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A B S T R A C T   

It is vital to prevent brittle cracks in large structures. This is particularly important for a number of industry 
sectors including offshore wind, Oil & Gas, and shipbuilding where structural failure risks loss of human life and 
loss of expensive assets. Some modern steels exhibit high Charpy energy – i.e. high initiation fracture toughness, 
but poor resistance to crack propagation – i.e. low crack arrest toughness. The correlation between initiation and 
arrest toughness measured through small-scale testing is investigated in five different steels, which include S355 
structural steel (with two different thicknesses), X65 pipeline steel, two high strength reactor pressure vessel 
steels and EH47 shipbuilding steel. Small scale mechanical tests were carried out to characterise the materials’ 
properties and were compared to the materials’ microstructures. A wide range of tests were carried out, including 
instrumented Charpy, drop weight Pellini, fracture toughness, tensile testing, and optical microscopy. Nil 
ductility transition temperature (NDTT) is used to characterise a material’s arrest properties. Initiation fracture 
toughness correlated with higher upper shelf Charpy energy and smaller average grain sizes, as expected, 
however none of these correlated well with the arrest toughness measured through NDTT. The NDTT correlated 
most strongly with the T27J temperature which indicates the start of lower shelf of the Charpy curve. This 
correlation held for all materials including those where the NDTT lies on the upper shelf of the Charpy curve. 
While initiation fracture toughness can be predicted through high Charpy toughness and operation temperatures 
on the upper shelf, crack arrest behaviour should be predicted from characteristics of the ductile to brittle 
transition temperature, for example by using the T4kN from instrumented Charpy tests or T27J.   

1. Introduction 

Crack initiation and propagation is often experienced by engineering 
components and structures subjected to operational loading conditions. 
An important issue that needs to be understood for design and life 
assessment of such structures is the ability of a material to arrest a fast- 
running brittle crack, particularly for structures where fracture may 
initiate in areas of high local stress or low toughness, for example in the 
welds [1]. This is particularly important for a number of industry sectors 
including offshore wind, Oil & Gas, and shipbuilding where structural 
failure risks loss of human life and loss of expensive assets. The load 

cannot be transferred through a crack, so once it grows too large the 
whole structure will fail. 

Structures in offshore environments are exposed to very harsh 
loading conditions, with both wind and wave loading in addition to the 
operating loads i.e. its own mass and moving components [2,3]. In such 
structures a crack may initiate around a weld region, which is the part of 
a structure most susceptible to cracking due to material mismatch, heat 
input which changes material properties, locked-in residual stresses and 
increased chance of impurity inclusions during the welding process [4]. 
Smaller components can be heat-treated after welding, to reduce the 
damaging effects of welding residual stresses and reset the materials 
microstructure and larger structures can receive local heat treatment 
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[4]. However, this is simply not commercially viable for very large 
components such as ships, wind turbine support structures, or long 
welded pipelines. 

An alternative approach to initiation prevention is the crack arrest 
approach. Using this concept, it can be considered that fracture may 
occur in a local region of high stress, embrittlement or under accidental 
damage. However the material’s properties are carefully controlled so it 
has a sufficient toughness to inhibit fracture propagation outside this 
region [5]. When the crack arrests before growing too long, catastrophic 
failure can be prevented. This is vital for a structure with welds, which 
can be a hotspot for defects or embrittled zones which promote fracture 
initiation. Moreover, the crack arrest approach can be more reliable than 
the initiation approach at preventing catastrophic fracture as it accounts 
for accidental damage and is effective even once a crack is growing [6]. 

If brittle fracture occurs in a high toughness steel, the initial driving 
force can be incredibly high, which means the crack will not arrest but 
propagates until the whole structure fails. This means that some modern 
steels with very high fracture initiation toughness can be at risk of poor 
crack arrest behaviour if an accident occurs. This may be a concern for 
some modern steels which have a very good Charpy toughness, but a 
poor resistance to fracture propagation [7,8]. In structures made of such 
materials, accidental damage could result in total structural failure due 
to the lack of conservatism when brittle crack arrest is not considered. In 
fact, it has recently been shown that although a smaller average grain 
size improves fracture initiation toughness, it will worsen the brittle 
crack arrest toughness [9]. In addition, a material’s crack arrest prop-
erties are heavily temperature dependent for materials which exhibit 
ductile to brittle transition i.e. ferritic steels. It may be considered that 
ductile behaviour will occur if a material is operating ats a temperature 
on its upper shelf, but this is not always assured [7]. An example could 
be impact or dynamic loading where the material experiences a shift 
upwards of the ductile to brittle transition temperature compared to 
quasi-static loading behavior [10]; i.e. steels operating at temperatures 
on their upper shelf can experience brittle crack initiation under dy-
namic load events such as crash, impact or earthquakes. 

In recent years, a number of successful numerical models have been 
developed to simulate and predict crack arrest in steels. Through 
adaptation of models used to describe fracture initiation, the mechanism 
behind crack propagation and arrest is understood to be governed by the 
local stress criterion [11–20]. That is, crack propagation is determined 
by the stress state a short distance ahead of the crack tip. This is 
commonly assessed using the RKR criterion which was originally 

developed to predict fracture initiation toughness [21]. This can be 
further explained through grain-scale micromechanical models [22–25]. 
Alongside the recent theoretical advances explaining the mechanism 
behind crack arrest, there is interest in determining which small-scale 
test methods are effective at predicting crack arrest behaviour and 
how a material’s different mechanical properties are related to one 
another. 

