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Abstract: Background: Zinc binding proteins make up a significant proportion of the proteomes of
most organisms and, within those proteins, zinc performs rôles in catalysis and structure stabilisation.
Identifying the ability to bind zinc in a novel protein can offer insights into its functions and the
mechanism by which it carries out those functions. Computational means of doing so are faster
than spectroscopic means, allowing for searching at much greater speeds and scales, and thereby
guiding complimentary experimental approaches. Typically, computational models of zinc binding
predict zinc binding for individual residues rather than as a single binding site, and typically do
not distinguish between different classes of binding site—missing crucial properties indicative of
zinc binding. Methods: Previously, we created ZincBindDB, a continuously updated database of
known zinc binding sites, categorised by family (the set of liganding residues). Here, we use this
dataset to create ZincBindPredict, a set of machine learning methods to predict the most common zinc
binding site families for both structure and sequence. Results: The models all achieve an MCC ≥ 0.88,
recall ≥ 0.93 and precision ≥ 0.91 for the structural models (mean MCC = 0.97), while the sequence
models have MCC ≥ 0.64, recall ≥ 0.80 and precision ≥ 0.83 (mean MCC = 0.87), with the models
for binding sites containing four liganding residues performing much better than this. Conclusions:
The predictors outperform competing zinc binding site predictors and are available online via a web
interface and a GraphQL API.
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1. Introduction

Many proteins require a cofactor to function correctly, and present a region of their
surface which has an affinity for that cofactor. Of the metallic cofactors, zinc is one of the
most common. Approximately 10% of proteins require zinc to function [1] and so have at
least one zinc binding site, making it the second-most prevalent metal in biological systems,
after iron. In proteins, it typically performs either a rôle in catalysis (despite, or more likely
because of, its lack of variable redox states), or in stabilising a region of the protein [2].

While there are many proteins which are known to bind zinc because the full three-
dimensional structure of the protein has been solved in the presence of zinc, leading to the
identification of a zinc binding site, it would be useful to be able to determine whether
a protein binds zinc without needing to do this. There are experimental means of doing
so, but computational approaches offer a more convenient means of performing initial
searches at greater scale and speed. These would take either the protein’s sequence, or a
structure of some kind (either a hypothetical model, an experimental structure generated
in the absence of zinc, or an experimental structure solved at low resolution where a zinc
cannot be identified, perhaps because of the presence of heavy metals used for isomorphous
replacement) and try to predict whether the protein binds zinc, and, if so, where.

There have been numerous studies in this area in the past. Early attempts at pre-
dicting zinc binding from sequence were largely done manually, such as by identify-
ing the ‘C. . . C. . . H. . . H’ (cys-cys-his-his) motif as being a characteristic indicator of zinc
binding [3,4], or by identifying approximate spacing patterns typical of catalytic binding
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sites—the so-called ‘short and long spacers’ [5]. As the number of available sequences
grew and this manual approach became infeasible, sequence alignment with known zinc
binding proteins became a useful tool for discovering new zinc binding sites [6,7]. Re-
sources such as PROSITE [8] provide a refinement of manual motif searching by providing
motifs for zinc binding in a number of homologous families. At the time of writing, there
are 70 motifs for zinc fingers, one for zinc-containing alcohol dehydrogenases, two for
copper/zinc superoxide dismutase signature, two for zinc carboxypeptidases and one for
the zinc import ATP-binding protein znuC family.

By the early 2000s, machine learning became the typical approach for identifying
possible metal binding sites—a collection of algorithms which are trained on a dataset
of known zinc binding sites in order to identify for themselves what the characteristic
properties of zinc binding are, rather than having a human manually identify what those
properties might be. Typical algorithms used in the past include Support Vector Machines
(SVMs) [9–11] and Random Forests [12,13]. In recent years, deep learning, which relies on
multi-layer neural networks to represent the inputs at multiple layers of abstraction, has
been used more widely [14,15].

