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Abstract 

In the face of rapid growth in the global demands for water, energy, and food, the boom in 

building large dams is expected to continue. Due to its expected opportunities and risks for the 

260 million people of the Eastern Nile Basin, the Grand Ethiopian Renaissance Dam (GERD) 

on the Nile River – currently under construction – has commanded regional and international 

attention. Once completed, it will rank the largest hydropower dam in Africa and among the 

largest worldwide. Discourse among scientists and negotiators from the three directly affected 

countries, namely Ethiopia, Sudan, and Egypt, on the design, initial filling, and long-term 

operation of the GERD is ongoing since the construction started in 2011, but no agreement has 

yet been reached. The discourse has hitherto focused on the impacts on hydropower production, 

water availability, and irrigated agriculture but overlooked possible environmental and climate 

impacts of the GERD. Here, we communicate our viewpoint on this gap. The hydro-ecological 

flow alterations associate with the GERD could negatively impact fish, aquatic plants, and 

biodiversity due to changes in the river flow pattern, water temperature, and water evaporation. 

The GERD expected flooded area, location at a low latitude in the tropics and the deep turbine 

intakes could signify greenhouse gas emissions, especially methane, to the atmosphere. With a 

maximum reservoir area of 1904 km2, surface evaporation and consequently regional extreme 
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precipitation and humidity could increase. These likely environmental and climate impacts 

would have transboundary ecological, agricultural, and health implications and, therefore, 

should not be ignored. 

Keywords:  Grand Ethiopian Renaissance Dam; Eastern Nile Basin; hydro-ecological 

alteration, regional climate; greenhouse gases; tropics 

Introduction 

Globally, the number of dams and the total hydropower capacity have been increasing in 

recent decades (Mulligan et al. 2020) and will continue to rise, with over 3,700 large 

hydropower dams either planned or under construction (Zarfl et al. 2015). The growing 

demands for water, food, energy, industry, and recreation are catalysts for an anticipated future 

boom in dam construction (St. Louis et al. 2000; Chen et al. 2016). The water sector is thought 

to be responsible for the lack of systematic documentation of impact analyses of large dams 

even after decades of operation (Biswas and Tortajada 2001). 

The ongoing construction of the Grand Ethiopian Renaissance Dam (GERD) on the Nile 

River near the Ethiopian-Sudanese border is increasingly becoming of significant interest, not 

only to the 260 million people of the countries of the Eastern Nile Basin (Fig. 1) but also 

internationally. Upon completion, the GERD will become the largest hydropower dam in 

Africa and among the largest globally (Mulligan et al. 2020) with an installed capacity of 5,150 

MW. The dam is anticipated to double the annual electricity generation of Ethiopia. Debates 

and negotiations between the three directly affected countries, namely Ethiopia, Sudan, and 

Egypt, on the design, initial filling, and long-term operation of the GERD are ongoing since 

2011 when the construction started. From November 2019 to February 2020, the mediation 

embarked on the White House in the United States of America (USA), with the World Bank 

also joining the negotiations, but no agreement has been reached (United States Department of 
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the Treasury 2020). Since July 2020, the African Union hosted further negotiations between 

the three riparians without reaching a consensus on the GERD management. 

In the literature, the opportunities and risks surrounding the GERD are explored. On 

the one hand, the GERD could potentially ease the hydro-political tension between Ethiopia, 

Sudan, and Egypt by enhancing cooperation and coordination (Yihdego et al. 2016). On the 

other hand, the initial filling of the GERD reservoir, if not managed cooperatively, could result 

in water supply shortages and reductions in hydropower generation downstream (Zhang et al. 

2015; Wheeler et al. 2016). In the long-term, the regulation effect of the GERD on the highly 

inter- and intra-annually variable flow of the Blue Nile (Siam and Eltahir 2017; Basheer and 

Elagib 2019) would induce positive externalities on Sudan in terms of higher hydropower 

generation, lower irrigation shortages, and lower flood occurrence (Digna et al. 2018; Wheeler 

et al. 2018; Basheer et al. 2018), but will negatively impact recession agriculture along the Blue 

Nile and the Main Nile (Mohammed 2015). In favor of Ethiopia's benefits from hydropower 

production and the impacts on water availability and irrigated agriculture in Sudan and Egypt, 

some possible environmental and climate-related impacts of the GERD do not seem to entice 

scientists and negotiators. Tropical hydroelectric dams require particular attention by carefully 

selecting their location, design, and operation (Barros et al. 2011). The present article arises on 

account of this gap in the discussion about the GERD. 

