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 62 
ABSTRACT 63 
Patient-derived xenografts (PDXs) are resected human tumors engrafted into mice for preclinical 64 
studies and therapeutic testing. It has been proposed that the mouse host affects tumor evolution 65 
during PDX engraftment and propagation, impacting the accuracy of PDX modeling of human 66 
cancer. Here we exhaustively analyze copy number alterations (CNAs) in 1451 PDX and matched 67 
patient tumor (PT) samples from 509 PDX models. CNA inferences based on DNA sequencing 68 
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and microarray data displayed substantially higher resolution and dynamic range than gene 69 
expression-based inferences, and they also showed strong CNA conservation from PTs through 70 
late-passage PDXs. CNA recurrence analysis of 130 colorectal and breast PT/PDX-early/PDX-71 
late trios confirmed high-resolution CNA retention. We observed no significant enrichment of 72 
cancer-related genes in PDX-specific CNAs across models. Moreover, CNA differences between 73 
patient and PDX tumors were comparable to variations in multi-region samples within patients. 74 
Our study demonstrates the lack of systematic copy number evolution driven by the PDX mouse 75 
host. 76 
 77 
MAIN 78 
Human tumors engrafted into transplant-compliant recipient mice (patient-derived xenografts, 79 
PDX) have advantages over prior model systems of human cancer (e.g genetically engineered 80 
mouse models1,2 and cancer cell lines3) for preclinical drug efficacy studies because they allow 81 
researchers to directly study human cells and tissues in vivo4-7. Comparisons of genome 82 
characteristics and histopathology of primary tumors and xenografts of various cancer types8-14 83 
have demonstrated that the biological properties of patient-derived tumors are largely preserved 84 
in xenografts. A growing body of literature supports their use in cancer drug discovery and 85 
development15-17.  86 
 A caveat to PDX models is that intratumoral evolution can occur during engraftment and 87 
passaging18-22. Such evolution could potentially modify treatment response of PDXs with respect 88 
to the patient tumors19,23,24, particularly if the evolution were to systematically alter cancer-related 89 
genes. Recently, Ben-David et al.23 reported extensive PDX copy number divergence from the 90 
patient tumor of origin and across passages, based mainly on large-scale assessment of copy 91 
number alterations (CNA) profiles inferred from gene expression microarray data. They raised 92 
concerns about genetic evolution in PDXs as a consequence of mouse-specific selective 93 
pressures, which could impact the capacity of PDXs to faithfully model patient treatment 94 
response. Such results contrast with reports that have observed genomic fidelity of PDX models 95 
with respect to the originating patient tumors and from early to late passages by direct DNA 96 
measurements in several dozen PDX models8,11,25. 97 

Here we resolve these contradicting observations by systematically evaluating CNA 98 
changes and the genes they affect during engraftment and passaging in a large, internationally 99 
collected set of PDX models, comparing both RNA and DNA-based approaches. The data 100 
collected, as part of the U.S. National Cancer Institute (NCI) PDXNet (PDX Development and 101 
Trial Centers Research Network) Consortium and EurOPDX consortium, comprises patient tumor 102 
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(PT) and PDX samples from >500 models. Our study demonstrates that prior reports of systematic 103 
copy number divergence between PTs and PDXs are incorrect, and that there is high retention of 104 
copy number during PDX engraftment and passaging. This work also finely enumerates the copy 105 
number profiles in hundreds of publicly available models, which will enable researchers to assess 106 
the suitability of each for individualized treatment studies. 107 
 108 
RESULTS 109 
Catalog of copy number alterations in PDXs   110 

We have assembled copy number alteration (CNA) profiles of 1451 unique samples (324 111 
PT, and 1127 PDX samples) corresponding to 509 PDX models contributed by participating 112 
centers of the PDXNET, the EurOPDX consortium, and other published datasets11,26 (see 113 
METHODS, Supplementary Methods, Supplementary Table 1, Supplementary Fig. 1). We 114 
estimated copy number (CN) from five data types: single nucleotide polymorphism (SNP) array, 115 
whole-exome sequencing (WES), low-pass whole-genome sequencing (WGS), RNA sequencing 116 
(RNA-Seq) and gene expression array data, yielding 1548 tumor datasets including samples 117 
assayed on multiple platforms (see METHODS, Supplementary Methods, Supplementary Data 118 
1). Paired-normal DNA and in some cases, paired normal RNA, were also obtained to calibrate 119 
WES and RNA-Seq tumor samples.  120 

The combined PDX data represent 16 broad tumor types derived from American, 121 
European and Asian cancer patients (see METHODS), with 64% (n=324) of the models having 122 
their corresponding patient tumors assayed and another 64% (n=328) having multiple PDX 123 
samples of either varying passages (P0 – P21) or varying lineages from propagation into distinct 124 
mice (Fig. 1a, Supplementary Table 2). The distributions of PT and PDX samples across different 125 
tumor types, passages and assay platforms (Fig. 1b, Supplementary Fig. 2-12) show the wide 126 
spectrum of this combined dataset, which, to the best of our knowledge, is the most 127 
comprehensive copy number profiling of PDXs compiled to date (Supplementary Note 1). 128 
Additionally, our data include seven patients with multiple tumors collected either from different 129 
relapse time points or different metastatic sites, resulting in multiple PDX models derived from a 130 
single patient.  131 
 132 
Comparison of CNA profiles from SNP array, WES and gene expression data 133 
To compare the CNA profiles from different platforms in a controlled fashion, we assembled a 134 
dataset with matched measurements across multiple platforms (Supplementary Table 3, 135 
Supplementary Fig. 13-17). Copy number calling has been reported to be noisy for several data 136 
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types27,28, and we observed that quantitative comparisons between CNA profiles are sensitive to: 137 
(1) the thresholds and baselines used to define gains and losses, (2) the dynamic range of copy 138 
number values from each platform, and (3) the differential impacts of normal cell contamination 139 
for different measurements. To control for such systematic biases, we assessed the similarity 140 
between two CNA profiles using the Pearson correlation of their log2(CN ratio) values across the 141 
genome in 100kb windows. Regions with discrepant copy number were identified as those with 142 
outlier values from the linear regression model (see METHODS).  143 
 144 
CNAs from WES are consistent with CNAs from SNP array data. As earlier studies reported 145 
that CNA estimates from WES data have more uncertainties than those from SNP arrays29,30, we 146 
implemented a WES-based CNA pipeline and validated it against SNP array-based estimates31,32 147 
for matched samples. Copy number gain/loss segments (see METHODS) from SNP arrays were 148 
of a higher resolution (Fig. 2a; median/mean segment size: 1.49/4.05 Mb for SNP, 4.70/14.6 Mb 149 
for WES, p < 2.2e-16) and wider dynamic range (Fig. 2b; range of log2(CN ratio): –8.62 – 2.84 for 150 
SNP, –3.04 – 1.85 for WES, p < 2.2e-16). The difference in range is apparent in the linear 151 
regressions between platforms (Supplementary Fig. 18). These observations take into account 152 
the broad factors affecting CNA estimates across platforms, such as the positional distribution of 153 
sequencing loci; the sequencing depth of WES; and the superior removal of normal cell 154 
