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Abstract
Monitoring product and contaminants is critically important at all stages o f bioprocess 

operation, development and control. The availability of rapid measurements on product 

and key contaminants will yield a higher resolution of data points and will allow for 

more intelligent operation of a process and thereby enhance the definition and 

characterisation of a bioprocess. The need to control a bioseparation process is due to 

the variable nature of upstream conditions, process additives and sub-optimal 

performance of processing equipment which may lead to different requirements for the 

operating conditions either within batches or on batch to batch basis.

Potential operations for downstream processing of intracellular proteins are the 

selective flocculation, packed bed and expanded bed chromatographic operations. 

These processes involve the removal of a large number of contaminants in a single 

dynamic step and hence are difficult unit operations to characterise and operate in an 

efficient and reproducible manner.

In order to achieve rapid characterisation and control of these processes some form of 

rapid monitoring was required. A sampling and monitoring system for analysis of an 

enzyme produced intracellularly in S.cerevisiae, alcohol dehydrogenase (ADH), cell 

debris, protein and RNA contaminants has been constructed, with a measurement 

cycle time of 135 s. Both an extended Kalman filter and the Levenberg-Marquardt non­

linear least squares model parameter identification technique have been implemented 

for rapid process characterisation. Estimation of model parameters from at-line data 

enabled process performance predictions to be represented in an optimum graphical 

manner and the subsequent determination of ideal operating conditions in a feedback 

model based control configuration. The application of such a control strategy for the 

batch flocculation process yielded on average 92% accuracy in achieving optimum 

operating conditions. A structured and intelligent use of the at-line data would improve 

process characterisation in terms of speed and stability. It was demonstrated that rapid 

monitoring of the packed and expanded bed chromatographic operations yielded 

improved characterisation in terms of higher resolution data points, enabled real time 

process analysis and control of the load cycle. For the control of the expanded bed 

operation a predictive technique was applied to compensate for the large dead volume 

associated with this unit operation. The feedback control resulted in approximately 

80% accurate breakthrough setpoint regulation.
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Introduction

Chapter 1

Introduction

1.1 General overview

Section 2:

• Impact of upstream variability on downstream processes.

• Vast number of downstream unit operations makes their choice and sequence 

difficult.

• The pressure of speed to market.

• Unit interactions should be considered when setting up control configurations.

Section3:

• Benefits of rapid monitoring in terms of accelerating the development cycle- a 

valuable tool for rapid screening of downstream process protocols, confidence and 

control.

Section 4:

• Rapid monitoring techniques giving the user an indication of the complexity of 

product and contaminant measurements.

• Most rapid monitoring systems are of at-line nature and hence yield discrete 

measurements with some delay.

• Downstream process dynamics make the demand on at-line monitoring systems 

higher in terms of speed of measurement.

Section 5:

• The basic steps in setting up a control configuration.

• The constraints of bioprocess systems.

Section 6:

• How the control theory (section 5) and monitoring methods (section 4) can be 

implemented in a possible control configuration for example of downstream 

processing operations.

Section 7:

• Aim of thesis. Brief statement of what each chapter will discuss.
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Introduction

1.2 Overview of production and recovery of microbial proteins

1.2.1 Introduction
The first part of this section will give an overview of production and recovery of 

microbial proteins and the impact of upstream operations on downstream processing 

will be discussed. Several downstream processes are available and the correct 

sequence of these operations is important to determine in a time-efficient manner due 

to the increasing pressure of bringing products to market in the quickest time (van 

Brunt 1985). The objective and performance of downstream operations will be briefly 

discussed in terms of product yield, purity as well as productivity and operational costs. 

The operational objectives of downstream processing are important to define both for 

single unit operations and integrated process sequences as these objectives can be 

implemented as the setpoints for process control.

1.2.2 Fermentation and its impact on downstream process

The production of biological materials is often split between upstream and downstream  

operations. The upstream side includes fermentation and cell culture, whilst the 

downstream side involves recovery and purification of this product. Interaction between 

the upstream and downstream operations occurs superficially at the point of transfer. 

The final product of the upstream operation is the raw material for downstream 

processes. However the product is not the only material to be delivered downstream, 

so are all the impurities.

Many differences exist between upstream and downstream operations. For example 

in terms of cost, upstream operations, tend to be capital intensive, with automated 

vessels, few operations and relatively lower cost materials. Downstream operations, 

tend to be labour intensive, many operations, with little automation and higher cost 

materials. Due to these differences, the running of upstream and downstream 

operations tend to focus on separate factors, which sometimes clash.

Upstream conditions affect downstream operations, in several ways: The volume o f 

the materials delivered to the downstream processes is an important factor to consider. 

Reduction of the volume or mass of material produced upstream will reduce 

downstream costs by reducing the volume of vessels needed for processing and the 

amount of material required. The amount o f impurities relative to the product affects 

the efficiency of the purification. Although longer growth times may lead to greater 

production of for example recombinant proteins, impurities are also created, which may
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have a negative impact on the overall product cost. The nature o f impurities, can be 

controlled at the upstream stage. By utilising the appropriate media component(s), 

more suitable impurities will be created, hence facilitating the their removal and 

reducing purification costs. Variations in the media composition may result in 

variations in the nature of impurities. Hence if the fermentation includes ingredients 

with high variability then this must be considered in the purification stages. The phase 

present after the fermentation also influences downstream operations. At present the 

majority of enzymes produced commercially are obtained extracellularly with few 

intracellular enzymes having been isolated in large quantities. The main reason for 

this trend is the great complexity of the recovery process for intracellular materials. In 

extracellular protein recovery there is no cell disruption step, and there will be fewer 

other proteins present in the broth. Disadvantages include large liquid volumes and 

contaminants from the spent liquor. For these reasons combined with the potential 

offered by the large number of intracellular constituents, intracellular recovery 

processes have become increasingly commercially important.

All in all the impact of upstream conditions on downstream processing is significant 

and should be considered during process selection and design. The fluctuations 

inherent in fermentations will invariably have impact on the performance of the early 

recovery operations. Due to the fluctuations in feed material to the downstream 

processes appropriate design in terms of flexibility and robustness is vital. If a 

downstream process were operated in a constant manner given variable feed material, 

variable product quality would be the outcome. For more reproducible product quality 

some form of process monitoring and control is needed.

1.2.3 Downstream processes

Downstream processing in its narrowest definition is the purification of proteins from 

conditioned media or fermentation broth (Ogez et at. 1989). The selection of the most 

appropriate methods for initial stages of downstream processing depends on the 

production host, location and physical form of the protein in the cell (Naveh 1990). 

Just as upstream processing is important in increasing productivity, downstream 

processing is important in reducing production costs. Often the cost of separation and 

purification of the product is the dominating cost of the whole production process. 

Wesseling (1994) stated that downstream processing involves at least 50% if not more 

of the total cost of the total production cost. One way to reduce separation costs and 

increase product throughput is process automation (Pfund 1987, Ranshoff et at. 1990).

Bonnerjea et al. (1986) analysed data from 100 papers on protein purification, 

published during 1984, ten major methods were found. Although this paper identified
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no strict sequence of unit operations a distinct trend was obvious. Homogenisation is 

generally followed by precipitation, then ion-exchange, chromatography, affinity 

separation and finally gel filtration. The above sequence is a logical one, as 

precipitation can deal with large quantities of material and is less affected by interfering 

non-protein materials than the other operations. As the materials used for affinity 

methods are expensive, it makes sense to use less costly ion-exchange media first to 

reduce protein loads and remove remaining fouling substances.

Wheelwright (1989) emphasised that even though quite a few downstream sequences 

are in operation, there is no definite and predictive method or algorithm that one may 

follow to design a bioseparation protocol for a specific protein or biological product. 

Currently hands on experience and simplistic guidelines provide the best approach. 

Characteristic features of the biological product, such as its size, charge, biological 

affinity and hydrophobic -  solubility, may be utilised to help separating it. There are a 

large number of bioseparation processes available to separate a wide variety of 

biological products and Scawen and Hammond (1989) emphasised that these 

processes must be carefully screened which involves a high cost both in terms of man 

power and time. Great pressure is put on the biochemical engineer to select the 

correct sequence of downstream processes for a particular product and correct 

specification for each operation as quick as possible to reduce the time a product gets 

to market.

Although downstream stages are usually described in terms of separate unit 

operations they are very interactive. Nucleic acid and cell debris produced on cell 

rupture can impair fractional precipitation or subsequent chromatography stages. For 

these reasons an integrated outlook of downstream processing is essential in terms of 

equipment and process design.

1.2.4 Downstream process performance

Although product yield is the main focus especially in the fermentation stage, it should 

be emphasised that the effectiveness of a downstream unit operation is a function not 

only of the ability to achieve a high yield factor, but also very much dependent on the 

level of purity the purification step can obtain at highest productivity.

The yield level of a unit operation can be defined as the ratio of product recovered to 

total product entering the purification step, i.e. yield is a reflection of product loss. The 

purification level, however is a function of contaminant removal. Both these terms are 

defined in equations 1.1 and 1.2.
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Yield = —  
Po

(1-1)

Purification fa c to r  = -r (1.2 )

Where p & c  refer to the amount of product and contaminant recovered, whilst p 0 and c0 

refer to the amount product and contaminant entering the purification operation. It is 

usually the case for several unit operations that these two objectives are contradictory 

and inverse. A balance between yield and purity for the overall process and a given 

purification step is important to pre-determine in the process development stage, as 

this will influence the choice, sequence and hence control of downstream operations. 

The equilibrium between yield and purity must be estimated, taking into account the 

cost of purification, the value of the product and the purity required by market forces. 

In general the end product quality requirements are largely dependent on the end use 

of product. Huddleston et al. (1991) emphasised that bioseparation processes are 

defined by the nature of the product and its application. For example, therapeutic 

proteins must meet stringent standards whilst biological products intended for 

diagnostic usage do not have to be very pure.

The overall yield of a downstream process is a function of individual unit step yields 

and the number of operations, and can be expressed mathematically as:

Where yt refers to the step yield of unit operation i. Even relatively high step yields will 

result in a fairly poor overall yield, if a large number of operations are involved. In order 
to increase the total recovery yield (yt), not only must the yield be increased for each

unit operation but it is also important to reduce the number of purification steps. 

Chang and Chase (1994) and Smith (1997) used expanded bed (EXB) 

chromatographic techniques to achieve higher overall product yield levels. EXB 

techniques allow the direct loading of disrupted cells on a chromatographic column 

without the need for any prior clarification step, enabling the substitution of a number of 

traditionally applied unit operations.

Product loss throughout downstream stages are due to three main factors; namely 

physical damage, irreversible denaturation or physical loss. At every stage of the 

downstream process protein and enzymes are subjected to physical shear forces.

Overall y ie ld  (yt)  = e u (1.3)
0
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Much loss of proteins in pipes is due to interfacial denaturation, resulting from shear 

associated damage (Virkar 1981). Chemical denaturation can be caused by extremes 

of temperature, pH, ionic strength variations, or oxidation. These can be avoided 

through prevention of localised concentrations of reagents by good mixing. Physical 

losses are those where part of the product ends up in a side or waste stream of the 

process. On scale-up, such losses may increase especially for centrifugation stages, 

as de-watering becomes more difficult (Fish and Lilly 1984).

Some of the losses of yield experienced in recovering enzymes and proteins after the 

fermentation are time dependent. They occur due to the attack by proteases and by 

chemical oxidation and denaturation. Continuous processing can reduce time 

dependent product losses. However such processes require high equipment reliability, 

a rigorous process engineering approach and good instrumental control.

Increasing the yield of a unit operation may adversely affect other parts of the process. 

If the sole objective of the fermentation stage was to maximise product yield, this could 

directly impact downstream separations resulting in larger volumes of impurities. 

Hence fermentation optimisation is not equivalent to overall process optimisation. 

Process integration is also important within downstream operations. For example 

optimising the recovery of proteins in the homogenisation stage would result in a high 

level of fragmented cell debris, which will make further downstream operations, such 

as solid liquid separation more difficult to operate effectively. During the later step an 

increase in recovery can be achieved at the cost of lower flow rates, hence a lower 

product output rate. In the flocculation and precipitation stage an increase in yield, is 

usually followed by a reduction of purification. Zhou et al. (1997) illustrated the 

importance of process interaction during the study of the fermentation-disruption- 

clarification steps.

Running an unit operation effectively, is not coincident with solely maximising the step 

yield, but the attempt to maximise the removal of contaminants for a given yield level. 

A study of the interactions is also important, as this will allow one to determine the 

ideal inlet composition for operations, hence setting the process engineer a control 

target for the previous unit’s outlet conditions.

1.2.5 Conclusion
An overview was given of upstream and downstream operations as well as the level of 

impact the former has on the later, in the form of a variable feedstock. Several 

downstream unit operations are available to the development engineer. Which 

process step and sequence to adopt is a function of several interacting factors and
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currently the most appropriate method of selection is through experience and 

screening. Considerable pressure is put on the design engineer to identify the correct 

downstream processing protocol and operating conditions in a time-efficient manner. 

The variable nature of feed material to downstream processes necessitates the 

operating conditions to be modified either within batches or on batch to batch basis. 

Hence some form of monitoring and control is needed.

1.3 Potential benefits of rapid monitoring

1.3.1 Introduction

Monitoring product and contaminant concentrations is critically important at all stages 

of bioprocess operation, development and control. Biochemical processes are 

complex systems containing a multitude of different biological components in which 

their activity and state are extremely sensitive to changes in the physiochemical 

environment making their rapid monitoring an extremely difficult task. To be able to 

describe the status of the bioprocess in detail at any stage of its progression would 

give a more accurate record of the process facilitating and improving process 

operation, development and control. It should be noted though that process monitoring 

in biotechnology is extremely primitive (Paliwal et al. 1993) constraining the advances 

especially in bioprocess control. This is particular the case for downstream processing 

(Mattiason and Haakanson 1991). This section will attempt to discuss the benefits of 

rapid measurements and conclude on the current state of bioprocess control especially 

for downstream operations.

1.3.2 Process confidence

Process monitoring is an essential component of biotechnological production and is 

mandatory to meet the conditions set by the majority of regulatory authorities (Paliwal 

et al. 1993). In view of the fact that process monitoring is required it is paradoxical that 

quality control measurements are often carried out many hours after processing has 

completed. The problem is that many measurements have to be carried out 

afterwards due to the lack of available real time monitoring systems. Traditionally most 

downstream processing is carried out blind in the process time scale in terms of 

product and key contaminants giving little confidence in the correct operation, 

especially as feed conditions are inherently variable. Rapid monitoring would enhance 

process confidence by allowing the operator to follow the composition of the various 

process streams in real time and take the required steps in case something 

unexpected should happen. Rapid monitoring combined with powerful computer 

systems, can provide real-time data logging and documentation. The real time data
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can be presented graphically to facilitate an immediate and comprehensive overview of 

process conditions and performance (Sonnleitner et al. 1991).

1.3.3 Rapid process development

Bioprocess engineers are faced with increasing pressure to extract as much valuable 

information as possible from each set of experiments performed (Christensen and 

Marder 1996). Rapid and automated measurements of product and key contaminants 

can facilitate, improve and accelerate the time costly development cycle both during 

bench and pilot phase operations.

During bench scale process development rapid monitoring techniques could substitute 

the laborious time consuming off-line assays eliminating the variability usually 

associated with manual measurements. Rapid monitoring will also allow more 

ambitious factorial experiments to be set-up improving experimental design and hence 

process knowledge. A higher resolution of data points can be demanded improving 

process characterisation. Further more the rapid data can be implemented for real 

time process analysis through the use of a supervisory computer. By performing the 

process analysis in real time the operator can focus on setting up the subsequent 

operation based on up to date analysis hence accelerating the process development 

cycle. Rapid monitoring is becoming a necessity in bioprocess development as 

demand increases for time-efficient ways of extracting information from each 

experiment (Olsson et al. 1998). Takahashi (Takahashi and Taniguchi 1989) 

demonstrated the at-line monitoring of both product and contaminant levels during ion- 

exchange and affinity chromatographic operations which resulted in considerable time 

savings. Rapid monitoring can also accelerate the development of a process in the 

pilot phase, allowing the engineer to move from one operating window to another in an 

informed manner (Habib et al. 1997).

1.3.4 Process control

The purpose of control is to manipulate the control variables to: (a) maintain the 

desired outputs at a constant desired value by suppressing the influence of 

disturbances, (b) stabilise unstable or potentially unstable processes and (c) optimise 

the performance, such as the yield, productivity or profit. The above objectives are to 

be achieved under various constraints such as safety, environmental regulations, 

limited resources and operational constraints. One important operational constraint in 

bio-systems is the ability to monitor processes in real-time, with sufficient reliability.

Product quality can vary both during biosyntheses and during downstream processing 

and that quality is a function of a complex set of variables. These variables can
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change rapidly as organisms grow and deplete nutrients in a fermenter, as the 

feedstock to the purification systems varies, or as purification columns in the 

processing system age. The ability to monitor the processing system rapidly would 

make it possible to enhance the product quality through the control of system variables 

(Paliwal et al. 1993).

Fermentation monitoring and control has been a field of intense research for many 

years and a detailed discussion is therefore outside the scope of this section. Several 

reviews in this area have been published (Royce 1993, Rhelm et al. 1991, Thornhill 

and Royce 1991), where both conventional sensors and more recent biosensors 

(Scheper et al. 1996, Schugerl et al. 1996) have been used. Various control strategies 

have been applied (Vallino and Stephanopolous 1987, Lim and Lee 1991) and 

promising results have been reported.

The advances in monitoring and control of downstream processes however are less 

prominent. In Mattiason and Haakanson’s (1991) extensive review on measurement 

and control o f downstream processing he stated:

“One question to be raised is whether it is the very nature of downstream processing that makes 

it unsuitable for on-line monitoring and control. This does not seem to be the case. It is merely 

that there has been no tradition of process control in downstream processing, and hence there 

are no sensors or other control strategies available”.

The lack of interest in rapid monitoring and control in downstream processing is 

highlighted by the scarce attention given to this area in the revised edition of 

biotechnology, “measuring, modelling and control” (Rehm and Reed 1991). In this 

comprehensive treatise out of 660 pages only 1/2  page is given on control of separation 

processes. Despite this lack of interest the aspects discussed on upstream control 

and the benefits this brings to the bioprocessing can be projected onto downstream 

operations.

The availability of measurements of product and contaminant concentrations in real­

time would enable the simple open-loop feeding regiments that are currently in use to 

be replaced by more reliable closed-loop algorithms (Konstantonov et al. 1994). 

Control in downstream processing will increase the reliability concerning reproducibility 

between repeated batches (Mattiason and Haakanson 1991) and human errors and 

individual variations can be markedly reduced (Sonnleitner et al. 1991). Further more 

automation permits exploitation of 24 hours a day and 7 days a week (Sonnleitner 

1997). However sufficient information about the process state is a pre-requisite for 

process control. The widespread use of computers in the biochemical industry has 

provided a powerful tool with which sophisticated control methods can be applied to
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improve production efficiency. It is particularly in the areas of optimisation and control, 

in which the capabilities of the computer can truly be realised. However the success of 

computer based applications is highly dependent on the level and robustness of on-line 

monitoring and reliable mathematical models.

Despite the existence of advanced control theories, which are applicable to 

downstream processing operations in the bio-process industry, the pursuance of such 

strategies to date has been limited. This is in part attributable to the lack of reliable 

monitoring techniques particularly for the initial stages of recovery where a complex 

mixture of product, cell and cell wall debris is present, as well as the limited 

speed/frequency of monitoring. The need for rapid monitoring in bio-processes has 

been highlighted by several authors (Ransohoff et al. 1990, Paliwal et al. 1993, 

Mattiasson and Haakanson 1991). In Locher's detailed review (Locher et al. 1992) of 

on-line measurements techniques in biotechnology it is clearly stressed that on/at-line 

monitoring is substantially underdeveloped in biochemical engineering in comparison 

with other industries. An important difference between upstream and downstream 

processes is the relative dynamics of the operations. The fast dynamic characteristics 

of downstream processes puts even more demand on rapid monitoring techniques in 

terms of speed of measurements.

Today product and the process are well established by the time they become part of 

the processing chain and most downstream unit operations are monitored and 

controlled using traditional indirect measurements such as temperature, pH, 

conductivity, UV absorbance, etc. However, indirect monitoring methods can only pick 

up general changes in product and contaminant levels making efficient process control 

virtually impossible.

Advances in at-line measurement methods (see next section) have enabled a few 

examples of direct control of product and contaminants during downstream processing. 

Holwill et al. (1997) demonstrated the control of a fractional precipitation process using 

rapid measurements on product levels, enabling disturbances to be detected and the 

process to be correctly regulated to insure good product recovery in real time. 

Bracewell et al. (1997) and Sonsitza et al. (1998) demonstrated the rapid monitoring 

and control of chromatographic operations applying at-line biosensors, indicating that if 

traditional UV absorbance readings were applied poor operation of the process would 

have been the outcome.
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1.3.5 Conclusion

Rapid (automated) monitoring has great importance for the biochemical engineering 

discipline in terms of process confidence, improving and accelerating process 

development and the potential of process control increasing the reproducibility and 

hence quality of product. The bottleneck in biotechnological process control is the lack 

of rapid measurement techniques of controlled biological variables. Several advances 

in rapid monitoring methods have taken place these will be described in the next 

section.

1.4 Rapid monitoring methods

1.4.1 Introduction

Process monitoring is an essential component in the biochemical process environment. 

As discussed in section 1.3 rapid monitoring is vital for process confidence, rapid 

process development, process control and automation. This section will discuss the 

various types of monitoring techniques available for the biochemical industry.

In its most ambitious form bioprocess monitoring means effortless access to 

continuous real-time information about all variables relevant to a given process (Olsson 

et al. 1998). Today very few on-line analysis methods are available and thus at 

present one has to settle for second best, at-line analysis systems or in some cases 

rapid off-line measurements as the only means of monitoring a given analyte during a 

bioprocess. These three monitoring procedures are illustrated in figure 1.1 and 

defined below.

1) O ff-line m onitoring. A sample is manually taken, prepared and presented to 

a detection instrument.

2) A t-line  m onitoring. A sample is automatically taken, prepared and 

transported to a detector implementing a flow system.

3) On-line m onitoring. Measurement can be made directly without the need for a 

sample to be taken from the bioprocess.

Most rapid monitoring systems are of at-line nature and typically consist of three 

operating steps: a sampling device, a flow system and a detector. The whole system 

is usually automated and delivers a discrete signal with a time delay.
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This section will briefly discuss the different types of measurement techniques which 

may be applied for rapid monitoring of bioprocesses be it of on-, at- or off-line nature. 

Automated sampling systems, three different flow systems applied and different 

available detection systems will be looked into in terms of their level of specificity and 

monitoring speed. This section will conclude with an overview of the available systems 

applicable to downstream monitoring and their potential use for process control.

(1) O ff-line 
► m easurem ent

Automated
sampling

DetectionBioprocess
Flow system

(3) On-line 
m easurem ent

(2) At-line 
m easurem ent

Dilution DetectionSampling Sample
Preparation

............. ► Manual steps
------------ ^  Automated steps

Figure 1.1. Schematic of on-, at-, and off-line measurement techniques.

1.4.2 Automatic sampling

As described above the first part of any at-line bioprocess system is an automated 

sampling system. Generally two types of samples can be withdrawn from a 

bioprocess, a solid free sample or a solid-liquid sample, which is usually dependent on 

what is required to be monitored and whether the detection instrument is sensitive to 

fouling. The main priority of any sampling system is that it can reproducibly withdraw a 

representable sample of the bioprocess.

Most of the at-line sampling systems (for fermentation use) use a membrane for 

removal of interfering material from the sample, dialysis and filtration being most 

common techniques. In filtration a pressure is applied to force the analyte molecules 

as well as the solvent through the membrane pores. In dialysis, a concentration 

gradient is the only driving force for transport through the membrane and molecules of 

the appropriate size diffuse from the sample. A detailed discussion of membrane 

based sampling systems was given by Merbel et al. (1996). The drawbacks of filtration 

systems were sample losses and membrane fouling, whilst for dialysis techniques the
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constraints were the relatively slow speed of separation and the need for calibration. 

Membrane sampling systems have been implemented in combination with several at- 

line monitoring systems (Scheper et al. 1996, Merbel et al. 1996).

An alternative sampling system based on microcentrifugation has also been 

developed. Rapid solid-liquid separation using this technique and subsequent HPLC 

measurements of glucose and acetate from an Escherichia coli fermentation was 

demonstrated by Turner et al. (1994). Chard et al. (1994) applied a similar solids 

removal system prior to an enzyme catalysed FIA technique for the rapid monitoring of 

a fractional precipitation operation. Although automated centrifugation is not widely 

used due to the relatively high cost, it has the benefits of handling samples fast and 

reproducibly without fouling.

1.4.3 Flow systems

Flow systems are applied to automatically dilute, prepare and transport a given sample 

to a detection system for analysis. Three flow systems will be discussed namely, the 

flow injection analysis (FIA), stopped flow analysis (SFA) and sequential injection 

analysis (SIA) methods illustrated schematically in figure 1.2.

FIA is based on the injection of a well defined volume of liquid sample into a 

continuous moving carrier reagent stream (Ruzicka et al. 1988). After injection the 

sample is typically involved in a reaction whilst being propelled towards a detector. 

The success of FIA rests on (1) the reproducible injection of the sample (2) timing of 

the sample movement and (3) controllable dispersion of the sample in the carrier 

stream. The advantages of FIA systems are the low response time, low sample 

volume and high sampling frequency whilst the drawbacks are the lack of robustness 

and large quantities of reagent required. Christensen and Marder (1996) lists a 

number of publications which have demonstrated the successful use of FIA.

During SFA a well defined volume of sample and reagent is mixed and transported to a 

detector by a carrier stream. The flow is temporarily stopped and the reaction initiated 

by the sample-reagent mixture is followed usually in terms of a kinetics assay. The 

advantages of a SFA compared to the FIA is increased sensitivity of the measurement, 

the ability to evaluate the kinetics of a reaction and the reduction in use of reagent. 

The drawbacks are usually a slower frequency of measurements.
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The development of SIA was to overcome the problems seen with the two above flow 

systems, such as single analyte analysis, large consumption of reagent and the need 

for complicated flow manifolds with several flow channels rendering the system more 

liable to wear of mechanically moving parts. By introducing a single piston pump and 

multi-position valve connected to a number of reagents reservoirs, sample reservoirs, 

enzyme reactors, detectors the above problems can be solved (Ruzicka et al. 1990). 

SIA systems are often based on stopped flow techniques, where sample dispersion 

residence times and signal detection are fully separated phenomena (Christensen and 

Marder. 1996).

FIA, SFA and SIA have been extensively implemented as the flow system of many at- 

line analysis methods due to the large number of unit operations and sample 

preparation steps which can be included as part of the analysis manifold. The use of 

such techniques for rapid monitoring of fermentation and downstream process have 

been demonstrated extensively in literature and they differ in the manner in which 

samples are detected.

FIA SFA

ER

MV,

PP

SIA

Figure 1.2. Schematic o f the FIA, SFA and SIA flow systems. The letters S, B, R, PP, 

D, ER, MV and IV refer to sample, buffer, reagent, piston pump, detector, enzyme 

reactor, multi-position valve and injection valve.

1.4.4 Chromatographic techniques

Chromatographic techniques such as LC and GC are well established analytical 

separation techniques. The sample is separated into its constituents in the flow 

system and the individual components are subsequently quantified by a non-specific 

detector (spectrophotometer). Chromatographic techniques allow for multi-component

Page 20



introduction

analysis and therefore have a high information density. In addition the system is very 

stable and robust since they are based on physical principals. The main drawbacks of 

such monitoring systems are the relative high cost and especially the low analysis 

frequency, typically less than 5 h'1 for LC (Olsson et al. 1998).

Capillary electrophoresis (CE) has been established as a promising chromatographic 

technique due to its high resolution capacity. Electrophoresis is a process in which 

charged species are separated based upon different migration rates in an electrical 

field and can be applied for the determination of peptides, proteins, nucleic acids and 

many types of biopolymers. CE analysis times are around 10 minutes per cycle. The 

relatively slow response of chromatographic systems has limited their use to 

fermentation monitoring.

1.4.5 Enzymatic measurements

Enzyme activity is generally monitored by measuring the enzyme catalysed reaction 

initiated by the addition of substrate under suitable conditions. By tradition these 

assays have been performed as off-line analysis. By adopting one of the flow systems 

discussed above automated enzymatic assays may be performed in a faster and more 

reproducible manner by eliminating the manual dilution and reagent mixing steps. 

Though it is rare that the analyte or the product into which it is converted can be 

detected with sufficient selectivity and sensitivity the analyte can often be quantified by 

detecting co-substrate or co-products. Two classes of enzyme reactions where co­

substrates or co-product are easily detectable are oxidases and dehydogenases. 

Various detection principals can be used for quantification of these reactions such as 

spectrophotometry, caliometry, fluorometry and amperometry. Mattiason and 

Haakanson (1991) and Olsson et al. (1998) have compiled examples of FIA techniques 

which have been used in combination with enzymatic catalytic reactions and their 

respective detectors. For downstream application Holwill et al. (1997) adopted a SFA 

for the rapid measurement of alcohol dehydrogenase (ADH) activity during a fractional 

precipitation process. Takashashi et al. (1989) demonstrated the use of a FIA for the 

real time measurement of alkaline phosphate during ion-exchange and affinity column 

chromatography. As enzymatic off-line assays are traditionally performed post 

process completion the speed of measurements is not vital, hence enzymatic reactions 

are usually allowed to run to completion or during kinetic measurements a large 

number of points are taken prior to rate estimation. During at-line measurements short 

cuts are taken to reduce assay times, such as only looking at the initial kinetics
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information and often not allowing the reaction to go to completion. This is possible 

since sample handling is extremely reproducible.

1.4.6 Immunoanalysis

Analysis of individual proteins may also be performed through the binding of antibodies 

to a particular region on the individual protein molecule. If an antibody is available for 

the protein of interest analysis based upon precipitation, detection of radioactively 

labelled antibodies (radio-immunoassay (RIA)) or the amount of enzyme activity which 

can be linked to a particular protein by an antibody (ELISA) may be used to quantify 

the amount of the individual protein present. Recently some of these immunoassays 

have been adopted for rapid monitoring of a biochemical process. Especially the flow 

injection of ELISA technique appears to be a quick, reproducible method that is easy to 

automate (Nilsson et al. 1992a).

Immunoassay procedure have two parts; the actual immunoreaction and the 

subsequent detection of these immunocomplexes formed. A wide variety of methods 

have been established; one technique applied by Mattiason and Haakanson (1991) is 

described below. First the antibody was immobilised to a solid support and packed in 

a small column. The sample to be analysed for its native antigens was mixed with a 

known amount of enzyme-labelled antigen. The antigen mixture was passed through 

the antibody column through one of the flow systems described above. Time for 

contact was in the range of 10-20 s, i.e. far too short for equilibrium in the binding 

reaction to be established. However, since flow and sample addition was extremely 

reproducible, it was possible to operate the system under conditions far from 

equilibrium (Mattiasson & Borrebaeck 1978). After a short washing step to remove any 

non-specifically bound enzyme-labelled antigen, the level of the binding reaction was 

evaluated by feeding a stream of substrate for the marker enzyme. The higher the 

concentration of the native antigen in the sample, the smaller the amount of labelled 

antigen that was bound by the affinity column and thus a lower product pulse was 

registered. Finally regeneration of the antibody column was performed prior to the 

next assay cycle.

Several different transducers have been used in conjunction with binding reactions, the 

choice of which varies from case to case. Mattiasson and Haakanson (1991) have 

compiled a list of examples of analysis performed and detectors used in flow injection 

binding assays. The times involved vary and are dependent on the time taken for
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sample mixing and transportation and reaction kinetics. Nilsson et al. (1992b) 

demonstrated the use of a flow injection immunoassay for the rapid monitoring of 

chromatographic separation with an assay time of 7 minutes.

1.4.7 Biosensors

A biosensor can be defined as analytical device that combines a biological component 

with a transducer (Mattiason and Haakanson 1991). The biological component can be 

an enzyme, an organelle, a micro-organism, a tissue or an antibody and confers 

specificity on the system. The transducer (optical, thermistor or some type of 

electrode) is usually placed in close proximity to the biological component and converts 

the biological signal into an electrical signal, which is proportional to the analyte 

concentration. Biosensors would be ideal for on-line monitoring as they provide a 

close to real time continuous and very specific measurement of a given analyte. 

However the drawbacks of biosensors is that they suffer from poor stability, problems 

associated with sterility (fermentation use) and need frequent re-calibration. 

Additionally the biosensor may not work optimally at the conditions prevailing in the 

bioprocess. Consequently biosensors are currently used for analysis of cell free 

samples, obtained from either manual or automatic sampling systems. Biosensors 

have been used as detectors in FIA systems for fermentation (Scheper et al. 1996) 

and affinity chromatographic process (Bracewell et al. 1997) where in the later 

example monitoring frequencies were approximately 120 h'1 and therefore applicable 

for downstream process control.

1.4.8 Traditional measurements software sensors

Traditional measurements such as temperature, pH, conductivity and turbidity readings 

are traditionally taken during upstream and most downstream unit operations. These 

are usually regulated to fixed setpoint in order to keep environmental conditions 

suitable for product stability and to aid good separation. However they give little 

information on the biological state of the process by themselves.

Software sensors use data available on-line to give estimates of some indicators of the 

biological state (such as biomass, product and substrate concentration) using process 

models (Glassey et al. 1997). An integral component of software sensors is the model, 

which relates the available measurements to the estimated process variables. Model 

building can be performed from first principles through a series of mass balances or 

through statistical techniques such as neural networks and multivariate analysis
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methods. Montague et al. (1992) demonstrated the use of a software sensor using an 

artificial neural network based model to predict biomass concentration on-line by 

applying information on the feed rate, carbon dioxide evolution rate and fermentation 

age. All the publications found apply software sensors to fermentation systems, due 

the vast number of already present on-line measurements on chemical and physical 

properties. The application of such techniques for downstream process monitoring 

was not found. However traditional measurements such as, pH, temperature, 

conductivity, shear rate, process time and turbidity readings may contain information to 

predict the biological state of for example a precipitation or flocculation process.

1.4.9 Spectral analysis

Spectroscopic techniques such as ultra violet (UV), visible (VIS) and infrared (IR) as 

well as fluorescence, electron spin resonance and nuclear magnetic resonance have 

broad application in biochemistry. They can yield a large amount of information about 

biological processes. However for rapid analysis of bioprocesses at present only a few 

of these techniques have been applied.

Single wavelength measurements are traditionally applied in the UV and VIS region for 

an indication of protein (UV280), nucleic acid (UV260) and turbidity readings 

(absorbance at 600-670 nm) which give an estimate of biomass levels. Their level of 

specificity is low due to the interference of the multi-component mixture, require clear 

samples or the need for dilution prior to spectroscopic analysis.

The benefits of spectral scans have recently been demonstrated both using UV-VIS 

and NIR spectroscopy. By implementing the information contained in spectral scans 

through multivariate analysis techniques more specific biological information can be 

gained. Rapid monitoring of cell debris, protein and RNA in yeast homogenate was 

demonstrated during a flocculation process using analysis of spectral scans using both 

NIR (Yeung et al. 1998) and UV-VIS (Nuoi et al. 1998). With recent advances in 

instrumentation (diode-array spectrophotometers, fibre optic probes) and multivariate 

analysis spectroscopic instruments are finding their way into various applications for 

monitoring and control purposes, especially NIR techniques (Yu and Phillips 1992). 

NIR absorption is generally much weaker in intensity than those found in the UV-VIS 

and mid infrared absorption bands. This is seen as useful as sample analysis can be 

performed without the need for dilution or requirement of short optical pathlengths 

(Plugge and Vlies 1992). UV-VIS traditional spectroscopic techniques are limited in
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their on-line monitoring application for fermentation and early recovery processes due 

to the turbid nature of the process streams resulting in scattering (Brimmer and Hall 

1993). Dilution is required, however this can result in a more controlled and stable 

sample for analysis. UV-VIS spectroscopic instruments are also cheaper and diode- 

array technology for this spectral range more advanced. Several publications have 

demonstrated the benefits of NIR spectroscopy mostly for on-line monitoring of 

product, substrate, nutrient and biomass using diffusive reflectance modes employing 

fibre-optic probes of during E. Coli (Macaloney et al. 1996), yeast (Cavinato et al. 

1990) fermentation. If such techniques could be implemented during such turbid 

mixtures, their application in downstream monitoring should be possible.

1.4.10 Conclusion

Today only very few on-line analysis methods are available that in a non-invasive 

manner deliver a continuous real time signal of the bioprocess performance. Hence at 

present at-line monitoring techniques are the closest to real-time data and in many 

cases rapid labour intensive off-line assays are employed to follow a bioprocess. 

Several at-line measurement techniques have been discussed in terms of the analyte 

specificity, monitoring times and manner of automation. In most cases some form of 

automated sample preparation, flow system and detection instrument was employed. 

The detection instrument creates the specificity of the at-line system.

When applying at-line measurements for real time process characterisation and control 

the time delays associated with the discrete measurements have to be accounted for 

in terms of the process dynamics. The relatively fast dynamics of downstream 

processes combined with the discrete nature of at-line measurements results in a low 

resolution of data points for process characterisation and control. By combing the at- 

line information with earlier experiences of the process relatively good predictions of 

the process development can be made. As the time delays of at-line data are reduced, 

a better connection between measurement and response can be obtained. It should 

be stressed that traditional parameters should also be registered. This means that a 

data basis for proper action will be available, based on several factors monitored. 

Although the whole area of monitoring and control in downstream processing is 

currently under resourced new techniques based on spectroscopic and biosensor 

technology are advancing enabling on-line measurements and hence the possibility of 

robust closed loop process control.
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1.5.Control Theory

1.5.1 Introduction

The purpose of this section is to review some of the techniques available to the 

process engineer for setting up control configurations and to identify the main 

limitations, especially when applied to downstream bioprocesses. Process control 

terminology and basic control considerations will be discussed.

The "steady-state" operation of processes is one of the fundamental concepts of 

chemical and biochemical engineering. It has proved highly successful in analysing 

the behaviour of existing processes or plants, and in designing new ones. It must be 

appreciated, however, that the steady-state is a highly idealised situation. Although a 

process is designed to run at steady state, it is likely that the conditions in it will be 

changing continuously with time. Such behaviour may be caused by, short-term  

disturbances, such as changes in the flowrate, pH, temperature or composition of the 

feed stream, due to changes upstream. Long-term disturbances, such as, the loss of 

column efficiency during chromatography or flocculant effectiveness with time due to 

ageing, and deliberate control actions, due to changes in set-point values by the 

process control engineer. The steady-state operating conditions for a given process, 

are normally determined at the design stage so as to optimise a certain objective 

criterion, such as maximum productivity or specific purity. The objective of control is to 

manipulate the available control variables of a given process or unit operation in order 

to:

0 Maintain the desired outputs at a constant value or to follow a certain 

profile, by suppressing the influence of external disturbances.

0 Stabilise processes in terms of robustness.

0 Optimise yield, purity productivity or operating costs.

The above objectives have to be achieved under various constraints, such as safety, 

environmental regulations and operational constraints. It must also be recognised that 

some processes are inherently unsteady, i.e. batch operations. Downstream 

processes are seen as a sequence of batch processes although specific unit 

operations can be run in a continuous manner. The complexity of batch processes is 

their inherent unsteady nature and require a start-up and shut-down control strategy.

1.5.2 Variable classification

The control engineer usually classifies the process variables under two main groups; 

input variables, which denote the effect of the surroundings on the process, and output
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variables, which convey the effect of the process on the surroundings, see figure 1.3. 

Both the input and output variables can be further classified into sub-categories. Input 

variables can either be manipulated variables, design variables or disturbances. The 

former occurs if the input variables can be adjusted freely by the human operator or by 

a control mechanism, whilst the latter is the case if their values are not the result of an 

adjustment by an operator or a control system. According to their direct measurability, 

the disturbances can be further classified into measured and unmeasured 

disturbances.

Manipulated
variables

External disturbances 

Measured Un-measured

Process system
Measured
outputs

Input variables 

Output variables
Un-measured
outputs

Figure 1.3. Types o f process variables.

Output variables are classified into either measured or unmeasured output variables, 

depending if their values are known directly. The measured output variables may then 

be used as controlled variables, if the process engineer chooses to utilise them for 

control purposes.

1.5.3 Definition of control objectives

Precise definition of control objectives is vital for the design of an effective control 

strategy. Initially control objectives are defined qualitatively; subsequently they are 

quantified, usually in terms of the output variables. Control objectives and setpoint 

values, are usually determined in the process design stages. For example, a 

predetermined flocculant dose may be specified as the control setpoint. However in 

many cases the feed material for early bioprocess recovery systems is variable due to 

fluctuations in upstream conditions. A more appropriate control setpoint would be to 

specify the fraction of contaminant removal for example.

Due to the interactive nature of downstream bioprocesses the objectives for a unit 

operation should take into account the ideal feed requirements of the subsequent
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operation. For example; the objectives of a homogeniser, as a unit operation is solely 

to disrupt cells and achieve maximum product release. However the overall objectives 

of the homogeniser-centrifugation process is not only to achieve good product release, 

but also to attain satisfactory removal of cell debris. A trade off exists as for more 

product release a higher number of passes is required resulting in more fragmented 

cell debris, which is difficult to separate during centrifugation. The control engineer will 

have to specify certain minimum and maximum thresholds for product yield and 

contaminant removal and use these as setpoints, i.e. a setpoint of at least 95% product 

release.

1.5.4 Selection of measurements

Whatever our control objectives are, we need to monitor the performance of the 

process, and hence one needs to determine which variables should be measured in 

order to monitor the process performance. Variables in bioprocesses are very difficult 

if not impossible to monitor on-line. Three types of measurements can be defined: 

Primary measurements, is when the control objective can be directly measured, 

secondary measurements when the control objective is estimated through other 

measurement values and tertiary measurements, is when the disturbances are 

monitored. The tertiary measurements are relevant for feedforward control systems, 

which will be described later.

1.5.5 Selection of manipulated variables

Usually in a process there are a number of available input variables which can be 

adjusted freely in order to compensate for any disturbances. Which ones we select to 

use as manipulated variables is vital, as the choice will affect the quality of the control 

actions. Some manipulated variables, have a direct fast and strong effect on the 

controlled output variables, others do not. Some manipulated variables are easy to 

manipulate, i.e. flow rates others are more difficult (ionic strength, pH). Most 

downstream operations tend to be single input - multiple output (SIMO) systems, 

hence the choice of manipulated variables is limited to the one. The systems tend to 

be multiple input-multiple output (MIMO) systems, which, for practical reasons, have 

been reduced to SIMO systems. For example, the homogenisation step, has two main 

input variables which can be manipulated directly, namely, the number of passes and 

the operating pressure. However the operating pressure is always maintained 

constant during a run, hence the MIMO system gets reduced to a SIMO system.
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1.5.6 Determination of control configuration

After determining the control objectives, the possible measurements, and the available 

manipulated variables, one needs to define the best control configuration for the given 

process, i.e. which measurements (controlled variables) should be interconnected with 

which manipulated variables. Two general types of control configurations can be 

defined, feedback and feedforward control loops, illustrated in figure 1.4.

Disturbances

Input
variables

Feedforward

Feedback

CA U

Output
variables

Figure 1.4 Overview of feedback and feedforward control loops. CA refers to the 

control action performed on the input variable(s).

Feedback (FB) con tro l configura tion  uses the direct measurement of the controlled 

variables to adjust the values of manipulative variables. The objective is to keep the 

controlled variable at desired level. For example the release of protein during 

homogenisation can be used to regulate the number of passes through the 

homogeniser.

Feedforw ard (FF) con tro l configura tion  uses direct measurement of the 

disturbances to adjust the values of the manipulated variables. Feedforward control 

can be a very effective means of improving the dynamic response of a control system 

when simple feedback is not satisfactory. However FF control assumes that it is 

possible to measure some of the major disturbances that drive the process away from 

the desired set point. If one knows how a process will respond to a disturbance, one 

can, in principle, generate a control signal that will compensate for the predicted 

response to a disturbance before it occurs, thereby holding the process at the desired 

state. In order to keep the value of this output at the desired level, we need to change 

the value of the manipulated variable by such an amount as to eliminate the impact 

that the disturbance would have on the output. By how much though? The control 

engineer must know the following relationships :
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Process output =  /(manipulated variables)

Process output = g(disturbances)

This example demonstrates how important mathematical modelling is for design of a 

feedforward control system. Without good and accurate mathematical modelling we 

cannot design efficient feedforward control systems. By adopting a combination of FF 

and FB control an effective control strategy can be created. The FF controller, would 

increase the speed of recovery, whilst the FB controller would act as a fine tuner. A 

control configuration for a centrifugal operation can for example adopt a FF control 

system to monitor any changes (disturbances) in feed conditions and regulate the 

discharge rate or flowrate accordingly.

1.5.7 Design of the controller

In every control configuration the controller is the active element that receives the 

information from the measurements and takes appropriate control actions to adjust the 

manipulated variables, in order to compensate for disturbances. The controller's 

function is therefore to compare the measured output value to a given setpoint, and 

based on this deviation between desired and actual values perform some control 

action by applying a certain algorithm. The controllers are named after the particular 

algorithm they use on the error signal. The most common controller is called a PID 

controller and uses proportional (P), integral (/) and derivative (D) actions. The 

simplest type of controller is ON/OFF control. Here the control action is switched on 

when the controlled variable exceeds a specified setpoint and turned off when the 

controlled variable falls below another specified threshold.

1.5.8 Other control configurations 

Selective control systems
These are control systems that involve one manipulated variable and several 

controlled outputs. Since with one manipulated variable we can control only one 

output, the selective control systems transfers control action from one controlled output 

to another according to need. A selective control system selects among several 

similar measurements the one with highest value or priority and feeds it to the 

controller. For example, in order to maintain a certain yield level, whilst maximising the 

removal of contaminants a selective control system can be adopted. The yield factor is 

the first priority whilst the contaminant removal is the secondary objective.
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Sequence control
Since batch and fed-batch systems vary with time, the control system must deal with 

time- and event- based process conditions and transition phenomena. In a batch 

precipitation operation sequences of operations need to be followed. First a batch tank 

is filled with feed material and brought to the right conditions (temperature, pH, salt 

concentration), a fixed volume of precipitant is added, aggregation of precipitants is 

allowed to age at specific shear conditions and the termination of the precipitation step 

is followed by centrifugal separation. The starting of pumps and the opening of valves 

are all events in time, requiring different control actions. An important question to ask 

is what concentration of precipitant should be added? For a variable feed stream a 

different precipitant dose is required to be determined. A FF control configuration 

could be implemented requiring some form of process model. Alternatively real time 

optimisation of the process can be performed which determines the ideal precipitant 

dose setpoint for each batch.

1.5.9 Adaptive optimisation and high level control

The objective of adaptive optimisation and control is to determine optimal operating 

conditions for a bioprocess that may be unknown or may change with time and 

subsequently control the process to these conditions using the techniques described 

above. The optimisation involves determining the best operating variables, which 

leads to optimum performance as measured by a given performance index. For 

example, during a precipitation and flocculation process due to the variable nature of 

the feed material a fixed predetermined setpoint for pH, salt concentration and 

precipitant or flocculant dose is not possible. One needs to determine in real time 

optimal operating conditions. During batch mode this may be done by observing the 

output levels (product and contaminant level if possible) given the specific input 

conditions (dose level, pH, conductivity) during the gradual dosing of precipitant or 

flocculant. By applying such an input-output data with estimator process model 

parameters can be determined. These up to date estimations of model parameters for 

the given batch run can be used to fully characterise the process and fed to an 

optimisation procedure to determine the optimum conditions and apply these as control 

setpoints.

1.5.10 Conclusion

An overview of process control terminology and basic control considerations for 

downstream processes have been described. The determination of control objectives 

and subsequent setpoints are dependent on not only the specific objectives of a single 

unit operations but the behaviour of the subsequent downstream process. The correct
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selection of the manipulative and controlled variable as well as the control 

configuration will determine the effectiveness of the control system to regulate a given 

process to its pre-specified setpoints.

In downstream processes most input variables can be classified as design variables. 

Material from upstream operations can be defined as possible disturbances due to the 

fluctuations observed in fermentation conditions. This leaves the operator with just a 

few manipulative variables to achieve the control objectives. In some situations the 

process setpoints may be unknown and change between batches. An adaptive 

optimisation procedure, adopting a process model, can determine optimum operating 

conditions in real time.

1.6 Early recovery operations and approaches to their control 
using direct measurements

1.6.1 Introduction

The purpose of this section is to analyse possible control configurations for a few 

downstream unit operations. The following sections will give a brief introduction to 

each purification step, followed by a more detailed description of some operations 

which will be studied later in this work. An analysis of the control problem using direct 

measurements on product and contaminants will be given based on existing 

publications. The unit operations will be discussed in roughly the order they occur in a 

typical downstream process.

1.6.2 Cell disruption - High pressure homogeniser

Background

Protein purification schemes diverge initially depending on whether the desired product 

is retained inside or secreted outside the cell. For intracellular products some form of 

cell disruption is required. Cell disruption methods can be categorised into mechanical 

and non-mechanical methods, which again can be divided into several types of cell 

release techniques. Non-mechanical methods include; desiccation, high pH, osmotic 

shock, chaotropic agents, detergents, freezing, antibiotics or cell wall hydolytic 

enzymes. In each case the cell membrane may be either totally disrupted or made 

partially permeable to allow the product to escape. Non-mechanical disruption 

methods, are usually inflexible, often time consuming batch operations, expensive and 

can cause further purification problems downstream.
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Mechanical disruption methods include; milling, high pressure homogenisation and 

ultrasonic techniques. High pressure homogenisers are the most widely used methods 

for large-scale cell disruption processes (Scawen et al. 1980) and will therefore be 

used in the following control example.

