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Abstract—A hierarchical control architecture is proposed for 

the optimal day-ahead commitment of multiple grid support 

services within a virtual power plant (VPP). The day-ahead 

optimization considers pricing and cost data to determine the 

commitment schedule, and a robust Model Predictive Control 

(MPC) approach is included to minimize the unbalance fees 

during real-time operations. The multi-level control has been 

demonstrated experimentally using a hybrid test system, where 

the VPP is formed of a commercial 240 kW, 180 kWh battery 

energy storage system (BESS), while the additional assets are 

modelled in a real-time digital simulator (RTDS). Two case 

studies are analyzed: the first assumes a purely-electrical VPP, 

with a single connection to the public network; the second 

involves a multi-energy approach, with the introduction of a gas-

supplied Combined Heat and Power unit (CHP). Both winter 

and summer price scenarios are tested. The results show the 

superiority of the multiple-service operation compared to 

providing a single grid support service. For example, the net 

revenue is increased by 30% (winter) and 7% (summer) when 

compared to just frequency regulation, and by +99% (winter) 

and 30% (summer) when compared to only energy arbitrage. 

 
Index Terms—Model Predictive Control, Multiple Service 

Provision, Virtual Power Plants, Power System Dynamics.  

I.  NOMENCLATURE 

Time indexes and MPC parameters 

𝐻, ℎ      total prediction horizon and its index 

Δ𝑇, 𝑘     optimizations time step and its index 

Battery Energy Storage System (BESS) parameters 

𝑖 = 1…𝑁𝑠𝑡  identification index for BESS storage units 

𝑃𝑖
𝑒𝑎 , 𝑃𝑖

𝑓𝑟±
   BESS energy-arbitrage / regulation power 

𝑃𝑖 , 𝑃𝑖
 
     max, min BESS storage power limits 

𝑃𝑖
𝑓𝑟
, 𝑃𝑖

𝑓𝑟
       over, under-frequency maximum provision 

𝜂𝑖
𝑐ℎ , 𝜂𝑖

𝑑𝑖𝑠    charging, discharging efficiencies 

𝑆𝑜𝐶𝑖 , 𝐸𝑖
      storage state of charge / nominal energy 

𝑆𝑜𝐶𝑖
+, 𝑆𝑜𝐶𝑖

−   upper, lower bounds of uncertain storage SoC  

𝑆𝑜𝐶𝑖 , 𝑆𝑜𝐶𝑖
 
   BESS max, min state of change levels 

 

Reversible Thermal Storage (TS) 

𝑃 
𝑡𝑠, 𝑃𝑡𝑠 , 𝑃𝑡𝑠

 
 thermal-storage power and its limits 

 
 

 

𝑆𝑜𝐶𝑡𝑠, 𝐸𝑡𝑠
     thermal storage state of charge / rated energy 

𝑆𝑜𝐶𝑡𝑠, 𝑆𝑜𝐶𝑡𝑠
 
  thermal storage max / min state of change 

𝜂𝑡𝑠
𝑐ℎ , 𝜂𝑡𝑠

𝑑𝑖𝑠    thermal storage conversion efficiencies 

Building thermal control, photovoltaic and CHP unit 

𝑛 = 1…𝑁 
𝑡𝑧  index for thermal zones in the building 

𝑃𝑛
𝑒𝑙 , �̇�𝑛

     heat pump electrical absorption / injected heat 

𝜗𝑛, [𝜗𝑛 , 𝜗𝑛]   thermal zone temperature and comfort limits 

𝐶𝑛
𝑡ℎ, 𝐺𝑛

𝑡ℎ    thermal-zone capacitance, conductance 

𝑝𝑛 , 𝑠𝑛     occupancy and irradiance sensitivity factors 

𝑂𝑛, 𝐼𝑟     thermal-zone occupancy and global irradiance 

𝑃𝑝𝑣 , 𝛾𝑝𝑣    photovoltaic power and production factor 

𝑃𝑐ℎ𝑝 , �̇�𝑡𝑜𝑡
𝑐ℎ𝑝

  CHP power and total heat 

�̇�𝑛
𝑐ℎ𝑝
, 𝜂𝑃 , 𝜂𝑄  CHP thermal zone heat and conversion factors 

�̇�𝑔𝑎𝑠 , ℎ𝑔𝑎𝑠  CHP gas mass flow and specific heat 

Global VPP profiles and cost functions 

𝑃𝑣𝑝𝑝
𝐸𝐴 , 𝑃𝑣𝑝𝑝

𝐹𝑅±     VPP energy-arbitrage / frequency regulation 

𝐶𝑀𝐾 , 𝐶𝐺𝐴𝑆   electrical energy / gas supply total costs 

𝐶𝐴, 𝐶Ω    BESS ageing and regulation provision costs 

𝐶𝐸𝑈 , 𝐶𝐺𝑈   electrical / gas unbalance market cost 

𝜆𝐸𝐴 , 𝜆𝐹𝑅    energy-arbitrage and regulation price profiles 

𝜆𝐺𝐴𝑆, 𝜆 
𝑢𝑛𝑏   gas supply and unbalance fees cost profiles 

𝜆𝑖
𝐴1, 𝜆𝑖

𝐴2, 𝜆𝑖
Ω  battery-ageing and regulation cost coefficients 

II.  INTRODUCTION 

OW carbon technologies are increasingly deployed in 

power systems to achieve net-zero carbon emissions by 

2050; these include distributed energy sources, storage 

systems and controllable loads, and are often grouped to form 

a virtual power plant (VPP) [1]. The diversified nature of the 

VPP assets allow frequency regulation services to be 

provided along with energy arbitrage, to maximize revenues.  

Among the different VPP energy management control 

techniques, Model Predictive Control (MPC) is recognized as 

a promising option for the energy management applications 

and it has been adopted for energy-price arbitrage. In [2], a 

VPP consisting of electrochemical storage devices, PV 

systems and diesel gen-sets is coordinated by a centralized 

MPC algorithm to perform energy-price arbitrage while 

connected to a public power network. A similar approach is 

developed in [3], including the building thermal management 

and with a distributed (rather than centralized) scheme. In [4] 

the optimal control principle is extended to include non-linear 

battery ageing mechanisms; however, the optimization is 

again only focused on the energy-price arbitrage. The authors 

in [5] considered the frequency regulation scenario but it 

excludes energy-price arbitrage. These publications [2]-[5] 

demonstrated the effectiveness of the management schemes 
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for single-market operations. However, the limitation to a 

single service prevents the full exploitation of the 

optimizations algorithm’s capabilities. Furthermore, these 

approaches assume idealized off-line conditions rather than 

real-time operations [6]-[7]. Therefore, the development of a 

holistic management architecture able to maximize the VPP 

revenues by coordinating multiple stacked services is one of 

the main contributions of this paper, which is not considered 

in any of the aforementioned approaches.  

Only recently some publications analyzed the possibility of 

increasing the revenue of a VPP system through coordinated 

bidding strategies in different markets. A first attempt to 

combine frequency regulation services with energy arbitrage 

is presented in [8], however the two operations are presented 

as mutually exclusive, no mathematical modeling of the 

service stacking is proposed, and the optimal condition is 

assessed empirically rather than analytically. This means that 

a global optimum may not be reached as the model simply 

chooses an empirical best-option between finite alternatives, 

rather than searching the entire set of feasible profiles.  

A few papers have described optimality-based service 

stacking, but none considered a real-time implementation on 

a grid-scale system. The authors in [9] analyze a simple 

system consisting of one Battery Energy Storage (BESS) and 

a wind generator. Extensions are described in [10] to multiple 

BESS systems, in [11] to the battery degradation phenomena, 

and in [12] to market prices sensitivity. However, the absence 

of real-time unbalance fees management into the algorithm 

design and the lack of a grid scale experimental testing 

represent the major limitations of [9]-[12], especially due to 

the impossibility to assess how the unpredictable intra-day 

network frequency behavior is managed by the VPP control. 

This degree of uncertainty is not taken into account in [9]-

[12] and leads to a deviation of the real profiles from the ideal 

day-ahead ones. Furthermore, none of these approaches is 

tested under a multi-energy scenario (electricity + gas). 

To combine the multiple time-scales involved in the VPP 

management (from the day-ahead scale of the market, to the 

almost-instantaneous frequency regulation), a hierarchical 

multi-layer control architecture is proposed and demonstrated 

experimentally in this paper. Typically, such hierarchical 

control is used for optimal power dispatch and loss 

minimization in islanded micro-grids [13]-[14] but has rarely 

been tested for the provision of stacked services. 

The goal is to design a complete optimizations framework 

able to model the frequency regulation and the energy 

arbitrage stacking within the same mathematical formulation 

in a VPP. This includes detailed characteristics for the storage 

units (e.g. non-ideal efficiency, ageing phenomena) and the 

impact of the uncertain power sign associated with the 

frequency regulation. Compared to previous work, this paper 

provides three key contributions. 

➢ Modeling: the proposed approach includes key elements 

often neglected in the literature, like BESS non-ideal 

conversion efficiency and ageing, whose impact could 

significantly affect the VPP performance; a multi-energy 

scenario is also considered. In addition, the paper proposes a 

novel storage model that accounts for the provision of 

multiple services (energy arbitrage and frequency regulation).  

➢ Control design: differently from the existing literature, 

the proposed architecture includes not only the day-ahead 

markets, but also the unbalance fees impact. The control 

accounts for the current network standards and multiple time 

scales, and it is robust against real-time unbalance fees due to 

the unpredictable grid frequency evolution. These aspects 

have not been found in any other publications, to the best of 

authors’ knowledge. 

➢ Validation and assessment: the proposed control 

framework is tested on a unique real-time grid scale set-up 

under real operating conditions. The testbed consists of a 

hardware BESS interfaced to a network simulator for high-

fidelity validation. The experimental testing of an extended 

VPP during real-time stacking operations has not been 

analyzed in the literature, to the best of authors’ knowledge. 

