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Abstract 

The increasingly request for the maintenance of the architectural heritage has led in the last 

decades to the extensive use of System Identification (SI) techniques for Structural Health 

Monitoring (SHM) purposes. These proved to be useful tools for assessing the state of 

conservation of the built environment and its behaviour in operating conditions. In particular, 

historical masonry structures and infrastructures present several compelling difficulties. 

Masonry is non-linear and its mechanical properties are uncertain due to the presence of local 

irregularities and its internal texture. Moreover, centuries-old buildings are severely affected 

by deterioration, eventual restoration interventions, and exposure to weather conditions. In 

this work, the Fast Relaxed Vector Fitting (FRVF) approach is proposed as a rapid, efficient, 

and reliable instrument for the vibration-based SI of such structures. The method is 

preliminarily validated on simple numerical examples and a multi-damaged cantilevered box 

beam, then tested on a true 1:2 scaled model of a masonry two-span arch bridge. The results 

match well the estimations from other well-established SI techniques, such as the Eigensystem 

Realization Algorithm (ERA), and can be utilised for damage assessment (with all the standard 
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advantages and limitations of modal-based outlier detection). Stabilisation diagrams and 

frequency-damping plots are also proposed for FRVF. 
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1. Introduction 

Any structure or infrastructure is subject to external and internal phenomena which 

diminish their mechanical resistance and safety reliability over time. Therefore, the probability 

of structural failure or collapse naturally increases along time due to ageing and natural 

material degradation. This can be due to both regular use and consumption or to extraordinary 

events such as floods, earthquakes, blasts or any natural or man-made large-impact event. The 

issue is particularly relevant for historical and cultural heritage. The cost of the potential loss 

of unique, centennial, and non-replaceable works of art can be very high. Thus, Structural 

Health Monitoring (SHM) and System Identification (SI) are necessary to safely operate these 

facilities and to guarantee the seismic resilience of heritage structures [1]; if properly utilised, 

a monitoring system can provide useful insight and support the decision-making process 

concerning the safety, maintenance and economy of structures. However, the monitoring of 

historical and architectural sites is complex and demand a deep level of knowledge and analysis 

of both the structural and non-structural (e.g. ornamental) components [2]. 

Masonry arch bridges are the main focus of this research. They are commonly found all 

around the European landscape, especially throughout the French, Italian, and English 

countryside. These, like other historical masonry structures, were built since hundreds of years 

ago, without the modern precautions such as strict geometric tolerances; moreover, technical 



details regarding their construction have been lost and the understanding of the construction 

practices at the time of building is not at all an easy task and requires large efforts of historical 

research. Even more, many hidden local defects are present since their construction or have 

developed unnoticed. The construction material itself is relatively challenging if compared to 

more homogeneous materials such as steel: masonry has some (limited) tensile strength, even 

if it is generally omitted in design for safety [3]. Bricks and mortar are well-known to behave 

and interact nonlinearly and accordingly to complex models (for instance, Reference [4] 

analysed in detail the evolutionary phenomenon of mortar de-bonding); splitting or surface 

spalling may happen due to stress concentration over time, and loss of bricks cohesion, while 

generally unlikely, is not impossible. The interested audience may refer to Reference [5] for a 

deeper discussion about the structural performances of masonry bridges in the context of 

Structural Bridge Engineering. 

There are simply too many case studies of structural monitoring for large historical 

masonry buildings to be enlisted here completely; a throughout discussion can be found in 

Reference [6]. It is possible to recall the dynamic monitoring system developed for the 

Vicoforte Sanctuary [7]. In the specific case of historic and masonry bridges, some relevant 

contributions to the topic can be found in the works of Azzara et al.[8], Conde et al. [9,10], De 

Falco et al. [11], Gönen & Soyöz [12], Han et al. [13],  Manos et al. [14,15], and many others 

well-known case studies [16–18] to name a few. Some recent advances in SHM for masonry 

buildings include a spectral entropy approach [19], multivariate statistical analysis [20], and 

many more. In this work, an imposed settlement was utilised to cause damage growth, similar 

to the problem addressed by [21] for masonry buttressed arches. This simulates a progressive 

erosion, which is known to produce a sensible decrease in the bridge natural frequencies due 

to the decreasing stiffness [22].



For all these purposes, experimental and operational modal analysis (EMA and OMA, 

respectively) have both been extensively applied (for instance, see Reference [23]). Indeed, 

modal analysis is, by far, the most common approach to monitor and assess any mechanical or 

civil structure. The appearance and developing of structural changes, such as the occurrence 

of damage, can be determined and tracked by the changes in the dynamic behaviour of the 

structure in terms of frequencies and ways of vibrating. In this sense, input-output strategies 

for EMA are highly regarded for their robustness and accuracy. By scaling the vibrational 

response over the applied input, the identified parameters as they depend exclusively on the 

intrinsic characteristics of the structure (masses, stiffness, damping, boundary conditions, etc.) 

and not on the external loads. 

This research promotes an implementation for SHM purposed of the Fast Relaxed Vector 

Fitting (FRVF) technique, stemmed from Electrical Engineering [24,25]. The method has been 

adapted to mechanical vibrations by exploiting the classic mechanical-electrical analogies. Its 

potential for the vibration-based identification of damage is preliminarily tested on two 

numerical case studies and a simple experimental one, a cantilevered aluminium box beam 

with two saw cuts (one straight and one slanted).  The FRVF approach is then validated on a 

1:2 scale replica of a masonry arch bridge, realised and tested in the laboratories of the 

Department of Structural, Geotechnical and Building Engineering at the Politecnico di Torino, 

and subject to simulated scour by a dedicated settlement application system. The aim is to 

exploit the changes in the lower natural frequencies to track the developing damage, which is 

a well-known and established technique in Vibration-Based SHM [26]. A more detailed 

discussion about the vibrational behaviour of historical masonry bridges can be found in 

Reference [27]. 



The rest of this paper is organised as follow. The theory of FRVF is described in Section 

2. Some reminders about system identification, pole stability, and similar concepts are 

provided for completeness. Section 3 reports a numerical example for a discrete 3 degrees-of-

freedom (DoFs) system and an analytical example for a continuous cantilever beam. Section 4 

deals with the first experimental case study. Section 5 presents and analyses the masonry arch 

bridge, and the Conclusions end this paper. 