High-pressure homogenisers »
The most widely studied high-pressure homogeniser is the Manton-Gaulin APV type,

!
which uses a spring-loaded valve originally developed for milk homogenisation. 

Previous studies on celi disruption using yeast have shown that the disruption to be a 

first-order process (Hetherington et al. 1971) of the input-output form:

R. = —  = l-e x p (-K N P a ) (1.4)
Rm

Where R j is the fraction of cells disrupted, Rm the maximum amount protein available

for release and R the amount of released protein, K  the dimensionless rate constant, P 

the operating pressure, N  the number of passes and a  is the exponent to the operating 

pressure. The rate constant is a function of the suspension temperature, whilst a  is 

dependent on the cell type, and was experimentally found to be constant and 

approximately 2.9 for yeast and 2.1 for E.coli. Such a relationship between pressure 

and cell release clearly demonstrates the desirability of higher pressure units. The 

operation conditions of a homogeniser also has a strong impact on the particle size 

distribution of subsequent cell debris and viscosity of the homogenate, which was 

shown to follow the response of protein release (Clarkson et al. 1993, Siddiqi et al. 

1991, Mosqueira 1981). As the number of passes through the homogeniser increases 

the viscosity of the homogenate will rise and the average cell debris size decrease.

Control considerations

The objective of the homogenisation step is to maximise the release of intracellular 

product whilst maintaining a low carry over of micronised debris that could cause 

problems for further downstream processes. The smaller debris size range produced 

by an extra pass may preclude any advantage in extra product release since the debris 

would be more difficult to recover.

Given equation 1.4 one can classify the various homogenisation input variables. 

Possible manipulative variables are the pressure (P) and number of passes (AO, 

however the former is traditionally kept constants and specified during the design 

stages. Process disturbances may arise from variation in upstream conditions 

resulting in fluctuations in cell wall strength or can arise form changes in homogeniser 

conditions such as equipment failure.
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Whatever the control objectives are, one needs to monitor the performance of the 

process. Rapid monitoring during homogenisation will allow the release and possible 

denaturation of the product level to be followed in real time. Such rapid data may be 

utilised for process confidence, fault detection or control. Currently homogenisation 

processes are well defined in terms of the required number of passes, operating 

pressure, temperature, etc. Hence any form of control will focus on keeping input 

variables to pre-specified operating conditions, i.e. maintaining pressure at 500 bar, 

temperature at 4°C and number of passes to 5. Such control may be termed 

traditional chemical engineering control and assumes that no or little variation will be 

seen in feed conditions.

Holwill et al. (1999) demonstrated how at-line monitoring o f product during the 

homogenisation of Baker’s yeast could be implemented for fault detection due to 

equipment failure. Product measurements were performed at-line through a stopped 

flow analyser giving an indication of the process performance. The release model 

described in equation 1.4 was implemented to predict the total product release fraction. 

This was compared to past runs and if a large deviation was observed fault detection 

was triggered.

Control of product release has not been shown in literature. This may be attributed 

partly to the difficulty of acquiring rapid process information and the design of the 

homogenisation unit. By altering for example the manner in which the homogenisation 

process is operated more scope for direct control is possible. During batch 

homogenisation the number of passes is discrete making control difficult as the 

manipulative variable (number of passes) will be an integer and usually well defined 

i.e. 5 passes. However during continuous homogenisation more flexibility is introduced 

as in this case the processing time can be used as the manipulative variable.

1.6.3 Flocculation and precipitation

Flocculation and precipitation apply the use of insolubilisation or aggregation by 

adjustment of the chemical environment (salt concentration, pH, organic solvent, 

polymer, etc.) to carry out purification. Both operations are usually followed by a solid 

liquid separation step such as centrifugation. As the selective flocculation process will 

be studied later in this work, a more detailed theoretical discussion will be given on this 

unit operation. However possible monitoring and control configurations will be given 

on published examples on the precipitation process.
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Flocculation background

Flocculation provides a highly promising solution to the problem of processing cell 

homogenate prior to high resolution purification. The flocculation of cell debris using 

polyelectrolytes (e.g. Polyethyleneimine (PEI)) can be used to enhance the efficiency 

of separation processes such as centrifugation by causing the debris to aggregate into 

larger floes. Simultaneously it is possible to remove contaminants by polymer induced 

precipitation of, for example, nucleic acids and colloidal proteins. The removal of such 

contaminants is an important precursor to the use of high resolution separation 

operations such as packed bed chromatography.

The mechanism of flocculation by polyelectrolytes can involve two processes; surface 

charge neutralisation and bridging. Certain long-chain polymers may absorb in such a 

way that different segments of the same polymer chain are absorbed on different 

particles, thus bridging the particles despite the electrical repulsion. With 

polyelectrolytes of opposite charge to the particles, the latter may be partly or 

completely neutralised by the polymer. This eliminates the electrical repulsion, 

destabilises the particles and allows them to aggregate. Both of these effects can be 

important and sometimes both operate simultaneously.

This work will be investigating the flocculation with polyethyleneimine a cationic 

polyelectrolyte with a wide molecular weight distribution. The key parameter is the 

charge difference between the polymer and the material in suspension, leading to 

electrostatic patch flocculation. PEI has been extensively characterised with respect to 

its physico-chemical properties (Lindquist and Stratton 1975, Horn 1980). It is a low- 

cost reagent, and used in low concentrations, hence no recycle is required. It is 

extensively used in the packaging industries and its use for biological products is 

reviewed elsewhere (Milburn et al. 1990).

The flocculation process is highly sensitive to operating conditions such as pH, salt 

concentration, feed stream composition (Jendrisak 1987) as well as flocculant make­

up (age, brand) (Habib et al. 1997). This is made worse by the tendency for reversal 

of flocculation leading to stabilisation of for example cells or debris in suspension. 

Hence the problem is more difficult than for development of say a precipitation 

process.

For charge neutralisation driven polymers, such as PEI an increase in ionic strength 

through an increase in salt concentration, would reduce the effectiveness of
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flocculation due the interaction between the polymer and ions and the screening of the 

particles (Bulmer et al. 1994). Bulmer et al. further stated that optimum salt 

concentrations is component specific. The level of pH has a crucial affect on the 

effectiveness of PEI to flocculate contaminants and product. At low pH values the 

polymer's charge density is high and therefore a lower concentration of flocculant is 

required to achieve optimum flocculation. However a more accurate manner of dosing 

is needed to prevent the flocculation and hence removal of the target product. No 

practical models are available in literature that describe the effects of different input 

variables on the flocculation mechanism and hence flocculation process output 

variables.

The flocculation and precipitation process have to be viewed as an integration of the 

flocculation/precipitation mechanism and centrifugation operation, with the measure of 

what is adequately flocculated/precipitated being determined by the centrifuge 

performance, i.e. both as a consequence of feed zone breakage and of clarification. 

Hence poor performance of a flocculation or precipitation process could either be 

resolved by change in flocculant/precipitant concentration, pH, salt concentration, etc. 

or by altering centrifugation operating conditions.

Precipitation background

A range of protein solubility curves were given by Cohn (1925) for the precipitation 

process as a function of salt concentration, described in equation 1.5:

log—  = k I + p  (1.5)
E„

where E and E0 referred to the enzyme activity or protein concentration remaining 

soluble after precipitation and in the feed. Model parameter k was defined as the 

salting-out constant which depends on protein and salt properties, p  is a function of pH 

and temperature and /  refers to the salt concentration.

Control considerations

Examples of rapid monitoring of a flocculation process was demonstrated by Gregory 

and Nelson (1986) and Huang and Chen (1996), implementing a novel instrument 

called a photometric dispersion analyser (PDA). The PDA instrument was able to 

detect a floe index based on fluctuations in turbidity readings. However these 

examples were studied for the flocculation of kaolin, i.e. a non-biological material.
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Due to the lack of published material on rapid monitoring and control of the flocculation 

process this section will concentrate on the precipitation process. The objective of a 

precipitation operation is to obtain a setpoint product yield by maintaining a specific 

position on the process solubility curve of a target enzyme. A possible process 

disturbance is the feed material composition which may result in a shift in the solubility 

curve and thus a change in the amount of product remaining in solution and hence 

removed/collected in the subsequent solid/liquid separation step. Possible 

manipulative variables are the pH, temperature and salt concentration levels, however 

given the limits on product stability the two former variables are usually specified in the 

design stages.

An example of how direct monitoring of product and subsequent control of a 

continuous ammonium sulphate precipitation process for the purification of a specific 

enzyme in S.cerevisiae was given by Holwill et al. (1997). The adopted control 

configuration was of feedback nature, where the overall all feed saturation level was 

manipulated to maintain product levels to a specific position on the solubility curve to 

ensure a setpoint product yield. The rapid product measurements were carried out by 

a stopped flow analyser. A microcentrifuge (Richardson et al. 1996) was implemented 

to remove biological particles such as protein precipitate or cell debris whilst 

maintaining the soluble components. The feedback control configuration implemented 

a model to establish the position of newly acquired product points on the solubility 

curve and if these were unsatisfactory the control algorithm would drive the process to 

meet the solubility setpoint. Holwill et al. (1997) demonstrated that the control 

configuration was capable of maintaining a required product yield by manipulating the 

saturation level given deliberate disturbances in pH and feed concentration.

It should be noted that in the above work only product was monitored and controlled, 

hence the issue of purity was not tackled. Although the specified yield would result in 

appropriate process performance, an optimisation setup would allow the determination 

of an optimum setpoint.

1.6.4 Chromatography

The term chromatography refers to a group of separation techniques, which are 

characterised by distribution of the molecules to be separated between two phases, 

one stationary and the other mobile. In the below text a detailed description on
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hydrophobic interaction chromatography will be given as this process is studied in 

detail later in this work.

This work will focus on hydrophobic interaction chromatography (HIC) which will be 

operated in both packed bed and expanded bed mode and hence a detailed 

description of this process is given below. Monitoring and control configurations will be 

given on published examples on other types of chromatography operations.

Hydrophobic interaction chromatography background

HIC is a technique by which components are separated due to their different strengths 

of hydrophobic interaction with a generally uncharged absorbent matrix possessing 

hydrophobic groups. HIC can separate components having similar size and charge on 

the basis of their hydrophobicity. The technique is particularly useful in the purification 

of proteins, as most proteins posses hydrophobic regions on their surface. A large 

number of theories have been proposed for the explanation of hydrophobic interaction 

chromatography. However most of the theories are essentially based upon the 

interaction of hydrophobic solutes and water (Tanford 1997, Creighton 1984).

The main factors to consider when selecting HIC media for the optimisation of product 

selectivity are: ligand type, type of salt, concentration of salt, pH and temperature. The 

next step is to select the operating conditions in terms of sample load and flowrate for 

optimum dynamic column performance in terms of productivity. In this work HIC is 

used as an initial product capture step where the major concern is to remove critical 

contaminants and reduce volume, hence selectivity during desorption (elution step) is 

not a prime issue. The entire bed volume is utilised for sample binding and the prime 

consideration when optimising for highest possible productivity is to find the highest 

possible sample load over the shortest possible sample application time with 

acceptable loss in yield. The dynamic binding capacity for the protein of interest 

should be determined for different sample loads and flowrates. If the flowrate is too 

high a decrease in dynamic binding capacity will be observed, however this may still be 

advantageous from a productivity point of view. A high sample load would result in 

better utilisation of the column capacity, however a larger loss of product would be 

observed in the breakthrough profile. A low sample volume although increasing the 

product yield, would result in poor utilisation of the column capacity and hence result in 

lower productivity. Hence the correct selection of flowrate and sample volume are 

critical for optimum process performance.

Page 38



Introduction

Hydrophobic interaction chromatography is traditionally operated in packed bed mode 

and can be divided into three operating cycles subsequent to the equilibration of the 

column. The first operating step is the load cycle where a clarified feed stream is 

loaded on to the column continuously. Components that have the least affinity for the 

stationary phase break through first. Loading is terminated when the capacity of the 

column for the product is saturated and breakthrough of product is observed in the 

eluate. The column is then washed, in the wash cycle, to remove unbound impurities. 

The last operating step is the elution cycle where the product is eluted off the column.

In section 1.3 it was emphasised that there is a need for a reduction in the number of 

unit operations during downstream processing to increase the overall all product yield. 

Expanded bed (EXB) chromatography allows for this by enabling disrupted cells to be 

loaded directly onto a chromatographic column without the need for any form of 

clarification step, thereby substituting several traditionally used unit operations. An 

extensive review on EXB systems and their application is given by Smith (1997).

When liquid is pumped upwards through a bed of adsorbent not constrained by an 

upper adapter, the bed can expand and the voidage between the adsorbent beads 

increase allowing particulate material to travel through the column without being 

trapped. The design of the adsorbent material for EXB systems is crucial, as the 

expansion of the bed is a function not only of the liquid composition and viscosity but 

also of the density and size distribution of the matrix.

In general EXB processes are operated in a similar fashion to packed bed operations. 

The below text will briefly highlight the main differences. Prior to loading, the settled 

bed is expanded through the application of equilibration buffer in an upwards direction. 

The load cycle is then initiated in the same direction. In general, the load sample will 

have quite different physical properties to the equilibration buffer and often having a 

higher viscosity density. The influence of feed stock properties on the EXB 

performance has been discussed by Frej et al. (1993). The Washing of EXB systems 

is usually performed in the upwards direction to remove both colloidal cell debris or 

cells and unbound contaminants. Once particulate material has been removed the 

direction of the wash may be reversed to pack the matrix and the elution cycle is 

initiated. Similar scouting experiments to those applied during the packed bed 

chromatography are required to specify optimum pH, salt type and concentration, 

ligand type, sample volume and flowrate for the optimisation of the EXB operations.
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Control considerations

The objectives of a chromatographic operation is to separate a specific product from 

contaminants giving the highest yield at the required purity as quickly, cheaply and 

easily as possible. Many of the input variables discussed above are usually 

determined in the design stages leaving a few manipulative variables applicable for 

control. The control objectives can be split into three parts one for each 

chromatographic operating cycle. In the load cycle the objective is to load to a setpoint 

product breakthrough. In the wash cycle the aim is to remove un-bound contaminants 

from the column and in the elution cycle the objective is to collect the fraction of eluate 

with the highest product concentration.

Two publications were found on the rapid monitoring and the subsequent control of 

product directly during a chromatographic operation (Sosnitza et al. 1998, Bracewell et 

al. 1998).

Sosnitza et al. (1998) demonstrated the ability to rapidly monitor an ion exchange 

chromatography process for the purification of sugar molasses into high value 

components. A flow injection analysis biosensor system was adopted to measure 

product levels (servine and sucrose) every 2-5 minutes. The at-line monitoring system 

applied was slow compared to the dynamics of the process, where product fractions 

were eluted within 5-10 minutes and therefore could not be adopted for real time 

control during the elution cycle for correct fraction collection. Elution fractions were 

therefore collected in 1 minute intervals and analysed rapidly one after the other. 

Based on the obtained elution profile the subsequent chromatographic operations 

could be controlled. In this example the need for fraction collection control was driven 

by the disturbances found in the feed material resulting in fluctuations in elution 

profiles.

Bracewell et al. (1998) adopted an optical biosensor for immunorecognition of protein 

products during affinity chromatography to obtain a rapid description of the loading and 

subsequent breakthrough. The biosensor was operated within a flow injection analysis 

regime with a total assay time of 30 s. This provided sufficiently rapid data for process 

control. In combination with the at-line data a model to forward predict the outcome of 

the breakthrough profile was adopted to enable the correct termination of the load 

cycle.
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1.6.5 Conclusion

It has been indicated that very few examples are available in literature on the direct 

control of downstream operations in terms of product and/or contaminants. This is 

partly due to the lack of available rapid monitoring techniques. Even when rapid data 

on product is available it is often of at-line nature hence associated with time delays, is 

discrete and noisy. Therefore the application of such at-line information will have to 

incorporate some form of data filtering. Most of the published work on bioseparation 

process control has been of open loop nature, i.e. an operator was employed to 

regulate the manipulative variables. The design of some bioprocesses makes the 

implementation of control configurations difficult. Bioseparation processes are usually 

batch operations with just a few manipulative variables giving the control engineer little 

scope for control. The added constraint of strict regulatory specifications on 

bioprocess operating conditions means that any manipulation of input conditions in 

order to compensate for possible disturbances will have to fall within boundaries 

specified by the regulatory authorities.

1.7 Aim of thesis

This chapter has attempted to give the reader an overview of the current state of rapid 

monitoring and control of biosepration processes. The benefits of rapid measurements 

have been put forward in terms of facilitating process development and making 

process control feasible. Several rapid monitoring techniques have been described 

however their application for downstream process characterisation and control have 

been limited due to the relatively fast dynamics of downstream operations. Hence the 

bottleneck in biotechnological process control is the lack of rapid measurement 

techniques of controlled biological variables.

The continuous pressure of speed to market of a new drug imposes considerable 

pressure on the development engineer to gain as much information as possible from 

each process development run, especially of costly pilot plant operations. Additionally 

the need for rapid screening of several downstream process protocols advocates the 

use of rapid monitoring techniques to accelerate the selection of the ideal 

bioseparation sequence. Real time process information can give the development 

engineer a powerful tool to facilitate the running of a process to gain optimum 

information around critical operating areas to enhance the knowledge of a unit 

operation. Rapid measurements are therefore fundamental for the improvement of the 

process development cycle in terms of speed and efficiency.
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The nature of bioseparation processes makes them inherently variable due to 

fluctuations in upstream conditions, process additives and sub-optimal performances 

of processing equipment. Such fluctuations lead to different requirements for 

operating conditions either within batches or on a batch to batch basis. Rapid 

monitoring allows for a process to be followed in real time and operating conditions 

altered in order to compensate for any disturbances, i.e. process control is possible. 

Process control will reduce the variability of process performance yielding better and 

more reproducible product quality.

The aim of this thesis was therefore to investigate the use of rapid monitoring methods 

for rapid process characterisation and control both of product and key contaminant 

levels during the recovery of a target enzyme, alcohol dehydrogenase (ADH) from S. 

cerevisiae. The recovery operations examined were a selective flocculation (batch and 

continuous), a packed bed and expanded bed chromatographic operations.

The following briefly describes the objectives addressed in each of the following 

chapters. Each chapter has its own summary, introduction and conclusion during 

which the major points are highlighted.

Chapter 2 describes some theoretical considerations, which were applied during this 

work. Multivariate statistical techniques will be briefly described especially the partial 

least squares (PLS) method and its application for the calibration of spectral data for 

the prediction of contaminant levels in Baker’s yeast homogenate. Three flocculation 

models will be presented and discussed in terms of their main features and ease of 

application for real time process characterisation. Lastly this chapter describes two 

model parameter identification techniques namely the Levenberg-Marquradt non-linear 

least squares and extended Kalman filter which will be implemented for the estimation 

of model parameters during a process run to obtain an up to date mathematical 

description of the performance of the flocculation process.

Chapter 3 presents the material and methods applied during this work. The 

description of the off-line and at-line monitoring techniques as well as the process and 

sampling methods will be given.

Chapter 4 demonstrates the applicability of the at-line monitoring techniques for the 

rapid identification of product (alcohol dehydrogenase) and key contaminant (RNA,
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protein and cell debris) concentrations. The calibration of the UV-VIS spectral data 

through the use of a factorial experiment will be presented and the application of the 

PLS technique to enable calibration model building and subsequent use for 

contaminant level prediction. The overall analysis of the at-line monitoring setup 

consisting of an automated microcentrifuge, stopped flow analyser and detection of 

both a kinetics reaction and rapid spectral analysis is presented.

Chapter 5 describes the use of the at-line monitoring setup for the rapid 

characterisation of the batch flocculation process. The three flocculation models 

described in chapter 2 are implemented for process characterisation and the most 

effective model selected.

Chapter 6 demonstrates the possibility of process optimisation and control of the batch 

flocculation process through the implementation of the at-line information on product 

and contaminants, a process model and the use of a model parameter estimation 

technique. The control of 8 batch operations will be presented given their variable feed 

conditions. The advantages and disadvantages of two model parameter identification 

techniques as well as two different control configurations will be discussed.

Chapter 7 illustrates the rapid and efficient characterisation of the continuous 

flocculation process through an intelligent and informed manner of operation.

Chapter 8 demonstrates the use of the at-line data on product and contaminants for 

the rapid characterisation of the packed and expanded bed chromatographic 

operations. Real time process analysis and process control will be addressed.

Chapter 9 concludes the thesis by drawing out the major findings of the work and by 

presenting some suggestions for future work arising from the research.
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Chapter 2

Theoretical considerations

2.1 Introduction

This section will discuss some theoretical aspects implemented in this work. The first 

part of this section describes multivariate statistical techniques such as principal 

component analysis (PCA), principal component regression (PCR) and partial least 

squares (PLS) for the prediction of contaminant levels from spectral data. The second 

part of this section describes three proposed flocculation models, which mathematically 

attempt to describe the characteristics of the flocculation operation in terms of the 

amount of component remaining in solution. Their complexity and relevance for at-line 

process characterisation will be discussed. The last part of this section describes two 

model parameter identification techniques, namely an extended Kalman filter (EKF) 

and the Levenberg-Marquardt non-linear least squares (NLLS) techniques.

2.2 Multivariate statistics

2.2.1 Introduction

Multivariate statistics is a collection of powerful mathematical tools that can be applied 

to (bio)chemical analysis when more than one measurement is acquired for each 

sample (Beebe and Kowalski 1987). An example will be given to facilitate the 

explanation of such techniques. This example will illustrate how protein, RNA and 

debris contaminant levels in yeast samples may be predicted from ultraviolet-visible 

(UV-VIS) spectral data.

Most analytical methods consist of two phases: calibration and prediction. The first 

step is to construct a data matrix (X) from the instruments responses (UV-VIS spectral 

scans) at the selected wavelengths (220 -  500 nm) for a given set of calibration 

samples. A concentration matrix (Y) of protein, RNA and debris values is then formed 

using independent chemical assays or through the use of standards. The goal of the 

calibration phase is to produce a model that relates the UV-VIS spectra to the values 

obtained by the off-line analysis or standards.
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The next step of the calibration phase is the foundation of the entire analysis. The 

analyst must choose an appropriate mathematical method that will best produce Y 

given the X matrix. Different methods are available and three such techniques will be 

discussed: multiple linear regression (MLR), principal component regression (PCR) and 

partial least squares (PLS). When the calibration model has been determined 

predictions of unknown samples can be made from their spectral scans. Figure 2.1 

illustrates matrices X and Y for this example, the calibration and subsequent prediction 

procedure.

X ixj  =

12  1 1 4 6 1  

1 1 1 6  13  1 

2 1 1 6  12  1

Y isk =

3 4 6

4 5 2 

1 3 8

Calibration
Model

Spectra of 
unknown 
samples

Predicted 
contaminant 

levels of samples

Figure 2.1 Configuration o f the spectra data matrix X, the measurement matrix Yf 

calibration and prediction procedures. The X  matrix is a 3 x 7  matrix with three rows of 

UV-VIS spectra from the analysis o f three samples and 1 columns corresponding to the 

chosen wavelengths. The Y matrix (3x3) consists o f three samples (rows) and the 

three contaminants, protein, RNA and debris (columns).

2.2.2 Calibration model building

A technique available for calibration model building is multiple linear regression (MLR), 

which assumes that the best approach to estimate Y and X matrices is to find a linear 

combination of the variables X  that minimises the error in reproducing Y. A major 

drawback of using such an approach is that a model chosen solely according to the 

MLR criterion attempts to use all of the variance in the X  matrix, including any 

irrelevant information or noise to model Y. Hence prediction errors might arise through 

the MLR model building.

Other modelling techniques include the PCR and PLS methods. To understand these 

statistical procedures the technique of principal component analysis (PCA) should be
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explained. In real samples, there are usually many different variations that make up a 

spectrum: the contaminants in the sample mixture, inter-contaminant interactions, 

instrument variations, such as detector noise, changing environmental conditions that 

affect absorbance, and differences in sample handling. However the largest variations 

in the calibration spectra set should be the changes in the spectrum due to the different 

concentrations of the constituents of the mixtures. By being able to calculate a set of 

“variation spectra” that represent the changes in the absorbance at all the wavelengths 

in the spectra, than this data should be used for model building instead of the raw 

spectral data.

Principal component analysis (PCA) is a statistical technique for multivariate data 

compression and information extraction (Davis 1986, Wise and Gallagher 1996). 

Principal components are the eigenvectors of a variance co-variance matrix. They 

provide an insight into the structure of this matrix and are the basic tools of many 

factors analyses. PCA allows for the X matrix to be compressed into a set of scores 

(T) and loadings (P) matrices respectively, as illustrated in figure 2.2. Hence by using 

the scores and loading matrices a reconstruction of the X  matrix is possible and the 

spectral data which is not explained by the principal components is described by the 

residual matrix (Ex). The scores matrix (T) is a measure of how much a particular 

principal component is present in a particular calibration sample. Just as a spectrum is 

represented by a collection of absorbances at a series of wavelengths, it can also be a 

series of scores for a given set of factors. The loadings (P) express relationships 

between the principal components and each wavelength absorbance for each scan, 

informing us which wavelengths are dominant in influencing the model and how they 

are correlated with each other. The advantage of this decomposition on the X  data is 

that the most important variations in the data are abstracted to the first few principal 

components, which are easier for interpretation of the spectral data.

p  f  P p
_ PCA ..12...34 ..

_ _ J i \
ZZZZL n 4-

x  —  T X P +  Ex

Figure 2.2. Schematic o f PCA decomposition o f the data matrix X. The letters T, P 

and Ex refer to the scores, the loading and residual matrices, whilst f  refers to the 

number o f principal components, n is the number o f spectra and p is the number of 

data points per spectra.

Page 46



Theoretical considerations

The principal component regression (PCR) method combines the PCA spectral 

decomposition with an inverse least square regression method to create a quantitative 

model which may be used to predict the concentration matrix (Y). As mentioned above 

the scores matrix (T) is unique to each calibration spectrum. It is therefore possible to 

regress the calibration data set (YJ against the scores (T) matrix. The calibration 

model finds a correlation between X spectral and Y  analytical data using the score T 

matrix and establishing a separate loading Q matrix to describe the correlation. This is 

illustrated in equation 2.2. Equation 2.1 below is taken from figure 2.2. Equation 2.3 

describes the calibration model, which can be derived by re-arranging equation 2.1 and 

substituting into 2.2. (It should be noted that P is an orthonormal matrix, i.e. PPT = I).

Where all of the above matrices have been defined earlier apart from Ey which is the 

residual to Y. It is important to note that PCR is a two-step process; the PCA loading 

and scores are calculated and then the scores are regressed against the concentration 

matrix (Y). The PCR method can build accurate calibration models, provided that the 

selected variables (scores/loadings) are physically related to the properties 

(concentration matrix Y) they are regressed against. However the PCA scores and 

loadings are calculated independently of any knowledge of the sample concentrations. 

They merely represent the largest common variations among all the spectra in the 

training set. There is no guarantee that the PCA scores and loading matrices directly 

correspond to the contaminants of interest, hence its predictive ability will suffer.

Partial least squares (PLS) is a quantitative spectral decomposition technique that is 

closely related to PCR. However, in PLS the decomposition is performed in a slightly 

different fashion. Instead of first decomposing the spectral matrix (X) into a set of 

scores and loadings, and regressing them against the concentration matrix (Y) as a 

separate step, PLS actually uses the concentration information during the 

decomposition process. This results in spectra containing higher contaminant 

concentrations to be weighted more heavily than those with low concentrations. Hence 

the loading and scores matrices calculated using PLS are quite different from those of 

PCR. The main idea of PLS is to get as much concentration information as possible 

into the first few loading vectors.

X  = TP + Ex

Y = QT + Ey

Y = Q XP t + Ey

(2 .1)

(2 .2)

(2.3)
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PLS is taking advantage of the correlation relationship that already exists between the 

spectral data and the contaminant concentrations. Since the spectral data (X) can be 

decomposed into its most common variations, so can the concentration data (Y). This 

generates two scores and loading matrices, one for the spectral data and the other for 

the concentration data. The two sets of scores are related to each other through some 

form of regression and a calibration model is constructed. During the PLS model 

building the decomposition on both the spectral and concentration data is performed 

simultaneously.

The approach taken by PLS is very similar to that of PCA, except the factors (loadings 

and scores) are chosen to describe the variables in Y and X. This is accompanied by 

using the columns of the Y  matrix to estimate the factors for X. At the same time the

column of X are used to estimate the factors of Y. The resulting models are:

X = TplsPpls + Expls (2.4)

Y =  U p lsQ p L S  +  E y p ls  (2.5)

Where the elements of TPLs and UPLs are the scores of X and Y, respectively and the 

elements PPLs and QPLS are the loadings determined through PCA driven by the PLS 

technique. The matrices E XPls and EYPls are the errors associated with the modelling 

X and Y with the PLS model. The TPLs factors are not optimal for estimating the 

columns of X as was the case with PCA, but are rotated so as to simultaneously 

describe the Y matrix. As UPLs and TPLS are linked and have a linear relationship 

combining equations 2.4 and 2.5 can create the calibration model. The optimum 

number of principal components applied during the PLS calibration model can be 

derived from the PRESS (prediction residual error sun of squares) method (Charm 

Work manual 1996). For more information on the mechanics of calibration and 

prediction using PLS algorithm refer to Geladi and Kowalski (1986).

2.2.3 Conclusion

This section has briefly discussed three different methods of creating a calibration 

model for the subsequent prediction of contaminant concentrations from their spectral 

data. The three methods looked into were the MLR, PCR and PLS techniques. MLR 

models the concentration matrix (Y) from all of the available spectra data (X) using a 

least squares criteria. Hence the MLR calibration model will include the spectra 

variation due to for example instrument noise and sampling errors, resulting in noisy 

predictions. PCR first decomposes the spectra data through the use of PCA and

Page 48



Theoretical considerations

regresses the decomposed set of information to the concentration matrix (Y). This 

reduces the dimensionality making model building a less difficult computational task. 

By applying a PCA prior to the regression step means that only the most important 

variation in the spectra are used for model- building reducing the risk of including noise 

into the calibration model. Finally PLS was discussed which decomposes the spectra 

and the concentration matrix simultaneously. The advantages of PLS over PCR is that 

it incorporates more information in the model building phase. PLS will be implemented 

in this work for the analysis of UV-VIS spectra for the prediction of contaminants levels 

from unknown samples.

2.3 Flocculation model for process characterisation

2.3.1 Introduction

The purpose of this section is to discuss methods of representing the flocculation curve 

mathematically. The mathematical description should take into account the main 

features of the flocculation mechanism and allow for real time model parameter 

estimation for rapid process characterisation and control. A over simplistic 

mathematical representation will lead to inaccuracy in process prediction, whilst too 

complex a model will result in difficulties in real time model parameter identification.

The main features of the flocculation mechanism were discussed in chapter 1, section 

1.6.3; a summary is given below.

(1) With increasing flocculant concentration higher levels of components will 

be flocculated and thereby be removed in the solid-liquid separation 

step.

(2) For certain components a maximum flocculation level is only possible. 

(For most flocculation systems there is an optimal flocculation 

concentration, however this does not necessarily result in floe sizes 

which can be totally removed in the solid-liquid separation step.)

(3) Re-stabilisation of floes may occur at high flocculant levels.

(4) Ionic strength and pH conditions affect the efficiency of flocculation.

Most mathematical flocculation models discussed in literature (Moudgil and Behl 1991) 

have been based on the binary collision of particles in a manner consistent with 

orthokinetic flocculation. These mathematical models put forward, are usually based on
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several constraints, such as by Moudgil and Behl (1991) assuming that flocculation is 

not reversible, and their practical use have been limited.

Two different views on mathematical modelling may be applied. The simplest 

technique considers external representation of the system i.e. a black box or empirical 

model. An alternative view of process modelling is from first principles where total 

mass, component, energy and momentum conservation equations are used. This 

section will concentrate on the former method in describing the flocculation 

characteristics.

Three flocculation solubility models will be put forward and their ability to meet the 

criteria listed above will be discussed. How their model parameters affect the shape 

and position of the flocculation profile will be investigated through the use of analytical 

solutions of the model derivatives when possible and/or through graphical examples.

2.3.2 The two-parameter model

Richardson et al. (1990) adopted a two-parameter model to describe the solubility 

curves for a precipitation process:

Ei 1 /o ^
y i= - = - = ---------   (2-6)E  o -  -

1+

where E-, and E0 are the component (product and contaminants) concentrations before 

and after flocculation. In both cases the suspension has been treated by a solid-liquid 

separation step. The variable x is a measure of the precipitant dose and model 

parameters a  (same units as x)  and n (dimensionless) are related to system conditions 

such as pH, ionic strength, etc. Although the above model has been successfully used 

to describe the precipitation solubility curve by several authors (Richardson et al. 1990, 

Holwill et al. 1997), it is not appropriate in describing the flocculation system. As the 

above equation will always tend to zero as x  becomes larger than parameter a  it fails to 

describe two of the main flocculation modelling criteria, namely the maximum removal 

level and the re-suspension phenomena.
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2.3.3 The 3(1)-parameter model

The 3(1)-Parameter model is an adaptation to the precipitation model using an 

additional model parameter:

3̂(1) !k +  CX

1 +
r  \ n ' x '

(2.7)

where c  (reciprocal units to jc) may also be related to system conditions such as pH, 

ionic strength, etc. Equation 2.8, shows that the point inflection for the 3(1)-parameter 

model occurs at a flocculant dose approximately equal to parameter a  (See appendix C 

for more detail) and the slope at this point is described by equation 2.9, i.e. a function 

of all three parameters.

d  y in )  _ 0 - > x a a  ( w h e n « >  4.5  (2.8)
dx

= + c (2.9)
dx 4 a

Solving the derivative of y 3(l) for zero with respect to x  did not render any apparent 

analytical solution and hence a quantitative analysis of equation 2.7 was not possible. 

The behaviour of the 3(1)-model for different sets of model parameters is illustrated in 

figure 2.6. The plot shows how model parameter a  influences the position of the 

flocculation profile (curve (1) to (2)) as described by equation 2.8 and 2.9. Parameter n 

can manipulate the gradient of the flocculation curve (curve (1) to (3)), with a steeper 

profile gradient for larger n values. The minimum of the 3(1) model seems to be 

dependent on all three model parameters, however mainly on parameter c  as indicated 

by curves (2) and (4). As *  becomes large the first term of equation 2.7 will tend to 

zero and the flocculation yield ^3(1) will approach ex. An important feature of the 3(1) 

model is its non-linearity, and the behaviour of the dy3(i /d x  term at different levels of 

flocculant. From figure 2.6 it can be seen that the effect of flocculant concentration on 

the flocculation yield term is greatest close to the point of inflection.
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Figure 2.3. Behaviour o f the 3(1)-Parameter model for different sets o f model 

parameters. The arrows on the plot show the shift in the flocculation profiles due to 

model parameter changes. The arrows in the brackets indicate an increase or 

decrease in the given model parameter. The sets [a, n, c] of model parameters applied

are; (1)----------- [0.2, 5, 0.3], (2) ..........  [0.1, 5, 0.3], ( 3 ) ............ [0.2, 10, 0.3],

(4 ) ----------- [0.1,5, 0.8],

2.3.4 The 3(2)-parameter model

The 3(2)-Parameter model (equation 2.10) is empirically derived. This model describes 

how with higher flocculant concentration levels greater proportions of a particular 

component will flocculate and thereby be removed in the solid-liquid separation step. 

The model also describes a certain minimum level of removal of a specific component. 

However the re-stabilisation effect is not represented.
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cYi
(2 .10)

V V

where the model parameters A (dimensionless), B (same units as x) and C 

(dimensionless) are dependent on system conditions. Differentials of equation 2.10 

provide insight on how the three model parameters influence the shape and position of 

the 3(2)-model.

more detail), hence it can be argued that parameter B determines the point of inflection 

on the 3(2)-parameter model profile. The minimum level of removal for a specific 

component is determined by parameter^, as when *  »  B, y3(2) will approach 1-A. This 

leaves parameter C to influence the slope of the curve. Although from equation 2.11, it 

can be seen that all parameters influence the slope to some degree, parameter C is a 

power term and hence will have the greatest impact. Figure 2.4 illustrates the above 

arguments graphically. The upward shift in curve (1) to (2) was due to a decrease in 

param eter^, which resulted in a decrease in the maximum removal level. The shift in 

curve (2) to (3) was due to a decrease in parameter B, which yielded a shift in inflection 

point. Curves (1) and (4) illustrate the decrease in flocculation profile slope due to a 

decrease in parameter C.

(2 .11)

(2 .12)

( c - i  V 'For C > 3.5 the ------  term in equation 2.12 will approach unity (see appendix C for
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Figure2.4 Behaviour of the 3(2) Parameter model for different sets o f model 

parameters. The arrows on the plot show the shift in the flocculation profiles due to 

model parameter changes. The arrows in the brackets indicate an increase or 

decrease in the given model parameter. The sets [A, B, C] o f model parameters

applied are; (1)   [0.9, 0.2, 5], (2) ........... [0.6, 0.2, 5],

(3) ............ [0.6, 0.1, 5], (4)   [0.9, 0.2, 10].

2.3.5 Four parameter model

The four-parameter model is an extension of the two-parameter model and includes a 

driving mechanism to promote re-stabilisation at high flocculant concentrations. The 

mathematical representation can be seen below, equation 2.13.
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m
1 +

x

b
(2.13)

n
1 +

x

a

where model parameters a (same units as x) and n (dimensionless) have the properties 

given in equation 2.6 and parameters b (same units as x) and m (dimensionless) are 

related to system conditions to drive the re-stabilisation mechanism. Due to its 

analytical complexity the impact of the parameters on the model is best described 

graphically figure 2.5.

Figure 2.5 illustrates the shift in the flocculation profiles due to changes in the four 

model parameters. It can be seen from curves (1) and (2) that a decrease in 

parameter a resulted in an increase in the flocculating mechanism (denominator of 

equation 2.13) which led to a shift to the left and a reduction in the gradient of the re­

suspension part of the profile. The shift in curve (2) to (3) was a result of an increase in 

parameter m, making the re-suspension driving force (numerator of equation 2.13) 

larger. The change in parameter m did not seem to effect the maximum removal level 

or the flocculant dose where this minimum occurs. Curves (3) and (4) illustrate the 

profile change due to a decrease in parameter n, which decreases the flocculation 

driving mechanism. The maximum removal level also decreased as a result, however 

the flocculant level where this occurred did not change. Finally the shift from curve (4) 

to (5) was caused by a decrease in parameter b, which resulted in an increase in the 

re-suspension mechanism. Both a shift and a decrease in the maximum removal level 

were observed. All in all it can be concluded that the behaviour of the 4-Parameter 

model is more complex to understand than that of the three parameter models. The 

parameters a and b seem to influence the position of flocculation inflection, yield 

minimum and re-suspension points in terms of flocculant concentration. Parameters n 

and m appear to influence the gradient of the flocculation and re-suspension parts of 

the flocculation profile, as well as the minima point to some extent.

It can be seen from figure 2.5 that the 4-parameter model describes the same 

flocculation characteristics as the 3(1)-parameter model. The benefits of an additional 

model parameter is model flexibility however, when attempting to perform rapid model 

parameter identification the computational cost is larger.
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Figure 2.5. Behaviour o f the 4-Parameter model for different sets o f model 

parameters. The model parameters sets [a, b, n, m] applied are;

(1)-----------[0.2, 0.3, 5, 10], (2 ) ............  [0.1, 0.3, 5, 10], ( 3 ) ............. [0.1, 0.3, 5, 20],

(4) ---------- [0.1, 0.3, 3, 20], (5)   [0.1, 0.2, 3, 20],

2.3.6 Conclusion

Three mathematical representations of the flocculation mechanism have been put 

forward and their ability to describe the flocculation process studied. The models 

differed in their complexity, number of model parameters and manner in which they 

described the flocculation solubility curve.

The 3(1)-parameter and 4-parameter model put forward described all of the flocculation 

features discussed in the introduction, although the analysis of these models were 

relatively complex. The 3(2) parameter model described the majority of the flocculation
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characteristics apart from the re-stabilisation affect at high flocculant concentration. 

For process control purposes this feature is less important as the flocculation process 

will not be operated in this region. The benefits of the 3(2)-parameter model is that its 

model parameters clearly describe the performance of the flocculation profile, allowing 

the operator to rapidly and effectively evaluate the performance of the process for 

different environmental conditions.

The final application of the characterisation model is an important issue to consider. 

For non-time constraint situations where a large number of data points are available 

such as for post process analysis a more complex and accurate model can be 

implemented. However, for real time applications during a process run with initially a 

scarce number of data points, a less complex model may be more suitable. A further 

analysis of these three flocculation solubility (particulate remaining in solution) models 

will be investigated in terms of experimental data in chapter 5.

2.4 Model parameter estimation techniques

2.4.1 Introduction

Two model parameter identification techniques will be discussed in this section, namely 

the non-linear least squares Levenberg-Marquardt and extended Kalman filter methods 

and a simple linear example will be given, to give the reader an insight into their 

functionality.

The objective of process identification is to obtain an accurate process model. The 

accuracy of a model can be defined in several ways, each resulting in different problem 

formulation. Most parameter estimation techniques require three basic factors; input- 

output data from the process which requires to be modelled, a class of model and a 

criterion. Parameter estimation can then be formulated as an optimisation problem, 

where the best model is the one that best fits the data according to the given criteria. 

There are several ways of combining, experimental data, model classes and criteria. 

There are also many different ways to organise the computations. Consequently, there 

is a large number of different identification methods available.

Two basic/classic identification techniques are available to the engineer. These are 

based on the “least squares” and the “maximum likelihood” methods, which have 

different criteria. The least squares (LS) method involves fitting a curve to the available
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data in such a way that the sum square of the residuals to the data points is minimised. 

The maximum likelihood (ML) method introduces a weighting factor into the estimation 

process, in order to make allowances for the accuracy of the measuring instrument as 

well as the accuracy of the process. Hence the ML method estimates parameters that 

make the collected data most plausible, whilst the least squares approach sets the 

model parameters to find the best fit.

Several identification methods have been developed based on the LS method, for 

linear and non-linear systems (Levenberg-Marquardt), for on-line application (recursive 

least squares) and to account for time varying model parameters (least squares with a 

forgetting factor). Probably the most important development using the ML method for 

parameter estimation is the Kalman Filter (KF) for linear systems and extended Kalman 

filter (EKF) for non-linear models.

The Non-linear Least Squares (NLLS) analysis method applied here is the Levenberg- 

Marquardt technique. This method is a combination of the general, quadratic-base, 

linear regression technique, and the gradient-descent method for function optimisation, 

by which the gradient of a multi-dimensional function is followed backwards toward a 

local or global minimum of the sum of squares error function. In this method, a starting 

point for the model parameters are input by the user, and the iterated technique 

repeatedly finds better combinations of the parameter values which fit the input data 

with less overall error.

As mentioned above the first fundamental concept of the Kalman filter is its use of the 

maximum likelihood method, the second key concept is its recursive or iterative nature, 

brought forth by Kalman (1960). Du Plessis (1967), reviews the equations used in the 

Kalman filter, and states that its recursive nature cannot be over emphasised. No past 

data need ever be stored, as each estimation is identical in procedure to all those 

which took place before it, but each has a new weighting factor (Kalman gain) 

computed to take into account the sum total effect of all the previous estimates. To 

start the cyclic process of the Kalman filter, three quantities are needed: 1) The 

expected value of the model parameters prior to taking of any readings. 2) The mean 

square deviation about nominal value of the model parameters. 3) The mean square 

error in the measurements. In practice one or more of these conditions are only 

approximately known, and are often, at best, only estimates or educated guesses. 

Hence in some situations for poorly defined processes, the Kalman filter will not be 

tuned optimally and the filter is less able to follow certain system disturbances.
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The choice of model identification technique will depend on several factors, such as the 

application of the estimation technique, the type and accuracy of the model, the 

measurement noise and frequency, and the extent of model parameter variations with 

changing conditions and with time?

A LS method has been applied previously (Holwill et al. 1997) for identifying model 

parameters for the precipitation method, and Holwill states it has several shortcomings, 

notably the need for several measurements before a stable estimate is reached, 

particularly with very noisy data, in comparison to the Kalman filter.

In general the use of the EKF does not guarantee convergence of parameters to their 

true values (Yoshimura et al. 1980). Heijden’s et al. (1989) review on state estimators, 

states that trial and error is often necessary to make the EKF work satisfactorily, even 

though the mathematical approach may suggest otherwise. Ramamurthi et al. (1993), 

compared the performance of a successively linearised horizon based estimator, with 

the EKF and a non-linear programming (NLP) approach and conclude that the main 

drawbacks of the EKF is that it requires prior knowledge, and that the tuning of the filter 

can be a difficult task. The main disadvantage of the NLP approach is the computation 

time required to obtain convergence of the model parameters. It should be noted that 

several attempts to compare different identification methods have been made and it 

seems to be inconclusive, in the sense that there is no method that is universally best 

(Astrom 1984).

2.4.1 Extended Kalman filter

This section will briefly discuss the concept behind Kalman filtering. For linear systems 

the Kalman filter (KF) may be applied whilst for non-linear systems the extended 

Kalman filter (EKF) is more appropriate. The main difference between these two 

approaches is that when the KF is implemented the system is fully linearised for all 

data points, whilst during EKF application, the model is only linearised around the 

current operating point, and hence derivatives of the system (model) are introduced. 

During the Kalman filter model parameter estimation, a probability based weighting 

factor (Kalman gain), determined from the covariance matrices of the system and 

observation disturbances is used to apply adjustments to the model parameters using 

the latest measurements. Such a technique estimates the most likely model parameter 

values with the given information assuming that the observation and system noise are 

Gaussian random processes. Equations 2.14 and 2.15 are the process model.
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y(i) = f(X(i)) + <t) (2-14)

X(i) = 0X(t-\) + w(i) (2.15)

where y  is the observation (measurement), the X  matrix contains model parameters 

and describes the state of the process, v describes the measurement noise, w refers to 

the system noise and <X> is the transition matrix. The Kalman filter estimate of up to 

date model parameters based on newly acquired measurements is given by equation 

2.16.

X ( i)=  X ( i - l )  + K (i)-[y (i)-f(< S > X (i),i)] (2.16)

where K  is the Kalman gain vector and the X  matrix contains the estimated model 

parameters. The first term on the right hand side of equation 2.16 is the estimate from 

the previous iteration step. The term in the squared brackets is called the innovation 

and is the difference between the measurement and the model prediction. If the 

measurement and the model prediction value are similar the innovation term will be 

small and little adjustment is made to the model parameters. However, if the difference 

between the measurement and the model prediction is large, the amount of adjustment 

to model parameters will increase. The level of adjustment is dictated by the Kalman 

gain, which acts as a weighting factor. The Kalman gain (X) can be determined 

through equations 2.17 to 2.20, and is a function of several factors.

Pj(i) = <I>/Y< -  + Q (2.17)

where; P(i) = [I-K ( i)H ( i) ]P x(i) (2.18)

K(i) = P,(i)HT(i)-[H (i)P ,(i)H T( i)  + Z ] - ' (2.19)

H(i) =

l 
l

/
(2.20)

where P matrix is the combined system covariance, H  vector contains the model 

derivative terms, Z is the covariance of measurement noise and Q is the operator 

determined system covariance term. Equation 2.17 shows that the Kalman weighting 

is dependent upon the relative magnitudes of the measurement noise (Z), the 

combined parameter co-variances (P) and the model derivative vector (H). The 

combination overtime of this balance will give the optimum estimates for the parameter 

matrix, given the statistical assumptions are correct. The above equations describing 

the Kalman filter are based on probabilistic theorem and are accounted for in more 

detail in many texts (Gelb 1974, Astrom and Wittenmark 1984, Catlin 1981).
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If we use the flocculation model expressed in equation 2.10 (also shown in equation 

2.21) as the system example, i.e. a static three parameter model, and the objective is 

to estimate the model parameters for each new measurement step (flocculant 

concentration (x j, flocculation performance (y j)  the above matrix notation would be:

y  = f (X , i)  + v ( i ) =  l - A 1 -  Exp (2 .21)

X ( i) H ( i)
dy dy dy

dA dB dC

# n # 1 2 #
13 Pi P m P n

f i ( 0  = # 2 1 # 2 2 #
1 23

; P 0 )  = P i P n P n (2.22a, b, c)

_ # 3 1 # 3 2 # 3 3  _ i _P3 P n P n  _ i

~Ka ~ "1 0 0"

m  = K b 1 o  = 0 1 0 ry 2
; Z  = cr„,

K c / 0 0 1

where the model parameters are A, B and C , and the system and combined system 

covariance terms for parameters A, B and C , are qu , q22, and q33 and p n , p 22, and p 33. 

The Kalman gain vector consists of KA, KB and Kc, which are the Kalman weighting 

values specific to the model parameters. The measurement covariance term is crm2 

based on prior analysis of the measuring instrument, where crm is the standard 

deviation of the observed values. The P and Q matrices are initialised with information 

based on past experience and, P is subsequently recalculated at every step by the 

algorithm. Vector H  consists of the model derivative terms (shown in Appendix C) and 

therefore is position specific.