The considered VPP architecture includes a diversified fleet 

of flexibility assets (BESS, renewable energy sources, 

building thermal demand, thermal storage and CHP). 

In Section III the hierarchical architecture is introduced, 

while in Section IV the proposed mathematical modeling of 

the service stacking is analyzed. The model is exploited 

within a robust MPC-based approach to reduce the unbalance 

fees volatility in Section V. A detailed representation of the 

experimental set-up is provided in Section VI. Results for two 

different case studies are discussed in Section VII-VIII.  

III.  HIERARCHICAL ARCHITECTURE 

An overview of the three-layer hierarchical VPP control 

architecture is shown in Fig. 1, where each layer is 

distinguished by a different time-scale. Five assets are 

considered but many others could be easily incorporated:  

• an intermittent photovoltaic (PV) generator; 

• the thermal management of a building, which has flexibility 

in its energy consumption; 

• a reversible thermal storage (TS) system used only for 

energy arbitrage due to its slow internal dynamics; 

• three BESS units with different power / energy ratings, able 

to provide energy arbitrage and frequency regulation 

service with a response time below one second;  

• a Combined Heat and Power (CHP) unit, which allows the 

algorithm performance to be tested with multiple energy 

vectors (electrical grid + gas supply).  

 
Fig. 1: Proposed hierarchical control architecture for the VPP 
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A.  Description of Layers  

➢ Day-ahead (DH) scheduler (3rd layer): the slowest layer 

solves an optimization problem over a one-day horizon to 

maximize the net revenue determined by the stacking of 

energy arbitrage and frequency regulation (thereby emulating 

a simplified bidding mechanism of the VPP on the market). 

This includes the determination of the global VPP 

contribution to energy arbitrage and frequency regulation, 

and the allocation of these services to the internal assets. 

Intra-day MPC controller (2nd layer): this intermediate 

control layer acquires as inputs the expected energy arbitrage 

power profile 𝑃𝑣𝑝𝑝 𝐷𝐻
𝐸𝐴 , together with the frequency regulation 

limit 𝑃𝑣𝑝𝑝 𝐷𝐻
𝐹𝑅  for each asset in the VPP from the day-ahead 

scheduler, and performs the MPC-based on-line management 

of the assets. The control objectives are to guarantee the 

fulfilment of the profiles scheduled by the 3rd layer and the 

provision of the agreed frequency regulation capability at the 

lowest technical cost for the VPP (including asset ageing and 

unbalance fees), while managing the stored heat and 

guaranteeing the thermal comfort for building occupants. 

This is achieved by calculating the optimal reference values 

and control parameters for the local controllers of the 1st 

layer. The MPC controller updates the control signals to the 

units every Δ𝑇 = 30 min based on the current measured 

system condition through the feedback mechanism embedded 

into the MPC scheme. Furthermore, a robust approach [15] is 

adopted to mitigate the uncertainty related to the unbalance 

fee costs. Alternative robust frameworks are available in the 

literature, e.g., [16], however they are not suitable for the 

problem addressed in this study because they require a 

convex problem formulation. Furthermore, in [16] the 

optimization is performed over closed-loop control policies, 

which would be computationally significantly demanding. 

➢ Local controllers (1st layer): Each asset is equipped with 

internal local regulators, which guarantee the local fast 

dynamics convergence to the reference state trajectory, 

typically within some millisecond [17]. The reference signals 

are updated by the 2nd layer at every sampling period Δ𝑇. The 

local controllers also enable the continuous provision of the 

frequency regulation: the latest requirements for the 

converter-oriented units performing fast frequency services 

imply the provision of the regulation power proportional to 

the allocated margins (assigned by the 3rd layer and updated 

by the 2nd layer) within one second from the frequency event 

e.g. for the UK [18] and Italian [19] cases. The fast service 

execution is only manageable at the local level (1st layer), 

while the 2nd layer determines the positive (over-frequency) 

and negative (under-frequency) regulation limits coherently 

with the asset energy state and its physical constraints. The 

local controllers feature and its interaction with the intra-day 

2nd layer is highlighted in the next subsection.  

B.  Electrical / thermal storage local control: 1st layer 

Fig. 2-a shows the local regulation layer for the BESS 

systems, based on the grid-following architecture [20] which 

controls the power flow at the converter interface. The total 

power set-point is the sum of 𝑃𝑖
𝑒𝑎 , which is due to the energy 

arbitrage, and a frequency-dependent term associated with 

the regulation support defined by the allocated positive / 

negative regulation margins 𝑃𝑖 
𝑓𝑟± 

. The MPC (2nd layer) 

updates 𝑃𝑖
𝑒𝑎 and 𝑃𝑖

𝑓𝑟±
 every optimization step Δ𝑇, 

determining the storage average exchanged energy and its 

dependence on the frequency transients; the BESS system 

feeds back its State of Charge to the MPC. The regulation 

term follows the simple piecewise-linear droop-based scheme 

of the traditional primary frequency support (Fig. 2-a), using 

the measured frequency as input: the dead-band and 

maximum frequency excursion are set by the grid standards, 

and the frequency measurement uses the method in [21]. The 

response time of these systems is within the maximum 

allowed value of one second [18]-[19].  

The thermal storage (TS) unit is modelled in a similar 

way, but the frequency regulation limits are set to zero since 

the TS is unable to provide a rapid response due to the slow 

time constants involved in the thermal conversion process. 

 
(a) Battery storage 

 
(b) Building thermal control and CHP 

Fig. 2: Local control schemes for (a) the battery storage and (b) building 
thermal control and CHP. 

C.  Building thermal control and CHP: 1st layer regulators 

The building thermal management is carried out through 

heat pumps (one for each thermal zone TZ, 𝑛 = 1…𝑁 
𝑡𝑧) and 

a CHP unit. Fig. 2-b shows the local control layers for these 

assets. The local controllers for the heat-pumps manage the 

heat flux �̇�𝑛
𝑒𝑙  in the thermal zones, leading to the electrical 

absorption 𝑃𝑛
𝑒𝑙  from the network. The local controller for the 

CHP manages the time-varying gas supply �̇�𝑔𝑎𝑠 following 

the set-point defined by the MPC model. Part of the gas-

supplied power is converted into an electrical injection, while 

the heat is conveyed to the building (�̇�𝑛
𝐶𝐻𝑃 in Fig. 2-b). The 

measured temperature 𝜗𝑛 in each thermal zone is fed back to 

the MPC in the 2nd layer. The MPC sets the optimal inputs 

�̇�𝑛
𝑒𝑙 and �̇� 

𝑔𝑎𝑠 (for the heat-pumps and CHP, respectively) 

based on the thermal model of the zones in Section IV.B.  

D.  PV model 

The PV system is modelled as a time-varying power source 

𝑃𝑝𝑣 proportional to the irradiance 𝐼𝑟   through a coefficient 

𝛾𝑝𝑣 which defines the PV rating. 
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 𝑃𝑝𝑣 = 𝛾𝑝𝑣𝐼𝑟 (1) 

Since day-ahead irradiance forecasters [22] have been 

shown to have good accuracy, the actual irradiance profile 𝐼𝑟 

is assumed known in the 3rd and 2nd layers (aside for a 

normally-distributed error 𝜎𝑝). The PV contributes to the VPP 

energy arbitrage profile, as an internal independent power 

source. Nevertheless, unlike the BESS units, it does not 

contribute to the fast frequency regulation, so there is no 

power-frequency droop associated with the PV injection. 

IV.  VPP ASSETS MODELING (2ND AND 3RD LAYERS) 

This section describes the modeling of the VPP assets as used 

in the optimization problems of 2nd and the 3rd layers. 

A.  BESS and thermal storage devices 

The BESS units which provide frequency regulation and/or 

energy arbitrage must be modelled in the MPC formulation to 

retain the effects of both services on the asset power 

allocation and state-of-charge (SoC). This is challenging due 

to the impossibility to predict the polarity of the frequency 

deviation and the sign of the associated energy flow. 

Consider the dynamic model of the 𝑖-th BESS (𝑖 =
1…𝑁𝑠𝑡) when it is providing price-arbitrage and 

instantaneous frequency regulation. If the energy of the 

storage unit at time step 𝑘 is 𝑆𝑜𝐶𝑖
 (𝑘), then the SoC at the next 

time step, 𝑆𝑜𝐶𝑖
 (𝑘 + 1), depends on the energy arbitrage 

power 𝑃𝑖
𝑒𝑎(𝑘) and the frequency regulation margins 𝑃𝑖

𝑓𝑟±
(𝑘) 

according to the scheme in Fig. 2-a. The impact of 𝑃𝑖
𝑒𝑎 on the 

SoC (assuming a positive 𝑃𝑖
𝑒𝑎 for charging operation) is: 

𝑆𝑜𝐶𝑖
 (𝑘+1)= 𝑆𝑜𝐶𝑖

 (𝑘)+
𝜂𝑖Δ𝑇

𝐸𝑖
𝑃𝑖
𝑒𝑎(𝑘) (2) 

𝜂𝑖 = {
𝜂𝑖
𝑐ℎ           if 𝑃𝑖

𝑒𝑎(𝑘) ≥ 0 

1/𝜂𝑖
𝑑𝑖𝑠                        else

 (3) 

where 𝜂𝑖 is the conversion efficiency, Δ𝑇 is the time step and 

𝐸𝑖 is the BESS’s nominal energy. 

 The frequency regulation power is dependent on the 

unpredictable frequency deviation, therefore the change in 

the SoC while providing frequency regulation is unknown. 

However, the MPC needs to guarantee a degree of robustness 

against SoC saturation as this would inhibit the operability of 

the BESS device. To address this, two additional variables 

𝑆𝑜𝐶𝑖
+ and 𝑆𝑜𝐶𝑖

− are used to model the time-varying upper and 

lower bounds of the SoC for the known energy arbitrage 

contribution 𝑃𝑖
𝑒𝑎  and unknown frequency regulation, which is 

limited by 𝑃𝑖
𝑓𝑟±

 and actually dependent on the measured 

frequency. The upper limit 𝑆𝑜𝐶𝑖
+ (4) assume that the asset 

will be asked to deliver continuously its allocated over-

frequency margin 𝑃𝑖
𝑓𝑟+

(𝑘) during the step from k to k+1, 

while the opposite (permanent under-frequency) is assumed 

for 𝑆𝑜𝐶𝑖
− (5). Fig. 3.a sketches the SoC evolution with 𝑆𝑜𝐶𝑖

±. 

