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Increasing demands for the supply of biopharmaceuticals have propelled the
advancement of metabolic engineering and synthetic biology strategies for
biomanufacturing of bioactive natural products. Using metabolically engineered
microbes as the bioproduction hosts, a variety of natural products including
terpenes, flavonoids, alkaloids, and cannabinoids have been synthesized through
the construction and expression of known and newly found biosynthetic genes
primarily from model and non-model plants. The employment of omics technology
and machine learning (ML) platforms as high throughput analytical tools has been
increasingly leveraged in promoting data-guided optimization of targeted biosynthetic
pathways and enhancement of the microbial production capacity, thereby representing
a critical debottlenecking approach in improving and streamlining natural products
biomanufacturing. To this end, this mini review summarizes recent efforts that utilize
omics platforms and ML tools in strain optimization and prototyping and discusses the
beneficial uses of omics-enabled discovery of plant biosynthetic genes in the production
of complex plant-based natural products by bioengineered microbes.

Keywords: microbial engineering, synthetic biology, omics technology, machine learning, biomanufacturing,
systems biology

INTRODUCTION

Omics-Enabled Discovery of Plant Biosynthetic Genes
Plant natural products represent an enormous resource for chemical and biotechnological
production of biopharmaceuticals and natural products-based drugs where about 50–70% of all
anti-infective agents in clinical use are being provided and inspired by natural products (Newman
and Cragg, 2016). As of 2019, up to 41.3% of anti-infective agents including antiviral and anti-
malarial drugs were derived from natural products, which underlines the importance of these
compounds as therapeutic agents (Newman and Cragg, 2020). With the advent of systems biology
and omics research that have focused on investigating biological mechanisms at systems levels
(Kitano, 2002; Lister et al., 2009), a plethora of bioactive compounds and relevant biosynthetic
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pathways has since been profiled and identified. This has
culminated in the steady expansion of plant-based natural
products datasets (Rai et al., 2017).

Driven by the increased availability of bioinformatics tools
and high throughput instruments, including next generation
sequencing (NGS) and mass spectrometry (MS), omics
technologies have been prominently used as principal tools
in systems biology research aimed at elucidating the underlying
molecular mechanisms behind cellular functions and interplays
among biomolecules in biological systems (Fridman and
Pichersky, 2005; Sheth and Thaker, 2014; O’Brien et al., 2015).
Omics technologies including DNA sequencing (genomics),
RNA sequencing (RNA-seq; transcriptomics), and MS-based
protein (proteomics) and metabolite (metabolomics) analyses
have empowered the reconstruction of metabolic networks
based on genome annotation and functional characterization
of targeted biochemical reactions in a particular organism or
system. The use of systems biology approaches in combination
with computational methods has contributed to the generation
of genome-scale metabolic models (GEMs) that are important
in identifying all metabolic reactions and corresponding
biosynthetic genes in various microbes and plants (Seaver et al.,
2012; O’Brien et al., 2015).

Importantly, the adoption of single or multi-omics in natural
products studies has seen the increment of omics-guided
discovery of known and novel metabolites, biosynthetic genes,
and regulatory elements from model and non-model plants.
By employing transcriptome-guided gene mining and microbial
engineering strategies, a number of natural products from
previously incomplete and gapped pathways, such as opiate
alkaloid noscapine and cannabinoids, have since been produced
in microbial hosts, thereby opening up new and exciting
opportunities in natural products biomanufacturing using
bioengineered microbes as the preferred bioproduction platform
(Li and Smolke, 2016; Luo et al., 2019; Courdavault et al., 2020).
Biomanufacturing and commercialization of fermentation-based
bioproducts, such as artemisinin, nootkatone, and β-farnesene,
serve to demonstrate the feasibility and the bioeconomy potential
of microbial engineering platforms in the production of fine
chemicals and biopharmaceuticals (Benjamin et al., 2016; Ekas
et al., 2019). In this mini review, recent applications of
systems and synthetic biology approaches in the bioproduction
of natural products are discussed where the advancement
of natural products biomanufacturing using omics-driven
microbial engineering and machine learning (ML)-assisted strain
optimization strategies was further highlighted.