2. System Identification with Poles and Residues. 

The FRVF technique discussed here is an input-output system identification algorithm for 

experimental modal analysis, which can be used with any number of input and/or output 

channels (i.e., it can be adapted as a SISO, SIMO, or MIMO approach [28]) and to any type 

of input source. Importantly, its first definition (as well as its application here) is formulated 

in the frequency domain, but a variant in the time-domain can also be found in the scientific 

literature [29,30]. However, time-domain methods have the disadvantage that they can only 

estimate modes inside the frequency range of analysis and take no account of the residual 

effects of modes that lie outside the range. For this reason, frequency-domain techniques are 

generally more commonly encountered in practical applications [31]. 

The FRVF works by approximating the Transfer Function (TF) between the recorded 

output and the known input. This can be done for any form of the input (force, displacement, 

velocity, or acceleration) and the output; for simplicity, here the formulation between the 

input force � and the output displacement � will be used; this is known as the system’s 

Receptance Frequency Response Function, or FRF. To better define it, it is needed to rapidly 

recall some basics definitions. A pole of a mechanical system with a single degree of freedom 

can be defined in the Laplace domain, i.e. in the complex s-plane, as 



��,�=� ± ��� (1)

where, being a complex pair, �� = ��∗. The receptance FRF can be approximated by a partial fraction 

form defined as �(�) =
�(�)�(�)

 ≅   �
(����)

+  
�∗

(����)
(2)

Where � = − �� � ��� and its complex conjugate �∗ are the residues of �(�). It is very easy to 

translate this TF, here expressed in terms of poles and residues, in the frequency domain. Consider 

that the real part of ��,� can be written as � = −��� (3)

while its imaginary component derives from the damped natural angular frequency of the 

corresponding mode ��, i.e. �� =  ���1 − �� (4)

where � is the damping ratio and �� = ��/��  is the natural pulsation of the n-th mode. Thus, by 

evaluating �(�) for the particular case where σ = 0 (i.e. for a purely imaginary argument), the 

Laplace Transform is reduced to a Fourier Transform and it is possible to prove that [31]  

�(�) = �(�)|���� = � �
(� − ��)

+  
�∗

(� − ��∗)
� |���� =

�
(�����)

+  
�∗

(�����∗)
=

��(����)���� +  
�∗�(����)���� =

�����������  (5)

It is then possible to define the physical properties of the system – i.e. its mass �, stiffness �, and 

viscous damping � = 2���� – from its vibrational response; by tracking them along time for a 

constant mass, frequency shifts can be linked to changes in stiffness and therefore to developing 

damage. 

The right end side of Eq. (2) can be expanded to multi-DoFs systems in form of a sum of partial 

fractions as



�(�) = � ��� − �� + ���
���  (6)

Where �� governs the behaviour at high frequencies and may be split into two components, the real 

quantity d and the product �e [24]. It is then needed to consider an unknown function �(s) defined 

as: 

�(�) ≈ � ���� − �̃��
��� + 1         (7) 

By multiplying f(s) and �(�), the following problem can be stated: 

��(�)�(�)�(�)
� ≈

⎣⎢⎢
⎢⎢⎡� ��� − �̃��
��� + � + ��
� ���� − �̃��
��� + 1 ⎦⎥⎥

⎥⎥⎤            (8) 

The poles of �(�)�(�) are the same rational approximation of �(�). By forcing �(�) to approach 

unity at very high frequencies (that is to say, for �� = 1), the ambiguity is removed from the solution 

for �(�) [24]. This leads to  

�(�)�(�) ≈ �� ���� − �̃��
��� + 1��(�) ≈ � ��� − �̃��

��� + � + ��       (9)

where 

(��)���(�) ≈ (�)���(�)�(�)         (10)

After some mathematical steps, it is possible to demonstrate that: 

� + � ��� − ��� ≈ �(�)��� + � �′�� − ��� �            (11) 

Which describes the relationship between the transfer function, �(�), and the fitted residues, 

[��,�′�], poles [��, �′�], and constant terms [�, �′]. The right-hand side of Eq. (11) approaches �(�)



as the solution converges; this can be done iteratively by solving it as a least-square (LS) problem.  

This completes the basic definition of VF. In comparison to this formulation, a Fast Relaxed VF 

implementation (FRVF; [32]) has been applied. Specifically, this includes a relaxed non-triviality 

constraint added in the pole identification procedure, that is to say, considering a real-valued free 

variable ��, 
�(�) = � ���� − �� + ���

���  (12)

With the only constrain that the sum of the real parts of �(�) must be non-null, to avoid a trivial 

solution. This simple variation has a twofold advantage since it makes the choice of the initial poles 

less critical (as they are freer to rearrange over larger distances of the s-plane, which is useful in the 

first iterations of the procedure) and improve overall the convergence of the problem. The linear 

problem is then solved by the QR decomposition approach as suggested in [33], decomposing the 

LS matrix of interest into the product of a matrix Q of orthonormal basis and an upper triangular 

matrix of coefficients R. This step significantly reduces the computational effort and the memory 

storage required [25]. 

2.1 Comparison with Similar Approaches.  

One of the most common algorithms for the identification of the modal parameter is, at the current 

time, the Rational Fraction Polynomial (RFP; see e.g. [34], Subsection 4.3.1). However, this method 

is notoriously affected by the several limitations typical of the polynomial approximations of 

functions. For instance,  the nonlinear fitting problem is generally non-convex, with multiple local 

minima. On the other hand, the VF algorithm operates a (weighted) linearised minimisation [35]. 

The FRVF is also especially efficient computationally thanks to the QR decomposition [36], as it 

will be highlighted in the next Sections. 



Another common approach is the Eigensystem Realisation Algorithm (ERA; [37]). This algorithm 

for the identification of the modal parameters is commonly used by researchers and practitioners, 

yet its limits and drawbacks are well-known. For example, for a nonstationary input, its stability and 

accuracy are greatly affected, with up to 50% error increase in damping estimation [38]. 