𝑆𝑜𝐶𝑖
+(𝑘+1)=𝑆𝑜𝐶𝑖

 (𝑘+1)+
𝜂𝑖
chΔ𝑇

𝐸𝑖
𝑃𝑖
𝑓𝑟+(𝑘) (4) 

𝑆𝑜𝐶𝑖
−(𝑘+1)=𝑆𝑜𝐶𝑖

 (𝑘+1)+
Δ𝑇

𝜂𝑖
dis𝐸𝑖

𝑃𝑖
𝑓𝑟−(𝑘) (5) 

 

 
Fig. 3: SoC evolution (a), and power allocation between the services (b). 

The definitions (4)-(5) represent a compromise between 

the service robustness and the profitability of the VPP itself. 

Specifically, an energy margin is allocated to provide the full 

regulation capability 𝑃𝑖
𝑓𝑟±

 for the entire next step Δ𝑇. The 

proposed approach guarantees strong robustness of the 

committed regulation even under the most adverse network 

conditions. To guarantee that the maximum and minimum 

battery energy constraints are met, the inequalities (6) are 

applied to the SoC upper and lower bounds in the 

optimization problem, Fig. 3.a. 

𝑆𝑜𝐶𝑖
+(𝑘 + 1) ≤  𝑆𝑜𝐶𝑖  and  𝑆𝑜𝐶𝑖

−(𝑘 + 1) ≥  𝑆𝑜𝐶𝑖 (6) 

In addition, the power allocation between the frequency 

regulation limits 𝑃𝑖
𝑓𝑟+

 and 𝑃𝑖
𝑓𝑟−

, and arbitrage 𝑃𝑖
𝑒𝑎 must be 

compliant with the converter power ratings, Fig. 3.b. This is 

done by imposing the constraints (7)-(8) on the decision 

variables 𝑃𝑖
𝑒𝑎  and 𝑃𝑖

𝑓𝑟±
. Equation (8) provides an adaptive 

constraint-tightening approach to achieve robustness while 

compensating for uncertainty in the frequency dynamics. 

𝑃𝑖 ≤ 𝑃𝑖
𝑒𝑎(𝑘) + 𝑃𝑖

𝑓𝑟±(𝑘) ≤ 𝑃𝑖   (7) 

𝑃𝑖− 𝑃𝑖
𝑓𝑟−(𝑘) ≤  𝑃𝑖

𝑒𝑎(𝑘) ≤ 𝑃𝑖  − 𝑃𝑖
𝑓𝑟+(𝑘) (8) 

Depending on the physical characteristics of each asset and 

on the desired contribution to the service provision, the 

frequency regulation limits 𝑃𝑖
𝑓𝑟±(𝑘) can be determined by the 

optimization problem with the constraints: 

𝑃𝑖
𝑓𝑟+

(𝑘) ∈ [0, 𝑃𝑖
𝑓𝑟
] ≥ 0  where 𝑃𝑖

𝑓𝑟
≤ 𝑃𝑖   

𝑃𝑖
𝑓𝑟−

(𝑘) ∈ [ 𝑃𝑖
𝑓𝑟
, 0] ≤ 0 where 𝑃𝑖

𝑓𝑟
≥ 𝑃𝑖  

(9) 

A similar modeling approach can be used for the reversible 

thermal storage (TS) device, provided that the frequency 

regulation limits 𝑃𝑡𝑠
𝑓𝑟

, 𝑃𝑡𝑠
𝑓𝑟

 are set to zero to account for the 

TS being unable to provide an instantaneous response. 

Equations (4)-(9) describe the complete storage system 

dynamics used in the optimization problem for each BESS, 

as a function of the decision variables 𝑆𝑜𝐶𝑖
±, 𝑃𝑒𝑎 , 𝑃𝑖

𝑓𝑟±
. The 

logical condition (3) needs to be modelled through additional 

binary variables, as reported in the Appendix, where the 

BESS and TS dynamics are expressed through mixed integer 

linear equalities and inequalities. Hence, the resulting 

optimization problems in the 2nd and 3rd control layers show 

a Mixed Integer Linear Programming (MILP) form, which 

can be efficiently solved by a Branch-and-Bounds algorithm. 

B.  Building thermal dynamics and CHP 

The temperature control of the building thermal zones is 

managed through two energy vectors: first the electrically-

supplied heat-pumps (one for each thermal zone TZ, 𝑛 =
1…𝑁 

𝑡𝑧); and second the heat from the gas-supplied CHP. 



5 

 

 

 

 

Each heat-pump (𝑛 = 1…𝑁 
𝑡𝑧) absorbs a power 𝑃𝑛

𝑒𝑙(𝑘) 
determined by the polarity and magnitude of the heat �̇�𝑛

𝑒𝑙 

exchanged with the TZ, expressed by (10). The boundaries 

�̇�𝑛
𝑒𝑙 ∈ [�̇�𝑛

𝑒𝑙; �̇�𝑛
𝑒𝑙̅̅ ̅̅ ] identify the positive (heating) and negative 

(cooling) thermal flows. 

{
�̇�𝑛
𝑒𝑙(𝑘) ≥ 0 ↔  𝑃𝑛

𝑒𝑙(𝑘) = �̇�𝑛
𝑒𝑙(𝑘)/𝐶𝑂𝑃𝑛

𝐻 ≥ 0

�̇�𝑛
𝑒𝑙(𝑘) < 0 ↔  𝑃𝑛

𝑒𝑙(𝑘) = −�̇�𝑛
𝑒𝑙(𝑘)/𝐶𝑂𝑃𝑛

𝐶 > 0
 

 

(10) 

𝐶𝑂𝑃𝑛
𝐻  and 𝐶𝑂𝑃𝑛

𝐶  are the coefficients of performance 

during heating and cooling operations.  

The CHP unit is modelled through (11)-(13): 

𝑃𝑐ℎ𝑝 = 𝜂𝑃ℎ𝑔𝑎𝑠�̇�𝑔𝑎𝑠(𝑘) (11) 

�̇�𝑡𝑜𝑡
𝑐ℎ𝑝
(𝑘) = 𝜂𝑄  ℎ𝑔𝑎𝑠�̇�𝑔𝑎𝑠(𝑘) (12) 

�̇�𝑛
𝑐ℎ𝑝(𝑘) = �̇�𝑡𝑜𝑡

𝑐ℎ𝑝
(𝑘)/𝑁𝑡𝑧 (13) 

The MPC 2nd layer defines the optimal gas consumption 

�̇�𝑔𝑎𝑠 ∈ [0, �̅̇�𝑔𝑎𝑠], which leads to the injected electrical 

power 𝑃𝑐ℎ𝑝 and total heat �̇�𝑡𝑜𝑡
𝑐ℎ𝑝

 (11)-(12), Fig. 2-b; ℎ𝑔𝑎𝑠 is 

the gas lower specific heat (ℎ𝑔𝑎𝑠=10.6 kWh / m3), while 𝜂𝑃 / 

𝜂𝑄 are the conversion efficiencies. The CHP heat is equally 

distributed between the thermal zones, according to (13).  

The thermal dynamics of each zone are obtained by the 

discrete-time system (14), as in [23]. 

ϑ𝑛(𝑘+1)= ϑ𝑛(𝑘)+
Δ𝑇

𝐶𝑛
𝑡ℎ
[�̇�𝑛

𝑒𝑙(𝑘) + �̇�𝑛
𝑐ℎ𝑝(𝑘) + 

+(𝜗𝑎(𝑘)-𝜗𝑛(𝑘))𝐺𝑛
𝑡ℎ + 𝑠𝑛𝐼𝑟(𝑘)+𝑝𝑛𝑂𝑛(𝑘)] 

(14) 

          𝜗𝑛 ≤ ϑ𝑛(𝑘) ≤  𝜗𝑛, ∀𝑘 ∈ [1, 𝐻], ∀𝑛 ∈ [1, 𝑁 
𝑡𝑧] (15) 

where 𝜗𝑛(𝑘) /  𝜗𝑎(𝑘) are the thermal zone / ambient 

temperatures, 𝐶𝑛
𝑡ℎ [J/K] and 𝐺𝑛𝑛

𝑡ℎ  [W/K] are the thermal 

capacitance and conductance parameters, while 𝐼𝑟(𝑘) and 

𝑂𝑛(𝑘) represent the solar irradiance and thermal-zone 

occupancy. The indoor temperatures vary within a pre-

defined range set by (15), ensuring the occupiers comfort 

regardless of the time-varying external (e.g. solar irradiance) 

and internal (e.g. occupancy level) conditions.  

C.  Grid power balance and total regulation provision  

The assets are mutually and optimally coordinated by the 

hierarchical control to maximize the net revenue, whilst 

respecting the operational limits of the VPP. Considering the 

generic VPP in Fig. 4, which includes all the flexibility assets, 

the total power flow for Energy Arbitrage EA operations 𝑃𝑣𝑝𝑝
𝐸𝐴  

is given by (16).  

𝑃𝑣𝑝𝑝
𝐸𝐴 (𝑘)=∑𝑃𝑖

𝑒𝑎(𝑘)

𝑁𝑠𝑡

𝑖=1

+∑𝑃𝑛
𝑒𝑙(𝑘)

𝑁𝑡𝑧

𝑛=1

+𝑃𝑡𝑠(𝑘)-𝑃𝑝𝑣(𝑘)-𝑃 
𝑐ℎ𝑝(𝑘) 

(16) 

The only units entitled to provide the frequency regulation 

FR are the battery storages; thus, the total regulation limits 

are expressed by (17), where a global symmetrical frequency 

service is considered through the second equality sign.  

