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Unique equilibrium states for some intermediate beta transformations

Leonard Carapezza, Marco López and Donald Robertson

Abstract

We prove uniqueness of equilibrium states for subshifts corresponding to intermediate beta
transformations with β > 2 having the property that the orbit of 0 is bounded away from 1.

1. Introduction

A topological dynamical system is any pair (X,T ) where X is a compact metric space and
T : X → X is a continuous map. Often there are many Borel probability measures on X that
are T invariant and ergodic. One way to choose a specific T invariant probability measure with
which to analyze the statistics of a system is to attempt to maximize the measure-theoretic entropy
ν 7→ h(T, ν). More generally, given φ : X → R measurable one can choose an invariant measure by
attempting to maximize

ν 7→
∫
φ dν + h(T, ν) (1.1)

over all T invariant probabilities. When T is expansive and φ is continuous this can always be done
in at least one way [Wal82, Page 224]. Measures maximizing (1.1) are called equilibrium states
of T for the function φ.

Here we are interested in uniqueness of equilibrium states for a class of topological systems
coming from generalizations of the beta transformations F (x) = βx mod 1 on [0, 1) for β > 1.
Given 0 ≤ α < 1 and β > 1 we consider the map F : [0, 1)→ [0, 1) defined by

F (x) = βx+ α− bβx+ αc = βx+ α mod 1 (1.2)

for all 0 ≤ x < 1. Such maps are called alpha–beta transformations or intermediate beta
transformations and have been studied extensively [Rén57; Par60; Wal78; Gle90; Sch97; CT13;
Li+17; FP09]. In this paper we focus on intermediate beta transformations with β > 2.

Put ` = dα+ βe − 1. Using the partition

J0 =
[
0, 1− α

β

)
, J1 =

[1− α
β

,
2− α
β

)
, . . . , J` =

[
`− α
β

, 1
)

(1.3)

of [0, 1) one can associate to any intermediate beta transformation F a subshift Σ of {0, . . . , `}N.
We call such subshifts intermediate beta shifts. To describe our main result denote by a and b
respectively the infimum and supremum of Σ with respect to the lexicographic order on {0, . . . , `}N.
We will make repeated reference to the sets

D(a) = {n ∈ N : (b1, . . . , bn) = (aj , . . . , aj+n−1) for some j ∈ N}

D(b) = {n ∈ N : (a1, . . . , an) = (bj , . . . , bj+n−1) for some j ∈ N}

and will be particularly interested in whether they are bounded. Our main result is the following.
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Theorem 1.4. Fix 0 ≤ α < 1 and β > 2 and φ : Σ→ R a Hölder continuous function. If the set
D(a) is bounded then T has a unique equilibrium state for the function φ.

The hypothesis β > 2 is related to transitivity. One says that F is transitive if every open
subinterval J ⊂ [0, 1) has associated to it some m ∈ N such that the sets J, F (J), . . . , Fm(J) cover
[0, 1). The parameters α, β for which the intermediate beta transformation is transitive have been
determined: in [Pal79; Gle90] it is shown for α + β < 2 that non-transitivity takes place in a
countable union of connected regions in the (α, β) plane. In particular, for α+β < 2 the condition
β >

√
2 implies transitivity. For α + β ≥ 2 and β < 2 there is a further non-transitive region

bounded by the curves αβ = 1 and β(α + β − 2) = β − 1. The assumption β > 2 avoids all these
regions and is sufficient for our goal (see Proposition 3.14). See [Hof81] for related work on the
support of the unique measure of maximal entropy.

Equilibrium states have long been a topic of interest and their uniqueness and statistical prop-
erties have been studied in various settings. We briefly mention some of the previous work done in
similar settings. In [DKU90] the authors establish uniqueness for a collection of interval maps that
includes intermediate beta transformations but require the additional assumption on the potential
φ that supφ < P(φ). This condition is referred to as “small potentials” in [Buz95], where the
author also relaxes the hypothesis of the main result in [DKU90] to include maps with homtervals
and discontinuous potentials.

The consequences of having unique equilibrium states have been studied by many authors.
In [BS01; BSS02] multifractal results are given for functions coming from a subspace for which
equilibrium states are unique. If there exists a dense subspace of continuous functions with unique
equilibrium states, then [Cli13] gives multifractal results that apply to all continuous functions,
[Com16] shows that every invariant measure can be arbitrarily well approximated in the weak star
topology and in entropy by measures that are unique equilibrium states, [Com17] shows that the
graph of the entropy map restricted to ergodic measures is dense in the graph of the entropy map,
and [Kif90; Com16; Com17] show that large deviation principles are obtained. The space of Hölder
continuous functions on Σ is dense in the space of all continuous functions on Σ so these results
apply in particular to intermediate beta transformations. We refer the reader to [CT13, Section 4]
for an explanation of how, mutatis mutandis, these results for intermediate beta shifts imply results
for intermediate beta transformations.

Our proof of Theorem 1.4 makes use of [CT13, Theorem C], which gives some sufficient condi-
tions for a subshift to have unique equilibrium states with respect to a potential. This is discussed
further in Section 2.

If the subshift Σ has specification (see Section 2.3 for the definition) then the conclusion of
Theorem 1.4 is an immediate consequence of [Bow74]. We give in Section 5 an example of 0 ≤ α < 1
and β > 2 such that the associated subshift Σ satisfies the hypothesis of Theorem 1.4 but does not
have specification. In doing so the following characterization of specification for intermediate beta
transformations with β > 2, proved in Section 3, will be used.

2



Theorem 1.5. Fix 0 ≤ α < 1 and β > 2. The subshift Σ has specification if and only if the sets
D(a) and D(b) are both bounded.

We also prove in Section 5 that, in a certain sense, the hypothesis of Theorem 1.4 is often true.

Theorem 1.6. For every β > 2 there is a dense set of 0 ≤ α < 1 such that D(a) is bounded.

In the case where α = 0 the subshift Σ has specification if and only if the set D(b) is bounded.
This result, as well as results regarding the size of the set of parameters β such that the corre-
sponding shift has specification (or other properties) are in [Sch97].

The remainder of the paper runs as follows. We present in Section 2 some background on
subshifts and topological pressure. In Section 3 we describe subshifts associated to intermediate
beta transformations in terms of infinite graphs and prove Theorem 1.5. The proof of Theorem 1.4
is given in Section 4. Finally, in Section 5, we prove Theorem 1.6 and give an example showing
that the hypothesis of Theorem 1.4 is broader than specification.

This project began under the supervision of Vaughn Climenhaga at the 2017 AMS Mathematics
Research Community “Dynamical Systems: Smooth, Symbolic, and Measurable”. We would like
to thank the AMS for the opportunity to attend the MRC, and to thank Jon Chaika, Vaughn
Climenhaga and Daniel Thompson for many useful and engaging conversations related to this
project both during and after the MRC. We would also like to thank the AMS for supporting
travel costs after the MRC, which allowed the authors to collaborate in person at the 2018 Joint
Mathematics Meeting and at the University of Utah. M. López would like thank Tony Samuel for
helpful discussions regarding intermediate beta transformations. D. Robertson was supported by
NSF grant DMS-1703597 during the preparation of this work.