General features of the Blue Nile Basin 

The Blue Nile originates from Ethiopia and contributes around 57% of the Nile flow as 

measured near the Sudanese-Egyptian border (Nile Basin Initiative 2012). The Natural flow of 

the Blue Nile is highly seasonal, with nearly 80% of the flow occurring from July to October. 

The river partly supplies large-scale irrigation schemes, comprising a total irrigated area of 

over 4.5 million ha, in Sudan and Egypt with water. Irrigated agriculture on the Blue Nile in 

Sudan has been for decades supplied with irrigation water from two seasonal dams, namely the 
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Roseires and the Sennar dams (MoIHES 1977). The two dams are also used for hydropower 

production, though as a secondary purpose. On the one hand, the soil erosion process in the 

Upper Blue Nile Basin threatens the lifetime of the downstream reservoirs and irrigation canals 

in Sudan by inducing excessive sediment deposition and eutrophication (Ahmed 2009; Betrie 

et al. 2009; Alrajoula et al. 2016; Al Zayed and Elagib 2017). On the other hand, soil erosion 

in the upstream constitutes an important natural fertility source to cultivated lands downstream 

in Sudan (Alrajoula et al. 2016). Apart from irrigated agriculture, mechanized, and traditional 

rainfed farming is widely practiced in the Lower Blue Nile Basin (Bussmann et al. 2016; Elagib 

et al. 2019). Next to climate extremes, such as droughts and floods (Elagib and Mansell 2000; 

Elagib et al. 2019), disorganized human activities are also considered responsible for 

environmental degradation in the Sudanese part of the basin (Akhtar and Mensching 1993; 

Glover and Elsiddig 2012; Sulieman and Elagib 2012; Biro et al. 2013; Bussmann et al. 2016; 

Sulieman 2018). The Upper Blue Nile Basin is no exception from such human activities. High 

risks of soil erosion by water – strongly linked to population density and land use/land cover 

(LULC) changes – lead to severe degradation in the Upper Blue Nile Basin (Gebremicael et al. 

2013; Haregeweyn et al. 2017; Woldesenbet et al. 2017). 

GERD hydrological alterations 

Quantifying the potential hydrological alterations of the GERD, as a result of flow 

storage and regulation, is essential for understanding and addressing the dam's likely 

environmental impacts (Brismar 2004). To this end, we used a daily river system model of the 

Blue Nile Basin, developed by Basheer et al. (2018), to simulate hydrological alteration 

parameters of the dam’s steady-state operation across 27 stochastic river flow sequences (each 

is 27-year long) developed using the index-sequential method (Ouarda et al. 1997). It was 

assumed that the GERD's steady-state operation would aim to maximize the firm annual energy 

generation while maintaining the reservoir water level between the minimum operating level 
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and the full supply level. Fig. 2 shows seven simulated indicators of hydrological alterations 

due to the GERD presented as probability curves. 

Fig 2a shows that the GERD's steady-state operation would reduce the day-to-day variation 

in the Blue Nile flow and alter the timing and duration of flow peaks. The GERD is expected 

to regulate the river flow, i.e., increase the minimum and decrease the maximum daily river 

flows downstream (Figs. 2b and 2c).  

Fig. 2d depicts the GERD reservoir area during the steady-state operation. The reservoir 

area is expected to range from 703 to 1904 km2. Dam reservoirs increase the contact surface of 

river water with the atmosphere due to increased water surface and residence time, hence 

resulting in modifications to thermal (temperature) regimes, i.e., increase of downstream 

maximum and minimum daily temperatures of running waters, the effect of which can extend 

for tens of kilometers (Chandesris et al. 2019). Dam reservoirs were also found to shift the 

flowing water temperature causing a time lag of several days (Kędra and Wiejaczka 2016).  

As a result of the GERD reservoir surface area, water evaporation is expected to range 

from 826 to 1960 Mm3 (Fig. 2e). Furthermore, due to the GERD's expected flow regulation 

effect, the Roseires Dam (located directly downstream of the GERD; see Fig. 1) will need to 

be operated at higher water levels (Wheeler et al. 2016). This modification to the operation of 

the Roseires Dam would increase its water evaporation (Fig. 2f). Higher water evaporation 

increases water salinity (Brismar 2004). GERD's reservoir water level is expected to fluctuate 

in a 50 m range (see Figs. 2g and 2h).  

GERD contribution to greenhouse gases emissions 

Dams contribute to emissions of greenhouse gases (GHGs) to the atmosphere (St. Louis 

et al. 2000; Deemer et al. 2016), especially in the tropics where forests and high-biomass 

landscapes exist (Fearnside 1995; Fearnside and Pueyo 2012). Post flooding of reservoirs, loss 

of carbon dioxide (CO2) and methane (CH4) from reservoirs to the atmosphere is caused by the 
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death and decomposition of the flooded vegetation and organic carbon in soils (Fig. 3a), as the 

photosynthetic CO2 sink is eliminated in favor of stimulated microbial production of the GHGs 

(Kelly et al. 1997; St. Louis et al. 2000). The effectiveness of the latter GHG is seven times 

higher than the former (Fearnside 1995). In a warming world, increased soil organic carbon 

(SOC) decomposition is expected to increase CO2 emissions from soils (Knorr et al. 2005). 