𝑃𝑣𝑝𝑝
𝐹𝑅 (𝑘)=∑𝑃𝑖

𝑓𝑟+(𝑘)

𝑁𝑠𝑡

𝑖=1

=−∑𝑃𝑖
𝑓𝑟−(𝑘)

𝑁𝑠𝑡

𝑖=1

 (17) 

Importantly the global symmetrical modeling of the 

regulation margins in (17) does not imply a symmetric 

regulation for each single unit. Furthermore, each assets may 

provide different contributions to the two services (EA and 

FR): all the technologies play a role in the energy arbitrage 

(16), but BESS units only can guarantee a reliable provision 

of the fast frequency regulation (17) within the time set by the 

grid standards [18]-[19].  

 
Fig. 4:  VPP layout 

The 3rd and 2nd layers act on day-ahead and intra-day time 

scales respectively, and the optimization approaches in each 

of these layers are described in the following sections. To 

distinguish the different layers, the subscript DH will be used 

to indicate day-ahead variables (3rd layer), as opposed to 

intra-day variables (2nd layer). 

V.  VPP OPTIMIZATION-BASED CONTROL 

A.  Market operations (3rd layer)  

The 3rd layer scheduler defines the global day-ahead (DH) 

profiles for the energy-arbitrage 𝑃𝑣𝑝𝑝 𝐷𝐻
𝐸𝐴 (𝑘) and frequency 

regulation 𝑃𝑣𝑝𝑝 𝐷𝐻
𝐹𝑅 (𝑘) commitment, to maximize the net 

revenue of the VPP. Assuming prices 𝜆𝑘
𝐸𝐴 for arbitrage and 

𝜆𝑘
𝐹𝑅  for frequency regulation, then the cost function for the 3rd 

layer calculates the revenue from the energy and regulation 

markets 𝐶𝑀𝐾, (18), plus the cost of battery ageing 𝐶𝐴, (19). 𝐶𝐴 

includes the degradation per cycle and the accelerated wear-

out induced by high-power flows as modelled in [24]. 

𝐶𝑀𝐾=∑{𝜆𝑘
𝐸𝐴𝑃𝑣𝑝𝑝 𝐷𝐻

𝐸𝐴 (𝑘) − 𝜆𝑘
𝐹𝑅𝑃𝑣𝑝𝑝 𝐷𝐻

𝐹𝑅 (𝑘)}

𝐻

𝑘=1

Δ𝑇 (18) 

𝐶A=∑{∑
𝜆𝑖
A1 Δ𝑇

2𝐸𝑖
|𝑃𝑖 𝐷𝐻
𝑒𝑎 (𝑘)|

𝐻

𝑘=1

+
𝜆𝑖
A2

𝑃𝑖
max
𝑘∈[1;𝐻]

|𝑃𝑖 𝐷𝐻
𝑒𝑎 (𝑘)|}

𝑁𝑠𝑡

𝑖=1

  (19) 

𝐶Ω =∑∑𝜆𝑖
Ω {𝑃𝑖 𝐷𝐻

𝑓𝑟+(𝑘)+|𝑃𝑖 𝐷𝐻
𝑓𝑟−(𝑘)|}

𝐻

𝑘=1

Δ𝑇

𝑁𝑠𝑡

𝑖=1

 (20) 

Equation (20) takes into account the cost of the service 

provision by each BESS, to prioritize the allocation of the 

regulation reserve to the units with the lower marginal 

regulation cost 𝜆𝑖
Ω. In addition, the VPP sustains the gas-

supply costs 𝐶𝐺𝐴𝑆, proportional to the parameter 𝜆𝑘
𝐺𝐴𝑆 : 

𝐶𝐺𝐴𝑆=∑{𝜆𝑘
𝐺𝐴𝑆�̇�𝐷𝐻

𝑔𝑎𝑠(𝑘)}

𝐻

𝑘=1

Δ𝑇 (21) 

During the DH market session (3rd layer), a single 

optimization based on (22) is carried out, which defines the 

arbitrage and frequency regulation limit profiles 𝑃𝑣𝑝𝑝 𝐷𝐻
𝐸𝐴  and 

𝑃𝑣𝑝𝑝 𝐷𝐻
𝐹𝑅  for the next day. 

min
𝑥𝐷𝐻

(𝐶𝑀𝐾+𝐶𝐴+𝐶Ω + 𝐶𝐺𝐴𝑆) (22) 
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  subject to 

-the storage model (4)-(9), expressed in MILP form though 

additional decision variables as in the Appendix; 

-the building thermal model (10)-(15); 

-the VPP aggregation, expressed by (16)-(17), where 

𝑥𝐷𝐻={𝑃𝑣𝑝𝑝 𝐷𝐻
𝐸𝐴 , 𝑃𝑣𝑝𝑝 𝐷𝐻

𝐹𝑅 , 𝑃𝑖 𝐷𝐻
𝑒𝑎 , 𝑃𝑖 𝐷𝐻

𝑓𝑟±
, 𝑆𝑜𝐶𝑖 𝐷𝐻

± , 

𝑃𝐷𝐻
𝑡𝑠 , 𝑆𝑜𝐶𝐷𝐻

𝑡𝑠 , �̇�𝑛 𝐷𝐻
𝑒𝑙 , 𝑃𝑛 𝐷𝐻

𝑒𝑙 , �̇�𝑛 𝐷𝐻
𝑐ℎ𝑝

, �̇�𝐷𝐻 
𝑔𝑎𝑠
, ϑ𝑛 𝐷𝐻} 

These day-ahead profiles, 𝑃𝑣𝑝𝑝 𝐷𝐻
𝐸𝐴 , 𝑃𝑣𝑝𝑝 𝐷𝐻

𝐹𝑅  and �̇�𝐷𝐻 
𝑔𝑎𝑠

 from 

the market session are sent from the 3rd layer to the MPC 

controller (2nd layer), which monitors the adherence of the 

VPP to the profiles, and reallocates resource, if required, to 

fulfil the commitment. 

B.  Minimizing unbalance costs (2nd layer) 

The MPC manages the dynamics of the VPP assets and can 

reallocate assets to cope with the uncertainty caused by the 

intra-day operations. The objective is to minimize the costs 

of deviating from the day-ahead scheduled 𝑃𝑣𝑝𝑝 𝐷𝐻
𝐸𝐴 (𝑘) 

(unbalance fees) whenever the disturbances or uncertainties 

prevent fulfilment of the pre-defined profile. This is modelled 

through the cost 𝐶𝐸𝑈 (23), which is the difference between the 

actual absorption 𝑃𝑣𝑝𝑝
𝐸𝐴   and the scheduled day-ahead profile 

𝑃𝑣𝑝𝑝 𝐷𝐻
𝐸𝐴  obtained from the day-ahead scheduler (22). 

Different pricing models for the unbalance fees could easily 

be implemented but are out of the scope of this paper. 

𝐶𝐸𝑈=∑𝜆𝑘
𝑢𝑛𝑏max{𝑃𝑣𝑝𝑝

𝐸𝐴 (𝑘)-𝑃𝑣𝑝𝑝 𝐷𝐻
𝐸𝐴 (𝑘), 0} Δ𝑇

𝐻

𝑘=1

 (23) 

Furthermore, the mismatch between the actual (�̇� 
𝑔𝑎𝑠) and 

the day-ahead (�̇�𝐷𝐻
𝑔𝑎𝑠

) gas absorption is expressed is (24), 

leading to the intra-day cost function for the 2nd layer in (25). 

𝐶𝐺𝑈=∑𝜆𝑘
𝐺𝐴𝑆max{�̇� 

𝑔𝑎𝑠(𝑘)-�̇�𝐷𝐻
𝑔𝑎𝑠(𝑘), 0} Δ𝑇

𝐻

𝑘=1

 (24) 

min
𝑥
(𝐶𝐸𝑈+𝐶𝐺𝑈)   (25) 

subject to 

- the storage model (4)-(9), expressed in MILP form 

though additional decision variables as in the Appendix; 

-the building thermal model (10)-(15); 

-the VPP aggregation, expressed by (16)-(17), where 

𝑥={𝑃𝑣𝑝𝑝
𝐸𝐴 , 𝑃𝑣𝑝𝑝

𝐹𝑅 , 𝑃𝑖
𝑒𝑎 , 𝑃𝑖

𝑓𝑟±
, 𝑆𝑜𝐶𝑖

±, 

𝑃 
𝑡𝑠, 𝑆𝑜𝐶 

𝑡𝑠, �̇�𝑛 
𝑒𝑙 , 𝑃𝑛

𝑒𝑙 , �̇�𝑛
𝑐ℎ𝑝
, �̇� 

𝑔𝑎𝑠 , ϑ𝑛 𝐷𝐻}. 

Differently from the 3rd layer optimization, the intra-day 

2nd layer defines the set-points (𝑃𝑖
𝑒𝑎 , 𝑃𝑡𝑠, �̇�𝑛

𝑒𝑙 , �̇�  
𝑔𝑎𝑠) to 

minimise the unbalance fees (25). The day-ahead profiles 

𝑃𝑣𝑝𝑝 𝐷𝐻
𝐸𝐴  and �̇�𝐷𝐻 

𝑔𝑎𝑠
 from the 3rd layer day-ahead scheduler are 

the inputs of the MPC problem in the 2nd layer. The MPC also 

guarantees that the intra-day frequency regulation limits 𝑃𝑖
𝑓𝑟±

 

are compliant with the day-ahead profile 𝑃𝑣𝑝𝑝 𝐷𝐻
𝐹𝑅± . 