2. Preliminaries

We recall in this section some standard material on subshifts and pressure that we will make use
of below. More details can be found in [Wal82].

2.1. Subshifts Equip {0, . . . , `}N with the product topology and the standard metric d defined
by

d(x, y) = inf
{ 1

2j : (x1, . . . , xj) = (y1, . . . , yj)
}
∪ {1}

for all x, y ∈ {0, . . . , `}N. The lexicographic order on {0, . . . , `}N is denoted � and defined for
all x, y therein by x � y if and only if there is k ∈ N with x1 = y1, . . . , xk = yk and xk+1 ≤ yk+1.
The product, metric and lexicographic topologies on {0, . . . , `}N all agree.

Write σ for the shift map (σx)n = xn+1 on {0, . . . , `}N. A closed set Σ ⊂ {0, . . . , `}N is a
subshift if σ(Σ) ⊂ Σ. A sequence w : {1, . . . , n} → {0, . . . , `} is a word of a subshift Σ if there is
x ∈ Σ with xi = wi for all 1 ≤ i ≤ n. The length of a word w is the cardinality of its domain and
denoted |w|.
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The language of a subshift Σ is the set L of all its words. Every word w ∈ L defines the
cylinder

[w] = {x ∈ Σ : (x1, . . . , xn) = (w1, . . . , wn)}

of sequences that begin in agreement with w. For any word w in L and any 1 ≤ i ≤ j ≤ |w|
we write both wji and (wi, . . . , wj) for the word obtained by restricting w to {i, . . . , j}. Similarly,
for any 1 ≤ i ≤ j denote by xji and (xi, . . . , xj) the word obtained by restricting any sequence
x to {i, . . . , j}. Words can be concatenated as follows: given words w, v denote by wv the word
(w1, . . . , w|w|, v1, . . . , v|v|). If W,V are subsets of L write

WV = {wv ∈ L : w ∈ W, v ∈ V}

for the set of all words in L that can be written as a word from W concatenated with a word from
V. Lastly, given H ⊂ L write Hn for the set of words of length n in H.

2.2. Pressure Fix a subshift Σ. Given φ : Σ→ R and n ∈ N define

(Snφ)(x) =
n−1∑
i=0

φ(T ix)

for all x ∈ Σ. We define
φ(w) = sup{(S|w|φ)(x) : x ∈ [w]}

for all words w in L. Given H ⊂ L the quantity

P(φ,H) = lim sup
n→∞

1
n

log Λn(φ,H)

is the topological pressure along φ of H where

Λn(φ,H) =
∑
w∈Hn

exp(φ(w))

for all n ∈ N. If φ = 0 then Λn(φ,H) is the cardinality of Hn and P(0,H) is the exponential growth
rate of n 7→ |Hn|. In particular P(0,L) is the topological entropy of Σ.

When φ is continuous the variational principle [Wal82, Theorem 9.10] states that

P(φ) = sup
{∫

φ dν + h(σ, ν) : ν a σ invariant Borel probability on Σ
}

(2.1)

where h(σ, ν) is the measure-theoretic entropy of ν. The function φ is referred to as a potential.
We will primarily be interested in potentials with the Bowen property.

Definition 2.2. A function φ : Σ → R has the Bowen property if there is V > 0 such that, for
every n ∈ N and any w ∈ Ln, one has |(Snφ)(x)− (Snφ)(y)| ≤ V for all x, y ∈ [w].

Every Hölder continuous function φ : Σ→ R has the Bowen property [CT13, Section 2.2]. The
following lemma will be useful later.
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Lemma 2.3. Fix x ∈ Σ and let D = {(x1, . . . , xn) : n ∈ N} ⊂ L. If φ : Σ → R has the Bowen
property, then

P(φ,D) = lim sup
n→∞

1
n

(Snφ)(x)

holds.

Proof. Put wn = (x1, . . . , xn). Since φ has the Bowen property there is V > 0 such that

|φ(wn)− (Snφ)(x)| ≤ V

for all n ∈ N. Consequently

1
n

(Snφ)(x)− V

n
≤ 1
n
φ(wn) ≤ 1

n
(Snφ)(x) + V

n

and, since φ(wn) = log Λn(φ,D), applying the limsup gives the result.

2.3. Specification Fix a subshift Σ. A set G ⊂ L has specification when there is τ ∈ N such that,
for any words w0, . . . , wn in G one can find words v1, . . . , vn in Lτ such that w0v1w1 · · ·wn−1vnwn

belongs to L.

Proposition 2.4 (cf. [CFT18, Theorem 6.1]). Let Σ be subshift having positive diameter with
respect to d such that L has specification. If φ : Σ → R is a continuous function with the Bowen
property then every equilibrium state for φ has positive entropy.

Corollary 2.5. Let Σ be a subshift with positive d diameter such that language L has specification.
Let φ : Σ → R be a continuous function with the Bowen property. We have P(φ,D) < P(φ,L) for
every x ∈ Σ where D = {(x1, . . . , xn) : n ∈ N}.

Proof. Fix x ∈ Σ. By Lemma 2.3 we have

P(φ,D) = lim sup
n→∞

1
n

(Snφ)(x)

and therefore
P(φ,D) = lim

k→∞

1
nk

(Snk
φ)(x)

for some nk ↗∞ in N. By passing to a further subsequence if necessary we get

P(φ,D) =
∫
φ dν

for some σ invariant probability ν on Σ. If ν is not an equilibrium state then P(φ,D) < P(φ,L) by
the variational principle (2.1). On the other hand, if ν is an equilibrium state then P(φ,D) < P(φ,L)
by Proposition 2.4.
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3. Intermediate beta transformations

3.1. Lexicographic description Fix 0 ≤ α < 1 and β > 1 and let F : [0, 1) → [0, 1) be the
map F (x) = βx+ α mod 1. Put ` = dα+ βe − 1. As mentioned in Section 1 we associate to every
x ∈ [0, 1) the sequence Ω(x) ∈ {0, . . . , `}N defined by Ω(x)n = i if and only if Fn−1(x) ∈ Ji for all
n ∈ N, where the intervals Ji are those of (1.3). The subshift Σ associated to the pair (α, β) is the
closure of the image of Ω.

The map Ω intertwines the linear order on [0, 1) with the lexicographic order � on Σ. This
leads to the following characterization of sequences in Σ. Throughout we write L for the language
of Σ as well as a = Ω(0) and b = lim

x↗1
Ω(x).

Lemma 3.1 ([Hof79, Theorem 2]). A sequence x ∈ {0, . . . , `}N is in Σ if and only if

a � σk−1(x) � b (3.2)

for all k ∈ N.

Corollary 3.3. A word w : {1, . . . , n} → {0, . . . , `} is in Ln if and only if

(a1, . . . , an−k+1) � (wk, . . . , wn) � (b1, . . . , bn−k+1) (3.4)

for all k ∈ {1, . . . , n}.

Proof. If (wk, . . . , wn) ≺ (a1, . . . , an−k+1), then every x ∈ [w] satisfies σk−1(x) ≺ a and is therefore
not in Σ by Lemma 3.1. Thus w is not in Ln. Similarly, if (b1, . . . , bn−k+1) ≺ (wk, . . . , wn) then w
is not in Ln.