3. Numerical and Analytical Case Studies. 

A 3-storey shear-type frame structure and a continuous cantilever beam have been simulated for 

synthetic data. The intended purpose is to explicate the potentiality of the FRVF approach for 

modal analysis before seeing it applied for the detection of damage-induced frequency shifts. 

For the first case (Figure 1.a), the structure and assumption on the frame mechanical behaviour 

allows considering the masses as concentrated on every single floor, thus making it essentially 

a 3 DoFs system, with mass and stiffness matrices

[�] = ��� 0 0

0 �� 0

0 0 ��� , [�] = ��� + �� −�� 0−�� �� + �� −��
0 −�� �� �         (13)

With mi =1 kg and ki = 5000 N/m set for any i-th floor. Rayleigh’s proportional damping 

model has been implemented with a default value of 3%. To obtain the structure response on any 

floor, a simulated unitary impulse (1 N) was imposed at the first DoF. The receptance FRFs were 

calculated by simply dividing the Fourier Transform (FT) of the displacement output at any storey 

over the FT of the external force for each frequency step. The result is a 3-by-1 complex array of 

transfer functions (the absolute values of which are reported in Figure 1.b). Only the 0-25 Hz 

frequency range was used for fitting, as all modes fall in between these two bounds. 

Results for the model of order six (which is theoretically supposed to capture all the three 

modes of the simulated structure) are represented in Figure 2. The input data and their rational 

approximations are reported, respectively, as solid blue and dashed red lines. The deviation between 



the magnitude of (�)fit(s)f(s) and (�f)fit(s) is illustrated in light green and was found to be nowhere 

larger than 1e-8. The estimated poles and residues of the state space system are reported in Table 1. 

The derived modal parameters – eigenfrequencies, eigenshapes, and modal damping ratios – are 

reported in Table 2 (the mode shapes are normalised over the maximum displacement). These results 

compare well with the ones extracted using the well-known ERA algorithm. Figure 3.a shows 

graphically the linear regression of the natural frequencies.  

It can be noticed that, as expected, all the poles have a negative real part and are therefore 

stables (Figure 3.b). Their trend is also coherent with an underdamped response after perturbation; 

indeed, it is well-known that a complex conjugate pair σ±iω in the left-half of the plane generates a 

decaying sinusoid � ������� (��� +  �), with amplitude Y, phase φ, and decay rate � = ���. 

Finally, the obtained mode shapes are portrayed in Figure 4.a The goodness of fit for mode shapes 

was computed through the Modal Assurance Criterion (MAC; [39]) and can be visualised in the right 

side of Figure 4.b Again, the vectors of modal displacements resulting from the FRVF procedure 

resemble the analytically derived ground truth with >99.9% accuracy. In terms of computational 

time, a non-optimised script of the FRVF algorithm (implemented in MatLab R2018b and tested on 

an Intel ® Core™ i7-7700HQ CPU with 2.80 GHz base frequency) ran in 0.0398 s (enforcing stable 

poles, without skipping both pole and residue identification, and considering 5 iterations), while the 

ERA code elapsed 0.8828 s. This proves the superior computational efficiency of the Fast variant of 

the RVF approach on an ideal, noise-free dataset. 



(a) (b) 

Figure 1. (a) Three-stories frame schematic design. (b) The receptance FRFs of the numerical 3-

DoFs example, response channels 1-3 (is in semilogarithmic scale). 

(a) (b) 

Figure 2. Fitting over the SIMO system with three output channels (one per story). (a): Plot of the 

absolute value of gain. (b): phase angle. 



Mode 

number

Pole Residue (1st 

output channel) 

Residue (2nd 

output channel) 

Residue (3rd 

output channel) 

1 -0.9443±

31.4629i 

7.0842e-09 

±0.0038i 

8.3794e-10  

± 0.0025i

-1.3131e-08 

±0.0008i 

2 -2.6460±

88.1571i 

2.0699e-08 

±0.0069i 

1.3036e-08 

±0.0011i 

1.3634e-08 

±0.0010i 

3 -3.8236±

127.3908i

-6.2365e-08 

±0.0086i 

-6.6020e-10 

±0.0020i 

-2.6997e-08 

±0.0004i 

Table 1. Poles and residues of the 3DoF frame numerical example. 

Mode 

number 

Frequency 

[Hz] 

Damping  

[-] 

Mode shape  

[-] 

FRVF 

1 5.01 0.030 0.4450 0.8019 1 

2 14.04 0.030 -1 -0.4450 0.8020 

3 20.28 0.030 0.8019 -1 0.4450 

ERA 

1 5.01 0.030 0.4450 0.8019 1 

2 14.03 0.030 -1 -0.4450 0.8019 

3 20.28 0.030 0.8019 -1 0.4450 

Exact Value (Analytical Solution) 

1 5.01 0.030 0.4450 0.8019 1 

2 14.03 0.030 -1 -0.4450 0.8019 



3 20.27 0.030 0.8019 -1 0.4450 

Table 2. Modal parameters of the 3DoF frame numerical example. 

(a) (b) 

Figure 3. (a): Linear regression of the natural frequencies. (b): Trend of identified poles. 

(a) (b) 



Figure 4. (a): Mode shapes of the 3DoF frame numerical example. (b): corresponding MAC values 

(dark blue: first mode; green: second mode; yellow: third mode). 

The second synthetic case study involves the analytical definition of a continuous 

cantilevered beam, sketched in Figure 5 and defined as 

���(�) = � ��(��)��(��)��(��� − �� + �2�����)

�
��� (14)     

Where � is the input degree of freedom, � the output degree of freedom, and ��,�� , �� and �� are, respectively, the k-th mode shape, modal mass, modal damping ratio and resonance 

frequency (expressed in radians). In Figure 5, the 10 dots indicate the respective 10 channels. The 

green dot at channel #7 indicates its coincidence with the single node of the first mode shape. 

