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Towards Developing an Aerial Mapping 

System for Stockpile Volume Estimation in 

Cement Plants 

Ahmad Alsayed1,2, Mostafa R. A. Nabawy3,4, Akilu Yunusa-Kaltungo5, 
Farshad Arvin6 and Mark K. Quinn7 

The University of Manchester, Manchester, M1 3BB, United Kingdom 

Integrated manufacturing systems such as cement processes are heavily dependent on 

stockpiles of different materials that serve as inputs to the different stages of production. 

Accurate estimation of material volume contained in these stockpiles is central to process 

profitability and waste elimination/minimisation. However, accurate estimation of stock 

within the cement industry is challenging owing to the unevenness of stock shapes and harsh 

environmental conditions (e.g. dust, temperature, humidity, etc.). This work provides a set of 

results obtained from preliminary investigation into the feasibility of deploying a low-cost 

aerial system to estimate stockpile volumes in open and semi-confined spaces within cement 

plants. An outdoor stockpile was first mapped using GPS for localisation, while 1D LiDAR 

and barometer were used for the stockpile height estimation. Visual inspection of the 

reconstructed stockpile surface showed strong correspondence to the actual stockpile. A 

second mission was conducted in a semi-confined space. The reconstructed surface 

appearance was inaccurate due to GPS-related issues; however, the volume was still 

estimated with reasonable accuracy, within 2.4% error. Future recommendations on 

upgrading the developed system to work within confined spaces are provided. 

I. Introduction 

Unmanned Arial Vehicles (UAVs) are widely deployed to tackle a variety of challenges within both military and 

civilian sectors. Typical applications involve reconnaissance, surveillance, mapping, among many others [1–4]. This 
work seeks to identify means of realising UAV inspection and monitoring missions within cement plants, a novel 

application in a very challenging environment. To name a few challenges, cement plants are known to be heavily 

dust-laden environments with high temperatures and humidity. This combination of harsh weather conditions 

(especially the fine dust) significantly impedes sensor signals. This is besides other operational challenges such as 

the limitations on GPS signal within these spaces which are bound to affect navigation strategies as well as the 

requirement to fly in many occasions beyond the pilot’s line of sight. However, successful demonstration of such 
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missions will have a significant impact. From a business perspective, increased use of robotic inspection assets can 

reduce plant downtime costs that often emerge from routine physical inspection/maintenance [5,6]. From a safety 

perspective, robots assisted missions within such highly hazardous industrial environments can drastically improve 

health and safety measures through eliminating/minimising human exposure levels, thereby improving the wellbeing 

of people as well as protecting the environment. Figure 1 shows the rate of fatal and non-fatal injuries to workers in 
Great Britain over the last six years based on the data provided in [7]. The lack of decline in reported incidents 

highlights the ongoing need to improve safety practices. 

 

 

Figure 1: Reported injuries to workers in the UK in the last six years based on data collected in [7]. 

 

In this study, emphasis is placed on the application of drones for estimating raw material stockpile volumes 

within a prominent UK-based cement plant, owing to the criticality, frequency, and labour-intensiveness of such 

activities. The implications of wrong stock estimates could be far reaching. For instance, most businesses rely on 
stakeholders and lenders for generation of funds to implement capital (CAPEX) and operational expenditures 

(OPEX). At the end of pre-defined business cycles, stakeholders anticipate dividends while interests are paid to 

lenders. Based on this premise, manufacturing profitability is highly correlated with effective management of 

working capital of which inventory management plays a significant role. In theory, the higher the inventory 

turnover, the higher the possibility of reducing the working capital but this is only a reality when a manufacturer has 

an accurate knowledge of its stock or inventory. In addition to these primary effects, there are other indirect 

implications of poor stock level estimations in the cement processes such as higher energy consumption due to 

idling of transport systems (e.g. roots blowers, pneumatic transport pumps, belt conveyors, bucket elevators, 

compressors, etc.). Some of the most advanced cement stockpiles are furnished with level probes or dips for material 

estimation. As the extraction of material increases, the irregularity of the stockpiles also increases, thereby making 

some probes or dips sense the presence of materials that may not be extractable, thereby leading to continuous 

operation of downstream transport systems. Finally, the current regime of stock estimation requires that employees 
routinely visit stockpiles which are often in confined spaces, thereby raising risks of entrapment and dust 

inhalations. 