The purpose of this study is to develop a better understanding of the 
crack arrest behaviour in a range of modern steels by performing me-
chanical testing and metallurgical analysis of the materials’ micro-
structures, which have been suggested to influence crack arrest 
properties [9,26–29]. The results from this study correlate the me-
chanical properties with the microstructure of five different modern 
structural steels to evaluate the relevant parameters necessary for frac-
ture prevention. 

2. Empirical test methods for evaluating crack arrest 

Crack arrest properties are typically measured by one of the 
following two parameters; 1-crack arrest toughness, Ka, or 2- crack ar-
rest temperature (CAT). The crack arrest toughness, Ka, can be defined 
as the critical stress intensity factor for crack arrest under the mode I 
fracture mechanics loading condition above which a fast-running crack 
is arrested, Kca. Alternatively, a lower bound approximation of crack 
arrest toughness, KIa, can be used, although this may give a conservative 
estimate [30–32]. The CAT is the lowest temperature that a fast-running 
brittle crack will arrest in a certain material under specified conditions. 
The CAT can be determined by initiating a brittle crack in a material at a 
range of temperatures and finding the lowest temperature where a 
brittle running crack arrests [5]. In such experiments, fracture is typi-
cally initiated by impacting a region with a notched brittle weld bead. 
KIa and Kca can be determined through standardised methods such as 
those described in ASTM E1221 and JWES 2815 [33–35]. 

Although many empirical equations are available in the literature to 
predict the structural behaviour in terms of crack arrestibility from 
small-scale test results, very few standards recommend the use of them. 
The only mention is in the R6 defect tolerance assessment procedure, 
which recommends the use of drop weight Pellini testing for applica-
tions in the UK nuclear industry [36]. This is because as the dimensions 
and particularly the thickness of the plates employed in many industrial 
applications increase, the empirical equations are no longer valid, and 
may not fully describe the crack arrest behaviour of actual structures. 

Nomenclature 

a Crack length 
a0 Initial crack length 
B Thickness 
E Elastic Young’s modulus 
Ka Crack arrest toughness 
Kca Crack arrest toughness: lower bound approximation 

measured following ASTM E1221 
KIa Crack arrest toughness: critical stress intensity factor for 

crack arrest under mode I fracture mechanics loading 
condition 

KIC Initiation fracture toughness: critical stress intensity factor 
for crack initiation under mode I fracture mechanics 
loading condition 

KJC an elastic-plastic equivalent stress intensity factor derived 
from the J-integral at the point of onset of cleavage 
fracture. 

σy Yield strength 
T Temperature 

T0 Reference temperature at which a material’s initiation 
fracture toughness is 100 MPa√m 

T27J Reference temperature at which a material’s Charpy 
impact energy is 27 J 

T4kN Reference temperature at which a material’s arrest force 
during instrumented Charpy test is 4kN 

TKIa Reference temperature at which a material’s arrest 
toughness is 100 MPa√m 

ASME American Society of Mechanical Engineers 
CAT Crack Arrest Temperature 
CTOD Crack Tip Opening Displacement 
CVN Charpy V Notch 
EBSD Electron Backscatter Diffraction 
NDTT Nil Ductility Transition Temperature 
RoA Reduction of Area 
RPV Reactor Pressure Vessel 
SEN(B) Single Edge Notched Bend fracture toughness test 
STRA Short Transverse Reduction of Area 
UTS Ultimate Tensile Strength  
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Although crack arrest toughness is thought of as a material property, 
it is strongly dependent on the plate thickness, test temperature, applied 
stress [37–40]. Furthermore, brittle crack arrest toughness shows a 
dependence on specimen width as well as manufacturing processes 
[41–44]. This makes it complex to predict the crack arrest properties of 
large structures from subsize specimens, thus introduces a need for a 
sufficiently conservative approach. 

2.1. Small-scale testing correlations for steels 

The ability of a material to resist growth of a propagating brittle 
crack is analogous to its crack arrest properties. This is measured using 
the CAT, the minimum temperature where the material arrests a brittle 
running fracture. Since crack arrest toughness depends on temperature, 
the ductile to brittle transition of the material must be understood. 
Reference temperatures taken from the transitional behaviour include 
the Charpy impact energy (e.g. temperature at onset of lower shelf) and 
nil-ductility transition temperature (NDTT) which can be determined 
through small-scale testing. Empirical relationships are available in the 
literature to predict the large scale behaviour from these reference 
temperatures [45,46]. However, the empirical equations are validated 
for certain specimen dimensions of a given material at a specified 
thickness, under a certain loading rate. This means that they cannot 
necessarily be applied to represent a large structure which would almost 
certainly not meet the strict validity criteria. Therefore some researchers 
recommend using the NDTT to quantify a material’s crack arrest prop-
erties [47]. 