contamination by SNP array CNA analysis workflows using SNP allele frequencies33.  155 

We observed strong agreement between SNP arrays and WES, with significantly higher 156 
Pearson correlation coefficients on matched samples than samples of different models (range: 157 
0.913 – 0.957 for matched samples, 0.0366 – 0.354 for unmatched samples, p = 1.02e-06), with 158 
the exception of two samples that lacked CNA aberrations and were removed (Fig. 2c, 159 
Supplementary Fig. 13, 18, 19). The discordant copy number regions largely correspond to small 160 
focal events (average size 1.53Mb) detectable by SNP arrays but missed by WES 161 
(Supplementary Fig. 18, Extended Data Fig. 1a, see METHODS). Hence, CNA profiling by WES 162 
is reliable in most regions in this small dataset, with 99% of the genome locations across the 163 
samples consistent with the values from SNP arrays (Supplementary Note 2). These PT-based 164 
observations are also applicable to PDXs given that mouse DNA is absent in SNP array signal 165 
and removed  from WES reads34-36.  166 
 167 
Low accuracy for gene expression-derived CNA profiles. To compare the suitability of gene 168 
expression for quantifying evolutionary changes in CNA, we adapted the e-karyotyping 169 
method23,37,38 for RNA-Seq and gene expression array data (Supplementary Fig. 15, 17, see 170 
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METHODS). Copy number segments calibrated by non-tumor expression were of higher 171 
resolution (Fig. 2a; median/mean segment size: 36.0/51.9 Mb for RNASEQ NORM, 48.2/65.3 Mb 172 
for RNASEQ TUM, p < 2.2e-16; 62.0/72.4 Mb for EXPARR NORM, 80.1/85.2 Mb for EXPARR 173 
TUM, p = 2.20e-07) and wider dynamic range (Fig. 2b; range of log2(CN ratio): –2.07 – 2.17 for 174 
RNASEQ NORM, –1.79 – 1.81 for RNASEQ TUM, p < 2.2e-16; –1.40 – 1.89 for EXPARR NORM, 175 
–1.13 – 1.59 for EXPARR TUM, p = 4.09e-07) compared to segments calculated by calibration 176 
with tumor samples. These alternative expression calibrations yielded biased gain and loss 177 
frequencies (Supplementary Note 3, Supplementary Fig. 20) and strong variability (Pearson 178 
correlation range: 0.218 – 0.943 for RNASEQ NORM vs TUM, 0.377 – 0.869 for EXPARR NORM 179 
vs TUM) in the CNA calls (Fig. 2c, Supplementary Fig. 21). This range of correlations was far 180 
greater than was observed in comparisons between the DNA-based methods (p = 9.37e-5 and p 181 
= 3.28e-07 relative to SNP vs WES). This indicates the problematic nature of RNA-based CNA 182 
calling with calibration by tumor samples, which has been used when normal samples are not 183 
available. 184 

Furthermore, expression-based calling had segmental resolution an order of magnitude 185 
worse than the DNA-based methods (Fig. 2a, Supplementary Fig. 14-17; median/mean segment 186 
size: 3.45/14.0 Mb for WES, 36.0/51.9 Mb for RNASEQ NORM, p < 2.2e-16; 1.73/ 5.18 Mb for 187 
SNP, 62.0/72.4 Mb for EXPARR NORM, p < 2.2e-16). The range of detectable copy number values 188 
was also superior for DNA-based methods (Fig. 2b; range of log2(CN ratio): –6.00 – 5.33 for WES, 189 
–2.07 – 2.17 for RNASEQ NORM, p < 2.2e-16; –9.19 – 4.65 for SNP, –1.40 – 1.89 for EXPARR 190 
NORM, p < 2.2e-16). In addition, there was a lack of correlation between the expression-based 191 
and DNA-based methods (range: 0.0541 – 0.942 for WES vs RNASEQ (NORM); 0.00517 – 0.921 192 
for SNP vs EXPARR (NORM)) (Fig. 2c, Supplementary Fig. 22, 23). CNA estimates after tumor-193 
based expression normalization resulted in further discordance with DNA-based copy number 194 
results (range: –0.182 – 0.929, p = 0.0468 for WES vs RNASEQ (TUM); –0.0274 – 0.847, p = 195 
2.20e-06 for SNP vs EXPARR (TUM)). Many focal copy number events detected by DNA-based 196 
methods, as well as some larger segments, were missed by the expression-based methods 197 
(Extended Data Fig. 1b-e). Representative examples illustrating the superior resolution and 198 
accuracy from DNA-based estimates are given in Fig. 2d (correlations shown in Extended Data 199 
Fig. 2). 200 
 201 
Concordance of PDXs with patient tumors and during passaging 202 
We next adopted a pan-cancer approach to elucidate potential tumor type-independent copy 203 
number evolution in PDXs driven by the mouse host. We tracked the similarity of CNA profiles 204 
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during tumor engraftment and passaging by calculating the Pearson correlation of gene-level 205 
copy-number for samples measured on the same platform (see METHODS, Extended Data Fig. 206 
3, Supplementary Fig. 24-60, 62). All pairs of samples derived from the same PDX model were 207 
compared – yielding 501 PT-PDX and 1257 PDX-PDX pairs (Supplementary Note 4). 208 
 For all DNA-based platforms we observed strong concordance between matched PT-PDX 209 
and PDX-PDX pairs, significantly higher than between different models from the same tumor type 210 
and the same center (p < 2.2e-16) (Fig. 3a-c, correlation heatmaps in Supplementary Fig. 24-60). 211 
We observed no significant difference in the correlation values between PT-PDX and PDX-PDX 212 
pairs for SNP array data (median correlation PT-PDX = 0.950, PDX-PDX = 0.964; p > 0.05), 213 
though there were small but statistically significant shifts for WES (PT-PDX = 0.874, PDX-PDX = 214 
0.936; p = 2.31e-16) and WGS data (PT-PDX = 0.914, PDX-PDX = 0.931; p = 0.000299). PT 215 
samples have a smaller CNA range than their derived PDXs (median ratio PT/PDX / PDX/PDX: 216 
0.832/0.982, p = 0.000120 for SNP; 0.626/0.996, p < 2.2e-16 for WES; 0.667/1.00, p < 2.2e-16 for 217 
WGS; Supplementary Fig. 62b, Extended Data Fig. 4), which can be attributed to stromal DNA in 218 
PT samples “diluting” the CNA signal. In PDXs, the human stromal DNA is reduced11,13. The 219 
minimal effect for SNP array data confirms this interpretation as human stromal DNA contributions 220 
can be removed from SNP arrays based on allele frequencies of germline heterozygous sites, 221 
while such contributions to WES and WGS have higher uncertainties. We also performed intra-222 
model comparisons using RNA-based approaches, which showed that the expression-based 223 
comparison of CNA profiles between PT and PDXs can lead to the overestimation of copy number 224 
changes during engraftment and passage (Supplementary Fig. 63, Supplementary Note 5). 225 
 226 
Late PDX passages maintain CNA profiles similar to early passages. Systematic mouse 227 
environment-driven evolution, if present, should reduce CN correlations at each subsequent 228 
passage. However, we observed no apparent effect during passaging on the SNP, WES, or WGS 229 
platforms (Fig. 3d-f, Extended Data Fig. 5).  For example, the SNP data showed no significant 230 
difference between passages (Fig. 3d, Extended Data Fig. 5a). For those models having very late 231 
passages, there was a small but statistically significant correlation decrease compared to models 232 
with earlier passages (p < 8.98e-05, Extended Data Fig. 6b), indicating some copy number 233 
changes can occur over long-term passaging (Supplementary Fig. 35). However even at these 234 
late passages, the correlations to early passages remained high (median = 0.896). In any given 235 
comparison, only a small proportion of the genes were affected by copy number changes (median: 236 
2.72%, range: 1.03% – 11.9%). Genes that are deleted and subsequently gained in the later 237 
passages (top left quadrant of regression plots, Extended Data Fig. 6a) suggest selection of 238 
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preexisting minor clones as the key mechanism in these regions. For WES and WGS data, more 239 
variability in the correlations can be observed (Fig. 3e, f, Extended Data Fig. 5b, c), likely due to 240 
a few samples having more stromal contamination or low aberration levels (Supplementary Fig. 241 