In order to alleviate the aforementioned challenges, the current study leans itself towards the notion that UAVs 

possess the capability to provide quick, efficient, and accurate volume estimation. It is well-established that UAVs 

with a normal camera can produce 3D models, photogrammetric maps, and digital elevation models [8]; hence 

UAVs are already being used for missions involving stockpile volume estimation. Arango and Morales [9] 

compared the accuracies of material stockpile volume estimates obtained via electronic/optical survey instrument 

(i.e. total stations theodolite) to those acquired via UAV missions. Results indicated that the difference between the 

estimated and actual volumes was 2.88% and 0.67% for total stations theodolite and UAV-based mission, 

respectively [9]. Other related studies have also reported encouraging outcomes with regards to exploring the 

proficiency of drone-assisted surveying and stockpile measurement [10,11]. He et al. [10] estimated the size of 
stockpiles carried on barges using a traditional method (reshaping a stockpile to a trapezoidal shape and measure the 

volume with a measurement tool like a tape), laser scanning, and aerial photogrammetry. Results show similar 

accuracy levels for the three methods; however, in terms of time efficiency, aerial photogrammetry required an 
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average of 20min for data collection and processing, whereas the traditional method and laser scanning required 

120min and 40min for the same stockpile, respectively. Kaamin et al. [11] used aerial photogrammetry to estimate a 

landfill stockpile volume. While the study did not discuss the accuracy of the measured volume, it illustrated the 

change of the landfill over a two-month period. However, a common limitation of the aforementioned studies is that 

the provided demonstrations only considered daylight missions with strong GPS signals; hence, such solutions 
cannot be adopted when operating in the harsh environmental conditions of cement plants. In this study, some of the 

operational challenges within cement plants are considered as the selected scanning sensor can operate in dark, 

humid, and dusty environments. Nevertheless, we still used GPS signal for localisation which hinders deployment 

within fully confined spaces. That said, an adequate indoor localisation will be adopted in future work when 

missions in confined spaces are considered. 

II. Volume Estimation in a Cement Plant 

A. Cement Plant 

The case study cement plant is Hope Works in Derbyshire (Breedon Cement PLC) which is the largest fully 

integrated cement process plant in the UK. The plant produces approximately 1.5 million tonnes of cement annually 
accounting for 15% of the UK’s total cement production capacity. The plant is made up of five primary stages, 

namely quarrying, crushing, raw milling, kiln burning, and cement grinding. Limestone is the main component of 

cement and it is extracted through quarrying although it is quite common for such limestone beds to have other 

primary components (e.g. alumina and iron ore) embedded in them. The fourth primary component is river sand or 

silica [12]. The crushing stage reduces large lumps of quarried material into sizes acceptable by the raw milling 

stage, prior to being pyro-processed in the rotary kilns to produce clinker [5,6]. The clinker from the kilns is then 

ground with gypsum to produce cement. Each of the described process stages is associated with its input (also 

known as feed) and output inventory which is often stored in fully open, semi-confined (e.g. sheds), or fully 

confined spaces (e.g. silos and hoppers). In this study, data were obtained from missions for one fully open gypsum 

stockpile as well as one semi-confined clinker shed. 

B. Instrumentation 

The UAV used was a quadcopter with a frame measuring 585mm as depicted in Figure 2. The quadcopter was 
controlled using a Pixhawk flight controller. It was fitted with a GPS sensor to provide location, and a barometer to 

measure altitude. A 1D Light Detection and Ranging (LiDAR) was also integrated to measure the distance between 

the quadcopter and the ground. The used LiDAR is a TF Mini LiDAR with a FOV of 2.3º. It can detect distances up 

to 12 meters in normal indoor conditions and 7 meters in normal outdoor conditions. The LiDAR was connected to a 

Raspberry Pi 3 micro-board to run the scanning and save the data to a memory card. In the ground station, there are 

two computers; one to monitor the flight data and another to run and monitor the scanning system. A long-range Wi-

Fi router was used to create connection between the UAV and the ground station. 

 

 

Figure 2: Aerial mapping system for stockpile volume estimation in cement plants including quadrotor 

with integrated sensors and ground station. 
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C. Data Filtering and Processing 

Three sets of data were collected from the flight tests. The first set included the GPS time, coordinate, and 

timestamp data, which had an average sampling rate of 5 Hz. The second set included the UAV local timestamp and 

barometer data, which had an average sampling rate of 9.85 Hz. The final set included the Raspberry Pi local time, 

timestamp, and depth readings form the LiDAR, which had an average sampling rate of 8.6 Hz. GPS provided 
quadcopter location, barometer provided altitude information with respect to the take-off level, and LiDAR provided 

the vertical distance between the quadcopter and the ground. 

The GPS time has a micro POSIX® format, where the POSIX® time represents number of seconds (including 

fractional seconds) elapsed since 00:00:00 1-Jan-1970 UTC [13]. The MATLAB function datetime was used to 

convert POSIX® time format to local time. An alternative Matlab function was used to convert the GPS latitudes and 

longitudes to a two-dimensional projection, x and y axes [14]. 

In order to match the three sets of data (GPS, barometer, and LiDAR), a shared start and end time was defined. 

