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Abstract. The design of structural components has altered fundamentally since laminated 

composites were proved excellent candidate materials in aerospace applications. The key 

aspects rendering CFRPs preferable to metals, are mostly their significantly higher specific 

mechanical properties, and the design flexibility through the stacking sequence selection. 

However, the currently in use limit and polynomial failure criteria, are inadequate to 

accurately predict all experimentally observed failure modes and damage specificities of 

the lamina individual constituents, imposing difficulties in the numerical certification of 

airframe composites. Thus, component and lamina-level testing are sometimes inevitable, 

requiring industrial resources which are expensive as well as environmentally costly. For 

that reason, virtual testing could be more promising in substituting real experimental testing, 

if conducted under advanced failure criteria which better describe the nature of failure. In 

this study, the open hole tensile (OHT) test has been simulated under the LaRC05 

phenomenological failure criterion, with embedded strain-based progressive damage 

material behavior. A relatively common composite material in aerospace structures has 

been selected, IM7 8552 of Hexcel, to compare the numerical strength predictions with its 

corresponding experimental values. The simulations carried out are based on a standard test 

method by ASTM international, which address the standardisation of strength tests of 

polymer matrix composite laminates. The, model was created in ABAQUS/Explicit under 

the VUMAT user subroutine. The resulted predictions have been found to well – correlate 

with the testing data, irrespective the specimen stacking sequence. 
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1 INTRODUCTION 

The nature of Fibre Reinforced Plastics (FRPs) as multi-face materials, introduces plethora 

of damage and failure modes, which have been extensively observed and reported since 

continuous fibre composites emerged [1]. Lamina-based failure modes include complex fibre, 

matrix and interface types of damage as well as interactions among them, which can 

significantly degrade the material structural performance when loaded in or out-of-plane. 

Moreover, multifaced material damage and fracture may occur in a variety of in-service failure 

of structural composites [2], emphasising profoundly how challenging their design procedure 

is, especially when failure must be predicted under stress-based criteria.  Even though limit and 

polynomial failure criteria such as Max Stress, Tsai-Hill and Tsai-Wu provide easiness in 

failure assessment as well as account for its directionality, the nature of failure is totally 

disregarded [3], leaving most of the potential damage modes unpredicted. On the other hand, 

physically based and phenomenological failure criteria, were derived and are constantly 

reamended, to effectively capture many of the micro-scale material specificities, providing the 

design flexibility of exploiting laminae and laminate level parameters [4].  

Furthermore, failure modes in FRPs fell into three general categories according to [5]; 

translaminar, intralaminar and interlaminar. Fibre fracture is related with translaminar failure, 

whereas matrix cracks and generally through the thickness failures between the fibres, are 

considered as intralaminar failures. Finally, interlaminar failure refers to delaminations or 

cracks between the laminate plies. Accounting the FRP’s behavior to fail progressively, 

researchers have developed strain and displacement-based laws, which predict the percentage 

of damage as per the material fracture resistance exhibited at a particular failure mode [6]. 

Following this approach, the research utilises the LaRC05 phenomenological criterion as 

presented in [4], further extended with a strain-based damage propagation law [7]. A general-

purpose finite element analysis (FEA) method has been developed, having significant chances 

to be extended; so that residual strengths, damage, and ultimate failure for laminated composite 

structures can be numerically estimated. For the time being, the method has been found to 

predict the OHT laminate strength reasonably accurately. 

2 MATERIAL AND EXPERIMENTAL OHT DATA 

IM7 8552 of Hexcel [8] has been selected for the purposes of the comparison study between 

the numerical and the experimental results. The material properties are reported in Table 1. 

Table 1: IM7 8552 basic lamina properties assuming transverse isotropy, [4]; [8]; [9]. 

Lamina Properties IM7 8552 (�� =0.183 mm, � = 1570 ��/��) 

Moduli (MPa) �� =158510,�� =8963.1,��� = G�� =4688.4,��� =3090.7 

Poisson Ratio ��� =0.316, ��� =0.316, ��� =0.45 

Tensile Strength (MPa) �� =2500.6, �� = �� =64 

Compressive Strength (MPa) �� =1716.3, �� = �� =285.7,  

Shear Strength (MPa) �� =91.1, �� =107.6

Fracture Toughness (kJ/m2)  ��� = 0.212, ���� = 0.774, ��� = 92, ��� = 80
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Three stacking sequences have been examined in this study, the strengths of which are 

recorded in Table 1, whereas Figure 1 depicts the specimen as well as FE model dimensions as 

reported in [8]. The experiments were conducted in accordance with the ASTM D5766 

standard, which governs the testing method for the determination of the OHT strength of 

polymer matrix composite laminates [10]. 