The following relationships were determined by analysing a large 
amount of data from Charpy-V-Notch (CVN) and drop weight Pellini 
impact tests. Many other empirical relations are available in the litera-
ture and this section highlights just a small number of those [34,48–55]: 
Pellini NDTT = 120J CVN temperature + 50 ◦C (1)  

Pellini NDTT = 40J CVN temperature + 60 ◦C (2)  

Pellini NDTT = 27J CVN temperature + 60 ◦C (3) 
Eqs. (1)–(3) can be used to predict the crack arrest temperature by 

using Eq. (4). This enables use of CVN results to predict the CAT, 
although of course the NDTT from Pellini testing can be used [5]: 
CAT = NDTT + 40 ◦C (4) 

From the simple relations given above, a range of tests were carried 
out to make corrections for a variation in applied stress and thickness 
[47]. This relationship uses the reference conditions of the CAT for 124 
MPa applied stress (σ) on a 25 mm thick (B) plate and adds corrections 
for other stresses and thicknesses. This leads to the semi-empirical 
Wiesner equation given below, which is valid up to a thickness of 250 
mm [5]: 

CAT = [NDTT + 10] +
[

ln[σ]
0.046

− 105
]

+

[

153(B − 5)
1

13 − 190
]

◦C (5) 

This in turn has led to the formula commonly used today, in the R6 
defect tolerance assessment procedure for the UK nuclear industry 
[36,56]: 
CAT = NDTT + 21.7lnσ + 173.2(200B − 1)

1
13 − 285 ◦C (6) 

The NDTT is the most common parameter which is used to predict 
the CAT from small-scale test results because there has been a wide 
range of research into different materials and their weldments. Addi-
tionally, the drop weight method measures the ability of the material to 
resist a propagating brittle crack and can be explained theoretically 
using fracture mechanics [34,57]. Because of this, NDTT will be used as 
a measure of crack arrestibility in this work. 

2.2. Reference curves 

Reference curves are used extensively in the pressure vessel industry 
to give a lower bound crack initiation toughness for all the grades of 
pressure vessel steel at temperatures within the transition region [43]. 
Originally, the American Society of Mechanical Engineers (ASME) 
reference curve was used in industry [58], which gives an estimate based 
on extensive experimental results. The master curve approach is an 
alternative statistical approximation which may give a higher degree of 
accuracy [59,60]. These approaches use a reference temperature (for 
example T0, the temperature corresponding to a mean initiation fracture 
toughness of 100 MPa√m) for the material to calculate its toughness at a 
given temperature [43]. The median fracture toughness, KJC is predicted 
using the following equation: 
KJC(median) = 30+ 70e0.019(T−T0) Ref.[43] (7)  

where KJC is in MPa√m and T, the assessment temperature, has the unit 
of ◦C (i.e. degrees Celsius). It is assumed that both the initiation 
toughness, KJC, and lower bound approximation of crack arrest tough-
ness, KIa, data are expected to exhibit the same temperature dependence 
since the temperature dependence of both toughness values is controlled 
by the atomic arrangement, or crystal structure of the material. Conse-
quently, the temperature dependence is expected to be common to all 
ferritic steels [58]. Through analysis of a large amount of experimental 
data, the following relations which are relevant to this work were pro-
posed in the literature [58,61]: 
KIC = 51.276+ 51.897e0.036(T−NDTT) Ref.[61] (8)  

KIa = 49.957+ 16.878e0.028738(T−NDTT) Ref.[61] (9)  

where KIC and KIa are in MPa√m and T, the assessment temperature, has 
the unit of ◦C (i.e. degrees Celsius). An alternative correlation which has 
been developed in previous studies takes the reference temperature from 

Table 1 
Summary of small-scale testing carried out and specimen geometries.  

Test type Number of specimens 
for each material 

Extraction 
location 

Orientation (of notch 
or gauge region) 

Thickness, B (mm) Width, W 
(mm) 

Length, L 
(mm) 

Tensile Roundbar (BS EN 
ISO 6892-1) 

3 Mid-thickness Along rolling direction 
if known 

8 (gauge diameter) n/a 48 (gauge 
length) 

Tensile STRA (BS EN 10164) 3 Through- 
thickness 

Through-thickness 10 (gauge diameter), reduced to 6 (gauge 
diameter for materials of 30 mm thickness or 
less) 

n/a Full plate 
thickness 

Instrumented Charpy V 
Notch (BS EN ISO 148-1) 

20 Mid-thickness Transverse to rolling 
direction 

10 10 55 

Pellini - P2 size (ASTM 
E208) 

8+ (if more needed to 
determine NDTT) 

Quarter wall Through-thickness 19 50 130 

SEN(B) Fracture Toughness 
(BS 7448-1) 

3 Mid-thickness Transverse to rolling 
direction 

20 20 120  
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instrumented Charpy testing to describe the arrest toughness using the 
temperature at which the force after fracture measured by an instru-
mented Charpy test is 4 kN, T4kN [62]. 

KIa = 30+ 70e

(

T−T4kN−12.3
52.63

)

Ref.[62] (10) 
Although KIa will not be determined in this work, the predictions 

from these methods will be compared with each other to determine their 
agreement with one another and likely conservatism using KIa results 
from other researchers to give realistic KIa ranges. 

3. Experimental procedure and specimen manufacture 

The test program and specimen key information are summarised in 
Table 1, with further details explained below. The materials used are 
summarised in Table 2. 

Where possible, the specimen orientation and extraction location 
were kept the same for each material, however this was not always 
possible. For example, no matter the extraction location, a 19 mm thick 
Pellini specimen will sample a larger proportion of the 28 mm thick steel 
plate than the 90 mm thick steel plate. Similarly, it was decided to use 
only subsize SEN(B) fracture toughness tests rather than full plate 
thickness (as is recommended in the standard) to be able to limit the size 
effects which could not be captured through the other test methods and 
make the results more comparable to each other. The rolling direction 
was not known for materials M05 and M06. The specimen extraction 
plan is shown in Appendix A. 