 The inherent feedback of the MPC guarantees a 

recalculation of the optimal local trajectory at each iteration 

step 𝑘, to minimise the unbalance cost (25). This is important 

since the unbalance-price factor 𝜆𝑘
𝑢𝑛𝑏 is not known in 

advance, as it is a measure of the unforeseen balancing costs 

sustained by the transmission system operator (TSO) during 

each period. A robust approach is essential to reduce the risk 

associated with the volatility of 𝜆𝑘
𝑢𝑛𝑏 , and to guarantee limited 

sensitivity of the solution to the specific price conditions. As 

in [15], the unbalance price is modelled as a bounded random 

variable �̃� 𝑘
𝑢𝑛𝑏 taking values in [𝜆

 𝑘
𝑢𝑛𝑏;  𝜆 𝑘

𝑢𝑛𝑏 + 𝑑𝑘
𝑢𝑛𝑏 ], where 

𝑑𝑘
𝑢𝑛𝑏 ≥ 0  is the maximum price variation for each period, 

based on past observations. The goal for the robust approach 

is to increase the resilience of the VPP to unbalance in the 

network (𝑃𝑣𝑝𝑝
𝐸𝐴 (𝑘)-𝑃𝑣𝑝𝑝 𝐷𝐻

𝐸𝐴 (𝑘) > 0) whenever the price is 

higher than expected. Therefore, the cost function in (25) is 

modified to include the worst case: 

min
x
 

 

{𝐶𝐸𝑈+𝐶𝐺𝑈+ max𝑆⊆𝐻
|𝑆|<Γ 

∑𝑑𝑗
𝑢𝑛𝑏[𝑃𝑣𝑝𝑝

𝐸𝐴 (𝑗)-𝑃𝑣𝑝𝑝 𝐷𝐻
𝐸𝐴 (𝑗)]Δ𝑇

 

𝑗∈𝑆

} (26) 

The term in (26) proportional to the maximum deviation 

𝑑 
𝑢𝑛𝑏 takes into account the risk of buying energy at a higher-

than-expected price (worst-case condition robustness). The 

user-defined parameter Γ sets the number of time steps within 

the horizon H in which the solution should avoid the over-

price 𝑑 
𝑢𝑛𝑏. The robustness term in (26) in MILP becomes:  

min
x
{ max
𝑆⊆𝐻,|𝑆|<Γ 

∑𝑑𝑗
𝑢𝑛𝑏 [𝑃𝑣𝑝𝑝

𝐸𝐴 (𝑗)-𝑃𝑣𝑝𝑝 𝐷𝐻
𝐸𝐴 (𝑗)] Δ𝑇

 

𝑗∈𝑆

} = 

= min
x
{∑𝑢𝑗

 + Γ 𝑧0
 

𝐻 

𝑗=1

}Δ𝑇 

𝑠. 𝑡.  𝑢𝑗
 ≥ 0,  𝑧0

 ≥ 0   ∀𝑗 ∈ [1, 𝐻] 

𝑧0
 +𝑢𝑗

 ≥ 𝑑𝑗
𝑢𝑛𝑏[𝑃𝑣𝑝𝑝

𝐸𝐴 (𝑗)-𝑃𝑣𝑝𝑝 𝐷𝐻
𝐸𝐴 (𝑗)], ∀𝑗 ∈ [1, 𝐻]. 

 

(27) 

VI.  SET-UP DESCRIPTION AND CASE STUDY DEFINITION 

A.  Real-time hybrid set-up description 

The hybrid experimental set-up in Fig. 5 is used to 

demonstrate the effectiveness of the proposed hierarchical 

VPP control in a real-time high-fidelity environment, with a 

hardware BESS device. The RTDS is used to model in real-

time the two other BESS units, the TS, the PV and the 

building. The parameters of the battery storage systems are 

typical for low-voltage grid-connected applications [8]-[25]. 

A real-time LAN communication between the RTDS and the 

MATLAB environment enables the MPC problem and the 

day-ahead scheduling (2nd and 3rd layers) to be solved on-line 

though the Branch-and-Bounds IBM CPLEX solver. The 

dSpace board in Fig. 5 implements the BESS local control 

described in Fig. 2-a (frequency measurement and linear 

power-droop regulation). It also acts as a communication 

gateway between the LAN and the converter PLC.  

 
Fig. 5:  Hybrid experimental set-up structure 
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TABLE I: STORAGE AND BUILDING PARAMETERS 

STORAGE PARAMETERS 

Unit 

Nominal 

energy 

[kWh] 

State of 

charge 

limits 

[%] 

Max/min 

converter 

power 

[kW] 

Max/min 

regulation 

limits 

[kW] 

Efficiencies  
𝜂𝑐ℎ , 𝜂𝑑𝑖𝑠 

[%] 

BESS 1 180 [10, 90] [-240, 240] [-240, 240] 0.96 

BESS 2 400 [10, 90] [-100, 100] [-100, 100] 0.95 

BESS 3 300 [10, 90] [-200, 200] [-200, 200] 0.98 

TS 300 [0, 100] [-100, 100] [0, 0] 0.92 

BUILDING PARAMETERS 

TZ 

Thermal 

capacitance 

[MJ/K] 

Thermal 

conduct. 

[kW/K] 

Occupancy 

factor 

 [W] 

Solar irrad. 

factor 

 [𝑚2] 

Temp. 

range  

[oC] 

1 5.2 1.25 120 0.3 [19, 22] 

2 5 2 20 0.1 [19, 22] 

3 5 2.5 90 0.2 [19, 22] 

TABLE II: COST PARAMETERS & REG. SERVICE 

BATTERIES 

Unit Ageing coeff. 𝜆𝑖
A1, 𝜆𝑖

𝐴2 Freq. reg. cost λΩ 

BESS 1 0.03 £/cycle, 6e-3 £/kW 1e-4 £/kW 

BESS 2 0.02 £/cycle, 2.5e-3 £/kW 4e-4 £/kW 

BESS 3 0.04 £/cycle, 4e-3 £/kW 1e-4 £/kW 

MARKET PROFILES 

Quantity (UK data) Value or Profile Reference 

𝜆𝐸𝐴, 𝜆𝑢𝑛𝑏 Fig. 6 [26]-[27]  

𝜆𝐹𝑅 5 £ /MW for each hour - 

𝜆𝐺𝐴𝑆 0.3 £ /m3  - 

FREQUENCY REGULATION SERVICE 

Max provision 

delay 1 s 
Frequency dead-band   

49.95-50.05 Hz 

Reg. range 

49.85-50.15 Hz 

 
Fig. 6: Market prices for the energy market 𝜆𝑘

𝐸𝐴 and energy unbalance 𝜆𝑘
𝑢𝑛𝑏. 

 

The local network measurements (phase voltages) are sent 

from the RTDS to the dSpace system, together with the 

operating set-points defined by the 2nd layer (energy arbitrage 

+ regulation margins). The dSpace feeds back to the RTDS 

the phase currents at the at the BESS converter interface. All 

the commands and state feedbacks are exchanged digitally, 

with no need of analogue power amplifiers. 

B.  Case study definition 

The control framework is tested under two different 

configurations of the set-up in Fig. 5. The first case study 

(CS1) assumes a purely electrical VPP, with the CHP 

disconnected; in the second case study (CS2), the architecture 

is tested under the multi-energy scenario by introducing the 

gas-supplied CHP. The experimental MPC settings are 

Δ𝑇 =30 min and 𝐻 = 48. The BESS and building parameters 

are listed in Table I. The PV system has a 240 kW rating 

(𝛾𝑝𝑣=240 m2); a normally-distributed error 𝜎𝑝=20W/m2 is 

introduced to account for the mismatch between the predicted 

and actual irradiance. The external air temperature is 𝜗𝑎 is 

15°C in the summer and 5°C in winter. The heat-pump 

parameters are  𝐶𝑂𝑃𝑛
𝐻=2.5 and 𝐶𝑂𝑃𝑛

𝐶=1.5, while the CHP 

efficiencies are 𝜂𝑃=0.35 and 𝜂𝑄=0.55. The maximum gas 

supply �̅̇�𝑔𝑎𝑠 is 20 m3/h. Table II lists the cost parameters. The 

frequency profiles have been measured at the Point of Grid 

Coupling (PGC) of the setup with the UK public network. 

The hourly average market price for the energy arbitrage 

𝜆𝑘
𝐸𝐴, is shown in Fig. 6 (top plot) for typical summer and 

winter months (July 2019, January 2020). The energy price 

𝜆𝑘
𝐸𝐴 shows a clear seasonality (up to 25% difference in some 

hours), so two separate market scenarios are tested to evaluate 

the VPP performances. The unbalance fee 𝜆𝑘
𝑢𝑛𝑏  has a strong 

daily variation (its standard deviation almost equals the 

average value), but with little seasonality; the combined 

hourly average 𝜆𝑘
𝑢𝑛𝑏  for January-June is shown in in Fig. 6, 

bottom plot. The difference 𝑑𝑢𝑛𝑏 between maximum and 

average profiles is used in the robust approach (27).  

VII.  EXPERIMENTAL RESULTS: CS1 

A.  DH allocation, summer price scenario 

Fig. 7 and Fig. 8 show the performance of the control for 

the summer price data from Fig. 6, under the purely-electrical 

scenario of CS1. Fig. 7 shows the DH scheduler’s profiles for 

the energy market contribution 𝑃𝑣𝑝𝑝 𝐷𝐻
𝐸𝐴  and the frequency 

regulation limits 𝑃𝑣𝑝𝑝 𝐷𝐻
𝐹𝑅 , together with the price profiles 𝜆𝐸𝐴 

and 𝜆𝐹𝑅. The energy arbitrage waveforms (top plot of Fig. 7) 

show the VPP is scheduled to absorb power from the network 

(𝑃𝑣𝑝𝑝 𝐷𝐻
𝐸𝐴 > 0) whenever the energy price is a local minimum 

(t = 4.5 h and t = 15.5 h), and the energy is sold back to the 

grid (or consumed locally) whenever the sell price is a local 

maximum (t = 10 h and t = 19.5 h). The DH scheduler 

allocates the frequency regulation limits to maximize the 

corresponding earnings but while respecting the constraints 

from the energy arbitrage commitment. Whenever arbitrage 

operations are carried out, the scheduler reduces the allocated 

regulation margins (t = 4.5 h, 10 h, 15.5 h, 19.5 h). 