Predicting zinc binding from structure has proceeded in a similar fashion, although
the nature of structural data means that it has taken longer for there to be enough data to
justify the use of machine learning techniques. Early efforts relied on human-observed
characteristics of zinc binding sites, such as the ‘hydrophobicity contrast function’, which
used the fact that metal binding sites tend to be composed of an inner shell of hydrophilic
atoms such as nitrogen and sulphur, which was, in turn, surrounded by a stabilising shell of
hydrophobic atoms [16,17]. As the number of available structures grew, geometric patterns
were also observed—both by humans and by machine learning algorithms [17–20]. As
with the sequence prediction models, the complexity of the algorithms, and of the zinc
binding site features, has grown with the increase in available training data.

One recurring feature, particularly in the sequence-based predictive models, is the
focus on zinc binding residues rather than zinc binding sites. In most cases, the entity
examined by the predictive model is the individual residue, often with a surrounding
linear sequence ‘window’ of residues. The model then assigns a probability as to whether
that residue is a zinc binding residue. As outlined above, this approach has had a measure
of success, but it is a somewhat artificial concept. There is, after all, no such thing as a
zinc-binding residue in isolation. The individual residues of a high-affinity zinc binding
site of the kind considered here are only zinc-binding when the other residues are present,
and conversely many non-zinc-binding residues could bind zinc if other residues were
present in the correct locations. It is particular combinations of residues, not individual
residues, which are zinc binding—an important fact not usually considered in research of
this kind.

Another commonality is the treatment of zinc binding sites as a single category, and
the presumption of properties that are common to them all regardless of the residues of
which they are comprised. This may well be sufficient—particularly as there are essentially
only four residues that make up the vast majority of zinc binding sites—but it is possible
that properties used for prediction have much tighter distributions within particular sub-
categories of zinc binding sites.

Previously, we created ZincBindDB [21], a database of zinc binding sites. This resource
continuously collates all zinc atoms found in the Protein Data Bank [22], identifies their
binding sites (where appropriate), and stores them in a centralised database along with
useful properties such as their protein sequence and how different sites cluster together.
Sites are classified into ‘families’, not based on homology, but based on the residue compo-
sition of the site—the C4 family contains binding sites with four cysteines, H3 those with
three histidines, and so on. These data are available over the web via a web ‘application
programming interface’ (API), and using a web interface which provides three dimensional
graphical representations of all the binding sites. As of July 2020, there were 35,811 zinc
binding sites in ZincBind, originating from 16,635 PDB structures.
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We have now used this single, definitive dataset of zinc binding sites to train predictive
models of zinc binding. Here, we present models which are trained to detect entire zinc
binding sites, rather than just zinc binding residues, and each predictive model is trained
to detect a particular family of zinc binding sites. There are distinct models for sequence
and for structure, and predictions can be made via the ZincBind website, or via the
ZincBindPredict GraphQL API.

2. Results and Discussion
2.1. Deployment

The trained predictive models are available via a simple web interface at https://
zincbind.bioinf.org.uk/predict/ (see Figure 1). This takes a sequence or an uploaded PDB
file and scans it against each of the models, reporting whether any of them suggest a zinc
binding site. Alternatively, the ZincBindPredict GraphQL API may be accessed directly.
A GraphQL request can be sent with either a protein sequence or protein structure, and a
job ID will be returned. This can then be polled for results as the protein or sequence is
searched using each model in turn, with the identified binding sites returned as a list with
the associated probability.

Figure 1. The graphical interface for the predictors is shown on the left. The user can enter a protein sequence, or upload a
structure file. In both cases, the user has the option of limiting the zinc binding families for which the predictor will search,
which can save a considerable amount of time. Results of the prediction are shown on the right with the residues predicted
to form a binding site shown in bold. This interface consumes the ZincBindPredict GraphQL application programming
interface (API), which is also publicly available.

2.2. Training

For all twenty datasets (sequence and structure sets each with 10 different com-
binations of liganding residues), the ratio of positive samples (actual binding sites) to
negative samples (combinations of residues matching a zinc-binding site family, but which
are known not to bind zinc) was approximately 1:1. The dataset sizes ranged from 804
to 15,332 samples for the sequence datasets, and from 407 to 3232 samples from the
structure datasets.