Drop weight Pellini testing was carried out using Pellini P2 speci-
mens (with dimensions given in Table 1), following ASTM E208 [34], to 
measure the NDTT of each material from which CAT can be estimated. 
Pellini specimens were made up of a small block of material on which a 
brittle weld bead was laid using a hard-facing electrode and then 
notched. The specimen was cooled to the desired temperature and was 
impacted by a dropped weight on the reverse (unwelded) side in order to 
initiate a brittle crack running from the notched weld into the base 
metal. The impact energy is specified depending on the material’s yield 
strength: 350 J for σy up to 410 MPa and 400 J for σy between 410 MPa 

and 620 MPa. A “no-break” result is where a brittle crack initiates but 
does not spread across the full width of the specimen i.e. it initiates and 
is arrested. If the crack spreads at least across the full width of the 
specimen, then it was considered to be a “break” result. The test was 
repeated at a range of temperatures to find the NDTT, which is the 
highest temperature at which the specimen shows a “break” result i.e. all 
specimens at temperatures above this show “no-break” results. 

Furthermore, instrumented Charpy V notch (CVN) tests were carried 
out at a range of temperatures, following BS EN ISO 148-1 [63], to 
determine the ductile to brittle transition curve and upper shelf absor-
bed energy which is commonly used in industry to estimate fracture 
toughness. Instrumented Charpy tests differ from traditional Charpy 
tests by measuring the force on the hammer throughout the test as well 
as the absorbed energy. The post-fracture force, also known as the arrest 
force, was extracted for each specimen which showed arrest behaviour. 
This data was analysed to determine at what temperature the post- 
fracture force would be 4 kN, T4kN. 

Tensile testing was carried out on all materials under two different 
conditions. Traditional tensile tests following BS EN ISO 6892 [64] were 
carried out to determine the yield strength and ultimate tensile strength 
(UTS) of the materials along with the ductility which was taken as the 
reduction of area (RoA) or elongation in this work. Additionally, alter-
native tensile tests, “short transverse reduction of area” (STRA) tests 
were carried out to measure the ductility in the through-thickness di-
rection following BS EN 10164 [65]. This was done to investigate 
whether the ratio of ductility between the rolling axis and through- 
thickness axis can be used as a proxy for the material’s texture, which 
is believed to influence crack arrestibility [66,67]. 

For the microstructural analysis, optical microscopy was carried out 
on all materials. The specimens were mounted, polished, and etched 
with 2% nital solution to reveal the grain boundaries. In order to best 
consider the range of microstructures present throughout the thickness 
of the materials, the grain size analysis was carried out at the quarter 
wall location on the plates. It was decided to measure the grain size for 
each steel by the linear intercept method, following ASTM E112 [68], 
because the grains did not appear to be equiaxed. This method reports 
the grain size as the average grain diameter which is the geometric mean 
of the average grain diameter in each of the principal directions. In order 
to determine the grain aspect ratio, the grain sizes were measured in 
each of the three orthogonal directions of the plate; rolling direction, 
through thickness direction, and perpendicular to the rolling direction. 

Finally, Single Edge Notched Bend, SEN(B), fracture toughness 
testing was done on each material, following BS 7448-1 [69], to quan-
titatively determine the fracture toughness as the maximum crack tip 
opening displacement (CTOD δm). The testing was carried out at a 
temperature on the upper shelf as determined by the Charpy testing so 
that they can be compared to the upper shelf CVN energy for the ma-
terial. Typically this was room temperature for most of the steels. In 
addition to testing all of the steels at their upper-shelf temperatures, half 
of the steels (M01, M02 and M06) had fracture toughness tests carried 
out at temperatures within the transition temperature and lower shelf, to 
help support discussions about crack arrest predictions based on the 
Master Curve. The SEN(B) specimen geometries are summarised in 
Table 1, and each specimen had an initial crack length, a0, of 0.5 W (i.e. 
10 mm). The specimens were not side grooved as this is not necessary for 
small sized specimens like the ones employed in the present study. 

4. Test materials 

4.1. Selected materials 

The test programme in this study was carried out on five materials, in 
six batches, which are summarised in Table 2; 1- reactor pressure vessel 
(RPV) A543 steel with the thickness of 28 mm (denoted M01), 2- RPV 
A302 steel with the thickness of 28 mm (denoted M02), 3- X65 pipeline 
steel with the thickness of 30 mm (denoted M03), 4- S355G10 + M 

Table 3 
Summary of tensile properties of the steels considered in this research. Uncer-
tainty is taken as two standard deviations of the results.   

M01 M02 M03 M04 M05 M06 
Material RPV 

A543 
RPV 
A302 

X65 S355 
G10 + M 

S355 
G10 + M 

EH47 

Thickness 
(mm) 

28 28 30 90 50 80 

Average E 
(GPa) 

233 ±
16 

227 ±
15 

188 
± 5 

208 ±
66 

217 ±
24 

270 ±
112 

Average UTS 
(MPa) 

845 ±
31 

740 ±
17 

613 
± 21 

509 ± 2 536 ±
12 

622 ±
15 

Average σy 
(MPa) 

756 ±
34 

601 ±
13 

566 
± 17 

386 ± 4 444 ±
32 

490 ±
10 

Average RoA 
(%) 

73 ± 4 66 ± 2 81 ±
2 

77 ± 1 83 ± 1 78 ± 5 

STRA Average 
UTS (MPa) 

835 ±
18 

733 ±
7 

595 
± 5 

501 ± 2 512 ± 1 618 ±
3 

STRA Average 
RoA (%) 

57 ± 6 55 ± 4 81 ±
3 

75 ± 4 77 ± 5 79 ± 1  

Table 2 
Summary of the different steels used in this research.  