2.4.2 Least squares method

The least squares method involves fitting a curve to the available data in such a way 

that the sum square of the residuals to the data points is minimised. The sum of 

squares can be expressed as:
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S ^ l f f a A A Q - y i f  (2-23)
/■=1

where A, B and C are model parameters and the n values of (xh y ,) are known 

measurements. When these known measurements are inserted in the right hand side 

of equation 2.23 S becomes an expression function of only three unknowns A, B and C. 

The objective is to choose the set of model parameters that minimises S. There are 

several methods available to minimise the sum square residual term (S). For linear 

models the partial derivatives of S may be solved for zero to yield the optimum set of 

model parameters, shown in equation 2.24.

dS

dA
d S
8B
d S

3C

(2.24)

For the flocculation model expressed in equation 2.21, the minimisation of S is a more 

difficult task due to the model’s non-linearity. Alternative minimisation approaches can

be implemented. The simplest to apply are based on a searching technique such as

the simplex method, which only uses information from the values of the function itself 

(no derivatives), and as a result, although being a robust minimisation method, it

sometimes takes a long time to find a minimum.

Alternative methods use information contained in the partial derivatives of the sum of 

squared residual function (5), in order to follow the function downhill until S reaches a 

minimum. These alternative approaches fall into two broad categories: the directional 

set and quasi-Newton methods. The most widely used method in non-linear least 

squares model parameter identification is the Levenberg-Marquardt (LM) algorithm. 

This method is based on the insight that (a) near the actual minimum, the function S 

should be very nearly parabolic in the parameters, and thus quadratic methods will be 

most efficient, and (b) far from the actual minimum, quadratic methods take too tiny a 

step, and steepest descent methods employing the gradient are more efficient. In this 

method, a starting point for the model parameters is input by the user, and the LM 

iterated technique repeatedly finds better combinations of the parameter values which 

fit the input data with less overall error. For more detailed information on this technique 

refer to Seber and Wild (1989).
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2.4.3 Linear example

This section will give a simple example of how the least squares and Kalman filter 

estimation techniques behave in terms of predicting a single model parameter of a 

static linear function. Suppose we are attempting to estimate the model parameter a 

for the linear model in equation 2.25.

y  = f ( c i ) = aci + v (2.25)

where y f is a measurement, c-, is the input variable, a is the model parameter and v is 

the noise associated with the measurements due to the inaccuracy of the measuring 

instrument. We have available an initial guess as to what the model parameter might 

be, and also know that our system fluctuates, i.e. model parameter a will change from 

run to run and even within a run. The expected variation of model parameter a is 

based on operator experience. Given we have n measurements (<chy ,), the following 

text will discuss the different approaches in estimating the model parameter.

Least squares approach
As discussed earlier the objective of the least squares method is to minimise the sum 

of squared residuals between the observed/measured and expected values. The sum 

of squared residuals can be written as:

1=1

To find model parameter a in order to minimise S we need to differentiate S with respect 

to a and solve for zero.

n n

—  = 0 ^ a Y c i1 - Y c < y i  = 0 (2.27)
da / = i  1=1

a = ^   (2.28)

X > 2
/=1

Hence for every measurement a new model parameter estimation can be

calculated by inserting the values into equation 2.28.
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Kalman filter approach
As mentioned above the Kalman filter is based on the maximum likelihood theorem. 

Hence model parameter estimation are weighted with a factor (Kalman gain) which 

takes into account the relative quality of the measurement instrument and the 

approximate (known) variation of the model parameter from run to run to obtain the 

optimum model parameter estimates.

Several additional factors need to be specified before the Kalman filter can be applied 

for parameter estimation of the above linear model. Factors such as the system and 

measurement noise values, and combined system co-variance need to be defined. 

Given these are chosen the Kalman filter would follow the re-cursive iterative 

procedure described in equations 2.29 (steps (a) to (e)) for each new measurement 

step (chy,) in order to estimate the new model parameters. Due to the static linear 

system with one model parameter the Kalman filter matrix notation has been reduced 

to a scalar system, where ha refers to the function derivative with respect to the model 

parameter a. The combined system co-variance is p  (=(Ja2), the system and 

measurement noise terms are referred to as q and z(=<jy2), the Kalman gain weighting 

factor is k and the dynamics matrix is O = 1.

For the Kalman filter sequence to start a data point (c ;, y ,) is acquired.

Step (a) then determines the model derivative (ha). For the linear example ha(i)= c (i), 

i.e. function of model structure and position specific. This is used during EKF for the 

linerisation of the model around the sample point.

Step (b) determines the combined system covariance term p(i). This is merely based 

on the previous combined system noise term p (i- l)  and the operator chosen system 

noise term {q). The system covariance term (<q) is applied so that the combined system 

covariance always has a minimum value to allow for variation in model parameter 

estimation. The larger the chosen system covariance term the larger the allowable 

variation in model parameter estimation between iterations.
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(a)

(b)

(c)

(d)

(e)

(2.29)k ( i)  =
K ( i )P ^ ( i )K ( i )  + z

Obtain measurement

(ci.yi)

Obtain new measurement set and return to step (1)

p ( i)  = n - k ( i )  ha ( i ) ] p , ( i - \ )

p 1 ( i)  = p ( i - V  + q

h ( i )  = a (i) = a ( i - V  + k ( i) [y ( i)  - a ( i~ y c ( i ) ]

Step (c) involves the determination of the Kalman gain (k). As seen from this equation 

the Kalman gain is a function of the combined covariance (step (b)), the measurement 

covariance term (z) as well as the model derivative ha (step (a)). If the measurement 

instrument was very accurate relative to the variance in the model parameter estimates 

(p »  z), the Kalman gain (k(i)) would approach l/h a(i) = l/c(i). In other words one 

simply would use the raw data to evaluate new model parameter values (inserting k(i) 

into step (d) gives a(i) = y(i)/c(i)). On the other hand if the measurement noise was 

very large relative to the combined system covariance (z »  p), the gain term would 

approach zero. In this instance, one would reject the measurement of y(i) and simply 

use the nominal value of the model parameter as our estimate (from step (d) a(i) = a(i- 

1)). The Kalman gain is also a function of the combined system covariance and the 

model derivative terms. By choosing an initial high combined system covariance term,
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the Kalman gain will initially be high and with time decrease (as the objective of the 

Kalman filter is to minimise the system covariance). The magnitude of the Kalman gain 

also depends on the position of the data point on the process model i.e. function c(i). 

For the linear example the lower the ha(i) term the higher the Kalman gain.

Step (d) performs the model parameter estimation based on the newly determined 

Kalman gain. The Kalman gain acts as a weighting factor to modify the previous 

estimated model parameter according to the size of the innovation terms (term in 

squared brackets).

Step (e) adjusts the combined system covariance term ip) to account for the new 

optimum estimate of the model parameter, which reduces the covariance term.

Figure 2.6 presents three examples where different levels of measurement noise (z) 

values were implemented. The examples adopted equation 2.28 and 2.29 (steps (a) to 

(e)) for the prediction of model parameter a for the least squares and Kalman filter 

techniques. A worked example in tabular format is also given in table 2.1, which goes 

through a step by step approach. The tuning constants and the initial parameter guess 

are listed in the figure and table legends.

Steps(i) c(i) yfl) “ l s W h j ) P W k(i) °  KF (V P(‘)
TJ' T509 ' 43.735 5.824 7.509 8.02 0.126 5.781 0.420
1 7.208 55.084 6.696 7.208 0.440 0.066 6.670 0.230
2 2.453 15.795 6.683 2.453 0.250 0.023 6.657 0.236
3 7.747 53.978 6.781 7.747 0.256 0.049 6.775 0.158
4 8.105 64.381 7.099 8.105 0.178 0.039 7.148 0.121
5 5.668 39.515 7.084 5.668 0.141 0.027 7.121 0.120

Table 2.1. A simple parameter identification example applying a least squares and 

Kalman filter estimation approach. The prediction o f model parameter a for the least 

squares and Kalman filter are termed aLS and aKF and were determined through 

equations 2.28 and 2.29. The actual model parameter was set to 7 and a 10% 

standard deviation was added to each observation. The system covariance (q) was set 

to 0.02 (i.e. a 2.8 % standard deviation), the initial combined covariance term p was 8 

and the measurement noise (z) was 25. The initial parameter guess for a was 5.

Figure 2.6 plot (a) shows the estimates of the model parameter for a relatively well 

tuned Kalman filter and the least squares approach. Both estimation techniques target 

the actual model parameter after a few data points. However when the tuning of the 

Kalman filter is poor the estimation of the model parameter is less effective as seen 

from plots (b) and (c). Plot (b) illustrates how the Kalman filter behaved with a 

measurement covariance value (z) of zero i.e. the operator assumed that the 

measuring instrument was 100% accurate. The estimates rely solely on the raw data
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resulting in a noisy outcome due to the actual 10% standard deviation in the observed 

measurements. On the other hand when the measurement covariance term was set 

too high z (=am2) = 300, plot (c), the estimation of the model parameter relied mainly on 

previously estimated values, due to the little confidence in observed values. The 

outcome was a slow approach to the actual model parameter.

With more complex non-linear models involving multiple parameters, the least squares 

approach becomes a more difficult task with the need for more sophisticated 

minimisation algorithms as discussed earlier. For the simple example given here the 

two approaches seem to be equally efficient when the Kalman filter is tuned correctly. 

All in all the Kalman gain is a function of several factors many of which are operator 

chosen. This enables high flexibility in model parameter prediction especially for a well 

known system, however for a badly defined process poor Kalman filter tuning will result 

in poor estimation results.

2.4.4 Conclusion

Two model parameter identification techniques based on the least squares and 

maximum likelihood (Kalman filter) criteria have been discussed. Although the Kalman 

filter is applied in an unconventional manner (for model parameter identification rather 

that state estimation), this approach has been included due to its ability to take into 

account the inaccuracy in the model and measurements. A simple example was given 

to illustrate the main differences and functionality of the two estimation techniques. 

Which method is most efficient is a function of multitude of factors, such as complexity 

of model, frequency, noise and position of observations, variation of model parameter 

from run to run and knowledge of the system one is attempting to characterise.
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Figure 2.6. The least squares and extended Kalman filter estimation o f model 

parameter a for different measurement noise values. The prediction o f the model 

parameter a for the least squares and Kalman filter approaches were determined 

trhough equations 2.28 and 2.29. The actual model parameter was set to be 7 and a 

10% standard deviation was added to each observation. The system covariance (q) 

was set to 0.02 (i.e. a 2.8 % standard deviation) whilst the initial combined covariance 

term (p) was set to 8. Three different measurement noise terms were adopted, z s [0, 

25,300]. The (c„y,) measurements were randomly chosen, where a  e [0 ; 10], yi e [°; 

70]. The initial guess for parameter a was 5.
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Chapter 3

Material and Methods

3.1 Feed material and flocculant

3.1.1 Polyethyleneimine (PEI)

PEI (Fluka, 50% w/v, Mr 600,000 -  1,000,000) was dissolved in de-ionised water or 

phosphate (KH2P 04) buffer and the pH was adjusted with 4M HCL. PEI solutions were 

prepared over the range 5 -  20 mg mL'1, with pH values between 5 - 8  and ionic 

strengths (KH2P 04) 0 - 100mM.

3.1.2 Yeast Homogenate

Blocks of Baker’s yeast Saccharomyces cerevisiae (The Distillers Company, Surrey, 

UK) were suspended in phosphate buffer and was adjusted with 4M HCL or 4M NaOH. 

Suspended Baker’s yeast volumes between 3-4 L (125 -  280 g (wet weight) cells L'1) 

were disrupted, in a model 15M 8BA Manton Gaulin high-pressure homogenizer (APV, 

Crawley, Sussex, UK) at 500 bar and 5 discrete passes controlled to a temperature of 

4-5°C. Suspended Baker’s yeast volumes larger than 10 L were disrupted in a pilot 

scale high pressure homogeniser (Model K3, APV, Crawley, UK), run in continuous 

mode at 500 bar at a throughput of 280 L h'1, equivalent to 5 discrete passes. The 

temperature was kept below 5°C.

3.1.3 Standards for spectral calibration

Standards used for spectral calibration were yeast ribonucleic acid (RNA, highly 

polymerised), bovine serum albumin (BSA, fraction V) which were both supplied by 

Sigma Chemical Ltd (Poole, Dorset, UK). Both RNA and BSA standards were 

suspended in phosphate buffer (pH 6.5, 50mM KH2P 0 4). Washed cell debris was 

obtained from yeast homogenate (280 g (wet weight) L'1, pH 6.5, 50mM KH2P 0 4), 3 L) 

which was centrifuged in a Beckman (Model J2-M1, Spinco, Beckman Instruments, 

California, USA) with a fixed angle rotor (type JA-17) at 10,000 rpm for 10 minutes. 

The sediment was washed with phosphate buffer and re-spun (10 minutes at 10,000 

rpm) in the Beckman centrifuge. The wash and spin cycle was repeated three times.
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3.2 Off-line assays

3.2.1 Total protein assay

The Bradford (Bradford 1976) assay was used to determine total protein levels. The 

assay is based on the shift in absorbance from 465 nm to 595 nm which occurs when 

Coomassie Blue G-250 dye binds to proteins in acidic solution. A commercially 

available dye was used (Bio-rad Protein Assay reagent, Bio-rad, Hemel Hempstead, 

UK).

3.2.2 ADH assay

Alcohol dehydrohgenase (ADH) activity was assayed according to the method of 

Bergmeyer (1933), by following the absorption change at 340 nm due to the conversion 

of NAD+ to NADH accompanying the conversion of ethanol to acetaldehyde. ADH 

catalyses the below reaction:

Ethanol + f^NAD^ < > Acetaldehyde + /3N A D H + H + (3.1)

The formation of acetaldehyde from ethanol may be monitored by measuring the 

increase in absorbance at 340 nm due to the formation of pNADH. The reaction 

mixture consisted of 600mM ethanol (Fluka), 1.0mM glutathione (Sigma), 0.62mM 

semicarbazide HCI (sigma), 1.8mM NAD+ (Sigma) in 50mM Tris HCI (Sigma) buffer at 

pH 8.8. Semicarbazide inhibits the reverse reaction. One unit of enzyme activity is 

defined as the amount of ADH necessary to catalyse the conversion of 1pmol of 

ethanol to acetaldehyde per minute at 25°C. All off-line assays were performed in 

10mm path length cuvettes and the reaction was started by the addition of the enzyme. 

Potassium dihydrogen phosphate buffer (molarity and pH of sample) was used to dilute 

samples to produce a linear change in absorbance. Assays were performed in 

triplicates. For at-line assays a 1mm path length flowcell was implemented and a 

reaction time of 20-30 seconds adopted.

3.2.3 Cell debris measurements

Dry weights as well as optical measurements were used to measure cell debris levels. 

Dry cell weights were determined by drying an Ependorf of 1mL homogenate sample 

suspension at 100°C for 24 & 48 h. The Ependorfs were pre-weighed and dried. The 

dry cell weights were determined gravimetrically.

Absorbance values at a wavelength of 650nm (OD65o) were recorded of samples using 

an Ultraspec 2000 (Pharmacia Biotech, Upsala, Sweden) against a buffer blank.
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Samples were diluted with phosphate buffer to yield absorbance values in the linear 

region of the spectrophotometer (0 -  1 Au).

3.2.4 Ribonucleic Acid (RNA) assay

RNA was assayed using a method based on the orcinol assay (Bulmer 1992). The 

method was adapted for yeast as follows. Orcinol reagent was prepared by dissolving 

orcinol 3 g L'1 in concentrated hydrochloric acid and adding ferric chloride (10% w/v, 

1mL). The orcinol reagent was stored in the dark and used fresh. Samples (100 pL) 

were precipitated with 60% perchloric acid (100 pL) in an Eppendorf tube and stored ar 

4°C for 24 h and then centrifuged (13,500 rpm, 10 min). The supernatant (100 pL) was 

mixed with sodium hydroxide (NaOH, 2M, 100 pL) and incubated 92h, 37°C. Orcinol 

reagent (800 pL) was added to the samples which were then placed in boiling water for 

0.3 h, then cooled and centrifuged (13,000 rpm, 0.6 h). The samples were read 

against a reagent (orcinol) blank at 665nm.

3.3 Sample preparation and flow system

3.3.1 Micro-centrifuge for solid-liquid separation

The microcentrifuge was implemented for automatic solid-liquid separation of 

flocculation samples. The micro-centrifuge is purpose built for the solid-liquid 

separation of small volumes of samples of biological material, constructed by John T, 

Bailey (Engineering) Ltd. (Smallfields, Surrey). It consists of an enclosed miniature 

bowl operated by compressed air with a friction brake, a solenoid valve, and three 

peristaltic pumps. The apparatus was housed by a 340 x 290 x 190 mm [L, W, D] 

stainless steel box, figure 3.1. A similar micro-centrifuge was adopted and described in 

more detail by Turner (Turner 1993) for fermentation sampling and Chard (Chard 1997) 

for precipitant separation.

The peristaltic pumps (303 D/A, Watson-Marlow Ltd.) were used to pump feed samples 

and wash buffer to the micro-centrifuge bowl. A fourth peristaltic pump situated on the 

stopped flow analyser (see section 3.3.2) was used to pump off the supernatant liquid. 

The compressed air to drive the micro-centrifuge was supplied by a Bambi compressor 

(Model 225/1000, Bambi air compressors Ltd, Springhill, Birmingham). The solenoid 

valve controlled the supply of a vacuum to the micro-centrifuge bowl to suck off excess 

feed and wash to waste. A water pump generated the vacuum. The micro-centrifuge 

bowl shown in figure 3.2, can accommodate 0.54 mL of sample, has a tulip shape with 

a top internal diameter of approximately 20 mm. Two stainless steel tubing are used to
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supply feed and wash buffer to the micro-centrifuge bowl, and another two tubes 

situated closer to the bowl bottom are used to pump supernatant out of the bowl and to 

suck off waste.

The peristaltic pumps, solenoid valve, friction brake and the supply of compressed air 

to the micro-centrifuge were controlled by the supervisory computer through 7 digital 

signals (0-5V). A National Instruments (AT-DIO-32F, USA) digital I/O interface was 

adopted to execute and convey the relevant signals to the micro-centrifuge.

L=340 mm

Feed

Wash
W=290 mm

Supernatant

Figure 3.1. Schematic o f the micro-centrifuge. Three peristaltic pumps (1 & 2) are 

used to feed and wash the micro-centrifuge bowl (4). A solenoid valve (5) controls the 

supply o f a vacuum to the micro-centrifuge bowl to allow excess feed and wash to be 

sucked to waste. The vacuum is generated by a vacuum pump (6) driven by tap water.

The general operating procedure of the micro-centrifuge is summarised below

□ Approximately 5-6 ml_ of sample was pumped into the micro-centrifuge 

bowl, whilst the vacuum was switched on resulting in the filling and 

subsequent removal of sample. This was done to pre-wash the bowl 

with sample. The vacuum was switched off and an extra 1 ml_ of 

sample was pumped into the bowl for centrifugation.

□ The compressed air valves were switched on and the brake switched off 

for 10-15 seconds, which resulted in the bowl spinning at a high speed 

(compressed air at 4 bar(g) resulted in the bowl spinning at 55,000 rpm
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(Chard 1997)). The vacuum was switched on for 0.8 seconds, 1.2 

seconds before the compressed air was turned off to remove drops on 

the feed inlet tube tip and the surplus feed material in the vacuum tip.

This helped avoid contamination of the supernatant liquid (Turner 1993,

Chard 1997). The brake was switched on and the centrifuge came to a 

stop.

□ The supernatant liquid was pumped out of the bowl and the wash 

sequence initiated. This involved switching the wash pump, vacuum 

and spinning the bowl in discrete pulses, i.e. pump on for 1 second, spin 

for 1 second, vacuum on for 1-2 sec. This sequence was repeated 5-6 

times.

The total run time to sample and perform solid-liquid separation step was 

approximately 60 s. The wash cycle was performed during the sample dilution, reagent 

mixing and product and contaminant detection step.

sample 
from process P1 (SFA)

supernatant 

= — ® = -P2 to SFA

wash

Vacuum
valve

to waste

solids

friction
brake

compressed air

0  Pumps

Valve

Figure 3.2. Schematic o f the micro-centrifuge bowl. P1 and P2 refer to peristaltic 

pumps 1 and 2 and P1 (SFA) refers to the peristaltic pump situated on the stopped flow  

analyser for drawing off supernatant liquid.
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3.3.2 Stopped flow analyser

The stopped flow analyser (SFA) was built in-house. It consisted of two 8 roller 

peristaltic pumps (308 D/A, Watson-Marlow Ltd), one 3 roller peristaltic pump, a 2-way 

solenoid valve (Bio-Chem Valve, model 100P3MP12, UK) and a 3-way solenoid valve 

(Bio-Chem Valve, model 080T312, UK), housed in a steel case with dimensions 400 x 

310 x 180mm [L, W, D], illustrated in figure 3.3. The design of the SFA was based on 

the one used by Chard (Chard 1997).

L = 400 mm

Buffer V4 P3 for ADH  
assay

Reagent

P2

for RNA, 
protein &

Buffer

V2
Sample

V3

Buffer

W  = 310 mm

Figure 3.3. Schematic o f the stopped flow analyser (SFA). Two 8 roller peristaltic 

pumps (P1, P3) for sample dilution and reagent mixing. The two-way valve (V4) 

allowed the switching from reagent to buffer when the wash sequence was initiated. 

The three-way valve (V1, V2, V3) was implemented to switch from supernatant sample 

to buffer to enable the washing o f the tubing and flow-cells.

The two 8-roller peristaltic pumps were used for diluting and mixing sample with buffer 

and reagent to appropriate levels before transporting the prepared samples to the 

appropriate destinations (ADH-spectrophotometer and diode-array spectrophotometer). 

The 3-roller pump was used during the wash cycle. The 2-way solenoid valve enabled 

the user to switch from reagent mix to wash buffer during the cleaning step. The 3-way 

solenoid valve was also used during the wash cycle. Figure 3.4 and 3.5, illustrate the 

sample preparation sequence and wash cycle for both flocculation and 

chromatography monitoring. The total run time from sampling through to at-line 

product and contaminant measurement was 135 s for the flocculation process and 

approximately 60 s for the chromatography process. The later did not require a solid- 

liquid separation step.
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The dilution levels were controlled by choosing different tube diameters for sample and 

buffer. The sequencing of pump and valve actions were determined by knowing the 

flow-rate, the length and diameter of the tubes. The peristaltic pumps and solenoid 

valves were controlled by a supervisory computer through 7 digital signals (0-5V) 

(National Instruments, AT-DIO-32F, 32-bit digital I/O interface).

Diode-array spectophotometer 
& waste

Spun
sample

W aste
Pump 3Pump 1

flow cell for 
ADH assayV2 <j) 

ReagentBuffer

Diode-array spectrophotometer 
i k & wastel

" t W aste
l 4

Pump 3 *

Pump 2
uffer

V1

Sample
stream flow cell for 

ADH assayPump 1 V2

Buffer Buffer

O  Valve

Figure 3.4. Stopped flow analyser setup for the flocculation process. The top diagram 

(A) illustrates the sample dilution and reagent mixing sequence. The sample was 

diluted with buffer after pump 1 and a T-piece splits the stream. Diluted sample is sent 

to the diode-array spectrophotometer for spectral scanning. Pump 3 was then 

switched on and the diluted sample was mixed with reagent and transported to the 

spectrophotometer for ADH assaying.

The bottom diagram (B) illustrates the wash cycle. Buffer was pumped (pump 2) 

initially to the diode-array spectrophotometer to wash the flow-cell by keeping valve V1 

shut. Pump 1,2 & 3 and valve V1 & V2 were then switched to wash the ADH flow-cell 

as well as tubing th t3, t4i t5 and t6. The above wash cycle is altered slightly during the 

monitoring o f the chromatography work, whereby no buffer is washed back through the 

sample tube U.
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Figure 3.5. Stopped flow analyser setup for the chromatography process. Diagrams 

(A), (B) and (C) illustrate the three SFA configurations to cope with different sample 

dilution levels during the chromatographic process. The dilution levels for configuration 

(A) was 1:17, (B) 1:289, and (C) 1:2312 (expanded bed process) or 1:4913 (packed 

bed process). The wash cycle during chromatographic monitoring was sim ilar to that 

during o f the flocculation setup, however no buffer is washed back through the sample 

tube (see figure 3.4 (B)).

3.4 At/on-line monitoring Instruments

3.4.1 At-line spectrophotometer for ADH measurements

A spectrophotometer (Ultrospec 2000, Pharmacia-Biotech, Upsala, Sweden) was used 

in conjunction with a flow-cell (1mm pathlength, Hellma, Essex). The
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spectrophotometer was interfaced with the supervisory computer through a RS232 

serial link. Prepared sample from the SFA was transported to and from the 

spectrophotometer. The flow-cell was washed with buffer between samples during a 

run whilst 0.5 M NaOH was used between batch runs.

3.4.2 Photometric dispersion analyser

A photometric dispersion analyser (PDA) (PDA 2000, Rank Brothers Ltd.) was used to 

monitor floe levels in a flowing suspension. In the PDA the flowing suspension was 

illuminated by a narrow beam of light, from a high intensity light emitting diode 

(wavelength of 820nm), so that a fairly small sample volume was examined. Since the 

suspension was flowing, the number of particles in the light beam was continuously 

changing because of local variations in composition, and these variations caused 

fluctuations in the intensity of transmitted light. The light intensity was monitored by a 

sensitive photodiode, the output of which was converted to a voltage proportional to the 

intensity. The output voltage had a large direct current (dc) component related to the 

turbidity of the suspension, and a smaller fluctuating component alternating current 

(ac), due to the random variations in particle number. Both the dc and the ac values 

were sent to the supervisory computer through an analogue board (ComputerBoards, 

CIO-DAS16/Jr). The sample suspension was fed through a transparent plastic tubing, 

which fits into a perspex block that houses two precisely aligned fibre-optic probes, on 

the PDA. The PDA was only used in the dc mode as the concentration of solids in the 

monitored homogenate did not allow for a stable ac signal.

3.4.3 At-line diode-array spectrophotometer for contaminant 

measurements.

The diode-array spectrophotometer was built in-house. It consisted of a diode-array 

spectrometer and fiber optic probe (Carl Zeiss, MMS polychromator, Jena, Germany), 

a deuterium light source, the appropriate lenses to focus the light on to the optical fiber 

input and a fan to prevent over heating, housed in a steel case with dimensions of 400, 

310, 180mm, [L, W, D], shown in figure 3.6. The photodiode array was made by 

Hamamatsu, with a wavelength range between 215 - 740 nm, and a pixel number of 

256. The wavelength resolution was 2.2nm/pixel and wavelength accuracy was below 

0.5 nm. The sample to the diode-array spectrophotometer was supplied to a 1mm 

pathlength flow-cell (Hellma). Twenty scans from 220 to 500nm were taken to give an 

average spectral scan of the sample every 1.2 s. The spectrophotometer was 

interfaced with the supervisory computer via an analogue board (ComputerBoards, 

CIO-DAS16(Jr.), UK) for data logging. An equivalent wash cycle of the flowcell to that
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described in section 3.4.1 was adopted. The spectral scans were used to predict total 

protein, RNA and cell debris levels, through a multivariate statistical technique, 

discussed in section 2.1 and section 4.3.

L = 400 mm

3 5

8

W = 310 mm
sample in sample out

H = 180 mm

Figure 3.6. Schematic o f the diode-array spectrophotometer. Top and bottom 

diagrams illustrate the top and side views o f the custom built diode-array 

spectrophotometer, consisting o f a Carl Zeiss MMS polychromator spectrometer (1). 

Spectral scans where performed on samples pumped into the flowcell (3). Lenses (4) 

were used to focus the light through the flowcell on to the tip o f the optical fibre input 

(2). Fan (6) and air extractor (8) were used to prevent overheating. A power source 

(7) was applied to run the lamp.

3.5 Batch flocculation process

3.5.1 Preparation of feed and PEI solution

Suspended Baker’s yeast (125 g L"1 (wet weight) 3-4 L) was disrupted according to the 

procedure discussed in section 3.1.2. PEI flocculant solutions were made at 5 and 10 

mg mL'1 concentrations. The yeast homogenate and PEI solutions were adjusted to 

the desired pH (titration with 10M NaOH or HCI) and ionic strength (KH2P 0 4).
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3.5.2 Experimental apparatus

The batch flocculation process with the at-line monitoring setup is illustrated in figure 

3.7, below. A baffled 1000 ml. (750 ml_ working volume) vessel was filled with feed 

yeast homogenate and PEI flocculant was dosed into the tank using a variable gear 

pump (MV-ZP-15, Ismatec, Zurich, Switzerland). The dose flowrate was monitored by 

an inductive magnetic flowmeter (model DM4, Turbo, Kohn, Germany) and controlled 

by a Turnbull Control System (TCS) (model 6366, process controller, Worthing, UK), 

which applied a standard PID algorithm. The TCS was interfaced to a supervisory 

computer (IBM compatible, Pentium, 133 MHz) via a RS232 serial link. Changes to 

pump setpoints could be executed either by an operator through the supervisory 

computer for open loop control or automatically by a control algorithm for closed loop 

control. The homogenate-PEI mixture was well mixed by a variable speed drill unit 

(Heidolph, Gemany, 90 - 1800 RPM), operating at 1000 RPM with a six-flat bladed-disk 

turbine. A more detailed illustration of the bath flocculation tank is shown in figure 3.8, 

indicating the relevant dimensions.

3.5.3 Sampling and at-line monitoring

A sample was continuously drawn off (25 mL min'1) by a 10-roller peristaltic pump 

(Minipuls 3, Gilson M312, UK) and recycled back into the batch tank. PDA readings 

were automatically monitored and logged by the supervisory computer, which would 

also trigger the at-line sampling and monitoring sequence. A sample (5.6 mL) was 

drawn off the sampling loop and assayed for product and key contaminants according 

to the method discussed in section 3.3 and 3.4. At-line measurements were recorded 

approximately every 135 s and were associated with a 5 s time delay, due to the time 

taken for the sample to travel from the batch tank to the sampling point.
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Inlet tube for 
flocculant dosing

Outlet tube for 
sampling

J = 12mm

H2 h

W = 6mm

D , = 30mm r — B  11
 m

H2 = 102mm E = 33mm

H. = 150mm D. = 100mm

Figure 3.8. Batch flocculation tank dimensions. The inlet flocculant tube was placed 

such that PEI would be dosed below the impeller.

3.6 Continuous flocculation process

3.6.1 Preparation of homogenate and flocculant solutions

A similar procedure to that applied during the batch flocculation process was employed.

3.6.2 Experimental apparatus

The flocculation equipment consisted of two variable speed gear pumps (MV-ZP-15, 

Ismatec, Zurich, Switzerland), feeding the homogenate and PEI streams into a Y-piece 

followed by a needle valve (model 11562, Hoke, Harrow, UK) used to ensure good 

mixing was adopted. Both pumps were controlled by feedback loops with flow rates 

monitored by inductive magnetic flowmeters (model DM4, Turbo, Kohn, Germany). The 

flow rate signals were fed back to a Turnbull Control System (TCS) (model 6366, 

process controller, Worthing, UK), which applied a standard PID algorithm to produce 

the relevant output signal to control pump speeds at the required setpoints. The TCS 

was interfaced to a supervisory computer (IBM compatible, Pentium, 133 MHz) via a 

RS232 serial link. Changes to pump setpoints could be executed either by an operator 

through the supervisory computer for open loop control or automatically by a control 

algorithm for closed loop control. A specific PEI volume fraction was achieved by 

controlling the PEI to homogenate flowrate ratio. The total flowrate was kept constant 

at a flowrate of 22.6 mL min'1

Page 81



P
um

P
1 

P
ho

to
m

et
ric

 
/'

A
 

V 
FT

1 
(F

low
 

tra
ns

du
ce

r 
1) 

di
sp

er
si

on
 

an
al

ys
er

LU
CL

<s>

CO O

m Wm

E 2 I  
|  § a

£  o  CO

E £ 
ro ro P o ro
w 'S oi
co _
0  CL CO o p ~

ra
Q_ CO Q

Pa
ge

 
82



Materials and Methods

3.6.3 Sampling and at-line monitoring

The PEI-homogenate mixture would be pumped to the photometric dispersion analyser 

(PDA) where continuous PDA dc readings were acquired automatically and logged by 

the supervisory computer. The at-line sampling set-up (discussed in section 3.3 and

3.4) would be actuated by the supervisory computer. The sampling sequence would 

automatically draw off approximately 5.6 mL of sample and feed it to the micro- 

centrifuge followed by the SFA and finally to both spectrophotometers for product and 

contaminant measurements. A 10 s time delay was associated with the at-line data, 

due to the time taken for the PEI-homogenate mixture to flow from the Y-piece to the 

sampling point.

3.7 Packed bed HIC chromatography

3.7.1 Experimental apparatus

Bench scale

The experimental and at-line monitoring set-up for the packed bed column is shown in 

figure 3.10. The bench scale system under study was a 0.05 m diameter XK50/40 

packed bed (Pharmacia Biotech AB, Upsalla, Sweden). A peristaltic pump (Model 

505DU Watson Marlow, Cornwall, UK) was used to pump different liquids onto the 

column during load, wash and elution stages. A valve configuration (Model 4port-2way 

and 4port-4way, Pharmacia Biotech) was chosen to enable the reversal of flow through 

the column.

The outlet of the column was connected to a UV monitor (Model UV1, Pharmacia 

Biotech AB, Sweden) set to 280 nm. A fraction collector (Model SuperFrac, Pharmacia 

Biotech AB, Sweden) was used to pool eluate from the column. An at-line monitoring 

system described in section 3.4 and 3.5 was adopted to draw off approximately 2 mL 

min'1 of sample from the outlet stream of the column for rapid measurements.

Pilot scale

The experimental setup for the large scale packed bed column is shown in figure 3.10. 

A 0.2 m diameter Bioprocess Glass Column BPG200/500 (Pharmacia Biotech, AB, 

Sweden) was implemented. Two stainless steel tanks with top mounted agitators were 

connected to a T-piece upstream to a 4 port-2 way valve (V1) (Pharmacia Biotech AB, 

Sweden). A 120 L stainless steel mobile buffer tank was also connected to the T-piece 

used for holding clarified supernatant during the loading onto the column. A peristaltic
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pump (Model 505DI, Watson Marlow, UK) was used to pump liquid on to the column. 

The valve configuration adopted was similar to that applied for the bench scale setup.

A smnilar UV-monitor and at-line sampling setup to that adopted for the bench scale 

system was applied.

Adapter
Pump

r f c — i
V4

I I 20% EtOH 
■ ■ ■ ■  Hydraulic 

Reservoir

Expanded bed

Eqm. Buffer Elution Buffer

Feed V1M 3 --------®
l  J P o a r lFeed

Pump

Packed bed

Key to Symbols

V1&V3: 4 port-2 way Jacobo valve 
V2 &V4: 4 port-4 way Jacobo valve

Process streams 
Sampling streams 
Information

SuperFrac

Waste

Stopped flow 
analyser

UV280

Spectrophotometer

Diode-array
spectrophotometer

Figure 3.10. Schematic layout o f the packed bed and expanded bed equipment with 

ancillary equipment and at-line monitoring system. The packed bed column represents 

both the bench and large scale systems. The above schematic is not to scale.

3.7.2 Preparation of cell homogenate

Bench scale

Baker’s yeast (280 g (wet weight) L'1, 4L) in buffer (0.1M KH2P 0 4, pH 6.5) was 

disrupted in a high pressure homogeniser (Model Lab 60, APV Crawley, UK) for 5 

discrete passes at 500 bar(g) with the temperature maintained at 4°C.

Pilot scale

Baker’s yeast (280 g (wet weight) L'1, 60L) in buffer (0.1M KH2P 0 4, pH 6.5) was 

disrupted in a high pressure homogeniser (Model K3, APV Crawley, UK) for 5 discrete 

passes at 500 bar(g) with the temperature maintained at 4°C
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3.7.3 Bench scale batch PEI flocculation and centrifugal clarification.

PEI (2% (w/v), pH 6.5, 0.75L) dissolved in buffer (0.1M KH2P 04, pH 6.5) was added to 

the 3L of yeast homogenate (PEI volume fraction of 0.2 (v/v)) and stirred by a magnetic 

flea for 5 minutes in a 4L beaker. The PEI-homogenate mixture (3L) was centrifuged in 

a Beckman centrifuge (Model J2-M1, Spinco, Beckman Instruments, Pan Alto, 

California, USA) with a fixed angle rotor (type JA-17) at 10,000 rpm for 10 minutes. 

The supernatant was diluted with ammonium sulphate (100% saturated solution in 0.1 

M KH2P 0 4, pH 6.5) to adjust the salt concentration to 0.78M and further diluted to 

approximately 10 mg (protein) mL'1, for subsequent packed bed chromatographic 

purification.

3.7.4 Large scale continuous PEI flocculation and centrifugal separation

Two lobepumps (Monopumps, UK) were used to continuously pump a 1% (w/v) PEI 

solution (pH 6.5, 0.1M KH2P 04) and the yeast homogenate to a T-piece junction to 

insure good mixing. A PEI volume fraction of 0.3 (v/v) was chosen after a lab-scale 

test indicated that this PEI dose insured good clarification. The PEI-homogenate 

mixture was continuously pumped (30 Lh'1) to an intermittent discharge disk-stack 

centrifuge (Model CSA-1, Westfalia Separator AG, Oelde, Germany) equipped with a 

hydro-hermetic (soft shear) feed zone. Full discharge was performed every 150 s. 

The supernatant from the CSA-1 was further clarified by a tubular bowl centrifuge 

(Model 1P, Sharpies, Camberley, Surrey, UK) using peristaltic pump (Model 502S, 

Watson Marlow) at a flowrate of 30 L h'1. The centrifuge was operated at a bowl speed 

of 45,000 rpm. Ammonium sulphate (100% saturated solution in 0.1 M KH2P 0 4, pH

6.5) was added to the 1P supernatant pool to adjust the salt concentration to 0.78M 

and no further dilution of the pool was required.

3.7.5 Column chromatography

Bench Scale

An XK50/40 was packed with Phenyl Sepharose FF matrix (low sub) to a final height of 

0.125m. The column was equilibrated with 10 column volumes of buffer A (0.78 M 

(NH4)2S 0 4 in 0.02M KH2P 04, pH 7) at a superficial velocity of 2 m h'1 (65.3 mL min'1). 

Prepared supernatant was loaded on to the column at the same flowrate and in the 

same direction as the equilibration buffer. In the wash cycle where unbound material 

was washed from the column, flow to the column was switched from supernatant to 

buffer A still in the same direction. The wash cycle was terminated after approximately 

7 column volumes of buffer. Elution of the bound material was performed at 0.75 m h"1
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in the same direction of the load and wash, with a step decrease in salt concentration 

using buffer B (0.02 M, KH2P 04, pH7).

An automated clean in process (CIP) was employed between chromatographic cycles 

in order to regenerate the matrix. An FPLC liquid chromatography controller (Model 

LCC500 Plus, Pharmacia Biotech AB) was used to control two motorised valves (Model 

IMV) and a peristaltic pump (Model P-6000). The CIP protocol was the following:

• 1M NaOH (2.4 L, 0.3 m h'1)

• Dl-H20  (0.9L, 0.1 m h '1)

• 30% (v/v) Isopropyl alcohol (0.9 L, 0.1 m h'1)

• 25% (v/v) Acetic acid (0.9L, 0.1 m h'1)

• Dl-H20  (1.5, 0.1 m h '1)

• 20 % (v/v) ethanol (1.5L, 0.1 m h'1)

Pilot Scale

The BPG200/500 0.2 m diameter column was packed with approximately 393 mL of 

settled Phenyl Sepharose FF (low sub) matrix to a final packed bed height of 0.129 m. 

After equilibration of the column with buffer A, clarified supernatant was loaded at a 

liquid velocity of 2 m h"1 (1047 mL min'1) until the breakthrough of ADH reached 

approximately 5%. Unbound material was washed from the column in the reverse 

direction to loading with approximately 7.5 column volumes of buffer A. Elution of the 

bound material was performed at 0.75 m h'1 (393 mL min'1) in the same direction of the 

load and wash, with a step decrease in salt concentration using buffer B (0.02 M, 

KH2P 0 4, pH 7). The column was regenerated with 10 column volumes of 1M NaOH, 

which was washed from the column with Dl-water before storage in ethanol (20% 

(v/v)).

3.7.6 Monitoring of the chromatographic process

During the load, wash and elution cycle fractions were collected every 120 s and the 

concentration of ADH of each fraction assayed immediately on collection. Protein 

levels were assayed subsequent to the final chromatographic cycle. At-line ADH levels 

were also monitored adopting the SFA system described in section 3.3.2. At-line 

measurements of ADH were taken approximately every 60 s. Protein levels of the 

pooled fractions were also assayed adopting the SFA and rapid scanning system 

(section 3.4.3).
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3.8 Expanded bed chromatography

3.8.1 Experimental apparatus

The experimental and at-line monitoring setup for the 0.05 m diameter STREAMLINE 

(ST-50) expanded bed (Pharmacia Biotech) was similar to that of the 0.05 m diameter 

packed bed system and is shown in figure 3.10. An additional peristaltic pump (Model 

505DU Watson Marlow) was used to transfer ethanol (20% (v/v)) from a separate 

reservoir to the head space above the top adapter, enabling the position of the upper 

adapter to be adjusted during chromatographic operation. The valve configuration to 

the bench scale packed bed system enabled the reversal of flow through the expanded 

bed.

3.8.2 Preparation of column feed

Baker’s yeast (280 g (wet weight), L'1, 4L) was disrupted in a high pressure 

homogeniser as described in section 3.1.1). The homogenate was diluted with 

ammonium sulphate (100% saturated solution in 0.1 M KH2P 0 4, pH 6.5) to adjust the 

salt concentration to 0.78M and further diluted to approximately 10 mg (protein) mL"1, 

for subsequent chromatographic purification.

3.8.3 Column chromatography

The settled bed height of STREAMLINE-Phenyl (low sub) matrix was 0.148 m. The 

bed was expanded from its initial settled configuration by increasing the superficial 

liquid velocity of Dl-water upwards through the column, until a maximum liquid velocity 

of 3 m h'1 was achieved. The bed was then equilibrated with buffer A at a liquid 

velocity of 2 m h"1 (65.3 mL min'1) until the bed height had stabilised (approximately 60 

min). The prepared homogenate feed was then loaded on to the bed until an outlet 

ADH concentration equivalent to a pre-specified breakthrough was observed on the at- 

line monitoring equipment. In the wash cycle unbound material was washed from the 

column with buffer A in the same direction and superficial velocity of the load i.e. in 

expanded mode. The wash cycle was terminated when the on-line UV trace returned 

to its initial base line. The bed was allowed to settle and the upper adapter was 

positioned on the top of the settled bed at a height of 0.148 m for elution.

Elution was performed using a step decrease in salt concentration by applying buffer B 

at a liquid superficial velocity of 0.75 m h"1 (24.5 mL min'1) in the opposite direction to 

the load and wash. The elution cycle was terminated after the at-line ADH profile had
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peaked and returned to its baseline. The system was cleaned using an automatic CIP 

cycle equivalent to that adopted for the bench scale packed bed system.

3.8.4 Monitoring of the chromatographic process

During the load, wash and elution cycles off-line and on-line assays of ADH and total 

protein levels were performed according to the method described in section 3.7.6. 

RNA and cell debris levels of pooled fractions were also measured using the SFA and 

the UV-VIS diode-array spectrophotometric system described in section 3.4.2.

3.9 Computer software and hardware

3.9.1 Data acquisition

The software implemented for data acquisition was LabVIEW (National Instruments, 

USA) and was run on an IBM compatible PC (Hewlett Packard, Pentium 133 MHz, 

USA). Table 1 illustrates the different communication links between the supervisory 

computer and the various instruments.

Table 3.1: Communication links between computer and instruments

Micro-centrifuge Digital signals out

SFA Digital signals out

Diode-array

spectrophotometer

Analogue signals in

Pharmacia Biotech 

Spectrophotometer

Serial link (RS232), two way communication

PDA Analogue signal in

TCS Serial link (RS232), two way communication

3.9.2 Multivariate analysis

The multivariate analysis of spectral data was carried out using a partial least squares 

statistical technique available in a commercial software called Charm Works V 1.1 

(Process Analysis & Automation Ltd., UK).
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Chapter 4
Demonstration of at-line techniques

4.1 Summary
The aim of this chapter is to demonstrate the feasibility of at-line monitoring of alcohol 

dehydrogenase (ADH) product and key contaminants such residual cell debris, protein 

and RNA for a flocculation process. The at-line monitoring setup consisted of an 

automated microcentrifuge for solid-liquid separation, a stopped flow analyser (SFA) for 

automatic sample preparation and transportation and two spectrophotometers (diode- 

array and fixed wavelength) for product and contaminant detection. Product 

concentrations were measured through an enzyme catalysed reaction whilst the 

contaminant levels were predicted from UV-VIS spectral data.

4.2 Introduction
Cell debris dry weight levels will be correlated to optical density readings to enable the 

rapid monitoring of cell debris residue. This chapter shows results from performance of 

the at-line monitoring of ADH described in section 3.2. UV-VIS spectral analysis 

implementing the partial least squares (PLS) multivariate analysis technique was 

examined for the rapid at-line prediction of key contaminants such protein, RNA and 

cell debris levels. The performance of a flocculation process in terms of photometric 

dispersion analyser (PDA) readings (described in chapter 3) was also investigated. An 

overall error analysis was performed on the at-line monitoring setup consisting of 

automated microcentrifugation, stopped flow analysis and product and contaminant 

detection to establish the measurement errors involved with the at-line system.
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4.3 Results and discussion

4.3.1 At-line monitoring of cell debris residue using optical density at 

650nm

Figure 4.1 on page 99 illustrates a linear response with high coefficients of 

determination between wet weight and dry weight for Baker’s yeast homogenate 

against optical density values at a wavelength of 650nm (OD650). The linear 

correlations are shown in figure 4.1 and may be implemented to convert OD650 values 

to wet / dry weight levels. If yield values are used no conversion is required due to this 

linear response. Figure 4.2, shows dry weight against wet weight values derived from 

figure 4.1. As expected a linear response is achieved with a correlation factor of 0.095 

from wet to dry weight. These correlations are used to estimate the solids 

concentration of process streams although it must be recognised that deviations may 

be expected, for example where the ratio of dissolved coloured compounds to solids is 

changed significantly. In the text below cell debris concentrations will be expressed in 

OD650 units, i.e. absorption units (Au).

4.3.2 At-line monitoring of ADH

Figure 4.3 Plot A, compares at-line with off-line measurements of ADH activity for pure 

ADH samples. Plot B shows at-line ADH measurements for homogenised Baker’s 

yeast against wet weight concentrations. A linear response between off-line and at-line 

measurements (Plot A) and at-line ADH measurements and yeast homogenate wet 

weight concentrations (Plot B) was found with coefficients of determination (R2) for both 

relationships above 0.99. Prior to at-line assaying sample dilution and reagent mixing 

was performed by a stopped flow analyser. Figure 4.3 illustrates that at-line ADH 

measurements can be taken of both clear and turbid samples automatically, 

reproducibly with a reduced assay time of 10 seconds without the loss of accuracy. 

This at-line technique is used to rapidly monitor ADH activity of process streams.

4.3.3 Rapid contaminant monitoring using UV-VIS spectral scans and 

PLS

Partial least squares (PLS) a multivariate analysis technique was adopted to calibrate 

the Zeiss diode array spectrophotometer for RNA, protein and cell debris (OD650) 

prediction using spectral scans in the ultraviolet and visible (UV-VIS) region (230 nm to 

500 nm). The theoretical aspects of multivariate analysis in particular principal 

component analysis (PCA) and PLS were discussed in section 2.1.
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Figure 4.4 illustrates the effects of varying protein (BSA), RNA and cell debris levels 

(O D 65o) in phosphate buffer (100 mM, pH 6.5) on the UV-VIS spectra between 230-500 

nm. The spectral scans were taken after diluting samples by a factor of 16 with 

phosphate buffer (100mM, pH 6.5) and introduced to the diode array 

spectrophotometer via a 1 mm pathlength flowcell manually. Plot A illustrates the 

spectral scan due to an increase in cell debris resulting in OD650 levels of 0 Au, 1.77 Au 

to 5.5 Au whilst keeping BSA and RNA levels at zero. An increase in cell debris levels 

resulted in an apparent linear upward shift in the spectral scans (in terms of 

absorbance), i.e. a twofold increase in OD65o levels resulted in an apparent twofold 

upward shift in the spectra. It should be noted that the spectral scans fall in an 

absorbance range between 0 -  0.125 Au for the increase in OD650 values from 0 to 5.5 

Au.

Plots B and C demonstrate the response of the UV-VIS spectra due to increases in 

RNA (0 mg ml_'1, 2.5 mg mL'1 to 5 mg mL'1) and BSA (0 mg mL'1, 4 mg mL'1, 12 mg mL' 

1 to 20 mg mL'1) concentrations in phosphate buffer. Increases in both RNA and BSA 

levels resulted in apparent linear upward shifts in the spectral scans in the UV region 

230 -  310 nm. The absorbance range associated with the RNA change was between 

0 -  0.8 Au with a global and local maximum around 260 nm and 280 nm, whilst beyond 

a wavelength of 310 nm the absorbance values dropped to zero. Similar to the RNA 

response two peaks around 260 nm and 280 nm were observed for BSA variations, 

however the global maximum in this case was at 280 nm. The absorbance range lies 

between 0 -  0.05 Au, and beyond 310 nm the spectral absorbance falls to zero. The 

relatively high absorbance values at 260 nm and 280 nm for protein and RNA is due to 

primarily the presence of tyrosine and tryptophen. Many authors have applied this 

phenomenon for spectroscopic measurements of protein and nucleic acids (Warburg 

and Christian 1941, Ehresmann et al. 1973, Kalb and Bernlohr 1977). However such 

techniques up to data have not had much success due to their implementation of only 

two wavelength absorbance values and hence poor predictive ability. By implementing 

the information contained in spectral scans through multivariate analysis techniques 

more specific biological information can be gained.