2.3. Models

Model effectiveness was measured using recall, precision, F1 score, and Matthews
Correlation Coefficient (MCC) for all twenty models (10 structural and 10 sequence).

For the structural models, the lowest MCC score was 0.88 (for the E1H1 model). This,
and the D1H1 model (MCC = 0.91), relies on the geometry between just two residues, which
makes creating a distinct separation between the two classes somewhat more difficult—

https://zincbind.bioinf.org.uk/predict/
https://zincbind.bioinf.org.uk/predict/
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though their performance is still very close behind that of the three- and four-residue family
models. The structure models had an average MCC of 0.97 (see Table 1).

The sequence models also had high scores, though were more variable. The four
residue sites in particular had highly conserved patterns of residue spacing and flanking
hydrophobicity despite being from several homologous families. The average MCC for the
sequence models was 0.87, with the lowest MCC being 0.61 for the E1H1 model and 0.74
for the D1H1 model—again the two two-residue models were somewhat behind the MCC
of 0.84 for the C3 model (see Table 2).

Table 1. Results for structure models, sorted by Matthews Correlation Coefficient (MCC). The two-
residue families’ performance was lower than the others as there are essentially just the measurements
between two centres to perform the classification, but still scored relatively highly. Four-residue sites
in particular were found to have very high performance.

Family Dataset Size Recall Precision F1 MCC

C2H2 702 1.00 1.00 1.00 1.00
C4 2825 1.00 1.00 1.00 1.00

C3H1 3232 1.00 0.99 1.00 0.99
E1H2 1287 1.00 0.99 1.00 0.99
C2H1 506 1.00 0.98 0.99 0.98

H3 3078 1.00 0.98 0.99 0.98
D1H2 982 1.00 0.98 0.99 0.98

C3 407 1.00 0.98 0.99 0.98
D1H1 522 1.00 0.91 0.95 0.91
E1H1 416 0.93 0.95 0.94 0.88
Mean 0.99 0.98 0.99 0.97

Table 2. Results for sequence models, sorted by Matthews Correlation Coefficient (MCC).

Family Dataset Size Recall Precision F1 MCC

C4 15,332 1.00 0.98 0.99 0.98
H3 4524 0.98 0.99 0.98 0.97

C2H2 3715 0.97 0.99 0.98 0.95
C3H1 9158 0.98 0.96 0.97 0.94
E1H2 2574 0.95 0.97 0.96 0.92
D1H2 2406 0.94 0.95 0.94 0.90
C2H1 1926 0.93 0.95 0.94 0.88

C3 2591 0.95 0.89 0.92 0.84
D1H1 804 0.80 0.93 0.86 0.74
E1H1 812 0.81 0.83 0.82 0.61
Mean 0.93 0.94 0.94 0.87

While the training is affected by dataset size, this does not appear to be a significant
limiting factor for most of the models. Figure 2 shows the model performance (as MCC)
for the sequence and structure models. The performance of the sequence models falls off
as the training set size falls below ∼4000, while the performance of the structural models
falls off below around 1000 data points. The lowest three performing structural models
were also the lowest three in dataset size (C3, E1H1, D1H1), but two of these have only two
residues so, as discussed above, the performance might not be expected to be very good.
Learning curves (Figure 3) using fractions of the datasets show a correlation with dataset
size for the sequence models, but above around 1000 sequences, the structure models do
not improve with larger datasets.
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Figure 2. Model Performance (MCC) as a function of training set size. Below ∼4000 training patterns,
performance declines sharply, though above this threshold there ceases to be a strong correlation
between performance and training set size.
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Figure 3. Learning curves for all 20 models (10 structural and 10 sequence). Each model was trained on increasing subsets
of the overall training set using five-fold cross-validation. Sequence models improved with increasing dataset size whereas,
above a low threshold, structure models did not improve with more data.