Material 
Reference 

M01 M02 M03 M04 M05 M06 

Material RPV 
A543 

RPV 
A302 

X65 S355G10 
+ M 

S355G10 
+ M 

EH47 

Thickness 
(mm) 

28 28 30 90 50 80  
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structural steel plate with the thickness of 90 mm (denoted M04), 5- 
S355G10 + M structural steel plate with the thickness of 50 mm 
(denoted M05), and 6- EH47 shipbuilding steel with the thickness of 80 
mm (denoted M06). The materials selected in this study are widely used 
in offshore Oil & Gas, nuclear power plants and offshore wind applica-
tions, therefore the obtained results and drawn conclusions from this 

research are expected to have a significant impact on design and life 
assessment of engineering components and structures employed in a 
wide range of industries. 

4.2. Mechanical properties – Tensile (roundbar and STRA) and chemical 

The tensile and chemical properties of the materials considered in 
this study are given in Tables 3 and 4, with an example tensile curve for 
each material given in Fig. 1 and the Young’s modulus region emphas-
ised in Fig. 2. The wide variation in yield stress, σy, and the UTS between 
the different materials is evident in Table 3. Materials M04 and M05 
(both nominally S355 structural steels) are an excellent example to 
demonstrate the variation in “off-the-shelf” steels. They were the same 
steel grade and produced through the same manufacturing route, how-
ever they show a difference in mechanical properties and chemical 
composition. This is common for steels because the standard grades 
allow for a great deal of flexibility [70]. It is worth noting that there is 
generally low scatter for most of the tensile test results between the 3 
specimens of each material although due to the low number of speci-
mens tested, the scatter is of low statistical significance. However, ma-
terials M04 and M06 show high scatter in their elastic modulus results. 
For M04 this is due to one much lower result of 171GPa and for M06 
there was one much higher result of 334GPa which is quite an unex-
pected and extreme value. This kind of scatter in elastic modulus is 
common for steels and may be due to local inhomogeneities in the 
material which were picked up during the small sample size of the 
tensile specimen or minor inconsistencies in test procedure [70–72]. 
Generally, both the UTS and reduction of area (RoA) were lower in the 
STRA test (i.e. through thickness direction) as opposed to the tensile 
tests along the rolling direction. However for materials M03 and M06, 
the RoA was the same between the two orientations. 

As seen in Fig. 1, there is generally negative trend between strength 
and ductility, with the highest strength steel, M01, having a low strain at 
failure and the lowest strength material, M05, having the highest strain 
at failure. However, this trend is not consistent for all the steels, for 
example material M03 which has an intermediate strength but a very 
low strain at failure. The increased strain at failure for materials M04 
and M05 may be due to their low carbon equivalent content which 
contributes to a higher ductility. As seen in Tables 3 and 4, the RPV steels 
(M01 and M02) have the highest carbon and carbon equivalent content 
in comparison to the other steels, hence higher yield stress values were 
observed in RPV steels. Further comparison between the chemical 
composition of the steels show that there is a variation in Mn and Cr 
contents: for example, M01 has a far smaller Mn content than the other 
five batches of steel, which is replaced by a greater Cr and Ni content. 
Apart from these points of note, the steels have relatively similar com-
positions. The other variations in tensile properties are likely to be due 
to microstructural differences between the steels such as their grain size, 
grain orientation and phase structure. 

4.3. Microstructure analysis 

The micrographs of all six batches of steels considered in this study 
after polishing and etching is shown in Fig. 3. The examined slices were 
extracted from mid-thickness of each batch of material. In Fig. 3, X in-
dicates the rolling axis and Z indicates the through thickness axis. The 
micrographs show the variability in carbon contents for each of the 
materials, with carbide and pearlite regions evident in M01 and M02 
which had the greatest carbon contents than the other materials, which 
show more pure ferritic regions. In these micrographs, the grains appear 
to be elongated along the rolling direction, which is investigated 
through grain size analysis. The average grain size measured for each 
steel, which is the combined average, is summarised in Table 5. As seen 
in Table 5 and Fig. 3, the largest and smallest average grain size has been 
found in RPV A543 (M01) and EH47 (M06), respectively. 

Fig. 4 correlates the aspect ratio of ductility (using RoA) against the 
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Fig. 1. Tensile curves for all six materials used in this study.  

Table 4 
Summary of chemical composition of the steels considered in this research.   

M01 M02 M03 M04 M05 M06 
C 0.17 0.19 0.04 0.07 0.06 0.05 
Si 0.38 0.31 0.18 0.27 0.35 0.22 
Mn 0.3 1.47 1.63 1.57 1.54 1.41 
P 0.007 0.012 0.006 0.013 0.012 0.01 
S 0.005 0.004 <0.002 <0.002 <0.002 0.005 
Cr 1.49 0.23 0.17 0.035 0.16 0.21 
Mo 0.46 0.52 0.12 0.007 0.013 0.25 
Ni 2.95 0.59 0.48 0.34 0.032 0.78 
Al 0.014 0.012 0.027 0.032 0.035 0.039 
As <0.004 <0.004 <0.004 <0.004 <0.004 <0.01 
B <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.003 
Co 0.008 0.006 <0.004 <0.004 <0.004 <0.01 
Ceq 

(IIW)  
[73] 

0.81 0.62 0.40 0.36 0.35 0.43  
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aspect ratio of grain size: these values are the ratio of the RoA (or 
average grain size) along the rolling axis and that along the through- 
thickness axis. If the anisotropy of the material’s tensile properties is 
due to elongated grains in a certain direction, then this ratio would be 
expected to follow a 1:1 trend. However, the results showed a direct 
negative correlation, and a significant offset from the origin, which in-
dicates that bulk measures of anisotropy cannot necessarily identify 
microstructural grain elongation. Other microstructural factors that can 
contribute to a steels’ macroscopic behaviour might include the size and 
distribution of inclusions, and centreline segregation, which have not 
been included in the microstructural consideration here. Further anal-
ysis of the grain aspect ratio in Fig. 5 shows that there is no strong 

correlation between grain size and the aspect ratio, although as these 
steels are all very finely grained and there is not enough variation be-
tween them to make a firm conclusion. 