Table 4.1 on page 103 lists the 36 samples and their compositions applied in the 

factorial experiment for the model calibration. Each sample composition had a volume 

of 3 mL consisting of 1 mL per component. The calibration range was set to enable the 

prediction of protein, RNA and OD650 levels equivalent to that found in centrifuged 

Baker’s yeast homogenate at a wet weight concentration of 150 g L'1. Maximum levels 

of the contaminants were therefore set at 20 mg mL'1 of protein, 5 mg mL'1 of RNA and
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5.5 Au of cell debris (these are conservative estimates, i.e. above expected levels). 

The calibration samples were made up from standards of yeast RNA, BSA protein and 

washed cell debris. A 3x3x4 (OD650, RNA, BSA) factorial experiment set-up was 

decided, resulting in 36 calibration samples. A larger number of protein samples were 

chosen due to the weak absorbance response compared to that of RNA in the UV 

region (figure 4.4). A 1:16 factor dilution was performed prior to feeding the sample to 

a 1mm pathlength flowcell situated in the diode-array spectrophotometer

Figure 4.5 illustrates the scores plot of the calibration scans in terms of principal 

components 1 and 2, derived from the first step of PLS namely principal component 

analysis (PCA). The numbers on the plot refer to the spectral scan taken of a particular 

sample number listed in table 4.1. Sample clusters (samples which are geometrically 

close in a scores plot are termed a cluster) have been circled (by eye), indicating that 

there are no obvious outliers and the calibration modelling may proceed without the 

need for repeats. If for example sample number 1 was situated close to the 

[33,34,35,36]-cluster on the scores plot one would classify sample number 1 as an 

outlier as it has nothing in common with the above cluster in terms of cell debris, RNA 

and BSA concentrations. An outlier may occur due to errors in sample make-up or 

spectral scanning errors. The scores plot clearly shows that there is a trend due to 

RNA, protein and cell debris, indicated by the arrows on the plot, i.e. just from two 

principal components a vast amount of information about the calibration samples can 

be observed, qualitatively. RNA and cell debris concentration changes result in shifts in 

clusters, whilst BSA variations can be seen as a progression within a cluster. The 

cluster formation and shifts due to contaminant variation is very dependent on the co­

ordinates one chooses to plot the calibration samples in (two co-ordinates can only 

express cluster shifts due to two components). A scores plot of principal components 1 

and 3 would illustrate a shift in clusters due to changes BSA concentration (Appendix 

A, Figure A.1) and not a progression within clusters. Principal components 1 and 2 

express most of the information from the original spectral scan data, hence shifts in 

clusters due to RNA and cell debris concentration changes may be because these 

components absorb more readily in the UV-VIS region than BSA variations for the 

given calibration samples.

Figure 4.6, illustrates prediction residual error sum of squares (PRESS) levels against 

the number of principal components. This plot demonstrates that only 5 or 6 principal 

components are needed in building the calibration model to predict effectively the 

calibration contaminant levels through the UV-VIS spectra between 230 and 500 nm.

Six principal components were chosen to build the calibration model.
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Figures 4.7 and 4.8 show the quantitative accuracy of the calibration model in 

predicting contaminant concentrations in the standards themselves. As discussed in 

section 2.2, there are two main stages in using PLS for contaminant prediction. The 

first step is building the prediction model from the calibration set, X  and Y  blocks. The 

X block contains the spectral scans from each sample. The Y  block contains the 

calibration standards to be predicted. PCA enables the original data (X block) to be 

decomposed and expressed in terms of a few principal components (figure 4.5). The 

calibration model finds a correlation between X (spectral scans) and Y (calibration 

samples) through the use of the first few principal components. The second stage of 

PLS is the prediction through the use of the calibration model.

Figures 4.7 and 4.8 illustrate the prediction technique applying the calibration model 

derived adopting PLS, 6 principal components and the spectral scans between 230 -  

500 nm of each calibration sample. The linear response between actual and predicted 

values are shown in figure 4.7 for OD650, RNA and Protein (BSA) and a linear fit (least 

squares) resulted in coefficients of determination of R 2protein = 0.986, R2RNa = 0.997 and 

R2od65o = 0.999. Figure 4.8 illustrates the same data as figure 4.7 however here both 

the predicted and actual values are plotted against the calibration sample number 

(table 4.1). This shows the spread of predicted data around the actual values, 

indicating the larger scatter of the protein predictions, which was probably due to the 

weaker adsorbance signals seen in figure 4.4, plot C.

Figure 4.9 shows the quantitative ability of the prediction technique to estimate protein 

and cell debris levels in Baker’s yeast homogenate samples from their UV-VIS spectral 

scans (230nm to 500nm). RNA predictions will be discussed later, figure 4.10. Figure 

4.9, plots A and B illustrate measured and predicted protein and OD6so levels against 

the homogenate sample number. Although similar trends in measured and predicted 

data for both protein and OD6so profiles were observed, the predicted protein profile 

was shifted upwards compared to that of the measured protein profile resulting in 

systematic error throughout the homogenate samples. Figure 4.9, plots C and D show 

the predicted and measured protein and cell debris data plotted against each other 

resulting in a highly linear response with coefficients of determination (R2) of 0.995 and 

0.991 for protein and OD650. The linear equations for the contaminants are shown in 

the figure legend, both of which have an intercept at (0,0) and slopes of 0.71 

(measured/predicted) and 1.1 (measured/predicted) for protein and debris. These 

linear correlations will be implemented to correct the predicted data. This linear 

correction can be argued to describe the transition from prediction of contaminants in
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buffer to predictions of contaminants in homogenate solution. A prediction error was 

determined by taking the average residual values between the measured and corrected 

predicted data, described in equation 4.1.

k
SI C n , ~ C p X a \

Prediction error  = —------------------------ (4.1)
n

where c„, is the measured contaminant concentration, cp is the predicted contaminant 

concentration, a  is the linear correction factor and n is the number of k  samples. If 

contaminant yield values are used the above corrections to the predicted data are not 

required. The prediction error for protein and debris was 0.41 mg mL"1 and 0.136 Au.

Figure 4.10 illustrates predicted and measured RNA data for a flocculation run using 

Baker’s yeast homogenate at a concentration of 125 g L"1 and a stock 

polyethyleneimine (PEI) solution of 0.01 g L"1. Homogenate-PEI mixtures were spun in 

a laboratory centrifuge prior to contaminant estimation. Predicted and measured data 

are plotted against PEI volume fraction figure 4.10, plot A. Figure 4.10, plot B shows 

predicted versus measured RNA data for the same flocculation run. The predicted 

data were a good match to that of the measured values. The linear relationship (shown 

in the figure legend) had a coefficient of determination of 0.991, intercept at (0,0) and a 

slope of 0.961 (measured/predicted). The prediction error based on equation 4.1 was 

0.11 mg mL"1.

The ability of the calibration model to predict RNA, protein and cell debris concentration 

from their UV-VIS spectral scans was demonstrated to be relatively good. The 

accuracy (based on figure 4.7) was highest for RNA, cell debris and then protein which 

is coincident with the level of absorbance for each of the contaminants in the UV-VIS 

spectra. Predicted protein and RNA profiles were shifted upwards, predicting higher 

values compared to their chemical measurements. Noui et al. (1998) argued that this 

phenomena was due to the interference of other components found in Baker’s yeast 

homogenate such as lipids and DNA which increased the absorbance readings 

resulting in higher predictions. As there exists a highly linear relationship between the 

predicted and measured contaminant levels with the intercept at (0,0) if relative 

contaminant values (for example yield terms) were estimated the systematic prediction 

error would be eliminated, and there would be no need to correct the predicted data. 

The prediction technique is used for at-line contaminant estimation of process streams.
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4.3.4 Photometric dispersion analyser (PDA)

Figure 4.11 illustrates the behaviour of a batch flocculation run in terms of its cell 

debris yield levels (debris (OD650) remaining in solution after centrifugation as a fraction 

of debris in spun feed) and photometric dispersion analyser light intensity (PDA dc) 

readings. The mechanism of the PDA instrument was described in section 3.3. PDA 

measurements were taken of the PEI-homogenate mixture according to the continuous 

sampling system described in section 3.5. Figure 4.11 illustrates that the PDA profile 

follows a similar trend to that of the cell debris yield data. The addition of flocculant 

(PEI) to the feed homogenate promotes flocculation (aggregation) of cell debris 

particulate as described in section 1.6.3 and hence facilitates their removal during 

centrifugation. The formation of the floes also results in an increase in the PEI- 

homogenate mixture turbidity thereby decreasing the PDA light intensity (PDA dc) 

measurements. Although similar trends were found between the PDA measurements 

and debris yield data a direct correlation between these two profiles does not seem to 

exist. For example the minimum PDA value does not coincide with that of the debris 

yield profile. Further analysis of the PDA data’s ability to characterise the flocculation 

behaviour will be examined in chapter 5.

4.3.5 Error analysis of the at-line monitoring set-up and flocculation 

process
To determine the overall error of the at-line monitoring system an investigation into the 

variations in the performance of the micro-centrifuge, stopped flow analyser and both 

the diode-array spectrophotometer and single wavelength spectrophotometer was 

examined in terms of coefficient of variation.

The first step in the sampling sequence is the micro-centrifuge which was implemented 

for solid-liquid separation (section 3.3). Figure 4.12 illustrates OD650 yield values 

(yoDeso = OD65o(i) / O D 65o(0) ,  where i refers to sample i and 0 to the feed sample) 

against PEI volume fraction for a flocculation run using both the micro-centrifuge and a 

lab scale centrifuge for solid-liquid separation. Therefore a lower yield value means 

better removal of debris. The batch flocculation run used Baker’s yeast homogenate at 

a concentration of 125 g L'1 and a stock flocculant solution of 0.01 g L‘1 

polyehyleneimine (PEI). Optical density readings were taken in the same 

spectrophotometer (Pharmacia Ultro spec 2000). The Micro-centrifuge was operated 

under 4 Bar (approximately 55,000rpm (Chard 1997)) for 15 seconds, whilst the lab 

centrifuge was operated at 13,000rpm for 2 minutes. Dilutions prior to optical density 

readings were performed manually for the lab centrifuge and automatically for the
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micro-centrifuge by the stopped flow analyser (1:17 factor dilution). Above PEI volume 

fractions of 0.025 (v/v) no off-line dilutions were required. Figure 4.12, shows that the 

micro-centrifuge generally under performed in terms of OD650 yield, compared to the 

lab scale centrifuge. The optimum PEI dose in terms of cell debris removal (OD650 

reduction) fell in the region of 0.05-0.1 (v/v) PEI volume fraction for both the lab- 

centrifuge and the micro-centrifuge with OD650 yield values of 0.02 and 0.1. The under 

performance of the micro-centrifuge was studied by Turner (1993) and Chard (1997) 

and was argued to be due to the re-suspension of solids in the supernatant stream.

The coefficient of variation (CV = standard deviation/mean) for both lab and micro­

centrifuged flocculation samples were highest close to the optimum cell debris 

separation area, with a maximum of 22% at low OD65o yield values and lowest for PEI 

volume fraction of zero, i.e. homogenate feed. The average CV for the micro­

centrifuge and lab-scale centrifuge were 8.7 % and 8.9 %. It should be noted that the 

CV values also account for the variations due to dilutions and sample transportation.

Figure 4.13, shows the percent residual errors of at-line measurements of OD650, RNA, 

protein and ADFI of Baker’s yeast (125 g L'1) homogenate samples. The homogenate 

samples were first centrifuged in the micro-centrifuge, followed by sample dilution and 

reagent mixing by the stopped flow analyser before the at-line assay for ADH and at- 

line spectral scan predictions were taken. The percentage residual error and average 

percentage residual error are defined as:

%Residual e rro r = 100 (4.2)

1 k
%Average residual e rro r = 100— £

u - x .n i (4.3)
no  n

Where fj. is the mean value, x, is the actual value (ADH, RNA, debris, or protein) at 

sample i, and n is the total number of k  samples. Figure 4.13 illustrates that the at-line 

OD650 readings are associated with the percentage largest residual errors, then protein, 

RNA and ADH values follow. The average percentage residual errors for ADH, RNA, 

protein and OD650 were 2.2%, 1.9%, 3.4% and 4.5%, whilst the average coefficient of 

variation were estimated to be +2.7%, ±3.5%, +4.8% and +6.2%. Note protein, RNA 

and ADH levels may be assumed soluble in feed homogenate, hence any variations in 

the performance of the micro-centrifuge should not affect these components. The 

variations in at-line measurements of RNA, protein and ADH may be attributed directly

Page 96



Demonstration o f at-line techniques

to stopped flow analyser dilution and reagent mixing, contaminant prediction and ADH 

assaying inconsistencies. Cell debris at-line measurements however are highly 

dependent on the efficiency of the solid-liquid separation step and hence associated 

with the higher coefficient of variation (±6.2%).

Figures 4.14 and 4.15 illustrate results derived from error analysis on the Turnbull 

control system (TCS) and two gear pumps implemented in both the continuous and 

batch flocculation process. To determined the errors associated with each of the 

pumps a flowrate setpoint was set and measured flowrates were compared in terms of 

coefficient of variation. Figure 4.14 shows the measured against setpoint flowrate (in 

TCS units) for the feed and flocculant pump at relevant flowrates (low flocculant and 

higher feed flowrates). The correlation coefficient as expected is very high with R2 

values for both pumps of above 0.999 and slopes of 1. Although the standard 

deviation for all flowrates were relatively constant for each setpoint, the coefficient of 

variation (CV) was seen to be highest for lower flowrates especially for the flocculant 

pump, with the highest variation around the mean values of ± 6%. Figure 4.15, 

illustrates setpoint versus measured volume fractions for the variable gear pumps on 

the bench scale flocculation rig using water. The volume fraction XP1 was defined as 

Xpi = P i/(P i+P2), where Pi was the flocculant pump flowrate and P2 the homogenate 

feed pump flowrate. A linear fit between the actual and setpoint volume fraction data 

resulted in an R2 value of 0.999 and the average coefficient of variation was estimated 

to be ±2.5%. From figure 4.15 it is can be observed that the lower volume fraction 

setpoint incur the larger errors, which was due to the limitations on the minimum 

flowrate of flocculant pump.

Table 4.2, lists the individual apparatus errors and the overall at-line measurement 

variations in terms of RNA, protein OD650 and ADH. Two different overall estimates 

have been given. The first overall at-line monitoring error estimate (table 4.2, row 9) is 

an average value based on homogenate-PEI samples. This was achieved by adding 

the errors from the individual steps (row 4,5,6,7,8), according to the principal of serial 

error addition described in equation 4.4 (below). The micro-centrifuge average error 

was obtained from figure 4.12, whilst errors involved with sample dilution and reagent 

mixing was obtained through dilution experiments involving homogenate yeast and 

buffer. It was assumed that the errors due to the stopped flow analyser (dilution and 

reagent mixing) was constant throughout a flocculation run. The second overall at-line 

estimate error estimate (table 4.2, row 10) was based on repeat measurements of 

homogenised Baker’s yeast samples at a concentration of 125 g L~1 (figure 4.13). As

Page 97



Demonstration o f at-line techniques

seen from table 4.2 the overall coefficient of variation of at-line measurements based 

on yeast homogenate is considerably lower than that estimated from the addition of 

individual errors based on an average error throughout the flocculation profile. This 

was mainly due to the large variation associated with the micro-centrifuge (±8.4%). In 

a flocculation process a fraction of ADH, RNA and protein are rendered insoluble and 

hence effected by the variations in the solid-liquid separation step.

(m b )2 = (m )2 + (a b )2 (4.4)

Where A refers to error or coefficient of variation.

4.4 Conclusion
A linear relationship between cell debris levels and optical density readings at 650 nm 

were found enabling the estimation of debris contaminant through rapid 

spectrophotometric measurements. An existing off-line kinetics ADH assay has been 

successfully converted for at-line purposes and demonstrated to be reproducible for a 

shorter assay time through the use of a stopped flow analyser. Rapid UV-VIS spectral 

analysis through a multivariate analysis technique has allowed the prediction of RNA, 

cell debris and protein levels in yeast homogenate. Automatic sampling, solid-liquid 

separation, and sample preparation has been demonstrated enabling the at-line 

measurements of ADH, RNA, protein and cell debris. An overall error analysis of the 

at-line monitoring setup was estimated indicating that the largest errors were 

associated with the solid-liquid separation step through a micro-centrifuge (±8.4%). 

The overall at-line measurement errors for the contaminants and product were ±8.6% 

and ±8.9%.
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Figure 4.1. Correlation o f wet weight and dry weight with OD650 for homogenised 

Baker’s yeast. Homogenised Baker’s yeast at a concentration of 250 g (wet weight) L '1 

was diluted serially to create samples at 250 g L '1, 125 g L '1, 62.5 g L '1, 13.25 g L '1, 

15.63 g L '\  7.82 g L '\  and 3.91 g L '1. Dry weight measurements were taken o f 1 mL 

homogenate samples and dried in an oven at 100 °C for 48 h. Linear fits (least squares 

fit) are shown forced through (0,0) and weighted for variance.

(/I) [Wet weight] = 6.85 x OD650 R2 = 0.99

( O) [Dry weight] = 0.653 x OD650 R2 = 0.988
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Figure 4.2. Wet weight dry weight correlation for homogenised Baker’s yeast. . 

Homogenised Baker’s yeast at a concentration o f 250 g (wet weight) L '1 was diluted 

serially to create samples at 250 g L '1, 125 g L '1, 62.5 g L '1, 13.25 g L '1, 15.63 g L '1, 

7.82 g L '1, and 3.91 g L 1. Dry weight measurements were taken o f 1 mL homogenate 

samples and dried in an oven at 100°C for 48 h. The data points are derived from 

combining the measurements from figure 4.1. Linear fits (weighted least squares) of 

both the wet weight and the dry weight data against OD650 have been plotted, and the 

average correlation relating these two variables to each other is:

[Dry weight] = 0.0953 x [Wet weight]
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Figure 4.3. At-line and off-line ADH measurements o f pure ADH and Baker’s yeast 

homogenate samples.

Plot A. At-line measurements versus off-line ADH assays for pure Sigma-ADH 

samples. Approximately 3300 U mL'1 of Sigma ADH was diluted 1 (pH 6.5, ionic 

strength 100mM (KH2P 0 4)) 10, 20, 50, 100 and 200-fold to make up five samples. 

Both off-line and at-line assays were performed in the same spectrophotometer 

(Pharmacia, Ultro spec 2000). The linear fit (weighted least squares fit) between at-line 

and off-line measurements (in triplicate) resulted in a coefficient o f correlation o f 0.999. 

Plot B. At-line ADH measurements o f homogenised Baker’s yeast samples. 

Homogenised Baker’s yeast at a concentration o f 250 g (wet weight) L '1 (pH 6.5, ionic 

strength 100 mM (KH2P 0 4)) was diluted serially (1, 2, 4, 8, 16-fold dilutions) to form 

samples at 250 g L '1, 125 g L '1, 62.5 g L '1, 31.25 g L '1, 15.63 g L '1. The linear fit 

(weighted least squares fit) resulted in an R2 value o f 0.999.

The at-line monitoring set-up adopted a 1 mm pathlength flowcell, a 10s assay time 

and automatic sample dilution, reagent mixing and transportation to spectrophotometer 

by a stopped flow analyser (SFA).
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Figure 4.4. UV-VIS spectral scans due to cell debris, RNA and BSA concentration 

changes. Washed cell debris, RNA and BSA were added to phosphate buffer (100mM 

(KH2P 0 4), pH 6.5). Plot A illustrates the spectral scan (indicating by arrow) due to an 

increase in cell debris resulting in OD650 levels o f 0 Au, 2.77 Au to 5.5 Au whilst 

keeping BSA and RNA levels at zero. Plot B, shows the spectral scan due to an 

increase in RNA levels from 0 mg m L'1, 2.5 mg mL'1 to 5 mg mL'1 whilst keeping cell 

debris and BSA levels at zero. Plot C, shows the spectral scan due to an increase in 

BSA levels 0 mg m L'1, 4 mg mL’1, 12 mg m L'1 to 20 mg mL'1 whilst keeping cell debris 

and RNA levels at zero. The above spectral scans were taken after diluting samples 

by a factor o f 16 with phosphate buffer and introduced to the diode array 

spectrophotometer via a 1mm pathlength flowcell.
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Sample
Number

Sample
composition

[1mL,1mL, 1mL]

Sample
number

Sample
composition

[1mL,1mL, 1mL]

Sample
number

Sample
composition

[1mL,1mL, 1mL]

1 AXM 13 BXM 25 CXM
2 AXN 14 BXN 26 CXN
3 AXO 15 BXO 27 CXO
4 AXP 16 BXP 28 CXP
5 AYM 17 BYM 29 CYM
6 AYN 18 BYN 30 CYN
7 AYO 19 BYO 31 CYO
8 AYP 20 BYP 32 CYP
9 AZM 21 BZM 33 CZM
10 AZN 22 BZN 34 CZN
11 AZO 23 BZO 35 CZO
12 AZP 24 BZP 36 CZP

VWashed debris RNA BSA

C = 1.03 Au at 650 nm &

0.054 mg mL'1 of protein 
B = 0.52 Au at 650 nm &

0.032 mg mL'1 of protein 
A = Buffer

Z = 0.938 mg mL'1

Y = 0.469 mg mL'1 

X = Buffer

P = 3.75 mg mL'1

O = 2.25 mg mL'1

N = 0.75 mg mL'1 

M = Buffer

Table 4.1. Factorial setup for UV-VIS spectral scan calibration using contaminant 

standards. Buffer refers to 100 mM phosphate buffer at 6.5 pH and BSA refers to 

bovine serum albumin protein. The sample compositions had a total volume of 3 mL 

(1mL of each contaminant). Washed cell debris and RNA were varied three way, whilst 

BSA protein was varied 4 way to form the full factorial experiment with 36 samples. 

Washed cell debris had 0.054 mg mL'1 o f protein whilst it was assumed that the RNA 

levels were negligible.
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Figure 4.5. Scores plot o f UV-VIS spectral scan calibration data in terms o f principle 

components 1 and 2. The numbers on the plot refer to the spectral scan taken o f the 

particular sample number in the factorial experiment (table 4.1). Sample clusters 

(samples which have a geometrically close proximity in a scores plot) have been 

circled. Trends due to RNA, BSA and cell debris variations are indicated by the arrows 

on the plot.
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Figure 4.6. PRESS (prediction residual error sum of squares) versus the number o f 

principal components (factors) for the calibration data. The above plot shows that the 

optimum number o f components is 5-6.
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Figure 4.7. Predicted OD650, RNA and BSA data against actual values for the 

calibration samples. Each of the above plots consists o f 36 data points where the 

actual readings are listed in table 4.1. The results have coefficients o f determination o f 

0.999, 0.997 and 0.986 for OD650, RNA and BSA. The PLS correlation is based on 6 

principal components.
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F igure 4.8. Predicted and actual OD65o, RNA and BSA data plotted in terms of 

calibration sample number. The solid lines refer to the actual ODe50, RNA and BSA 

levels. The results have coefficients o f determination o f 0.999, 0.997 and 0.986 for 

ODeso, RNA and BSA. The PLS correlation is based on 6 principle components.
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Figure 4.9. Measured and predicted protein and OD650 data for spun Baker’s yeast 

homogenate samples. Homogenate Baker’s yeast at a concentration o f 125 g (wet 

weight) L '1 was diluted with phosphate buffer to create samples at 62.5 g L '1, 31.25 g L' 

\  15.63 g L '1, 7.82 g L '1, and 3.91 g L '1. The samples were spun at 13,000 rpm for 5 

minutes in a laboratory centrifuge prior to off-line and prediction analysis. The data 

points and error bars are derived from the mean and standard deviation o f triplicate 

measurements for both the measured and predicted data. . The predicted contaminant 

levels were based on the PLS calibration model using 6 principal components.

Plot (A) and (B). Predicted and measured data in terms o f sample number.

Plot (C) and (D). Predicted against measured data. Linear fits were forced through 

(0,0) and the equation and coefficients o f determination (R2) are listed below:

[Protein_measured] = [Protein_predicted]x 0.71 R2 = 0.995

[Debris_measured] = [Debris_predicted] x 1.1 R2 = 0.991
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Figure 4.10. Measured and predicted RNA data o f flocculation samples.

Plot A. Predicted and measured RNA data for a flocculation run. Baker’s yeast 

homogenate at a concentration o f 125 g (wet weight) L '1 (pH 6.5 and ionic strength o f 

50mM (KH2P 0 4)) was flocculated with a stock polyethyleneimine (PEI) solution of 0.01 

g L '1 (pH 6.5 and ionic strength o f 50 mM). Homogenate with PEI volume fractions o f 

0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, and 0.5 (v/v) were spun for 5 minutes at 13,000 rpm in 

a laboratory centrifuge. The data points and error bars are derived from the mean and 

standard deviation o f triplicate measurements for both the measured and predicted 

data. The predicted contaminant levels were based on the PLS calibration model using 

6 principal components.

Plot B. Predicted against measured RNA data o f flocculation samples. The linear fit 

was forced through (0,0) and the equation and coefficients o f determination (R2) are 

listed below:

[RNA_measured] = [RNA_predicted] x 0.961 R2 = 0.991
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Figure 4.11. Behaviour o f PDA data during a batch flocculation operation.

Yeast homogenate (125 g (wet weight) L '1) was flocculated with PEI (0.01 g L '1). Both 

solutions were at pH 6.5 and ionic strength o f 50 mM (KH2P 0 4).

PEI was added incrementally to a batch tank containing the yeast homogenate. 

Optical density readings at I  -  650 nm (OD650) o f spun samples (13,000 rpm, 5 min in 

a lab centrifuge) in triplicates. The OD650 data is plotted as a yield value 

(OD650(i)/OD650(0)), where i and 0 refer to sample number and feed.

PDA (dc) data were taken o f the homogenate-PEI mixture through a continuous 

sample loop described in section 3.5.
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Figure 4.12. OD650 yield values against PEI volume fraction for a flocculation run 

using both the micro-centrifuge and a lab scale centrifuge for solid-liquid separation. 

The batch flocculation run used 125 g (wet weight) L '1 Baker’s yeast homogenate and a 

stock flocculant solution o f 0.01 g L '1 PEI. Both solutions were at pH 6.5 and ionic 

strength o f 50 mM (KH2P 0 4). Optical density readings were taken in the same 

spectrophotometer (Pharmacia Ultro spec 2000). The Micro-centrifuge was operated 

at 4 Bar(g) (approximately 55,000 rpm (Chard 1997)) for 15 seconds, whilst the lab 

centrifuge was operated at 13,000 rpm for 2 minutes. Dilutions prior to optical density 

readings were performed manually for the lab centrifuge and automatically for the 

micro-centrifuge by the stopped flow analyser. Above PEI volume fractions o f 0.025 

(v/v) no off-line dilutions were required. The average coefficient o f variation for the lab 

and micro centrifuge (and dilution) were ±8.9% and ±8.7%.
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Figure 4.13. Percent residual errors o f at-line measurements o f OD650, RNA, protein 

and ADH o f Baker’s yeast homogenate (125 g (wet weight) L '1, pH 6.5, 50 mM  

(KH2P 0 4)). The homogenate samples were first centrifuged in the micro-centrifuge, 

followed by sample dilution and reagent mixing by the stopped flow analyser before the 

at-line assay (for ADH) and at-line spectral scan prediction were taken. The f i  term on 

the plot refers to the mean at-line measurement value whilst x, refers to the at-line 

measurement of sample i. The average percent residual error of at-line measurement 

for OD650, RNA, protein and ADH were 4.5%, 1.9%, 3.4% and 2.2% and the average 

coefficient o f variation were ±6.2%, ±3.5%, ±4.8% and ±2.6%.
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Figure 4.14. Measured flowrates and coefficient o f variation against setpoint flowrates 

for flocculant (P1) and feed (P2) gear pumps for the bench scale flocculation rig using 

water. The coefficient o f variation (CV) was defined as the standard deviation over the 

mean flowrate reading, i.e. a percentage variation around the mean value. The 

flowrates are defined in TCS units. Linear fits resulted in coefficients o f determination 

of 0.999 for both pumps and an average CV was estimated to be ±2% for the flocculant 

pump and ±0.7% for the feed pump.
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Figure 4.15. Setpoint versus actual volume fractions for the variable gear pumps on 

the bench scale flocculation rig using water. The volume fraction XP1 was defined as

Xpi = — ——
Pl + P2

Where P1 and P2 refer to the flocculant pump flowrate and feed pump flowrate. A linear 

fit between the actual and setpoint volume fraction data resulted in an R2 value of 

0.999 and the average coefficient o f variation was estimated to be ±2.5%.
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Flow

rates
ADH OD650 RNA Protein

From

Figure
1 Flocculant Pump ±2.5% 4.14

2 Feed Pump ±0.7% 4.14

3 Volume fraction ±2.6% 4.15

4 Micro-centrifuge ±8.4% ±8.4% ±8.4% ±8.4% 4.12

5 SFA_P! ±2% ±2% ±2% ±2%

6 sfa_p3 ±2%

7 ADH-Spec. ±0.5*

8 Diode-array Spec. ±1%* ±1%* ±1%*

9 At-line measurements 

based on average 

flocculation conditions

±8.9% ±8.7% ±8.7% ±8.7%

10 At-line measurements 

based on feed
±2.7% ±6.2% ±3.5% ±4.8% 4.13

Table 4.2. Overall analysis o f at-line monitoring setup in terms of coefficient o f 

variation. The figures in bold refer to measured variations whilst others are derived 

values from the principle o f serial error addition, i.e. (AAB)2 = (AA)2 +(AB)2, where A 

refers to error or coefficient o f variation. Results in row 10 are based on yeast 

homogenate samples at a concentration o f 125 g (wet weight) L '1 (pH 6.5, 50 mM  

(KH2P 0 4)). Results in row 9 are based on the addition o f serial errors for average 

variations during flocculation conditions described in figure 4.14. The last column 

indicates the figure from which the appropriate data has been taken. SFA_P1 and 

SFA_P2 refer to the first and second peristaltic pump on the stopped flow analyser for 

sample dilution and reagent mixing prior to assay analysis. The coefficient o f variation 

for SFA_P1 and SFA_P2 where estimated through dilution tests using yeast 

homogenate and phosphate buffer. During the dilution for contaminant predictions only 

SFA-Pi was used (chapter 3).

• Errors obtained from instrument manuals.
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Chapter 5

Rapid characterisation of the batch 

flocculation process

5.1 Summary
This chapter will present real time measurements of product and key contaminants for 

eight batch flocculation processes. An investigation into the use of three mathematical 

descriptions to characterise the flocculation process will be performed and how such 

characterisation can enable rapid definition for process analysis will be demonstrated.

5.2 Introduction
Flocculation behaviour is affected by several environmental conditions such as pH, 

ionic strength (salt concentration), flocculant dose and the concentration of flocculable 

components in the feed. This chapter will present at-line data of both product (alcohol 

dehydrogenate) and key contaminants (RNA, cell debris and protein) for several batch 

flocculation operations carried out under different feed volumes, feed and flocculant pH 

and ionic strength, flocculant stock solution concentration and flocculant dose rate. 

The batch processes were monitored using the at-line setup described in chapter 3.

The flocculation profiles of product and key contaminants will be characterised through 

three mathematical expressions, discussed in section 2.3. Such process modelling 

allows the design engineer to analyse the performance of a given flocculation run in 

terms of a few key factors, namely the model parameters. Furthermore the application 

of real time process characterisation enables the possibility of robust process control 

for process optimisation and reproducibility. Which mathematical description to apply 

for real time analysis will be discussed and the most appropriate model selected.

5.3 Mathematical characterisation of the flocculation process
Three mathematical equations will be implemented in the characterisation of the batch 

flocculation process. The mathematical descriptions are discussed in detail in chapter 

2 and are summarised below in table 5.1. The flocculation models only have one 

variable namely the flocculant dose level. Input variables affecting floe removal
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through centrifugation are not represented as a micro-centrifuge was applied for solid- 

liquid separation which is assumed ideal due to its high efficiency, i.e. all solids formed 

will be separated.

4-parameter equation

7 + | M l
E  I b

m

n

3(1 )-parameter equation

3(2)-parameter equation

E_

Eo

I

1 +

A  = i - A
Eo

r [ P E l \  

k a *  ,

1 -e x p

+ c

[P E I]
B

[P E I]

Table 5.1. Mathematical representation o f flocculation profile. The model parameters 

a, b, c, n, m, a*, n*, A, B  and C are a function o f pH, ionic strength, feed and PEI stock 

solution conditions. The flocculant dose level is [P E I]. The parameters E  and E „ refer 

to spun flocculated samples and spun feed, hence the ratio of these two factors (E /E0) 

is a performance indicator, i.e. the flocculation yield. All three models are non-linear 

with respect to [PEI]. For more detail on the above mathematical descriptions refer to 

chapter 2.

Model parameter identification will be performed using the Levenberg-Marquardt non­

linear least squares technique on the at-line data for both product and key 

contaminants. Graphical representation of the model fits will be presented for the 

batch operations and the “goodness of fit” of the three flocculation models will be 

determined through a coefficient of determination (R2)\

R 2 = 1 -
e i (5.1)

where is the actual flocculation yield at a flocculant dose x „ f(xj) is the flocculation 

yield determined through the flocculation model and y  is the mean flocculation yield for 

all levels of flocculant concentrations. The second term in equation 5.1 gives us an 

indication of how the model fit compares to the mean flocculation yield. If the model fit 

is good the numerator will approach zero due to small variation between model
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prediction and actual levels, resulting in an R2 term tending to unity. However if the 

model fit is poor the variation between the actual and both the predicted and mean 

yield values would be similar resulting in R2 values close to zero. All in all the R2 term 

gives an indication of the fraction of data which is explained by the model.

5.4 Mass balancing of the batch flocculation process
A mass balance on flocculant and homogenate concentrations for each sampling step 

was required to determine flocculant dose levels. The below equations describe the 

flocculant volume fractions in terms of homogenate, flocculant, sample volume and PEI 

dose flow-rate. The density of both homogenate and flocculant is assumed to be 

similar.

where xPEI is the flocculant volume fraction, VH, VPEI, Vs, VHS and VPEIS are the volume of 

homogenate in the process vessel, flocculant in the process vessel, volume of sample, 

homogenate in sample and flocculant in sample, FPEI is the dose flow-rate of flocculant, 

i is time, and i refers to the sampling step. For start conditions; VH(0) = start 

homogenate volume and VPEI(0) = 0.

5.5 Results
The results of eight batch runs will be presented in terms of direct measurements of 

flocculant and homogenate volumes, photometric dispersion analyser light intensity 

readings (referred to as PDA dc levels for the rest of this chpater) and at-line 

measurements of product and contaminants. Table 5.2 summarises the operating 

conditions applied for each batch run. Mathematical characterisation of the batch 

operations will be performed using the three flocculation models listed in table 5.1. The 

first part of this section will present the results from Batch Run1 in detail. The second 

part will present an overview of batch runs 2 to 8, underlining the main points of

x VpEi(i - 1)
(5.2)

Vhs(i) = (1 X  PEI (5.3)

Vpeis (i) = xPEI Vs (5.4)

(5.5)

Vpei (/) = Vpei (i - l ) ~  Vpeis(i) + Fpei [/(z) -  t{i -  7)] (5.6)
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interest. A qualitative discussion on how the environmental conditions such as pH, 

ionic strength and PEI concentration as well as batch operational variables such as 

feed volume and dose rate effect the flocculation profile will be presented. The 

efficiency of the three models in fitting the at-line data will be evaluated by comparing 

their coefficient of determination. Finally the batch runs will be compared to each other 

quantitatively, through the implementation of model parameters and the influence of 

start conditions on batch behaviour will be discussed.

Batch Run 1 2 3 4 5 6 7 8

Homogenate start 

volume (mL)
500 700 700 500 500 500 700 700

Homogenate pH 6.5 7.0 5.5 6.2 6.2 5.5 6.0 5.5

Homogenate ionic 

strength (mM)
50 50 50 50 50 50 20 20

Start Cell debris (Au) 3.1 2.4 2.3 3.3 3.5 3.7 3.2 3.2

Start Protein (mg mL"1) 13.8 11.4 12.1 13.2 14.2 11.2 14.8 13.1

Start RNA (mg mL"1) 3.4 2.8 2.2 3.7 3.5 3.0 3.3 3.4

Start ADH (U mL"1) 114 111 83 128 124 118 134 137

PEI dose rate (mL min"1) 2.82 2.82 2.82 2.82 2.82 2.82 Fpei Fpei

Stock solution of PEI 

(mg mL"1)
10 10 10 5 5 5 10 10

PEI pH 6.5 7.0 5.5 5.9 5.9 5.0 6.0 5.5

PEI ionic strength (mM) 50 50 50 50 50 50 20 20

Max PEI volume fraction 

(mL mL'1)
0.46 0.21 0.25 0.27 0.23 0.30 0.16 0.15

Table 5.2. Overview of eight batch flocculation runs and their operating conditions. 

Start protein, RNA, cell debris and ADH refer to the concentration o f contaminant and 

ADH in the spun feed homogenate prior to PEI dosing. FPEi refers to a variable 

flocculant dose rate for batch runs 7 & 8.
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5.5.1 Batch run 1

A batch volume of 500 mL of yeast homogenate at a concentration of 125 g L'1, pH 6.5 

and ionic strength of 50 mM (KH2P 0 4) was dosed at a flow-rate of 2.82 mL min'1, with a 

polyethelyneimine (PEI) stock solution of 10 mg mL"1, pH 6.5 and ionic strength of 

50mM (KH2P 04). A volume of 5.6 mL was sampled from the batch tank every 130-140 

seconds. The process was monitored using the set-up described in section 3.5.

Figure 5.1 on page 130, illustrates the PDA dc data (plot A) and PEI, homogenate, 

total volumes, and the PEI volume fraction (xPEI) (plot B). Due to the similar volumes in 

PEI dosing and sampling small variations in the total volume were observed. The 

discrete sampling steps taken every 130-140 seconds resulted in the step changes 

seen in the total and homogenate volume profiles. A similar pattern is seen in the PEI 

volume but more pronounced during higher volume fraction levels. The PDA dc values 

decreased with increasing PEI dose, due to the flocculation of particulates, hence 

increase in turbidity and decrease in light intensity. The PDA dc profile may be divided 

into three regions. The initial steep flocculation stage (a) where initial addition of PEI 

had large influence on the level of flocculation. The subsequent levelling off region (b) 

which occurred after approximately 13 minutes (xPE1 = 0.07 mL mL"1) where an increase 

in the PEI dose had less effect on the level of flocculation and lastly the re-suspension 

phase (c) where the PDA dc started to increase.

The results obtained from the at-line monitoring setup of product, alcohol- 

dehydrogenate (ADH), key contaminants, protein, RNA, cell debris and PDA (dc) levels 

are shown in Figures 5.2 and 5.3. Figure 5.2 illustrates the flocculation profiles (53 

data points for each profile) in terms of PEI volume fractions (PEI volume/Total 

volume), whilst figure 5.3 shows the batch profiles with respect to PEI weight ratios 

(PEI weight/Homogenate weight). As one of the objectives in this chapter is to discuss 

the rapid monitoring and characterisation of the process, real time information will be 

applied to represent the flocculation data. Due to the possible fluctuations in 

homogenate conditions, the only truly known and hence controllable input variable for 

the batch operations is the volume of flocculant, hence volume fraction terms will be 

used when characterising the flocculation runs in terms of the models described earlier.

The apparent optimum operating window for good recovery of product and removal of 

key contaminants is a PEI volume fraction (xPEI) around 0.1 mL mL'1 and a weight ratio 

(w/./://h )  of 0.01 mg mg"1. An excess PEI dose may lead to the removal of product, and

Page 120



Rapid characterisation o f the batch flocculation process

eventually the re-suspension of contaminants and product. Over dosing will also have 

an effect on the operation of the subsequent downstream processes hence it is 

important to control to the minimum flocculant dose when attempting to run the 

flocculation process under optimum conditions. The cell debris data increased initially 

which can be due to the initial flocculation/precipitation of components which result in 

too small a floe size to be removed in the solid-liquid separation step.

Although the PDA dc data gives us some indication of the flocculation performance, the 

behaviour of the individual components are not represented in this information. If the 

flocculant dose was terminated at the minimum PDA dc point (xPEJ -  0.2 mL mL"1) over 

dosing would occur leading to the loss of product. The transition step from the initial 

steep PDA dc flocculation stage (a) to the less steep region (b) seems to contain 

information on when to terminate the dosing of flocculant. It should be noted that 

product and contaminant levels were measured post microcentrifuge separation, whilst 

PDA dc values were taken prior to this step. Optimum flocculation and subsequent 

separation conditions need not be similar to those which result in optimum floe size, as 

floes will be separated in the microcentrifuge when they have reached a critical size 

rather than optimum size. Hence we should expect that optimum flocculation 

conditions after solid-liquid separation to occur before the minimum point in the PDA dc 

profile (if the PDA dc is giving us a true indication of floe size).

Figures 5.4, 5.5 and 5.6 illustrate the at-line data in terms of yield factors and their 

respective profile fits using the three models in combination with a non-linear least 

squares (NLLS) fitting technique. The yield terms refer to spun flocculation samples as 

a fraction of spun feed. Optimum operating conditions resulted in the removal of 

approximately 45% of protein, 80% of RNA and 90% of cell debris. It should be noted 

that higher cell debris removal levels can be expected, as the above at-line yield data 

are a reflection of the re-suspension and contamination problem associated with the 

microcentrifuge (see chapter 3 and 4).

The estimated model parameters and coefficient of determination (i?2) for each of the 

flocculation models (see table 5.1) are listed below the figures. As the empirical 3(2)- 

parameter model does not allow for the re-suspension phenomena due to excess PEI 

levels (discussed in chapter 2), only data up to a volume fraction of 0.3 mL mL'1 was 

applied. The “goodness of fit” of the three models can be observed visually or by 

comparing the R2 values for each contaminant and product profile. Such a comparison 

indicated that the 3(2)-parameter model was more appropriate at fitting the real time 

data. However the re-suspension phenomena was not accounted for. By fitting the at-
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line monitored data with a mathematical description one can reduce the amount of 

information required to characterise a given flocculation run, i.e. the 3(2)-parameter 

model allowed the specification of the flocculation process with three parameters. By 

relating the operating conditions to the model parameters it enabled an easy and 

efficient manner to evaluate the performance of the flocculation process. This analysis 

technique will be discussed in more detail later.

5.5.2 Batch runs 2 to 8

Figures 5.7 to 5.27 illustrate the at-line data of both product and key contaminants as 

well as the model fits using the 3(2)-parameter and 4-parameter models for the batch 

runs 2 to 8. Model fits using the 3(1)-parameter model will not be shown, although a 

summary of its effectiveness to predict the flocculation data will be given later in table 

5.4. This section will discuss the behaviour of the flocculation runs in terms of different 

environmental (pH, ionic strength) and operating conditions (feed volume, PEI 

concentration).

Figure 5.7, illustrates the results obtained from the rapid analysis of ADH, protein, 

RNA, cell debris and PDA dc levels for Batch Run2. It can be observed that the ADH 

activity increased with increasing flocculant levels. It is well known that the activity of 

an enzyme is dependent on the environment in which it is in. Factors such as 

temperature, pH, ionic strength, contaminants/inhibitors, activating agents, etc can 

influence the activity of an enzyme. Flocculation with PEI removes a large number of 

contaminants (nucleic acids, protein, cell debris, lipids), alters the balance of ions due 

to its anionic conformation, might remove anti-activating agents and can flocculate and 

remove ADH. The activation of ADH due to PEI is therefore a complex mechanism, 

function of several interactive factors. Activation of ADH has also been observed in the 

presence of ammonium sulphate (Holwill et al. 1997, Smith 1997) and both authors 

concluded that the mechanism behind the activation was unclear. The activation 

phenomenon is observed for most of the batch runs.

The start feed (homogenate) volume for batch runs 2 (figures 5.7 to 5.9) and 3 

(figures 5.10 to 5.12) was 700 mL compared to the 500 mL volume used during batch 

Run1. The larger start volume allowed for a higher resolution of data points during the 

initial stages of the flocculation profiles, due to a slower increase in the flocculant 

volume fraction. During the operation of batch runs 2 and 3, approximately 12 

measurements were acquired between a PEI volume fraction of 0 -  0.1 mL mL"1, 

compared to 9 data points during Run1. The resolution of data points in terms of
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flocculant volume fraction is a function of the start feed volume, sampling frequency 

and PEI dose rate. To increase the resolution of the flocculation profiles, one may 

decide to increase the feed volume, sampling frequency or reduce the flocculant dose 

rate.

The behaviour of a flocculation profiles is affected by several factors one of which is 

pH. The lower the pH, the higher the net charge making PEI (a cationic flocculant) 

more effective in flocculating negatively charged components (Horn 1980, Cordes et al. 

1990). Figure 5.10, illustrates the characterisation of the product and contaminant 

levels in terms of PEI volume fraction for Batch Run3. The effect of pH change on the 

behaviour on the flocculation profiles is clearly evident by comparing batch runs 1 and 

3 (figures 5.2 & 5.10 or figures 5.3 & 5.11). The apparent optimum operating window 

for good removal of contaminants for Batch Run3 was a PEI volume fraction {xPE]) of 

0.05 mL ml_"1, whilst for batch Run1 this was 0.1 mL mL'1. Hence the apparent 

flocculant dose optimum has halved as a result of a decrease in pH from 6.5 to 5.5. 

Although a pH increase (pH 6.5 to 7) was seen between batch runs 1 and 2 the 

apparent optimum flocculant volume fraction still decreased from xrEI = 0.1 mL mL'1 to 

0.08 mL mL'1. It should be noted that although all other start conditions remained 

similar (the start volume only effects the mass balancing of the process and not the 

flocculation mechanism), the composition of the feed in terms of cell debris, RNA and 

protein concentrations where different for the two batch runs as indicated in table 5.2. 

The contaminant levels in Batch Run1 were higher than those of Batch Run2 hence a 

larger amount of PEI dose would have been required.

Figures 5.13 to 5.15 illustrate the at-line data in terms of flocculant volume fraction for 

Batch Run4. The stock solution of PEI was made to 5 mg mL'1 for this run, compared 

to 10 mg mL'1 for batch runs 1, 2, 3. The 2-fold dilution in PEI stock solution has 

allowed for a higher resolution of data points, not in terms of PEI volume fraction but 

with respect to the batch run’s apparent optimum PEI dose. For batch Run1 (figure 

5.2) 8 data points (per profile) were acquired up to the apparent optimum flocculant 

dose of 0.1 mL mL'1, whilst for Batch Run4 (figure 5.13) 14 data sets were obtained 

before the apparent flocculant dose optimum (0.16 mL mL'1) was reached. Since PEI 

flocculates contaminants by directly interacting or essentially titrating anionic charged 

groups, it was expected that the amount of PEI required to flocculate a given 

percentage of total contaminants depended upon the ratio of flocculable components to 

flocculant (Jendrisak 1987). As the PEI stock solution was diluted 2-fold, 

approximately double as much PEI was required to obtain similar flocculation 

conditions to that of batch Run1. Note that a pH change (Batch Run4 was run under
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pH 6.2) was also introduced making the direct comparison more difficult. An increase in 

the feed volume (discussed earlier) enables a slower increase in PEI volume fraction 

due to simple mass balancing and the position of the optimum flocculant dose does not 

change in terms of flocculant volume fraction. When diluting the PEI stock solution a 

shift in the flocculation profiles occurs, pushing the flocculation optimum to higher 

volume fraction levels. Although the resolution of data points in terms of PEI volume 

fraction remains the same, due to the increase in the optimum flocculant dose more 

measurements could be acquired in the critical region of the flocculation profiles. Batch 

runs 5 and 6 (figures 5.16 to 5.21), illustrate flocculation profiles also dosed with a 5 mg 

mL'1 concentration PEI stock solutions. Batch Run5 behaved similarly to batch Run4, 

however Run6 due to its lower pH conditions (pH = 5) although operating with a diluted 

PEI stock solution had flocculation profiles similar to Batch R u n ! The lower pH 

conditions made PEI more effective in flocculating the contaminants, shifting the 

profiles resulting in an apparent optimum PEI volume fraction of 0.1 mL mL"1.

Figures 5.22 to 5.27 illustrate at-line data and model fits for batch runs 7 and 8. 

During these two operations two additional input variables have been changed, namely 

the flocculant dose rate and the batch ionic strength. Both batch operations started 

with a feed volume of 700 mL and an initial linear decreasing dose rate FPEIt where FPEI 

= F„ -  at, and F„ = 10 mL min'1, a  = 0.01 mL min'2 and / was time in minutes. When 

the dose rate had reached 0 mL min'1, a constant PEI feed rate was introduced at 2.82 

mL min'1. The linear decreasing dose rate resulted in a decrease in the number of data 

points acquired per volume fraction step in the first part of the flocculation profile, i.e. a 

reduction in profile resolution. During the operation of batch Run8 only 4 

measurements were acquired between a PEI volume fraction of 0 - 0.05 mL mL'1, 

compared to 7 data points during the batch runs 2 and 3.