Fig. 8 (top plot) shows the SoC profiles from the DH 

allocation; only the SoC profile based on the energy arbitrage 

is plotted for clarity, though in the DH scheduler the two SoC 

profiles 𝑆𝑜𝐶𝑖
± which include the effect of the frequency 

regulation are calculated and used. The profiles of the 

frequency regulation limits are also shown in Fig. 8 (middle 

and bottom plots). The results show that while the frequency 

regulation of the VPP exhibits a symmetrical behavior (Fig. 

7), each asset may have unsymmetrical frequency regulation 

limits due to the committed power allocation for the energy 

arbitrage; this increased flexibility for the VPP derives from 

the storage model developed in Section IV-A. As an example, 

BESS units 1 and 3 (characterized by higher ageing costs 

𝜆𝑖
A1/2

 and low regulation cost λΩ, Table II) tend to be 

allocated to frequency regulation, while the opposite occurs 

for BESS 2, which is fully committed to arbitrage (due to the 

high λΩ). The BESS 2 regulation margins 𝑃2
𝑓𝑟±

 are minimised 

during arbitrage commitment.  
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B.  Intra-day operations, summer price scenario 

When the VPP enters the intra-day operations, the MPC (2nd 

layer) updates the optimal local trajectory of the system every 

Δ𝑇, to minimise the error between the actual 𝑃𝑣𝑝𝑝
𝐸𝐴 + 𝑃𝑣𝑝𝑝

𝐹𝑅  and 

day-ahead 𝑃𝑣𝑝𝑝 𝐷𝐻
𝐸𝐴 + 𝑃𝑣𝑝𝑝 𝐷𝐻

𝐹𝑅 . Fig. 9 (top plot) shows both the 

total expected profile of the VPP for the summer pricing 

profile in Fig. 6 (obtained from 𝑃𝑣𝑝𝑝 𝐷𝐻
𝐸𝐴  and 𝑃𝑣𝑝𝑝 𝐷𝐻

𝐹𝑅 ) and the 

actual power profile (𝑃𝑣𝑝𝑝
𝐸𝐴  plus the regulation contribution 

proportional to 𝑃𝑣𝑝𝑝
𝐹𝑅 ). The step changes in Fig. 9 are due to 

the energy arbitrage commitment and follow the scheduled 

arbitrage DH profile in Fig. 7 (top), while the fast-changing 

spikes are due to the VPP response to the frequency 

regulation. The correlation between the DH scheduled VPP 

power profile, and the VPP’s actual power profile is 

excellent. The Mean Absolute Error (MAE) between the 

expected and actual power profile in Fig. 9 is 15 kW, 2.3% of 

the total nominal power (640 kW) of the VPP. According to 

the MPC model, the VPP always ensures the committed 

frequency regulation contribution, at the expense of 

sometimes under-delivering on the energy arbitrage 

commitment (e.g. 10.8 h in Fig. 9), and incurs the 

corresponding fees on the unbalance market. 

 

 
Fig. 7: Scheduled day-ahead (DH) VPP profiles for the energy market 

𝑃𝑣𝑝𝑝 𝐷𝐻
𝐸𝐴  and frequency regulation 𝑃𝑣𝑝𝑝 𝐷𝐻

𝐹𝑅 , with associated prices 𝜆𝐸𝐴 / 𝜆𝐹𝑅. 

 

 
Fig. 8: Scheduled day-ahead SoC for BESS units and TS (top), and 

allocated frequency regulation limits 𝑃𝑖
𝑓𝑟+

and 𝑃𝑖
𝑓𝑟−

 (middle and bottom). 

 

The bottom plot in Fig. 9 shows the actual SoC profiles of 

the BESS units and TS. The unpredictable energy usage due 

to the frequency regulation results in a local deviation 

between the theoretical DH profiles and the actual SoC 

profiles (Fig. 9), however, the MPC reallocates the VPP 

assets to enable the most profitable operation of the assets and 

guarantee the maximum possible adherence of the profiles to 

the scheduled ones. It is seen how the SoC for each asset 

remains close to the expected DH one (both the energy-

intensive BESS 2 / TS and the more regulation-suitable units 

BESS 1 / BESS 3); the SoC operation limits are correctly met. 

Fig. 10 shows the temperature profiles as measured in each 

of the building thermal zones. It can be observed that the 

intra-day 2nd layer MPC maintains the temperatures within 

the predefined comfort limits, irrespective of the time-

varying conditions associated to the external disturbances 

(irradiance and zone occupancy). 

 

 

 

Fig. 9: Day-ahead VPP profile and actual VPP power output (top), 24 hour 

frequency profile (middle), and VPP assets SoC (bottom). 

 

Fig. 10: Thermal zones temperature profiles and unbalance price  

𝜆𝑢𝑛𝑏. The irradiance and occupancies are reported in the bottom plot. 
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 The proposed approach allows to take advantage of the 

thermal inertia of the building, rising the temperature of the 

controlled zones before a forecasted increase of the unbalance 

fees. This way the potentially negative impact of an 

unpredicted energy absorption in correspondence to the price 

peak is minimized.  

 The computational time for the 3rd layer optimal solution 

(day-ahead) is in the order of a couple of minutes, and 

between 65 and 95 seconds for the 2nd layer (intra-day) on a 

64-bits Intel® Core™ i7-6700 CPU 3.40 GHz processor with 

16.0 GB RAM. Nevertheless, the time can be significantly 

reduced (up to 20 seconds for the 2nd layer) exploiting the 

CPLEX model pre-compilation. This allows to potentially 

accommodate a larger number of assets or to reduce the 

optimization time step Δ𝑇 for improved performance.  

C.  Results: revenues evaluation (case study 1) 

Table III shows the revenue for the stacking mechanism 

compared to the single-service ones (Energy Arbitrage and 

Frequency Regulation), under the winter (W) and summer (S) 

price scenarios. A simple case showing just the net 

contribution from the PV and building is also included in the 

4th column to assess the impact of the different assets. The 

sum of the day-ahead and unbalance markets (with different 

robustness factors Γ) defines the total VPP revenue. 

In all scenarios, the stacked operations (3rd column) 

outperforms the single-service ones, yielding a revenue 

increase of +30% (winter) and +7% (summer) when 

compared to frequency regulation only, and up to +99% 

(winter) and +30% (summer) compared to the energy 

arbitrage alone. Non-null factors Γ typically yield higher 

revenues, confirming the unbalance fees robust optimization 

model correctness (Section V). The low MAEs of the actual 

profiles against the allocated 3rd layer ones confirm the 

consistency of the proposed approach.  

VIII.  EXPERIMENTAL RESULTS: CS2 

The case study CS2 assesses the proposed approach under the 

multi-energy scenario (electricity + gas). Fig. 11 shows the 

theoretical energy arbitrage 𝑃𝑣𝑝𝑝 𝐷𝐻
𝐸𝐴 , frequency regulation 

margins 𝑃𝑣𝑝𝑝 𝐷𝐻
𝐹𝑅±  and the gas supply  �̇�𝐷𝐻

𝑔𝑎𝑠
  profiles from the 

3rd layer, together with the actual ones during real-time 

operations. The algorithm allocates the gas absorption in 

correspondence to the electrical energy price peaks, taking 

advantage of the price differences between the energy vectors 

(highlighted areas in Fig. 11). During intra-day conditions, 

the energy arbitrage profile (top subplot) accurately follows 

the scheduled DH one, with just small mismatches due to the 

uncertainty of the physical operations (e.g. t=10h). As the 

same time, the instantaneous frequency regulation 𝑃𝑣𝑝𝑝
𝐹𝑅 (𝑓) 

(middle plot, Fig. 11) is correctly contained within the 

allocated margins 𝑃𝑣𝑝𝑝 𝐷𝐻
𝐹𝑅± . The gas supply almost-perfectly 

follows the expected DH profile. These results demonstrate 

the proposed approach effectiveness in compensating for the 

uncertainty of the real-time conditions. 

To further assess the control robustness against the price 

uncertainty, an extensive sensitivity analysis is performed 

(Fig.12). The goal is to show that, irrespective of the chosen 

values of the regulation 𝜆𝐹𝑅  and gas-supply prices 𝜆𝐺𝐴𝑆 , the 

stacking architecture outperforms the simple energy arbitrage 

(solid lines) and the frequency regulation (dash-dot lines) 

operations: this can be observed from the always-positive 

revenues increase of the stacked model with respect to the 

single-service approaches (Fig.12), confirming the increased 

performances of the proposed control approach. 

 
Fig. 11:  Scheduled day-ahead and real-time VPP power profiles for the 

energy market 𝑃𝑣𝑝𝑝 𝐷𝐻
𝐸𝐴  (on top), frequency regulation 𝑃𝑣𝑝𝑝 𝐷𝐻

𝐹𝑅  (middle) and 

the gas supply (bottom) under the multi-energy scenario CS2. 

TABLE III: DAILY REVENUE EVALUATION (WINTER / SUMMER): CASE STUDY 1 

Case VPP (storage + TS + building + PV) PV and building only 

Day-ahead 

Markets (£/day) 

Energy Arbitrage (W;S) Frequency reg. (W;S)  Stacked services (W;S) Building-control only (W;S) 

2.50 ; 79.34 28.23 ; 108.52 £ 37.37 ; 114.19 -20.65 ; 59.64 

Unbalance 

fees 

(£ /day) 

Γ = 0 -2.49 ; -2.21 -5.18 ; -5.93  -4.17 ; -4.68 -0.59 ; -1.1 

Γ = 1 -2.50 ; -2.38 -5.05 ; -5.36  -4.13 ; -4.09  -0.63 ; -1.2 

Γ = 2 -2.36 ; -2.34 -5.03 ; -6.09  -4.03 ; -4.01  -0.48 ; -1.2 

Γ = 3  -2.72 ; -2.32 -6.12 ; -6.77  -4.26  ; -4.10  -0.65 ; -1.3 

Total revenue (best 𝚪) £ 0.14 ; £ 77.13 £ 23.22 ; £ 103.16 £ 33.34 ; £ 110.18 £ -21.13 ; £ 58.54 

Mean 

Absolute 

Error MAE 

(kW) 

Γ = 0 14.02 kW ; 14.23 kW 18.55 kW ; 19.79 kW 15.13 kW ; 15.10 kW 2.75 kW ;  2.84 kW 

Γ = 1  13.98 kW ; 14.84 kW 18.01 kW ; 16.63 kW 14.01 kW ; 13.89 kW 2.19 kW ;  2.61 kW 

Γ = 2  13.96 kW; 14.40 kW 17.45 kW; 18.52 kW 13.85 kW ; 13.18 kW 2.56 kW ; 2.62 kW 

Γ = 3  13.95 kW; 14.14 kW 18.99 kW; 19.01 kW 14.46 kW ; 14.48 kW 2.63 kW ;  2.60 kW 
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Fig. 12: Revenues increase of the stacked operations against Energy 

Arbitrage (solid lines) and Frequency regulation (dash-dot lines) in CS2. 