The level of abstraction used to describe both sequences and structures (see Section 3
Methods) made it unlikely that any homology between data in the training and test-
ing sets would artificially improve the performance. The features are largely calculated
from residues around the binding residues, rather than the sequence in which they occur.
Nonetheless, we confirmed that this was true.

Different sequence identity thresholds were used for clustering with CD-HIT and,
where possible, a dataset of the same size was selected at random from each set of resulting
clusters. No significant effect on performance was seen. When clustering at 40% sequence
identity, there was slightly lower performance (see Supplementary File clustering.txt),
but clustering at this level did result in much smaller datasets. As indicated previously,
this is a major determinant of the performance of the sequence models.

In order to identify whether this lowered performance was because the models per-
formed worse without the possibility of homologous sequences between the training and
test sets, or whether it was a result of the smaller training set, for each zinc-binding site
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family, a classifier was trained on 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100% of the
original, unclustered data, and additional classifiers were trained on data with sequences
clustered at 40%, 50%, 60%, 70%, 80%, 90% sequence identity and with no clustering. The
performance of the models was then plotted against the resulting dataset sizes as shown
in Figure 4. This demonstrates that it is dataset size that determines model performance,
regardless of any similarity of the sequences between the training and testing datasets.

0 2000 4000 6000 8000 10,000 12,000 14,000 16,000
Dataset size

0.2

0.4

0.6

0.8

1.0

M
CC

Trained on subset of non-clustered data
Trained on clustered data

Figure 4. MCC as a function of dataset size for 160 different sequence-based models. For each of the
ten zinc-binding site families, 9 classifiers were trained using 20–100% of the original, unclustered
data (10 × 9 models); additional classifiers were trained using sequences clustered at 40–100%
sequence identity (10 × 7 models). The performance (MCC) is plotted against the size of the training
dataset. The two modes of dataset reduction are shown by different shades and it can be seen that
the curves are not significantly different. This suggests that homology between training and test sets
does not influence a model’s performance; rather, performance is a function of training dataset size.

For reference, the performance of the sequence models was compared with using
BLAST for predicting zinc-binding sites. For each zinc-binding site family, a BLAST
database was created using 80% of the available zinc-binding sequences, and BLAST’s
ability to identify zinc binding sites from the remaining 20% was compared against an
equivalently sized negative set. The results are shown in Table 3. With the exception of
C2H2, using BLAST to find zinc binding based on homology performs much worse than
the models presented here. Even in the case of C2H2, which seems to have much more
similar sequences in its dataset, the ZincBindPredict model still narrowly outperforms
BLAST.

The performance scores of our predictors also compare favourably with recent com-
parable predictive models based on structure and sequence—most notably the ‘SVM
and Sample-Weighted Probabilistic Neural Network’ (MCC = 0.80) [11], the ‘meta-zinc
predictor’ (MCC = 0.79) [23] and ZincExplorer (MCC = 0.78) [24].

However, the models presented here are not intended to be general-purpose zinc
binding predictors that detect common properties of all zinc binding sites—they are zinc-
binding site family-specific predictors based on the principle that common, specific types
of zinc binding site have more identifiable, consistent properties than do zinc binding sites
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in general. As a result, they will not readily detect binding sites of uncommon zinc-binding
families. This abstract predictiveness has been deliberately discarded to create highly
effective models for specific, common families of zinc binding sites. It is also noteworthy
that the binding site itself is a useful unit of prediction using this methodology—even for
sequences—rather than individual binding residues. The models are therefore identifying
something biologically real (a zinc binding site) rather than something which does not
actually exist in isolation (a single zinc binding residue), but which is a useful heuristic in
some circumstances.

Table 3. Predictive ability of BLAST to identify zinc binding sites in protein sequences using
homology alone.