Now suppose (3.4) holds for some word w. Fix i maximal with (wn−i+1, . . . , wn) = (a1, . . . , ai)
and put x = wσi(a). By Lemma 3.1, it suffices to show that (3.2) holds. Since σn−i(x) = a it
suffices to check (3.2) for all k < n− i.

Fix k < n− i. We have (a1, . . . , an−k) � (wk+1, . . . , wn) by (3.4). If k < n− i then maximality
of i implies (a1, . . . , an−k) ≺ (wk+1, . . . , wn). The initial subword of σk(x) is wnk+1 so we have
a ≺ σk(x). For the second inequality in (3.2) observe that (wk+1, . . . , wn−i) � (b1, . . . , bn−k−i) by
(3.4). Thus, for k < n− i we have

σk(x) = wn−ik+1a ≤ b
n−k−i
1 a ≤ bn−k−i1 σn−k−i(b) = b

with the second inequality holding because b satisfies (3.2).

3.2. Graphical description Using the lexicographic description of L in the previous subsection
we present here a graph with directed edges labeled by {0, . . . , `} and a root vertex with the
following property: that a word belongs to L if and only if it corresponds via edge labels to a path
in the graph starting at the root.

The follower set of the word w ∈ L is the set

F(w) = σ|w|([w]) = {x ∈ {0, . . . , `}N : wx ∈ Σ}

6



of sequences which can be concatenated to w to give a sequence in Σ. It is known from work of
Takahashi [Tak73] and Hofbauer [Hof78] that every subshift can be encoded graphically using fol-
lower sets as vertices. For intermediate beta shifts this procedure can be simplified by characterizing
follower sets using the coordinates

k1(w) = max{0} ∪ {1 ≤ k ≤ |w| : (w|w|−k+1, . . . , w|w|) = (a1, . . . , ak)}

k2(w) = max{0} ∪ {1 ≤ k ≤ |w| : (w|w|−k+1, . . . , w|w|) = (b1, . . . , bk)}

which record the lengths of the longest tail segments of w that agree with initial segments of a and
b respectively. One can show that

F(w) = {x ∈ Σ : σk1(w)(a) � x � σk2(w)(b)} (3.5)

for all w so follower sets are indexed by the points of (N ∪ {0})2.
We are now ready to define the graph. For each j, k ∈ N ∪ {0} with

{x ∈ Σ : σj(a) � x � σk(b)} 6= ∅

the pair (j, k) defines a vertex of Γ denoted by [j, k]. There are four types of edge.

E1. (Follow a and b) If [j, k] is a vertex and aj+1 = bk+1 then this quantity labels an edge from
[j, k] to [j + 1, k + 1].

E2. (Follow a alone) If [j, k] is a vertex and aj+1 < bk+1 then aj+1 labels an edge from [j, k] to
[j + 1, 0].

E3. (Follow b alone) If [j, k] is a vertex and aj+1 < bk+1 then bk+1 labels an edge from [j, k] to
[0, k + 1].

E4. (Reset) If [j, k] is a vertex every aj+1 < c < bk+1 labels and edge from [j, k] to [0, 0].

There is always an edge labeled 0 from [0, 0] to [1, 0] and an edge labeled ` from [0, 0] to [0, 1]. We
also have, for every 0 < i < `, an edge from [0, 0] to [0, 0] labeled i. See Figure 1 for a partial
example.

Lemma 3.6. Every vertex [j, k] lies at the end of a path starting at [0, 0] and labeled by either an
initial segment of a or an initial segment of b.

Proof. If [j, k] is a vertex then there is a word w such that (w|w|−j+1, . . . , w|w|) = (a1, . . . , aj) and
(w|w|−k+1, . . . , w|w|) = (b1, . . . , bk). If j ≥ k then (a1, . . . , aj) labels the desired path, otherwise use
(b1, . . . , bk).

Lemma 3.7. The only vertex of the form [k, k] is [0, 0].

Proof. No word has a tail segment of length k ∈ N agreeing with (a1, . . . , ak) and (b1, . . . , bk)
because a1 6= b1.
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[2,10]

[1,9]

[0,8]

[1,7]

[0,6]

[0,5]

[1,4]

[0,3]

[0,2] [9,2]

[0,1] [5,1] [8,1]

[0,0] [1,0] [2,0] [3,0] [4,0] [6,0] [7,0] [10,0]

0

0

1
0

0

1

2

1

0

0

2

1

0

1

2

1

0

1
1

0

2

1

0
1

1 1

2

1

2

Figure 1: Part of the graph Γ when a = 0011201210 · · · and b = 2120210100 · · · with all edges
terminating at [0, 1] labeled “2” and all edges terminating at [1, 0] labeled “0”.

Lemma 3.8. For every N ∈ N there is only one vertex of the form [N, j] with j ≤ N .

Proof. By the previous lemma, if [N, j] is a vertex with j ≤ N then j < N . All words w with
k1(w) = N and k2(w) < N have the same k2 coordinate.

Lemma 3.9. Let γ be a path in Γ starting at [0, 0] and ending at [i, j]. If w is the associated word
over {0, . . . , `} then i is maximal such that (wn−i+1, . . . , wn) = (a1, . . . , ai) and j is maximal such
that (wn−j+1, . . . , wn) = (b1, . . . , bj).

Proof. We proceed by induction on the length n of the path. When n = 1 there are four cases to
check. If w1 = a1, then w labels an edge from [0, 0] to [1, 0]. If a1 < w1 < b1 then γ is a loop at
[0, 0]. If w1 = b1, then w labels an edge from [0, 0] to [0, 1].
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Now suppose the conclusion of the lemma holds for paths of length n. Let γ be a path in Γ of
length n+1 starting at [0, 0]. Let [i, j] be the penultimate vertex of γ and let w be the corresponding
word over {0, . . . , `}. There are four cases to consider according to which of the rules E1 through
E4 determines the last edge of γ.

In case E1 the path γ ends at [i + 1, j + 1]. By the induction hypothesis, i is maximal such
that (wn−i+1, . . . , wn) = (a1, . . . , ai). Hence, ai+1 = wn+1 implies i + 1 is maximal such that
(wn−i+1, . . . , wn+1) = (a1, . . . , ai+1). By a similar argument j+1 is maximal with (wn−j+1, . . . , wn+1) =
(b1, . . . , bj+1).

In case E2 our path γ ends at [i + 1, 0]. As in the previous case i + 1 is maximal such
that (wn−i+1, . . . , wn+1) = (a1, . . . , ai+1). What needs to be shown is that (wk, . . . , wn+1) 6=
(b1, . . . , bn−k+2) for all 1 ≤ k ≤ n + 1. That is, the word w does not end with an initial sub-
word of b. By the induction hypothesis, j is maximal such that (wn−j+1, · · · , wn) = (b1, . . . , bj).
This implies (wk, . . . , wn+1) 6= (b1, . . . , bn−k+2) for all 1 ≤ k ≤ n− j. For n− j + 1 ≤ k ≤ n+ 1, we
have wnk = bjk+j−n. This leads to

wn+1
k = bjk+j−nwn+1 ≺ bj+1

k+j−n � b
n−k+2
1

with the second inequality holding because bj+1
1 satisfies (3.4).

The remaining cases E3 and E4 are similar.