Channels #4 and #8 are coincident with the two nodes of the second mode shape, and channels #2, 

#5, and #9 are located at the nodes of the third one. The assumed clamped-free beam has geometrical 

dimensions 20 x 20 x 800 mm, Young’s modulus 210 GPa, and density equal to 7900 ��/��. Since 

the analytical definition can span (theoretically) for infinite DoFs, order 18 was arbitrarily set for the 

FRVF algorithm. This ultimately results in identifying the first nine modes. For the sake of this 

second investigation, all channels were utilised one at a time for simulating the application of the 

input, while the remaining ones were left for recording the output. This resulted in a square matrix 

of 6-by-6 FRFs, which is the best application for the FRVF approach as it returns the most reliable 

characterisation (even if, in practical terms, it is much easier to use one or a few input application 

points and many more output acquisition channels). For simplicity and easiness of visualisations the 

transfer functions ��,��, ��,��, ��,��, ��,��, ��,��, and ���,�� are reported separately in Figure 6. The 

common set of poles is shown in Figure 7. As for the 3-DoFs system, the error was everywhere 

negligible an less than 5 ∙ 10�� Hz frequency-wise and 0.1 % on the mode shapes. For comparison, 



the poles obtained from the Eigensystem Realization Algorithm are shown in Figure 7; the two 

methods returned an almost perfect superposition. The FRVF script elapsed 0.0229 seconds per 

input-output pair (with the same settings as for the previous numerical case), while ERA took 0.5109 

s to complete the same task. 

Figure 5. Graphical scheme of the continuous cantilevered beam.  



��,�� ��,��

��,�� ��,��



��,�� ���,��
Figure 6. Fitting over the MIMO system with nine input and output channels (results displayed 

separately). For every subplot, top: the plot of the absolute value of gain; bottom: the phase angle. 

Figure 7. The trend of identified poles for the continuous cantilevered beam synthetic example. 

Green dots: FRVF. Red circles: ERA. 



4. Preliminary Experimental Case Study: The Aluminium Box Beam 

An aluminium cantilevered box beam (Figure 8) has been used for the first validation of 

the advantages of the FRVF technique for SHM purposes. The aim for this introductive 

example was to follow the decrease of the first natural frequency for an increasing level of 

damage in a single input, single output experimental setup. Matching the results reported in  

[40] was set as the target for successful damage detection.

The test was realised at Cranfield University to investigate the effects of increasing 

damage considering multiple slots and slanted crack angle; the damages were emulated 

employing straight saw cuts [40]. The box beam has Young’s modulus of 69 GPa, mass per unit 

length of  0.322 kg/m, a free length of 716 mm, and a hollow square cross-section with sides 25 

mm-long and 2 mm-thick. The first notch is located at �� = 205 mm from the clamped section and 

is a perfectly vertical saw cut, while the second one is positioned at �� = 319 mm and has a 5:1 

inclination respect to the vertical (i.e. a slant angle of 11.3°). The dynamic tests consisted of 11-��-

long triangular impulses of 5 g peak acceleration, applied by a modal shaker attached to the fixed 

end. The natural frequencies as estimated by the FRVF algorithm were compared with the values 

obtained by running the ERA algorithm on the same output signals. In both cases, the values reported 

in Table 3 for the levels of increasing damage severity) correspond to the identifications averaged 

over three consecutive inputs (the standard deviation is reported in brackets). The algorithm performs 

overall well, correctly following the shift of the 1st  and 2nd  natural frequencies due to the increasing 

damage in ��. The average elapsed time was of 0.5182 s for the ERA and 0.0257 s for the FRVF. 



Figure 8. The multi-damaged cantilever box beam. 

Damage 

severity case

damage depth (*) 1st natural 

frequency – 

ERA 

1st natural 

frequency – 

FRVF 

2nd natural 

frequency – 

ERA  

2nd natural 

frequency – 

FRVF  

1d [mm] 2d [mm] [Hz] [Hz] [Hz] [Hz] 

no damage - - 46.19 (0.05) 46.28 (0.16) 288.52 (0.14) 287.81 (0.14)

#1 15  no damage 36.40 (0.11) 36.34 (0.27) 285.98 (0.18) 286.02 (0.19)

#2 15  5  36.23 (0.18) 36.20 (0.17) 280.00 (0.19) 279.52 (0.27)

#3 15  10  34.51 (0.25) 35.49 (0.28) 264.62 (0.23) 265.29 (0.29)

#4 15  15  33.37 (0.03) 33.81 (0.04) 234.75 (0.20) 234.45 (0.19)

(*) intended as the vertical component of length; corresponding to damage extension for 

1 1l d  but not for 2 2 2/ cos( ) l d d . 

Table 3. Damage levels for the box beam experimental case study. 



5. Main Experimental Case Study: The Masonry Arch Bridge 

5.1 Test Setup  

The main case study recreates the typical characteristic of an Italian masonry twin-arch 

bridge. The two arches have a radius of 2.00 m and an angular opening of 30◦. The two spans 

are both 2.00 m-long between the supports and the thickness of the arch equals to 0.20 m. These 

and the other main geometric parameters are reported in Table 4. The model was created with clay 

bricks scaled to 130×65×30 mm to respect the adopted modelling scale law and installed on two 

reinforced concrete slabs, fixed in turn to the laboratory floor. Low compressive strength elements 

were chosen and mortar with poor mechanical properties was used to bound them to recreate the 

typical materials of historical buildings [41]. A photo portrait of the bridge can be seen in Figure 

9.a. Backfill material, composed by sand, gravel, and debris of different size, was used to load and 

stabilise the arch barrels. This was further topped with a 10 cm-thick layer of concrete to obtain a 

levelled plane.  

The purpose of the whole experimental test was to reproduce the effects of scour at the 

foundation of the central pier, which is considered as if placed inside the streambed and thus 

subjected to the erosion of the soil underneath its foundation. This event was reproduced utilising a 

dedicated settlement application system, inserted at the hypothetical middle-height of the mid-span 

masonry pier and able to replicate the displacements and rotations along the two axes corresponding 

to the transverse and longitudinal directions of the bridge (Figure 9.b). These displacements and 

rotations were calibrated over the results of several hydraulic flume tests executed on a scaled-down 

model of the bridge central pier, which will be described in the following Subsection. The Young’s 

modulus, Poisson coefficient, and density of the building materials were estimated through both S

and P wave velocities, as well as destructive tests. The mortar was characterised via compression 

and three-point bending tests accordingly to the prescriptions of the European standard code EN 



998-2:2003, returning (averaged over three prismatic samples) a mean bending strength of 

1.092 N/mm� and a mean compressive strength 3.975 N/mm�.  

The masonry samples underwent axial and diagonal compression tests (both on six cubic 

samples), plus shear and four points bending tests (Figure 10). The shear tests were performed with 

two different pre-compression loads (0.1.kN and 0.5 kN), both on three samples of masonry triplets. 