5. Experimental results from small-scale tests 

5.1. Instrumented Charpy V notch impact test results 

The key results from the instrumented CVN tests are shown in 
Table 6, with the fit to the Charpy curve for each material shown in 
Fig. 6. It is evident that material M02, one of the RPV steels, is designed 
for use at elevated temperatures as the transition for this material occurs 
well above room temperature. The other steels show a wide range of 
upper shelf CVN energy values, but their transition region (with varying 
slopes) lies in the same window of around −100 ◦C to −50 ◦C, making 
them suited to work at ambient temperatures. Material M03 has the 
highest upper shelf Charpy energy, followed by materials M05 and M06 
which both have almost the same upper shelf Charpy energy. Despite 
being the same steel grade as M05, M04 has a markedly lower upper 

Fig. 3. Microstructure of (a) M01, (b) M02, (c) M03, (d) M04, (e) M05, and (f) M06 steels.  

Table 5 
Grain sizes of the steels used in this study (measured to ASTM E112).   

M01 M02 M03 M04 M05 M06 
Average Grain 

Size (μm) 
9.5 ±
1.4 

7.0 ±
1.2 

5.2 ±
1.3 

5.6 ±
0.9 

7.5 ±
0.9 

4.1 ±
0.5  
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shelf Charpy energy and although they had the highest tensile strength, 
the RPV steels have the lowest upper shelf Charpy values of any of the 
materials. The reference temperatures given in Table 6 will be discussed 
later, but suffice to say that there seems to be no relationship between a 
material’s T4kN and its T27J – for example for materials M03, M04 and 
M06 the T27J is notably higher than the T4kN, however a reverse trend is 
seen for materials M01 and M02 and no difference is seen between the 
two for material M05. 

5.2. Pelini test results 

The Pellini test results are summarised in Table 7, with the full re-
sults given in Fig. 7. In this figure, the open white points indicate that a 
fracture event occurred at this temperature and the solid black points 
indicate that no fracture event occurred at this temperature. At some 

temperatures, both “break” and “no-break” results occurred, and these 
are indicated with a mix of the two symbols. The arrows indicate the 
temperature above which no fracture event occurred– i.e. the crack was 
arrested and it is above the NDTT of the material. A low NDTT indicates 
good brittle crack arrestibility for that material. 

The two RPV steels, M01 and M02 had the lowest and highest NDTT 
values respectively. Intermediate NDTT values were seen for the other 
steels, with material M03 having a slightly higher value followed by 
materials M04 and M06, and material M05 having a slightly lower value. 
These results show some similarities with the Charpy results in that 
materials M01 and M06 had shallower Charpy transition curves than the 
other materials and here they show some temperatures with both break 
and no-break results which indicates a wide transition region. However, 
material M02 which had a shallow Charpy transition curve showed very 
well defined Pellini behaviour which indicates a narrow transition re-
gion and shows disagreement with the Charpy curve. 
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Table 6 
Summary of Charpy results for each material, including reference temperatures.   

M01 M02 M03 M04 M05 M06 
CVN Upper Shelf (J) 122 140 410 210 295 297 
T4kN (◦C) −100 14 −90 −113 −112 −156 
CVN T27J (◦C) −117 −13 −72 −102 −113 −115  

Table 7 
Summary of NDTT values determined through Pellini testing.   

M01 M02 M03 M04 M05 M06 
NDTT −75 ◦C 20 ◦C −30 ◦C −50 ◦C −60 ◦C −50 ◦C  

J. Taylor et al.                                                                                                                                                                                                                                   



Theoretical and Applied Fracture Mechanics 110 (2020) 102799

8

5.3. SEN(B) fracture toughness test results 

The materials’ CTOD δm results are summarised in Table 8, with an 
example force vs. crack tip opening (CTO) curve for each material given 
in Fig. 8. The CTOD δm results are calculated from the CTO at which the 
maximum force is observed using the procedure given in BS 7448-1. This 
procedure involves using the area under the force/CTO curve along with 
the specimen dimensions and the material properties in order to calcu-
late CTOD δm. It can be seen that the highest CTOD δm is found in ma-
terial M05, followed by material M04 and then by materials M03 and 
M06. The lowest CTOD δm was found in materials M02 and then M01, 
which had similar results. These results are mirrored in the Force/CTO 
traces which show the same trend of maximum CTOD δm for the mate-
rials. Additionally, there seems to be a correlation between high CTOD 
δm and low tensile strength. M01 and M02 had the highest UTS values 
and show the lowest CTOD δm, M03 and M06 show the mid range for 

both properties, and M04 and M05 show the highest CTOD δm and the 
lowest UTS results. Although their material properties have shown dif-
ferences, it is noticeable that the traces for materials M04 and M05, 
nominally the same steel grade, overlap. This indicates that they are 
showing a similar response to fracture, although material M05 has the 
higher overall toughness. Another notable difference between these 
materials is the amount of force needed to reach the maximum CTO, 
with material M01 requiring a large force to reach a relatively low CTOD 
δm compared to material M02, which has a similar CTOD δm but took 
much less force to reach this point. 