INTEGRATION OF SYSTEMS AND
SYNTHETIC BIOLOGY FOR MICROBIAL
PRODUCTION OF NATURAL PRODUCTS

Metabolic engineering and synthetic biology represent advanced
bioproduction strategies that have allowed researchers to
reprogram and modulate microbial metabolism using genetic and
computational tools (Ramzi, 2018; Choi et al., 2019). Multi-omics
approaches have been initially established for microbial systems

leading to a growing number of reconstructed GEMs, especially
in the universal chassis Escherichia coli and Saccharomyces
cerevisiae where the computational sets of stoichiometric and
mass-balanced metabolic reactions in the microbes were derived
from genomics-guided experimental analysis including flux
balance analysis (FBA) and elementary node analysis (Gu
et al., 2019; Dahal et al., 2020). A host of systems biology,
bioinformatics, and computer-aided design (CAD) tools has
been developed and utilized to identify cellular metabolic
bottleneck, pathway prediction, and gene design with the
ultimate aim of enhancing bioproduction titers, rates, and yields
(TRYs) by metabolically engineered microbes (Chae et al., 2017;
Choi et al., 2019).

The advent of data-driven systems and synthetic biology has
brought a renewed and ever-increasing interest in translating
laboratory strains into commercial-level microbial prototypes
using omics- and in silico-guided biomanufacturing platforms
that are expected to accelerate the scale-up process and speed
up industrial scale production of desired products (Lee and
Kim, 2015; Carbonell et al., 2018; Dunstan et al., 2020).
The incorporation of the iterative Design-Build-Test-Learn
(DBTL) cycle in microbial engineering approaches has provided
a biological engineering and in silico-assisted framework
for strain design and prototyping invaluable for industrial
biotechnology applications. As part of the efforts in converging
predictive analytics in improving bioproduction capabilities,
the employment of metabolome, proteome, transcriptome, and
bioinformatics analyses of the plant resources and microbial
chassis has provided a comprehensive data-driven means for
modulating and streamlining the biomanufacturing process of
high-value natural products guided by the DBTL bioengineering
framework (Casini et al., 2018; Carqueijeiro et al., 2020). An
overview of data-guided bioproduction of natural products
using systems and synthetic biology approaches is illustrated in
Figure 1 where the implementation of omics technology and ML
tools in improving top-down and bottom-up biomanufacturing
strategies is further discussed in the following sections.

TOP-DOWN APPROACH:
OMICS-GUIDED STRAIN DESIGN AND
PATHWAY OPTIMIZATION

One of the key aspects of strain development using metabolic
engineering and synthetic biology tools is the generation
and characterization of biosynthetic genes as genetic parts
in the pathway design of which the standardization in parts
and plasmid assembly allows rapid strain prototyping via the
DBTL iteration (Nielsen and Keasling, 2016; Robinson et al.,
2020). In efforts to maximize TRYs of the natural products
and precursor biosynthesis, omics-guided pathway analysis has
been applied for a top-down microbial engineering approach
by elucidating and identifying affected genes and proteins
especially rate-limiting enzymes in engineered metabolic
pathways (Table 1). In this top-down strain optimization
approach, several omics platforms were employed in pathway
debottlenecking and optimization in bioengineered microbial
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FIGURE 1 | Top-down and bottom-up biomanufacturing strategies driven by omics and machine learning tools using high throughput analytical and predictive
engineering technologies. Top-down approach focused on strain optimization and bioproduction improvement. Bottom-up approach aimed at reconstruction and
refactoring of biosynthetic pathways for synthesis of existing and new-to-nature bioproducts. LC-MS, liquid chromatography–mass spectrometry.

chassis that aimed at improving precursor supply and enhancing
targeted natural product biosynthesis in a reverse engineering
manner. With the focus on Test and Learn steps, proteome,
metabolome, and bioinformatics analyses were conducted for
the modulation of endogenous pathway intermediates, such
as amino acids and isopentenyl pyrophosphate (IPP)-derived
precursors, in bioengineered microbes. In particular, fine-tuning
of IPP-related biosynthetic genes was found to be critical in
optimizing terpenes bioproduction in engineered E. coli and
S. cerevisiae owing to poor recombinant protein translation
and precursor toxicity. Through proteome and transcriptome
analyses of terpene-producing strains of E. coli, these pathway
bottlenecks were debugged through codon optimization of
the rate-limiting enzymes and the use of strong and regulated
promoters, such as pTrc and pGadE (Redding-Johanson
et al., 2011; Dahl et al., 2013). The application of principal
component analysis of proteomics (PCAP) and multi-omics
approaches in terpene-producing E. coli further demonstrated
the importance of balanced and optimal protein expression,
especially for HMG-CoA reductase, the key enzyme in the
IPP-supplying mevalonate (MVA) pathway (Alonso-Gutierrez