62b, Extended Data Fig. 4). However, the lack of downward trend over passaging was also 242 
apparent in these sets (Supplementary Note 6).  243 
 244 
PDX copy number profiles trace lineages. We next compared the similarity of engrafted PDXs 245 
of the same model with the same passage number. Surprisingly, we discovered that these pairs 246 
were not more similar than pairs of PDXs from different passage numbers (Fig. 3d-e, Extended 247 
Data Fig. 5, Supplementary Note 7). Such similarity in correlations suggested that copy number 248 
divergence might be associated with effects other than passaging. To further this analysis, we 249 
defined, for JAX SNP array and PDMR WES datasets, samples within a lineage as those differing 250 
only by consecutive serial passages, while we defined lineages as split when a tumor was divided 251 
and propagated into multiple mice (Fig. 3g). For the EurOPDX CRC and BRCA WGS datasets, 252 
such lineage splitting was due only to cases with initial engraftment of different fragments of the 253 
PT, i.e., PDX samples of different passages were considered as different lineages if they originate 254 
from different PT fragments. We observed lower correlation between PDX samples from different 255 
lineages compared to within a lineage (Fig. 3h, p = 0.0233 for SNP, p = 0.00119 for WES, p = 256 
0.000232 for WGS), despite a majority of these pairwise comparisons exhibiting high correlation 257 
(>0.9) (Supplementary Note 8, 9). This suggests that lineage-splitting is often responsible for 258 
deviations in CNAs between samples, and that copy number evolution during passaging mainly 259 
arises from evolved spatial heterogeneity24.    260 
 We further explored if the stability of copy number during engraftment and passaging is 261 
affected by mutations in genes known to impact genome stability (see METHODS). Overall, we 262 
observed that presence of mutations in such genes does not lead to increased copy number 263 
changes during PDX engraftment and passaging (Supplementary Note 10, Supplementary Fig. 264 
66).  265 
 266 
Genes with copy number alterations acquired during engraftment and passaging show no 267 
preference for cancer or treatment-related functions. 268 
Next, we investigated which genes tend to undergo copy number changes. Genes with changes 269 
during engraftment or during passaging were identified based on a residual threshold with respect 270 
to the improved linear regression39 (see METHODS, Extended Data Fig. 3). To test for functional 271 
biases, we compared CNA-altered genes to gene sets with known cancer- and treatment-related 272 
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functions40-43 (see METHODS). We calculated the proportion of altered genes for sample pairs 273 
from each model across all platforms and tumor types. In agreement with the high maintenance 274 
of CNA profiles described above, we found the proportion of altered protein-coding genes to be 275 
low (median/IQR: 1.90%/ 4.11% PT-PDX, 1.25%/ 3.60% PDX-PDX pairs, Fig. 4a). Only 8.78% of 276 
PT-PDX pairs and 4.53% PDX-PDX pairs showed >10% of their protein-coding genes altered. 277 
We observed no significant increase (p > 0.1) in alterations among any of the cancer gene sets 278 
compared to the background of all protein-coding genes, for either the PT-PDX or PDX-PDX 279 
comparisons. This provides evidence that there is no systematic selection for CNAs in oncogenic 280 
or treatment-related pathways during engraftment or passaging. We next considered tumor-type-281 
specific effects, focusing on tumor types with larger numbers of models to ensure statistical 282 
power. We observed no significant increase in alterations in tumor-type-specific driver gene sets 283 
significantly altered in TCGA44-47 compared to the background (p > 0.1) for either PT-PDX or PDX-284 
PDX comparisons (Fig. 4b, Supplementary Note 11).  285 
 286 
Low recurrence of altered genes across models. We observed a very low recurrent frequency 287 
(Fig. 4c, see METHODS), with only 12 and 2 genes recurring at > 5% frequency for PT-PDX and 288 
PDX-PDX comparisons, respectively (Supplementary Table 4). No gene had a recurrence 289 
frequency higher than 8.96% (Supplementary Note 12). None of these recurrent genes 290 
overlapped cancer- or treatment-related gene sets, nor did they intersect genes (n=3) reported 291 
by Ben-David et al.23 to have mouse-induced copy number changes associated with drug 292 
response in the CCLE48,49 database (Supplementary Note 12).  293 
 294 
Absence of CNA shifts in 130 WGS patient tumor, early passage PDX and late passage 295 
PDX trios 296 
We next investigated whether recurrent CNA changes occur in PDXs in a tumor-type specific 297 
fashion. To this aim, we analysed further the WGS-based CNA profiles of large metastatic 298 
colorectal (CRC) and breast cancer (BRCA) series, composed of matched trios of PT, PDX at 299 
early passage (PDX-early) and PDX at later passage (PDX-late). Genomic Identification of 300 
Significant Targets in Cancer (GISTIC)50,51 analysis was applied separately to identify recurrent 301 
CNAs in each PT, PDX-early and PDX-late cohorts of CRC and BRCA (see METHODS, 302 
Supplementary Table 6). As expected, CRCs and BRCAs generated different patterns of 303 
significant CNAs, but within each tumor type GISTIC profiles of the PT, PDX-early, and PDX-late 304 
cohorts were virtually indistinguishable (Fig 5a, Extended Data Fig. 7, Supplementary Note 13), 305 
demonstrating no gross genomic alteration systematically acquired or lost in PDXs.  306 
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We then carried out gene-level analysis, where each gene was attributed the GISTIC 307 
score (G-score) of the respective segment (Supplementary Table 7). In both the CRC and BRCA 308 
cohorts, gene-level G-scores of the PTs were highly correlated with the respective PDX-early and 309 
PDX-late cohorts (Fig. 5b, c). Moreover, PT versus PDX correlations were comparable to PDX-310 
early versus PDX-late correlations. To search for progressive shifts, we compared the change in 311 
G-score (ΔG): (i) from tumor to PDX-early and (ii) from PDX-early to PDX-late. Correlations in 312 
these two ΔG values were absent or even slightly negative (bottom-right panels of Fig. 5b, c, 313 
Supplementary Note 13). Overall, these results confirmed the absence of systematic CNA shifts 314 
in PDXs even under high resolution, gene-level analysis. To evaluate the possibility of systematic 315 
copy number evolution at the pathway level in these trios, we performed Gene Set Enrichment 316 
Analysis (GSEA)52,53 using G-scores to rank genes in each cohort (See METHODS, 317 
Supplementary Note 14). For both CRC and BRCA, the Normalized Enrichment Score (NES) 318 
profiles for the ~8000 gene sets of PTs were highly correlated with the respective PDX-early and 319 
PDX-late cohorts (Fig. 5d, e). Moreover, PT versus PDX correlations were comparable to PDX-320 
early versus PDX-late correlations. To search for progressive shifts, we calculated for each 321 
significant gene set ΔNES values between PT and PDX-early, as well as between early and late 322 
PDX. Similar to what was observed for the ΔG-scores, correlations were absent or at most slightly 323 
negative (bottom-right panels of Fig. 5d, e), confirming the absence of systematic CNA-based 324 
functional shifts in PDXs.  325 
 326 
CNA evolution across PDXs is no greater than variation in patient multi-region samples  327 
As a reference for the treatment relevance of PDX-specific evolution, we compared to levels of 328 
copy number variation in multi-region samples of patient tumors. For this we used copy number 329 
data from multi-region sampling of non-small-cell lung cancer from the TRACERx Consortium54, 330 
performing analogous CNA correlation and gene analyses between multi-region pairs 331 
(Supplementary Fig. 69). We observed no significant differences in correlation (p > 0.05) between 332 