Three arch segments were used for the four points bending tests. All the tests were performed, in 

the same order, following the guidelines prescribed in UNI EN 1052-1, EN 1052-3:2002, and ASTM 

E 518–02 (in this last case, except for the geometric form of the specimens, as it was tested directly 

on three replicas of the arch; all details are available in [41–43]).  

The axial compression tests returned a mean value of Young’s modulus equal to 1451 

N/mm2, with a standard deviation of 472 N/mm2. The diagonal compression tests and the shear tests 

highlighted the nonlinear behaviour of the bricks and mortar joints, as well as a great level of 

uncertainty, which is not uncommon for these materials due to the presence of local irregularities 

and the effects of the internal texture. The shear tests with 0.1 kN pre-compression load returned 

the mean value � = 0.794 N/mm2 with standard deviation � = 0.301 N/mm2. The 0.5 kN pre-

compression load returned � = 1.013 N/mm2 and � = 0.188 N/mm2. Finally, � = 0.430 N/mm2 and � = 0.125 N/mm2 were estimated from the diagonal compression tests. In all cases, the ultimate 

shear strength was calculated as the stress which caused the complete opening of the cracks in the 

mortar joints. The modulus of rupture of the arch (which can be considered as its overall shear 

resistance [43]) was estimated via the four points bending tests as circa 0.220 N/mm2. Other inherent 

material properties are reported in Table 5. Furthermore, polystyrene was added around and beneath 

the central pier foundation, to simulate the riverine sediments (the polystyrene was chosen since it 

has a stiffness comparable to the riverbed material). Two layers were set: a 25 mm-thick polystyrene 

base, located in between the bottom of the pier and the upper face of the settlement application 



system steel plate, and a 100 mm-thick ring layer on the top of the base, surrounding the pier 

foundation (see Figure 9.b). The ring layer was then progressively removed, to emulate the erosion 

on the foundation sides as evaluated during the hydraulic tests. The removal was done by hand, 

cutting off with a knife the upper portion of the ring layer, homogeneously around the four sides. 

The thin base layer beneath the central pier, on the other hand, was left untouched during all the 

tests. Further technical devices were adopted to reduce the uncertainty related to the boundary 

conditions, to avoid the rocking of the abutment during the model construction, and to better 

replicate in situ effects; all the operations carried out are furthermore elaborated in much more detail 

in Reference [43]. 

(a) 

(b) 



Figure 9. (a) View of masonry arch bridge in the laboratory of Politecnico di Torino. Total 

bridge height (H), length (L), and width (W) highlighted. The polystyrene layer is visible as 

the white bloc surrounding and beneath the base of the central pier, while the settlement 

application system is visible under the same. (b) geometric details of the central pier, 

settlement application system, and polystyrene layers. 

Figure 10. (a) The experimental setups for the destructive tests performed on the masonry 

samples: (a) axial compression on cubic samples; (b) diagonal compression on cubic 

samples; (c) shear tests on masonry triplets; (e) four points bending test on arch segments. 

Retrieved from Reference [43]. 

Total Bridge Height at 

Deck ‘H’ [mm] 

���� Span Length [mm] ���� Abutment Max Height 

(external side) [mm] 

����
Total Bridge Length 

‘L’ [mm] 

5870 Arch Rise [mm] 268 Abutment Min Height 

(internal side) [mm] 

850

Bridge Width ‘W’ 

[mm] 

1550 Central Pier Height  

[mm] 

525 Abutment Length  

[mm] 

1202

Backfill Height at the 

Crown [mm] 

360 Central Pier Length  

[mm] 

275 Abutment Width 

[mm] 

1600

Table 4. Geometrical parameters of the masonry arch bridge (retrieved from Reference 

[43]). 



Material E 

[MPa] 

�
[-] 

�
[kg/m3] 

Vp

[m/s] 

Vs 

[m/s] 

Reinforced concrete 30000 0.15 2400 3633 2331 

Masonry 1500 0.20 1900 937 574 

Backfill material 50 0.10 2000 160 107 

Concrete 5000 0.15 2200 1549 994 

Table 5. Characteristics of the building materials. 

5.1.1 Scour Simulation  

The constraints applied at the central pier were intended to mimic the effects of scouring and 

undermining at its foundation. To this aim, experimental hydraulic investigations were conducted in 

the Department of Hydraulic Engineering at the Politecnico di Torino to estimate the soil erosion 

around and below the rectangular foundation, as detailed in Reference [43]. The correlation between 

the removed riverbed material and the corresponding pier displacements and rotations were then 

estimated through numerical analyses. The main aspects of these preliminary studies can be 

summarised as follow: 

- A 32x160x580 mm parallelepiped was used as a scaled hydraulic model of the pier and 

fixed on a 58.5x210x32 mm foundation; 

- The pier-foundation model was inserted in a flume test channel with rectangular section 

500x580 mm (width x height), length 11.6 m, and longitudinal slope 0.48%, then dipped 

into non-cohesive sand with uniform mean diameter of 0.80 mm with different depths (0, 

1.5, or 2.5 mm); 



- The three flume tests were performed with the following hydraulic parameters: water 

depth 215 mm, constant flow 120 m�/h, mean velocity 0.310 m�/h, stream intensity 

0.92, Froude number 0.214, and Reynolds number 0.072; 

- The temporal evolution of the scour hole was acquired via image analysis, considering a 

laser projection for the soil profile (the experimental setup and an example of a resulting 

settlement profile are reported in Figure 11); 

- The subsequent steps of erosion (and therefore of damage development) were defined 

accordingly to the evolution of the soil profile at fixed time steps; 

- The measured portions of streambed material removed the foundation side were used to 

estimate the corresponding percentages of the polystyrene ring to be removed from the 

sides of the pier base at any damage step; 

- The measured scour depths of the material removed underneath the model were used to 

estimate the corresponding foundation settlements, calculated at the four corners of the 

foundation. These settlements were adjusted via numerical simulations on a 3D finite 

element model (realised with the ADINA software) to rescale them to the structural 

model size and to adjust them for the different boundary conditions and the deformability 

of the polystyrene base.  

