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Héctor Gil-Marı́n ,1,2‹ Julián E. Bautista ,3 Romain Paviot,4 Mariana Vargas-Magaña,5 Sylvain de la
Torre,4 Sebastien Fromenteau ,6 Shadab Alam,7 Santiago Ávila,8 Etienne Burtin,9

Chia-Hsun Chuang ,10 Kyle S. Dawson,11 Jiamin Hou,12 Arnaud de Mattia,9 Faizan G. Mohammad,13,14

Eva-Maria Müller,15 Seshadri Nadathur ,3 Richard Neveux,9 Will J. Percival,13,14,16 Anand Raichoor,17

Mehdi Rezaie ,18 Ashley J. Ross ,18 Graziano Rossi,19 Vanina Ruhlmann-Kleider,9 Alex Smith,9
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ABSTRACT
We analyse the clustering of the Sloan Digital Sky Survey IV extended Baryon Oscillation Spectroscopic Survey Data Release
16 luminous red galaxy sample (DR16 eBOSS LRG) in combination with the high redshift tail of the Sloan Digital Sky Survey
III Baryon Oscillation Spectroscopic Survey Data Release 12 (DR12 BOSS CMASS). We measure the redshift space distortions
(RSD) and also extract the longitudinal and transverse baryonic acoustic oscillation (BAO) scale from the anisotropic power
spectrum signal inferred from 377 458 galaxies between redshifts 0.6 and 1.0, with the effective redshift of zeff = 0.698 and
effective comoving volume of 2.72 Gpc3. After applying reconstruction, we measure the BAO scale and infer DH(zeff)/rdrag =
19.30 ± 0.56 and DM(zeff)/rdrag = 17.86 ± 0.37. When we perform an RSD analysis on the pre-reconstructed catalogue on the
monopole, quadrupole, and hexadecapole we find, DH(zeff)/rdrag = 20.18 ± 0.78, DM(zeff)/rdrag = 17.49 ± 0.52 and fσ 8(zeff) =
0.454 ± 0.046. We combine both sets of results along with the measurements in configuration space and report the following
consensus values: DH(zeff)/rdrag = 19.77 ± 0.47, DM(zeff)/rdrag = 17.65 ± 0.30 and fσ 8(zeff) = 0.473 ± 0.044, which are in
full agreement with the standard �CDM and GR predictions. These results represent the most precise measurements within the
redshift range 0.6 ≤ z ≤ 1.0 and are the culmination of more than 8 yr of SDSS observations.

Key words: cosmological parameters – large-scale structure of the Universe.

1 IN T RO D U C T I O N

The large-scale structure (LSS) of the Universe contains valuable
information of how the Universe has been evolving in the last
∼7 × 109 yr, when the dark-energy-domination era started. The cur-
rent state-of-the-art spectroscopic LSS observations allow to utilize
the standard ruler baryon acoustic oscillations (BAO), first detected
in Eisenstein et al. (2005) on the Sloan Digital Sky Survey (SDSS)
data set and Cole et al. (2005) on the Two-Degree Field Survey (2dF,
Colless et al. 2003), to determine with precision the background
expansion history of the Universe at late-time. During the last decade,
the BAO technique has evolved in both precision and accuracy

� E-mail: hectorgil@icc.ub.edu

becoming mature. Consequently, a plethora of measurements has
been performed on spectroscopic galaxy surveys at different epochs:
6-degree Field Survey (6dF; Jones et al. 2009; Beutler et al. 2011)
at z = 0.106, WiggleZ (Drinkwater et al. 2010; Blake et al. 2011b;
Kazin et al. 2014) at z = 0.44, 0.6, 0.73, and Baryon Oscillation
Spectroscopic Survey (BOSS) galaxies (Anderson et al. 2012, 2014a,
b; Dawson et al. 2013; Alam et al. 2017) at z = 0.38, 0.51, 0.61,
and BOSS Lyman α forests (Bautista et al. 2017; du Mas des
Bourboux et al. 2017) at z = 2.40. Additionally, if we want to
obtain a direct measurement of the growth of structures from these
same spectroscopic surveys we need to measure the effect of redshift
space distortions (RSD; Kaiser 1987). Consequently, we obtain both
an expansion history and a growth of structure measurement from
the same data set. Parallel to the BAO technique development, RSD
analyses have also matured both in modelling and observational
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systematics treatment during the last decade: RSD in 2dF (Percival
et al. 2004), in 6dF (Beutler et al. 2012), in WiggleZ (Blake et al.
2011a), in VIPERS (de la Torre et al. 2013; Guzzo et al. 2014;
Pezzotta et al. 2017), in FastSound (Okumura et al. 2016), as well in
BOSS galaxies (Alam et al. 2017).