patient multi-region and lung cancer PT-PDX pairs, while PDX-PDX pairs in fact showed 333 
significantly better correlation than the multi-region pairs (p < 0.05, Fig. 6a), consistent across all 334 
lung cancer subtypes. Cancer gene set analyses confirmed these results, with multi-region 335 
samples showing greater differences than either PT-PDX or PDX-PDX comparisons, across all 336 
the cancer gene sets considered (p < 0.05, Fig. 6b, Extended Data Fig. 8). These results show 337 
that PDX-associated CNA evolution is no greater than what patients experience naturally within 338 
their tumors. Our PDX collection also contains a few cases in which the patient tumor was 339 
assayed at multiple time points (relapse/metastasis) or multiple metastatic sites, allowing for 340 
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controlled comparison of intra-patient variation versus PDX evolution (Supplementary Fig. 3, 4, 341 
7). Despite a lower median in correlations among intra-patient samples, the difference compared 342 
to CNA evolution during engraftment (PT-PDX) is not statistically significant (p > 0.05, Fig. 6c). 343 
CNA profiles for these samples are shown visually in Fig. 6d. 344 
 345 
DISCUSSION 346 
Here we have investigated the evolutionary stability of patient-derived xenografts, an important 347 
model system for which there have been prior reports of mouse-induced copy number evolution. 348 
To better address this, we assembled the largest collection of CNA profiles of PDX models 349 
reported to date, comprising PDX models with multiple passages and their originating patient 350 
tumors. Our analysis demonstrated the reliability of copy number estimation by DNA-based 351 
measurements over RNA-based inferences, which are substantially inferior in terms of resolution 352 
and accuracy (Supplementary Note 15). The importance of DNA measurements is supported by 353 
the inconsistent conclusions by two independent studies, Ben-David et al.23,55 and Mer et al.56, on 354 
the same PDX expression array dataset by Gao et al.15 Ben-David et al. concluded that drastic 355 
copy number changes, driven by mouse-specific selection, often occur within a few passages. On 356 
the other hand, Mer et al. reported high similarity between passages of the same PDX model 357 
based on direct correlations of gene expression, consistent with our findings in large, independent 358 
DNA-based datasets.  359 

The CN shifts inferred by Ben-David et al. are inherently impacted by major technical 360 
issues. First, the microarray signal for PT samples is diluted by introgressed human stromal cells, 361 
while in PDXs mouse stromal transcripts hybridize only to a fraction of the human probes57. 362 
Consequently, PT samples with substantial stromal content would display a reduced signal 363 
compared to the corresponding PDX, which can lead to an erroneous inference of systematic 364 
increase in aberrations during PDX engraftment when gain/loss regions are directly compared. 365 
Second, the mouse host microenvironment can affect the transcriptional profile of the PDX 366 
tumor58 and the quantity of mouse stroma can vary across passages. This can result in variability 367 
in the expression signal which can be wrongly inferred as CN changes, both from the tumor itself 368 
and through cross hybridization of mouse RNA to the human microarray. Although improved 369 
concordance in expression between PT and PDX can be achieved with RNA sequencing with the 370 
removal of mouse reads59,60, we observed that expression-based copy number inferences still 371 
have low resolution and robustness. Hence, many cancer-driving genes, which are found mainly 372 
in focal events with a size of 3Mb or lower61-64, cannot be evaluated for PDX-specific alterations. 373 
These issues are further worsened by the lack of tissue-matched normal gene expression profiles 374 
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for calibration37, which have been only intermittently available but can substantially impact copy 375 
number inferences. Because of these considerations, the question of how much PDXs evolve as 376 
a consequence of mouse-specific selective pressures cannot be adequately addressed by 377 
expression data. 378 
 The studies we have presented here take into account the above issues by use of DNA 379 
data, as well as by assessing copy number changes by pairwise correlation/residual analysis to 380 
control for systematic biases, and they overall confirm the high retention of CNA profiles from 381 
PDX engraftment to passaging. We do observe larger deviations between PT-PDX than in PDX-382 
PDX comparisons, though this is likely due to dilution of PT signal by human stromal cells. 383 
Interestingly, we found that a major contributor to the differences between PDX samples is 384 
lineage-specific drift associated with splitting of tumors into fragments during PDX propagation. 385 
This spatial evolution within tumors appears to affect sample comparisons more than time or the 386 
number of passages. This suggests that PDX expansion and passaging is the bottleneck of copy 387 
number evolution in PDXs, reflecting stochasticity in sampling within spatially heterogenous 388 
tumors (Supplementary Note 16).  389 
 A challenge for evaluating any model system is that there is no clear threshold for genomic 390 
change that determines whether the model will still reflect patient response. Genetic variation 391 
among multi-region samples within a patient can shed light on this point54,65-68 since the goal of a 392 
successful treatment would be to eradicate all of the multiple regions of the tumor. We found that 393 
the copy number differences between PT and PDX are no greater than the variations among 394 
multi-region tumor samples or intra-patient samples. Thus, concerns about the genetic stability of 395 
the PDX system are likely to be less important than the spatial heterogeneity of solid tumors 396 
themselves. This result is consistent with our results on lineage effects during passaging, which 397 
indicate that intratumoral spatial evolution is the major reason for genetic drift. 398 

We observed no evidence for systematic mouse environment-induced selection for cancer 399 
or treatment-related genes via copy number changes, though individual cases vary (see example 400 
in Extended Data Fig. 6c). Moreover, only a small fraction of sample pairs (2.44%, 43 out of 1758) 401 
shows large CNA discordance (see METHODS), suggesting that clonal selection out of a complex 402 
population is rare. These results indicate that the variations observed in PDXs are mainly due to 403 
spontaneous intratumoral evolution rather than murine pressures (Supplementary Note 17).  404 

In summary, our in-depth tracking of CNAs throughout PDX engraftment and passaging 405 
confirms that tumors engrafted and passaged in PDX models maintain a high degree of molecular 406 
fidelity to the original patient tumors and their suitability for pre-clinical drug testing. At the same 407 
time, our study does not rule out that PDXs will evolve in individual trajectories over time, and for 408 
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therapeutic dosing studies, the best practice is to confirm the existence of expected molecular 409 
targets and obtain sequence characterizations in the cohorts used for testing as close to the time 410 
of the treatment study as is practicable. 411 
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 673 
 674 
FIGURE LEGENDS 675 
Fig. 1: Patient derived xenograft datasets used for copy number profiling across 16 tumor 676 
types. (a) Numbers of PDX models for each tumor type, with models also having multiple PDX 677 
samples or having matched patient tumor samples specified. (b) Distributions of datasets by 678 
passage number and assay platform for patient tumors and PDX samples, separated by tumor 679 
