Architecture. 430–443.

[39] M. Zhao and G. E. Suh. 2018. FPGA-Based Remote Power Side-Channel Attacks.
In SP.

ACKNOWLEDGMENTS
This work is supported by the European Commission under the
Horizon 2020 Framework Programme for Research and Innovation
through the EuroEXA project (grant agreement 754337).
K. Iordanou is funded by an Arm Ltd. & EPSRC iCASE PhD Schol-
arship. Prof. Mikel Luján is funded by an Arm/RAEng Research
Chair Award and a Royal Society Wolfson Fellowship.

	Abstract
	1 Introduction
	2 Usage models of an IOMMU
	2.1 Maintaining consistency between translation units
	2.2 Multi-tenancy on FPGAs

	3 Design methodology
	3.1 Using the SDSoC
	3.2 Leveraging the Arm System Memory management Unit
	3.3 Utilising the Virtual Function Input-Output (VFIO) framework
	3.4 The FPGA hardware design
	3.5 A direct approach

	4 Evaluation
	4.1 Use-cases

	5 Discussing the results
	5.1 Achieving mapping consistency
	5.2 Enabling memory virtualisation

	6 Conclusions - Future work
	References
	Acknowledgments