Anisotropic BAO studies provide a direct measurement of the
background expansion at the epoch of the observed galaxies,
z, through the absolute and relative BAO peak position in the
anisotropic multipoles of the power spectrum or correlation function.
Under the assumption of a functional form of the background
expansion, H(z; �m) one can obtain a direct measurement of the
density of matter in the Universe �m. Note that the BAO peak
position is not directly sensitive to H(z), but to H(z)rdrag, and to
the comoving angular diameter distance over the comoving sound
horizon at the epoch where the baryon-drag optical depth equals
unity, DM(z)/rdrag. From these measurements, one can either infer
�m from the product of the two (which is independent of rdrag), or
assume an extra prior on rdrag, which can either come from cosmic
microwave background (CMB) measurements, or from a functional
form of rdrag given by priors on the baryon, �b and radiation density
�rad (which are typically not measured by LSS), and infer H0 (see
for e.g. Addison et al. 2018). Within the SDSS collaboration, we
opt to analyse these results under the less restrictive set of priors,
and thus only assume a functional form for H(z), but no restriction
on rdrag as a function of cosmology. The motivation for proceeding
this way is the robustness of the cosmological interpretation under
potential changes of the cosmological paradigm if, for example, the
state-of-the-art value of rdrag changes significantly in the future or
�CDM is ruled out, as one would just only need to re-interpret
the quantities H(z)rdrag and DM(z)/rdrag rather than reanalysing the
data. In this paper, we choose to work with the ‘Hubble distance’,
DH, defined as DH(z) ≡ c/H(z), where c is the speed of light. The
parameter DH(z)/rdrag has the advantage of being dimensionless, of
the order of unity and directly proportional to the scale factor, which
is actually measured.

RSD are a measurement of the peculiar velocity field of the
galaxies along the line-of-sight (LOS). As this velocity field is only
detected along the LOS, it generates an anisotropic signal in the
power spectrum expansion as a function of the cosine of the LOS
with the vector separation of the galaxy pair. This velocity field is
generated by overdensities of matter, and therefore is coherent with
the growth of these density perturbations. Thus, by measuring the
redshift space distortion effect on the power spectrum of galaxies one
can set constraints on the logarithmic growth of structure parameter,
f. For the two-point statistics, this parameter is degenerate with the
parameter σ 8, the amplitude of dark matter fluctuations at the scale
of 8 h−1 Mpc. For this reason power spectrum or correlation function
redshift space distortion analyses are sensitive to the combination, f
times σ 8, which we just refer as fσ 8.

In this paper, we perform two complementary analyses, BAO
and full shape analyses in order to extract DM(z)/rdrag, DH(z)/rdrag

and fσ 8 from the power spectrum of the final Data Release 16
(DR16) SDSS-IV eBOSS LRG catalogue in combination with the
high redshift tail of the Data Release 12 (DR12) SDSS-III BOSS
LRG catalogue (for simplicity we refer to this combined catalogue
as the DR16 CMASS + eBOSS LRG catalogue). The catalogue
consists of 377 458 galaxies between redshifts 0.6 and 1.0, with
effective redshift of zeff = 0.698 and effective comoving volume of
2.72 Gpc3. The BAO analysis is focused exclusively on identifying
the position of the BAO features in the power spectrum, whereas
the full shape analysis models the anisotropic power spectrum shape
to extract information. In order to enhance the BAO detection, we

utilize the standard reconstruction algorithm (Eisenstein et al. 2007;
Burden et al. 2014). Thanks to reconstruction we are able to remove
most of the non-linear bulk flow effect and enhance the significance
of the BAO features. For the BAO analysis, we therefore perform
the standard analysis on the reconstructed catalogues, whereas the
full shape analysis is performed on the original, pre-reconstructed
catalogues. The results extracted from the analysis of the same
sample in configuration space are presented in the companion paper
(Bautista et al. 2020). Since these two results are expected to be
highly correlated (as they are both extracted from the exact same
catalogue) we perform a consensus results which is presented at the
end of both papers.

The cosmological implication is presented instead in the com-
panion paper (eBOSS Collaboration et al. 2020) along with the
measurements of the rest of the galaxy and Lyman α samples of
BOSS and eBOSS. These samples correspond to the following:1

(i) luminous red galaxy sample (LRG), 0.6 < z < 1.0, power
spectrum analysis (this paper) and correlation function analysis
(Bautista et al. 2020)

(ii) emission-line galaxy sample (ELG), 0.6 < z < 1.1, power
spectrum analysis (de Mattia et al. 2020), correlation function
analysis (Tamone et al. 2020) and catalogue description (Raichoor
et al. 2020)

(iii) quasar-clustering sample (QSO), 0.8 < z < 2.2, power
spectrum analysis (Neveux et al. 2020), and correlation function
analysis (Hou et al. 2020)

(iv) lyman α cross-correlation and autocorrelation analysis (des
Mas du Bourboux et al. 2020) with quasars z > 2.1.