et al., 2015). In a seminal report by Brunk et al. (2016) on
omics-guided microbial engineering, the combination of
GEM, metabolomic, and proteomic analyses has allowed
comprehensive pathway mapping and debottlenecking in MVA-
derived terpene-overproducing E. coli by which several genes
in the pentose phosphate pathway, tricarboxylic acid (TCA)
cycle, and acetyl-CoA biosynthesis were found to be important
in particular by downregulating pyruvate synthase (YDBK) gene
that culminated in higher specific production of limonene. In
genome engineered S. cerevisiae, the use of flux and metabolomic
analysis has aided the functional expression of a heterologous
1-deoxy-D-xylulose 5-phosphate (DXP) pathway, the alternative
IPP-producing pathway by which combinatorial expression of
IspG (2-C-methyl-D-erythritol-2,4-cyclodiphosphate reductase)
and IspH (4-hydroxyl-3-methylbut-2-enyl diphosphate
reductase) enzymes was tested to overcome the poor conversion
of 2-C-methyl-D-erythritol-2,4-cyclodiphosphate (MEcPP) and
the limited NADPH coenzyme availability (Kirby et al., 2016).

Omics tools have also been utilized in elucidating cellular
changes in yeast chassis engineered to produce aromatic
phenylpropanoids via the shikimate pathway using aromatic
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amino acid L-phenylalanine or L-tyrosine as the main entry
routes for phenylpropanoid biosynthesis. Metabolomic
and transcriptomic analyses of p-coumaric acid (p-CA)-
overproducing S. cerevisiae revealed distinct transcriptional
changes of genes related to sugars and amino acids transport
in S288c and CEN.PK background strains that aided in the
efforts of systematically modulating the final production of
p-CA with up to 20–50% improvement (Rodriguez et al., 2017).
Further transcriptome-guided pathway optimization enabled
enhanced p-CA bioproduction from xylose in which deletion
of the tyrosine and tryptophan amino acid transporter TAT1
resulted in 50% increased of the p-CA titer (Borja et al., 2019).
Similar transcriptome-assisted bioengineering strategies were
employed to build and test multiple sets of yeast promoters
including pINO1, pSED1, and pCCW12 that conferred
increased naringenin production from p-CA in engineered
S. cerevisiae (Gao et al., 2020). Evidently, the application of omic
technologies in chassis optimization, especially in the Test and
Learn synthetic biology cycle, is inordinately advantageous in
pathway debottlenecking and increasing the TRYs of the desired
natural products.

BOTTOM-UP APPROACH:
OMICS-ENABLED PATHWAY
ENGINEERING AND REFACTORING FOR
NATURAL PRODUCTS
BIOMANUFACTURING

The employment of single- and multi-omic tools has brought
about a systematic biology-informed pipeline for discovering and
biomanufacturing of new-to-nature plant-derived compounds
using systems and synthetic biology platforms (Goh, 2018;
Chen et al., 2020; Jamil et al., 2020). In the Design and
Build steps, genes involved in plant and microbial natural
products pathways are considered as important genetic parts
by which reconstruction and combinatorial expression of the
corresponding biosynthetic pathways have yielded a plethora
of industrially important natural products and biochemicals in
bioengineered microbes. Discovery of key and missing enzymes
in plant biosynthetic pathways has been greatly expedited with
transcriptome gene mining of non-model plants and expression
of the candidate genes in microbial systems (Goh et al., 2018;
Ku Bahaudin et al., 2018; Pyne et al., 2019). Two alkaloid-
enriched plants specifically Papaver somniferum (opium poppy)
and Catharanthus roseus (Madagascar periwinkle) have emerged
as the model medicinal plants with regard to the employment
of multi-omics approaches in the comprehensive analysis of the
benzylisoquinoline alkaloids (BIAs) and monoterpenoid indole
alkaloids (MIAs) biosynthetic pathways, respectively (Facchini
and De Luca, 2008; Scossa et al., 2018). Using multi-omics
strategies, the complete biosynthetic pathway of the anticancer
drug vinblastine in C. roseus has been finally elucidated where
a total of 31 steps are required for MIA compound synthesis
from geranyl pyrophosphate (GPP) where the key redox and
hydrolase enzymes for the conversion of stemmadenine to

tabersonine or catharanthine were successfully identified via
proteome analysis and transcriptome gene mining (Caputi et al.,
2018). These omics-driven strategies were similarly employed for
the identification and expression of terpene and phenylpropanoid
biosynthetic genes from the aromatic plant Polygonum minus
(Persicaria minor) essential for pathway reconstruction and
natural product biosynthesis in engineered microbes (Ramzi
et al., 2018; Rusdi et al., 2018; Tan et al., 2018).