The hydraulic tests returned results consistent with the expected outcomes, i.e. a larger 

settlement upstream with the consequent tilt of the foundation. The FE simulations allowed to pre-

estimate the damage pattern and potential collapse mechanism induced by the prescribed 

displacement. These were found to be comparable to what observed in situ for similar structures [43] 

and match qualitatively the findings of other works reported in the scientific literature (e.g. in 

Reference [44] and [22]). It must be said that, from preliminary studies [42], it was found that the 

removal of the polystyrene ring surrounding the pier foundation did not cause any relevant frequency 



shift on its own. Without any rotation or displacement applied on the central pier, removing up to 30 

cm of the ring layer induced a reduction of 0.27 Hz on the first natural frequency. 

(a)

(b)
Figure 11. (a) experimental setup for the monitoring of the streambed scour with laser beam 

projection and video camera acquisition; (b) example of an acquired snapshot. Retrieved from 

Reference [43]. 

5.2 Damage Scenarios and Experimental Campaigns  

Different damage steps have been applied to the structure by applying controlled settlements 

and rotations, jointly with polystyrene removal, accordingly with what observed from the hydraulic 

flume tests described in the previous Sections. The displacements were applied on the side of the 

settlement application system arbitrarily considered as upstream. The investigation reported here 

focused on the results of the third campaign, which is detailed in Table 6. Throughout the application 

of the consecutive damage steps (in a span of two months), it was visually observed that a crack 



pattern emerged, with a progressive partial detachment between the arches and the spandrel walls at 

their interface. 

The excitation input was provided through hammer tests while the resulting outputs were 

acquired via 18 monoaxial PCB 3701G3FA3G Piezotronics accelerometers with a sensitivity of 

1V/g, a resolution of 30μg, a measurement range of ± 3g, and a weight of 17.5g. Two different 

sensor placements, named setup #1 and #2 and portrayed in Figure 12, were used for each damage 

step. Acquisitions from both setups have been exploited for system identification to enhance the 

research of different modes. This also allowed to cross-validate the recurrence of the different 

vibrational modes varying the acquisition setups, facilitating the separation between real and 

spurious modes. Sampling frequency was set to 400 Hz, with a frequency resolution of 0.017 Hz. 

The details of the hammer impacts can be found in Appendix A. Only the most significant 

acquisitions and impacts of the hammer were selected, as the quality of the acquisitions differs for 

the point and direction of hammer impact which consequently excites different modes. For instance, 

the acquisitions orthogonal to the arch (#17-#30 as reported in Table A.1 from Appendix A) excite 

better vertical or longitudinal modes, while the transversal at the pier ones (#6-#10) excite more the 

lateral modes. The acquisitions close to the abutments (#1-#2) are affected from a high level of noise 

and so they were not used for system identification. All the results are expressed in terms of 

accelerance FRFs (expressed as the ratio of acceleration output (m2/s) over force input (N)).  

As expected, the presence of structural nonlinearities was confirmed from the recorded 

output signals. In this sense, the magnitude-squared coherence function [45] was applied as a 

nonlinearity test (as suggested by Reference [46], Chapter 2.5), since it departs from the unity 

whenever a nonlinear term is added to the investigated system. As can be seen in Figure 13, the 

coherence falls well below the unity for almost all channels and at several frequency bands. As 



mentioned previously, these effects are inherent in the material (where they are generally dominated 

by the nonlinear behaviour at the brick-mortar interfaces) and increased by the developing cracks. 

3rd Experimental campaign 

Damage Step Settlement at the 

central pier [mm] 

Rotation at the 

central pier [rad] 

Polystyrene 

removed [%] 

DS4 (end of the 2nd 

Experimental Campaign) 

2.25 1.01 10�� 47 

DS5 (Post Relaxation) 2.25 1.23 10�� 56 

DS6 2.8 1.23 10�� 72 

DS7 3.6 1.27 10�� 81 

DS8 4.7 1.30 10�� 91 

DS9 7.6 1.28 10�� 100 

Table 6. Description of the third experimental campaign. 

Figure 12. Position of the channels according to Setup #1 and Setup #2. An example of PCB 

3701G3FA3G accelerometer is shown in the top right corner (www.PCB.com). Adapted from 

Reference [41]. 



Figure 13. The magnitude-squared coherence functions defined between the output channels and the 

input (recorded from the instrumented impact hammer). Data recorded from DS4. 

5.3 Results  

The identification was focused of the first four modes (respectively, the first vertical, longitudinal, 

lateral and torsional vibrational mode) since they were considered the most relevant ones for the 

dynamic characterisation of the structure. By way of illustration, the fitting of the data from the Setup 

#2 is represented in Figure 14. 

(a) (b) 



Figure 14. Masonry bridge: SIMO with 18 output channels (setup #2). (a):  Plot of the absolute value 

of gain. (b): phase angle. 

The stabilisation diagrams and frequency-damping plots, as described in Reference [47] 

and [48], can be defined by running the FRVF identification procedure with increasing model order 

N,  to assess the performance of the method and the stability of the identified modal parameters. The 

stable and unstable poles are determined based on different stabilisation criterion, in terms of natural 

frequency, modal damping and MAC, for a range of model orders varying from Nmin =50 to Nmax = 

100. The difference in natural frequency ��, difference in modal damping ��, and the Modal 

Assurance Criterion (MAC) have been used as stabilisation criteria to select the stable modes: �� ≤ 0.01,       �� ≤ 0.1,       (1 − ���) ≤ 0.95 (15) 

Poles with negative damping or � larger than 10% were also automatically discarded. In Figure 15 

the stabilisation diagram for Setup 1 of Step DS4 is reported. The Power Spectral Density (PSD) 

curves of a single channel are shown for comparison. It is clear how, for the same stabilization 

settings, the ERA results are affected by many spurious poles. On the other hand, the FRVF approach 

identifies quite consistently the first vibrational mode at circa 18 Hz. It struggles to isolate the second 

mode at circa 28 Hz (also due to the specific sensor setup utilised [43]), while it returns very stable 

identifications for both the 3rd and the 4th mode (~34 Hz and ~40 Hz, in this order).  