Sedimentation of SOC behind dams increases because of the river flow retention by the 

reservoir (St. Louis et al. 2000). Large dams are known to cause riverbed scouring and 

morphological changes in the lower reaches due to sediment retention in the reservoir and 

release of clear water downstream (Al-Taiee 1990; Zheng et al. 2018), as shown in Fig. 3a.    

The main drivers of CH4 emissions from reservoirs are water temperature and reservoir 

mean depth, with the emission rate having a positive linear relationship with the former factor 

but decreases exponentially as a function of the latter determinant (León-Palmero et al. 2020). 

Downstream emissions of methane through the turbines of hydroelectric dams in the tropics 

are proportional to streamflow (Fearnside and Pueyo 2012). For example, of the total methane 

emission, the emission downstream of the Balbina Dam (located in Brazil) is around 53% but 

reaches approximately 88-93% downstream of the Tucuruí Dam (also located in Brazil), which 

has a 17 times higher streamflow (Fearnside 2002; Kemenes et al. 2007; Fearnside and Pueyo 

2012). Rates of GHGs emissions are highest at both young age and low latitudes of the reservoir 

(Fearnside, 1995; Rosenberg et al. 1997; Barros et al. 2011; Demarty and Bastien 2011). 

Because annual water temperatures in tropical reservoirs are high, decomposition rates are also 

high (St. Louis et al. 2000).  

The multi-decade cumulative GHG emissions from tropical dams often surpass those 

from fossil-fuel generation, especially when large areas are flooded per unit of electricity 

generated (Fearnside, 1995; Fearnside and Pueyo 2012). Methane emissions released through 

the spillways and turbines of some tropical hydroelectric dams (e.g., Brazil’s Teles Pires Dam) 
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– driven by the change in temperature and hydrostatic pressure (Fearnside 2004; Demarty and 

Bastien 2011) – could be significant compared to those generated from fossil-fuel electricity 

(Fearnside 2013). Dam construction material also implies emissions even before producing 

electricity (Fearnside 2004). 

Given the GERD location at a latitude of 11.21 °N (Fig. 1a) and the expected maximum 

reservoir area (1904 km2), the resulting GHGs could be significant (Rosenberg et al. 1997). 

The emissions also depend on the location and morphometry of the reservoir as well as the 

design of the dam outlets, i.e., the deeper the outlets, the higher the emissions (Fearnside and 

Pueyo 2012; Zarfl et al. 2015). The purpose of the GERD is hydropower generation; thus, water 

will be mostly released through turbines (Basheer et al. 2020). The GERD turbine intakes are 

as deep as 45 to 80 meters from the full supply level (Fig. 3b) and could imply considerable 

emissions with water releases directly downstream of the dam.  

GERD impacts on other meteorological elements 

Human-made reservoirs lead to changes in LULC, which in turn displace precipitation 

cells and lead to changes in the amount and timing of local precipitation. Apart from the 

modification of precipitation occurring post-dam changes in LULC and reservoir size, 

Woldemichael et al. (2014) explain the effect on localized circulations, moisture advection, 

and convergences to result from several factors. These factors are the alteration in surface and 

dewpoint temperature, partitioning of latent and sensible heat fluxes, resulting in an increase 

or a decrease in atmospheric water vapor, and low-level wind flow variation. Large dams 

increase regional extreme precipitation due to increased surface evaporation, humidity, and 

fog, especially in arid and semi-arid regions (Brismar 2004; Hossain et al. 2009; Xu et al. 

2013). The Czorsztyn and Sromowce Wyżne reservoirs on the Dunajec River were found to 

raise the air temperature (Kędra and Wiejaczka 2016). 

Drawing on the GERD case, the aforementioned impacts might intensify, given the dam's 
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reservoir area and the recently expanded reservoir of the Roseires Dam in Sudan – not far from 

the GERD (Fig. 1c). The current maximum area of the Roseires reservoir is 565 km2, following 

the dam's heightening in 2012/2013. Expanding the reservoir of Sudan’s Roseires Dam has 

increased atmospheric humidity (Alrajoula et al. 2016). As shown in Fig. 2f, evaporation from 

the Roseires Dam reservoir is expected to increase following the GERD operation, implying 

increased perturbations in the local climate downstream. 