Transcriptomic-Driven Design and Build
of High-Value Natural Products in
Microbial Chassis
One of the prominent examples of omics-enabled discovery and
production of high-value natural products is the bioproduction
of BIAs where candidate genes were obtained from the
transcriptome datasets of BIA-accumulating plants, thereby
representing a bottom-up approach in natural products
biomanufacturing. The production of (S)- and (R)-reticuline
was first demonstrated in engineered S. cerevisiae through
BIA pathway reconstitution that includes the expression of
the enzymes norcoclaurine synthase (NCS) and reticuline
epimerase (CYP82Y2) from opium poppy P. somniferum
(DeLoache et al., 2015; Farrow et al., 2015; Table 1). Through
gene mining of P. somniferum transcriptome datasets, microbial
expression of long and complex pathway of BIAs allowed the
bioproduction of bioactive dihydrosanguinarine, thebaine,
and hydrocodone compounds in engineered S. cerevisiae
(Fossati et al., 2014; Galanie et al., 2015). Reconstruction and
implantation of plant biosynthetic pathways can be modulated
and programmed to exploit intrinsic amino acid pathways,
such as L-phenylalanine, L-tryptophan, and L-ornithine, thereby
removing the metabolic barriers for precursor and energy supply.
Combinatorial and rational design strategies have enabled the
biosynthesis of tropane alkaloids where de novo production
of N-methylpyrrolinium, tropine, and cinnamoyl tropine
has been attained through the incorporation and conversion
of L-ornithine- and L-phenylalanine-derived intermediates,
respectively, through the expression of corresponding N-methyl
putrescine oxidase (MPO) from Nicotiana tabacum and tropane
alkaloid biosynthesis genes from Anisodus acutangulus (Ping
et al., 2019a,b; Srinivasan and Smolke, 2019).

Transcriptome analysis of antioxidant-rich medicinal plants,
including P. minus and Erigeron breviscapus, revealed the
candidate biosynthetic genes for phenylpropanoid-derived
flavonoids and breviscapine that shared L-phenylalanine as
the main intermediate compound in the plant biosynthetic
pathway (Loke et al., 2017; Liu et al., 2018). The introduction
of key biosynthetic genes, such as cinnamate-4-hydroxylase
(C4H), flavone-6-hydroxylase (F6H), and flavonoid-7-
O-glucuronosyltransferase (F7GAT), enabled pathway
reconstruction and directed biosynthesis of the desired
phenylpropanoid compounds in engineered S. cerevisiae
using glucose as carbon source (Liu et al., 2018; Ramzi et al.,
2018). Interestingly, the presence of endogenous MVA and
squalene biosynthetic pathways in S. cerevisiae serves as a
starting platform for transcriptome-enabled biosynthesis of
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TABLE 1 | Omics-guided microbial engineering approaches for natural product and precursor biomanufacturing. Top-down approach mainly represented pathway
debottlenecking and strain optimization for increasing bioproduction capacity. Bottom-up approach utilized transcriptome-enabled gene discovery for pathway
engineering, refactoring, and bioproduction of industrially important natural products. MVA, mevalonate; PP, pentose-phosphate; TCA, tricarboxylic acid; DXP,
1-deoxy-D-xylulose 5-phosphate; BIA, benzylisoquinoline alkaloid.