(a) 



(b) 

Figure 15. Stabilisation and frequency-damping diagrams: (a) FRVF (b) ERA. 

The whole non-optimised MATLAB code for the FRVF elapsed 16.821 seconds to compute 

and process all the model orders reported in Figure 15. For the same range of model orders, the ERA 

returned a much less clean stabilisation diagram, with many spurious poles (which need to be 

removed by hand in post-processing), in 21.35 seconds.  



The evolution of the four natural frequencies of interest along the whole third experimental 

campaign is plotted in Figure 16. The values are compared in Table 7 against the identification 

obtained from ERA. The reported values have been averaged over seven hammer consecutive 

hammer blows, recorded (for any damage step) one after the other. As before, the standard deviation 

values reported in brackets. The shift in the damping ratios is reported as well since it can be 

considered a damage-sensitive feature [49], even if it is well-known that it is more difficult to 

estimate with precision and subject to larger variance, which hampers is usefulness in practical terms 

[50]. The initial frequency shift with no settlement applied is due to the differences between the 

measurements taken at the end of the second campaign and the beginning of the third one, 17 months 

later. These changes are almost surely due to the variation of the boundary conditions that occurred 

during this period. After the end of the previous experimental campaign, the central pier was partially 

suspended, due to the relatively sudden lowering of the plate supporting it. In between the 2nd and 

the 3rd campaign, the pier settled, causing an increase in its vertical stiffness. In turn, this caused the 

unexpected recovery of the first natural frequency, which corresponds to the vertical bending, as the 

recovered stiffness outweighed the induced damage. This recovery did not affect significantly the 

other vibrational modes (mainly the longitudinal and lateral bending and torsion), which instead 

were more responsive to other phenomena occurring during the relaxation (most probably, further 

crack development in the arch barrels due to long-term settling) [41]. 

Subsequently, the frequencies decreased for an increased settlement of the pier, almost 

linearly. Since the mass of the test structure is unchanged, these trends can be linked directly to a 

decrease in the system’s stiffness. Only in Step #6, the fourth natural frequency was overestimated 

and the first and the second ones were probably slightly underestimated; this can be due to the 

presence of measurements noise. 



Figure 16. The trend of the first four natural frequencies accordingly to the displacement imposed at 

the central pier. 

3rd Experimental campaign 

Damage 

Step 

Natural Frequencies [Hz] Damping Ratios [-] 

FRVF

#1 #2 #3 #4 #1 #2 #3 #4 

End of 2nd

Campaign 

17.01 

(0.21)

27.77 

(0.20)

33.90 

(0.25)

39.64 

(0.27) 

0.01567 

(0.015) 

0.0619 

(0.014)

0.0412 

(0.005)

0.0355 

(0.003) 

DS5 (Post 

Relaxation)

19.88 

(0.20)

25.91 

(0.16)

29.72 

(0.28)

36.43 

(0.24) 

0.0318 

(0.006) 

0.0324 

(0.006)

0.0125 

(0.004)

0.0365 

(0.003) 

DS6
16.88 

(0.18)

25.08 

(0.17)

28.47 

(0.23)

36.81 

(0.35) 

0.0202 

(0.007) 

0.0114 

(0.008)

0.0218 

(0.004)

0.0244 

(0.011) 



DS7
17.78 

(0.11)

26.01 

(0.15)

29.29 

(0.27)

36.33 

(0.31) 

0.0256 

(0.005) 

0.0211 

(0.007)

0.0191 

(0.004)

0.0207 

(0.002) 

DS8
17.92 

(0.09)

25.44 

(0.07)

28.79 

(0.15)

35.47 

(0.22) 

0.0279 

(0.004) 

0.0436 

(0.002)

0.0471 

(0.005)

0.0388 

(0.004) 

DS9
17.40 

(0.12)

24.04 

(0.20)

28.01 

(0.23)

33.09 

(0.11) 

0.0201 

(0.003) 

0.0457 

(0.001)

0.0355 

(0.006)

0.0536 

(0.005) 

ERA

End of 2nd

Campaign 

17.63 

(0.28)

28.21 

(0.22)

34.07 

(0.29)

39.72 

(0.26) 

0.0278 

(0.013) 

0.0463 

(0.016)

0.0365 

(0.006)

0.0322 

(0.005) 

DS5 (Post 

Relaxation)

19.16 

(0.22)

26.62 

(0.18)

29.64 

(0.33)

36.23 

(0.25) 

0.0328 

(0.005) 

0.0221 

(0.006)

0.0187 

(0.005)

0.0421 

(0.006) 

DS6 
16.77 

(0.16)

25.48 

(0.19)

28.89 

(0.24)

36.92 

(0.33) 

0.0267 

(0.008) 

0.0207 

(0.004)

0.0237 

(0.007)

0.0221 

(0.012) 

DS7 
16.78 

(0.12)

25.68 

(0.14)

28.77 

(0.28)

36.42 

(0.27) 

0.0116 

(0.006) 

0.0229 

(0.005)

0.0177 

(0.005)

0.0158 

(0.002) 

DS8 
17.91 

(0.05)

26.00 

(0.06)

28.83 

(0.16)

36.74 

(0.19) 

0.0275 

(0.002) 

0.0498 

(0.003)

0.0480 

(0.003)

0.0402 

(0.002) 

DS9 
17.05 

(0.11)

23.24 

(0.18)

27.77 

(0.25)

35.36 

(0.14) 

0.0195 

(0.004) 

0.0465 

(0.003)

0.0415 

(0.004)

0.0704 

(0.007) 

Table 7. Frequency and damping ratio shifts for increasing settlements. 