IX.  CONCLUSION 

A hierarchical control architecture has been proposed and 

validated experimentally to enable the optimal grid support 

service commitment of a virtual power plant (VPP), 

maximizing net revenue. The day-ahead optimization 

considers market prices for the different grid support services, 

together with battery ageing costs. The intermediate control 

layer regulates the intra-day operation of the VPP using a 

MPC technique to minimize the penalties for failing to deliver 

the committed services, and the low-level control regulates 

the assets to perform grid frequency support. Two case 

studies are tested, one purely electrical, and the second multi-

energy. The results show the superiority of the multiple-

service operation compared to providing a single grid support 

service. For example, the net revenue is increased by 30% 

(winter) and 7% (summer) when compared to just frequency 

regulation, and by +99% (winter) and 30% (summer) when 

compared to only energy arbitrage. Similar results are 

obtained in the multi-energy scenario under an extensive 

price sensitivity analysis, confirming the effectiveness of the 

approach over a broad range of operating conditions.  

Although several optimization models are available in the 

literature, the proposed experimental extension provides a 

significant result, in particular by including the real-time 

optimization. Future studies will analyze the model extension 

to the non-linear case under the simultaneous provision of 

active / reactive services and advanced handling of the 

uncertainty through the affine disturbance feedback 

technique.  

APPENDIX: BESS MILP MODEL 

The logical condition in (3) in the BESS dynamics is 

modelled in a MILP form to obtain a tractable optimization 

problem. Although based on a general technique in [28], its 

application to the stacking services and the derived equations 

are unpublished, to the best of the authors’ knowledge. A 

binary variable 𝛿𝑖
𝑒𝑎(𝑘) ∈ {0,1} (28) is introduced ∀ 𝑖 ∈

1…𝑁𝑠𝑡 to model the discontinuous behavior of the efficiency 

expressed in (3). Following the procedure in [28], the non-

linear logical condition (28) can be expressed in inequality 

form by (29), where a small tolerance 휀 guarantees non-strict 

inequalities in the resulting problem.  

{
𝑃𝑖
𝑒𝑎(𝑘) ≥ 0 ↔  𝛿𝑖

𝑒𝑎(𝑘) = 1

𝑃𝑖
𝑒𝑎(𝑘) ∈ [𝑃𝑖

∗ ;  𝑃𝑖
∗]

 (28) 

where  𝑃𝑖
∗ =𝑃𝑖  − 𝑃𝑖

𝑓𝑟−(𝑘), 𝑃𝑖
∗= 𝑃𝑖  − 𝑃𝑖

𝑓𝑟+(𝑘). 

 {
𝑃𝑖
𝑒𝑎(𝑘) − (𝑃𝑖

∗ + 휀)𝛿𝑖
𝑒𝑎(𝑘)  + 휀 ≤ 0 

−𝑃𝑖
𝑒𝑎(𝑘) + 𝑃𝑖

∗(1 − 𝛿𝑖
𝑒𝑎(𝑘))  ≤ 0

 (29) 

Substituting (2) into (4)-(5) and introducing the 𝛿𝑖
𝑒𝑎(𝑘) 

definition (28), gives (30)-(31), 

𝑆𝑜𝐶𝑖
+(𝑘+1)=𝑆𝑜𝐶𝑖

 (𝑘)+
𝜂𝑖
𝑐ℎΔ𝑇

𝐸𝑖  
𝑃𝑖
𝑓𝑟+(𝑘) + 𝑚 (30) 

𝑆𝑜𝐶𝑖
−(𝑘+1)=𝑆𝑜𝐶𝑖

 (𝑘)+
Δ𝑇

𝐸𝑖  𝜂𝑖
𝑑𝑖𝑠
𝑃𝑖
𝑓𝑟−(𝑘) + 𝑚 

(31) 

where 𝑚 =
Δ𝑇 𝑃𝑖

𝑒𝑎(𝑘)

𝐸𝑖
[𝜂𝑖
𝑐ℎ𝛿𝑖

𝑒𝑎(𝑘)+
1

𝜂𝑖
𝑑𝑖𝑠 
 (1-𝛿𝑖

𝑒𝑎(𝑘))]. 

Due to the products between real and binary variables in 

(30)-(31), three auxiliary quantities (32) are introduced to 

maintain a linear formulation: each auxiliary variable in (32) 

is defined by a system of four linear inequalities (33). 

{
 
 

 
 𝑧𝑖

𝑒𝑎(𝑘) =  𝛿𝑖
𝑒𝑎(𝑘)𝑃𝑖

𝑒𝑎(𝑘),  𝑃𝑖
𝑒𝑎(𝑘) ∈ [𝑃𝑖

∗ ;  𝑃𝑖
∗] 

𝑧𝑖
𝑓𝑟+(𝑘)= 𝛿𝑖

𝑒𝑎(𝑘)𝑃𝑖
𝑓𝑟+(𝑘), 𝑃𝑖

𝑓𝑟+(𝑘) ∈ [0; 𝑃𝑖
𝑓𝑟
]

𝑧𝑖
𝑓𝑟−(𝑘)= 𝛿𝑖

𝑒𝑎(𝑘)𝑃𝑖
𝑓𝑟−(𝑘), 𝑃𝑖

𝑓𝑟−(𝑘) ∈ [𝑃𝑖
𝑓𝑟
; 0]

 (32) 

𝐿(𝑘) ≔ {𝑃𝑖
𝑒𝑎(𝑘), 𝑃𝑖

𝑓𝑟+(𝑘), 𝑃𝑖
𝑓𝑟−(𝑘)},  𝛿𝑒𝑎(𝑘): {0,1} 

∀ y ∈ 𝐿(𝑘),  𝑦 ≤ 𝑦 ≤  �̅�:    𝑧𝑦(𝑘) =  𝑦(𝑘)𝛿
𝑒𝑎(𝑘) 

 

{
 
 

 
 

𝑧𝑦(𝑘) − �̅�𝛿
𝑒𝑎(𝑘) ≤  0  

−𝑧𝑦(𝑘) + 𝑦 𝛿
𝑒𝑎(𝑘) ≤  0 

𝑧𝑦(𝑘) − 𝑦(𝑘) + 𝑦 (1 − 𝛿
𝑒𝑎(𝑘)) ≤ 0

−𝑧𝑦
 (𝑘) + 𝑦(𝑘) − �̅�(1 − 𝛿𝑒𝑎(𝑘)) ≤ 0

 (33) 

 

The MILP BESS model is thus given by the vector inequality 

(34) in the decision 𝑆𝑜𝐶𝑖
±, 𝑃𝑖

𝑒𝑎 ,  𝑃𝑖
𝑓𝑟±

 and auxiliary 𝑧𝑖
𝑓𝑟±

,  

𝑧𝑖
𝑒𝑎 , 𝛿𝑖

𝑒𝑎 variables, plus the linear forms of (30)-(31). 

𝑴𝑷
𝒆𝒂𝑃𝑖

𝑒𝑎+𝑴𝑷
𝒇𝒓+
𝑃𝑖
𝑓𝑟+

+𝑴𝑷
𝒇𝒓−
𝑃𝑖
𝑓𝑟−

+𝑴𝜹 
𝒆𝒂𝛿𝑖

𝑒𝑎+𝑴𝒛 
𝒆𝒂𝑧𝑖

𝑒𝑎+ 

+𝑴𝒛 
𝒇𝒓+
𝑧𝑖
𝑓𝑟+

+𝑴𝒛 
𝒇𝒓−
𝑧𝑖
𝑓𝑟−

+𝑴𝑺𝒐𝑪
+ 𝑆𝑜𝐶𝑖

++𝑴𝑺𝒐𝑪
− 𝑆𝑜𝐶𝑖

−≤𝑴𝑡 
(34) 

𝑴𝑷 
𝒆𝒂=[1  -1  0  0  -1  1  0 .. 0] T; 𝑴𝒛 

𝒆𝒂=[0  0  1  -1  1  -1  0 .. 0] T 

𝑴𝑷 
𝒇𝒓+

=[0  0  0  0  0  1  0  0  -1  1  0  0  0  0  0  0] T 

𝑴𝑷 
𝒇𝒓−

=[0  -1  0  0  -1  0  0  0  0  0  0  0  -1  1  0  0] T 

𝑴𝜹 
𝒆𝒂=[-(𝑃𝑖+휀)  -𝑃𝑖   -𝑃𝑖   𝑃𝑖   -𝑃𝑖   𝑃𝑖   -𝑃𝑖

𝑓𝑟
 0 0 𝑃𝑖

𝑓𝑟
  

         0 𝑃𝑖
𝑓𝑟

  -𝑃𝑖
𝑓𝑟

 0 0 0 ] T 

𝑴𝒛 
𝒇𝒓+

=[1  0  1  0  0  -1  1  -1  1  -1  0  0  0  0  0  0] T 

𝑴𝒛 
𝒇𝒓−

=[0  1  0  -1  1  0  0  0  0  0  1  -1  1  -1  0  0] T 

𝑴𝑺𝒐𝑪 
+ = [0 … 0   1   0]T;      𝑴𝑺𝒐𝑪 

− = [0 … 0   0   -1] T 

𝑴𝑡=[-휀 -𝑃𝑖  0 0 -𝑃𝑖  𝑃𝑖  0 0 0  𝑃𝑖
𝑓𝑟

 0 0 𝑃𝑖
𝑓𝑟

 0 𝑆𝑜𝐶𝑖  -𝑆𝑜𝐶𝑖]
 T 

REFERENCES 

[1] L. Yavuz, A. Önen, S. M. Muyeen, and I. Kamwa, “Transformation of 
microgrid to virtual power plant - A comprehensive review,” IET Gener. 