Table 2: IM7 8552 OHT properties, [8]. 

Configuration Stacking Sequence 
OHT Strength 

(MPa)  

Equivalent ���� (N) 

[50/40/10] [0/45/0/90/0/−45/0/45/0/−45]S 597.0 83197.0 

[25/50/25] [45/0/−45/90]2S 320.8 45350.4 

[10/80/10] [45/−45/0/45/−45/90/45/−45/45/−45]S 301.0 41940.2 

Figure 1: OHT specimen and model dimensions, [8].

3 SIMULATION STRATEGY 

3.1 Failure initiation 

The LaRC05 phenomenological criterion developed by NASA researchers [4], generally 

predicts fibre failure and matrix crack, both in tension and compression. The criterion, in 

contrast with the common failure criteria, can additionally estimate three different damage 

modes; fibre kink, fibre split and the three-dimensional prediction of the matrix crack fracture 

plane. Fibre tensile failure is calculated through the limit failure index of the Maximum Stress 

criterion, as its predictions better fit the researchers’ experimental results [4]. With regards to 

fibre kink-split damage modes, the criterion estimates fibre compressive failure at a point within 

the lamina, located on a plane rotated about the lamina principal axis-1 by an arbitrary angle �. 

However, failure is examined along the direction of the kinked fibres, from which the angle of 

fibre misalignment � is formed. Hence, the corresponding failure index uses the stresses 

expressed at the initial lamina coordinate system, in a formula derived by two consecutive 

transformations of the stress tensor as per the direction cosines containing the information of 

the coordinate systems. The angle � exists because of an initial fibre misalignment after a 

manufacturing error, superimposed by an additional angle generated by the examined stress 

field. The angle � must be identified so that the failure index is maximised (0° ≤ � < 180°). 

Similarly, the matrix crack fracture plane, defined by the angle � (0° ≤ � < 180°), can be 
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determined with the same manner as the kink-band plane. The traction components of the 

fracture plane are examined by the modified Mohr-Coulomb matrix crack failure index, which 

assesses the onset of failure. The last two damage modes are schematically represented in 

Figure 2. Finally, LaRC05 failure indexes are briefly presented through the equations (1)-(3). 

The indexes highlight the onset of failure when their corresponding values are unity. 

���� =
���� ≤ 1 (1)

�������� = ��������� = � �������� − ������� + � �������� − ������� + �〈���〉���� �� ≤ 1 (2)

���� = ���� = � ������ − ������ + � ������ − ������ + �〈��〉���� �� ≤ 1 (3)

Figure 2: Predicted damage modes of the LaRC05 failure criterion,  

a) kink-band plane, b) matrix fracture plane and respective traction components, [4]. 

Where ����, ���� and ���� are the transverse normal, transverse shear and longitudinal shear ‘in-

situ’ stresses, respectively. Finally, fibre splitting occurs when the along the fibres compressive 

strength is between 0 > �� > − ��� , whereas fibre kinking is predicted if − ��� > �� > −��.

3.2 ‘In-situ’ strengths 

Table 3 presents the equations describing the ‘in-situ’ effect, firstly observed by Parvizi et 

al [11]. The ‘in-situ’ theory also reported in [12], estimates an increased value of the transverse 

normal, transverse shear and longitudinal shear stresses, depending on the boundary conditions 

enforced by the constraining plies, which affect the fracture mechanics of the examined lamina. 

Moreover, the strength estimations have been experimentally observed as disproportional to the 

lamina thickness, but reaching a plateau for thick laminae. In general, the ‘in-situ’ effect applies 

to every lamina constituting the investigated laminate, and the formulations are distinguished 
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into three different categories:  

 The outer plies, constrained only once by a ply of different orientation.  

 The thin embedded plies, which are constrained at both the upper and lower lamina 

surfaces by plies of different orientation.  

 The thick embedded plies, defining the thickness threshold at which the strength 

remains approximately constant. 

Table 3: ‘In-situ’ strength formulae assuming shear non linearity as proposed by Tsai-Hahn [12]; [13]; [14].