type. “Late” passages include P18, P19 and P21 samples. 680 
 681 
Fig. 2: Comparisons of resolution and accuracy for copy number alterations estimated by 682 
DNA-based and expression-based methods. (a) Pairwise comparisons of distributions of 683 
segment size (Mb) of CNAs estimated by different measurement platforms in the validation 684 
dataset. CNAs are regions with (|log2(CN ratio)| ≥ 0.1). P-values indicate significance of difference 685 
between distributions by two-sided Wilcoxon rank sum test. (b) Pairwise comparisons of 686 
distributions of log2(CN ratio) of CNA segments. P-values were computed by two-sided 687 
Kolmogorov-Smirnov test. (c) Distributions of Pearson correlation coefficient of median-centered 688 
log2(CN ratio) in 100-kb windows from CNA segments between pairs of samples estimated by 689 
different platforms. Samples with non-aberrant profiles in SNP array and WES data are omitted 690 
(5-95% inter-percentile range of log2(CN ratio) < 0.3). P-values were computed by two-sided 691 
Wilcoxon rank sum test. In the boxplots, the center line is the median, box limits are the upper 692 
and lower quantiles, whiskers extend 1.5 × the interquartile range, dots represent the outliers. (d) 693 
Examples of CNA profiles in comparisons of different platforms. Pearson correlation coefficients 694 
of CNA segments between pairs of samples are shown on the right. In all the plots, SNP: SNP 695 
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array, WES: whole-exome sequencing, RNASEQ: RNA sequencing, EXPARR: gene expression 696 
array, NORM: normalization by median expression of normal samples, TUM: normalization by 697 
median expression of tumor samples, see Supplementary Table 3 for number of samples per 698 
group. 699 
 700 
Fig. 3: Comparisons of copy number alterations from patient tumor to early and late PDX 701 
passages. (a-c) Distributions of Pearson correlation coefficient of gene-based copy number, 702 
estimated by (a) SNP array, (b) WES, and (c) WGS, between: PT-PDX samples from the same 703 
model; PDX-PDX samples of the same model; samples of different models from a common tumor 704 
type and contributing center. P-values were computed by one-sided Wilcoxon rank sum test (ns: 705 
not significant, p > 0.05). Number of data points are indicated in the legend. (d-f) Distributions of 706 
Pearson correlation coefficients of gene-based copy number, estimated by (d) SNP array, (e) 707 
WES, and (f) WGS, among patient tumor and PDX passages of the same model. Comparisons 708 
relative to PT and P0 are shown (higher passages are shown in Extended Data Fig. 5). In the 709 
boxplots, the center line is the median, box limits are the upper and lower quantiles, whiskers 710 
extend 1.5 × the interquartile range, dots represent the all data points. (g) Schematic of lineage 711 
splitting during passaging and expansion of tumors into multiple mice. This is a simplified 712 
illustration for passaging procedures in which different fragments of a tumor are implanted into 713 
different mice. (h) Pearson correlation distributions for PDX sample pairs of different lineages and 714 
sample pairs within the same lineage: for JAX SNP array, PDMR WES, and EuroPDX WGS 715 
datasets. P-values were computed by one-sided Wilcoxon rank sum test. For all boxplots and 716 
violin plots, number of pairwise correlations are indicated in the horizontal axis labels. 717 
 718 
Fig. 4: Cancer gene sets analysis for copy number altered genes during engraftment and 719 
passaging. (a) Distribution of proportion of altered genes between pairwise PT-PDX or PDX-PDX 720 
comparisons of the same model in various gene sets. Protein-coding: protein-coding genes 721 
annotated by Ensembl; Oncogenic pathways: genes in oncogenic signaling pathways identified 722 
by TCGA; JAX CKB Amp/Del: genes with copy number gain or over-expression / copy number 723 
loss or under-expression associated with therapeutic sensitivity or resistance or changes in drug 724 
response; Census Amp Del: genes from Cancer Gene Census frequently altered by amplifications 725 
or deletions. CNA genes were identified by |residual| > 0.5 from linear regression model. (b) 726 
Distribution of proportion of altered genes between pairwise PT-PDX or PDX-PDX comparisons 727 
of the same model in various gene sets within breast cancer, colorectal cancer, lung 728 
adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) models. TCGA Gistic 729 
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Amp/Del: significantly amplified/deleted genes from TCGA GISTIC analysis for the corresponding 730 
tumor type. For all violin plots, P-values were computed by one-sided Wilcoxon rank sum test (ns: 731 
not significant, p > 0.1); number of pairwise comparisons are indicated in the plot title, number of 732 
genes per gene set is indicated in the horizontal axis labels. (c) Recurrence frequency of protein 733 
coding genes with copy number alterations, |residual| > 1, across all models in PT-PDX and PDX-734 
PDX comparisons. Number of models is indicated in the horizontal axis labels. 735 
 736 
Fig. 5: Absence of mouse-driven recurrent CNAs during engraftment and propagation of 737 
colorectal (CRC) and breast cancer (BRCA) PDXs. (a) Bar charts representing genome-wide 738 
GISTIC G-score for amplifications and deletions in each of the three cohorts of CRC (87 trios) 739 
and BRCA (43 trios): PT, PDX-early (P0-P1 for CRC, P0-P2 for BRCA), PDX-late (P2-P7 for CRC, 740 
P3-P9 for BRCA). (b-c) Scatter plots comparing gene-level GISTIC G-score between each of the 741 
three cohorts, for (b) CRC and (c) BRCA. Bottom-right panels of (b) and (c): scatter plots 742 
comparing ΔG-scores from PT to PDX-early and from PDX early to PDX-late. (d-e) Scatter plots 743 
comparing GSEA Normalized Enrichment Score (NES) for gene sets between each of the three 744 
cohorts, for (d) CRC (e) and BRCA. Bottom-right panels of (d) and (e): scatter plots comparing 745 
ΔNES from PT to PDX-early and from PDX-early to PDX-late. 746 
 747 
Fig. 6: Comparison of CNA variation during PDX engraftment and passaging to CNA 748 
variation among patient multi-region, tumor relapse, and metastasis samples. (a) 749 
Distributions of Pearson correlation coefficients of gene-based copy number for lung 750 
adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), and other lung cancer 751 
subtypes, comparing different datasets. TracerX multiregion: multi-region tumor samples of the 752 
same patient from TRACERx (92 patient tumors, 295 multi-region samples); PT-PDX samples of 753 
the same model; PDX-PDX samples of the same model. P-values were computed by two-sided 754 
Wilcoxon rank sum test (ns: not significant, p > 0.05). (b) Distributions of proportion of altered 755 
genes between multi-region tumor pairs from TRACERx, and PT-PDX and PDX-PDX pairs for 756 
various gene sets for LUAD and LUSC. Gene sets and CNA thresholds are the same as Fig. 4. 757 
TCGA Gistic Amp/Del and JAX CKB Amp Del gene sets are shown (other gene sets are shown 758 
in Extended Data Fig. 8). P-values were computed by one-sided Wilcoxon rank sum test. Number 759 
of genes per gene set are indicated in the plot title. (c) Distributions of Pearson correlation 760 
coefficients of gene-based copy number between intra-patient PT (primary/relapse/metastasis) 761 
pairs from the same patient and corresponding PT-PDX (derived from the same model; a different 762 
PT sample from the same patient generates a different model) pairs for the same set of patients. 763 
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P-values were computed by two-sided Wilcoxon rank sum test (ns: not significant, p > 0.05). 764 
Number of patients and models are indicated in the plot title. For all box plots and violin plots, 765 
number of pairwise comparisons are indicated in the horizontal axis labels. In all boxplots, the 766 