Approach Target metabolite
(Chassis)

Key biosynthetic genes and parts Omic-guided strategy References

Top-down Terpene (E. coli) MVA pathway
Mevalonate kinase (MK) and phosphomevalonate kinase
(PMK) from S. cerevisiae under the control of trc promoter
(E. coli)

Proteome-guided promoter
characterization and pathway bottleneck
debugging via codon optimization

Redding-
Johanson et al.,
2011

MVA pathway
Farnesyl pyrophosphate (FPP)-responsive promoters PybrL,
PgadE, and PrstA controlling FPP biosynthetic genes

Promoter characterization and pathway
intermediate toxicity measurement based
on proteome and transcriptome dataset
analysis of engineered E. coli

Dahl et al., 2013

MVA pathway
HMG-CoA synthase (HMGS) and HMG-CoA reductase
(HMGR) from Staphylococcus aureus; Terpene synthase
from Mentha spicata and Abies grandis

Application of principal component analysis
for enzyme characterization and
improvement based on proteome dataset
of engineered E. coli

Alonso-Gutierrez
et al., 2015

PP pathway
Phosphogluconate dehydrogenase (GND),
glucose-6-phosphate dehydrogenase (G6PDH2r) in
S. cerevisiae
TCA cycle
Isocitrate dehydrogenase (ICDHyr), alpha-ketoglutarate
dehydrogenase (AKGDH) in S. cerevisiae
Acetyl-CoA biosynthesis
Pyruvate synthase (YDBK) in S. cerevisiae

Pathway precursor supply mapping using
multi-omics (Metabolomics and proteomics)
and GEM analysis

Brunk et al., 2016

Terpene
precursor
(S. cerevisiae)

MVA-associated pathway
HMG-CoA synthase (ERG13) and membrane protein
(PRM10) in S. cerevisiae
DXP pathway
DXP biosynthetic genes (Dxs, IspC, IspD, IspE, IspF, IspH)
from E. coli; 2-methyl-butenyl-4-diphosphate (HMBPP)
synthase (IspG) from E. coli, Bacillus subtilis,
B. thuringiensis and Thermus thermophilus
DXP-related redox system
Flavodoxin/ferredoxin NADP+-reductase (AtrFNR) from
Arabidopsis thaliana and flavodoxin (Fld) from E. coli and
B. subtilis
Iron-sulfur cluster (ISC) machinery
ISC operon (HscA, iscA, cyaY, iscS, iscU, hscB, fdx) and
respiratory protein A (erpA) from E. coli

Genomics and metabolomics-assisted DXP
pathway optimization

Kirby et al., 2016

Phenylpropanoid
precursor
(S. cerevisiae)

Coumaric acid biosynthesis
Tyrosine ammonia lyase (TAL) from Flavobacterium
johnsoniae, shikimate kinase (aroL) from E. coli, tyrosine
biosynthetic genes (mARO7, mARO4, ARO10) and
pyruvate decarboxylase (PDC5) in S. cerevisiae
Amino acid and sugar transport
Tyrosine and tryptophan amino acid transporter (TAT1),
polyamine transporter (TPO1), arginine transporter (ALP1),
amino acids transporters (BAP2, AGP3), acetate
transporter (ADY2) and galactose transporter (GAL2) in
S. cerevisiae

Metabolic pathway characterization and
optimization based on metabolomic and
transcriptomic analysis

Rodriguez et al.,
2017

Coumaric acid biosynthesis
Shikimate kinase (aroL) from E. coli, tyrosine ammonia-lyase
(TAL) from F. johnsoniae, tyrosine biosynthetic genes
(mARO7, mARO4, ARO10) and pyruvate decarboxylase
(PDC5) from S. cerevisiae
PP pathway
Glucose-6-phosphate dehydrogenase (ZWF1),
6-phosphogluconolactonase (SOL3) and
6-phosphogluconate dehydrogenase (GND1) in
S. cerevisiae

Transcriptome-guided metabolic pathway
characterization and optimization

Borja et al., 2019

(Continued)
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TABLE 1 | Continued

Approach Target metabolite
(Chassis)

Key biosynthetic genes and parts Omic-guided strategy References

Flavonoid
(S. cerevisiae)

Characterized promoters
pTDH1, pPGK1, pINO1, pSED1 and pCCW12 in
S. cerevisiae
Naringenin biosynthesis
4-coumarate:CoA ligase (Ps4CL) from Petroselinum
crispum, CHS chalcone synthase from Petunia x hybrida
(PhCHS) and CHI chalcone isomerase from Medicago
sativa (MsCHI)

Promoter characterization and yield
improvement via transcriptomic analysis

Gao et al., 2020

Bottom-up BIA (S. cerevisiae) (S)-reticuline biosynthesis
Norcoclaurine synthase (PsNCS) from Papaver somniferum

Identification and functional expression of
norcoclaurine synthase in S. cerevisiae for
(S)-reticuline production from L-tyrosine