Lemma 3.10. A word w over {0, . . . , `} is in L if and only if the letters of w label a path in Γ
that begins at [0, 0].

Proof. We proceed by induction on n. The case n = 1 is immediate: for every i in {0, . . . , `} there
is an edge labeled i leaving [0, 0].

Suppose the conclusion of the lemma holds for words of length n over {0, . . . , `}. Let w be a
word of length n + 1 over {0, . . . , `}. If the initial subword (w1, . . . , wn) is not in L, then by the
induction hypothesis (w1, . . . , wn) does not spell a path in Γ. Hence, neither is w in L nor does
w spell a path in Γ. If (w1, . . . , wn) is in L the by induction there is a corresponding path γ of
length n in Γ starting at [0, 0]. Let [i, j] be the terminal vertex of γ. Certainly ai+1 ≤ wn+1 ≤ bj+1.
We conclude by using Corollary 3.3 to show that if wn1 is in L, then wn+1

1 is in L if and only if
ai+1 ≤ wn+1 ≤ bj+1.

If (w1, . . . , wn+1) is in L, then Corollary 3.3 implies (a1, . . . , ai+1) � (wn−i+1, . . . , wn+1). The
path corresponding to (w1, . . . , wn) ends at the vertex [i, j] so Lemma 3.9 implies i is maximal such
that wnn−i+1 = ai1. Evidently

(a1, . . . , ai+1) � (a1, . . . , ai, wn+1)

hence it must be that wn+1 ≥ ai+1. A similar argument shows that wn+1 ≤ bj+1.
Suppose wn+1 ≥ ai+1. By the induction hypothesis and Corollary 3.3 we have

(a1, . . . , ak−n+1) � (wk, . . . , wn)
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for 1 ≤ k ≤ n. By maximality of i, we have (a1, . . . , ak−n+1) ≺ (wk, . . . , wn). Hence

(a1, . . . , ak−n+2) ≺ (wk, . . . , wn+1)

for all 1 ≤ k ≤ n− i. If n− i+ 1 ≤ k ≤ n+ 1 then

(a1, . . . , an−k+2) � (ai+k−n, . . . , ai+1) � (ai+k−n, . . . , ai, wn+1) = (wk, . . . , wn+1)

with the first inequality holding because ai+1
1 satisfies (3.4). A similar argument shows that wn+1 ≤

bj+1 implies (wk, . . . , wn+1) � (b1, . . . , bn−k+2) for all 1 ≤ k ≤ n + 1. Hence, ai+1 ≤ wn+1 ≤ bj+1

which implies w is in L.

To every path in Γ we can associate a word over {0, . . . , `} by reading off the labels of the
edges in the path. By Lemma 3.10, every word w in the language L of Σ corresponds to a path
pth(w) in Γ beginning at [0, 0]. Write vtx(w) for the terminal vertex of the path pth(w). Thus
vtx(w) = [k1(w), k2(w)]. We also write pth(x) for the infinite path in Γ starting at [0, 0] determined
by x ∈ Σ.

By a flat in the graph we mean a path either of the form

[r, 0]→ [r + 1, 0]→ · · · → [s, 0]

or of the form
[0, r]→ [0, r + 1]→ · · · → [0, s]

for some r < s in N∪{0}. Paths of the first kind are called vertical flats while paths of the second
kind are called horizontal flats. Note that the requirement r < s precludes a single vertex from
being considered a flat.

Lemma 3.11. No edge in a horizontal flat is labeled 0 and no edge in a vertical flat is labeled `.

Proof. If an edge with source [0, k] is labeled 0 then its target is either [1, k + 1] or [1, 0]. Neither
of these vertices can belong to a horizontal flat. Similarly, if an edge with source vertex [j, 0] is
labeled ` then its target is either [j + 1, 1] or [1, 0].

By a diagonal in the graph we mean a path of the form

[p, q]→ [p+ 1, q + 1]→ · · · → [p+ d, q + d] (3.12)

for some p, q, d ∈ N.

Lemma 3.13. If [p, q]→ [p+ 1, q + 1] is an edge then no other edge has [p, q] as a source.

Proof. Since there is an edge from [p, q] to [p+ 1, q + 1] we must have aj+1 = bk+1. Thus none of
the possibilities E2, E3 or E4 occur at [p, q].
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If (3.12) is a maximal diagonal (i.e. not a sub-path of a longer diagonal) then there are at least
two edges with source [p+ d, q+ d]. These edges have targets [p+ d+ 1, 0] and [0, q+ d+ 1]. If we
have ap+d < bq+d there will also be edges from [p+ d, q + d] to [0, 0].

By a vertical reset in the graph we mean any edge of the form [p, q] → [0, q + 1] and by a
horizontal reset we mean any edge of the form [p, q] → [p + 1, 0]. The infinite path in Γ that
corresponds to b is made up of horizontal flats, diagonals and vertical resets. It may be that some
of these flats are empty (in otherwords a diagonal may immediately follow a reset) and it may be
that b is coterminal with an infinite horizontal flat or diagonal.

3.3. Characterizing specification Fix β > 2. The purpose of this section is to characterize
in terms of a and b when the subshift Σ has specification to prove i.e. to prove Theorem 1.5. We
begin with some preliminary results.

Proposition 3.14. If β > 2 then for every interval I ⊂ [0, 1) there is τ ∈ N and a subinterval
L ⊂ I such that F τ (L) = [0, 1) and F τ restricted to L is continuous.

Proof. Without loss of generality, we may assume I is contained in a single interval of continuity of
F . Let |I| denote the length of I. We define two sequences I0, I1, I2, . . . and L0 ⊃ L1 ⊃ L2 ⊃ · · ·
of intervals by the following recursive process.

Put I0 = I and L0 = I. Define I1 to be a subinterval of F (I0) of maximal length that is
contained in an interval of continuity of F . The interval L1 ⊂ L0 then consists of those points in
L0 that map to I1 under F . Inductively, if In and Ln have been defined, let In+1 be an subinterval
of F (In) of maximal length that is contained in an interval of continuity of F and let Ln+1 ⊂ Ln

be those points that map to In+1 under Fn+1.
By design Fn+1 is continuous when restricted to Ln for all n. If, for some n, the interval F (In)

contains two or more points of discontinuity of F then Fn+2(In+1) = [0, 1) and we get the result
with L = Ln+1 and τ = n+ 2. If F (In) contains fewer than two points of discontinuity of F , then
|In+1| ≥ β

2 |In|. It must then be the case that F (In) contains two or more points of discontinuity of
F for some n, otherwise β > 2 implies the size of the intervals In would grow without bound.

Corollary 3.15. If β > 2 then for every word w ∈ L there exists a word u ∈ L such that wux ∈ Σ
for every x ∈ Σ.

Proof. Fix w, v ∈ L. The cylinder sets [w] and [v] correspond to intervals Iw and Iv in [0, 1) of
points whose encodings begin with w and v, respectively. Apply Proposition 3.14 to the interval
Iw to get τ ∈ N and L ⊂ Iw with the stated properties. Since the intervals of continuity of F have
length at most 1

β , we must have |Iw| ≤ 1
β|w| . Hence τ ≥ |w|.