center line is the median, box limits are the upper and lower quantiles, whiskers extend 1.5 × the 767 
interquartile range, dots represent the all data points. (d) CNA profiles of PT and PDX samples 768 
from patients with PDX models derived from multiple PT collection (primary/relapse/metastasis). 769 
 770 
 771 
METHODS 772 
 773 
Experimental details for sample collection, PDX engraftment and passaging, and array or 774 
sequencing 775 
See Supplementary Methods. 776 
 777 
Consolidating tumor types from different datasets 778 
As the terminology of tumor types/subtypes by the different contributing centers were not 779 
consistent, we used the Disease Ontology database69 (http://disease-ontology.org/), cancer types 780 
listed in NCI website (https://www.cancer.gov/types) and in TCGA publications70,71 to unify and 781 
group the tumor types/subtypes under broader terms as shown in Fig.1 and Supplementary Table 782 
2. 783 
 784 
Copy number alteration (CNA) estimation methods 785 
SNP array. The estimation of CNA profiles from SNP array were detailed previously34. In short, 786 
for Affymetrix Human SNP 6.0 arrays, PennCNV-Affy and Affymetrix Power Tools72 were used to 787 
extract the B-allele frequency (BAF) and Log R Ratio (LRR) from the CEL files. Due to the 788 
absence of paired-normal samples, the allele-specific signal intensity for each PDX tumor were 789 
normalized relative to 300 randomly selected sex-matched Affymetrix Human SNP 6.0 array CEL 790 
files obtained from the International HapMap project73. For Illumina Infinium Omni2.5Exome-8 791 
SNP arrays (v1.3 and v1.4 kit), the Illumina GenomeStudio software was used to extract the B-792 
allele frequency (BAF) and Log R Ratio (LRR) from the signal intensity of each probe. The single 793 
sample mode of the Illumina GenomeStudio was used, which normalizes the signal intensities of 794 
the probes with an Illumina in-house dataset. The single tumor version of ASCAT33 (v2.4.3 for 795 
JAX SNP data, v2.5.1 for SIBS SNP data) was used for GC correction, predictions of the 796 
heterozygous germline SNPs based on the SNP array platform, and estimation of ploidy, tumor 797 
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content and allele-specific copy number segments. The resultant copy number segments were 798 
annotated with log2 ratio of total copy number relative to predicted ploidy from ASCAT.  799 
Whole-exome sequencing (WES) data. Aligned bams (See Supplementary Methods) were 800 
subset to target region by GATK 4.0.5.1, and SAMTools74 v0.1.18 was used to generate the pileup 801 
for each sample. Pileup data were used for CNA estimation as calculated with Sequenza29 v2.1.2. 802 
Both tumor and normal data, that utilized the same capture array, were used as input. pileup2seqz 803 
and GC-windows (-w 50) modules from sequenza-utils.py utility were used to create the native 804 
seqz format file for Sequenza and compute the average GC content in sliding windows from hg38 805 
genome, respectively. Finally, we ran the three Sequenza modules with these modified 806 
parameters (sequenza.extract: assembly = "hg38", sequenza.fit: chromosome.list = 1:23, and 807 
sequenza.results: chromosome.list = 1:23) to estimate the segments of copy number 808 
gains/losses. Finally, segments lacking read counts, in which ≥50% of the segment with zero read 809 
coverage, were removed. A reference implementation of this workflow (Supplementary Fig. 71) 810 
is developed and deployed in the Cancer Genomics Cloud by Seven Bridges 811 
(https://cgc.sbgenomics.com/public/apps#pdxnet/pdx-wf-commit2/wes-cnv-tumor-normal-812 
workflow/, https://cgc.sbgenomics.com/public/apps#pdxnet/pdx-wf-commit2/pdx-wes-cnv-813 
xenome-tumor-normal-workflow/). 814 
Low-pass whole-genome sequencing (WGS) data. For  EuroPDX CRC liver metastasis data, 815 
raw copy number profiles for each sample were estimated by QDNAseq75 R package v1.20 by 816 
dividing the human reference genome in non-overlapping 50 kb windows and counting the 817 
number of reads (See Supplementary Methods) in each bin. Bins in problematic regions were 818 
removed76. Read counts were corrected for GC content and mappability by a LOESS regression, 819 
median-normalized and log2-transformed. Values below –1000 in each chromosome were floored 820 
to the first value greater than –1000 in the same chromosome. Raw log2 ratio values were then 821 
segmented using the ASCAT33 algorithm implemented in the ASCAT R package v2.0.7. For 822 
EuroPDX BRCA tumors, raw copy number profiles were estimated for each sample by dividing 823 
the human reference genome in non-overlapping 20 kb windows and counting the number of 824 
reads (See Supplementary Methods) in each bin. Only reads with at least mapping quality 37 825 
were considered. Bins within problematic regions (i.e. multimapper regions) were excluded. 826 
Downstream analysis to estimate copy number was conducted as described above.  827 
RNA-sequencing (RNA-Seq) and gene expression microarray (EXPARR) data. For 828 
expression-based copy number inference, we referred to the previous protocols for e-karyotyping 829 
and CGH-Explorer37,38,77,78. For each cancer type, expression values (see Supplementary 830 
Methods) of tumor and corresponding normal samples were merged in a single table, and gene 831 
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identifiers were annotated with chromosomal nucleotide positions. Genes located on sex 832 
chromosomes were excluded. Genes which values below 1 TPM (RNAseq) or probeset log2-833 
values below 6 (microarray) in more than 20% of the analyzed dataset were removed. Remaining 834 
gene expression values below the thresholds were respectively raised to 1 TPM or log2-value of 835 
6. In the case of multiple transcripts (RNA-seq) or probesets (microarray) per gene, the one with 836 
the highest median value across the entire dataset was selected. According to the e-karyotyping 837 
protocol, the sum of squares of the expression values relative to their median expression across 838 
all samples was calculated for each gene, and 10% most highly variable genes were removed. 839 
For each gene, the median log2 expression value in normal samples was subtracted from the log2 840 
expression value in each tumor sample and subsequently input in CGH-explorer. For tumor-only 841 
datasets, the median log2 expression value in the same set of tumor samples was instead 842 
subtracted. The preprocessed expression profiles of each sample were individually analyzed 843 
using CGH-Explorer (http://heim.ifi.uio.no/bioinf/Projects/CGHExplorer/). CGH-PCF analysis was 844 
carried out to call copy number according to parameters previously reported23: least allowed 845 
deviation = 0.25; least allowed aberration size = 30; winsorize at quantile = 0.001; penalty = 12; 846 
threshold = 0.01.  847 
 848 
Statistical Methods 849 
All statistical analysis for data comparison were performed using either one-tailed or two-tailed 850 
Wilcoxon rank sum test, two-tailed Kolmogorov–Smirnov test, or one-tailed Wilcoxon signed rank 851 
test. 852 
 853 
Filtering and gene annotation of copy number segments 854 
Copy number (CN) segments with log2 copy number ratio estimated from the various platforms 855 
were processed in the following steps (Extended Data Fig. 3). Segments <1kb were filtered based 856 
on the definition of CNA79. In addition, SNP array segments had to be covered by >10 probes, 857 
with an average probe density of 1 probe per 5kb. The copy number segments were then binned 858 
into 10kb windows to derive the median log2(CN ratio), which was subsequently used to re-center 859 
the copy number segments. Median-centered copy number segments were visualized using IGV80 860 
v2.4.13 and GenVisR81 v1.16.1. Median-centered copy number of genes were calculated by 861 
intersecting the genome coordinates of copy number segments with the genome coordinates of 862 