Transboundary implications of the potential GERD-induced environmental impacts 

The economies and livelihoods in Ethiopia, Sudan, and Egypt primarily rely on 

agricultural activities. Decisions on the construction of hydropower dams need to consider the 

food-water-energy security nexus, especially if the impacts traverse different countries or are 

experienced by multinationals (Moran et al. 2018). It is imperative not to undermine multiple 

implications for the regional climate in particular and the environment in general, notably in 

Ethiopia and Eastern Sudan in the vicinity of the GERD, where rainfed agriculture contributes 

considerably to food security (Bussmann et al. 2016; Elagib et al. 2019). For example, the 

construction of the largest dam in Sudan in northern Sudan (Merowe Dam) has caused a rise 

in atmospheric humidity and water salinity that negatively affected the production of date 

palms and citrus trees and fish biodiversity (Mohammed-Osman 2017). The increase in water 

salinity is explained by an increase in evaporation from the reservoir surface, thus affecting 

plant populations and the aquatic biodiversity (Brismar 2004). Changes to regional 

precipitation resulting from the GERD are likely to affect rainfed farming in the region close 

to the dam. These effects will heavily impact the indigenous households who have subsistence 

lifestyles. Changes to extreme precipitation would increase the likelihood of unpredictable and 

severe flash flood events during the wet season. Heavy rains often catch the usually unwary 

communities within the vulnerable zone and cause loss of lives, property, crops, and resources.  
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Hydrological alterations also have profound environmental impacts. Fluctuation in the 

reservoir level of the GERD would affect plant and animal populations in the reservoir 

(Brismar 2004). Negative impacts on the river aquatic biodiversity also occur due to changes 

in downstream water temperatures (Brismar 2004). The flow regulation effect of the GERD 

would result in a loss of natural floodplains on the Blue Nile and the Main Nile and would, 

consequently, negatively impact plants, animals, and agriculture that depend on these 

floodplains. Changes to river flow patterns cause detrimental damage to fish migration, health, 

survival, and production, fragmentation of aquatic plants, and affects aquatic biodiversity 

(Brismar 2004; Wyatt and Baird 2007; Reid et al. 2019; Barbarossa et al. 2020). Physical and 

chemical effects due to reduced sediments would pose a threat downstream where naturally 

fertile soil is key to irrigated and recession agriculture (Alrajoula et al. 2016).  

From the health perspective, rheumatism cases attributable to increasing atmospheric 

humidity were reported by Alrajoula et al. (2016) post the heightening of the Roseires Dam, 

and the subsequent expansion of its reservoir, in Sudan. Besides, the increase in evaporation, 

humidity, and fog increases proliferation risk of insect disease vectors (Brismar 2004). Changes 

in water temperatures downstream of large dams enhance schistosomiasis (Bunn and 

Arthington 2002). Post flooding of reservoirs, Kelly et al. (1997) reported that toxic methyl 

mercury increases in water, peat, vegetation, and fish due to enhanced microbial (bacterial) 

activities. 

Conclusions 

The GERD construction is nearly completed, and the initial reservoir filling already 

started in the flood season of 2020. Credible environmental and social impact assessments can 

be useful only when two conditions are satisfied: (i) if the assessments are performed with 

sufficient lead time and (ii) if they can stop dam-building whose costs exceed the benefits 

(Moran et al. 2018). Added to the expected impacts of climate change on the Nile Basin, i.e., 
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the rise in temperatures and enhanced hydrological uncertainty (Whittington et al. 2014; Siam 

and Eltahir 2017), the likely environmental impacts of the GERD should concern the basin 

decision-makers given its beyond-country implications. The current state of knowledge on 

large dams' environmental impacts in warm regions (tropics), especially GHGs emissions, 

remains limited and hardly generalizable (Demarty and Bastien 2011). However, we hope this 

contribution will draw more attention to some underexplored climate and environmental 

impacts of Africa's largest hydropower plant. 
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Fig. 1 The Eastern Nile Basin boundary, tributaries, and major dams. Note: GERD = Grand Ethiopian 

Renaissance Dam; the reservoir area of the GERD shown in the figure is not at the maximum level. 
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Fig. 2 Likely hydrological alterations due to construction of the Grand Ethiopian Renaissance Dam (GERD). 
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a) 

 

 

b) 

 

Fig. 3 A schematic illustration of potential impacts pathways of the GERD. a) Sediment deposition in the upstream 

(U/S) and deficit in the downstream (D/S) in addition to greenhouse gases (GHGs) emissions due to bacterial decomposition 

of the organic carbon stored in flooded plants and soils in the U/S and b) GHGs emissions due to outlet works, particularly 

deep tubines. 

 

 