From F τ (L) = [0, 1) we get, for every v ∈ L, some u ∈ Lτ−|w| with wuv ∈ L. Continuity of F τ

restricted to L implies u is independent of v. Given x ∈ Σ we can choose v to be an arbitrarily
long initial subword of x. This implies wux is in Σ because Σ is closed.

Corollary 3.16. If β > 2 then for every vertex ξ in Γ there is a path from ξ to [0, 0].
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Proof. Given a vertex ξ ∈ Γ let w ∈ L be any word with ξ = [k1(w), k2(w)]. By Corollary 3.15
there is a word u ∈ L such that the path pth(wu) in Γ ends at a vertex that has an outgoing edge
for every member of {0, . . . , `}. Now ` ≥ 2 so E4 implies that whenever a vertex has at least three
outgoing edges, one of the edges terminates at [0, 0].

We are now ready for the proof of Theorem 1.5.

Proof of Theorem 1.5. Let L = max D(a) and let N = max D(b). By Lemma 3.9 every vertex [i, j]
of Γ satisfies i < N+1 or j < L+1. We claim that vtx(aN+1

1 ) is the only vertex with first coordinate
N + 1 and vtx(bL+1

1 ) is the only vertex with second coordinate L + 1. We prove the statement
for vtx(aN+1

1 ); the proof for vtx(bL+1
1 ) is similar. Lemma 3.9 implies vtx(aN+1

1 ) = [N + 1, j]
where j is maximal such that aN+1

N−j+2 = bj1. Lemma 3.9 also implies that a word w ∈ Ln with
vtx(w) = [N + 1, j′] satisfies wnn−N = aN+1

1 and j′ is maximal such that wnn−j′+1 = bj
′

1 . Since b does
not contain aN+1

1 it must be that j′ < N − 1, but then j′ is maximal such that bj
′

1 is an ending
subword of aN+1

1 so j′ = j.
From E2 we see that from a vertex [i, j] with i < N + 1 the word aN+1

i+1 spells a path to
a vertex with first coordinate N + 1. By the claim in the previous paragraph, this vertex is
vtx(aN+1

1 ). Similarly, from a vertex [i, j] with j < L+ 1 the word bL+1
j+1 spells a path to vtx(bL+1

1 ).
By Corollary 3.16, there are paths ηa and ηb from vtx(aN+1

1 ) and vtx(bL+1
1 ) to [0, 0] with lengths

we denote by τa and τb. These observations imply that from every vertex in Γ there is a path to
[0, 0] of length at most τ = max{N + 1, L+ 1}+ max{τa, τb}. By Lemma 3.10, the language of Σ
has specification with gap time τ .

On the other hand, suppose a contains arbitrarily long initial subwords of b. (When b contains
arbitrarily long initial subwords of a the argument is similar.) We fix τ ∈ N and show that there are
words w, v ∈ L for which wuv /∈ L for all u ∈ Lτ . By assumption, we can find bK1 in a with K > τ .
Assume the initial subword bK1 of b begins in a at index q+1. That is, assume a = aq1b

K
1 aq+K+1 · · · .

By Lemma 3.9, if q is chosen as small as possible, then vtx(aq+K1 ) = [q + K,K]. It follows that
vtx(aq1) = [q, 0] and that bK1 spells a path from [q, 0] to [q + K,K]. Since both coordinates are
increasing along this path, it follows that none of the vertices seen have any other outgoing edges.
By Lemma 3.10, if we let w = aq1, then u = bτ1 is the only word in Lτ such that wu ∈ L and bτ+1

is the only letter in {0, . . . , `}. Thus we get the result by letting v be any word in L whose first
letter is not bτ+1.

4. Proof of Theorem 1.4

In this section we prove Theorem 1.4. We therefore fix 0 ≤ α < 1 and β > 2 and a Hölder
continuous function φ : Σ→ R. By hypothesis there is a bound L ∈ N on the set D(a). Our main
tool in the proof of Theorem 1.4 is the following result giving a sufficient condition for a subshift
to have unique equilibrium states.
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Theorem 4.1 ([CT13, Theorem C]). Let Σ be a subshift on a finite alphabet with language L.
Suppose P,G,S ⊂ L satisfy PGS = L. Put

G(M) = {vwu ∈ L : v ∈ P, w ∈ G, u ∈ S, |v| ≤M, |u| ≤M}

for each M ∈ N. A continuous function φ : Σ → R has a unique equilibrium state if all of the
following conditions hold.

CT1. The set G(M) has specification for all M ∈ N.

CT2. The potential φ has the Bowen property.

CT3. P(φ,P ∪ S) < P(φ,L).

4.1. A Language decomposition Let G ⊂ L consist of all words w such that vtx(w) has second
coordinate equal to 0. Let S ⊂ L consist of the initial subwords of b. Thus Sn = {bn1}. Allowing
for the empty word, we have the decomposition L = GS. For M ∈ N we denote by G(M) ⊂ L the
set of all words w that can be written w = gs with g ∈ G and s ∈ S with |s| ≤ M . Equivalently,
w ∈ G(M) if and only if the second coordinate of vtx(w) is at most M .

Proposition 4.2. If β > 2 and D(a) is bounded then G(M) has specification for all M ∈ N.

Proof. Let bL1 be the longest initial subword of n that appears in a. It suffices to consider the case
M > L. By Lemma 3.10 it suffices to show that there exists a τ ∈ N such that from any vertex
with second coordinate at most M , there is a path to [0, 0] of length at most τ .

It follows from Lemma 3.9 that for all K > L the only vertex with second coordinate equal to
K is vtx(bK1 ). Indeed, if vtx(w) = [i,K] for some w ∈ L, then i and K are maximal such that ai1
and bK1 are ending subwords of w. Since a does not contain bK1 , it must be that i < K. Hence,
ai1 is an ending subword of bK1 and is maximal in this regard. This implies the first coordinate of
vtx(bK1 ) is also i, hence vtx(w) = vtx(bK1 ). In particular, vtx(bM1 ) is the only vertex with second
coordinate M .

By Corollary 3.16, there is a path η from vtx(bM1 ) to [0, 0]. Let the length of this path be
τM . For every j < M the word bMj+1 spells a path from any vertex [i, j] to a vertex with second
coordinate M , which must be vtx(bM1 ). This shows that from any vertex with second coordinate
at most M , there is a path to [0, 0] of length at most τM +M .

Corollary 4.3. If x ∈ Σ does not contain arbitrarily long initial subwords of b, then x belongs to
a subshift of Σ that has specification.

Proof. Let bK1 be the longest initial subword of b that appears in x and choose M > max{K,L}.
Let Σ′ ⊂ Σ contain every sequence with the property that the corresponding path in Σ never visits
vertices with second coordinate greater than M . By Lemma 3.9, the set Σ′ is shift invariant and
contains x. If a sequence y is not in Σ′, then again by Lemma 3.9, we have

(yn, . . . , yn+M+1) = (b1, . . . , bM+1)
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for some n ∈ N. The open cylinder

{z ∈ Σ : (zn, . . . , zn+M+1) = (b1, . . . , bM+1)}

contains y and is disjoint from Σ′. Hence, Σ′ is closed. The language of Σ′ has specification because
the language of Σ′ is contained in G(M) and this has specification by Proposition 4.2.