genes (Ensembl Genes 93 for human genome assembly GRCh38, Ensembl Genes 96 for human 863 
genome assembly GRCh37). In the case where a gene overlaps multiple segments, the most 864 
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conservative (lowest) estimate of copy number was used to represent the copy number of the 865 
entire intact gene. 866 
 867 
Comparison of CN gains and losses 868 
For the comparison of resolution, range of CN values and frequency of gains and losses between 869 
different platforms and analysis methods, we defined copy number gain or loss segments as – 870 
Gain: log2(CNratio) > 0.1; Loss: log2(CN ratio) < -0.1.  871 
 872 
Correlation of CNA profiles  873 
The overall workflow to compare CNA profiles is shown in Extended Data Fig. 3. PDX samples 874 
without passage information were omitted in the following downstream analysis. The copy number 875 
segments were binned into 100kb-windows or smaller using Bedtools82 v2.26.0, and the variance 876 
of log2(CN ratio) and 5-95% inter-percentile range of log2(CN ratio) values across all the bins were 877 
calculated as a measure of degree of aberration for each CNA profile. A non-aberrant profile 878 
results in a low variance or range. While variance can be biased for CNA profiles with small 879 
segments of extreme gains or losses, we preferred the use of 5-95% inter-percentile range of 880 
log2(CN ratio) to identify samples with low degree of aberration, such that a narrow range indicates 881 
≥90% of the genome has very low-level gains and losses. The similarity of two CNA profiles is 882 
quantified by the Pearson correlation coefficient of log2(CN ratio) of 100kb-windows binned from 883 
segments or genes between 2 samples. Gene-based and segment-based (100kb windows) 884 
correlations were highly similar (data not shown). Using correlation avoided the issue of making 885 
copy number gain and loss calls based on thresholds. Sample-based variations in baseline due 886 
to median-normalization and range in copy number values could introduce further inconsistencies 887 
gain and loss calls between samples. Such variations are further impacted by sample-specific 888 
variation in human stromal contamination or sensitivity of copy number detection by different 889 
platforms. As median-centering of each CNA profile approximates normalization by the sample 890 
ploidy, we confirmed that in general ploidy (estimated from ASCAT analysis of SNP array 891 
samples) had no association with the copy number correlation values (Pearson's product-moment 892 
correlation, p > 0.05, cor = 0.0248). One caveat of our approach, however, is that it cannot 893 
distinguish genome-wide multiplication of ploidy between samples, as the correlation statistic is 894 
invariant to such genome-wide transformations. As such we cannot assess whether ploidy 895 
changes occur between samples of a given model. 896 
Comparison of CNA profiles between different platforms. The copy number segments of each 897 
pair of data were intersected and binned into 100kb-windows or smaller using Bedtools. The 898 
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Pearson correlation coefficient and linear regression model was calculated for the log2(CN ratio) 899 
of the windows. Windows with discrepant copy number were identified by outliers of the linear 900 
regression model defined by |studentized residual| > 3. These outlier windows were mapped to 901 
their corresponding segments to identify the size of CNA events that were discordant between 902 
the different copy number estimation methods. The proportion of the genome discordant CNA 903 
was calculated from the summation of the outlier windows. 904 
Identification of genes with CNA between different samples of the same model. To compare 905 
the CNA profiles between different samples (PT or PDX) of the same model, the Pearson 906 
correlation coefficient and linear regression model was calculated for the log2(CN ratio) of the 907 
genes for each pair of data. Prior to that, deleted genes with log2(CN ratio) < -3 were rescaled to 908 
-3 to avoid large shifts in the correlation coefficient and linear regression model due to extremely 909 
negative values on the log scale. Extreme outliers of the linear regression model defined by 910 
|studentized residual| > 3 were removed to derive an improved linear regression model39 not 911 
biased by few extreme values. Genes with copy number changes between the samples were 912 
identified by the difference in log2(CN ratio) relative to the improved linear regression model of 913 
|standard residual| < 0.5. We also removed some samples with low correlation due to sample 914 
mislabeling as they displayed high correlation with samples from other models. We also omitted 915 
samples with low correlation values (<0.6) which resulted from non-aberrant CNA profiles in 916 
genomically stable tumors (5-95% inter-percentile range of log2(CN ratio) < 0.3, Supplementary 917 
Fig. 62). 918 
Identification of aberrant sample pairs with highly discordant CNA profiles. Aberrant CNA 919 
profiles were identified based on the 5-95% inter-percentile range of log2(CN ratio) >0.5, for both 920 
samples. Sample pairs with Pearson correlation <0.6 were selected as highly discordant CNA 921 
profiles between them. 922 
Association of mutations with copy number correlations. Mutational calls for each WES 923 
sample used in this study were obtained using a tumor-normal variant calling workflow developed 924 
for patient tumor and PDXs35. Subsequently, genes with either germline and somatic variants that 925 
pass through the quality filters (FILTER = PASS or germline) and IMPACT = MODERATE or 926 
HIGH by SnpEff (v4.3) annotation are labeled as mutated, and wildtype if otherwise. For SNP 927 
array and WGS data, we collected the mutational status (wildtype or mutated) of TP53, BRCA1 928 
and BRCA2 per model where available, which may or may not be obtained from the exact same 929 
tumor samples used in this study. For the JAX SNP array dataset, variant calls (tumor-only) were 930 
made from various targeted sequencing approaches (TruSeq Amplicon Cancel Panel, JAX 931 
Cancer Treatment Profile panel and whole exome). The workflow and filtering criteria to call 932 
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mutations is described elsewhere34. For the HCI SNP array data, mutations were obtained from 933 
whole exome sequencing (unpublished data) and were filtered for frameshift, inframe, missense, 934 
and nonsense and splice-site mutations. For BCM SNP array data, mutational status were 935 
obtained from clinical samples by immunohistochemistry or Sequenom83 (unpublished data). For 936 
WGS data, mutations were obtained from whole exome or targeted panel sequencing84 937 
(unpublished data) and high-quality and likely functional mutations were retained. For each 938 
sample pair with copy number correlations, mutational status of TP53 or BRCA was obtained for 939 
each individual sample for WES data, while the mutational status was available on a per model 940 
basis for SNP and WGS data. BRCA is labelled as mutated when either BRCA1 or BRCA2 is 941 
mutated. For mutations in DNA repair genes85 from the WES data, each pair of samples was 942 
classified as mutated if any DNA repair gene was reported to be mutated in either sample. 943 
 944 
Annotation with gene sets with known cancer or treatment-related functions 945 
A low copy number change threshold (|log2(CN ratio) change| > 0.5) was selected to include 946 
genes with subclonal alterations. Copy number altered genes (|residual| > 0.5) were annotated 947 
by various gene sets with cancer or treatment-related functions gathered from various databases 948 
and publications (Extended Data Fig. 3):  949 
1. Genes in 10 oncogenic signaling pathways curated by TCGA and were found to be frequently 950 
altered in different cancer types40. 951 