6. Discussion 

6.1. Correlation between the obtained fracture parameters 

The results from fracture toughness and Charpy impact tests are 
presented and compared with each other in Figs. 9–11. The correlation 
between initiation toughness parameters, CTOD δm and T27J, with upper 
shelf Charpy energy has been investigated in Fig. 9. As seen in this 
figure, there is a weak linear correlation between upper shelf Charpy 
energy and CTOD δm fracture toughness, excluding M03, which has the 
highest Charpy energy, but the median fracture toughness compared to 
the other materials. But overall, the results in Fig. 9 suggest that an 
increase in the upper shelf Charpy energy results in an increase in CTOD 
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Table 8 
Summary of results from upper shelf fracture toughness testing. RT indicates 
room temperature.   

M01 M02 M03 M04 M05 M06 
Test Temperature RT 120̊C RT RT RT RT 
Average CTOD δm (mm) 0.40 0.36 0.86 1.15 1.40 0.86  
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δm as there is a loose linear correlation between these two parameters 
(R2 = 0.32). On the other hand, it is evident from this figure that there is 
no correlation between the upper shelf Charpy energy and the lower 
shelf temperature, T27J, as the regression line between these two pa-
rameters shows almost no correlation (R2 = 0.02). 

The possible correlation between arrest toughness reference tem-
peratures, T27J and NDTT, with T4kN has been investigated and the re-
sults are shown in Fig. 10. It can be observed in this figure that there is a 
good linear correlation (R2 = 0.69) between parameters indicating 
arrestibility, NDTT and T4kN, determined through Pellini and Charpy 
tests. Also seen in this figure is that T4kN shows a strong correlation with 
the onset of the lower shelf, T27J (R2 = 0.85). Comparing the lines of best 
fits to the data points in Fig. 10 it can be seen that within the inherent 
experimental scatter, the slope of the line of best fit made to T27J data is 
slightly steeper than the NDTT data, when the results are correlated with 
T4kN. 

The CTOD δm and upper shelf Charpy energy results are plotted 
against NDTT data in Fig. 11. As demonstrated by Fig. 11, the arrest 
parameter, NDTT, does not correlate with the fracture initiation 
toughness parameters when the results from all six batches of steels 
considered in the analysis. As an example, material M01 has the lowest 
NDTT and T27J of all the steels, which indicates a high arrestability. 
However this material has the smallest Charpy toughness of any of the 
materials. Although M02 has approximately the same Charpy toughness 
as M01, it has the highest NDTT and T27J which indicates very poor 
arrestibility. This example shows how concerning it is that modern steels 
can be judged based on their Charpy toughness (which is measured on 
the upper shelf) although this may not indicate their arrest properties. 

Since brittle crack arrest properties are heavily dominated by the 
lower transition region and lower shelf, it is important to investigate 
these parameters further. Figs. 12 and 13 relate the NDTT to each ma-
terial’s ductile to brittle transition curve. As the NDTT defines the onset 
of brittle behaviour, it would be expected to lie close to the T27J tem-
perature at the onset of the lower shelf of the Charpy curve. However the 
NDTT for each material is located on the upper transition or upper shelf 
of the Charpy transition curve, except for material M02 which shows the 
expected behaviour. In spite of this, the NDTT can be strongly correlated 
(R2 = 0.95) against T27J, i.e. as expected, the temperature at the onset of 
the lower shelf correlates strongly with that of the onset of brittle 
behaviour. Although this correlation was expected, it holds even for the 
materials which had their NDTT lie on the upper shelf or transition re-
gion of the Charpy curve. However, this correlation is much weaker 
when the NDTT is correlated against the temperature of the upper shelf, 
which is probably because the transition region for some of these ma-
terials is shallow and for others it is steep. There are concerns with the 

NDTT of some materials lying on the upper shelf of the Charpy curve 
because these materials are at a risk of behaving in a brittle manner at a 
higher temperature than is predicted from the Charpy transition curve. 
This is a concern because it means that a running brittle crack would not 
be arrested if it initiated, for example through accidental damage. 

6.2. Correlation between mechanical properties and microstructure 

The steels examined in this study all have small grain sizes, which 
makes it more complex to correlate the mechanical properties against 
the microstructural characteristics due to the cluster of grain size values 
giving high uncertainty. Fig. 14 shows that the average grain size cor-
relates loosely against the upper shelf Charpy energy, and very weakly 
against the CTOD δm fracture toughness. It is well-accepted that grain 
refinement provides improved tensile properties and initiation fracture 
toughness for steels and this is likely to be the reason why these steels 
are designed to have very fine grain sizes on average. Although only a 
weak correlation, this observation is consistent with the results pre-
sented in the open literature by other researchers[74–76]. 