The effect of ionic strength on the flocculation profiles is best seen by comparing batch 

runs 3 (figures 5.10 to 5.12) and 8 (figures 5.25 to 5.27). Both batch operations were 

run under similar pH and PEI stock solution conditions, however the ionic strength 

during Batch Run8 was 20 mM compared to 50 mM for Run3. From figure 5.25 to 5.27 

it can be observed that during batch Run8 ADH was removed form solution at PEI 

volume fraction above 0.1 mL mL'1. Another effect in the reduction of batch ionic 

strength is the shift in flocculation profiles. This phenomenon is difficult to see from 

batch runs 3 and 8 (also runs 5 and 7), however is more clearly observed when 

comparing the inflection point for each set of batch flocculation profiles. Such plots are 

illustrated in figures 5.29 to 5.31 and are discussed later. Lowering the ionic strength 

reduces the interaction of phosphate with PEI and the screening of the contaminants
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and product, making PEI more effective as a flocculating agent (Bulmer et al. 1994). 

Bulmer also claims that the total level of cell debris remaining in solution will be 

reduced with lower ionic strength.

Deliberate pH changes were introduced during batch runs 5, 7 and 8. During the batch 

operation of Run5, a pH change from pH 6.5 to pH 5.7 was made through the titration 

of 10M HCL, resulting in a slight decrease in the ADH remaining in solution, see figures 

5.16. The deliberate pH changes performed on batch runs 7 (pH 5.9 to pH 6.2, 

addition of 10 NaOH) and 8 (pH 5.5 to pH 6.6 addition of 10 NaOH) resulted in an 

increase in pH levels, which was an attempt to re-suspend already flocculated ADH 

enzyme. The changes in pH in the final stages of these batch runs saw little change in 

contaminant or product removal, indicating that the complexes formed between PEI 

and the various compounds are relatively strong compared to the shear forces within 

the batch tank.

5.5.3 Flocculation process characterisation

Tables 5.3, 5.4 and 5.5 show an overview of the eight batch runs in terms of pH, ionic 

strength, start contaminant and product concentrations and the estimated model 

parameters for the three mathematical flocculation descriptions discussed earlier. The 

coefficient of determination for each batch and flocculation profile is listed indicating the 

effectiveness of the three models in fitting the at-line data. Several different minimum 

coefficient of determination values were set and percentage failures of the individual 

models to achieve this fitting criterion was plotted, figure 5.28. It can clearly be seen 

that the 3(1)-parameter model was the least effective in fitting the at-line data, followed 

by the 4-parameter and 3(2)-parameter model. Although the 3(2)-parameter model 

seems to be the most effective in describing the flocculation behaviour, the 4- 

parameter model has the ability to describe the re-suspension phenomenon which 

occurs at high floe dosages and therefore should be applied if a total flocculation profile 

is required. For real time process optimisation and control the 3(2)-parameter model is 

most appropriate due to its efficient fitting of at-line data in the area of interest and the 

fewer number of model parameters making real time parameter estimation simpler and 

faster.

Characterisation of a process through a mathematical description enables an efficient 

and simple method to analyse the performance of the operation in terms of a few 

factors (model parameters) quantitatively. Figures 5.29, 5.30 and 5.31 show how pH 

and initial contaminant concentrations in the feed influenced the maximum contaminant
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removal level (parameters) and the point of inflection (~ parameter B, when C > 3.5) for 

the contaminant profiles. In order to compare batch runs 4, 5 and 6 with the rest of the 

batch runs, the inflection point for these operations were divided by a factor 2 to 

account for the 2-fold dilution in their PEI stock solution.

As illustrated from the figures there seems to be a strong correlation between the pH 

levels and the point of inflection for all three contaminants. Low pH levels facilitates 

contaminant flocculation and therefore reduces the point of profile inflection. Batch 

Run2 however does not seem to follow this concept. Lower feed concentrations of 

contaminants during this run may have compensated for the higher pH level. The 

maximum percentage removal of contaminants does not appear to be influenced by pH 

or feed contaminant levels. It should be noted that batch runs 7 and 8 were carried out 

at lower ionic strength levels, which appears to result in higher maximum removal 

levels for all the contaminants. The influence of ionic strength on the final level of 

contaminant removal was also observed by Bulmer et al. (1994). The position of the 

inflection points for batch runs 7 and 8 occurred at lower PEI volume fraction levels 

compared to batch runs 5 and 3, which had similar operating conditions apart from 

higher ionic strength levels.

Figure 5.32, illustrates the maximum fraction of contaminant removed (plot A) and the 

point of profile inflection for the eight batch runs. Cell debris, RNA and protein removal 

levels lie in the range of 82-91%, 57-82% and 47-66%. Plot B illustrates the inflection 

point of the contaminant profiles, showing that for all the batch runs RNA, protein and 

then cell debris is flocculated / titrated out of the homogenate solution in that order. 

The variation in the inflection point is small at low pH values due the increase in the 

efficiency of PEI to flocculate the contaminants narrowing the optimum operating 

window. The flocculation order of the contaminants indicate that there may be a 

specific type/band of RNA and protein that aggregate due to PEI, whilst cell debris has 

a wider range of sizes and charges.

A linear correlation between batch pH conditions and the point of contaminant profile 

inflection is illustrated in figure 5.33. The rapid at-line monitoring has allowed for a 

higher resolution of data points especially in the critical flocculation regions enabling 

such a correlation to be studied. Batch runs 7 and 8 were not included due to their 

lower ionic strength in comparison to the other six batch runs. As there seems to be a 

strong correlation between pH levels and the resultant flocculation behaviour, pH may 

be applied as a manipulative variable for process control. In simulation studies “what 

i f  scenarios may be run allowing the design engineer to get a good
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prediction/understanding of how the flocculation process would behave under specific 

operating conditions.

5.6 Discussion
Real time monitoring of the batch flocculation process has been demonstrated in terms 

of product and key contaminants. Rapid monitoring allows the luxury of a higher 

resolution of data points for process characterisation. The total processing time for 

batch Run1 was approximately 2 hours. To acquire the same amount of information on 

product and key contaminant levels as that of at-line data, one can expect several 

hours/days post run off-line measurements. Hence real-time monitoring results in 

considerable cost saving in terms of time. During the operation and real-time 

monitoring of the batch runs several factors can be altered to allow for even higher 

resolution of data points around critical areas of the flocculation process. The dose 

rate may be altered to enable a more gradual addition of flocculant and therefore a 

slower change in flocculation conditions. The start volume can be made larger and/or 

the stock solution of PEI can be diluted. However the dose rate is constrained by the 

dose pump minimum and maximum possible flow rates. The start volume is restricted 

to the working volume of the batch tank.

The batch processes in this chapter were characterised in terms of three mathematical 

models. The most appropriate mathematical description to apply for flocculation 

characterisation is dependent on how and for what the model is used for. For post 

process analysis a complex model can be applied where there are no time constraints 

and a large number of data is available. However for real time process 

characterisation with initially a small number of data points a simple model with few 

model parameters is more suitable. From the three models investigated it can be 

concluded that the 3(2)-parameter model is the most appropriate for real time 

application. It has only three model parameters that require identification compared to 

that of the 4-parameter model and results in a better fit to process data than that of the 

3(1)-parameter model. The goodness of fit was determined through a coefficient of 

determination {R2), indicating the fraction of data explained by the model. Although the 

3(2)-Parameter model is an empirical model the parameters describe important 

features in the flocculation profiles, such as maximum level of contaminants removal 

and position of the point of inflection of the profiles. However it should be noted that 

this model does not have the ability to describe the re-suspension phenomenon which 

occurs during high PEI dose levels. The 4-parameter model would be a more suitable 

function to implement for total flocculation profile fitting.
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Characterisation of a process in terms of a mathematical description enables an 

efficient and simple method to analyse process information in terms of a few factors 

(model parameters) quantitatively. From such analysis we have seen that for the given 

batch runs pH has a linear response on the point of contaminant profile inflection and 

hence on the appropriate flocculant dose for process optimisation. However there 

does not seem to be a correlation between the start conditions chosen or pH levels and 

the maximum level of contaminant removal. For a full study on the effect of ionic 

strength levels on flocculation behaviour additional batch operations need to be 

performed for different salt concentrations.

Due to the linear relationship between pH levels and contaminant profile inflection 

point, regulation of pH conditions may be used as a manipulative variable for the 

control of the flocculation process. The pH level does not seem to influence the total 

level of contaminant removal and does not seem specific to individual components. 

Therefore the most appropriate use of pH regulation for control should be undertaken 

before or after the addition of the flocculating agent. For operations where feed and 

flocculant make up fluctuations are large, high pH conditions may be adopted to allow 

for a larger operating window facilitating correct flocculant dosing. For processes 

where batch to batch fluctuations are small, low pH levels may be applied tightening 

the operating window and reducing the required flocculant volumes. Operational 

requirements may state that the flocculant concentration should remain within a pre­

specified level, hence if flocculant control is not adequate in driving the process to an 

appropriate operating condition, pH control may be implemented. Note if pH control is 

used shear levels which result in the reversibility of the flocculant-contaminant complex 

would have to be applied.

The application of the photometric dispersion analyser for the monitoring of floe levels 

gave some indication of how the flocculation process was performing. However the 

PDA data did not contain information on behaviour of individual components during the 

process run. Further work on correlating the slope of the PDA profile to optimum 

operating conditions could give the operator a rapid technique to identify appropriate 

dosing levels. The main problem in applying the photometric dispersion analyser is its 

sensitivity to too turbid solutions such as the feed homogenate which is used for the 

batch operations. Due to this the PDA instrument was applied in a different manner to 

that recommended. For the batch processes light intensity readings at a wavelength of 

820 nm were taken and used as an indication of floe levels (described in more detail in 

chapter 3). The larger the floes the more light was absorbed and hence a lower light 

intensity was monitored in terms direct current (dc). The recommended manner of
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operation is to monitor the direct current as well as the fluctuating ac signal, which has 

been shown to be a sensitive indicator of the state of aggregation of the suspension 

(Gregory and Nelson 1984). However for the level of solids concentration applied in 

this work the fluctuating signal was very erratic/unstable and hence only PDA light 

intensity measurement (PDA dc) could be applied.

Most of the batch flocculation runs saw some level of product (alcohol dehydrogenase) 

activation. ADH activation has been experienced during ammonium sulphate addition 

(Smith 1997). The mechanism of ADH activation due to PEI is unclear. Holwill et al 

(1997) experienced similar problems during ammonium sulphate precipitation of 

clarified Baker’s yeast homogenate. Their solution was to monitor both spun and un­

spun samples and by taking the ratio of these two measurements an account for ADH 

activation could be made. For the flocculation process this method was not seen to be 

suitable due to the presence of insoluble particulate/cell debris which could effectively 

dilute the concentration of the ADH compared with the analysis of the clarified 

flocculation samples. As the above authors were monitoring clarified homogenate the 

change in solid volume was relatively small. There is no clarification step prior to the 

flocculation process hence by comparing spun and un-spun samples account of the 

volume of solids removed would have had to be made.

5.7 Conclusion
Rapid monitoring of product and key contaminants has been demonstrated for eight 

batch flocculation runs. Variable start (environmental) flocculation conditions in terms 

of pH, ionic strength, PEI stock solution, PEI dose rate and start feed volume were 

carried out and characterised in real time through the at-line data.

Three mathematical descriptions have been investigated in their ability to describe the 

flocculation behaviour in terms of flocculant volume fractions (dose), where the model 

parameters are related to the environmental conditions. An empirical model, the 3(2)- 

parameter model was concluded to be most appropriate for real time characterisation 

due to its effectiveness to describe the flocculation behaviour with the least number of 

model parameters.

Finally the performance of the flocculation process was analysed quantitatively in a 

simple and efficient manner through the use of the model. A linear relationship 

between pH levels and flocculation behaviour was observed.
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Figure 5.1. Batch Run1 characterisation in terms of PDA, homogenate and PEI 

volumes.

Plot A. PDA direct current (PDA dc) response with respect to time.

Plot B. Characterisation o f PEI volume fraction xPEI , homogenate volume VH, PEI 

volume VPE, and total batch volume VT with respect to time (minutes) determined from 

equations 5.2-5.6. The homogenate solids concentration was 125 g(wet weight) L '1 

and the PEI solution was 10 mg mL'1. Both solution were at pH 6.5 and at an ionic 

strength o f 50mM (KH2P 0 4). Samples (5.6 mL) were automatically taken off every 

130-140 seconds. The PEI dose flow-rate was controlled to 2.82 mL min'1. The total 

run time was approximately 120 min.
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Figure 5.2. Characterisation o f Batch Run1 in terms o f at-line total product (ADH) 

contaminants (RNA, cell debris (OD650) and protein) and PDA dc levels with respect to 

PEI volume fraction. Baker’s yeast homogenate (500 mL at 125 g (wet weight) L '1) was 

flocculated using PEI flocculant (10 mg mL'1). Both solutions were at pH 6.5 and at an 

ionic strength o f 50mM (KH2P 0 4). Samples (5.6 mL) and at-line measurements were 

automatically taken every 130-140 seconds. The PEI dose flow-rate was controlled to

2.82 mL min'1. The total run time was approximately 120 min. The at-line predicted 

contaminant data were corrected with the linear correlation in figures 4.9 and 4.10.
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Figure 5.3. Characterisation o f Batch Run1 in terms of at-line total product (ADH) 

contaminants (RNA, cell debris (OD650) and protein) and PDA dc levels with respect to 

PEI-homogenate weight ratio (PEI weight /  Homogenate weight). Baker’s yeast 

homogenate (500 mL at 125 g (wet weight) L '1) was flocculated using PEI flocculant 

(10 mg m L'1). Both solutions were at pH 6.5 and at an ionic strength o f 50mM 

(KH2P 0 4). Samples (5.6 mL) and at-line measurements were automatically taken 

every 130-140 seconds. The PEI dose flow-rate was controlled to 2.82 mL m in 1. The 

total run time was approximately 120 min. The at-line predicted contaminant data were 

corrected with the linear correlation in figures 4.9 and 4.10
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Figure 5.4. Non-linear least squares (NLLS) fit o f product and contaminant yield 

values in terms o f PEi volume fraction implementing the 4-parameter model for Batch 

Run1. Baker’s yeast homogenate (500 mL at 125 g (wet weight) L '1) was flocculated 

using PEI flocculant (10 mg m L'1). Both solutions were at pH 6.5 and at an ionic 

strength o f 50mM (KH2P 0 4). Samples (5.6 mL) and at-iine measurements were 

automatically taken every 130-140 seconds. The PEI dose flow-rate was controlled to

2.82 mL min'1. The total run time was approximately 120 min. The NLLS resulted in 

the below parameter estimations and R2 term (coefficient o f determination).

a b n m R*

ADH

Protein

RNA

Cell Debris

0.219

0.102

0.047

0.061

0.224
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0.108

0.071
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1.39

2.68
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20.41

0.994

0.839

0.968

0.979
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Figure 5.5. Non-linear least squares (NLLS) fit o f product and contaminant yield 

values in terms o f PEI volume fraction implementing the 3(1)-parameter model for 

Batch Run1. Baker’s yeast homogenate (500 mL at 125 g (wet weight) L 1) was 

flocculated using PEI flocculant (10 mg m L 1). Both solutions were at pH 6.5 and at an 

ionic strength o f 50mM (KH2P 0 4). Samples (5.6 mL) and at-line measurements were 

automatically taken every 130-140 seconds. The PEI dose flow-rate was controlled to

2.82 mL m in 1. The total run time was approximately 120 min. The NLLS resulted in 

the below parameter estimations and R2 term (coefficient o f determination).

a n c R*

ADH

Protein

RNA

Cell Debris

0.228

0.082

0.049

0.061

2.31

1.51

2.15

14.84

1.68

1.44

0.52

0.416

0.989

0.842

0.964

0.979
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Figure 5.6. Non-linear least squares (NLLS) fit o f product and contaminant yield 

values in terms o f PEI volume fraction implementing the 3(2)-parameter model for 

Batch R u n t Baker’s yeast homogenate (500 mL at 125 g (wet weight) L '1) was 

flocculated using PEI flocculant (10 mg mL'1). Both solutions were at pH 6.5 and at an 

ionic strength o f 50mM (KH2P 0 4). Samples (5.6 mL) and at-line measurements were 

automatically taken every 130-140 seconds. The PEI dose flow-rate was controlled to

2.82 mL min'1. The total run time was approximately 120 min. The NLLS resulted in 

the below parameter estimations and R2 term (coefficient o f determination). The least 

squares model fitting only implemented data up to a volume fraction o f 0.3 (mL mL'1)
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Figure 5.7. Characterisation o f Batch Run2 in terms o f at-line total product (ADH) 

contaminants (RNA, cell debris (OD650) and protein) and PDA dc levels with respect to 

PEI volume fraction. Baker’s yeast homogenate (700 mL at 125 g (wet weight) L '1) was 

flocculated using PEI flocculant (10 mg mL'1). Both solutions were at pH  7 and at an 

ionic strength o f 50mM (KH2P 0 4). Samples (5.6 mL) and at-line measurements were 

automatically taken every 130-140 seconds. The PEI dose flow-rate was controlled to

2.82 mL m in'1. The total run time was approximately 60 min. The at-line predicted 

contaminant data were corrected with the linear correlation in figures 4.9 and 4.10.
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Figure 5.8. Non-linear least squares (NLLS) fit o f product and contaminant yield 

values in terms o f PEI volume fraction implementing the 4-parameter model for Batch 

Run2. Baker’s yeast homogenate (700 mL at 125 g (wet weight) L '1) was flocculated 

using PEI flocculant (10 mg mL'1). Both solutions were at pH  7 and at an ionic strength 

o f 50mM (KH2P 0 4). Samples (5.6 mL) and at-line measurements were automatically 

taken every 130-140 seconds. The PEI dose flow-rate was controlled to 2.82 mL min'1. 

The total run time was approximately 60 min. The NLLS resulted in the below 

parameter estimations and R2 term (coefficient o f determination).
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Figure 5.9. Non-linear least squares (NLLS) fit o f product and contaminant yield 

values in terms o f PEI volume fraction implementing the 3(2)-parameter model for 

Batch Run2. Baker’s yeast homogenate (700 mL at 125 (wet weight) g L '1) was 

flocculated using PEI flocculant (10 mg mL'1). Both solutions were at pH 7 and at an 

ionic strength o f 50mM (KH2P 0 4). Samples (5.6 mL) and at-line measurements were 

automatically taken every 130-140 seconds. The PEI dose flow-rate was controlled to

2.82 mL min'1. The total run time was approximately 60 min. The NLLS resulted in the 

below parameter estimations and R2 term (coefficient o f determination).
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Figure 5.10. Characterisation o f Batch Run3 in terms o f at-line total product (ADH) 

contaminants (RNA, ceil debris (OD650) and protein) and PDA dc levels with respect to 

PEI volume fraction mL mL'1. Baker’s yeast homogenate (700 mL at 125 g (wet weight) 

L '1) was flocculated using PEI flocculant (10 mg m L'1). Both solutions were at pH 5.5 

and at an ionic strength o f 50mM (KH2P04)- Samples (5.6 mL) and at-line 

measurements were automatically taken every 130-140 seconds. The PEI dose flow- 

rate was controlled to 2.82 mL m in'1. The total run time was approximately 85 min. The 

at-line predicted contaminant data were corrected with the linear correlation in figures 

4.9 and 4.10.
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Figure 5.11. Non-linear least squares (NLLS) fit o f product and contaminant yield 

values in terms o f PEI volume fraction implementing the 4-parameter model for Batch 

Run3. Baker’s yeast homogenate (700 mL at 125 g (wet weight) L '1) was flocculated 

using PEI flocculant (10 mg m L'1). Both solutions were at pH 5.5 and at an ionic 

strength o f 50mM (KH2P 0 4). Samples (5.6 mL) and at-line measurements were 

automatically taken every 130-140 seconds. The PEI dose flow-rate was controlled to

2.82 mL min'1. The total run time was approximately 85 min. The NLLS resulted in the 

below parameter estimations and R2 term (coefficient o f determination).
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Figure 5.12. Non-linear least squares (NLLS) fit o f product and contaminant yield 

values in terms o f PEI volume fraction implementing the 3(2)-parameter model for 

Batch Run3. Baker’s yeast homogenate (700 mL at 125 g (wet weight) L '1) was 

flocculated using PEI flocculant (10 mg mL'1). Both solutions were at pH  5.5 and at an 

ionic strength o f 50mM (KH2P 0 4). Samples (5.6 mL) and at-line measurements were 

automatically taken every 130-140 seconds. The PEI dose flow-rate was controlled to

2.82 mL min'1. The total run time was approximately 85 min. The NLLS resulted in the 

below parameter estimations and R2 term (coefficient o f determination).
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Figure 5.13. Characterisation o f Batch Run4 in terms o f at-line total product (ADH) 

contaminants (RNA, cell debris (OD650) and protein) and PDA dc levels with respect to 

PEI volume fraction. Baker’s yeast homogenate (500 mL at 125 g (wet weight) L '1, pH  

6.2) was flocculated using PEI flocculant (5 mg mL'1, pH 5.9). Both solutions were at 

an ionic strength o f 50mM (KH2P 0 4). Samples (5.6 mL) and at-line measurements 

were automatically taken every 130-140 seconds. The PEI dose flow-rate was 

controlled to 2.82 mL min'1. The total run time was approximately 60 min. The at-line 

predicted contaminant data were corrected with the linear correlation in figures 4.9 and 

4.10.
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Figure 5.14. Non-linear least squares (NLLS) fit o f product and contaminant yield 

values in terms o f PEI volume fraction implementing the 4-parameter for model Batch 

Run4. Baker’s yeast homogenate (500 mL at 125 g (wet weight) L '1, pH 6.2) was 

flocculated using PEI flocculant (5 mg mL'1, pH 5.9). Both solutions were at an ionic 

strength o f 50mM (KH2P 0 4). Samples (5.6 mL) and at-line measurements were 

automatically taken every 130-140 seconds. The PEI dose flow-rate was controlled to

2.82 mL min'1. The total run time was approximately 60 min. The NLLS resulted in the 

below parameter estimations and R2 term (coefficient o f determination).
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Figure 5.15. Non-linear least squares (NLLS) fit o f product and contaminant yield 

values in terms o f PEI volume fraction implementing the 3(2)-parameter model for 

Batch Run4. Baker’s yeast homogenate (500 mL at 125 g (wet weight) L '1, pH 6.2) 

was flocculated using PEI flocculant (5 mg mL'1, pH 5.9). Both solutions were at an 

ionic strength o f 50mM (KH2P 0 4). Samples (5.6 mL) and at-line measurements were 

automatically taken every 130-140 seconds. The PEI dose flow-rate was controlled to

2.82 mL m in'1. The total run time was approximately 60 min. The NLLS resulted in the 

below parameter estimations and R2 term (coefficient o f determination).
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Figure 5.16. Characterisation o f Batch Run5 in terms o f at-line total product (ADH) 

contaminants (RNA, cell debris (OD650) and protein) and PDA dc levels with respect to 

PEI volume fraction. Baker’s yeast homogenate (500 mL at 125 g (wet weight) L '1, pH  

6.2) was flocculated using PEI flocculant (5 mg m L'1, pH 5.9). Both solutions were at 

an ionic strength o f 50mM (KH2P 0 4). Samples (5.6 mL) and at-line measurements 

were automatically taken every 130-140 seconds. The PEI dose flow-rate was 

controlled to 2.82 mL min'1. The total run time was approximately 55 min. A pH change 

(6.5 to 5. T, addition o f 10M HCL) was made during the last two data points. The at-line 

predicted contaminant data were corrected with the linear correlation in figures 4.9 and 

4.10.
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Figure 5.17. Non-linear least squares (NLLS) fit o f product and contaminant yield 

values in terms o f PEI volume fraction implementing the 4-parameter model for Batch 

Run5. Baker’s yeast homogenate (500 mL at 125 g (wet weight) L '\  pH 6.2) was 

flocculated using PEI flocculant (5 mg mL'1, pH 5.9). Both solutions were at an ionic 

strength o f 50mM (KH2P 0 4). Samples (5.6 mL) and at-line measurements were 

automatically taken every 130-140 seconds. The PEI dose flow-rate was controlled to

2.82 mL m in'1. The total run time was approximately 55 min. The NLLS resulted in the 

below parameter estimations and R2 term (coefficient o f determination).

a b n m R*

ADH

Protein

RNA

Cell Debris

0.095

0.088

0.103

0.112

0.125

0.111

6.27

4.02

24.2

6.53

4.5

24.3

0.971

0.982

0.998
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Figure 5.18. Non-linear least squares (NLLS) fit o f product and contaminant yield 

values in terms o f PEI volume fraction implementing the 3(2)-parameter model for 

Batch Run5. Baker’s yeast homogenate (500 mL at 125 g (wet weight) L '1, pH 6.2) 

was flocculated using PEI flocculant (5 mg mL'1, pH 5.9). Both solutions were at an 

ionic strength o f 50mM (KH2P 0 4). Samples (5.6 mL) and at-line measurements were 

automatically taken every 130-140 seconds. The PEI dose flow-rate was controlled to

2.82 mL m in 1. The total run time was approximately 55 min. The NLLS resulted in the 

below parameter estimations and R2 term (coefficient o f determination).

A B C R*

ADH

Protein

RNA

Cell Debris

0.58

0.66

0.84

0.099

0.091

0.105

5.01

3.31

20.05

0.977

0.989

0.998
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Figure 5.19. Characterisation o f Batch Run6 in terms o f at-line totai product (ADH) 

contaminants (RNA, cell debris (OD650) and protein) and PDA dc levels with respect to 

PEI volume fraction. Baker’s yeast homogenate (500 mL at 125 g (wet weight) L '1, pH  

5.5) was flocculated using PEI flocculant (5 mg m L'1, pH 5). Both solutions were at an 

ionic strength o f 50mM (KH2P 0 4). Samples (5.6 mL) and at-line measurements were 

automatically taken every 130-140 seconds. The PEI dose flow-rate was controlled to

2.82 mL min'1. The total run time was approximately 70 min. The at-line predicted 

contaminant data were corrected with the linear correlation in figures 4.9 and 4.10.
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Figure 5.20. Non-linear least squares (NLLS) fit o f product and contaminant yield 

values in terms o f PEI volume fraction implementing the 4-parameter model for Batch 

Run6. Baker’s yeast homogenate (500 mL at 125 g (wet weight) L '1, pH 5.5) was 

flocculated using PEI flocculant (5 mg m L'1, pH 5). Both solutions were at an ionic 

strength o f 50mM (KH2P 0 4). Samples (5.6 mL) and at-line measurements were 

automatically taken every 130-140 seconds. The PEI dose flow-rate was controlled to

2.82 mL min'1. The total run time was approximately 75 min. The NLLS resulted in the 

below parameter estimations and R2 term (coefficient o f determination).

a b n m R*

ADH

Protein

RNA

Cell Debris

0.058

0.051

0.058

0.067

0.066

0.092

5.97

4.32

537

6.09

4.42

5.86

0.977

0.991

0.984
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Figure 5.21. Non-linear least squares (NLLS) fit o f product and contaminant yield 

values in terms o f PEI volume fraction implementing the 3(2)-parameter model for 

Batch Run6. Baker’s yeast homogenate (500 mL at 125 g (wet weight) L '1, pH 5.5) 

was flocculated using PEI flocculant (5 mg m L'1, pH 5). Both solutions were at an ionic 

strength o f 50mM (KH2P 0 4). Samples (5.6 mL) and at-line measurements were 

automatically taken every 130-140 seconds. The PEI dose flow-rate was controlled to

2.82 mL m in'1. The total run time was approximately 75 min. The NLLS resulted in the 

below parameter estimations and R2 term (coefficient o f determination).

A B C Rz

ADH

Protein

RNA

Cell Debris

0.52

0.62

0.87

0.062

0.056

0.064

4.54

3.25

3.85

0.978

0.993

0.990
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Figure  5.22. Characterisation o f Batch Run7 in terms o f at-line total product (ADH) 

contaminants (RNA, cell debris (OD650) and protein) and PDA dc levels with respect to 

PEI volume fraction. Baker’s yeast homogenate (700 mL at 125 g (wet weight) L '1, pH  

6) was flocculated using PEI flocculant (10 mg m L'1, pH 6). Both solutions were at an 

ionic strength o f 20mM (KH2P 0 4). Samples (5.6 mL) and at-line measurements were 

automatically taken every 130-140 seconds. The PEI dose flow-rate was controlled to 

10-0.011 (mL m in 1), where t is time in minutes. The total run time was approximately 

55 min. A pH change (5.9 to 6.2, addition o f 10M NaOH) was made during the last two 

data points. The at-line predicted contaminant data were corrected with the linear 

correlation in figures 4.9 and 4.10.
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Figure 5.23. Non-linear least squares (NLLS) fit o f product and contaminant yield 

values in terms o f PEI volume fraction implementing the 4-parameter model for Batch 

Run7. Baker’s yeast homogenate (700 mL at 125 g (wet weight) L~1, pH 6) was 

flocculated using PEI flocculant (10 mg m L'1, pH 6). Both solutions were at an ionic 

strength o f 20mM (KH2P 0 4). Samples (5.6 mL) and at-line measurements were 

automatically taken every 130-140 seconds. The PEI dose flow-rate was controlled to 

10-0.011 (mL m in'1), where t is time in minutes. The total run time was approximately 

55 min. The NLLS resulted in the below parameter estimations and R2 term (coefficient 

o f determination).

a b n m Rz

ADH

Protein

RNA

Cell Debris

0.124

0.037

0.029

0.043

0.125

0.048

0.04

0.055
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Figure 5.24. Non-linear least squares (NLLS) fit o f product and contaminant yield 

values in terms o f PEI volume fraction implementing the 3(2)-parameter model for 

Batch Run7. Baker’s yeast homogenate (700 mL at 125 g (wet weight) L '1, pH 6) was 

flocculated using PEI flocculant (10 mg mL'1, pH 6). Both solutions were at an ionic 

strength o f 20mM (KH2P 0 4). Samples (5.6 mL) and at-line measurements were 

automatically taken every 130-140 seconds. The PEI dose flow-rate was controlled to 

10-0.011 (mL m in 1), where t is time in minutes. The total run time was approximately 

55 min. The NLLS resulted in the below parameter estimations and R2 term (coefficient 

o f determination).

A B C

ADH

Protein

RNA

Cell Debris

0.12

0.66

0.76

0.9
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0.037

0.046
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Figure 5.25. Characterisation o f Batch Run8 in terms o f at-line total product (ADH) 

contaminants (RNA, cell debris (OD650) and protein) and PDA dc levels with respect to 

PEI volume fraction. Baker’s yeast homogenate (700 mL at 125 g (wet weight) L '1, pH  

5.5) was flocculated using PEI flocculant (10 mg mL'1, pH  5.5). Both solutions were at 

an ionic strength o f 20mM (KH2P 0 4). Samples (5.6 mL) and at-line measurements 

were automatically taken every 130-140 seconds. The PEI dose flow-raie was 

controlled to 10-0.01 t (mL m in'1), where t is time in minutes. The total run time was 

approximately 40 min. A pH change (5.5 to 6.6, addition o f 10M NaOH) was made 

during the last two data points. The at-line predicted contaminant data were corrected 

with the linear correlation in figures 4.9 and 4.10.
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Figure 5.26. Non-linear least squares (NLLS) fit o f product and contaminant yield 

values in terms o f PEI volume fraction implementing the 4-parameter model for Batch 

Run8. Baker’s yeast homogenate (700 mL at 125 g (wet weight) L '1, pH 5.5) was 

flocculated using PEI flocculant (10mg mL'1, pH 5.5). Both solutions were at an ionic 

strength o f 20mM (KH2P 0 4). Samples (5.6 mL) and at-line measurements were 

automatically taken every 130-140 seconds. The PEI dose flow-rate was controlled to 

10-0.01 t (mL m in'1), where t is time in minutes. The total run time was approximately 

40 min. The NLLS resulted in the below parameter estimations and R2 term (coefficient 

o f determination).

a b n m R2

ADH

Protein

RNA

Cell Debris

0.129

0.017

0.016

0.018

0.134

0.019

0.018

0.023

4.2

8.79

8.61

8.64

4.11

8.89

8.6

8.54

0.995

0.959

0.981

0.986
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Figure 5.27. Non-linear least squares (NLLS) fit o f product and contaminant yield 

values in terms o f PEI volume fraction implementing the 3(2)-parameter model for 

Batch Run8. Baker’s yeast homogenate (700 mL at 125 g (wet weight) L '1, pH 5.5) 

was flocculated using PEI flocculant (10 mg m L'1, pH 5.5). Both solutions were at an 

ionic strength o f 20mM (KH2P 0 4). Samples (5.6 mL) and at-line measurements were 

automatically taken every 130-140 seconds The PEI dose flow-rate was controlled to 

10-0.01 t (mL m in'1), where t is time in minutes. The total run time was approximately 

40 min. The NLLS resulted in the below parameter estimations and R2 term (coefficient 

o f determination).

A B C R*

ADH

Protein

RNA

Cell Debris

0.1

0.64

0.66

0.91

0.115

0.018

0.018

0.021

6.79

4.95

2.03

4.08

0.996

0.900

0.985
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Batch 1 2 3 4 5 6 7 8
Homogenate pH 6.5 7 5.5 6.2 6.2 5.5 6 5.5
PEI pH
Average pH at the average

6.5 7 5.5 5.9 5 5 6 5.5

poin of inflection for all the 
contaminants

6.5 7.0 5.5 6.2 6.1 5.5 6.0 5.5

Ionic strength (mM) 50 50 50 50 50 50 20 20
PEI stock 0.01 0.01 0.01 0.005 0.005 0.005 0.01 0.01
Start conditions (mg mL'1) 3.08 2.42 2.31 3.30 3.51 3.74 3.19 3.19
A 0.91 0.88 0.85 0.82 0.84 0.87 0.90 0.91

OD650 B 0.062 0.056 0.032 0.108 0.105 0.064 0.046 0.021
C 12.11 5.30 9.84 12.97 20.05 3.85 6.98 4.08
Inflection point (mL mL'1) 0.062 0.054 0.031 0.107 0.104 0.059 0.045 0.020
Start conditions (mg mL"1) 3.36 2.79 2.21 3.65 3.46 2.98 3.27 3.36

A 0.82 0.57 0.65 0.70 0.66 0.62 0.76 0.66

RNA B 0.052 0.048 0.028 0.092 0.091 0.056 0.037 0.018

C 2.32 4.17 2.44 2.72 3.31 3.25 2.32 2.03
Inflection point (mL mL'1) 0.041 0.045 0.023 0.077 0.082 0.050 0.029 0.013
Start conditions (mg mL'1) 13.85 11.43 12.07 13.21 14.20 11.22 14.77 13.14

A 0.47 0.50 0.63 0.52 0.58 0.52 0.66 0.64

Protein B 0.055 0.057 0.030 0.104 0.099 0.062 0.043 0.018
C 3.24 11.20 6.16 10.05 5.01 4.54 3.40 4.95
Inflection point (mL mL'1) 0.049 0.056 0.029 0.102 0.095 0.058 0.038 0.017

ADH

Start conditions (U mL"̂ ) 
A 
B 
C
Inflection point (mL mL'1)

113.80
0.19

0.228
7.10
0.223

111.50 83.43 128.00 124.00 118.00 134.00
0.12

0.149
8.05
0.147

136.60
0.10

0.115
6.79
0.112

R ADH 0.995 0.945 0.996

R2 Cell Debris 0.983 0.978 0.979 0.994 0.998 0.990 0.985 0.986

R2 RNA 0.977 0.999 0.975 0.994 0.989 0.993 0.977 0.985

R2 Protein 0.973 0.996 0.984 0.994 0.977 0.978 0.994 0.900

Table 5.3. Overview of batch flocculation runs through the 3(2)-parameter model in 

terms of pH, ionic strength, start contaminant and ADH concentrations. Model 

parameters A, B and C were estimated through the Levenberg-Marquardt non-linear 

least squares method (100 iterations). The inflection points was determined through

i

B
C - l  c

. The R2 term is the coefficient of determination. The 3(2)-parameter model
v C

is discussed in more detail in section 2.2.
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Batch 1 2 3 4 5 6 7 8
Homogenate pH 6.5 7 5.5 6.2 6.2 5.5 6 5.5
PEI pH 6.5 7 5.5 5.9 5 5 6 5.5
Ionic strength (mM) 50 50 50 50 50 50 20 20
PEI stock (mg mL'1) 10 10 10 5 5 5 10 10
Start conditions (Au) 3.08 2.42 2.31 3.30 3.51 3.74 3.19 3.19

a 0.061 0.053 0.031 0.106 0.111 0.06 0.044 0.0205
OD650 n 14.84 5.43 9.26 11.27 3.16 3.97 8.60 4.00

c 0.42 4.00 3.48 3.23 6.09 2.31 5.00 5.64
Start conditions (mg mL'1) 3.36 2.79 2.21 3.65 3.46 2.98 3.27 3.36

a 0.049 0.069 0.047 0.097 0.098 0.077 0.037 0.024

RNA n 2.15 1.80 1.00 2.50 2.85 1.65 1.75 0.827

c 0.52 8.50 2.92 3.28 4.77 4.11 5.97 8.50
Start conditions (mg mL'1) 13.85 11.43 12.07 13.21 14.20 11.22 14.77 13.14

a 0.082 0.083 0.047 0.127 0.111 0.098 0.047 0.026

Protein n 1.51 2.45 1.17 3.20 15.33 1.52 1.99 0.98
c 1.44 11.20 4.96 5.64 3.25 4.61 10.60 11.49

Start conditions (U mL'1) 113.80 111.50 83.43 128.00 124.00 118.00 134.00 136.60
a 0.23 0.24 0.17

ADH n 2.31 3.82 2.96
c 1.68 3.36 6.79

Rz ADH 0.989 0.952 0.995

R2 Cell Debris 0.979 0.963 0.801 0.971 0.989 0.973 0.970 0.916

R2 RNA 0.964 0.977 0.961 0.987 0.975 0.928 0.941 0.937

R2 Protein 0.842 0.981 0.793 0.922 0.956 0.860 0.940 0.346

Table 5.4. Overview of batch flocculation runs through the 3(1)-parameter model in 

terms of pH, ionic strength, start contaminant and ADH concentrations. Model 

parameters a, n and c were estimated through the Levenberg-Marquardt non-linear 

least squares method (100 iterations). The R2 term is the coefficient o f determination. 

The 3(1)-parameter model is discussed in more detail in section 2.2.
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Batch 1 2 3 4 5 6 7 8
Homogenate pH 6.5 7 5.5 6.2 6.2 5.5 6 5.5
PE! pH 6.5 7 5.5 5.9 5 5 6 5.5
Ionic strength (mM) 50 50 50 50 50 50 20 20
PEI stock (mg mL'1) 10 10 10 5 5 5 10 10
Start conditions (Au) 3.08 2.42 2.31 3.30 3.51 3.74 3.19 3.19

a 0.061 0.052 0.0296 0.104 0.103 0.058 0.043 0.018
OD650 n 19.71 7.81 16.20 19.03 24.20 5.37 11.26 8.64

b 0.071 0.070 0.033 0.113 0.111 0.092 0.055 0.023

m 20.41 8.20 16.19 18.84 24.30 5.86 11.64 8.54
Start conditions (mg mL'1) 3.36 2.79 2.21 3.65 3.46 2.98 3.27 3.36

a 0.047 0.044 0.024 0.088 0.088 0.051 0.029 0.016

RNA n 2.68 6.27 10.26 3.28 4.02 4.32 4.09 8.61

b 0.108 0.050 0.026 0.143 0.125 0.066 0.040 0.018

m 3.18 6.29 10.08 3.79 4.50 4.42 3.93 8.60
Start conditions (mg mL'1) 13.85 11.43 12.07 13.21 14.20 11.22 14.77 13.14

a 0.102 0.055 0.0276 0.099 0.095 0.058 0.0374 0.0165

Protein n 1.39 8.58 16.79 12.69 6.27 5.97 4.80 8.79
b 0.224 0.060 0.029 0.105 0.112 0.067 0.048 0.019
m 2.44 8.65 16.84 12.67 6.53 6.09 4.88 8.89

Start conditions (U mL'1) 113.80 111.50 83.43 128.00 124.00 118.00 134.00 134.00
a 0.219 0.124 0 129

ADH n 10.76 5.45 4.20
b 0.224 0.125 0.134
m 11.04 5.15 4.11

R ADH 0.994 0.955 0.995

R2 Cell Debris 0.979 0.971 0.977 0.993 0.998 0.984 0.985 0.986

R2 RNA 0.968 0.989 0.978 0.991 0.982 0.991 0.981 0.981

R2 Protein 0.839 0.995 0.987 0.994 0.971 0.977 0.994 0.959

Table 5.5. Overview of batch flocculation runs through the 4-parameter model in terms 

o f pH, ionic strength, start contaminant and ADH concentrations. Model parameters a, 

b, n and c were estimated through the Levenberg-Marquardt non-linear least squares 

method (100 iterations). The R2 term is the coefficient o f determination. The 4- 

parameter model is discussed in more detail in section 2.2.
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Figure 5.28. Performance of the three flocculation models. The performance of the 

models were evaluated by counting the number of failed contaminant and product 

model fits for a specified minimum coefficient o f determination (R2) as a percentage of 

the total number o f fits performed.
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Figure 5.29. Effect o f pH, feed contaminant concentrations on the batch flocculation 

cell debris profiles characterised by the 3(2)-parameter model. The inflection points

(B
C - l
c

) for batch runs 4, 5 and 6 were divided by a factor o f two due to the half

strength PEI flocculant solution. The maximum removal o f cell debris (fraction o f feed) 

was determined through model parameter A (see section 2.2). The pH data is the 

average o f the flocculant-homogenate mixture at the average point o f inflection (table

5.3, row 3).
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Figure 5.30. Effect o f pH, feed contaminant concentrations on the batch flocculation 

RNA profiles characterised by the 3(2)-parameter model. The inflection points

(B\
C - l V
c

) for batch runs 4, 5 and 6 were divided by a factor o f two due to the half

strength PEI flocculant solution. The maximum removal o f RNA (fraction o f feed) was 

determined through model parameter A (see section 2.2). The pH data is the average 

o f the flocculant-homogenate mixture at the average point o f inflection (table 5.3, row  

3).
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Figure 5.31. Effect o f pH, feed contaminant concentrations on the batch flocculation 

protein profiles characterised by the 3(2)-parameter model. The inflection points

C - 1 c
( B ------- ) for batch runs 4, 5 and 6 were divided by a factor o f two due to the half

v C

strength PEI flocculant solution. The maximum removal protein (fraction o f feed) was 

determined through model parameter A (see section 2.2). The pH data is the average 

o f the flocculant-homogenate mixture at the average point o f inflection (table 5.3, row 

3).
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Figure 5.32. Variation in the maximum fraction removed o f RNA, cell debris and 

protein (plot A) and points o f profile inflection (plot B) for eight batch flocculation runs,

C - l
determined from model parameters A and B ----------  (3(2)-parameter model). The

v C

inflection points for batch runs 4, 5 and 6 were divided by a factor o f two due to the 

half strength PEI flocculant solution The symbols in Plot A are similar to those in plot B. 

The pH data is the average o f the flocculant-homogenate mixture at the average point 

of inflection (table 5.3, row 3).
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Figure 5.33. Normalised point o f inflection of the contaminant flocculation profiles in 

terms of pH for batch runs 1 to 6. The inflection points were determined through

B\
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c
, from the 3(2)-Parameter model and divided by the feed concentrations of

the respective contaminants. Batch runs 7 and 8 were not included due to their lower 

ionic strength levels. A linear fit of the data was performed. The inflection points for 

batch runs 4, 5 and 6 were divided by a factor o f two due to the 2-fold dilution o f the 

PEI stock solution compared to batch runs 1, 2 and 3. The linear fits resulted in 

coefficients o f determination o f 0.85, 0.84, 0.91 for the debris, RNA and protein linear 

correlations. The protein data was multiplied by a factor o f 10. The pH data is the 

average of the flocculant-homogenate mixture at the average point o f inflection (table

5.3, row 3).
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Chapter 6

Control and optimisation of the batch 

flocculation process

6.1 Summary
Real time measurements on both product and key contaminants were applied for 

optimisation and control of the batch flocculation process. Two control configurations 

were examined in terms of their ability to control the removal of contaminants and 

recovery of product during the batch flocculation process, where the flocculant dose 

was applied as sole manipulative variable. A model based feedback control 

configuration was implemented to optimise the batch flocculation process, in terms of 

maximising the removal of contaminants, recovery of product whilst minimising the 

utilisation of flocculant. This control setup also imposed a constraint on the maximum 

allowable cell debris concentration in the supernatant stream post flocculation. The 

adaptive nature of the control configuration was derived from the implementation of a 

model parameter identification technique. Two such estimation methods were studied 

and the most appropriate technique for real-time application was investigated. A less 

sophisticated control configuration was also investigated which utilised the cell debris 

data as the control variable.

6.2 Introduction
The ability to rapidly monitor the batch flocculation process in terms of both product 

and key contaminants was demonstrated in Chapter 5. The characterisation of the 

flocculation behaviour with respect to flocculant (PEI) volume fraction was performed 

implementing three mathematical descriptions, of which the 3(2)-7Parameter model 

was concluded to be most appropriate for real time application. This chapter will 

therefore only apply this model for the study of batch process characterisation, 

optimisation and control.

As discussed in chapter 1, several factors (input variables) affect the behaviour of the 

flocculation process (section 1.6.2). Which of these to implement for process control, is 

dictated by operational and equipment constraints. It is important to distinguish
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between input variables which are/should be determined during the design stages and 

which factors can be implemented for control purposes. Most of the input variables 

such as batch tank volume, flocculant type and molecular weight, etc, are specified in 

the design stages of the flocculation process. The three main input variables 

applicable for process control are the flocculant dose, batch pH and salt concentration. 

This chapter will consider how the flocculant dose can be applied for process control.

This chapter will first evaluate the performance of two model parameter identification 

methods, namely the Levenberg-Marquardt non-linear least squares (NLLS) and 

extended Kalman filter (EKF) for at-line model prediction. The theoretical backgrounds 

behind these two estimation techniques have been discussed in chapter 2. The model 

parameter predictions will be implemented to form real-time graphical representations 

of contaminant and product flocculation profiles, which may be applied to facilitate the 

operation of the flocculation process. These estimation techniques will be tested on 

the eight batch runs discussed in chapter 5.

Various control configurations may be applied to control the batch flocculation process, 

from sophisticated control systems, which apply information on all the contaminants, 

product and flocculant dose, to relatively simple algorithms which apply the raw data of 

a single contaminant. Which method to implement is dependent on the complexity of 

the process and the objective which are set by the operator and/or by the feed 

requirements of the subsequent unit operation. This chapter will investigate the 

performance of two such control configurations. An adaptive model based optimisation 

control setup will be examined implementing the EKF and NLLS model parameter 

estimation techniques. A simple control configuration using the cell debris yield level 

as the sole control variable will also be examined. The performance of these two 

control systems will be tested in terms of eight batch runs illustrating their robustness 

and efficiency in controlling the batch operations to identify the lowest flocculant 

concentration to give satisfactory removal of contaminants and recovery of product.

6.3 Real time process characterisation, optimisation and 

control
This section will briefly discuss the rapid characterisation, optimisation and control 

configurations adopted in this chapter for the batch flocculation process.

Figure 6.1, illustrates an overview of the rapid process characterisation, optimisation 

and the two control configurations applied. Real time data was acquired through the 

rapid monitoring set-up discussed in chapter 3 and the at-line information on both
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product and key contaminants was fed to two model parameter identification 

techniques; the Levenberg-Marquardt (LM) non-linear least squares (NLLS) method 

and extended Kalman filter (EKF) for model parameter prediction. The identification 

techniques implemented the 3(2)-Parameter flocculation model, the at-line data of 

product and contaminants as well as the flocculant volume fraction in order to estimate 

new model parameters for newly acquired data points. The estimated model 

parameters for each monitoring step were applied to create flocculation yield curves for 

both the product and contaminants. Based on this visual aid of the flocculation profiles 

the operator could verify whether appropriate flocculant conditions have been reached, 

and if so terminate the flocculant dosing (open loop control). For closed loop control, 

where the supervisory computer regulates the flocculant dose, an optimisation 

algorithm was adopted to determine the optimum flocculant volume fraction for the 

given batch operation which was applied as the primary control setpoint. A 

secondary control objective was introduced to guarantee that the cell debris 

concentration post flocculation was suitable for the subsequent unit operation. The 

supervisory computer would verify whether the actual flocculant volume satisfied both 

control objectives and terminated the PEI dosing accordingly. This control 

configuration will be defined as control configuration 1 for the rest of this chapter. 

Due to the nature of the batch flocculation process the control of the flocculant dosing 

was a simple ON/OFF system irrespective of the dosing recipe.

A more simplistic control setup is also illustrated in figure 6.1, where the raw 

measurements on the cell debris yield level was implemented as the control variable. 

As soon as the cell debris contaminant level had reached this minimum specification, 

which was set to a cell debris yield value of 0 . 2  (80% cell debris removal based on 

spun feed) the flocculant dosing would be terminated. This control configuration will be 

defined as control configuration 2 for the rest of this chapter.
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► Sample stream objectives

------------► Process information

Figure 6.1. Overview of the batch flocculation control configurations.