Family Dataset Size Recall Precision F1 MCC

C2H2 3960 0.99 0.95 0.97 0.94
C3H1 9710 0.29 0.87 0.44 0.33
C2H1 2154 0.24 0.88 0.37 0.30
D1H1 818 0.05 0.80 0.09 0.11

C3 2868 0.13 0.61 0.21 0.07
E1H1 828 0.06 0.62 0.11 0.06
D1H2 2470 0.03 0.53 0.06 0.01

H3 5058 0.01 0.19 0.02 -0.10
E1H2 2648 0.02 0.33 0.04 -0.06
Mean 0.18 0.58 0.23 0.17

A demonstration of this can be seen by applying the sequence models to bacterial
genomes to measure the proportion of typical genomes that the models predict to be
zinc binding, as shown for a range of bacterial genomes in Table 4. For most genomes,
fewer than 10% of proteins are flagged as zinc binding, with the average for the genomes
examined being 8.46%. Given that the zinc-binding families for which predictors have been
generated represent 67.0% of binding sites in ZincBindDB (the others being unusual sites),
this would imply a ‘true’ predicted proportion of 12.6%, which is a little higher than the
widely cited figure of 10%.

Table 4. Percentage of protein sequences encoded in the genome predicted to be zinc binding by
ZincBindPredict for an assortment of bacterial genomes. Genomes were acquired from ensembl [25]
in the form of translated polypeptide sequences, with a sequence labelled as zinc binding if any
of the ten models finds at least one zinc binding site for that sequence/family combination. See
Supplementary File genomes.zip for the full results.

Species Percentage of Genome
Predicted Zinc Binding

Campylobacter jejuni 6.4%
Clostridioides difficile 5.8%
Enterococcus faecalis 7.5%

Listeria monocytogenes 7.9%
Mycobacterium tuberculosis 11.3%

Salmonella enterica 11.1%
Shigella flexneri 10.1%

Streptococcus pneumoniae 7.6%

3. Materials and Methods
3.1. Dataset Creation

The datasets used to train the predictive models were derived from ZincBindDB.
For the sequence models, for each family of zinc binding sites, all examples were down-

loaded with the associated sequences, and those with more than one sequence (those sites
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split across multiple chains) were discarded. The resulting sequences were turned into feature
vectors which contained the number of residues between each pair of binding residues, the
average hydrophobicity of residues either side of the binding residues, using the features
described in Table 5. This created a dataset of positive samples. For the negative samples, for
each zinc-binding site family, a sequence was chosen at random from the set of all unique
sequences in UniProtKB and a combination of residues within that sequence matching the
zinc-binding site family (e.g., C2H2), but not a known binding site, was selected—this was
done repeatedly until a list of negative samples was built up equal in size to the positive
dataset. The two datasets were combined into a single dataset for each zinc-binding site family.

Table 5. Details of how features are calculated for residue combinations in structure and sequence
models. Hydrophobicity of sequence residues is defined using Wimley and White’s scale [26], charge
is the count of charged residues (aspartate, glutamate, arginine, histidine and lysine).

Model Type Feature

Sequence
Inter-residue distance (one per gap)

Average hydrophobicity around residues (window 1)
Average hydrophobicity around residues (window 3)
Average hydrophobicity around residues (window 5)

Average number of charges around residues (window 1)
Average number of charges around residues (window 3)
Average number of charges around residues (window 5)

Structure
Mean Inter-Cα distance

Maximum Inter-Cα distance
Minimum Inter-Cα distance

Inter-Cα distance standard deviation
Mean Inter-Cβ distance

Maximum Inter-Cβ distance
Minimum Inter-Cβ distance

Inter-Cβ distance standard deviation
Hydrophobic contrast (radius 4 Å)

For the structural data, for each zinc-binding site family, all relevant zinc binding sites
belonging to a PDB structure with resolution better than 2 Ångströms were downloaded,
and grouped by the PDB entry to which they belonged. For each PDB entry, the structure
was downloaded and parsed using the Python library atomium [27], assembled into the
correct biological assembly, and then each binding site was turned into a feature vector
using the features described in Table 5. Since the distances used are all the pairwise
combinations of the atoms involved, the number of distances depends on the number of
liganding residues: H3 sites will have three inter Cα distances, C4 sites will have six, and
so on. The ‘hydrophobicity contrast function’ is calculated at the centre of the Cβ atoms
with a radius of 4 Ångströms as described in the original paper by Yamashita et al. [16].
This algorithm is a measure of how much outer atoms in a sphere are more hydrophobic
than inner atoms, with higher values previously shown to be associated with centres of
metal binding [16,17].