Thin embedded Thick embedded Outer 

���� � 8���������� 1.12√2 �� 1.79� ����������� 48������� 12������ + 18���� 24����������� ��(1 + ������ ) − 1

3�������� 2 ���� �� − 1�� ���(2��)
����

���� 2 � 1

E� − v���
E� �� ��� =

1��� ��� + �����
The parameter � =  2.44 ∙ 10��, is a typical value for CFRPs taken from [12], after the Tsai-

Hahn equation matched the experimental results of the authors. In the case of the embedded 

plies, the ‘in-situ’ strengths are predicted from the maximum value between the formulations 

corresponding to thick and thin plies, since the threshold differs for each FRP material. The 

strength predictions found for the IM7 8552 CFRP material for all cases defined by the stacking 

sequences of Table 2, are recorded below. 

Table 4: ‘In-situ’ strengths of IM7 8552 CFRP. 

In-situ Strength Outer Embedded, �� Embedded, 2�� Initial ����(MPa) 72.8 115.0 101.4 64.0 ���� (MPa) 97.8 120.4 112.6 91.1 ���� (MPa) 115.5 142.2 133.0 107.6 
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3.3 Estimation of material damage  

The moment failure initiates, the material stiffness matrix will be degraded as per the bilinear 

progressive damage law of Figure 3, which describes the translaminar and intralaminar damage 

evolution. Depending on the failure mode, the method requires the equivalent stress, strain, and 

fracture toughness given from equations (4)-(13), for predicting the damage variables causing 

the material degradation governed by the equations (14)-(20). 

Figure 3: Progressive damage law, a) bilinear material degradation, b) damage evolution, ��: characteristic 

element length. 

 Fibre tensile damage: 

G�� = G��, σ� = X�, ε� =
X�
E� , σ�� = σ�, ε�� = ε� (4-8)

 Fibre compressive (f) and matrix crack damage (m), [7]: 

G�� = G�������� = �〈σ�(�,�)〉σ�� �� G�� + �σ��(�,�)σ�� �� G��� + �σ��(�,�)σ�� �� G��� (9)

ε�� = ��〈ε�(�,�)〉�� + �ε��(�,�)�� + �ε��(�,�)�� (10)

σ�� = ��〈σ�(�,�)〉�� + �σ��(�,�)�� + �σ��(�,�)�� (11)

ε�(�,�)
= ε�������� (12)

σ�(�,�)
= σ�������� (13)

 Degradation of the material stiffness matrix (plane stress conditions): 

dQ�� = (1 − d�)Q��
dQ�� = (1 − d�)(1 − d�)Q��
dQ�� = (1 − d�)(1 − d�)Q��
dQ�� = (1 − d�)G��

d� = 1 − (1 − d��)(1 − d��)

d� = 1 − (1 − d��)(1 − d��)

d� = 1 − (1 − d��)(1 − d��)(1 − 0.9d��)(1 − 0.5d��)

(14-20)
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3.4 FE model 

Simplifying the case-study assuming plane-stress conditions, the ABAQUS OHT model was 

created by conventional finite-strain shell elements of reduced integration (S4R). The model 

was partitioned for better mesh control as Figure 4 indicates. The region of interest was meshed 

by a two-way bias, creating smaller elements around the hole, to efficiently capture the stress 

concentration of the area. Regions of insignificant information were meshed either by a constant 

element size setting, or by embedded algorithms of ABAQUS. Moreover, the left vertical 

boundary of the model was pinned, whereas only a tensile, linearly increased displacement 

input was enforced at its right side. Consequently, the circularly partitioned area of the model, 

contained slightly distorted elements of 1.096 maximum aspect ratio. 

Figure 4: OHT model dimentions, partitions and final mesh configuration in ABAQUS. 

In addition, the in-situ effect slightly alters the way that the laminate was introduced to the 

software. The theory can only be applied if consecutively stacked plies of the same orientation 

are merged as one lamina of equivalent thickness, with its properties maintained apart from its 

affected strengths (����, ���� and ����). For the investigated stacking sequences, this occurs at 

planes of major and repeated lay-up symmetry, yielding embedded plies of double the 

thickness. Lastly, the model was finalised through a two-factorial parametric analysis, which 

defined the prementioned mesh layout and the applied time increment, so that the force-

displacement curve output is a product of solution convergence. 

3.5 VUMAT user subroutine 

The user subroutine was developed in FOTRAN 94 programming language, which is 

compatible with the FE software. Included, are the aforementioned equations governing the 

material response in failure initiation and damage evolution, whereas the material properties as 

well as the OHT model were introduced in ABAQUS CAE. Figure 5 demonstrates how the 
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software interacts with the VUMAT LaRC05 2D/ Progressive subroutine, which calculates the 

stresses at every material point and enforces material degradation or element deletion when it 

is appropriate. 