2. Genes with gain in copy number or expression, or loss in copy number or expression that 952 
conferred therapeutic sensitivity, resistance or increase/decrease in drug response from the JAX 953 
Clinical Knowledgebase41,42 (JAX-CKB) based on literature curation (https://ckbhome.jax.org/, as 954 
of 06-18-2019).  955 
3. Genes with evidence of promoting oncogenic transformation by amplification or deletion from 956 
the Cancer Gene Census43 (COSMIC v89).  957 
4. Significantly amplified or deleted genes in TCGA cohorts of breast cancer44, colorectal cancer45, 958 
lung adenocarcinoma46 and lung squamous cell carcinoma47 by GISTIC analysis, which identified 959 
significantly altered genomic driver regions which can be used to differentiate tumor types and 960 
subtypes. 961 
 962 
Identification of genes with recurrent copy number changes 963 
A stringent CNA threshold (|log2(CN ratio) change| > 1.0 with respect to linear regression model) 964 
was selected to distinguish genes with possible functional impact. Genes with |residual| > 1.0 with 965 
respect to the improved regression linear model (without discriminating gain or loss) were 966 
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selected for each pairwise comparison between different samples of the same model. Pairwise 967 
cases in which genes are deleted in both samples (log2(CN ratio) £ -3 ) are omitted. Recurrent 968 
frequency for each gene across all models was calculated on a model basis such that genes with 969 
copy number between multiple pairs of the same model was counted as once. This avoided the 970 
bias towards models with many samples of similar copy number changes between the different 971 
pairs.  972 
 973 
Drug response analysis using CCLE data 974 
We developed a pipeline to evaluate gene copy number effects on drug sensitivity86,87 by using 975 
the Cancer Cell Line Encyclopedia48,88 (CCLE) cell line genomic and drug response data (CTRP 976 
v2). We downloaded the CCLE drug response data from Cancer Therapeutics Response Portal 977 
(www.broadinstitute.org/ctrp), and CCLE gene-level CNA and gene expression data from depMap 978 
data portal (‘public_19Q1_gene_cn.csv’ and ‘CCLE_depMap_19Q1_TPM.csv’, 979 
https://depmap.org/portal/download/). For CCLE drug response data, we used the area-under-980 
concentration-response curve (AUC) sensitivity scores for each cancer cell line and each drug. In 981 
total, we collected gene-level log2 copy number ratio data derived from the Affymetrix SNP 6.0 982 
platform from 668 pan-cancer CCLE cell lines, with a total of 545 cancer drugs tested. With the 983 
CCLE gene-level CNA and AUC drug sensitivity scores, we performed gene-drug response 984 
association analyses for genes with recurrent copy number changes. Pearson correlation p-985 
values between each gene’s log2 (CN ratio) and each drug’s AUC score across all cell lines were 986 
calculated, and q-values were calculated by multiple testing Bonferroni correction. Significant 987 
gene-CNA and drug associations were kept (q-value < 0.1) to further evaluate gene-expression 988 
and drug response associations. If a gene’s expression was also significantly correlated with AUC 989 
drug sensitivity scores, particularly in the same direction (either positively or negatively correlated) 990 
as the gene-CNA and drug association, that gene would be considered as significantly correlated 991 
with drug response based on both its CNA and gene expression.  992 
 993 
Genomic Identification of Significant Targets in Cancer (GISTIC) analysis of WGS data 994 
We carried out GISTIC analysis to identify recurrent CNAs by evaluating the frequency and 995 
amplitude of observed events. To obtain perfectly matching and comparable PT–PDX cohorts, 996 
for GISTIC analysis, CRC trios in which at least one sample displaying non-aberrant CNA profiles 997 
were excluded from the analysis resulting in a total of 87 triplets. The GISTIC51 algorithm (GISTIC 998 
2.0 v6.15.28) was applied on the segmented profiles using the GISTIC GenePattern module 999 
(https://cloud.genepattern.org/), with default parameters and genome reference files 1000 
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Human_Hg19.mat for EuroPDX CRC data and hg38.UCSC.add_miR.160920.refgene.mat for 1001 
EuroPDX BRCA data. For each dataset, GISTIC provides separate results (including segments, 1002 
G-scores and FDR q-values) separately for recurrent amplifications and recurrent deletions. 1003 
Deletion G-scores were assigned negative values for visualization. We observed that the G-Score 1004 
range was systematically lower in PT cohorts, which is likely the result of the dilution of CNA by 1005 
normal stromal DNA. In contrast, human stromal DNA in PDX samples were lower or negligible. 1006 
To account for this difference in gene-level G-scores, PDXs at early and late passages were 1007 
scaled with respect to PT gene-level G-score values using global linear regression, separately for 1008 
amplification and deletion outputs. 1009 
 1010 
Gene set enrichment analysis (GSEA) of WGS data 1011 
To assess the biological functions associated with the recurrent alterations detected by the 1012 
GISTIC analysis, we performed GSEAPreranked analysis52,53 (GSEA v3.0) on gene-level GISTIC 1013 
G-score profiles, for both amplifications and deletions. In particular, we applied the algorithm with 1014 
1000 permutations on various gene set collections from the Molecular Signatures Database89,90 1015 
(MSigDB v6.2): H (Hallmark), C2 (Curated : CGP chemical and genetic perturbations, CP 1016 
canonical pathways), C5 (Gene Ontology: BP biological process, MF molecular function, CC 1017 
cellular component) and C6 (Oncogenic Signatures) composed of   gene sets respectively. We 1018 
also included gene sets with known cancer or treatment-related functions described in an earlier 1019 
section. We noted that multiple genes with contiguous chromosomal locations, typically in 1020 
recurrent amplicons, generated spurious enrichment for gene sets which consists of multiple 1021 
genes of adjacent positions, while very few or none of them had a significant GISTIC G-score. To 1022 
avoid this confounding issue, we only considered the “leading edge genes”, i.e. those genes with 1023 
increasing Normalized Enrichment Score (NES) up to its maximum value, that contribute to the 1024 
GSEA significance for a given gene set. The leading-edge subset can be interpreted as the core 1025 
that accounts for the gene set’s enrichment signal (http://software.broadinstitute.org/gsea). We 1026 
included a requirement that the leading edge genes passing the GISTIC G-score significant 1027 
thresholds based on GISTIC q-value 0.25 (Supplementary Table 8 and Extended Fig. 7) make up 1028 
at least 20% of the gene set. This 20% threshold was chosen as the minimal threshold at which 1029 
gene sets assembled from TCGA-generated lists of genes with recurrent CNA in CRC or BRCA 1030 
were identified as significant in GSEA (see Supplementary Table 9). Finally, gene sets with a NES 1031 
greater than 1.5 and a FDR q-value of less than 0.05, which passed the leading edge criteria, 1032 
were considered significantly enriched in genes affected by recurrent CNAs. 1033 
 1034 
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 1035 
DATA AVAILABILITY 1036 
Copy number calls from all datasets are available in Supplementary Data 1, and these are used 1037 
for all figures. Raw sequence data for these calls are a combination of previously 1038 
described sources (notably the publicly available NCI Patient Derived Models Repository, 1039 
pdmr.cancer.gov) and newly sequenced data. New sequence data from the PDXNet are being 1040 
shared as part of the NCI Cancer Moonshot initiative through the Cancer Data Service. For further 1041 
details, contact the authors. The SNP array data generated by The Jackson Laboratory can be 1042 
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