Xiao et al., 2013;
DeLoache et al.,
2015

(R)-reticuline biosynthesis
Reticuline epimerase (PsCYP82Y2) from P. somniferum

Identification and functional expression of
reticuline epimerase in S. cerevisiae for
conversion of (S) to (R)-reticuline

Desgagné-Penix
et al., 2012;
Farrow et al.,
2015

Dihydrosanguinarine biosynthesis
6-O-methyltransferase (6OMT), coclaurine
N-methyltransferase (CNMT), 4′-O-methyltransferase 2
(4′OMT2), truncated berberine bridge enzyme (BBE1N),
cheilanthifoline synthase (PsCFS) and stylopine synthase
(PsSPS), cytochrome P450 reductase (PsCPR),
tetrahydroprotoberberine cis-N-methyltransferase (TNMT),
(S)-cis-N-methylstylopine 14-hydroxylase (MSH) from
P. somniferum

Transcriptome gene mining and expression
of 10-gene pathway from P. somniferum for
biosynthesis of dihydrosanguinarine in
S. cerevisiae

Xiao et al., 2013;
Fossati et al.,
2014

Opioids biosynthesis
1,2-dehydroreticuline synthase-1,2-dehydroreticuline
reductase (DRS-DRR), salutaridine synthase (SalSyn),
salutaridine reductase (SalR), salutaridinol
7-O-acetyltransferase (SalAT), thebaine 6-O-demethylase
(T6ODM) from P. somniferum

Transcriptome gene mining,
characterization and complete biosynthesis
of opioids thebaine and hydrocodone in
bioengineered S. cerevisiae

Xiao et al., 2013;
Matasci et al.,
2014; Galanie
et al., 2015

Tropane alkaloids
(S. cerevisiae)

Tropane alkaloid biosynthesis
N-methyl putrescine oxidase (MPO) from Nicotiana
tabacum

Transcriptome gene mining,
characterization and functional expression
of putrescine oxidase in S. cerevisiae

Matasci et al.,
2014; Srinivasan
and Smolke,
2019

Tropane alkaloid biosynthesis
Polyketide synthase (AaPYKS), cytochrome p450 (AaP450),
tropinone reductase (AaTRI, AaTRII) from Anisodus
acutangulus

Transcriptome gene mining,
characterization and functional expression
of tropane alkaloid biosynthetic genes in
bioengineered S. cerevisiae

Cui et al., 2015;
Ping et al., 2019b

Tropane alkaloids
precursor (S.
cerevisiae)

Tropane alkaloid biosynthesis
Diamine oxidase (DAO) from A. acutangulus

Transcriptome gene mining,
characterization and functional expression
of diamine oxidase in S. cerevisiae

Cui et al., 2015;
Ping et al., 2019a

Phenylpropanoid
precursor (S.
cerevisiae)

Phenylpropanoid biosynthesis
Cinnamate-4-hydroxylase (C4H) from P. minus

Transcriptome gene mining and expression
of cinnamate-4-hydroxylase in S. cerevisiae

Loke et al., 2017;
Ramzi et al.,
2018

Breviscapine
flavonoid (S.
cerevisiae)

Breviscapine flavonoid biosynthesis
Flavonoid-7-O-glucuronosyltransferase (F7GAT) and
flavone-6-hydroxylase (F6H) from E. breviscapus

Transcriptome gene mining,
characterization and reconstitution of
complete breviscapine flavonoid pathway
from E. breviscapus in bioengineered
S. cerevisiae

Liu et al., 2018

Triterpenoid
saponin (S.
cerevisiae)

Triterpenoid saponin biosynthesis
Cucurbitadienol synthase (SgCDS), epoxide hydrolase
(SgEPH3EPH), cytochrome p450 (SgCYP87D18) from
Siraitia grosvenorii

Production of mogroside V compounds by
bioengineered S. cerevisiae expressing
S. grosvenorii enzymes

Tang et al., 2011;
Itkin et al., 2016

Cannabinoids (S.
cerevisiae)

Cannabinoids biosynthesis
Prenyltransferases (CsPT), tetraketide synthase (C. sativa
TKS; CsTKS), olivetolic acid cyclase (CsOAC), acyl
activating enzyme (AAE). Cannabinoid synthases THCAS
and CBDAS from C. sativa