Since the three data sets varied in sampling rates, the resample function within MATLAB was used to transfer the 

data onto a regular grid based on a unified sample rate of 10 Hz. Figure 3 shows an example for the resampled data 

superimposed on the original data. 

To estimate the stockpile volume, the difference between readings from barometer and LiDAR was used to 

evaluate the height of the pile, while the GPS data was used to define x and y positions. In order to construct the 3D 
surface as well as measure the volume of the pile, 2-D grid coordinates (based on x and y data) were obtained using 

the meshgrid function within MATLAB. The griddata function was then used to interpolate the surface at the query 

points specified by the meshed 2-D grid and return the interpolated values that represent the pile height. 

 

 

Figure 3: (a) Quadcopter position from GPS coordinates before and after resampling. (b) LiDAR original 

and resampled readings. (c) Barometer original and resampled readings. Data are for the outdoor mission. 

 

(a)

(b) (c)
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III. Preliminary Results 

Figure 4-a shows an outdoor stockpile from the case study cement plant. A mission was conducted with the 

quadcopter and data were gathered as demonstrated in Figure 3. Collected data were processed, and Figure 4-b 
shows the generated surface of the stockpile. The volume estimate of this pile is 1021.5 m3. The red scatters in the 

figure illustrate the measured stockpile heights from the UAV, whereas the exterior is an interpolated surface. While 

information on the actual volume of the outdoor stockpile is not available to compare against our estimated volume, 

there is strong correspondence between the actual and reconstructed piles based on visual inspection. 

 

 

Figure 4: (a) Real outdoor stockpile, and (b) reconstructed surface of the stockpile. 

 

The result for the outdoor stockpile was measured with the UAV position being localised with an average of 

fourteen satellites. Another test was conducted within a semi-confined space (Figure 5-a), where the average number 

of the satellites reduced to eight. The semi-confined space was a shed with one of its sides open. This reduction of 

satellites led to a corresponding reduction in the accuracy of quadcopter localisation. Moreover, the metal sheets 

from which the shed is made may have had an effect on the efficiency of the GPS positioning resolution [15]. The 

reconstructed stockpile depicted in Figure 5-b highlights imprecisions of relying on GPS for localisation within the 
semi-confined space; on the other hand, Figure 5-c shows a reconstructed pile of the same stockpile while using the 

planned trajectory (not the actual GPS data). To further demonstrate this imprecision, the top view of the planned 

flight trajectory (the zig-zag trajectory used for the reconstruction shown in Figure 5-c) is shown in Figure 6-a which 

was not well generated from the recorded flight trajectory based on the GPS coordinates (trajectory used for the 

reconstruction shown in Figure 5-b) as could be seen in Figure 6-b. That said, the estimated volume of the pile was 

24.4 m3 which leads to a remarkably reasonable absolute error of 2.4%. Note that in estimating the error, the actual 

pile volume is based on the fact that the pile was dumped on the testing day from a 30-ton capacity dump truck 

which has a maximum load-carrying capacity of 25 m3. 
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Figure 5: (a) A small pile of gypsum located in a semi-confined space. (b) Reconstructed surface of the pile 

using GPS position readings (Collected GPS trajectory data is shown in Figure 6-b) showing imprecisions 

due to reduced GPS positioning resolution; however, the volume was still estimated with good accuracy, 

within 2.4%. (c) Reconstructed surface of the small pile using the estimated pile height and planned 

trajectory data (planned trajectory data is sketched in Figure 6-a). 

 

(a)

(b) (c)
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Figure 6: (a) Top view sketch of the planned flight trajectory (a zig-zag trajectory). (b) The recorded flight 

trajectory from the GPS coordinates. 

 

IV. Concluding Remarks and Further Research 

An outdoor stockpile was mapped using GPS for localisation together with LiDAR and barometer for depth 

measurement. The 3D surface of the reconstructed stockpile showed significant correspondence to the actual 

stockpile. Another test was conducted in a semi-confined space; however, the reconstructed 3D surface was 

inaccurate due to low number of GPS satellites which in turn led to imprecise localisation. However, the volume 

was still estimated with good accuracy (2.4 % absolute error). Further work will re-consider missions within semi 

and fully confined spaces using both simulation and experimental tools where the quad-rotor will be upgraded with 

obstacle detection and collision avoidance sensors. Moreover, to increase mapping accuracy while ensuring a low-
cost solution, methods to enhance mapping capabilities of 1D LiDAR sensors will be considered. Finally, the effect 

of dust on the performance of these sensors, which is expected to be exaggerated in confined spaces, will be fully 

assessed. It is anticipated that a successful full demonstration of such aerial system will eliminate or at least 

minimise the need for sending workers to high-risk areas within cement plants. 
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