Figure 5: Interaction bwtween ABAQUS and VUMAT LaRC05 2D/ Progressive user subroutine. 

4 RESULTS AND DISCUSSION 

The maximum force (����) prediction emerged at absolute laminate fracture, after the 

corresponding FEs were deleted either by over distortion, or by fibre failure. Moreover, the 

laminate split event, occurred rapidly after the first fibre failure incidences of the elements 

located near the hole, observation that complies with the brittle nature of CFRPs as well as with 

the results of the relevant study of Zhang et al  [7]. 

As Figure 6 depicts, the model predicted matrix cracking as first ply failure, appeared at the 

hole boundary. As the OHT model was further elongated, the matrix crack damage mode 

developed and affected predominantly nearby elements (Figure 6-b). Matrix damage further 

accumulated around the hole until a final stage (Figure 6-d), after which fibre failure initiated 

and rapidly expanded due to the high stress concentration imposed by the material non-

homogeneity characterized by severe material degradation. 

Figure 7 compares the ABAQUS outputs presented as force displacement curves, with the 

ultimate OHT strengths reported by Hexcel for the different laminate configurations of Table 2 

[8]. The figure proves that the VUMAT LaRC05 2D/ Progressive method is consistent in 

predicting the laminate strength with considerable accuracy, irrespective the specimen stacking 

sequence. Moreover, the simulation errors have been found about 2%, 6%, and 9% for the 

[50/40/10], [10/80/10] and [25/50/25] laminate configurations, respectively. Finally, the 

laminate failure modes observed in ABAQUS, are in accordance with those mentioned in the 

ASTM standard [15], for every examined case. 
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Figure 6: Representation of matrix crack initiation and propagation at several time frames [10/80/10]. 

Figure 7: Comparison study between numerical and testing OHT data of the IM7 8552 CFRP materlal for 

diferent lamina stacking sequences. 

Table 5: Simulation errors. 

Laminate 
Maximum Force, ���� (N) 

Error (%) 
Numerical Experimental, [8] 

[50/40/10] 85155.5 83197.0 2.35 

[25/50/25] 49554.6 45350.4 9.27 

[10/80/10] 39399.1 41940.2 6.05 
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Shaping the understanding on how the failure criterion impacts the maximum force, a similar 

VUMAT user subroutine was created based on the Max Stress criterion. The outputs of the 

subroutines for the [25/50/25] laminate are compared in Figure 8-a, where a higher maximum 

force is predicted when the Max Stress criterion is considered. The VUMAT Max Stress 2D/ 

Progressive method overshoots the experimental strength value by 48.9%, rendering the 

criterion highly inappropriate. However, the criteria share the same failure index and 

propagation law in fibre tension. 

Figure 8: a) Difference in maximum force prediction between the LaRC05 2D and the Max Stress 2D failure 

criteria, b) Transverse normal and in-plane shear failure envelopes of the criteria, (created in Matlab). 

The reason LaRC05 criterion meaningfully enhances the model response in last ply failure 

algorithms, is hidden in the advanced prediction of the matrix crack failure initiation, as the 

failure envelopes of Figure 8-b depict. Moreover, according to [13], the modified Mohr-

Coulomb criterion better fits lamina-level tests under transverse normal and longitudinal shear 

stresses. Figure 8-b explains that irrespective the value of the constant c, which describes an 

arbitrary ��� − �� load path at a material point, LaRC05 always predicts matrix cracks in 

transverse tension faster than the Max Stress criterion. Since the OHT experiment causes 

transverse tension to almost every ply within the laminate, LaRC05 always predicts smaller 

ultimate OHT strengths. In the case of the Max Stress criterion, the force – displacement curve 

continues in higher displacements, as more intensive stresses are required for developing the 

needed conditions for matrix crack initiation and propagation within the material, to eventually 

cause the onset of fibre failure. 

5 CONCLUSIONS 

The use of phenomenological failure criteria substantially increases the design efficiency of 

laminated structures. The research demonstrates a method which effectively captures the failure 

incidences in generally orthotropic laminates, predicting valuable initial design parameters such 

as the OHT strength. Moreover, the introduction of the bilinear progressive damage law to 

simulate the material fracture, enhances the accuracy of high stress concentration applications. 

Finally, the outcome of this research shows that aerostructures may be virtually certified 

through FEA in the foreseeable future, should further effort is being deposited. 
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