For example, given a C2H2 site, in a sequence model, there would be three inter-
residue gaps for which the number of residues per gap would be used together with the
mean hydrophobicity and charge of the 4 interacting residues (i.e., a window of 1), the
4 interacting residues plus one sequence neighbour on each side (window of 3) and the
4 interacting residues plus two sequence neighbours on each side (window of 5). For
the structural model, there would be 6 inter-Cα and 6 inter-Cβ distances, from which the
mean, maximum, minimum and standard deviation would be calculated as well as the
hydrophobicity contrast function.
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To generate the negative samples, for each positive sample, a random arrangement of
residues matching the zinc-binding site family in question was obtained from a randomly
chosen, non-zinc-binding PDB structure, and a feature vector created from that non-binding
combination. In this case, only residue combinations that could feasibly form a binding
site (those where there are no inter-Cα distances greater than 30 Ångströms) were used.

While the abstraction of sequence and structure suggests that homology is unlikely
to influence the results (i.e., homologues between training and testing sets are unlikely to
over-rate the performance), this was tested using datasets with similar sequences removed.
CD-HIT [28] was used with sequence identity cutoffs ranging from 100% down to 40% (the
lowest identity threshold for the standard version of CD-HIT).

3.2. Predictive Model Training

The Random Forest algorithm [29] was used to train the predictive model for each
of the 20 datasets (a dataset of sequence features and a dataset of structural features for
each of the ten zinc binding site families), which provided superior results to K-Nearest
Neighbours, and vastly superior results to Support Vector Machines even when the dataset
was balanced. Random Forests apply the bagging concept (where multiple models are
trained on random sub-samples of the data to avoid over-fitting to the training data) to
decision trees (classification algorithms which divide the input space into the categories
based on sequential binary splits).

The hyper-parameters for each model were selected separately using 5-fold cross
validation of the training set. The hyper-parameters explored were the impurity measure
(gini vs. entropy—the algorithm used to split individual trees at each node), the maximum
depth that the component trees could have (4, 6, 8 or no maximum), the number of
trees in the forest (10, 100 or 1000), and the means of determining the best number of
features at each split (either the square root of the number of features, or the log2 of the
number of features). Once optimal hyper-parameters were identified (determined by which
combination produced the best F1 score in the cross-validation), the models were trained
with those hyper-parameters using the entire training dataset.

For the trained model, the metrics recall (how effective at finding true binding sites the
models are), precision (how effective at ignoring non-binding sites they are), the F1 score
(the harmonic mean of recall and precision) and Matthews Correlation Coefficient (another
summary of the true positives, true negatives, false positives and false negatives generally
considered the best overall metric [30]) were calculated using the separate test datasets
(the test–train split being 20:80). The accuracy metric was not used as it is not relevant for
unbalanced datasets. Training was performed using the Python scikit-learn library [31].

For performance comparison, homology searching was performed using the NCBI
BLAST program [32] using an expectation value threshold of 0.1.

4. Conclusions

Zinc binding sites can be divided into distinct families based on the residues of which
they are comprised. These zinc-binding site families follow a power law distribution, with
a small number of families being highly represented. By training models for individual
zinc-binding site families, rather than for zinc binding sites in general, very high recall
and precision levels can be achieved. It is worth noting that a zinc-binding site family is a
completely different concept from a homologous family as it is the result of convergent
evolution potentially spanning many different homologous families. The high performance
suggests that, for both sequence and structure, zinc binding properties are more tightly
distributed within zinc binding site families than for zinc binding sites generally. The
resulting predictor outperforms other general zinc binding predictors.

Supplementary Materials: The following are available online.
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