Finally, the obtained mode shapes have been plotted and compared to the same as obtained 

by applying the Eigensystem Realization Algorithm (ERA) method in Figure 17. A comparison in 

terms of the diagonal elements of the MAC matrix is reported in Table 8. One can see that the 1st 

and 4th mode have a degree of similarity equal or larger than 90% for all the damage steps, while 



the lateral and the longitudinal bending modes have slightly lower MAC values, even if showing 

always good accordance between the results of the two methods. 

As a concluding remark, there are no technical limitations for applying the proposed 

approach for the in situ continuous monitoring of real size masonry arc bridges. It is however 

necessary to remark that, in real-life situations, frequency shifts alone could be not sufficient to 

unequivocally assess the damaged conditions. For instance, the stiffness variations induced by crack 

development can be difficultly isolated from the influence of flexible foundation conditions and soil–

foundation–structure interactions [51]. Nevertheless, the proposed technique is found able to capture 

the modal characteristics (natural frequency, damping ratios, and mode shapes) of the target system 

reliably and efficiently. If properly depurated from environmental effects, time-varying soil 

conditions, operational conditions, and other damage-unrelated variations of the modal parameters 

[52], these can be exploited for state-of-the-art SHM as e.g. performed in Reference [7].

(a) (b)



(c) (d)

Figure 17. Experimental modal shapes: (a) first mode; (b) second mode; (c) third mode; and (d) 

fourth mode. Left: results obtained from the FRVF; right: obtained from ERA. Thick dashed lines: 

edges of the deformed shape. Thin solid lines: undeformed shape. 

3rd Experimental campaign 

Damage Step MAC [-] 

Mode 

#1 

Mode 

#2 

Mode 

#3 

Mode 

#4 

DS4 (End of 

2nd Campaign)

0.93 0.84 0.83 0.94 

DS5 (Post 

Relaxation)

0.95 0.85 0.89 0.98 

DS6 0.92 0.79 0.85 0.94 



DS7 0.92 0.80 0.89 0.90 

DS8 0.96 0.78 0.77 0.85 

DS9 0.92 0.90 0.81 0.85 

Table 8. MAC between mode shapes as obtained from ERA and FRVF. 

6. Discussion and Conclusions. 

For SHM purposes, it is mandatory to model properly the dynamic behaviour of the structure 

of interest. This helps in defining an efficient monitoring strategy, able to provide useful 

information about the building’s current conditions. This aspect is even more important for 

historical masonry constructions, which are particularly susceptible to damage in case of extreme 

events (especially earthquakes) and naturally subject to the deleterious effects of ageing.  

The Experimental Modal Analysis is a well-known tool, useful to characterise the structure 

from a dynamic point of view in a reliable way. In this context, this paper presented an application 

of the Fast Relaxed Vector Fitting (FRVF), an approach inherited from the macro modelling of 

electrical circuits and recently proposed for mechanical systems, to the structural identification of 

systems with increasing damage. The method was firstly tested for the fitting of synthetic data and 

then validated on two laboratory case studies: a multi-damaged aluminium box beam, developed 

at Cranfield University, and a 1:2 scale masonry bridge, built in the facilities of the Politecnico di 

Torino. These two experiments were intended, respectively, as a preliminary validation on a 

simple, linearly behaving structure with artificially inserted and controlled damage (two straight 

u-shaped slots) and as an example of application to a much more compelling masonry structure. 

For the masonry bridge, the incremental damage (settlement cracks) was experimentally induced 

by the scouring emulated at the mid-length pier. The purpose was to test the algorithm to fitting a 

transfer function with a high presence of measurement noise and noise-like disturbances induced 



by the masonry nonlinearities. These latter were caused by the composite material (Portland 

mortar and bricks), with its internal texture and local irregularities, and by the developing cracks. 

The main difficulties of this experimental case study resided not only in its nonlinearly behaving 

material but also in its large and realistic scale and mass and its structural complexity. These are 

representative of an application to real-scale structures. 

The FRVF technique has therefore been proved as a viable, efficient, and robust tool for the 

identification of the modal parameters of a target structure. With all the needed precautions related 

to the use of modal parameters and their variations for anomaly detection, these identified features 

can be exploited for the assessment of damage in masonry buildings and structures, especially for 

the ones of high cultural and architectural relevance. This validation has been performed through 

a comparison with a well-established time-domain technique, specifically, the Eigensystem 

Realization Algorithm. When compared to this classic approach, the FRVF proved to be less 

sensitive to the measurement noise and nonlinear distortions while being faster and less 

computationally demanding. 
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Appendix A. 

Hammer Impact 

Direction 
Hammer 

Acquisition 

Impact 

Point 

(Setup) 

Direction 
Acquisition

Point 

(Setup) 

#1 02A (2) orthogonal to the arch #15 08A (2) orthogonal to the arch 

#2 02B (2)  orthogonal to the arch #16 08B (2) orthogonal to the arch 

#3 02C (1) orthogonal to the arch #17 08C (1) orthogonal to the arch 

#4 02D (1) orthogonal to the arch #18 08D (1) orthogonal to the arch 

#5 04A (1) orthogonal to the arch #19 10A (1) orthogonal to the arch 

#6 04B (1) orthogonal to the arch #20 10B (1) orthogonal to the arch 

#7 04C (2) orthogonal to the arch #21 10C (2) orthogonal to the arch 

#8 04D (2) orthogonal to the arch #22 10D (2) orthogonal to the arch 

#9 06A (1,2) orthogonal to the arch #23 12A (2) longitudinal 

#10 06B (1.2) orthogonal to the arch #24 13A (2) transversal 

#11 06C (1,2) orthogonal to the arch #25 14A (1,2) transversal 

#12 06D (1,2) orthogonal to the arch #26 14C (1,2) transversal 

#13 06M (1) orthogonal to the arch #27 15A (1,2) vertical 

#14 06N (1) orthogonal to the arch #28 15B (1,2) vertical 

Table A.1. Hammer impact details for Damage Steps #5-#8 as utilised for system identification. 
Impact points as represented in Figure A.1. The same hammer tip was utilised for all tests; every 
recording lasted 60 seconds (sampling frequency: 400 Hz). 

Figure A.1. Locations of the impact points with the corresponding alphanumeric identifier 
(retrieved from [42]). 