The dashed box illustrates control configuration 2, i.e. using the cell debris yield data 

as the sole control variable. The flocculant dosing is terminated if  the cell debris yield 

level (ynehris) is smaller than the cell debris yield setpoint (yse/pomt)- 

Control configuration 1 (the remainder o f the above diagram) uses the estimated model 

parameters to optimise the flocculation process in terms of an optimum PEI volume 

fraction (xPEI opliimm). The flocculant dosing was terminated if  the actual PEI volume 

fraction was greater or equal to the optimum predicted PEI volume fraction as well as 

insuring that the debris yield level was smaller than the its setpoint. The variable k 

refers to the measurement step.
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A theoretical comparison of the two model parameter identification techniques (EKF 

and LM) was discussed in chapter 2. Figure 6.2, illustrates the flow of information from 

and to the two estimation methods. Both estimation techniques require a mathematical 

description of the flocculation behaviour and initial guesses of the model parameters. 

Given these starting requirements the estimation techniques would repeatedly find 

better and up to date combinations of the model parameter values. The initial guesses 

of the model parameters for both the contaminants and product were taken as the 

average parameter values of all the batch runs, listed in table 5.3. As seen from figure 

6.2, the EKF requires additional start information to that of the NLLS technique, such 

as system and measurement noise terms and initial values for the combined system 

covariance term. The selection of these values enables the operator to tune the EKF 

to either put more or less weighting on the at-line data for the estimation of new model 

parameters and the level of model parameter change between iteration steps. From 

chapter 2 we have seen that the appropriate tuning of the EKF is vital for good model 

parameter prediction.

Previous measurements

At-line data

*  Model parameters
(A, B, QModel (y=f'(A,B,C)) 

Parameter guesses
(A0, B 0, C0)

Rapid
Monitoring

system

NLLS

EKF

□ Measurement noise (Z)
□ System noise (Q)
□ Initial combined system noise (P0)

Figure 6.2. O v e rv ie w  o f  th e  e x te n d e d  K a lm a n  f i l te r  a n d  L e v e n b e rg -M a rq u a rd t m o d e l  

p a r a m e te r  id e n t if ic a t io n  te c h n iq u e s . T h e  te rm s  N L L S  a n d  E K F  re fe r  to  th e  L e v e n b e rg -  

M a rq u a rd t  n o n - l in e a r  le a s t  s q u a re s  a n d  e x te n d e d  K a lm a n  f i l te r  e s t im a t io n  m e th o d s .

Table 6.1 lists the various additional constants applied in the EKF during model 

parameter estimation of all the eight batch runs. The simplest of these additional EKF 

constants to set was the measurement noise term (Z), which was determined as the 

square of the standard deviation of the yield measurements discussed in chapter 4. As
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the 3(2)-parameter model was adopted the system covariance term (Q) for each 

contaminant and product was a 3 x 3 matrix, consisting of the variance of each model 

parameter (no co-variance terms between model parameters were applied). The 

individual variance terms for the system noise matrix are listed in table 6.1. These 

were based on the variance of the parameters for all the eight batch and the knowledge 

that during batch operation there is a gradual increase in the flocculant dose and hence 

gradual information of the flocculation yield. Due to the latter factor the initial combined 

system covariance (P) 3 x 3 matrix was set to zero for each term

D eb ris R N A P ro te in ADH
A -A verage 0.87 0.68 0 .57 0 .14
B-A verage 0 .0 6 2 0 .0 5 3 0 .0 5 8
C -A verage 9 .4 2 .8 6.1

<hi 0 .0 0 2 0 .0 0 5 0 .0 0 3 0 .0 0 0 2

^22 0 .0 0 0 2 0 .0 0 0 3 0 .0 0 0 3

^33 5 .5 0 .7 4 .5

% qu 5% 10% 10%

°/°9i22 2 2% 30% 30% 21%

%Q33 2 5% 30% 35%
z 0 .0 0 6 4 0 .0 0 6 4 0 .0 0 6 4 0 .0 0 6 4

Table 6.1. Extended Kalman filter constants.

The parameters A, B and C-average refer to the average values o f the model 

parameters over the eight batch runs (refer to table 6.4) implemented as the initial 

parameter guesses. The measurement noise is termed Z ( -  crm2, where <jm is the 

measurement standard deviation), the system noise term (3x3 matrix) consists o f 

3x3-9 terms where only three were non-zero, q 1h q22 and q33 which refer to the

•vP11variance o f model parameter A, B and C. The factors %q u = — -------- x100 ,
^  Average

%q22 = ^ -22 -  x 1 0 0  and %q33 = ^ 33 x 1 0 0 , which give an indication o f the
^  Average ^  Average

allowable change between iterations.

As discussed in chapter 2, if the initial guess for the combined system noise term was 

high, an initially high Kalman gain (weighting) would be the outcome, putting more 

weight on the initial measurements. During batch operation the first set of 

measurements were taken at low flocculant volume fraction levels, resulting in 

flocculant yield values close to unity (see chapter 5, figure 5.2 as an example). Hence
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little information on the flocculation profile gradient, position and maximum removal 

was available to the estimation technique. By setting the combined system noise term 

initially to zero, no preconception was made that the EKF could determine all three 

model parameters based on a few measurements.

Figure 6.3, illustrates the flow of information during the optimisation and control of the 

batch flocculation process in more detail. The first step in attempting to optimise a 

process is to clearly define the optimisation objectives, put forward some kind of 

performance criteria, formulate the problem mathematically and finally attempt to solve 

it. The objective for the control and optimisation of the batch flocculation process is to 

“maximise the recovery of product and removal of contaminants whilst 
minimising the use of flocculant”. This control objective was met through the 

manipulation of solely the flocculant volume fraction, i.e. a one variable problem. To 

incorporate product, contaminant levels as well as the flocculant volume fraction into a 

single performance function, a weighting factor for each component was introduced. 

The choice of the weighting factors for product, contaminants and flocculant dose 

depend on the cost of the product, purity, and flocculant and the requirements which 

are imposed by the subsequent downstream unit operation. As illustrated by figure 6.3, 

up to date estimates of model parameters from the NLLS and EKF techniques were 

implemented to obtain yield profiles of both product and contaminants. These yield 

functions were multiplied by operator chosen weighting factors, which set a weight on 

the individual contaminants and product according to their importance during the 

recovery/removal of the flocculation process. The performance function was then 

formulated by subtracting the weighted contaminant and flocculant terms from the 

weighted product term, and maximised to obtain the optimum flocculant volume 

fraction. The solution of the maximisation problem was relatively simple due to the one 

variable nature of the function. A differential method could have been applied to reach 

a solution, however in this chapter a searching technique was implemented where 500 

different PEI volume fraction values were examined, the one which rendered the 

highest value in terms of the performance function was selected as the optimum 

flocculant dose. The search range in flocculant volume fraction terms was between 0 

and 0.5 mL mL'1, hence a flocculant volume fraction resolution of 0.001 mL mL'1.
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Weighting factors:
W A D H , W R N A , W protein , 

Wdebris & W PEI

t

Yes
Stop dosing

Sequence of optimisation steps

(1) Y, =f(Aj, B„ Ch X p e i)
i

F (X PEI) = wadhYadh — peiX pei + ̂
i

XpEI_optimum

^  Maximise F(XPEI)

ON/OFF Control

Is
XpEI (k+1) > XpEI_optimUm(k) 

A
y 3_optimum ^  y 3_setpoint ?

No Keep
dosing

XpEI
[0, 0.001...... 0.5]

Actual PEI

Model parameters 
A,(k), Bj(k) &  Cj(k)

(from estimation techniques)

Figure 6.3. O v e rv ie w  o f  th e  p ro c e s s  o p t im is a t io n  a n d  c o n tr o l  s e t-u p . T h e  o p t im is a t io n  

p ro b le m  is  a  o n e  v a r ia b le  p ro b le m  w ith  re s p e c t  to  PEI v o lu m e  fra c t io n  (xPEI). T h e  

w e ig h t  fa c to rs  fo r  ADH, p ro te in , RNA, c e ll d e b r is  a n d  PEI d o s e  are w ADH, wprotem, wrna, 

Wdebris a n d  w PEI. T h e  o p t im u m  PEI v o lu m e  fra c t io n  (xPEIoptimum) m a x im is e s  th e  

p e r fo rm a n c e  fu n c t io n  (F). T h e  Y te rm s  re fe r  to  th e  f lo c c u la t io n  y ie ld  a r r a y  (s p u n  

f lo c c u la te d  s a m p le  a s  a  f ra c t io n  o f  s p u n  fe e d )  w h e n  a p p ly in g  th e  a r r a y  o f  500 PEI 

v o lu m e  fra c t io n  v a lu e s  in  th e  ra n g e  0 - 0.5 m L  m L '1. A, B  & C r e fe r  to  th e  m o d e l  

p a ra m e te rs .  T h e  s u b s c r ip t  i  = 1, 2, a n d  3 r e fe r  to  p r o te in , RNA, a n d  c e l l  d e b r is .  

y 3_oPtimum a n d  y 3_Setpoint r e fe r  to  th e  c e l l  d e b r is  y ie ld  , w h e n  th e  o p t im u m  a n d  a c tu a l PEI 

v o lu m e  f ra c t io n  v a lu e s  a re  a p p lie d . T h e  a b o v e  o p t im is a t io n  a n d  c o n tr o l s e q u e n c e  w a s  

e x e c u te d  fo r  e a c h  n e w  m e a s u re m e n t s te p  k.

The optimum flocculant volume fraction prediction was then fed to the control algorithm 

consisting of a simple ON/OFF switch. The control algorithm compared the latest 

actual flocculant volume fraction (xPEi(k+ l)) to the up to date predicted optimum 

flocculant volume fraction (xPEIoptimum(k)). If the actual flocculant volume fraction was 

greater than the optimum predicted flocculant volume fraction the dosing is terminated, 

given that the secondary control objective was satisfied. During the at-line analysis of 

a sample the dosing of PEI was not terminated. Flence when the information on a 

particular sample became available the actual PEI volume fraction had increased. 

Account was made for this measurement delay by comparing the optimum predicted
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flocculant dose to the up to date actual PEI volume fraction. It should be noted that the 

secondary control objective (insuring a minimum debris removal) was based on the 

predicted debris yield profile.

The secondary control objective was introduced into the control configuration to make it 

more robust and applicable to a real system. The basic optimisation algorithm 

discussed above did not take into account the final level of contaminants remaining in 

solution after the flocculation step. The subsequent downstream operation after the 

flocculation process is usually a packed bed chromatographic step, which is sensitive 

to too high cell debris levels due to column fouling. By including a secondary control 

specification on the acceptable level of contaminant concentration the control 

configuration can be built more robust for actual application. A minimum cell debris 

yield level of 0 . 2  was set as the additional control objective.

6.4 Results
The eight batch runs discussed in chapter 5 will be presented in terms of their at-line 

model parameter predictions, optimisation and control. The first part of this section will 

present the results obtained from the at-line parameter estimation and the subsequent 

predictions of the flocculation profiles for Batch Run1. The Levenberg-Marquardt non­

linear least squares (NLLS) and extended Kalman filter (EKF) will be applied for model 

parameter identification (the abbreviations for these two estimation techniques will be 

used in the rest of this chapter). The second part of this section will present the 

predicted flocculation profiles of batch runs 2  to 8 , underlining the main points of 

interest. Optimum flocculant volume fractions were estimated after each measurement 

step and the profiles determined by both the EKF and NLLS for the eight batch 

operations will be shown. The results from two control configurations will be presented. 

The first control setup applies the optimisation data in combination with a minimum 

specification on cell debris removal as control objectives. The second control 

configuration applies the raw cell debris yield data as the sole control variable. Finally 

an overview of the efficiency of the control configurations for all the batch runs will be 

given.

6.4.1 Rapid model parameter and flocculation profile prediction

Figures 6.4 to 6 . 6  on page 188-190 illustrate the step by step real time estimation of 

model parameters for batch Run1 implementing both the NLLS and EKF techniques. 

The two identification methods implemented the same initial parameter guesses and 

at-line data of both product and contaminant levels. The additional start information
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required by the EKF such as the system and measurement noise terms are listed in 

table 6.1. Note the initial combined system noise term was set to zero. These values

were applied to all of the batch runs.

The trend in model param eter^ prediction for Batch Run1 is illustrated in figure 6.4 on 

page 188. The NLLS estimations were initially more erratic than those from the EKF, 

and after 6-7 data points the predictions became more stable and levelled off to a 

constant value. It can also be observed that the parameter predictions for the 

contaminant curves plateau earlier than those for ADH.

Parameter A gives the operator an indication of the maximum contaminant/product 

removal level, hence at-line information around this area was required before a good 

estimation of this parameter could be made. As RNA, cell debris and protein were 

flocculated and removed earlier in the batch process, more relevant information in

terms of contaminant yield values were initially available for the estimation of

contaminant model parameters. At low PEI volume fraction levels very little information 

in terms of ADH removal was available and hence the levelling off of this parameter 

occurs much later after measurement step 25. The point of parameter A stabilisation 

was dependent on the quality of information rather than the quantity of data points.

The noisy NLLS estimations of parameter A may be attributed to the lack of sufficient 

information of the total flocculation profile. For the 3(2)-Parameter model three 

parameters need to be estimated. During the initial stages of the process run only a 

few measurements were available for the least squares method to perform model 

parameter estimation. For the batch operation these points were all in the same area 

of the flocculation profile and hence contained little information. The erratic nature of 

the NLLS parameter estimations was therefore due to that several combinations of 

parameter sets could fit the initial data points satisfactory.

As discussed in chapter 2, the behaviour of the Kalman filter in estimating model 

parameters is dependent on the correct tuning of Kalman gain and the size of the 

innovation term (difference between the measurement and the model prediction). The 

Kalman gain is a function of several factors, such as the system and measurement 

noise as well as the model derivatives, hence dependent on the position of the 

measurements on the flocculation profile. The system noise relative to the 

measurement noise term, sets a ceiling on the allowable change in model parameter 

prediction and hence prevents erratic estimation behaviour.
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From table 6.1 it can be seen that the system noise term for parameters was relatively 

small, compared to the two other model parameters (B and C ), hence prevented the 

EKF from introducing any large changes in parameter A between estimation steps. 

The EKF behaviour will also change with its position on the flocculation profile, i.e. a 

function of the derivative term (Sy/SA). The derivative term Sy/SA at low volume fraction 

values (measurement steps 0 to 4), will tend to zero which will force the Kalman gain 

weighting factor to approach zero (see appendix C, equation c.2). If the Kalman gain 

term approaches zero, one would reject the newly acquired measurement and simply 

use the nominal value of the model parameter as our estimate, resulting in little change 

in model estimation.

It can also be argued that the “innovation” term, during the first few measurements of 

Batch Run1 was very low. As discussed in chapter 2, if the measurement and the 

model prediction value are similar the innovation term will be small and little adjustment 

is made to the model parameters.

Model parameter B (3(2)-Parameter model), gives the operator an indication of where 

the flocculation profile inflection point occurs (see chapter 2). Figure 6.5, illustrates the 

estimation of model parameter B for both the EKF and NLLS techniques, which were 

similar in terms of the level of their initial erratic behaviour. This was not the case for 

the majority of the batch operations (see appendix B) where the model parameter B 

predictions based on the NLLS exhibited more erratic profiles. It can be argued that 

due to the higher system noise term associated with parameter B (see table 6.1 on 

page 171), larger variations were allowed during the Kalman filter estimation steps. 

The initial variation in the NLLS model parameter estimations were due to the sparse 

available information.

Although the EKF was slightly faster than the least squares technique in predicting 

model parameter B, after 6-7 measurement steps an offset between the two estimation 

methods was observed. It should be noted that the least squares approach applies all 

of the available measurements for parameter identification and attempts to identify 

parameter sets which result in an overall best fit. Due to the re-cursive nature of the 

EKF only the latest measurement is used and the previous data points are represented 

in the Kalman gain term, hence the Kalman filter is more likely to estimate model 

parameters which result in good local fits to the observed values. After 6-7 data points 

any additional measurements gave little information on the behaviour of parameter B 

(which influences the profile inflection point) as the flocculation profile was in the 

maximum removal region (figure 5.2). If model parameter A was estimated correctly,
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the innovation term would approach zero. As seen before if the innovation term is zero 

the estimates of model parameters would not change, hence resulting in the offset 

illustrated in figure 6.5.

The estimation of parameter C, illustrated in figure 6.6 follows the same patterns as 

that of parameter B identification, although the NLLS technique is quite unstable for 

ADH.

6.4.2 Flocculation profile prediction

The at-line graphical representations of Batch Run1 are illustrated in figures 6.7 and 

6 . 8  for the NLLS and EKF parameter predictions. These curves were created by 

implementing the estimated model parameters from the EKF and NLLS techniques and 

simulating the contaminants and product yield profiles. Figures 6.7 and 6 . 8  show the 

outcome of such graphical representation using 5, 7 and 10 at-line data sets. The 

operator can utilise such real time graphical representation to visually determine the 

performance of the batch flocculation process and act upon this information for open 

loop control.

During the NLLS graphical prediction (figure 6.7), one can see that initially (plot (a)), 

the least squares method was poor at predicting the overall flocculation profile, 

although there was a good fit of the data points. The prediction of the maximum 

removal level (related to parameter A) was especially poor for the cell debris profile, 

due to the lack of measurements in this region. After 7 and then 10 data points, plot (b) 

and plot (c), the predictions improved.

Figure 6 .8 , illustrates the graphical predictions using the EKF estimated model 

parameters. Although the predicted profiles describe the flocculation behaviour 

reasonably well even with initially just a few data points, the actual fitting of the 3(2)- 

parameter model to the data points was not as good as that of the NLLS method. 

Figure 6 .8 , plot(b) and plot(c), clearly illustrate that after 6-7 measurements the 

innovation term tended to zero, resulting in no variation or improvement to the model 

parameter estimations.

Figures 6.9 to 6.22 illustrate the graphical representation of batch runs 2 to 8 , using 

both the NLLS and EKF estimations. Similar trends in the NLLS profile predictions to 

those observed for batch Run1 were seen, such as poor initial profile predictions due to 

the lack of data point sets through out the profile. However, as soon as there was
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sufficient information on the lower part of the flocculation curve (the maximum removal 

level), the NLLS method became more effective in predicting the total flocculation 

profile. The EKF filter profile predictions were good with only a few measurement 

points due to their effective use of the model parameter guesses. Again the actual 

fitting of the data points was less efficient than that of the NLLS approach. It should be 

noted that the least squares technique in some cases did not converge (i.e. parameter 

prediction was zero), resulting in no model parameter prediction and hence no 

flocculation profile representation (for example during batch Run5 at measurement step 

15).

Figures 6.13 to 6.16 illustrate the results from batch operations 4 and 5, which highlight 

the initial poor flocculation profile predictions estimated by the NLLS technique. As 

discussed in chapter 5, the stock solution for these runs was diluted 2-fold, pushing the 

apparent optimum flocculation dose to higher volume fraction levels. Although more 

data points were available between the start of the operations and the optimum 

flocculant dose, the NLLS estimation technique predicted correct values for the model 

parameters only after sufficient information on the total flocculation profile was 

available. Information on the maximum removal level was especially required before 

param eter^ could be correctly estimated. Flocculation profile prediction for batch runs 

7 and 8 , illustrate a similar trend, just for a lower resolution of data points. The 

estimation techniques only had approximately 4-5 points available before correct profile 

predictions were required. The number of data points prior to the apparent optimum 

flocculant dose for Batch Run8  was so low that the estimation techniques had great 

difficulties in identifying the model parameters effectively.

The performance of the estimation techniques were also dependent on the initial model 

parameter guesses. For Batch Run8  the guesses for parameter B and C were 

respectively 200% and 130% off their actual values. With such poor initial parameter 

guesses the estimation techniques, especially the EKF had difficulties to converge to 

the correct parameter sets.

6.4.3 Batch optimisation and control

This section will present data obtained from the rapid optimisation and subsequent 

control of the batch processes. Results from the optimisation of the batch runs 

implementing both the EKF and NLLS estimation techniques will be shown. The 

performance of the two control configurations, control configuration 1 and 2  discussed 

in section 6.3 will be analysed. It should be noted that, control configuration 1 aims to
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satisfy two control objectives. Its primary objective was to maximise product recovery 

and contaminant removal for the minimum flocculant dose, whilst the secondary 

objective imposed a minimum requirement on the removal of cell debris.

Figures 6.23 to 6.30 illustrate the behaviour of the at-line optimisation algorithm in 

predicting the optimum PEI dose during each batch run. The objective of the 

optimisation algorithm was to maximise the recovery of product (ADH) and removal of 

contaminants (RNA, protein and cell debris) for the lowest flocculant volume fraction. 

The predicted profiles would be implemented to determine optimum flocculant level for 

a given batch process, as discussed in section 6.3. Weighting factors on the product, 

contaminants and the flocculation volume fraction were introduced in order to group 

these factors together in a single performance function. For all the batch optimisation 

runs the same weighting factors were applied and are listed in the figure legends. The 

weights were chosen so that, ADH followed by the level of cell debris, RNA, the 

flocculant dose and then the protein had the greatest importance.

Figure 6.23, plot b illustrates the behaviour of the predicted optimum flocculant dose 

implementing the EKF and NLLS identification techniques during Batch Run1 for each 

measurement step. As the predicted optima values rely upon on the correct estimation 

of the flocculation profiles, the initial fluctuations seen in figure 6.23 were due to the 

variations in the model parameter estimations. The primary control objective put 

forward in section 6.3 did not take into account the actual level of contaminant removal. 

Hence the main driving force in determining the optimum floe dose was the correct 

estimation of model parameters B and C, as parameter A only informs the operator on 

the level of maximum contaminant removal and not where this position occurs. The 

introduction of the secondary control objective (a minimum acceptable cell debris 

concentration) imposed dependency on parameter A. The offset between the two 

estimation techniques in determining the optimum flocculant dose was due to the offset 

which was found in the estimation of model parameter B and C (figure 6.5 and 6 .6 ).

Figure 6.23, plot a, illustrates the behaviour of the actual PEI dose at measurement 

step k+1 divided by the predicted optima values at measurement step k during Batch 

Run1. This term gives the operator an indication of when to terminate the PEI dosing, 

and will be referred to as the optimisation setpoint or primary setpoint. If the primary 

setpoint was greater or equal to unity the dose rate would be terminated, given that the 

secondary control objective was met. As seen from figure 6.23 if the batch operation 

was controlled using the EKF the dose rate would have been terminated at a PEI 

volume fraction of 0.094 mL mL' 1 (after measurement step 7). For the NLLS based
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configuration the controlled PEI volume fraction would have been 0.105 mL mL ' 1 after 

measurement step 8 . At these flocculant values the cell debris removal level was 

below a yield value of 0.2 (see figure 6.7), hence within the limits of the secondary 

control objective.

Figure 6.25, illustrates the optimisation results for batch Run3. The variation in the 

NLLS optimum dose prediction was again related to the fluctuations in the estimation of 

model parameter B and C, especially for RNA and cell debris (illustrated in appendix 

B). Due to this initial fluctuation the optimum PEI predictions using the NLLS estimator 

were at some points relatively low. Figure 6.25, plot b, illustrates that after 

measurement steps 6  (xPEi(k+1) = 0.045 mL m L'1) the optimum predicted PEI dose 

(xpEi_optimum(k) ~ 0.044 mL mL'1) fell below the actual flocculant level, which resulted in 

the possible termination of the flocculant dosing. The secondary objective was verified 

and it can be seen that at the optimum predicted PEI volume fraction the predicted cell 

debris yield level was below the 20% setpoint (figure 6.11) and PEI dosing would be 

terminated at a PEI volume fraction of 0.053 mL mL' 1 (measurement step 7). If the 

EKF optimum value was adopted as the control setpoint a flocculant volume fraction of 

0.061 mL mL ' 1 would have been chosen.

Figures 6.26 and 6.27 illustrate the optimisation profiles for batch runs 4 and 5. Plot a 

for these two figures show that the optimisation setpoint predicted by the NLLS 

approach was first met after measurement step 5-6 for Run4 and after step 7 for batch 

Run5. However for both of these operations the secondary control objective was not 

satisfied and the dosing rate was continued (see figures 6.13 plot (a) and 6.15 plot (a)). 

After measurement step 13 for batch Run4 and step 14 for batch Run5, both control 

objectives were met and the PEI dosing could be terminated. The optimisation and 

subsequent control profiles for the EKF based approach were smoother, and the 

secondary control objective was always met if the optimisation objective was triggered. 

This may be due to the EKF’s less erratic manner in estimating model parameters.

Figure 6.30, illustrates the optimisation profiles for batch Run8 . Due to the fast dosing 

rate, low ionic strength and pH conditions the resolution of data points are low 

compared to the previous batch operations. The low number of data points prior to the 

apparent optimum flocculant dose and the poor initial parameter guesses made model 

parameter and hence flocculation profile predictions very difficult. The optimisation and 

control of this process was therefore relatively poor and as discussed below an 

overdose was seen for both estimation techniques.
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6.4.4 Performance of the control configurations

Figure 6.31, illustrates the performance of the control configurations for the 8  batch 

operations in terms of their ability to target the optimum flocculant setpoint. The overall 

optimum PEI volume fraction setpoint was defined as the flocculant dose which 

maximised the recovery of product, removal of contaminants for the lowest flocculant 

dose as well as insuring that at least 80% of the cell debris has been removed. The 

optimum setpoints (— ) were determined by implementing the optimisation algorithm 

using all of the available data points and the NLLS estimation method. As this 

identification technique takes into account all of the data and attempts to reach the best 

overall fit it was chosen as the overall target.

Control configuration 1 adopting the NLLS estimator (□) tended to regulate the PEI 

dose well, although a constant overdose was seen for the majority of the batch runs. 

This overdose was due to that the NLLS technique was slightly slower at reaching 

correct estimates of the flocculation profiles.

Control configuration 1 implementing the EKF (o) estimator performed similar to that of 

the NLLS based approach, however the controlled PEI dose was more scattered 

around the optimum setpoint.

The dotted horizontal line on figure 6.31, refers to the average optimum PEI value 

applying all eight batch runs. If such a flocculant dose was implemented a PEI 

overdose would be the outcome for batch runs 2, 3, 7 and 8  and for batch runs 4 and 5 

too little flocculant would have been applied resulting in inadequate contaminant 

removal (see figure 6.33).

The control configuration 2 (0) (simple cell debris based control configuration) yielded 

in general lower flocculant dose control values to that of control configuration 7, 

especially during batch Run7. This was seen as the cell debris data tended to reach 

below 0 . 2  yield values prior to the optimum flocculant dose, which attempted to 

maximise the removal of all the contaminants. For batch Run8  it can be seen that 

control configuration 2 yielded a better controlled flocculant dose. This can be 

attributed to the difficulty in parameter prediction for this run and hence the poor 

performance of the model based optimisation control algorithm.

Figure 6.32, illustrates the performance of the control configurations in terms of their 

ability to target the optimum flocculant setpoint quantitatively. Plot (a) shows the
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percentage difference between the setpoints and controlled PEI values for four different 

control scenarios. Plot (b), illustrates the same difference however in terms of PEI 

volume fraction levels. The four different scenarios refer to the type of control 

configuration applied. From figure 6.32 it can be seen that if an average PEI dose was 

used as the flocculant control value, most of the batch runs would be operated 

unsatisfactory. For batch runs 4 and 5 such control resulted in PEI under dosing of 

20% - 40% and hence a very poor removal of contaminants was seen (see figure 6.33). 

The average flocculant dose offset from the optimum setpoint was approximately 29% 

or a 0.028 mL mL' 1 in terms of PEI volume fraction. Batch Run8  was not included in 

this average value. Control configuration 1 implementing the EKF and NLLS 

performed similarly, with an average PEI dose offset of only 8 % (not including Batch 

Run8 ) from the optimum setpoint and in flocculant volume fractions terms this was 

0.008 - 0.009 mL mL'1. Due to the relatively infrequent sampling during the batch 

operations, the PEI volume fraction step change between measurements was 

approximately 0.01 mL mL"1. Comparing this value to the PEI offset for control 

configuration 1, based on the EKF and NLLS it may be concluded that good control 

was achieved. The PEI volume fraction terms controlled by control configuration 2, 

yielded in general an under dose in flocculant of approximately 16% or 0.017 mL mL ' 1 

in terms of flocculant volume fraction. Compared to the optimum flocculant setpoint the 

performance of this control configuration was not as effective as control configuration 1. 

However compared with the use of an average flocculant dose the control configuration 

2 performed better.

During the control of Batch Run8  we see that control configuration 1 implementing both 

the NLLS and EKF over estimated the flocculant dose by 120% and 60%. As 

discussed earlier the operational conditions applied during batch Run8 , made model 

parameter estimation and hence optimisation and control difficult. The performance of 

a control configuration is very much influenced by the conditions under which one 

chooses to operate a given process. When a constant average PEI dose was applied 

as the controlled flocculant level for Batch Run8  the outcome was even worse than that 

of control configuration 1. Control configuration 2 was the most effective control 

system for this batch operation as it did not rely on model parameter predictions and 

utilised the raw cell debris data directly.

Figure 6.33 illustrates the performance of the control configurations in terms of their 

ability to remove contaminants. When control configuration 1 was applied 

implementing either the NLLS or EKF estimation techniques close to optimum 

contaminant removal was achieved for all the batch runs. Flocculant control based on
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control configuration 2 saw close to optimum protein removal levels (apart from batch 

run 1 and 5). However in terms of RNA and cell debris yield values this simple control 

configuration performed sub-optimally for many of the batch runs. Although the 

specification on the allowable cell debris yield was set at 0 . 2  (80% removal based on 

spun feed), it can be seen that for batch runs 2, 6  and 7 further debris removal was 

possible. If an average PEI volume fraction was applied the performance in terms of 

contaminant removal was relatively good, apart from batch runs 4 and 5 where 

approximately 60% of the cell debris was still in solution.

6.5 Discussion
The behaviour of model parameter identification using the EKF or NLLS techniques 

was a function of several interrelated factors. For the NLLS method the number of 

measurements and their position on the flocculation curve was important for good at- 

line data fitting. During EKF model parameter predictions the tuning of the Kalman 

gain and the value of the innovation term dictated the behaviour of the Kalman filter 

estimations. The Kalman gain was in turn a function of multi-component interactions, 

including the relative magnitudes of the system and measurement noise levels, the 

initial guess of the combined system noise term and the position of the measurements 

on the flocculation profile (derivative terms).

We have seen that the prediction of model param eter^, which informs the operator on 

the optimum level of contaminant removal was directly dependent on the number of 

measurements available in this area and the accuracy of the initial parameter guesses. 

A similar trend was found for the prediction of model parameter B and C. During batch 

operation the first set of measurements were taken at low flocculant volume fraction 

levels, resulting in flocculation yield values close to unity. Hence little information on 

the flocculation profile gradient, position and maximum removal was available to the 

estimation techniques. The operating mechanism of a batch flocculation process 

therefore affected the estimation technique’s ability to rapidly predict the model 

parameters.

The at-line estimation of model parameters was implemented to create a graphical 

representation of the overall flocculation profile for each contaminant and product. The 

behaviour of the flocculation profile predictions was directly dependent on the correct 

estimation of model parameters. Hence variations in parameter estimations yielded 

fluctuations in profile predictions. This was seen especially for the NLLS identification 

technique, where initially very poor predictions were seen due to poor estimates of 

model parameter^. The EKF based estimations were less erratic resulting in relatively
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good predictions of the total flocculation profiles. However as more data points 

became available, the NLLS technique started to predict more accurate model 

parameter estimates, resulting in better profile predictions. The flocculation profile 

predictions may be applied as a graphical tool to visually inform the operator on the 

outcome of the batch flocculation process in real time. This information can be used to 

drive the process to critical operating areas for better process understanding or applied 

for open loop control whereby the operator regulates the process conditions in order to 

achieve certain process objectives, such as good contaminant removal.

One of the main advantages of implementing the Kalman filter is that the at-line 

computation load is low, compared to that required by a NLLS technique. If the EKF is 

well tuned the performance of such an estimator is ideal, as it accounts for both the in­

accuracy of the model and measurement noise. The ability to tune the EKF for a 

particular system enables the operator more flexibility. For example the tuning of the 

EKF could be geared so that parameter changes are small between estimation steps. 

However for poorly defined systems, the advantages of the Kalman filter are less 

prominent. One of the main problems with applying such an estimation technique is 

that there are no straightforward guidelines for optimal tuning of the Kalman filter. Filter 

tuning is specific to individual processes and usually requires preliminary computer 

simulations. The tuning of the EKF is a function of many factors such as, the 

measurement noise, system noise, complexity of the model, the position of the 

measurements on the model profile, the level of expected change from batch to batch 

and within batch operations and the frequency of data points.

The main benefits of the NLLS are that it is a simple parameter identification technique 

to apply and it is included in most analysis software packages. Several authors 

(Ramamurthi et al. 1993, Holwill et al. 1997) have argued that one main disadvantage 

in implementing such a technique is the high computational load. For a process with 

relatively slow monitoring systems a few data points are acquired throughout a run and 

hence the computational load is not seen to be a constraint.

Closed loop control of the batch operations has the benefit of being fully automated 

and therefore not reliant on operator based decisions, which are susceptible to 

variation. Supervisory control will also enable the introduction of optimisation 

algorithms, in order to reproducibly regulate the batch process to ideal operating 

conditions. Two closed loop control configurations were examined and their ability to 

regulate the flocculant dosing during batch flocculation was compared in terms of 

contaminant removal and product recovery.
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The two control configurations differed in their complexity and control objectives. The 

first control setup (control configuration 1) attempted to optimise the flocculant dose 

{primary control objective) by finding the lowest PEI volume fraction which would 

maximise product recovery and contaminant removal, given that at least 80% of the 

cell debris was removed {secondary control objective). The secondary control 

objective on the cell debris removal was introduced to guarantee that the product 

stream was suitable for loading on to for example a packed bed chromatography 

column. The primary control objective was determined through the maximisation of a 

performance function, which combined the product and contaminant flocculation 

profiles as well as the flocculant dose through the use of weighting factors. As the 

optimisation problem was a function of the flocculation profiles, the behaviour of the 

optimisation and subsequent control configurations were directly dependent on the 

trend in model parameter prediction implementing either the EKF or the NLLS 

estimation techniques. Due to the initially erratic nature of the NLLS estimation 

approach, the optimisation profile was slightiy noisy especially for a low number of data 

points. We have seen that due to this initial fluctuations in the prediction of optimum 

flocculant levels, that in some cases the primary control objective would be met 

prematurely and only with the help of the second control objective would the batch 

operation be operated satisfactory.

The operator chosen weighting factors adopted during the optimisation algorithm, 

allowed the prioritisation of the removal of specific contaminants. The weighting factors 

in this chapter were chosen so that the optimisation algorithm put most weight on ADH, 

cell debris, RNA, flocculant dose and then protein. One of the benefits of the 

optimisation setup is its flexibility. If for example the subsequent downstream operation 

was a filtration step, the weighting factors could be chosen to suit this unit operation’s 

ideal feed conditions. Additional manipulative variables could also be introduced into 

the optimisation algorithm allowing for the optimisation of the flocculation process in 

terms of the flocculant dose, pH and ionic strength. Real time control of these 

manipulative variables, may be a too difficult task during the batch process but for 

batch to batch operations this may be feasible. Although the optimisation based 

control configuration {control configuration 1), may initially result in fluctuations due to 

variations in model parameter estimates, its ability to reproducibly optimise the batch 

flocculation process according to the requirements of the subsequent unit operation is 

a strong factor which promotes its use. Due to the good recovery of the product ADH 

during the batch flocculation the full benefits of this more complex control setup were 

not further highlighted. Which of the estimation techniques to apply for this control
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configuration is a function of several factors as discussed above. For well known 

systems with small fluctuations between batch operations an EKF based system 

should be adopted. For systems which are less known and where within a batch, 

disturbances are minimal the NLLS will always eventually guarantee good predictions 

as more data points become available. However for a batch system where over dosing 

is crucial to avoid, the EKF’s ability to rapidly predict the main trends in the flocculation 

profile with a few data points would be of great advantage.

The control configuration using the raw cell debris data as the sole control variable 

{control configuration 2 ), performed relatively well in terms of contaminant removal and 

did meet its 80% cell debris control objective for most of the batch operations. The 

benefits of such a control system is its ease of use and implementation. However with 

noisy measurements such a control system would be susceptible to instability. 

Although this control approach did not optimise a given batch operation in terms of the 

removal of all the contaminants this criteria need not be crucial for a unit operation so 

early in the recovery sequence. By comparing the above control configurations to the 

application of an average flocculant dose, it can be concluded that both control 

systems were superior to using a predetermined fixed value in terms of flocculant 

control for contaminant removal and product recovery given batch to batch 

disturbances. If the resolution of data points during batch operations become higher 

one should expect the performance of the control configurations to improve, especially 

for the cases which yielded a slight overdose in the controlled PEI volume fraction. 

The batch Run8  example illustrated that the manner of process operation can have a 

great influence on the performance of a control system, hence during the design of an 

unit operation this should be taken into account.

6.6 Conclusion
The at-line data for eight batch runs was used for real-time flocculation process 

characterisation, optimisation and control. Predicted model parameters were used to 

give the operator a graphical representation of the flocculation behaviour, which could 

be implemented as a visual aid for open loop control. Two model parameter estimation 

techniques were examined and it was concluded that the optimum method to apply 

was a function of several factors, such as the knowledge of the process, level of 

measurement noise, frequency of data points and level of batch to batch and within 

batch fluctuations.

Two closed loop control configurations were examined, which utilised different control 

objectives and level of complexity. A control configuration attempting to optimise the
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removal of contaminants and recovery of product for the minimum flocculant dose, 

given that at least 80% of the cell debris in the spun feed was removed was examined. 

This approach utilised weighting factors to prioritise the importance of the individual 

contaminants, product and concentration of flocculant. These weighting factors could 

be chosen so that the control configuration attempted to control the batch flocculation 

in order to reach conditions ideal for the subsequent unit operation. The optimisation 

algorithm required a model of the flocculation process and hence both the EKF and 

NLLS methods were looked into for model parameter predictions for each newly 

acquired measurements. Good control to optimum operating conditions was achieved 

implementing both estimation techniques with on average 92% accuracy. The NLLS 

based approach tended to control the PEI volume fraction to a slight overdose, due to 

its slower ability to predict the correct model parameters than that of the EKF. A 

control configuration applying raw cell debris yield data as the sole control variable was 

also examined. This approach would terminate the flocculant dosing when the cell 

debris yield level was below a setpoint of 0 .2 , i.e. at least 80% removal of cell debris 

based on spun feed. The performance of this control setup was relatively good 

although it did not optimise the removal of all the contaminants. However for unit 

operations where tight control is not required and measurement noise is low such a 

control system would be adequate.

At-line time monitoring of both product and key contaminants was achieved in chapter 

5. This chapter has shown how such real time information may be applied to improve 

the operation of the batch flocculation process either through open or closed loop 

control. Although the later control system required the use of relatively complex control 

algorithms, it would enable process automation and the possibility of reproducibly 

optimising the batch operation.
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Figure 6.4. Estimation o f model parameter A for RNA, protein, cell debris and ADH  

flocculation profiles through the extended Kalman filter and Lavenberg-Marquant non­

linear least squares techniques for Batch Run 1. The model parameter initial guesses, 

measurement and system noise terms are listed in table 6.1 (p. 171).
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Figure 6.5. Estimation o f model parameter B for RNA, protein, cell debris and ADH 

flocculation profiles through the extended Kalman filter and Lavenberg-Marquant non­

linear least squares techniques for Batch Run 1. The model parameter initial guesses, 

measurement and system noise terms are listed in table 6.1
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Figure 6.6. Estimation o f model parameter C for RNA, protein, cell debris and ADH  

flocculation profiles through the extended Kalman filter and Lavenberg-Marquant non­

linear least squares techniques for Batch Run 1. The model parameter initial guesses, 

measurement and system noise terms are listed in table 6.1
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points. The initial guesses for the model parameter are listed in table 6.1.
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Figure 6.8. Rapid characterisation o f the flocculation profiles using the extended 

Kalman filter for Batch R u n t The symbols refer to RNA (A) ,  protein ( M),  cell debris ( 

# )  and ADH ( 0 ) .  Plots a, b and c illustrate the profiles ( — ) o f contaminants and 

product predicted using the first 5, 7 and 10 data points. The initial guesses for the 

model parameter are listed in table 6.1.
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Figure 6.9. Rapid characterisation o f the flocculation profiles using the Levenberg- 

Marquardt non-linear least squares technique for Batch Run2. The symbols refer to 

RNA (A) ,  protein ( M ), cell debris ( A )  and ADH ( 0 ) .  Plots a, b and c illustrate the 

profiles ( — ) o f contaminants and product predicted using the first 5, 7 and 10 data 

points. The initial guesses for the model parameter are listed in table 6.1.
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Figure 6.10. Rapid characterisation o f the flocculation profiles using the extended 

Kalman filter for Batch Run2. The symbols refer to RNA ( A ) ,  protein ( M) ,  cell debris 

( A )  and ADH ( # ) .  Plots a, b and c illustrate the profiles ( — ) o f contaminants and 

product predicted using the first 5, 7 and 10 data points. The initial guesses for the 

model parameter are listed in table 6.1.
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Figure 6.11. Rapid characterisation o f the flocculation profiles using the Levenberg- 

Marquardt non-linear least squares technique for Batch Run3. The symbols refer to 

RNA (A) ,  protein ( M),  cell debris ( A )  and ADH ( 0 ) .  Plots a, b and c illustrate the 

profiles ( — ) o f contaminants and product predicted using the first 5, 7 and 10 data 

points. The initial guesses for the model parameter are listed in table 6.1.
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Figure 6.12. Rapid characterisation o f the flocculation profiles using the extended 

Kalman filter for Batch Run3. The symbols refer to RNA ( A) ,  protein ( M ) ,  cell debris 

( A )  and ADH ( 0 ) .  Plots a, b and c illustrate the profiles ( — ) o f contaminants and 

product predicted using the first 5, 7 and 10 data points. The initial guesses for the 

model parameter are listed in table 6.1.

Page 196



control ana optimisation or tne Datcn tioccuiation process

Q )
JD

O
(/)
O)
c

’c
'03
E
0i—
c

.2
o
03

15 points

0.5

10 Points

5 Points
0 . 0

0.00 0.05 0.10 0.15 0.20

PEI volume fraction (mL mL'1)

Figure 6.13. Rapid characterisation o f the flocculation profiles using the Levenberg- 

Marquardt non-linear least squares technique for Batch Run4. The symbols refer to 

RNA (A) ,  protein ( M),  cell debris ( A )  and ADH ( 0) .  Plots a, b and c illustrate the 

profiles ( — ) o f contaminants and product predicted using the first 5, 10 and 15 data 

points. The initial guesses for the model parameter are listed in table 6.1.
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Figure 6.14. Rapid characterisation o f the flocculation profiles using the extended 

Kalman filter for Batch Run4. The symbols refer to RNA ( A) ,  protein ( M) ,  cell debris 

( A )  and ADH ( # ) .  Plots a, b and c illustrate the profiles ( — ) o f contaminants and 

product predicted using the first 5, 10 and 15 data points. The initial guesses for the 

model parameter are listed in table 6.1.
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Figure 6.15. Rapid characterisation o f the flocculation profiles using the Levenberg- 

Marquardt non-linear least squares technique for Batch Run5. The symbols refer to 

RNA {A) ,  protein ( U) ,  cell debris ( A )  and ADH ( 0) .  Plots a, b and c illustrate the 

profiles ( — ) o f contaminants and product predicted using the first 7, 10 and 15 data 

points. The initial guesses for the model parameter are listed in table 6.1.
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Figure 6.16. Rapid characterisation o f the flocculation profiles using the extended 

Kalman filter for Batch Run5. The symbols refer to RNA (A) ,  protein ( M) ,  cell debris 

( A )  and ADH ( 0) .  Plots a, b and c illustrate the profiles ( — ) o f contaminants and 

product predicted using the first 5, 10 and 15 data points. The initial guesses for the 

model parameter are listed in table 6.1.
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Figure 6.17. Rapid characterisation o f the flocculation profiles using the Levenberg- 

Marquardt non-linear least squares technique for Batch Run6. The symbols refer to 

RNA (A) ,  protein ( M) ,  cell debris ( A )  and ADH ( 0) .  Plots a, b and c illustrate the 

profiles ( — ) o f contaminants and product predicted using the first 7, 10 and 15 data 

points. The initial guesses for the model parameter are listed in table 6.1.
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Figure 6.18. Rapid characterisation o f the flocculation profiles using the extended 

Kalman filter for Batch Run 6. The symbols refer to RNA ( A) ,  protein ( M ), cell debris 

( A )  and ADH ( # ) .  Plots a, b and c illustrate the profiles ( — ) o f contaminants and 

product predicted using the first 5, 10 and 15 data points. The initial guesses for the 

model parameter are listed in table 6.1.

7 Points

Page 202



ooniroi ana optimisation or me Datcn noccuiation process

1.0

0.5
. o
_3

8  o.o
I 5 1 .0

"c
03
E
2 0.5
co
o
2  0 . 0L L

1 .0

0.5

0 . 0
0.00 0.05 0.10 0.15

PEI volume fraction (ml. ml.'1)

Figure 6.19. Rapid characterisation o f the flocculation profiles using the Levenberg- 

Marquardt non-linear least squares technique for Batch Run7. The symbols refer to 

RNA (A) ,  protein ( M),  cell debris ( A )  and ADH ( 0) .  Plots a, b and c illustrate the 

profiles ( — ) o f contaminants and product predicted using the first 7, 10 and 15 data 

points. The initial guesses for the model parameter are listed in table 6.1.
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Figure 6.20. Rapid characterisation o f the flocculation profiles using the extended 

Kalman filter for Batch Run7. The symbols refer to RNA ( A ) ,  protein { M ) ,  cell debris 

( A )  and ADH ( 0) .  Plots a, b and c illustrate the profiles ( — ) o f contaminants and 

product predicted using the first 5, 10 and 15 data points. The initial guesses for the 

model parameter are listed in table 6.1.
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Figure 6.21. Rapid characterisation o f the flocculation profiles using the Levenberg- 

Marquardt non-linear least squares technique for Batch Run8. The symbols refer to 

RNA ( A ) ,  protein ( M),  cell debris ( A )  and ADH ( 0) .  Plots a, b and c illustrate the 

profiles ( —  ) o f contaminants and product predicted using the first 7, 10 and 15 data 

points. The initial guesses for the model parameter are listed in table 6.1.
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Figure 6.22. Rapid characterisation o f the flocculation profiles using the extended 

Kalman filter for Batch Run8. The symbols refer to RNA ( A ) ,  protein ( M) ,  cell debris 

( A )  and ADH ( # ) .  Plots a, b and c illustrate the profiles ( —  ) o f contaminants and 

product predicted using the first 5, 10 and 15 data points. The initial guesses for the 

model parameter are listed in table 6.1.
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Figure 6.23. Real time optimisation o f Batch Run1, implementing EKF and NLLS 

estimation techniques, in terms o f PEI volume fraction.

P lo t a. Actual PEI volume fraction at step k+1 (xPEI Actuai(k+ l)) divided by the predicted 

optimum PEI dose (xPEI optimum (k)) at step k versus o f the actual flocculant volume

fraction, where k refers to the measurement step. The dashed line ( ------) indicates

where xPEi_Actuai(k+l) = xPEj_optimum (k).

P lo t b. Predicted optimum PEI volume fraction levels implementing the EKF and NLLS 

estimation techniques for each newly acquired measurement set. The optimisation 

procedure was illustrated in figure 6.3 on page 173. The weighting factors imposed on 

the productf contaminant and PEI dose were wadH = 0.5, wRNA = 0.1, wProtei„ = 0.05, wDebris 

= 0.25 and wPEI = 0.1. The initial guesses for the model parameter and covariance

constants for the EKF are listed in table 6.1. The dashed line (-------) refers to the

actual PEI volume fraction level.
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Figure 6.24. Real time optimisation o f Batch Run2, implementing EKF and NLLS 

estimation techniques, in terms o f PEI volume fraction.

P lo t a. Actual PEI volume fraction at step k+1 (xPEi Actuai(k+1)) divided by the predicted 

optimum PEI dose (xPEI optimum (k)) at step k versus o f the actual flocculant volume

fraction, where k refers to the measurement step. The dashed line ( ------) indicates

where xPEIActuai(k+1) = xPEI oPtimum (k).

P lo t b. Predicted optimum PEI volume fraction levels implementing the EKF and NLLS 

estimation techniques for each newly acquired measurement set. The optimisation 

procedure was illustrated in figure 6.3. The weighting factors imposed on the product, 

contaminant and PEI dose were wabh = 0.5, wRNA = 0.1, wProtein = 0.05, wDebris = 0.25 and 

wpei = 0.1. The initial guesses for the model parameter and covariance constants for 

the EKF are listed in table 6.1. The dashed line ( - - - - )  refers to the actual PEI volume 

fraction level.
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Figure 6.25. Real time optimisation o f Batch Run3, implementing EKF and NLLS 

estimation techniques, in terms o f PEI volume fraction.

P lo t a. Actual PEI volume fraction at step k+1 (xPEI Actuai(k+ l)) divided by the predicted 

optimum PEI dose (xPEI optimum (k)) at step k versus o f the actual flocculant volume

fraction, where k refers to the measurement step. The dashed line ( ------) indicates

where xPEi_ACtuai(k+1) — xPEj optimum (k).