Transcriptome gene mining,
characterization and reconstitution of
cannabinoid biosynthetic pathway in
bioengineered S. cerevisiae

van Bakel et al.,
2011; Luo et al.,
2019
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cannabinoids and triterpenoid saponin that were naturally
derived from Cannabis sativa L. and Siraitia grosvenorii,
respectively. Complete biosynthesis of cannabinoids was
demonstrated through the expression of Cannabis enzymes that
include newly identified Cannabis candidate prenyltransferases
that are responsible for the conversion of olivetolic acid and
GPP supplied by native MVA and heterologous hexanoyl-
CoA biosynthetic pathways, respectively (Luo et al., 2019).
Using a MVA-dependent squalene pathway in S. cerevisiae, the
biosynthesis of triterpenoid mogrol compounds was achieved
via pathway reconstitution and heterologous expression of
cucurbitadienol synthase, epoxide hydrolase, and cytochrome
p450 identified from S. grosvenorii transcriptome (Itkin et al.,
2016). Overall, the utilization and expression of transcriptome-
derived plant biosynthetic genes represent an increasingly
valuable and feasible strategy in pathway engineering and
natural product biomanufacturing using bioengineered microbes
as cell factories.

THE WAY FORWARD: STREAMLINING
NATURAL PRODUCTS
BIOMANUFACTURING WITH OMICS
AND ML PLATFORMS

To date, model microbes, especially E. coli and S. cerevisiae,
represent the most suitable natural product chassis for strain
improvement and biological engineering using DBTL iteration
and upscaling processes owing to increased availability of genetic
parts and biological data, including GEMs and omics datasets.
As discussed earlier, omics technologies have been valuable in
enhancing synthetic biology applications, but progress remains
in accelerating the Learn step needed to inform the next Design
phase and consequent DBTL cycles important in improving the
desirable specification and biomanufacturing capacities. Recent
progress in advanced genomics and synthetic biology has seen
the increased adoption of ML-based data training and non-biased
predictive tools for analyzing biological datasets to complement
the biology-informed systems biology approaches. The predictive
ability of ML tools is empowered through training and learning
of experimental data via statistical linkage and modeling of
independent and dependent variables as input and output data,
respectively (Radivojević et al., 2020). Critically, the employment
of ML approaches in strain design and optimization is gaining
much interest, which is expected to address limitations in
biology-informed approaches and circumvent the needs for
detailed mechanistic understanding and resource constraints
(Carbonell et al., 2019; Presnell and Alper, 2019).

Improving DBTL Performance and
Predictive Capacities With ML and
Omics Tools
ML-based training of biological datasets has been successfully
used in microbial hosts in the efforts to improve gene annotation,
metabolic pathway optimization, and fermentation bioprocess
parameters (Kim et al., 2020). The bioproduction of specialty

and fine chemicals, such as dodecanol and limonene, has been
demonstrated in engineered E. coli and S. cerevisiae using ML-
generated predictive models, which enabled unbiased genetic
designs and combination (Zhou et al., 2018; Jervis et al., 2019;
Opgenorth et al., 2019). A key advantage of utilizing ML tools
is the development of a pure in silico system applicable for
the Design and Learn phases that enable the selection of high-
performing biological system without the needs to perform
extensive and costly in vivo screening experiments. In the Design
step, several ML tools have been developed for optimizing gene
expression and cellular protein synthesis through de novo and
quantitative design of genetic parts including promoter, 5′-
untranslated region (5′UTR), and ribosomal binding site (RBS)
in addition to the use of ML-assisted directed evolution and
semi-rational protein engineering strategies (Decoene et al., 2018;
Jervis et al., 2019; Wu et al., 2019). By training of partial least
square (PLS) regression model on fluorescence output of a
yeast UTR (yUTR) library, a newly constructed yUTR calculator
was used to accurately predict the outcome of translation
initiation rates in S. cerevisiae (Decoene et al., 2018). Employment
of the predictive yUTR calculator enabled a tailored in vivo
p-CA production in tyrosine ammonia lyase (TAL1)-expressing
S. cerevisiae in accordance to the strengths of de novo and
native 5′UTR with weak and high predicted protein abundance
(Decoene et al., 2018).