4.2. Comparison sequences The sequence b does not end in an infinitely long diagonal by
Corollary 3.16. Therefore the path corresponding to b has either infinitely many resets or ends in
an infinite flat. In other words b has the form

b = b1 · · · bn1︸ ︷︷ ︸
flat

a1 · · · am1︸ ︷︷ ︸
diagonal

bn1+m1+1︸ ︷︷ ︸
reset

bn1+m1+2 · · · bn2︸ ︷︷ ︸
flat

a1 · · · am2︸ ︷︷ ︸
diagonal

bn2+m2+1︸ ︷︷ ︸
reset

· · · (4.4)

for some mi, ni ∈ N with ni+1 ≥ ni +mi + 1 for all i. Note that we may have ni+2 = ni +mi + 1 in
which case b transitions immediately from a reset to a diagonal, and that b may have only finitely
many diagonals. The sequence b therefore satisfies (exactly) one of the following criterion.

B1. There are infinitely many n with bn belonging to a flat of b and bn 6= 1.

B2. All but finitely many of the bn belonging to flats equal 1.

We next define auxiliary sequences c and d that will be used in proving Theorem 1.4 according
to whether we are in case B1 or B2 respectively. First, define c by editing b as follows: change
every letter of b belonging to a flat to a 1. Formally, if Q is the set of indices n such that bn
corresponds to a flat in Γ, define

cn =

1 n ∈ E

bn otherwise

for all n ∈ N.

Lemma 4.5. The sequence c belongs to Σ.

Proof. We prove that c1 · · · cn belongs to L for all n ∈ N. Fix n ∈ N and let m ≤ n be maximal
with m ∈ Q and bm 6= 1. (If no such m exists then c1 · · · cn = b1 · · · bn which certainly belongs
to L.) By E4 there is an edge from [0,m] to [0, 0] labeled 1. Since every word corresponds to
some path starting at [0, 0] the concatenation b1 · · · bm−11bm+1 · · · bn belongs to L. In particular
bj · · · bm−11bm+1 · · · bn belongs to L for all j < m− 1. Repeating this argument for all indices k at
which bk 6= 1 corresponds to an edge in a flat gives c1 · · · cn in L.

The sequence c has the form

c = 1 · · · 1︸ ︷︷ ︸
“flat”

a1 · · · am1︸ ︷︷ ︸
“diagonal”

bn1+m1+1︸ ︷︷ ︸
“reset”

1 · · · 1︸ ︷︷ ︸
“flat”

a1 · · · am2︸ ︷︷ ︸
“diagonal”

bn2+m2+1︸ ︷︷ ︸
“reset”

· · · (4.6)
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where our labels of flat, diagonal and reset are now only heuristic, as pth(c) may not truly traverse
the flats and diagonals of pth(b).

Our second sequence d will be used in case B2 and is defined as follows. Fix by Corollary 3.16 a
path γ in Γ from [k1(bL+1

1 ), L+1] to [0, 0] and let η be the corresponding word. Define a sequence d in
{0, . . . , `}N by simultaneously replacing every reset bni+mi+1 in b with the word am+i+1b1 · · · bL+1η.
Write Bni+mi+1 = am+i+1b1 · · · bL+1η for brevity. The sequence d has the form

d = b1 · · · bn1︸ ︷︷ ︸
“flat”

a1 · · · am1︸ ︷︷ ︸
“diagonal”

Bn1+m1+1︸ ︷︷ ︸
to [0,0]

bn1+m1+2 · · · bn2︸ ︷︷ ︸
“flat”

a1 · · · am2︸ ︷︷ ︸
“diagonal”

Bn2+m2+1︸ ︷︷ ︸
to [0,0]

· · · (4.7)

where again our labels of flats and diagonals are now only heuristic, as pth(d) may not truly traverse
the flats and diagonals of pth(b).

Lemma 4.8. The sequence d belongs to Σ.

Proof. The proof is similar to the proof of Lemma 4.5. In particlar, it suffices to prove that if x
is obtained from c by replacing one bni+mi+1 with the corresponding block Bni+mi+1, then x is
allowed and the initial subword of x through Bni+mi+1 gives a path in Γ that ends at [0, 0]. It
suffices to show that the path in Γ corresponding to the initial subword of c through ami

1 ends at a
vertex [mi, j] for some j and that ami+1 labels an edge from this vertex to [mi + 1, 0]. We proceed
by induction on i. For i = 1, the initial subword c1 · · · am1

1 is some number of 1’s followed by am1
1

so the path corresponding to this subword ends at the same vertex the path corresponding to am1
1

does, which is [m1, j] for some j.
By Lemmas 4.5 and 3.10, there is an outgoing edge at [mi, j] labeled bn1+m1+1. Since bn1+m1+1

is lexicographically greater than am1+1, we see from E2, E3 that there are at least two outgoing
edges at [m1, j], one labeled ami+1 going to [mi + 1, 0] and one labeled bn1+m1+1 to a vertex with
first coordinate equal to 0.

If for some i the path corresponding to the initial subword of c through bni+mi+1 ends at a
vertex with first coordinate equal to 0, then it follows that the path corresponding to the initial
subword of c through ami+1

1 ends at a vertex with first coordinatemi+1. There is always an outgoing
edge labeled ami+1+1 from such a vertex. By Lemmas 4.5 and 3.10, there is also an outgoing edge
labeled bni+1+mi+1+1 > ami+1 . It must be that the former edge points to [mi+1 +1, 0] and the latter
edge points to a vertex with first coordinate equal to 0.

Lemma 4.9. The sequence d is contained in a subshift of Σ that has specification.

Proof. By Corollary 4.3 it suffices to show that d does not contain arbitrarily long initial segments
of b. This is equivalent to pth(d) only visiting vertices in Γ with bounded second coordinate. That
this is the case is clear from the construction of d. Indeed, the largest second coordinate of a vertex
visited by pth(d) is the largest second coordinate of a vertex visited by the path η in the definition
of the Bni+mi+1.

Lemma 4.10. Either c is contained in a subshift of Σ that has specification, or bi = ci for all
i > L+ 1.
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Proof. If c is not contained in a subshift with specification then by Corollary 4.3 it contains ar-
bitrarily long initial segments of b. For each K > L fix an occurrence (cN(K)+1, . . . , cN(K)+K)
of the initial segment bK1 in c. Since b1 = ` we must have cN(K)+1 6= 1 and therefore the edge
corresponding to bN(K)+1 belongs to either a diagonal of b or a reset of b. If that edge belongs to a
diagonal of b the it must be within the last L edges of that diagonal because K > L and we cannot
have an initial segment of b of length strictly greater than L appearing in a.

By discarding some K if necessary we may assume that bN(K)+1 is either in a reset of b for all
K or the same distance V from the end of a diagonal of b for all K. By then taking K arbitrarily
large we conclude that

b = b1 · · · bV+11k1a1 · · · aj1bl11k2a1 · · · aj2bl2 · · ·

holds. It is possible that k1 = 0 or that b ends in infinitely many 1’s.
A priori it may be that the segments a1 · · · ajibli in the above description of b overlap with the

flats of pth(b). To conclude that they do not, and therefore that all flats of b after index V + 1 are
labeled by 1, it suffices to show that these segments are disjoint from the flats of b. So suppose
that a1 · · · aji appears somewhere in b. Since a1 = 0 and both flats and resets in b are never labeled
by zero, it must begin to appear in a maximal diagonal bs+1 · · · bs+m = a1 · · · am of b, say at some
position bs+q with 1 ≤ q ≤ m. We wish to verify that ji ≤ m−q+1 for then our segment a1 · · · ajibli
will its end occurrence in b before the next flat of b begins.