P lo t b. Predicted optimum PEI volume fraction levels implementing the EKF and NLLS 

estimation techniques for each newly acquired measurement set. The optimisation 

procedure was illustrated in figure 6.3. The weighting factors imposed on the product, 

contaminant and PEI dose were wadH = 0.5, wRNA = 0.1, wProtein = 0.05, wDebris = 0.25 and 

wPEi - 0 .1 .  The initial guesses for the model parameter and covariance constants for 

the EKF are listed in table 6.1. The dashed line (—  -) refers to the actual PEI volume 

fraction level.
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Figure 6.26. Real time optimisation o f Batch Run4, implementing EKF and NLLS 

estimation techniques, in terms o f PEI volume fraction.

P lo t a. Actual PEI volume fraction at step k+1 (xPE1Aduai(k+1)) divided by the predicted 

optimum PEI dose (xPEI oplimum (k)) at step k versus o f the actual flocculant volume

fraction, where k refers to the measurement step. The dashed line ( ----- ) indicates

where xPEj Actuai(k+1) = xPEI optimum (k).

P lo t b. Predicted optimum PEI volume fraction levels implementing the EKF and NLLS 

estimation techniques for each newly acquired measurement set. The optimisation 

procedure was illustrated in figure 6.3. The weighting factors imposed on the product, 

contaminant and PEI dose were wADH = 0.5, w^a = 0.1, wPmlem = 0.05, wDehris = 0.25 and 

wPEI = 0.1. The initial guesses for the model parameter and covariance constants for 

the EKF are listed in table 6.1. The dashed line (—  -) refers to the actual PEI volume 

fraction level.
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Figure 6.27. Real time optimisation o f Batch Run5, implementing EKF and NLLS 

estimation techniques, in terms o f PEI volume fraction.

P lo t a. Actual PEI volume fraction at step k+1 (xPE] Aclvai(k+1)) divided by the predicted 

optimum PEI dose (xPE1 oplimwn (k)) at step k versus o f the actual flocculant volume

fraction, where k refers to the measurement step. The dashed line ( ----- ) indicates

where xPEj  Achiai(k+1) = xPEj oplimwn (k).

P lo t b. Predicted optimum PEI volume fraction levels implementing the EKF and NLLS 

estimation techniques for each newly acquired measurement set. The optimisation 

procedure was illustrated in figure 6.3. The weighting factors imposed on the product, 

contaminant and PEI dose were wADH = 0.5, w,WA = 0.1, wProtein = 0.05, wDehris = 0.25 and 

wPE] = 0.1. The initial guesses for the model parameter and covariance constants for

the EKF are listed in table 6.1. The dashed line (-------) refers to the actual PEI volume

fraction level.
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Figure 6.28. Real time optimisation o f Batch Run6, implementing EKF and NLLS 

estimation techniques, in terms o f PEI volume fraction.

P lo t a. Actual PEI volume fraction at step k + 1  (xPEi_A ctuai(k+ l)) divided by the predicted 

optimum PEI dose (xPFj  oplinwm (k ) )  at step k  versus of the actual flocculant volume

fraction, where k refers to the measurement step. The dashed line ( ------) indicates

where xi>F] Acluai(k+1) = xPFj optimum (k ).

P lo t b. Predicted optimum PEI volume fraction levels implementing the EKF and NLLS 

estimation techniques for each newly acquired measurement set. The optimisation 

procedure was illustrated in figure 6.3. The weighting factors imposed on the product, 

contaminant and PEI dose were wADH = 0.5, wmA = 0.1, wProtem = 0.05, wDehris = 0.25 and 

wPE, = 0.1. The initial guesses for the model parameter and covariance constants for

the EKF are listed in table 6.1. The dashed line (-------) refers to the actual PEI volume

fraction level.
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Figure 6.29. Real time optimisation of Batch Run7, implementing EKF and NLLS 

estimation techniques, in terms of PEI volume fraction.

P lo t a. Actual PEI volume fraction at step k+1 (xPE1 Acniai(k+1)) divided by the predicted 

optimum PEI dose (xPEIopUmum (k)) at step k versus of the actual flocculant volume

fraction, where k refers to the measurement step. The dashed line ( ------) indicates

where xPEj Ac/uai(k̂ ~ 1) — xPEj optimum (k).

P lo t b. Predicted optimum PEI volume fraction levels implementing the EKF and NLLS 

estimation techniques for each newly acquired measurement set. The optimisation 

procedure was illustrated in figure 6.3. The weighting factors imposed on the product, 

contaminant and PEI dose were wADH = 0.5, wmA = 0.1, wPmlein = 0.05, wDehnx = 0.25 and 

wPEI - 0 .1 .  The initial guesses for the model parameter and covariance constants for

the EKF are listed in table 6.1. The dashed line (-------) refers to the actual PEI volume

fraction level.
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Figure 6.30. Real time optimisation o f Batch Run8, implementing EKF and NLLS 

estimation techniques, in terms o f PEI volume fraction.

P lo t a. Actual PEI volume fraction at step k+1 (xPEi Acmai(k+1)) divided by the predicted 

optimum PEI dose (xPEI oplimwil (k)) at step k versus o f the actual flocculant volume

fraction, where k refers to the measurement step. The dashed line ( ------) indicates

where xPEI Acmai(k+1) = xPE! optimum (k).

P lo t b. Predicted optimum PEI volume fraction levels implementing the EKF and NLLS 

estimation techniques for each newly acquired measurement set. The optimisation 

procedure was illustrated in figure 6.3. The weighting factors imposed on the product, 

contaminant and PEI dose were wADH = 0.5, wIWA = 0.1, wProlem = 0.05, wDehris = 0.25 and 

wPEI = 0.1. The initial guesses for the model parameter and covariance constants for

the EKF are listed in table 6.1. The dashed line (-------) refers to the actual PEI volume

fraction level.
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Figure 6.31. Performance of the batch control configurations in terms of controlling the 

PEI dose to the optimum flocculant level. The below symbols refer to controlled PEI 

levels implementing a specific control configuration and the PEI dosing was terminated 

when their control objectives were met for each newly acquired measurement set.

( —  ) Is the optimum flocculant setpoint determined using the optimisation algorithm 

illustrated in figure 6.3, applying all the available measurements and the NLLS 

estimator.

( 0 ) Controlled to a setpoint o f at least 80% cell debris removal based on spun feed 

(control configuration 2).

( o  ) Controlled to optimise the batch operations according to the optimisation algorithm 

illustrated in figure 6.3, implementing the EKF (control configuration 1 with EKF).

( □  ) Controlled to optimise the batch operations according to the optimisation algorithm 

illustrated in figure 6.3, implementing the NLLS (control configuration 1 with NLLS).

(— ) The horizontal dotted line refers to the average optimum volume fraction of all 

eight batch runs.
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Figure 6.32. Quantitative performance o f the batch control configurations in terms of 

controlling the PEI dose to various optimum flocculant setpoints. P lo t a. Percentage 

difference between the controlled and optimum flocculant setpoint. P lo t b. Difference 

between the controlled and optimum flocculant setpoint in terms of PEI volume fraction. 

The below symbols refer to the different control configurations applied.

( \ I ) Controlled to optimise the batch operations according to the optimisation 

algorithm illustrated in figure 6.3, implementing the NLLS estimator.

( i i ) Controlled to optimise the batch operations according to the optimisation 

algorithm illustrated in figure 6.3, implementing the EKF estimator.

( t t  ) Controlled to a setpoint o f at least 80% cell debris removal based on spun feed. 

(E3 )Controlled to a constant flocculant dose based on the average optimum PEI dose 

of all eight batch runs.
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F igure 6.33. Performance o f the batch flocculation control configurations in terms of 

contaminant removal. The below symbols refer to the different control configurations 

applied. The contaminant yield values were calculated by substituting the controlled 

PEI levels determined in figure 6.31 into the 3(2)-parameter model. The parameters 

applied are listed in table 5.3 (p. 157).

( — ) Optimum removal level based on model parameter A (see table 5.3).

( u )  Controlled to optimise the batch operations according to the optimisation algorithm 

illustrated in figure 7.3, implementing the NLLS estimator (control configuration 1).

( o  ) Controlled to optimise the batch operations according to the optimisation algorithm 

illustrated in figure 7.3, implementing the EKF estimator (control configuration 1) .

( 0 ) Controlled to a setpoint of at least 80% cell debris removal based on spun feed 

(control configuration 2) .

( + ) Controlled to a constant flocculant dose based on the average optimum PEI dose 

of all eight batch runs.
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Chapter 7

Rapid monitoring and characterisation of 

the continuous flocculation process

7.1 Summary

Real time measurements of product and key contaminants for three continuous 

flocculation processes will be presented. The rapid measurements were implemented 

for flocculation profile characterisation adopting the Levenberg-Marquardt non-linear 

least squares (NLLS) and extended Kalman filter (EKF) model identification 

techniques. The primary objectives put forward were the speed and stability in which 

the continuous flocculation process could be characterised. Two searching methods 

were investigated in terms of how different sequences of at-line information would 

influence the behaviour of model parameter estimations. A sequential and controlled 

search technique was examined and it was concluded that by applying a more 

structured and intelligent use of the at-line data the characterisation of the flocculation 

process could be improved.

7.2 Introduction

In the previous chapters the ability to monitor the batch flocculation process in terms of 

both product and key contaminants and the subsequent characterisation using a 

mathematical description (3(2)-parameter model) was demonstrated. It was also 

shown that by implementing at-line model parameter estimations, flocculation profile 

predictions could be used to optimise the batch processes reproducibly.

This chapter will evaluate the performance of two estimation techniques (NLLS and 

EKF) for at-line model parameter identification for the continuous flocculation process. 

During the continuous flocculation operating mode the level of flocculant may be varied 

freely by altering the flowrate ratio between the feed homogenate and PEI streams. 

Hence flocculant overdosing was not seen as a major problem as the possibility of 

reducing the PEI volume fraction was present. Emphasis was put on the speed and 

stability of process characterisation.
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7.3 Searching methods for flocculation characterisation

This section will discuss the rapid characterisation methods adopted in this chapter.

F ig u r e  7 .1  illustrates the rapid process monitoring and characterisation configuration 

applied. Real time data was acquired through the rapid monitoring set-up described in 

chapter 3. The at-line information on both product and key contaminants was fed to 

two model parameter identification techniques; the Levenberg-Marquardt non-linear 

least squares (NLLS) method and extended Kalman filter (EKF) for model parameter 

prediction. The identification techniques implemented the 3(2)-parameter flocculation 

model (equation 7.1), in order to estimate model parameters for each newly acquired 

data point.

where Ej and E0 are the component (product and contaminants) concentrations before 

and after flocculation. In both cases the suspension has been treated by a solid-liquid 

separation step. The variable x is a measure of the flocculant dose and the model 

parameters A, B and C are dependent on system conditions (chapter 2).

After each monitoring step the estimated model parameters were applied to create 

flocculation yield curves and the operator could select the appropriate flocculant dose 

to either control the process to reach optimum conditions or to investigate additional 

operating areas to further characterise the process. This operating choice was 

dependent on the accuracy of the flocculation profile predictions. This work judged the 

prediction performance on the level of parameter estimation change. If this was low 

between iterations it was assumed that appropriate characterisation was achieved and 

no additional data points were required. Process optimisation and control could 

proceed.

The optimisation procedure applied was similar to that used during the batch 

flocculation operation (chapter 6). The objective of the optimisation algorithm was to 

“maximise the recovery of product and removal o f contaminants whilst 

minimising the use of flocculant”. This control objective was met through the 

manipulation of the flocculant volume fraction.

(7.1)
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Figure 7.1. Overview of rapid process characterisation and control configuration for 

the continuous flocculation process adopting either the sequential or controlled search 

methods.

If the accuracy of the flocculation profile estimations were not satisfactory, more data 

points would be acquired through a “search method”  to improve the prediction of the 

process characteristics. Figure 7.1 represents two different searching scenarios. The 

first searching technique was termed the sequential searching method. Here the 

continuous flocculation process was operated in a batch fashion by increasing the PEI 

dose incrementally. The second searching technique was defined as the controlled 

searching method. During this search mode the flocculant level was chosen so that 

the estimation techniques would be given sensitive flocculation information for rapid 

and effective model parameter identification, this procedure is illustrated in figure 7.2.
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The searching procedure starts by implementing the initial parameter guesses (chosen 

by the operator) and the at-line data of the spun feed homogenate at measurement 

step i = 0. This will give the operator an initial guess of the cell debris flocculation 

profile and feed conditions which would be implemented to determine the subsequent 

flocculation yield values. Based on the initial prediction of the flocculation profile the 

next searching step (i = 1) was to target a relatively large PEI volume fraction level in 

order to obtain a good estimation of the maximum contaminant removal level. This 

enabled the effective prediction of model parameter A. The next step (/' > 1) was to 

target the apparent flocculation inflection point based on the up to date flocculation 

profile prediction. The searching method would repeat this step until parameter B had 

stabilised sufficiently indicating that a relatively good estimate of the position of the 

inflection point was obtained. The subsequent step was to select flocculant levels 

around the profile inflection point as this region is vital for effective estimation of the 

optimum PEI dose. By acquiring data points around the inflection point good estimates 

of model parameter C were possible as this parameter influences the slope of the 

flocculation profile. The searching technique could be terminated when the parameter 

C estimates stabilised. It can be observed from figure 7.2 that after each decision step 

the PEI dose was controlled to the wanted flocculant level, the subsequent response 

was then measured by the at-line monitoring set-up and model parameters estimated 

adopting the NLLS identification technique.

The initial guesses for model parameters B and C for both the contaminants and 

product were chosen so that there was a 50% deviation from their actual values, whilst 

parameter A was taken as the average of all the continuous flocculation runs (listed 

intable 7.1). The choice of initial parameter guesses were based on knowledge of how 

the parameters deviated between runs during the batch operation observed in chapter 

5. Parameter A tends to be relatively constant for all the flocculation runs despite 

variation in feed and PEI stock solution whilst parameters B and C had a deviation 

(coefficient of variation) of 44% and 52% from their actual values.

The EKF required additional start information to that of the NLLS technique, such as 

system and measurement noise terms and initial values for the combined system 

covariance term. The selection of these values enabled the operator to tune the EKF 

to either put more or less weighting on the at-line data for the estimation of new model 

parameters and the level of model parameter change between iteration steps.
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Table 7.1 lists the various additional constants applied in the EKF during model 

parameter estimation of the continuous flocculation runs. The measurement noise 

term (Z), which was determined as the square of the standard deviation of the yield 

measurements discussed in chapter 4. As the 3(2)-parameter model was adopted the 

system covariance term (Q) for each contaminant and product was a 3 x 3 matrix 

consisting of the variance of each model parameter (no co-variance terms between 

model parameters were applied). The individual variance terms for the system noise 

matrix are listed in table 7.1, for the sequential (table 7.1(b)) and controlled (table 

7.1(c)) searching methods.

During batch operation there is a gradual increase in the flocculant dose and hence 

gradual information of the flocculation yield. Hence little information on the flocculation 

profile gradient, position and maximum removal was available to the estimation 

technique initially. As discussed in chapter 2, if the initial guess for the initial combined 

system noise term was high, an initially high Kalman gain (weighting) would be the 

outcome, putting more weight on the initial measurements. By setting the initial 

combined system covariance (?) 3 x 3 matrix to zero no preconception was made that 

the EKF could determine all three model parameters based on a few measurements. 

The constants for the sequential search mode are listed in table 7.1(b). During the 

controlled search method the initial combined-system-covariance term was non-zero 

(table 7.1(c)) while the system-covariance term was fixed at zero.
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Figure 7.2. Overview of the controlled search method, x p p j refers to the PEI volume 

fraction and i refer to the measurement step.
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Rapid monitoring and characterisation o f the continuous flocculation process

7.4 Results

The first part of this section will present three flocculation processes in terms of their 

at-line measurements of product and key contaminants as well as model fits 

implementing the Levenberg-Marquardt non-linear least squares (NLLS) estimation 

technique. The second part of this section will present the results obtained from the at- 

line model parameter estimations for the continuous flocculation Run1 in detail 

applying both the NLLS and an extended Kalman filter (EKF). A step by step example 

of how the controlled search method was implemented will be shown. Flocculation 

profile predictions will be presented, underlining the main points of interest. Optimum 

flocculant volume fractions were estimated after each measurement step and the 

profiles for each run presented in terms of prediction technique and searching mode 

applied.

Continuous run 1 2 3

ADH in feed (U mL'1) 122 132 158

Protein in feed (mg mL'1) 17.8 18.3 20

RNA in feed (mg mL'1) 3.3 3.3 3.5

Debris in feed (Au) 2.5 2.5 2.9

PEI stock solution (mg (PEI) mL'1) 10 10 5

Ionic strength in PEI and feed (mM) 50 50 50

Feed and PEI pH 6.5 6.5 6.5

Table 7.2. Overview o f feed and PEI stock solution conditions for the three continuous 

flocculation runs.

7.4.1 At-line measurements of the continuous flocculation process

Figures 7.3 to 7.5 on page 233, plot b illustrate the at-line measurements of the 

continuous flocculation runs 1, 2 and 3 and their respective NLLS fits. The 3(2)- 

parameter model described in chapter 2 was applied to characterise the flocculation 

profiles. The model parameter estimates are listed in the figure legends. The 

sequence of flocculant volume fractions applied during the controlled searching mode 

is also given (plot a).

For all three runs it can be observed that a relatively high resolution of data points of 

both product and key contaminants was acquired giving the operator a detailed at-line 

characterisation of the flocculation profiles. It can also be seen that the noise
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associated with the at-line data was slightly higher than those observed during the 

rapid monitoring of the batch processes (chapter 5). This is due to the instability of the 

flocculant pump especially at low flowrates resulting in noisy PEI volume fraction 

values, which was discussed in chapter 4, section 4.3.5. Due to the large fluctuations 

during low flocculant levels the minimum acceptable PEI volume fraction was 0.04 mL 

mL'1.

The slight change seen in the flocculation profiles between runs 1 and 2 may be due to 

the small differences in feed conditions observed in table 7.2. A larger shift in 

flocculation profiles was observed in Run3 (figure 7.5). As table 7.2 indicates a 2-fold 

dilution was made to the PEI solution during Run3, hence approximately double the 

PEI dose in terms of volume fraction was required for the same level of contaminant 

removal. The dilution of the flocculant solution enabled lower PEI concentration to be 

examined hence increasing the resolution of data points around the initial part of the 

flocculation profile.

It can be observed that the maximum removal level of the contaminants (parameter A) 

for the three runs are relatively similar (given that the salt concentration is similar), 

confirming that small variations of parameter A are usually seen between runs. In all 

three flocculation runs product activation can be observed. Activation of ADH has 

been seen by several authors (Smith (1997) and Holwill et al. (1997)) and was 

discussed in more detail in chapter 5. The presence of PEI and/or the removal of a 

large number of contaminants may be the cause of this product activation.

7.4.2 Model parameter and flocculation profile prediction

Figures 7.6 to 7.8, illustrate the step by step real time estimation of model parameters 

for the continuous flocculation Run1, adopting the EKF (circles) and NLLS (squares) 

identification techniques applying the sequential (open symbols) and controlled 

searching (closed symbols) methods, i.e. four different scenarios. Figure 7.6, shows 

the real time estimation of parameter A. The initial guesses of this parameter (table 

7 .1 ) were relatively good compared to their actual values due to the known low 

variation between runs. As described in section 7.3 the initial guess for the model 

parameters B and C were chosen so that they were 50% of their actual values. For 

runs 1 and 2 a too high a guess was deliberately made whilst for Run3 too low initial 

parameter values were chosen.
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Although relatively good guesses were available for parameter A it can be observed 

that the NLLS identification technique adopting the sequential searching mode yielded 

erratic estimations compared to the three other cases.

Parameter A gives the operator an indication of the maximum contaminant removal 

level, hence at-line data around this area was required before good estimation of this 

parameter could be made. During the sequential searching method no information on 

the maximum removal contaminants levels was obtained during the first few 

measurements. However the EKF still rendered good parameter A predictions even 

when this searching mode was applied. As described in chapter 2 and 6  the behaviour 

of the Kalman filter in estimating model parameters is a function of several factors, 

such as the tuning of the Kalman gain and the size of the innovation term. In table 7.1 

it can be observed that the system noise term (Q) was for parameter A (qn ) relatively 

small as the known variation of this model parameter was low. By selecting a low 

system noise term the EKF estimations was constrained to introduce only small 

changes between prediction steps. Hence as the initial guesses for parameter A were 

relatively close predictions adopting the Kalman filter were good.

Parameter A estimations were improved when the controlled search method was 

applied in combination with either of the estimation techniques. By initially searching in 

the high PEI volume fraction region a relatively good estimate of model parameter A 

was obtained. One of the conclusions from chapter 6  was that the point of parameter 

A stabilisation was dependent on the quality of information rather than the quantity of 

data points. By adopting the controlled search mode appropriate operating conditions 

could be chosen so that this parameter was predicted rapidly and effectively.

Figures 7.7 and 7.8 illustrate the at-line estimations of model parameter B and C, for 

the 4 cases described above, i.e. two estimation and search techniques. Parameters 

B and C give the operator an indication of the point and slope of the profile inflection, 

hence estimations of these model parameters were sensitive to the available 

information around these points. It can be observed that the EKF applying either 

search mode yielded less erratic model parameter predictions than those of the NLLS 

technique. Again this was the result of Kalman filter tuning which prevented large 

fluctuations in parameter estimations.
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Although the EKF was slightly faster than the least squares technique in predicting 

model parameters B and C, an offset between the two estimation methods was 

observed. It should be noted that the least squares technique approach applies all of 

the available measurements for parameter identification and attempts to identify 

parameter sets which result in an overall best fit. Due to the re-cursive nature of the 

EKF only the latest measurement was used and the previous data points were 

represented in the Kalman gain term, hence the Kalman filter was more likely to 

estimate model parameters which result in good local fits to the observed values. 

Hence during the least squares estimates no matter which search method was applied 

eventually when the identification technique had all of the available data points its 

predictions yielded similar values. During the EKF estimation the final parameter 

levels need not be similar due to the method in which the at-line information was 

applied. From figure 7.3, it can be seen that after only 1-2 measurements information 

on the inflection point and slope was obtained. This explains the relatively fast 

response of the EKF estimation technique, using the sequential search method.

The parameter estimation behaviour for the two different searching modes is best 

shown by comparing the NLLS technique applying the two search methods. It can be 

seen that when the controlled search mode was implemented estimation of model 

parameters stabilised sooner than when the sequential search method was adopted. 

Parameter estimate stability was reached after 5 for the controlled and 7-8 

measurements for the sequential search method.

Figures 7.9 and 7.10 illustrate the step by step procedure adopted during the 

controlled search method for Runs 1 and 3 using the least squares model parameter 

estimation and subsequent flocculation profile prediction. These figures only represent 

the first 6  at-line cell debris measurements (-♦-) and their respective flocculation profile 

predictions (— ). Figures 7.9 and 7.10 give a graphical representation of how the 

controlled search method (section 7.3) was applied for Runs 1 and 3. The continuous 

flocculation Run2 is not shown as its operating conditions were very similar to those of 

Run1. The step by step search procedure is illustrated by plots (a) to (f). The arrows 

on the plots indicate the target PEI volume fraction based on the up to date profile 

prediction.

Plot (a) shows the flocculation profile prediction adopting a single measurement of the 

spun feed homogenate and the initial parameter guesses. As described in section 7.3, 

first a relatively high flocculant dose was selected to obtain a good estimate of
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parameter A. The next step in the controlled searching method was to focus on the 

apparent inflection point of the debris flocculation curve as indicated by the arrow in 

plot (b). Plot (c) illustrates the subsequent outcome, where for Run1 (figure 7.9) and 

Run 3 (figure 7.10) the third at-line measurement was just below and above the 

apparent inflection point. Plot (d) illustrates that focus was still on characterising the 

flocculation profile in terms of its inflection point. Plot (d) and (e) for Run1, illustrates 

that some stability has been reached in determining the inflection point (~ model 

parameter B). The controlled search technique then focused on the region close to the 

bottom of the flocculation profile. Plot (d) to (e) during Run3 (figure 7.10) illustrates 

that the profile inflection point was still not characterised fully, PEI levels close to the 

inflection point were still targeted. Plot (f) shows the flocculation profile predictions 

implementing the initial parameter guesses (•••) as well as the up to data profile 

predictions given 6  at-line data points. A clear shift can be observed from the initial 

profile guesses to the actual profile predictions.

At-line graphical representation of the continuous flocculation runs 1 and 3 are 

illustrated in figu res 7.11 and 7.12 for the NLLS and EKF estimation techniques 

adopting the sequential and continuous searching modes. The curves were created by 

implementing the estimated model parameters and simulating the contaminants and 

product yield profiles. Figures 7.11 and 7.12 show the outcome of such graphical 

representation using 5 at-line data sets. The operator can utilise such real time 

graphical representation to visually determine the performance of the continuous 

flocculation process and act upon this information for open loop control. During the 

sequential searching technique (plot a and b), the at-line data were fed to the 

estimators with increasing PEI volume levels. For the controlled searching method 

(plot b and d) the sequence of the first five at-line data were fed according to the 

figures attached to the ADH data.

It can be observed that during the NLLS estimations (Plot A) adopting the sequential 

searching method the least squares technique was poor at predicting the overall 

flocculation profile, although the actual fit to the data points was good. The estimation 

of the maximum removal level (parameter A) was especially poor for the cell debris 

profile due to the lack of available information in this region. The predictions using the 

EKF and sequential searching technique are illustrated in plot c. Although the profile 

predictions are slightly better than those of the NLLS estimation method the actual 

fitting of the 3(2)-parameter model to the data points was not as good. During the
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controlled search mode both estimation techniques performed better in predicting the 

correct flocculation profiles as model sensitive information was fed to the parameter 

identification methods allowing for rapid and effective estimations.

F igures 7.13 to 7.15 illustrate the behaviour of the at-line optimisation algorithm in 

predicting the optimum PEI dose during each of the continuous runs. The objective of 

the optimisation algorithm was to maximise the recovery of product (ADH) and removal 

of contaminants (RNA, protein and cell debris) for the lowest flocculant volume 

fraction. A similar optimisation procedure was applied in chapter 6 . The setpoint 

optimum PEI volume fraction was defined as the final optimum flocculant dose 

determined by the NLLS estimation technique using all of the available data points.

Figure 7.13, illustrates the behaviour of the predicted optimum flocculant dose 

implementing the EKF and NLLS identification techniques applying both the sequential 

and controlled searching modes during Run1. As the predicted optima values were 

based on the correct estimation of the flocculation profiles the initial fluctuations seen 

in figure 7.13 were due to variations in the model parameter estimations (figure 7.6 to 

7.8). It can be observed that both estimation techniques adopting the controlled 

searching method (-•- EKF -■- NLLS) yielded more stabile optimisation results close to 

the optimum PEI setpoint after 5-6 measurements. The NLLS approach adopting the 

sequential searching technique (-□-) exhibited poor predictions of PEI optimum values 

initially and only after measurement step 8  was it able to achieve within 90% accurate 

estimates. Due to the poor information available for the NLLS approach when 

adopting the sequential searching technique, poor parameter and hence optimum PEI 

dose estimates were achieved. It can be observed form figure 7.13, that although the 

EKF estimates implementing the sequential searching method (-o-) stabilised after a 

few measurements an off-set existed whereby the predictions were approximately 1 0 % 

below the optimum PEI setpoint.

Figures 7.14 and 7.15 illustrate the estimated PEI optima values for the 4 scenarios 

discussed above for the continuous flocculation runs 2 and 3. By combining the 

estimation techniques with the controlled searching method more stable and faster 

prediction responses were seen. After 6-7 measurements the optimum PEI estimates 

were within the 90% accuracy range. By selecting the type of information fed to the 

estimation techniques more effective parameter estimations where obtainable, yielding 

better flocculation profile and optimum PEI level predictions. Although the EKF yielded
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more stabile optimisation results than that of the NLLS approach a constant offset was 

observed when the Kalman filter was adopted.

7.5 Discussion

The effect of two data point scouting methods (sequential and controlled) in 

conjunction with the two estimation techniques (NLLS and EKF) was examined in 

terms of their ability to characterise the continuous flocculation process. The 

subsequent prediction of optimum flocculant volume fractions was investigated. As the 

optimisation problem was a function of the flocculation profiles, the behaviour of the 

optimisation estimations was directly dependent on the trend in model parameter 

prediction. It was seen that during the controlled search method both estimation 

techniques would predict optimum flocculant levels more efficiently both in terms of 

speed and stability. It was observed that although the EKF model parameter 

estimations stabilised earlier than those of the NLLS technique an offset was seen 

from the optimum PEI setpoint. Hence for 100% accurate model predictions of the 

optimum PEI dose the least squares approach should be implemented.

Which estimation technique is most suitable for a given process is a function of several 

factors. The correct tuning of the EKF, computational load, prior knowledge of process 

behaviour in terms of product and contaminant characteristics and fluctuations, batch 

to batch and within batch disturbances, are some of the factors which will influence the 

behaviour of these two estimation techniques. It was concluded in the previous 

chapter that with just a few data points during the batch flocculation process the EKF 

had superior performance. By implementing the correct tuning constants the Kalman 

filter would use the initial parameter guesses more effectively and introduced fewer 

fluctuations during parameter prediction. By introducing the controlled search method 

the advantages of the EKF were less prominent due to the possibility of examining 

process sensitive areas rapidly. By adopting the technique discussed in section 7.3, 

the model parameters would be estimated in a logical and efficient fashion. The 

controlled search technique did not only improve model parameter estimation using the 

NLLS technique but also made the EKF more efficient by reducing the offset between 

actual and predicted model parameters. It should be noted that the main disadvantage 

of the EKF was the need for correct tuning. As illustrated by table 7.1 two different 

sets of tuning constants were needed for the two search technique highlighting the 

time and effort required when applying the EKF.
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7.6 Conclusion
At-line monitoring of both product and key contaminants was demonstrated allowing 

for an automatic and efficient method to obtain real time information of the continuous 

flocculation process without the need for time consuming manual off-line assays. The 

real time information was implemented to characterise the process rapidly and present 

the operator with a graphical representation of the flocculation behaviour. Two model 

parameter identification techniques in combination with two scouting methods were 

examined. It was demonstrated that by applying an intelligent method of searching, 

model sensitive information could be fed to the estimation technique facilitating model 

parameter predictions resulting in more efficient characterisation and optimisation of 

the continuous flocculation process.
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Figure 7.3. Non-linear least squares fit o f product and contaminant yield values in 

terms o f PEI volume fraction implementing the 3(2)-Parameter model for Run1.

Plot(b), Baker’s yeast homogenate (125 g (wet weight) L '1) was mixed continuously 

with PEI flocculant (0.01 g mL'1 stock solution) at different ratios and a total flowrate o f 

22.8 mL mln'1. The feed and PEI conditions are listed in table 7.2. Samples (5.6 mL) 

were automatically taken every 130-140 seconds for rapid solid-liquid separation and 

measurements. The NLLS resulted in the below model parameter estimations.

Plot(a), Indicates the sequence o f PEI volume fraction levels tested during the 

continuous searching mode.

Parameter A B C

Debris 0.83 0.045 1.77

RNA 0 . 6 6 0.025 1.25

Protein 0.59 0.031 1.5

ADH

Protein

RNA

Cell debris

0 0  01  0 2  0 3
PEI Volume fraction (mL mL'1)
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Figure 7.4. Non-linear least squares fit o f product and contaminant yield values in 

terms o f PEI volume fraction implementing the 3(2)-Parameter model for Run2.

Plot(b), Baker’s yeast homogenate (125 g (wet weight) L~1) was mixed continuously 

with PEI flocculant (0.01 g mL'1 stock solution) at different ratios and a total flowrate o f 

22.8 mL m in'1. The feed and PEI conditions are listed in table 7.2. Samples (5.6 mL) 

were automatically taken every 130-140 seconds for rapid solid-liquid separation and 

measurements. The NLLS resulted in the below model parameter estimations.

Plot(a), Indicates the sequence o f PEI volume fraction levels tested during the 

continuous searching mode.

Parameter A B C

Debris 0.81 0.06 2.85

RNA 0.72 0.04 1.24

Protein 0.60 0.05 1 . 6 6
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Figure 7.5. Non-linear least squares fit o f product and contaminant yield values in 

terms o f PEI volume fraction implementing the 3(2)-Parameter model for Run3.

Plot(b), Baker’s yeast homogenate (125 g (wet weight) L '1) was mixed continuously 

with PEI flocculant (0.01 g mL'1 stock solution) at different ratios and a total flowrate o f 

22.8 mL min'1. The feed and PEI conditions are listed in table 7.2. Samples (5.6 mL) 

were automatically taken every 130-140 seconds for rapid solid-liquid separation and 

measurements. The NLLS resulted in the below model parameter estimations.

Plot(a), Indicates the sequence o f PEI volume fraction levels tested during the 

continuous searching mode.

Parameter A B C

Debris 0.83 0.125 6.3

RNA 0.75 0.131 3.6

Protein 0.63 0 . 1 2 1 2.5
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Figure 7.6. Estimation o f model parameter A for protein, RNA, cell debris and ADH  

flocculation profiles through the extended Kalman filter and Levenberg-Marquardt 

techniques adopting the continuous and batch searching techniques for Run1. The 

sequence o f data points during the continuous searching method is shown in figure

7.3, plot (a). For the batch search model the sequence followed an ascending PEI 

volume fraction order. The model parameter initial guesses and EKF tuning constants 

are listed in table 1.1.

—o— EKF batch mode " 
— NLLS batch mode 
— EKF search mode 

■ NLLS search mode

•  1
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Figure  7.7. Estimation o f model parameter B for protein, RNA, cell debris and ADH  

flocculation profiles through the extended Kalman filter and Levenberg-Marquardt 

techniques adopting the continuous and batch searching techniques for Run1. The 

sequence o f data points during the continuous searching method is shown in figure

7.3, plot (a). For the batch search model the sequence followed an ascending PEI 

volume fraction order. The model parameter initial guesses and EKF tuning constants 

are listed in table 7.1. The symbols (-•-)  and (-* -)  refer to the EKF and NLLS 

estimation techniques applying the continuous search method, whilst (~o~) and (-D-) 

refer to the EKF and NLLS using the batch search mode.
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Figure 7.8. Estimation o f model parameter C for protein, RNA, cell debris and ADH  

flocculation profiles through the extended Kalman filter and Levenberg-Marquardt 

techniques adopting the continuous and batch searching techniques for R u n t The 

sequence o f data points during the continuous searching method is shown in figure

7.3, plot (a). For the batch search model the sequence followed an ascending PEI 

volume fraction order. The model parameter initial guesses and EKF tuning constants 

are listed in table 7.1. The symbols (-* -) and (-* -) refer to the EKF and NLLS 

estimation techniques applying the continuous search method, whilst (~o~) and (-Eh) 

refer to the EKF and NLLS using the batch search mode.
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Initial guess

0.0
0.1 0.0

PEI volume fraction (mL mL'1)

Figure 7.9. Debris flocculation profile prediction implementing the Levenberg 

Marquardt estimation technique for the continuous flocculation Run1. The profile 

predictions (—) were carried out using 1 to 6 data points (-+-) illustrated in plots (a) to 

(f). The sequence o f at-line debris data are indicated by the numbers by the points. 

The arrows indicate the next area o f interest based on the up to date predicted 

flocculation profile and the decision making procedure illustrated in figure 7.2. The 

dotted curve (■■■) in plot (f) refers to the flocculation profile based on the initial 

parameter guesses listed in table 7.1. The initial profile prediction (plot (a)) was 

derived from the initial parameter guesses.
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F igure 7.10. Debris flocculation profile prediction implementing the Levenberg 

Marquardt estimation technique for the continuous flocculation Run3. The profile 

predictions (—) were carried out using 1 to 6 data points (-+-) illustrated in plots (a) to 

(f). The sequence o f at-line debris data are indicated by the numbers by the points. 

The arrows indicate the next area o f interest based on the up to date predicted 

flocculation profile and the decision making procedure illustrated in figure 7.2. The 

dotted curve (•■■) in plot (f) refers to the flocculation profile based on the initial 

parameter guesses listed in table 7.1. The initial profile prediction (plot (a)) was derived 

from the initial parameter guesses.

Page 240



Rapid monitoring and characterisation o f the continuous flocculation process

1.0

0.5
o

CL”

oQ

o  o .o

«  1 0  

EL_
0

P
0

0.5

0 . 0

F igure 7.11. Flocculation profile prediction o f the continuous flocculation Run1, 

implementing 5 at-line data points. The symbols (-•-), (-"-), (-+-) and (-a -) refer to 

ADH, protein, debris and RNA data made available to the estimation techniques. The 

corresponding open symbols refer subsequently acquired data points. The numbers 

attached to the ADH data represents the sequence o f at-line data fed to the estimation 

techniques.

Plot (a). The Levenberg-Marquardt (LM) non-linear least squares (NLLS) technique 

adopting the batch searching method.

Plot (b). The NLLS technique adopting the continuous searching method.

Plot (c). The extended Kalman filter (EKF) technique adopting the batch searching 

method.

Plot (d). The EKF technique adopting the continuous search method.

1 2 ~ m c o  cP O O

NLLS 
Controlled mode

NLLS 
Sequential mode

§ □
A

c o o  o  o

B—□ □
7 T /V  A   A  5

< r ^ ! ) 0  o  o

l £ « ® c o c P  ^  °°  o o
l£ # « > C O « P  °  °  °

EKF
Sequential mode

EKF 
Controlled mode

^  Gfc B— B—B
a A  A  A

Co O o  O

0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3
PEI volume fraction (mL mL'1)

Page 241



napia monnoring ana cnaracierisauon or me connnuous noccuiation process

1.0

0.5
o

CL

06

c £ 0 . 0

«  1-0 
EL_
CD

■4— »

0

>■ 0.5

0.0

F igure 7.12. Flocculation profile prediction o f the continuous flocculation Run3, 

implementing 5 at-line data points. The symbols (-•-), (-*-), (-+-) and (-a -) refer to 

ADH, protein, debris and RNA data available to the estimation techniques. The 

corresponding open symbols refer subsequently acquired data points. The numbers 

attached to the ADH data represents the sequence o f at-line data fed to the estimation 

techniques.

Plot (a). The Levenberg-Marquardt (LM) non-linear least squares (NLLS) technique 

adopting the batch searching method.

Plot (b). The NLLS technique adopting the continuous searching method.

Plot (c). The extended Kalman filter (EKF) technique adopting the batch searching 

method.

Plot (d). The EKF technique adopting the continuous search method.
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F igure 7.13. Real time optimisation o f the continuous flocculation Run1, implementing 

the EKF and NLLS estimation techniques adopting the batch and continuous search 

methods. The predicted optimum PEI values were plotted as a percentage o f the 

target optimum PEI setpoint, which was defined as the optimum PEI level determined 

by the NLLS estimation technique with all available measurements. The data 

sequence for the continuous search method is shown in figure 7.3, plot (a). The 

dashed box indicates a 90% (± 5%) accuracy range. The optimum PEI setpoint was 

0.11 mL mL'1. The weighting factors imposed on the product, contaminants and PEI 

dose were wADH = 0.5, wmA = 0.1, wprotein -  0.05, wDebris = 0.25 and wPEI = 0.1. The initial 

parameter guesses for the model parameters and EKF tuning constants are listed in 

table 7.1.

Page 243



Rapid monitoring and characterisation o f the continuous flocculation process

o — EKF(sequential) 
□ — NLLS(sequential) 
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Figure 7.14. Real time optimisation o f the continuous flocculation Run2, implementing 

the EKF and NLLS estimation techniques adopting the batch and continuous search 

methods. The predicted optimum PEI values were plotted as a percentage o f the 

target optimum PEI setpoint, which was defined as the optimum PEI level determined 

by the NLLS estimation technique with all available measurements. The data 

sequence for the continuous search method is shown in figure 7.4, plot (a). The 

dashed box indicates a 90% (± 5%) accuracy range. The optimum PEI setpoint was 

0.125 mL mL'1. The weighting factors imposed on the product, contaminants and PEI 

dose were wADH = 0.5, wmA = 0.1, wprotein = 0.05, wDebris = 0.25 and wPEI = 0.1. The initial 

parameter guesses for the model parameters and EKF tuning constants are listed in 

table 7.1.
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Figure 7.15. Real time optimisation o f the continuous flocculation Run3, implementing 

the EKF and NLLS estimation techniques adopting the batch and continuous search 

methods. The predicted optimum PEI values were plotted as a percentage o f the 

target optimum PEI setpoint, which was defined as the optimum PEI level determined 

by the NLLS estimation technique with all available measurements. The data 

sequence for the continuous search method is shown in figure 7.5, plot (a). The 

dashed box indicates a 90% (± 5%) accuracy range. The optimum PEI setpoint was

0.19 mL mL'1. The weighting factors imposed on the product, contaminants and PEI 

dose were wADH = 0.5, wmA = 0.1, wprotein = 0.05, wDebns = 0.25 and wPEI = 0.1. The initial 

parameter guesses for the model parameters and EKF tuning constants are listed in 

table 7.1.
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Chapter 8

Rapid monitoring and control of packed 

and expanded bed chromatography

8.1 Summary

Real time monitoring of both product and key contaminants was applied for the 

characterisation, process analysis and control of the packed and expanded bed 

chromatographic operations. Rapid at-line measurements enabled a higher resolution 

of data points to be acquired resulting in improved chromatographic characterisation 

compared with the use of traditional time consuming and laborious off line assays. 

Further to this, real time process analysis was achieved accelerating the development 

cycle by allowing the design engineer to prepare subsequent experiments rapidly in an 

intelligent and informed manner. Control of the chromatographic operations was 

investigated. For the packed bed system at-line product measurements were applied 

in a simple feedback control arrangement to regulate the load cycle. For expanded 

bed operation a predictive model based control configuration was implemented in order 

to compensate for the relatively large dead volume associated with this unit operation. 

In both cases good control of the load cycle was demonstrated despite the variation in 

feed material.

8.2 Introduction
This chapter will demonstrate the ability to rapidly monitor the hydrophobic interaction 

packed bed and expanded bed chromatographic operations. At-line measurements of 

both product (alcohol dehydrogenase) and key contaminants (RNA, cell debris, 

protein) will be presented.

The at-line monitoring setup applied for the flocculation process was implemented for 

both packed and expanded bed monitoring according to the procedure described in 

chapter 3. The calibration model for contaminant predictions derived in chapter 4 may 

be applied for the packed bed system due to that its contaminant levels are within the 

calibration range. For the expanded system although the cell debris concentration is 

higher than that calibrated for, it will be assumed that the calibration model is still 

applicable.

Page 246



Rapid monitoring and control or chromatography

Rapid monitoring enables the design engineer to demand a higher resolution of 

process data compared to when utilising laborious time consuming off-line 

measurements. Further to this at-line monitoring allows for rapid process analysis, 

enabling the process performance to be studied in real-time. This allows the operator 

to rapidly plan and set-up the subsequent experiment in an informed manner 

accelerating the process development cycle. Real time monitoring also enables the 

possibility of process control, automation and for improved process reproducibility. 

Process control may be implemented to accelerate process development, by enabling 

specific operating conditions (breakthrough levels) to be met and hence allowing the 

process performance to be studied around sensitive operating areas.

In chapter 1 (section 1.6.4) it was discussed that several factors influence the 

behaviour of a hydrophobic interaction chromatographic process, such as the type of 

packing matrix, feed conditions, pH, type and concentration of salt, temperature, 

flowrate, sample load, etc. Hydrophobic interaction chromatography may be divided 

into three operating cycles; the loading of feed on to the column, the washing of 

contaminants off the column and the elution of the target product. Given that most of 

the input variables are fixed during the design stages the only manipulative variable 

applicable for control was the loading time, the wash time and the start and end of 

elution peak collection, all of which may be regulated implementing ON/OFF valve 

control.

Rapid monitoring, analysis and control of the three chromatographic cycles will be 

investigated. For the packed bed systems rapid measurement of protein and ADH 

were acquired, whilst during expanded bed operations RNA and cell debris were also 

monitored. This chapter will focus on the effective characterisation and control of the 

loading stage as this step has great impact on the two subsequent cycles (wash and 

elution). The performance of the overall chromatographic operation in terms of overall 

process yield, purity, productivity (amount of product per volume of matrix and unit 

time) and process economy are partly dictated by the correct loading of feed. If the 

loading cycle is too long product losses during breakthrough and the wash cycle will be 

seen. However, too short a load cycle would result in poor utilisation of the column 

capacity. A trade off exists between product yield and column capacity, which is most 

important for a given system is a function of operating costs (matrix, buffers, CIP) and 

productivity. Additional factors such as regulatory issues also play a part in 

determining the optimum running conditions.
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Due to the importance of correct column loading, monitoring and control of the level of 

product breakthrough to a specific setpoint was investigated. The breakthrough 

setpoints chosen were not due to their ability to optimise the chromatographic process 

but to illustrate the effectiveness of the control configuration. During development 

work focus is on specifying input conditions to purify the product in interest to the 

highest yield and the required purity as quickly, cheaply and easily as possible. 

Therefore the development step will specify the majority of input variables. The task of 

process control and automation is to reproducibly operate the chromatographic system 

to meet these specified operating conditions given disturbances in the feed material 

and column performance.

Three packed bed operations, two bench and one pilot scale as well two bench scale 

expanded bed processes will be studied. A schematic representation of these 

processes is illustrated in section 3.7 and 3.8. A feedback control configuration will be 

investigated for breakthrough profile control both for packed and expanded bed 

operations. During the control of the expanded process a predictive technique was 

examined to compensate for the relatively large dead volume associated with its 

expanded state.

8.3 Rapid characterisation and control
This section will discuss the feedback control configuration adopted to control both the 

packed and expanded bed load cycle to a specific operator chosen breakthrough 

setpoint.

Figure 8.1 illustrates an overview of the two control configurations applied. Real time 

data was acquired through the rapid monitoring set-up discussed in chapter 3, sections 

3.7 and 3.8.. For the packed bed systems, indicated by the dashed box, the raw data 

on product levels would be implemented as the control variable. If the product level 

had reached the setpoint breakthrough level the load cycle would be terminated and 

the wash cycle initiated. This may be implemented by the operator for open loop 

control or by a supervisory computer in a closed loop configuration.

For the expanded bed (EXB) operation a prediction based control configuration was 

adopted due to the relatively large dead volume associated with this operation. Due to 

this large dead volume, a relatively long lag time (td) is associated with measurements 

of the exit stream. Hence any real time data acquired at time i should be associated
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with an input condition at time (f - td). If a control system similar to that applied for the 

packed bed operation was used for the EXB column any change in a manipulative 

variable would be registered in the exit steam minutes later.

hromatographic
Process

Real time data

Switch to wash if
y adh(0  > y se,point

Switch to wash if
yADH_estim ated(i+ td ) ̂ ysetp oin t

Estimated
profile

Linear model 
Estimation technique

Expected lag time (td) 
Breakthrough setpoint

Breakthrough
profile

prediction

Rapid
Monitoring

system

Model based 
control

Process Control 
Closed/Open 

Loop

 ► Sample stream

-► Process information

F igure 8.1. Overview o f breakthrough control configuration for the packed and 

expanded bed chromatographic operations.

The dashed box illustrates the control configuration applied during the packed bed 

loading cycle. The product yield yADH = ADH/ADHfeed, is defined as the concentration o f 

ADH at measurement step i as a fraction o f ADH in the feed stream. The load cycle is 

terminated if  the product yield is greater or equal to the product yield breakthrough 

setpoint (Vsefpo/J .  The expanded bed control configuration (remainder o f the above 

diagram) was based on a linear breakthrough profile prediction technique. The load 

cycle was terminated when the estimated breakthrough value (y ADH_estimateJ based on 

the expected lag time ( t j  was greater or equal to the breakthrough setpoint.
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By characterising the breakthrough profile mathematically forward predictions can 

inform the operator on what is actually taking place within the column. Hence the 

control action can be based on the actual predicted rather than the apparent column 

performance. As illustrated by figure 8.1, breakthrough profile characterisation would 

be initiated as soon as a significant level of product was registered in the eluate 

stream. For each newly acquired data point a prediction of the breakthrough profile 

would be performed. Knowing the expected lag time (function of the flowrate and 

column dead volume) and given the breakthrough setpoint chosen by the operator the 

model based control algorithm could estimate the appropriate time to terminate the 

load cycle.

The real time process analysis performed in this work are represented by the 

equations below (8.1 ,8.2 and 8.3), which define the yield and purity terms in the load, 

wash and elution cycles.

, loaded on to column - lost in breakthrough and wash . .
Y ie ld ,^  & msh = ----------------------------- — - —  --------  s ---------------------  ( 8 . 1 )

loaded on to column

. .. , ,  eluted o f f  the column ,n
Yieldelution = ------------------------------------------ - -----------------------------------------------------------------  (8.2)

loaded on to column - lost in breakthrough and wash

sum o f  [ 1 eluted o f f  the column
_ . I ADHo J /ri ox
P urityelution = -------------( ~ rotein \ ----------------------------------------

sum o f  Proteim eluted o f f  the column 
\  proteino )

8.4 Results
The results of both packed bed and expanded bed HIC chromatographic operations 

will be presented in terms of off-line and on-line data of product and key contaminants. 