Transm. Distrib., vol. 13, no. 11, pp. 2077–2087, 2019. 

[2] A. Parisio, E. Rikos, and L. Glielmo, “A Model Predictive Control 
Approach to Microgrid Operation Optimization,” IEEE Trans. Control 

Syst. Technol., vol. 22, no. 5, pp. 1813–1827, Sep. 2014. 



11 

 

 

 

 
[3] G. Mantovani et al., “Experimental Validation of Energy Resources 

Integration in Microgrids via Distributed Predictive Control,” IEEE 

Trans. Energy Convers., vol. 29, no. 4, pp. 1018–1025, Dec. 2014. 
[4] B. Zhou, X. Liu, Y. Cao, C. Li, C. Y. Chung, and K. W. Chan, “Optimal 

scheduling of virtual power plant with battery degradation cost,” IET 

Gener. Transm. Distrib., vol. 10, no. 3, pp. 712–725, 2016. 
[5] J. Kim et al., “Capability-coordinated frequency control scheme of a 

virtual power plant with renewable energy sources,” IET Gener. Transm. 
Distrib., vol. 13, no. 16, pp. 3642–3648, 2019. 

[6] D. Zhao, H. Wang, J. Huang, and X. Lin, “Virtual Energy Storage 

Sharing and Capacity Allocation,” IEEE Trans. Smart Grid, vol. 11, no. 
2, pp. 1112–1123, 2020. 

[7] X. Zhu, J. Yang, Y. Liu, C. Liu, B. Miao, L. Chen, “Optimal scheduling 

method for a regional integrated energy system considering joint virtual 
energy storage,” IEEE Access, vol. 7, pp. 138260–138272, 2019. 

[8] B. M. Gundogdu, D. T. Gladwin, S. Nejad, and D. A. Stone, “Scheduling 

of grid-tied battery energy storage system participating in frequency 
response services and energy arbitrage,” IET Gener. Transm. Distrib., 

vol. 13, no. 14, pp. 2930–2941, 2019. 

[9] G. He, Q. Chen, C. Kang, Q. Xia, and K. Poolla, “Cooperation of Wind 
Power and Battery Storage to Provide Frequency Regulation in Power 

Markets,” IEEE Trans. Power Syst., vol. 32, no. 5, pp. 3559–3568, 2017. 

[10] T. Zhang, S. X. Chen, H. B. Gooi, J. M. Maciejowski, “A hierarchical 
EMS for aggregated BESSs in energy and performance-based regulation 

markets,” IEEE Trans. Power Syst., vol. 32, no. 3, pp. 1751–1760, 2017. 

[11] A. Perez, R. Moreno, R. Moreira, M. Orchard, and G. Strbac, “Effect of 
Battery Degradation on Multi-Service Portfolios of Energy Storage,” 

IEEE Trans. Sustain. Energy, vol. 7, no. 4, pp. 1718–1729, 2016. 

[12] A. Baringo, L. Baringo, J. M. Arroyo, “Day-Ahead Self-Scheduling of 
Virtual Power Plant in Energy and Reserve Markets under Uncertainty,” 

IEEE Trans. Power Syst., vol.34, no.3, pp. 1881–1894, 2019. 

[13] R. T. Elliott et al., “Sharing Energy Storage Between Transmission and 
Distribution,” IEEE Trans. Power Syst. vol. 34, no. 1, pp.152–162, 2019. 

[14] A. La Bella, S. Raimondi Cominesi, C. Sandroni, and R. Scattolini, 

“Hierarchical Predictive Control of Microgrids in Islanded Operation,” 
IEEE Trans. Autom. Sci. Eng., vol. 14, no. 2, pp. 536–546, Apr. 2017. 

[15] D. Bertsimas and M. Sim, “Robust discrete optimization and network 

flows,” Math. Program., vol. 98, no. 1–3, pp. 49–71, 2003. 
[16] A. Bitlislioğlu, T. T. Gorecki and C. N. Jones, "Robust Tracking 

Commitment," in IEEE Trans. on Automatic Control, vol. 62, no. 9, pp. 

4451-4466, Sept. 2017. 
[17] A. Bolzoni, Q. Zhu, V. Tsormpatzoudis, R. Todd, A.J. Forsyth, 

“Dynamical Characterization of Grid-Scale Energy Storage Assets,”, 

42nd Ind. Electr. Conf. IECON 2019, pp.1-8. 2019. 
[18] National Grid, “Testing guidance for providers of enhanced frequency 

response balance service”, 2017. Online at: 

  https://www.nationalgrid.com/sites/default/files/documents/ 
EFR%20Testing%20Guidance%20VD3%20%28Final%29.pdf 

[19] Terna, “Technical requirements for Fast Reserve Units,” 2020. Online: 

https://download.terna.it/terna/FastReserve_Allegato%203_Tecnico_ 
8d76dc04c201b52.pdf 

[20] R. Rosso, S. Engelken, M. Liserre, “Robust Stability Investigation of the 

Interactions among Grid-Forming and Grid-Following Converters,” 
IEEE J. Emerg. Sel. Top. Pow. Elect., vol. 8, no. 2, pp. 991–1003, 2020. 

[21] A. Bolzoni, R. Perini, “Experimental validation of novel angular 

estimator for synthetic inertia support under disturbed network 
conditions,” 2019, 21st Eur. Conf. Pow. Elec.Appl. EPE-ECCE, pp.1-10. 

[22] E. Ogliari, A. Bolzoni, S. Leva, and M. Mussetta, “Day-ahead PV Power 

Forecast by Hybrid ANN Compared to the Five Parameters Model 

Estimated by Particle Filter Algorithm,” in Lecture Notes in Computer 

Science, vol. 9887 LNCS, 2016, pp. 291–298. 
[23] A. Parisio and S. P. Gutierrez, “Distributed model predictive control for 

building demand-side management,” 2018 Eur. Control Conf. ECC 

2018, pp. 2549–2554, 2018. 
[24] J. M. Reniers, G. Mulder, S. Ober-Blöbaum, and D. A. Howey, 

“Improving optimal control of grid-connected lithium-ion batteries 

through more accurate battery and degradation modelling,” J. Power 
Sources, vol. 379, pp. 91–102, Mar. 2018. 

[25] L. Meng et al., “Fast Frequency Response From Energy Storage 

Systems—A Review of Grid Standards, Projects and Technical Issues,” 
IEEE Trans. Smart Grid, vol. 11, no. 2, pp. 1566–1581, Mar. 2020. 

[26] NORD POOL, “Energy market prices”. Online: 

https://www.nordpoolgroup.com/Market-data1/GB/Auction-prices/UK. 
[27] ELEXON, “Balancing market prices”. Online: 

https://www.bmreports.com/bmrs/. 

[28] H. P. Williams, Model Building in Mathematical Programming, 5th ed. 
Wiley and Sons, 2013. 

Alberto Bolzoni (Member, IEEE) received his 

MS and PhD degrees in electrical engineering at 

Politecnico di Milano, Milano, Italy, in 2015 and 
in 2019 respectively. Since 2019 he has been a 

post-doctoral research associate in the Electrical 

and Electronic Engineering Department at The 
University of Manchester, UK. His main field of 

interest is control theory applied to power 
electronics, with a particular focus on grid-

connected converters, battery energy storage 

systems, hybrid power plants and microgrids. 

Alessandra Parisio (Senior Member, IEEE) 

received the Ph.D. degree in automatic control 

from the University of Sannio, Benevento, Italy. 
As a visiting Ph.D. student, she spent one year 

with the Swiss Federal Institute of Technology. 

She was a Postdoctoral Research Fellow with the 
Automatic Control Laboratory, Royal Institute of 

Technology, Sweden. She is currently a Senior 

Lecturer in Electrical and Electronic Engineering 
with the Faculty of Science and Engineering, 

University of Manchester, Manchester, U.K. She is the Vice-Chair of the 

IFAC Technical Committee 9.3. Control for Smart Cities and an Editor for 
the Elsevier journal Sustainable Energy, Grids and Networks. Her research 

interests include the areas of large-scale control and optimization of energy 

systems and stochastic constrained control. 

Rebecca Todd (Senior Member, IEEE) received 

the M.Eng. degree in electrical engineering from 

The University of Manchester Institute of 
Science and Technology, Manchester, U.K., in 

2001 and the Eng.D. degree in electrical machine 

control from The University of Manchester in 
2006. From 2010 to 2020, she was a Lecturer and 

Senior Lecturer with The University of 

Manchester. Her research interests included 
advanced control methods for energy storage 

systems in transmission and distribution networks, hybrid power plants, and 

power electronic converter design for aerospace systems and electric 
vehicles.   

Andrew J. Forsyth (Senior Member, IEEE) 

received the B.Sc.(Eng.) degree in electrical 
engineering from Imperial College, London, 

U.K., in 1981, and the Ph.D. degree in power 

electronics from the University of Cambridge, 
Cambridge, U.K., in 1987. He was a Design 

Engineer with GEC Electrical Projects, Ltd., 

from 1981 to 1983, a Lecturer with the 
University of Bath from 1986 to 1990, and a 

Lecturer/Senior Lecturer with Birmingham 

University from 1991 to 2004. Since 2004, he has been a Professor of power 
electronics with the University of Manchester, Manchester, U.K. His 

research interests include high-frequency converters and magnetic 

components, converter modeling and control, and aerospace and electric 
vehicle applications. 

 

 
 

 