Consider the letter bs+m+1 that immediately follows the diagonal in which our segment begins
to occur. If ji > m− q + 1 then

am+1 < bs+m+1 = am−q+2

whence (aq, . . . , am+1) � (a1, . . . , am−q+1) contradicting the lexicographical condition (3.2) that
defines the language of Σ.

We are now ready for the proof of Theorem 1.4. If G ⊂ L is as described in Section 4.1, then
CT1 in Theorem 4.1 is satisfied by Proposition 4.2. Certainly CT2 is satisfied. It remains to
verify CT3. Let V be the Bowen constant for φ and let W = max{V, ||φ||∞}. By Lemma 2.3 the
inequality

lim sup
n→∞

1
n

(Snφ)(b) < P(φ,L) (4.11)

implies CT3. The proof of (4.11) depends on whether we are in case B1 or B2.

4.3. Proof of Theorem 1.4 in case B1 Fix ε > 0 so that

1
n

(Snφ)(c) < P(φ,L)− 5εW (4.12)

for sufficiently large n; this is possible by Lemma 2.3 and Corollary 2.5.
For each n ∈ N let en be the number of letters in bn1 that are strictly larger than 1 and correspond

to edges in flats of pth(bn1 ). By Lemma 4.5, we can independently change these letters to 1s and
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still have a word in L. Let W be the set of all words that can be obtained by such edits. We
remark that |Wn| = 2en .

Fix n ∈ N and w ∈ Wn. Let x ∈ Σ be any sequence with xn1 = wn1 . When comparing (Snφ)(b)
and (Snφ)(x) we can apply the Bowen property to the block of terms before the first edit, the block
of terms after the last edit, and to the blocks of terms between consecutive edits. Doing so, we see
that the estimate

|(Snφ)(b)− (Snφ)(x)| ≤ (k + 1)V + 2k||φ||u ≤ (3k + 1)W (4.13)

holds where k is the number of indices where wn1 and bn1 differ.
Now, we consider separately whether en ≥ εn or en < εn. Suppose first that en ≥ εn. Then

Λn(φ,L) ≥ Λn(φ,W) ≥
en∑
k=0

(
en
k

)
e(Snφ)(b)−(3k+1)W

= e(Snφ)(b)e−W
en∑
k=0

(
en
k

)
e−3k

= e(Snφ)(b)e−W (1 + e−3W )en

by applying (4.13) to each summand. We obtain

1
n

log Λn(φ,L) ≥ 1
n

(Snφ)(b)− W

n
+ en
n

log(1 + e−3W )

≥ 1
n

(Snφ)(b)− W

n
+ ε log(1 + e−3W )

(4.14)

after taking logs and dividing by n.
Suppose now that en < εn. In this case we compare (Snφ)(b) and (Snφ)(c). The words bn1 and

cn1 differ in exactly en places. We obtain

|(Snφ)(b)− (Snφ)(c)| ≤ (en + 1)V + 2en||φ||u ≤ 4enW

by applying the Bowen property to the blocks between edits. Consequently

1
n

(Snφ)(b) ≤ 1
n

(Snφ)(c) + 4enW
n
≤ 1
n

(Snφ)(c) + 4εW ≤ P(φ,L)− εW (4.15)

with the last inequality is an application of (4.12).
For all sufficiently large n ∈ N either (4.14) or (4.15) holds. Therefore

lim sup
n→∞

1
n

(Snφ)(b) ≤ P(φ,L)− εmin{W, log(1 + e−3W )}

giving (4.11).

4.4. Proof of Theorem 1.4 in case B2 We will make use of the following estimate, which is a
consequence of Stirling’s formula.

Lemma 4.16 ([CTY17, Lemma 5.4]). If δn ≤ k ≤ n
2 then log

(n
k

)
≥ nδ log 1

δ − 2 logn.
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Let en be the number of resets in bn1 . Write N = |Bni+mi+1|−1 = L+ 1 + |η|. When we change
every reset bni+mi+1 in bn1 to Bni+mi+1 we get a word of length n+Nen.

We want to compare (Snφ)(d) and (Snφ)(b). We begin by comparing (Sn+Nenφ)(d) and
(Snφ)(b). By Lemma 4.10, for all i such that ni + mi + 1 > L + 1 we have that the block of
bn1 between resets bni+mi+1 and bmi+1+ni+1+1 is identical to the block of dn+DnN

1 between Bni+mi+1

and Bmi+1+ni+1+1. There are Dn + 1 such blocks and we can apply the Bowen property to these.
All other terms can be bounded above in terms of ||φ||u, giving the estimate

|(Snφ)(b)− (Sn+Nenφ)(d)| ≤ (en + 1)V + 2(L+ 1)||φ||u + 2en||φ||u + enN ||φ||u
≤ ((3 +N)en + 2(L+ 1) + 1)W

≤ 3NenW

where, in the first estimate, the first term comes from the Bowen property, the second from not
knowing what bL+1

1 looks like, the third from the en edits changing bni+mi+1 to ami+1 and the last
from the en insertions of blocks of length N . From this we get

|(Snφ)(b)− (Snφ)(d)| ≤ |(Snφ)(b)− (Sn+Nenφ)(d)|+ |(SNenφ)(σn(d))|

≤ 3NenW +Nen||φ||u
≤ 4NenW

(4.17)

by trivially bounding the last term.
Choose by Lemma 2.3, Corollary 2.5 and Lemma 4.9 a value of ε > 0 such that

1
n

(Snφ)(d) < P(φ,L)− ε5NW (4.18)

for all large enough n ∈ N.
Fix n ∈ N large enough for (4.18) to hold. We consider separately the cases en < εn and

en ≥ εn. If en < εn then
1
n

(Snφ)(b) ≤ 1
n

(Snφ)(d) + 4NenW
n

<
1
n

(Snφ)(d) + ε4NW

< P(φ,L)− εNW

(4.19)

using (4.17) and (4.18).
Next suppose that en ≥ εn. Write p = `+ 1 and choose 0 < δ < 1

4 so that

log
(1
δ

)
> 4N(log p+ 4W ) (4.20)

holds. We also suppose n is large enough for

n > max
{ 1
εδ
, L

}
(4.21)

to hold. In particular εn > 1
δ > 1 so there exists a positive integer t ≤ en so that

εn ≤ t ≤ 2εn (4.22)
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holds. Finally, since δt > 1 we can find k ∈ N with

δt < k ≤ 2δt (4.23)

and k < t
2 since δ < 1

4 .
Fix any collection of t resets in bn1 and let x be any sequence in any cylinder set corresponding

to a word obtained by replacing some k of these t resets with thier corresponding blocks. Such a
word has length n+ kN and we can compare (Sφ)(b) and (Snφ)(x) to get

|(Snφ)(b)− (Snφ)(x)| < 4NkW (4.24)

just as we compared (Snφ)(b) and (Snφ)(d) above. The words xn+kN
1 we get by choosing different

subsets of resets of cardinality k are all different. Indeed, If xn+kN
1 and yn+kN

1 are words obtained
by making different choices of k replacements, then there is an earliest reset in bn1 that is edited to
make one of these words but not the other. Thus xn+kN

1 and yn+kN
1 are different.