Rapid monitoring was achieved implementing the at-line sampling and measurement 

apparatus described in chapter 3. The first part of this section will show packed bed 

chromatography data, both for bench (0.05 m diameter column) and pilot scale (0.2 m 

diameter column) operations. The second part of the results section will present data 

from two bench scale (0.05 m diameter column) expanded bed runs. A comparison 

between off-line and at-line data will be given for both chromatographic operations and 

the potential use of rapid measurements will be shown in terms of process control and 

at-line process analysis.
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Run ADH

(U m l/1)

Protein 

(mg mL'1)

Specific ADH activity 

(U (ADH) mg'1 (protein))

Dilution level 

(buffer: feed)

PB Run1 185 11 16.8 none

PB Run2 120 8 15 1.6 : 1

PB pilot 173 11.2 15.3 none

EXB Run1 145 10.8 13.4 NA

EXB Run2 92 10.5 8.8 NA

T a b le  8 .1 . F e e d  c o n d it io n s  f o r  th e  c h ro m a to g ra p h ic  p ro c e s s e s .  P B  a n d  E X B  r e fe r  to  

p a c k e d  b e d  a n d  e x p a n d e d  b e d  c o lu m n s . T h e  d ilu t io n  le v e l  r e fe rs  to  th e  le v e l  o f  

d ilu t io n  re q u ire d  to  b r in g  th e  c o lu m n  fe e d  to ta l p ro te in  c o n c e n tra t io n  to  a p p ro x im a te ly  

10  m g  m L ’1. A  b a tc h  f lo c c u la t io n  o p e ra t io n  w a s  c a r r ie d  o u t  p r io r  to  th e  p a c k e d  b e d  

s y s te m , h e n c e  th e  d ilu t io n  le v e l w il l  g iv e  a n  in d ic a t io n  i f  a n y  e x c e s s  P E I  h a s  b e e n  

d ilu te d .

8.4.1 Rapid monitoring of packed bed chromatography

The feed material for the packed and expanded bed processes were the outcome of 

an upstream PEI flocculation and subsequent centrifugal operation as described in 

section 3.7. The feed conditions are listed in table 8.1 in terms of ADH, total protein, 

specific ADH activity and dilution levels prior to loading on to the columns.

Figures 8.2 to 8.4 illustrate at-line (plot a) and off-line (plot b) data of the bench scale 

packed bed operation Run1 in terms of ADH and total protein. Figure 8.2 shows the 

chromatograms for these two components indicating a relatively good match between 

the off-line and at-line measurements. The faster at-line measurements allowed for a 

higher resolution of data points for the characterisation of the ADH profile in the load, 

wash and particularly elution cycles. This is more evident in figures 8.3 and 8.4 where 

detailed plots of the different chromatographic operating stages are presented. During 

the load and wash cycle the rapid monitoring apparatus was able to perform 122 ADH 

assays whilst only 65 measurements were obtainable through the off-line procedure,

i.e. approximately half the resolution. For fast elution cycles this is an important 

feature as efficient characterisation of the elution profile is crucial for effective 

collection of eluate fractions. It should be noted that an additional operator would be
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required, if off-line assays and the operation of the pack bed were to be performed 

effectively.

Slight deviation between the off-line and at-line ADH data can be observed in figure 

8.3, which can be attributed to several factors. Most importantly, the off-line data was 

taken of pooled fractions of column eluate, whilst at-line measurements were taken of 

approximately 0.5 mL of eluate sample at a specific time point. Dilution errors both in 

the stopped flow analyser (SFA) and off-line may also have contributed to the above 

deviation, especially during the elution cycle where dilution levels for ADH 

measurements were approximately 1:24400 off-line and 1:4913 at-line. The use of a 1 

mm pathlength flowcell instead of a standard 10 mm pathlength flowcell applied during 

off-line assays allowed for the lower at-line dilution level.

As described in section 3.7, the rapid protein measurements were acquired post 

packed bed operation, however the stopped flow analyser and rapid spectral analysis 

techniques (chapter 4) were applied. This explains the lower resolution of protein data 

points compared to the at-line ADH data, as a manual link was required to perform the 

former analysis. Despite the lower resolution of protein information it should be noted 

that the off-line and rapid protein measurements are very similar in terms of profile 

trends and absolute values.

Figure 8.5 shows the breakthrough profiles of ADH for three packed bed operations, 

namely two bench scale (Run1 — O—  and Run2 — □ — ) and a pilot scale (— v— ). As 

the superficial liquid velocities for the packed bed runs were similar (section 3.7) the 

breakthrough curves have been plotted in terms of process time to allow for their 

comparison. Note the initial feed conditions are listed in table 8.1.

A shift in the breakthrough profiles for the three operations was observed. This could 

be due to the difference in the concentration of ADH and protein in the feed streams as 

contaminant protein competes in binding onto the HIC matrix. Other factors such as 

the efficiency of the column between runs and the level of dilution of the supernatant 

stream prior to loading are also important factors to consider. The level of dilution of 

the supernatant will alter the level of PEI remaining in solution after the flocculation and 

centrifugal separation operations. No study has been conducted investigating the 

influence of PEI (cationic polyelectrolyte) on the performance of HIC matrix. The 

concentration of other contaminants such as RNA and cell debris would also affect the 

performance of the packed bed in terms of column capacity. It can be concluded that
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several factors affect the behaviour of a packed bed column in terms of loading and 

breakthrough. Many of these can be predicted qualitatively, however the correct 

quantitative estimation of how the packed bed system would behave in terms of a 

setpoint breakthrough level is not yet possible.

Figure 8.5 illustrates that the at-line data enabled the operator to load the packed bed 

columns reproducibly to an approximate 4 % ADH breakthrough setpoint. If regulation 

of the loading was carried out based on prior runs, for example Run2 was implemented 

to operate the two other chromatographic runs, the load cycle would have been 

terminated after -3 9  minutes and the breakthrough level would be -0 .023 (ADH/ADH0) 

for the large scale system and for Run1 very poor utilisation of the column capacity 

would be the outcome. Predictions from prior data to determine the duration of the 

loading cycle may be improved by taking into account the concentration of product and 

contaminants (protein) in the feed. However a deviation from ideal breakthrough will 

always be present due to poor quantitative knowledge of how the column would 

behave under the influence of an array of input variables.

Figure 8.5, illustrates that real time monitoring of product during the loading and 

subsequent breakthrough of a packed bed operation enables the operator to effectively 

and reproducibly run the chromatographic process to a pre-specified breakthrough 

setpoint despite the possible fluctuations in feed conditions and column efficiency.

Rapid measurements of product and key contaminants may also be applied for real 

time process analysis, giving the operator an up to date indication of the column 

performance. This is illustrated in figure 8.6. Plot A, shows the possible attainable 

yield (-A-) during the load and wash cycles for packed bed Run1. The yield term was 

determined in real time after each measurement step by taking the apparent amount of 

product retained on the packed bed column after losses in the breakthrough and wash, 

as a fraction of the total amount of product loaded on to the column (equation 8.1). On 

termination of the wash step it can be seen that approximately 2% of the ADH loaded 

on to the column was lost during breakthrough and the wash cycle.

Figure 8.6, plot B, illustrates the at-line purity and ADH yield values during the elution 

step of packed bed Run1. The purity term (-0-) was determined from at-line data on 

ADH and predicted protein levels giving the operator an indication of the level of purity 

after each measurement step (equation 8.3). The at-line yield term during the elution 

stage was a function of the amount of ADH eluted as a fraction of the amount of ADH
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remaining on the column after the load and wash cycle (equation 8.2). Note that the 

final ADH yield for the packed bed Run1 was approximately 135 %. This may be 

attributed to a mass balance error, activation / de-activation of the ADH enzyme or due 

to errors in the at-line dilution. Retrospective off-line analysis of the process showed 

that the total protein mass balance was within 100% ±10% accuracy indicating that the 

volumes used during ADH mass balancing were not the cause of the 35% increase in 

the ADH total balance. A >100% ADH yield was also seen using off-line data 

indicating that ADH activation was probably the cause for the balancing deviation. As 

discussed in chapter 5 ADH activation has been seen by several researchers (Smith 

1997, Holwill etal. 1997).

8.4.2 Rapid monitoring of expanded bed chromatography

Figure 8.7, shows at-line (plot A) and off-line (plot B) measurements of the HIC 

expanded bed chromatography Run1. As seen from the figure the off-line and at-line 

data are a relatively good match in terms of their total protein and ADH 

chromatograms. The deviations found between the at-line and off-line measurements 

may be attributed to the same factors which were put forward during the rapid 

monitoring of packed bed systems. An additional problem involved in the real time 

measurements of the expanded bed system is the complexity of the process stream. 

During expanded bed operation disrupted cells were directly loaded on to the column 

prior to any clarification step, hence the feed stream contained a large number of 

contaminants such as protein, RNA, lipids and cell debris. The close similarity 

between the off-line and at-line protein levels indicated that the spectral scan 

prediction technique developed in chapter 4 was seemingly applicable for the 

monitoring of the expanded bed operation.

It can be observed from figure 8.7 that the at-line measurements resulted in an 

approximately 2 times higher resolution in terms of ADH data thereby enabling a better 

characterisation of the product chromatogram. The rapid monitoring setup also yielded 

RNA and cell debris data, of which the former contaminant would take up to 24 hours 

to measure through traditional off-line chemical techniques.

A more detailed representation of expanded bed Run1 is shown in figure 8.8, which 

illustrates the load and wash cycle in plot A and the elution step in plot B. During the
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elution cycle no significant RNA or cell debris concentration was detected and hence 

these two contaminants were not plotted.

An important characteristic of the expanded bed operation was its large dead volume 

due to its expanded state which resulted in a relatively large lag phase between a 

change in an input variable (such as the switching from feed to wash) and subsequent 

registration in the eluate stream. This is illustrated in plot A. The vertical dashed line 

indicates when the wash cycle was initiated. It can be seen that although the load was 

terminated after approximately 1300 mL (20 min), the breakthrough of ADH continued 

until an approximate output volume of 1900 mL (29 min), i.e. an apparent lag volume 

of 600 mL or lag time of 9 minutes. Hence for expanded bed Run1 the apparent 

breakthrough was approximately 0.1 (ADH/ADH0), whilst the actual breakthrough level 

was 0.22 (ADH/ADH0).

The rapid measurements of contaminants and product were utilised for rapid process 

analysis for two expanded bed (EXB) runs (figure 8.9). The attainable yields for Run1 

and Run2 were 77% and 87%. This difference is due to the shorter loading time of 

Run2.

A shift to the right of the Run1 data was observed which was due to its longer wash 

cycle (see figure 8.10)). The final purification level for EXB runs 1 and 2 were -5 .8  

and 6.2 U (ADH) mg'1 (protein), whilst the final yield values were -80%  and 100%. 

For both runs the off-line total protein mass balance were within 100% ± 12% 

accuracy, indicating that the <100% ADH yield deviation in Run1 may due to dilution 

errors in the at-line ADH assays or ADH activation / deactivation. Retrospective off­

line analysis of EXB Run1 confirmed that there was a below 100% (68%) yield value 

during this operation, suggesting that the perceived errors in at-line dilution are less 

than those in the off-line measurements.

Similar to the packed bed operations, real time monitoring may be implemented for 

process control and automation for more reproducible operation of the expanded bed 

column. Figure 8.10, illustrates the at-line product breakthrough profiles for EXB Run1 

(0 & ♦ ) and Run 2 (O and • ) ,  during the load and wash cycle. The lag phase is again 

illustrated by the delay in the ADH breakthrough peak (time between end of solid 

symbols to the top of the breakthrough profile). The load cycle for Run2 was 

terminated earlier than that of Run1 resulting in a higher ADH breakthrough level for 

Run1.
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Although the feed material for the two expanded bed runs were prepared in a similar 

method (chapter 3) it can be seen in table 8.1 that the ADH and total protein levels in 

the feed were different (probably due to the age of the baker’s yeast). The variation in 

feed conditions could explain the slight deviation in the breakthrough profiles for the 

two expanded bed runs.

Breakthrough of product during packed bed operations discussed in section 8.4.1 

could be controlled by implementing the at-line information on ADH directly in a 

feedback manner due to the relatively short lag time involved with that unit operation. 

By contrast the expanded bed system such an approach is not effective due to the 

larger lag time, i.e. what is monitored in the exit stream has taken place approximately 

9 minutes prior within the column. Hence some form of prediction was required for 

effective regulation of the expanded bed system especially during the load and wash 

stages.

Figure 8.11, illustrates the EXB breakthrough profiles for runs 1 and 2 in plot A and B. 

Linear fits of the breakthrough profiles were performed and their coefficients of 

determination were R2Run] = 0.95 and R2Run2 = 0 .97 for EXB Run1 and Run2 indicating a 

relatively good fit. A least squares approach was used for parameter estimation. 

Three lines are shown on each plot. The dashed line represents the overall linear fit 

for the whole breakthrough profile, whilst the two other lines illustrate the linear fits 

using just the first two data points (after ADH/ADH0 > 0.005) and all of the data points 

during the load cycle. The linear fits were initiated when a significant ADH level 

(ADH/ADHq > 0.005) was observed during the load cycle. From figure 8.11, it can be 

seen that the linear fits give the operator a relatively good prediction of the 

breakthrough profile, which may be implemented for control purposes. This is 

described in more detail below in figure 8.12.

The control of feed onto the column may be performed using prior data. Due to the 

slight variations in feed conditions and possible fluctuations in column capacity a 

control configuration based on such an approach would be susceptible to disturbances 

whch could lead to poor regulation of breakthrough levels. If for example EXB Run2 

was operated on the basis of Runl’s ADH breakthrough profile given the 9 minute 

dead time, to achieve a 0.1 (ADH/ADH0) breakthrough setpoint, Run2 should have 

been terminated after ~ 10.7 minutes (see plot A or implement the linear equation for
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Run1 in the figure legend 8.10). A 10.7 minute loading time for EXB Run2 would have 

lead to a -  0.06 ADH/ADH0 breakthrough, i.e. 40% off target (see Plot B or implement 

the linear fit for Run2 in the figure legend 8.10).

The effectiveness of breakthrough prediction using a straight line is illustrated in figure 

8.12. Plot A, illustrates the outcome of the linear fits adopting latest acquired ADH 

data and subsequent predictions of the actual breakthrough level for the two EXB runs 

in terms of the number of at-line measurement used. These predictions were 

compared to the breakthrough levels expected by the overall linear fits for both EXB 

runs 1 (-■-) and 2 (-•-). After approximately 12 at-line measurements close to 100 % 

accuracy was achieved. The poor breakthrough predictions during measurement 

steps 7 to 10 for EXB Run1 were due to the noisy at-line measurements seen at 18 - 

20 minutes into the load cycle (figure 8.11, plot A).

The dotted and dashed vertical lines in plot A, indicate the number of at-line 

measurements available for predictions given the duration of the actual experimental 

load cycles for the two EXB runs. For EXB Run1, 11 at-line data points were available 

for actual breakthrough level prediction, which was approximately 8% off target. In 

other words after 11 at-line measurements (17 actual at-line data points were acquired 

however 6 of these were during the lag phase and were therefore not used for the 

linear prediction) the loading cycle was terminated after an apparent breakthrough 

level of 0.1 (ADH/ADHq). After approximately 9 minutes the actual breakthrough was 

detected at a 0.22 (ADH/ADH0). The predicted product breakthrough level using the 

linear fit was -0 .24  (ADH/ADH0), i.e. a 92% accuracy. For EXB Run2, the predicted 

ADH breakthrough level was 0.086 (ADH/ADH0) compared to actual final breakthrough 

level of 0.105 (ADH/ADH0), i.e. a 82% accuracy (predicted / actual). The prediction 

accuracy for Run1 was worse due to the fewer available at-line measurements prior to 

the termination of the loading.

Figure 8.12 plot B, illustrates the effectiveness of the linear prediction technique in 

terms of estimating the actual breakthrough profiles for EXB runs 1 and 2. The 

predicted data points were generated by implementing the available at-line 

measurements and the up to date linear fit to estimate the outcome of the 

breakthrough profile 9 minutes into the EXB runs. It can be observed from plot B that 

the overall estimates of the predicted values are relatively close to the overall linear 

fits. The poor breakthrough profile predictions around 28 minutes for EXB Run1 were 

due to the use of noisy at-line data 9 minutes prior to these values. Similarly for EXB
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Run2 the relatively poor predictions around the 26 minute mark were amplifications of 

the noisy data 9 minutes prior.

If the linear prediction technique was implemented in a control configuration for 

regulation of the breakthrough profile the load cycle would be terminated when the 

ADH/ADH0 term was equal to or above the actual breakthrough setpoint. For EXB 

Run1 if the actual breakthrough setpoint was 0.22 (ADH/ADH0), based on the 

predicted data the load cycle would have been terminated after -  26 minutes resulting 

in an actual breakthrough of 0.181 (ADH/ADH0), i.e. 18% off target. For EXB Run2 if 

the breakthrough setpoint was 0.1 (ADH/ADH0) the control configuration would 

terminated the load cycle after -2 8  minutes yielding an actual breakthrough of 0.126 

i.e. 26 % off target.

8.5 Discussion
At-line monitoring of both product and key contaminants was demonstrated for the 

packed and expanded bed chromatographic operations. The benefits of real time 

monitoring put forward in this chapter were real time characterisation of the 

chromatographic systems, allowing for at-line process analysis and the potential of 

process control and automation to improve process reproducibility.

It has been shown that with the higher frequency of available at-line ADH 

measurements better characterisation of the chromatographic systems were possible. 

During the elution step this is especially important as only a few off-line measurements 

were available for the correct characterisation of this cycle, which affects process 

analysis issues such as chromatographic mass balancing and the practical problem of 

correct cutting and collection of the elution peak. Conventional off-line measurements 

of the chromatographic systems in terms of product and contaminants are usually 

performed post-experimental operation. For time critical products, assays are carried 

out parallel to the process requiring an additional operator. Another benefit of the at- 

line monitoring system was the measurements of key contaminants such as RNA, 

protein and cell debris allowing for real time process characterisation in terms of both 

product and contaminants.

A difficulty in setting up the at-line system for the chromatographic systems was the 

wide range of product concentrations that were required to be monitored, from 0.5% to 

600% of the feed level. This was achieved by physically changing the tube diameters
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during the stopped flow analysis sequence to alter dilution levels. An alternative 

approach would be to automatically change the flowcell pathlength applied in the 

spectrophotometer, by implementing a flowcell carousel, i.e. switching from a 10 mm to 

a 1 mm pathlengh flowcell would be equivalent to a 10 fold-dilution. The resolution of 

contaminant data could also be increased by performing the pre-dilution and rapid 

spectral analysis at-line.

The potential benefits of rapid automatic assays have been shown in terms of real time 

analysis of the chromatographic process. Real time process analysis gives the 

operator up to date information on the performance of the chromatographic systems 

allowing their operation to be conducted in an intelligent and informed manner. By 

performing the process analysis in real time the operator can focus on planning the 

subsequent chromatographic run based on the up to date analysis and hence 

accelerate the process development cycle. Correct process analysis and mass 

balancing of the chromatographic operations was a difficult task using either off-line or 

at-line data, especially when this was performed with respect to a product’s level of 

activity. A mass balance of a unit operation should balance whilst in terms of product 

activity this is not necessarily the case. Other factors that complicated the analysis of 

the chromatographic operation were its dynamic nature and ability to concentrate 

product up to 60 fold. The vast concentration range of product in the elution cycle 

gives room for the potential of high measurement errors due to the large level of 

dilution required. Dynamic disturbances may also effect the mass balancing of the 

process. An increase or decrease in the flowrate during the load, wash or elution cycle 

would have a great impact on the final volumes and hence component balances.

Rapid monitoring of the chromatographic operations also enabled the potential for 

process control and automation. Traditionally chromatographic operations are 

operated using knowledge of prior runs and/or the use of indirect monitoring 

techniques such UV280. As feed material to the chromatographic operations are 

usually the outcome of a series of upstream operations the composition of this feed is 

susceptible to fluctuations. Additionally if a column is being re-utilised for several 

chromatographic runs its performance will change with time. Due to these possible 

process fluctuations any control configuration based on the use of prior data would be 

very sensitive to process disturbances. Account may be made to operating conditions 

based on the characteristics of the feed material, however an exact quantitative 

prediction of how the column would behave due to feed composition variations is a 

complex problem. Indirect monitoring methods can pick up general changes in
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contaminant protein levels, however a direct indication of product and key contaminant 

levels is not possible making efficient chromatographic control virtually impossible 

especially during the load cycle.

Rapid monitoring of product and key contaminants enables all stages of the 

chromatographic process to be controlled to specific loading, washing and elution 

criteria. In the load cycle the product breakthrough was controlled to a specific 

operator chosen setpoint by applying real time information on product in the eluate 

stream. Appropriate control to terminate the wash cycle could be performed by using 

the real time information on the contaminant levels (protein). In the elution step real 

time measurements on product could trigger the start and end of peak collection.

Correct loading of the chromatographic systems is vital for the optimisation of the 

column performance in terms of yield, purity and productivity. If the loading cycle is too 

long product losses during breakthrough and the wash cycle will be seen. However, 

too short a load cycle would result in poor utilisation of the column capacity. Due to 

the importance of correct column loading, regulation of this chromatographic cycle has 

been investigated in terms of controlling the level of product breakthrough to a specific 

setpoint.

For the packed bed chromatographic system a simple feedback control configuration 

could be applied directly controlling the termination of the load step triggered by real 

time measurements of the product level in the eluate. As the dead volume associated 

with the packed bed column is relatively small tight control could be achieved. For the 

expanded bed system some form of breakthrough profile prediction was required due 

to the relatively large dead volume associated with this type of chromatographic 

operation. Although several models exist to characterise the breakthrough profile this 

chapter sought to implement a straight line to estimate breakthrough characteristics 

due to its ease of use and relatively good fitting performance.

It has been shown that the performance of the linear breakthrough predictions was a 

function of the number of at-line measurements available for fitting and the level of 

measurement noise. Relatively good prediction of product breakthrough profiles for 

two expanded bed runs was achieved, with 87% accuracy on average. When the 

linear prediction technique was utilised within a control configuration the system would 

on average only be 22% off the target breakthrough setpoints. This should be 

compared to the use of prior data where the accuracy of regulating the loading to a
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setpoint product level was 40% off target. Improvements to the breakthrough profile 

predictions can be made by either increasing the frequency of at-line data or by 

reducing the noise associated initial breakthrough measurements. An alternative 

approach to improve the control of the expanded bed operation would be to eliminate 

the large dead volume associated with this operation. By sampling from within the 

column bed one can rapidly get an indication of the actual breakthrough profile 

characteristics. Work in this area is currently being done at UCL.

Variation in feed conditions during expanded bed operation is a function of 

fermentation and homogenisation conditions. The feeds for packed bed systems is 

subject to larger fluctuations due to the larger number of unit operations upstream. 

Tight control during packed bed operation was therefore crucial and was shown to be 

achievable. During the expanded bed operation breakthrough regulation was 

improved with the aid of rapid measurements and at-line breakthrough profile 

prediction.

8.6 Conclusion
Rapid monitoring of both packed and expanded bed chromatographic operations has 

been demonstrated in terms of key contaminants and product. Real time process 

analysis was demonstrated in order to accelerate the process development cycle by 

enabling the operator to initiate the design of the subsequent experimental run without 

the need for time costly post process analysis. At-line monitoring was also 

implemented for the control of the loading cycle in order to insure the breakthrough of 

product was regulated to a specific setpoint. For packed bed systems tight control was 

achieved despite large fluctuations in feed conditions. For the expanded bed column 

due to the intrinsic large dead volume associated with this operation a linear based 

prediction technique was used in combination with at-line measurements to achieve 

reproducible control of the loading cycle.
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Figure 8.2. At-line (Plot A) and off-line (Plot B) measurements of the 0.05 m diameter 

HIC packed bed chromatography Run2. Recovery of ADH from a 0.125 m bed height 

XK50/40 column packed with Phenyl Sephorose FF (low sub) loaded to ~ 5% 

breakthrough of ADH. ADHi and ADH0 refer to the concentration of ADH at 

measurement step i and the feed. Column washing was performed in the same 

direction to loading and elution. Clarified Baker’s yeast homogenate was obtained 

from the supernatant of a batch flocculation step. The concentration ADH and protein 

in feed was approximately 120 U mL'1 and 8.3 mg mL'1. Off-line ADH measurements 

were taken every 120 s o f pooled fractions, whilst at-line measurements were acquired 

every ~50 s (non pooled samples). Protein measurements for both at-line and off-line 

were taken of pooled fractions every 240 s in critical process areas (load and elution). 

(1) refers to the load, (2) the wash and (3) the elution cycle.
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Figure 8.3. At-line (Plot A) and off-line (Plot B) measurements of the 0.05 m diameter 

HIC packed bed chromatography Run1 load and wash cycles. Operating and feed 

conditions are listed in the legend of figure 8.2. The dashed vertical line indicates the 

termination of the load cycle.
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Figure 8.4. At-line (Plot A) and off-line (Plot B) measurements of the 0.05 m diameter 

HIC packed bed chromatography Run1 elution cycle. Operating and feed conditions 

are listed in the legend of figure 8.2.
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Figure 8.5. At-line measurements of ADH breakthrough profiles o f two bench scale 

and a pilot scale HIC packed bed chromatography processes in terms of time. 

Operating and feed conditions for Run1 are described in figure legend 8.2.

The large scale chromatography run was performed on a 0.129 m bed height 

BPG200/500 0.2 m diameter column packed with Phenyl Sepharose FF (low sub) 

loaded to ~ 5% breakthrough of ADH. The column feed was clarified Baker’s yeast 

homogenate from a continuous PEI flocculation run. The concentration of ADH and 

protein in the feed was approximately 173 U mL'1 and 11.2 mg mL'1.

The bench scale Run2 was performed on a similar column to that o f R un t The 

concentration of ADH and protein in the feed was approximately 120 U mL'1 and 8 mg 

mL'1
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Figure 8.6. At-line purity and yield data for packed bed R u n t The feed and operating 

conditions for Run 1 is listed in the figure legend 8.2.

Plot A, the yield term was determined by subtracting the amount o f ADH lost in the 

load and wash cycle from the amount loaded on the column and taking this value as a 

fraction of the total ADH loaded on to the column. The dashed vertical line indicates 

the step change between the load and wash cycle.

Plot B, the elution cycle. The purity data was determined by taking the total ADH level 

as a fraction o f the total protein amount o f protein at each measurement step. The 

yield term was determined as the amount o f ADH coming off the column as a fraction 

of the total ADH remaining on the column after the load and wash cycle. The ADH 

yield during the elution cycle was greater than unity. This was discussed in section 

8.4.1, page 252.
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Figure 8.7. At-line (Plot A) and off-line (Plot B) measurements of the 0.05 m diameter 

HIC expanded bed chromatography Run1. Diluted homogenate was loaded onto a 

ST-50 expanded bed containing 300 mL o f STREAMLINE-Phenyl (low sub) matrix. 

The settled bed height was 0.148 m and expanded bed height was 0.47 m. The 

concentration of ADH and protein in the feed was approximately 145 U mL'1 and 10.8 

mg mL'1. (1) refers to the load, (2) the wash and (3) the elution cycle.
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Figure 8.8. At-line measurements of HIC expanded bed chromatography Run1 load 

(Plot A) and elution cycles (Plot B). Feed and operating conditions are listed in figure 

legend 8.7.

The vertical dashed line indicates in Plot (A) refers to the start o f the wash step.
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Figure 8.9. At-line purity and yield data for expanded bed Run1 and Run2.

The feed and operating conditions for Run1 are fisted in the figure legend 8.7.

The expanded bed (EXB) Run2 was performed on a similar column to that o f EXB 

Run1. The concentration of ADH and protein in the feed was approximately 92 U mL'1 

and 10.5 mg mL'1

The ADH yield and purity terms in both plot A (load and wash cycles) and plot B 

(elution cycle) were determined in similar manner those in figure 8.6.

The dotted and dashed vertical lines in plot A refer to the start o f the wash cycles for 

EXB runs 2 and 1.
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Figure 8.10. At-line ADH breakthrough profiles for EXB Run1 and Run2.

The feed and operating conditions are described in figure legend 8.7 and 8.9. The 

solids symbols (4 & •) represent at-line ADH measurements acquired during the load 

cycle. The open symbols (O & 0) refer to the at-line ADH measurements acquired 

during the wash cycle.
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Figure 8.11. At-line measurements and linear predictions of ADH breakthrough 

profiles of EXB Run1 and Run2. Operating and feed conditions for Run1 and Run2 

are described in figure legend 8.7 and 8.9. The solids symbols (4 & •) refer to at-line 

ADH measurements acquired during the load cycle. The open symbols (O &  0) refer to 

the at-line ADH measurements acquired during the wash cycle. The dashed lines refer 

to the overall linear fits o f the apparent breakthrough profile and their regression 

coefficients were R2Runl = 0.95 and R2Run2 = 0.97 for EXB runs 1 and 2. The two 

additional lines (per plot) are from the linear fits o f the first two at-line data points (after 

ADHt / ADH0 >  0.005) and all of the measurements acquired during the load cycle.

The linear equations for the total breakthrough profiles (—):

yadh Runi ~ 0.01295 x time - 0.15544

yadh Run2 -  0.00742 x time - 0.08744

Page 271



nttfjiu murmuring anu uunirui ur cnrummograpny

J Z
O)D
O

-X .
CD
0

CO
13

- i—<o<
73
0 H—»O
TD
0i_
CL

\  Run1

•  •  Run2

x
Q

X
D<

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

5 10 15 20
Number of data points

i i i i i i r  
—• Linear fits of actual data

•  & ■ Actual data 
O  & □ Predicted data

Run2

0 4 8 12 16 20 24 28 32 36 40 44
Time (minutes)

Figure 8.12. Linear prediction versus actual breakthrough product levels for expanded 

bed runs 1 and 2.

Plot A. Linear breakthrough prediction for EXB Run1 and Run2 given a 9 minute lag 

time as a percentage of the actual breakthrough values for an increasing number of at- 

line measurements. The actual breakthrough data are based on the overall linear fits 

(see equations in figure legend 8.11).

Plot B. Breakthrough profiles for Run1 and Run2 using the at-line data, the overall 

linear fits o f the actual measurements and the predicted data based on a 9 minute lag 

time, against process time. A D H t and A D H 0 refer to product levels at measurement 

step i and in the feed.
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Chapter 9

Conclusion and future work

9.1 Conclusion

The aim of this thesis was to apply rapid measurement of product and key 

contaminants during the recovery of alcohol dehydrogenase from S.cerevisiae cell 

homogenate, for enhanced process definition, rapid characterisation and control of the 

batch and continuous flocculation process as well as the packed and expanded bed 

chromatographic operations.

The rapid monitoring methods applied were of an at-line nature, i.e. a sample was 

drawn of the process, prepared and transported to a detection instrument for product 

and contaminant measurements automatically. Chapter 4 demonstrated the 

applicability of adopting an existing off-line enzymatic alcohol dehydrogenase (ADH) 

assay and converting it for at-line purposes through the use of a stopped flow analyser 

(SFA). The high reproducibility rate of the SFA allowed for a reduced assay time of 10 

s compared to the traditional 60 s applied during off-line analysis. The total ADH at- 

line assay time was approximately 45 s which included sample dilution, reagent mixing, 

transportation to a detection instrument as well as a wash cycle.

Protein and RNA absorb light readily in the ultraviolet (UV) spectra especially between 

260 nm and 280 nm due to the presents of tyrosine and tryptophen, whilst cell debris 

particulate absorbs light in the visible (VIS) region. This concept was used to build a 

calibration model in order to predict the level of contaminants (RNA, protein and cell 

debris) from the analysis of the their spectral scans. A factorial experiment consisting 

of 36 samples of different known concentrations of RNA, protein and cell debris were 

used for the calibration of the UV-VIS spectral data. A multivariate statistical technique 

called partial least squares (PLS) enabled the efficient and effective calibration model 

building by regressing the known contaminant concentration levels to the main UV-VIS 

spectral features in the range between 230 - 500 nm. The calibration model was 

subsequently applied for the prediction of contaminant concentrations in Baker’s yeast 

homogenate for unknown samples from their UV-VIS scans. The spectral scans were
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performed by an in house built diode-array spectrophotometer capable of acquiring 

UV-VIS scans every second. In chapter 4 it was demonstrated that the prediction 

efficiency was very good with standard errors of prediction for RNA, protein and cell 

debris of 0.11 mg mL'1, 0.41 mg ml_‘1 and 0.136 Au. This includes any errors involved 

in sample handling and dilution. The use of the SFA in combination with the diode- 

array spectrophotometer enabled automatic acquisition of contaminant measurements 

in a rapid, effective manner with little effort compared with the complex, time 

consuming variable nature of the existing off-line chemical techniques.

For rapid monitoring of the flocculation process described in chapters 5 to 7, a solid- 

liquid separation step was required to evaluate the performance of polyethyleneimine 

(PEI) flocculant’s ability to selectively flocculate contaminants whilst maintaining the 

product (ADH) in solution. The at-line monitoring setup therefore consisted of an 

automated microcentrifuge followed by a SFA and two spectrophotometers for the 

detection of an enzymatic reaction and the rapid scanning of diluted samples for 

contaminant prediction. The measurement cycle was approximately 135 s with 

measurement errors of ±8% most of which was due to the variability of the 

microcentrifuge.

Chapter 5 demonstrated the ability to consistently characterise eight batch flocculation 

runs in terms of their at-line product and contaminant measurements. The rapid 

measurements allowed the design engineer to demand a higher resolution of data 

points without excess effort improving process characterisation. Rapid monitoring 

techniques could substitute the laborious time consuming off-line assays eliminating 

the variability associated with manual measurements. This chapter investigated the 

use of three mathematical descriptions to describe the flocculation behaviour in terms 

of the flocculant volume fraction, were the model parameters were related to the 

environmental conditions, such as pH and ionic strength. A three parameter empirical 

model, the 3(2)-parameter model was concluded to be most appropriate for real time 

characterisation due to its effectiveness to describe the flocculation behaviour with the 

least number of model parameters. Analysis of the environmental conditions in terms 

of the model parameters yielded a linear relationship between pH and the flocculation 

profile inflection point and therefore optimum flocculant conditions. Such a linear 

correlation may be applied during control of the flocculation process and the pH level 

could be implemented as an additional manipulative variable to that of the flocculant 

dose.
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The at-line data for the eight batch flocculation operations was implemented for real­

time flocculation process characterisation, optimisation and control in chapter 6. The 

at-line data of both product and key contaminants in combination with a process model 

and a model parameter identification technique enabled up to date characterisation of 

the flocculation behaviour. The real time data and up to date model fits can be 

presented graphically to facilitate an immediate and comprehensive overview of 

process conditions and performance. This visual representation of the flocculation 

performance could be implemented to drive the process to ideal operating conditions. 

Two model parameter identification techniques were examined, the Levenberg- 

Marquardt non-linear least squares and extended Kalman filter. The optimum model 

parameter estimation method to apply was a function of several factors, such as the 

knowledge of the process, level of measurement noise, frequency of data points and 

level of batch to batch and within batch fluctuations. By adopting a model parameter 

identification technique data reconciliation was performed enabling the any decisions 

made to be based on filtered data.

Chapter 6 also examined the potential of applying the at-line data on product and 

contaminant level for process control whereby the flocculant dose was implemented as 

the sole manipulative variable. Two closed loop control configurations were examined, 

which utilised different control objectives and level of complexity. A control 

configuration attempting to optimise the removal of contaminants and recovery of 

product for the minimum flocculant dose, given that at least 80% of the cell debris in 

the spun feed was removed was examined. This approach utilised weighting factors to 

prioritise the importance of the individual contaminants, product and concentration of 

flocculant. These weighting factors could be chosen so that the control configuration 

attempted to control the batch flocculation in order to reach conditions ideal for the 

subsequent unit operation. The optimisation algorithm required a model of the 

flocculation process and hence both the EKF and NLLS methods were looked into for 

model parameter predictions for each newly acquired measurements. Good control to 

optimum operating conditions was achieved implementing both estimation techniques 

with on average 92% accuracy. The NLLS based approach tended to control the PEI 

volume fraction to a slight overdose, due to its slower ability to predict the correct 

model parameters than that of the EKF. A control configuration applying raw cell 

debris yield data as the sole control variable was also examined. This approach would 

terminate the flocculant dosing when the cell debris yield level was below a setpoint of 

0.2, i.e. at least 80% removal of cell debris based on spun feed. The performance of 

this control setup was relatively good although it did not optimise the removal of all the

Page 275



f u r u o / L / / 1  a i  i u  i  u l u i  c? v y k j i  r \

contaminants. However for unit operations where tight control is not required and 

measurement noise is low such a control system would be adequate. Chapter 6 also 

illustrated that the design of the batch flocculation process in terms of dosing rate, pH 

and salt concentration has a great impact on the performance of a control 

configuration. By choosing extreme operating conditions robust and efficient control 

was difficult to achieve.

Chapter 7 examined the characterisation of the continuous flocculation process using 

at-line data. The primary objectives put forward were the speed and stability of 

process characterisation. Two searching methods were investigated in terms of how 

different sequences of at-line information would influence the behaviour of model 

parameter estimations. A sequential and controlled search technique was examined 

and it was concluded that by applying a structured and intelligent use of the at-line 

data more sensitive at-line information could be given to the estimation techniques 

improving the characterisation of the flocculation process in terms of speed and 

stability. Rapid and stabile process characterisation was subsequently applied for fast 

and robust process optimisation.

Chapter 8 demonstrated the real time monitoring of both product and key contaminants 

for the characterisation, process analysis and control of the packed and expanded bed 

chromatographic operations. The at-line data enabled a higher resolution of data 

points to be acquired resulting in improved process characterisation compared with the 

use of traditional time consuming and laborious off-line assays. Further to this real 

time process analysis was achieved accelerating the process development cycle by 

allowing the design engineer to prepare subsequent experiments rapidly in an 

intelligent and informed manner. During the control of the packed system at-line 

product measurements were applied in a simple feedback control arrangement to 

regulate the load cycle. For the expanded bed operation a predictive based control 

configuration was implemented in order to compensate for the relatively large dead 

volume associated with this unit operation. In both cases good control of the load 

cycle was demonstrated despite the variation in the feed material. For the expanded 

bed operation the feedback control system resulted in approximately 80% accuracy in 

regulating the load cycle to the breakthrough setpoint, whilst for the packed bed 

system the performance of the control configuration was even better.

The above chapters have shown that by adopting at-line data on product and 

contaminant levels, rapid process definition, characterisation and control of
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bioseparation processes is achievable. Real time process information may be 

represented in an optimum visual manner giving the development engineer a powerful 

tool to facilitate the running of a process. Process information around critical operating 

areas can be targeted to enhance the knowledge of a unit operation. Furthermore at- 

line data can substitute laborious time consuming off-line assays allowing for a higher 

resolution of data points to be acquired and more ambitious factorial experiments to be 

performed with less effort and in a shorter time frame. At-line information of a unit 

operation is usually acquired in a discrete format, contains some time delay and 

associated with relatively large measurement noise compared to traditional 

measurements such as temperature and pH. This work sought to implement model 

based systems to compensate for the slow and noisy nature of at-line data. The 

implementation of model based systems enabled the whole process performance to be 

represented in a graphical manner from just a few at-line data points by implementing 

model parameter identification technique. Based on these visual aids the operator 

would rapidly and effectively obtain an overview of the process performance.

The applicability of at-line data for process control was also demonstrated for the 

flocculation (batch and continuous) and chromatographic (packed and expanded) 

operations given possible disturbances in feed material. The model based approach 

was vital for robust control as it enhanced the method of applying the available at-line 

data through noise reduction, possibility of process performance prediction and 

process optimisation. During the flocculation and expanded bed chromatographic 

operations the model based approach enabled the prediction of how the process would 

behave at a particular flocculant dose or at a specific time in the future. This 

information would be applied during the control configuration in order to control an 

event which could not be detected fast enough due to monitoring or process lag 

delays. For process optimisation a process model is crucial and by implementing a 

model parameter identification technique after each acquired at-line measurement 

optimum operating conditions may be determined in real time, batch to batch.

The control examples given in this work demonstrated that product and contaminant 

levels could be defined and subsequently controlled in real time through the 

manipulation of input variables. Bioseparation processes are inherently variable due to 

the fluctuations in upstream conditions, process additives and sub-optimal 

performances of processing equipment. Rapid monitoring allows a process to be 

followed in real time and operating conditions to be altered in order to compensate for 

any disturbances. Process control of directly related to products and contaminants will
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reduce the variability of bioprocesses performances yielding a more reproducible and 

hence better quality product.

9.2 Future work

The benefits to be gained through real-time bioprocess monitoring have been 

highlighted in terms of enhanced process definition, characterisation and control. 

Although the at-line monitoring setup adopted in this work was specific for the rapid 

measurement of a target enzyme and key contaminants in S.cerevisiae cell 

homogenate the advantages of rapid monitoring may be applied to other systems such 

as Escherichia coli and mammalian cell systems. The rapid data will differ both in 

terms of speed, accuracy and measurement methods. The availability of numerous 

rapid monitoring techniques exists such as biosensors, immunoassays or HPLC 

systems which would accommodate most systems in terms of rapid product 

measurements. Rapid spectroscopy is seen to have a great potential as a non- 

invasive method for the acquisition of process information. Although the system 

examined will have a different analysis technique the rapid data will posses similar 

constraints such as discrete measurements associated with relatively high noise. 

Hence the techniques examined in this work will be applicable for many systems in 

terms of achieving enhanced process definition and rapid process characterisation. 

Rapid measurements in combination with a process model and model parameter 

estimation techniques offer the development engineer an intelligent technique to 

implement scarce data associated with measurement delays and noise. The at-line 

data can be shown in an optimum visual manner to give the operator an immediate 

and comprehensive overview of the process behaviour.

One of the primary objectives of pharmaceutical companies is to reduce the time spent 

to bring a drug to market. Time consuming events such as screening of downstream 

protocols and definition of the unit operations may be carried out in a faster and more 

efficient manner through the implementation of rapid measurements. The availability 

of automated and rapid measurements on product and key contaminants will yield a 

higher resolution of data points, allow for more thorough factorial experiments hence 

enhance the definition and characterisation of a bioprocess. Rapid monitoring is 

becoming a necessity in bioprocess development as demand increases for time 

efficient ways of extracting information from each experiment (Olsson 1998). Real 

time process information can give the development engineer an intelligent technique to 

facilitate the running of a process to gain optimum information around critical operating
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areas to enhance the knowledge of a unit operation. Rapid measurements are 

therefore fundamental for the improvement of the process development cycle in terms 

of speed and efficiency.

An important aspect of rapid bioprocess measurements is their relatively large noise 

values and delays hence some form of structural data reconciliation is required to 

handle the at-line statistical uncertainty. Model based systems have an advantage as 

prior knowledge of a particular process and system may be incorporated and the 

resultant data may be represented in terms of a process profile giving the operator an 

overview of the process performance. However, in many cases a model of the 

bioprocess for a given system does not exists or is too complex to be implemented in 

real time. In such cases an empirical model may have to be constructed.

Due to the complexity involved in monitoring the level of a specific product accurately 

in real time regulatory authorities traditionally impose strict regulations on keeping the 

operating conditions of a process to specific levels. The regulatory authorities will 

therefore tend to define the process rather than the product quality directly. Currently 

control of a bioprocess is achieved by controlling the input variables to pre-specified 

levels and thereby defining setpoints on process operating conditions rather than 

setpoints on product and contaminant levels. This may be classified as simple 

automation. In the eyes of the regulatory authorities definition of a process is seen to 

be equivalent to defining the product quality. However with variable feed material, 

process additives and equipment performance it is often difficult to define accurately 

the process input conditions hence product quality will invariably fluctuate. Process 

control can be implemented to maintain product quality within pre-specified bands.

In the future process control can be seen to regulate input variables to refine the 

operating conditions still keeping within regulatory specified settings in order to reduce 

for example the number of failed runs or to fine tune a well known system. Control to a 

specific product quality may be introduced if a rapid chemical definition of the product 

becomes available. The control engineer will have to prove to the regulatory 

authorities that by implementing a control configuration improvement to a product 

quality in terms of reproducibility will be the outcome. Control to optimise a process 

will have an impact on existing processes where reducing costs is vital for economic 

sustainability.
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Figure A.1. Scores plot of UV-VIS spectral scan calibration data in terms of principle 

components 1 and 3. The numbers on the plot refer to the spectral scan taken of the 

particular sample number in the factorial experiment (table 4.1). Sample clusters 

(samples which have a geometrically close proximity in a scores plot) have been 

circled. Trends due to BSA variations are indicated by the arrows on the plot.
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Figure B.1. Estimation o f model parameter B for RNA, protein, cell debris and ADH  

flocculation profiles through the extended Kalman filter and Levenberg-Marquardt non­

linear least squares techniques for Batch Run2. The model parameter initial guesses, 

measurement and system noise terms are listed in table 6.1 and batch operating 

conditions are listed in table 5.2.
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Figure B.2. Estimation o f model parameter C for RNA, protein, cell debris and ADH  

flocculation profiles through the extended Kalman filter and Levenberg-Marquardt non­

linear least squares techniques for Batch Run2. The model parameter initial guesses, 

measurement and system noise terms are listed in table 6.1 and batch operating 

conditions are listed in table 5.2.
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Figure B.4. Estimation o f modei parameter C for RNA, protein, cell debris and ADH  

flocculation profiles through the extended Kalman filter and Levenberg-Marquardt non­

linear least squares techniques for Batch Run3. The model parameter initial guesses, 

measurement and system noise terms are listed in table 6.1 and batch operating 

conditions are listed in table 5.2.
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Figure B.5. Estimation o f model parameter B for RNA, protein, cell debris and ADH  

flocculation profiles through the extended Kalman filter and Levenberg-Marquardt non­

linear least squares techniques for Batch Run4. The model parameter initial guesses, 

measurement and system noise terms are listed in table 6.1 and batch operating 

conditions are listed in table 5.2.
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Figure B .6 . Estimation o f model parameter C for RNA, protein, cell debris and ADH  

flocculation profiles through the extended Kalman filter and Levenberg-Marquardt non­

linear least squares techniques for Batch Run4. The model parameter initial guesses, 

measurement and system noise terms are listed in table 6.1 and batch operating 

conditions are listed in table 5.2.
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F igure B.7. Estimation o f model parameter B for RNA, protein, cell debris and ADH  

flocculation profiles through the extended Kalman filter and Levenberg-Marquardt non­

linear least squares techniques for Batch Run5. The model parameter initial guesses, 

measurement and system noise terms are listed in table 6.1 and batch operating 

conditions are listed in table 5.2.
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Figure B .8 . Estimation o f model parameter C for RNA, protein, cell debris and ADH  

flocculation profiles through the extended Kalman filter and Levenberg-Marquardt non­

linear least squares techniques for Batch Run5. The model parameter initial guesses, 

measurement and system noise terms are listed in table 6.1 and batch operating 

conditions are listed in table 5.2.
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Figure B.9. Estimation o f model parameter B for RNA, protein, cell debris and ADH  

flocculation profiles through the extended Kalman filter and Levenberg-Marquardt non­

linear least squares techniques for Batch RunQ. The model parameter initial guesses, 

measurement and system noise terms are listed in table 6.1 and batch operating 

conditions are listed in table 5.2.
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Figure B.10. Estimation o f model parameter C for RNA, protein, cell debris and ADH  

flocculation profiles through the extended Kalman filter and Levenberg-Marquardt non­

linear least squares techniques for Batch Run6. The model parameter initial guesses, 

measurement and system noise terms are listed in table 6.1 and batch operating 

conditions are listed in table 5.2.
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Figure B.11. Estimation o f model parameter B for RNA, protein, cell debris and ADH  

flocculation profiles through the extended Kalman filter and Levenberg-Marquardt non­

linear least squares techniques for Batch Run7. The model parameter initial guesses, 

measurement and system noise terms are listed in table 6.1 and batch operating 

conditions are listed in table 5.2.
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Figure B.12. Estimation o f model parameter C for RNA, protein, cell debris and ADH  

flocculation profiles through the extended Kalman filter and Levenberg-Marquardt non­

linear least squares techniques for Batch Run7. The model parameter initial guesses, 

measurement and system noise terms are listed in table 6.1 and batch operating 

conditions are listed in table 5.2.
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Figure B.13. Estimation o f model parameter B for RNA, protein, cell debris and ADH  

flocculation profiles through the extended Kalman filter and Levenberg-Marquardt non­

linear least squares techniques for Batch Run8. The model parameter initial guesses, 

measurement and system noise terms are listed in table 6.1 and batch operating 

conditions are listed in table 5.2.
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Figure B.14. Estimation o f model parameter C for RNA, protein, cell debris and ADH  

flocculation profiles through the extended Kalman filter and Levenberg-Marquardt non­

linear least squares techniques for Batch Run8. The model parameter initial guesses, 

measurement and system noise terms are listed in table 6.1 and batch operating 

conditions are listed in table 5.2.
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Appendix C

Appendix C

3(1 ̂ -Parameter Model (equation 2.7)

^3(1) « ( n - i \ n= 0 ^ x  = a \    (C.1)
ax \ n  + V

where y 3(I) is the 3(1)-Parameter model, a and n are model parameters, and x  is the 

measure of flocculant dose.
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Figure C.1. Change in function f,(n) with respect to n. Where fj(n ) is defined as

fi( .n) = \ ~— “ I • When n >4.5 =>fj(n) >0.9.
\n  + V
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Appendix C
3(2VParameter model (equation 2.10)

f2(C)
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Figure C.2. Change in function f 2(C) with respect to C. Where f 2(n) is defined 

a s f2(Q  = { ^ ^ jC . When C>3.5=>f2(C) >0.9.

3(2VParameter model derivatives

^3(2)
dA

= exp -1
v y

(c.2)

^ 3 ( 2 )  , „ D _ C - 1 C— —  = ACB x exp
dB

r  . . c \
(c.3)

3̂(2) _ . (  x \ C  . I X

dc =- \ l )  lnl i |exp
V c
B ,v y

(c.4)
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