The grain size and aspect ratio are plotted against NDTT in Fig. 15. It 
can be seen in this figure that no strong correlations can be made be-
tween the average grain size or aspect ratio of grain sizes and the ma-
terial’s arrest properties when all six batches of steels are considered in 
the analysis. However, by excluding the largest value of NDTT, which is 
associated with material M02, the overall trends indicate an increase in 
NDTT with a reduction in grain size and aspect ratio with the average 
grain size having a more pronounced effect (i.e. steeper trend) on the 
NDTT results. This would mean that a smaller grain size gives poorer 
brittle crack arrest properties than a larger grain size, which contradicts 
the observations seen on the relationship between grain size and initi-
ation toughness. This is in agreement with recent results from other 
researchers [9]. Additionally, the grain aspect ratio does not seem to 
affect the arrest parameter NDTT significantly. The microstructural 
grain anisotropy has not been shown to be a factor in the crack arrest 
behaviour on its own, and other factors such as composition, inclusion 
size and distribution, plate centreline and surface microstructures, 
might also be influential. 

The aspect ratio due to elongation of the grains along the rolling axis 
was estimated from the material’s bulk ductility, in terms of tensile 
properties, which was correlated against the measured grain size aspect 
ratio. The observations showed a direct negative correlation. It would be 
expected that if the material was isotropic (i.e. tensile properties are 
identical along each axis), the grains would be equiaxed and not show 
elongation along the rolling axis. However, these steels showed the 
opposite behaviour. M01 had the most uniformly shaped grains, but had 
the greatest decrease in ductility in the through-thickness direction. 
Similar behaviour was seen for the other steels, which could be caused 
by the materials’ texture, distribution of inclusions, grain structure or 
test procedure. 

6.3. Comparison of the experimental results with empirical predictions 

The relationship between NDTT and T27J shown in Fig. 12 is not 1:1, 
which means that Eqs. (1)–(3) cannot be considered valid for modern 
steels, and using these equations results in over-predicting the NDTT in 
almost every case, which is shown in Fig. 16. For the materials studied 
here, there is an offset between the NDTT and T27J of approximately 
40 ◦C ± 10 ◦C, which is similar to Eq. (4) and the offset between the 
NDTT and CAT. It is recommended that the CAT is measured through 
large-scale crack arrest testing to determine the validity of these pre-
dictions, but it can be seen that the reference temperatures do indeed 
show strong agreement with each other. It is recommended to carry out 
Pellini tests to determine the NDTT of the material rather than relying on 
Charpy data. 

The master curve method given in Eqs. (8)–(10) gives the predicted 
lower bound toughness shown in Fig. 17 using M06 as an example. In 
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order to give an indication of the accuracy on these relationships, 
additional SEN(B) tests were carried out at low temperature between 
−50 ◦C and −120 ◦C and the results are in good agreement with the KIC 
prediction from the master curve approach at low temperatures. How-
ever, as expected, the agreement is limited to the lower end of the 
transition region and agreement is poor at −50 ◦C. The prediction based 
on T4kN gives a toughness prediction similar to the KIC until −50 ◦C, the 
NDTT, where they diverge. A more conservative prediction of KIa is 
given by the prediction from NDTT, which indicates that the NDTT gives 
a conservative prediction of the materials’ toughness compared to using 
the Charpy energy. For brevity, master curves for other materials are not 
shown here but can be found in Appendix B. Generally, for the other 
materials, KIa prediction from NDTT gave the most conservative 
toughness estimate. Low temperature SEN(B) fracture toughness tests on 

materials M01 and M02 show a similar trend of good agreement on the 
lower shelf and lower transition, and poor agreement in the upper 
transition region. This is a limiting factor on the use of these predictions 
at ambient temperatures. 

7. Conclusions 

In this work, a wide range of mechanical testing, including grain size 
measurements, was carried out on 6 different batches of structural steels 
to investigate the relationship between mechanical properties and 
microstructure with respect to fracture initiation and brittle crack arrest. 
The following key conclusions have been drawn from the present study: 
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• Improved fracture initiation behaviour of a steel (i.e. high CTOD δm 
and upper shelf Charpy toughness) correlates with a smaller average 
grain size, but crack arrest behaviour does not.  

• High CTOD δm fracture toughness or upper shelf Charpy energy does 
not indicate whether a material is protected from unstable brittle 
fracture because this is independent from high crack arrest 
toughness.  

• For modern steels, the criteria that result in good crack arrest 
properties are not the same as those which result in a high upper shelf 
initiation fracture toughness. Therefore it is suggested to avoid using 
upper shelf fracture toughness parameters such as CTOD δm and 
Charpy energy to indicate crack arrestibility of modern steels due to 
poor correlation.  

• The crack arrestibility of a material is most strongly correlated with 
reference temperatures based on the onset of brittle behaviour (such 
as T27J and T4kN from Charpy tests or NDTT from drop wright Pellini 
tests) – even for a steel where the NDTT is located at a temperature 
on the upper shelf of the Charpy transition curve.  

• Master curve predictions of KIa are more conservative when using 
NDTT than T4kN so using the NDTT is recommended to give a safer 
estimate of crack arrest properties, although this prediction is only 
valid at low temperatures.  

• It is recommended to characterise the crack arrest properties of steels 
using lower shelf parameters such as Pellini or Charpy testing to 
determine NDTT, T4kN from instrumented Charpy tests, or T27J. 
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Fig. 16. Prediction of NDTT from Charpy reference temperatures.  
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Appendix A. Specimen extraction plan 

See Fig. 18. 

Appendix B. Master curves for all materials 

See Figs. 19–24. 

Fig. 18. Sectioning plan to show the specimen orientations with respect to rolling direction and plate thickness.  
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Fig. 21. Master curves for material M03.  
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Fig. 22. Master curves for material M04.  
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Fig. 23. Master curves for material M05.  
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Fig. 24. Master curves for material M06.  
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Fig. 19. Master curves for material M01.  
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