We worry that the words xn1 and yn1 we get by truncating xn+kN
1 and yn+kN

1 may be the same
for different choices of k replacements. However, since our alphabet has p letters and we are cutting
off kN letters, there are at most pkN words of length n + kN that truncate to any particular xn1 .
Thus,

Λn(φ,L) ≥
(
t

k

)
p−kNe(Snφ)(b)−4NkW

by applying (4.24) to all words obtainable by replacing k resets for all 0 ≤ k ≤ t.
Combining with (4.22) and (4.23) gives

log Λn(φ,L) ≥ tδ log 1
δ
− 2 log t− kN log p+ (Snφ)(b)− 4NkW

≥ δεn log 1
δ
− 2 log(2εn)− 4δεnN log p+ (Snφ)(b)− 16δεnNW

after an application of Lemma 4.16. We conclude that

1
n

log Λn(φ,L) ≥ 1
n

(Snφ)(b) + δε

(
log 1

δ
− 4N(log p+ 4W )

)
− 2 log(2εn)

n
(4.25)

after dividing by n and regrouping.
For all n large enough either (4.19) or (4.25) holds. Therefore

lim sup
n→∞

1
n

(Snφ)(b) ≤ P(φ,L)− εmin
{
NW, δ log 1

δ
− 4Nδ(log p+ 4W )

}
which establishes (4.11) because (4.20) implies δ log 1

δ − 4Nδ(log p+ 4W ) is positive.

5. An example and Theorem 1.6

In this section we give exemplar α and β with the property that the corresponding subshift Σ does
not have specification but does satisfy the hypothesis of Theorem 1.4. We also prove Theorem 1.6.
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5.1. An example Throughout this subsection we assume αβ = 1. This implies a = 01 because
F (0) = α mod 1 and F 2(0) = βα+ α mod 1 = α mod 1 satisfies

1− α
β
≤ α < 2− α

β

via αβ = 1 and 0 ≤ α < 1.
Our goal is to choose β > 1 such the sequence

c = 32012011201112011112 · · · 01n2 · · · = 32
∞∏
n=1

01n2 (5.1)

is equal to b. It is natural to attempt to choose β according to the relationship

1 =
c1 − 1

β

β
+
c2 − 1

β

β2 +
c3 − 1

β

β3 +
c4 − 1

β

β4 + · · · (5.2)

but (5.2) does not automatically imply that b will have the desired form. To see this, write η for
the map

η(d) =
d1 − 1

β

β
+
d2 − 1

β

β2 +
d3 − 1

β

β3 +
d4 − 1

β

β4 + · · ·

from {0, . . . , `}N → R.

Example 5.3. With β = 3 we have

1 =
2− 1

3
3 +

3− 1
3

32 +
3− 1

3
33 +

3− 1
3

34 + · · ·

and yet b = 31 for this β.

Lemma 5.4. If β > 2 then η(10) > 0.

Proof. One calculates that

η(10) = β2 − 2β
β2(β − 1)

which is certainly positive when β > 2.

Lemma 5.5. If β > 2 and η(d) < 0 then d1 = 0.

Proof. From η(d) < 0 we deduce

d1 − 1
β

β
−
( 1
β3 + 1

β4 + · · ·
)
< 0

since all xn ≥ 0. This gives x1 <
1
β (1 + 1

β ) forcing x1 = 0.

Lemma 5.6. If β > 3 then η(23) < 1.

Proof. One calculates that η(23) = 2
β−1 which is at most 1 when β > 3.
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Lemma 5.7. If 3 < β < 3.73 and η(d) > 1 then d1 = 3.

Proof. If 1 < η(d) then

1 <
d1 − 1

β

β
+

3− 1
β

β2
1

1− 1
β

because all dn are at most 3.

Lemma 5.8. If β > 2 then η(20) > η(1).

Proof. Geometric series calculations give η(20)− η(1) = η(10) which is positive by Lemma 5.4.

Fix now β satisfying (5.2). Such a β exists by the intermediate value theorem. Indeed, the
right-hand side of (5.2) is at most

η(32) = 3
β

+ 1
β(β − 1)

and, from
2
βj

>
1
βj

+ 1
βj+1

is at least η(31) = 3
β . Morevoer, these inequalities imply that 3 < β < 3.73 whence 3 < β + α < 4.

We claim for this value of β that b = c. Certainly b1 = 3. Since bn = bTn(1)c it suffices to prove
that 0 ≤ η(σnc) < 1 for all n ∈ N. By Lemma 5.5 this can only happen for those n at which cn = 0.
But in all such cases

η(σnc) ≥
0− 1

β

β
+

1− 1
β

β

1
1− 1

β

= 1
β
− 1
β2 > 0

so we always have η(σnc) > 0. Also

η(σnc) ≤
2− 1

β

β
+

2− 1
β

β2 +
3− 1

β

β3 +
4− 1

β

β4 + · · · = 2β − 1
β(β − 1) < 1

when 3 < β < 4 so η(σnc) < 1 for all n ∈ N.
This implies b = c with c as in (5.1). Since αβ = 1 we also have a = 01. In this case the set

D(b) is unbounded so Theorem 1.5 implies the subshift Σ does not have specification. However,
the set D(a) is bounded, so the subshift does have unique equilibrium states for Hölder potentials
via Theorem 1.4.

5.2. Proof of Theorem 1.6

Proof of Theorem 1.6. For any α and any β, the existence of a bound on the lengths of initial
subwords of b that appear in a is equivalent to the existence of a bound on the distance between
one and points in the orbit of zero. There will certainly be such a bound when the orbit of 0 is
periodic.

Suppose β, α are chosen so that Fn(0) gets arbitrarily close to 1. If

Fn(0) = 1− δ
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for δ > 0 small then
Fn−1(0) = qj −

δ

β

for some j ∈ {0, . . . , `}. That is, if some point in the orbit of 0 is very close to 1, then the
previous point in the orbit is even closer to a point of discontinuity of F and lies to the left of the
discontinuity. Let m be a time such that Fm(0) is closer to 1 then ever before. Then Fm−1(0) is
closer to a discontinuity of F then ever before while lying to the left of the discontinuity. Consider
α′ = α + ε for ε small, and the corresponding transformation F ′. Observe that the discontinuities
of F ′ are ε/β to the left of the discontinuities of F , and for n ∈ {1, 2, . . . ,m−1} the points (F ′)n(0)
are ε(1 + β + β2 + · · ·+ βn−1) to the right of Fn(0). Thus, there is a particular ε, depending on m
and how close Fm(0) is to 1, such that (F ′)m−1(0) is equal to a point of discontinuity of F ′. This
implies (F ′)m(0) = 0 and hence that the orbit of 0 is periodic. By choosing m arbitrarily large, we
get α′ arbitrarily close to α.
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