Modulation and improvement of terpenes production has
also been demonstrated through ML-enabled fine-tuning of gene
expression by synthetic promoters and RBS of the MVA and non-
MVA DXP biosynthetic genes (Meng et al., 2013; Jervis et al.,
2019). Using a mutated Trc promoter and RBS sequences for
artificial neural network (NN)-based model training and test, the
expression of 1-deoxy-D-xylulose-5-phosphate synthase (DXS)
gene under the control low-strength synthetic s14 promoter
enhanced the production of amorphadiene in engineered E. coli
(Meng et al., 2013). A recent report (Jervis et al., 2019) has
expanded the use of a feedforward NN-based ML model on
de novo design and screening of synthetic RBS for MVA
pathway engineering and bioproduction of limonene where
model training was conducted on expression levels of HMG-
CoA synthase (HMGS), HMG-CoA reductase (HMGR), MVA
kinase (MK), and IPP delta-isomerase (IDI) using multiple
combinations of RBS sequences. The constructed library of 32
RBS combinations was then built and tested in combination with
terpene-synthesizing pGL403 plasmid construct that resulted in
the identification and selection of high-performing E. coli strains
with improved limonene titer over 1.5–3-fold (Jervis et al., 2019).

The combination of omics datasets and ML strategies is
expected to drive the production of natural products and other
biobased chemicals especially in terms of biosynthetic pathway
inference, refactoring, and optimization. The self-organizing map
(SOM) approach represents an unsupervised NN method useful
in the identification of new enzymes using plant transcriptome
datasets to complement common gene co-expression analysis,
such as differentially expressed genes (DEG) method (Dugé
de Bernonville et al., 2020). The SOM-assisted co-expression
analysis of Rauvolfia serpentina transcriptome has led to the
identification of sarpagan bridge enzyme (SBE) and vinorine
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hydroxylase (VH) essential in sarpagan and ajmalan alkaloid
biosynthesis that could be useful in the Build and Test of
these high-value bioproducts in engineered microbial chassis
(Dang et al., 2017, 2018). A supervised ML platform has
been developed and tested using proteome and metabolome
datasets of biofuel- and terpene-producing E. coli where the
ML-driven model predictions yielded an accurate in silico
pathway design and outperformed classical Michaelis–Menten
kinetic modeling (Costello and Martin, 2018). In their report,
a Tree-based Pipeline Optimization Tool (TPOT) was used
for training data and succeeded in generating models for
dynamically predicting medium level limonene-producing E. coli
strains using experimental omics datasets, thus providing a
pure ML and omic dataset-based virtual strain simulation and
pathway construction (Costello and Martin, 2018). Interestingly,
another recent report by Radivojević et al. (2020) leveraged
on ensemble approach and probabilistic modeling methods
to construct a ML-based Automated Recommendation Tool
(ART) useful for improving microbial engineering and DBTL
bioproduction performance by training of proteome datasets
among a host of experimental data as input variables. By
comparing limonene bioproduction improvement in engineered
E. coli guided by experimentally tested PCAP, the ML models
generated by ART were suggested to be able to match and
further enhance the production of a given product through
the DBTL cycle by recommending new inputs, such as
transcriptome datasets and promoter strengths in the next
Design phase. Following this, the integration of transcriptome,
proteome, and/or metabolome datasets with ML methods is
particularly useful in the development of mathematical models
in the Test and Learn cycle that would guide and facilitate
in silico optimization of the DBTL pipeline (Presnell and
Alper, 2019; St. John and Bomble, 2019; Volk et al., 2020).
Thanks to the growing list of genome, transcriptome, and GEM
resources, further adoption and implementation of in silico
and ML tools on these biological datasets are expected to
bring about a markedly improved and accurate predictive
engineering and retrosynthetic design of metabolic pathways to
existing and new-to-nature chemicals (Lin et al., 2019; Zhang

et al., 2020). In line with the emergence of data-driven 4th

Industrial Revolution (4IR), the applications of omics and
ML tools in strain and bioproduct development are set to
be the cornerstone in industrial biomanufacturing of biobased
chemicals and pharmaceuticals.

CONCLUSION AND PERSPECTIVES

Overall, it is envisioned that the employment of data-centered
omics and ML platforms will lead to more streamlined and less
resource-intensive biomanufacturing strategies and accelerate
strain prototyping pipelines that have been a major stumbling
block in the translation of bioproduct development from
laboratory to market. Omics-guided microbial engineering and
ML-assisted biomanufacturing will therefore bring about data-
driven biomanufacturing pipelines that can be expanded to
include metagenome datasets and accelerate the bioproduction
of industrially relevant biomolecules and drugs tailored to the
pressing needs of medical, agricultural, environmental, and
industrial sectors.
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