In addition, eBOSS Collaboration et al. (2020) include as well
the results from the two low- and middle-redshift overlapping bins
from SDSS-III BOSS (Alam et al. 2017), as they do not overlap
with any of the eBOSS samples. An essential component of these
studies is the generation of data catalogues (Lyke et al. 2020; Ross
et al. 2020), mock catalogues (Lin et al. 2020; Zhao et al. 2020a),
and N-body simulations for assessing systematic errors on the LRG
(Rossi et al. 2020; Smith et al. 2020) and ELG samples (Alam et al.
2020; Avila et al. 2020). Additionally, in Wang et al. (2020) and Zhao
et al. (2020b), the cross-correlation signal between LRG and ELG
samples is presented and studied.

Previous to the final DR16 analysis, these samples were already
studied for the two-year observation catalogues Data Release 14
(DR14): DR14 eBOSS LRG BAO (Bautista et al. 2018), DR14
eBOSS LRG RSD (Icaza-Lizaola et al. 2019), DR14 eBOSS quasar
BAO (Ata et al. 2018), DR14 eBOSS quasar RSD (Hou et al.
(Gil-Marı́n et al. 2018; Hou et al. 2018; Zarrouk et al. 2018) and
DR14 Lyman α (de Sainte Agathe (Blomqvist et al. 2019; de Sainte
Agathe et al. 2019). Other studies that included redshift-weighting
techniques of the DR14 quasar sample were also presented by
Ruggeri et al. (2019), Wang et al. (2018), Zhao et al. (2019), and
Zhu et al. (2018).

This paper is organized as follows. In Section 2, we briefly present
the actual and synthetic galaxy catalogues used in this paper. In
Section 3, we describe the methodology followed for performing the
power spectrum estimation and the models used for both BAO and
full shape analysis. In Section 4, we present the results of this paper

1A summary of all SDSS BAO and RSD measurements with accompany-
ing legacy figures can be found here: sdss.org/science/final-bao-and-rsd-
measurements/. The full cosmological interpretation of these measurements
can be found here: sdss.org/science/cosmology-results-from-eboss/
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as well as the consensus along with the complementary configuration
space analysis. In Section 5, we perform an exhaustive systematic
study to quantify the potential systematic effect that could affect
the inferred cosmological parameters. In Section 6, we present the
Fourier and configuration space consensus results and in Section 7
we compare our findings with the standard Lambda cold dark matter
(�CDM) model predictions. Finally, in Section 8, we present the
conclusions of this work.

2 DATA SET

We briefly describe the DR16 LRG data set along with the synthetic
mock catalogues we use. A detailed description of the DR16 data
set is presented in Ross et al. (2020); the synthetic fast EZMOCKS

used for estimating the covariance are fully described in Zhao et al.
(2020a); and the mocks based on OUTERRIM N-body simulation
used for validating the pipeline are described in Rossi et al. (2020).
Additionally, we make use of a series of N-body simulations used
for previous BOSS analyses (Alam et al. 2017), which we refer as
NSERIES mocks.

2.1 LRG galaxy sample

The SDSS fourth-generation spectroscopic observations (SDSS-
IV, Blanton et al. 2017) employ two multi-object spectrographs
(Smee et al. 2013) installed on the Apache Point Observatory 2.5-
m telescope located in New Mexico, USA (Gunn et al. 2006),
to carry out spectroscopic measurements from a photometrically
selected eBOSS LRGs sample (Dawson et al. 2016). Such LRGs
were previously selected from the optical SDSS photometry DR13
(Albareti et al. 2017) with the supplementary infrared photometry
from the WISE satellite (Lang, Hogg & Schlegel 2016). The same
instrument was already used for the previous BOSS program.

A description of the final targeting algorithm is presented in
Prakash et al. (2016), which produced 60 LRG targets per square-
degree over a sky footprint of 7500 deg2, of which ∼50 deg-2

were spectroscopically observed. Such observations returned mainly
objects between 0.6 ≤ z ≤ 1.0 as tested by The Sloan Extended
Quasar, ELG and LRG Survey (Dawson et al. 2016).

The estimation of the redshift of each LRG spectrum was per-
formed using the publicly available REDROCK algorithm,2 which
improved the redshift efficiency of its predecessor, REDMONSTER

(Hutchinson et al. 2016), from 90 up to 96.5 per cent in terms of
objects with a confident redshift estimate, with less than 1 per cent
catastrophic redshift errors.

A description of the catalogue creation is presented in detail
in Ross et al. (2020). In short, a synthetic catalogue of randomly
generated objects is created over the same footprint of the eBOSS
targeted objects matching its angular and radial geometry. We refer
to this as the random catalogue of the data, as it does not contain any
intrinsic clustering structure, other than that spuriously generated by
the selection function. Both data and random catalogue are filtered
through a series of masking processes to remove regions with bad
photometry, target collisions with quasar spectra (quasar objects had
priority in being spectroscopically observed over LRGs when a fibre
collision occurred) and centre-post regions, among other effects.
This series of masking processes removed 17 per cent of the initial
LRG eBOSS footprint. In addition to these effects, 3.4 per cent of
the LRG targets were not observed because of fibre collisions with

2REDROCK is available at sdss.org/dr16/software/products

another LRG target. For BOSS and eBOSS this occurs when two
photometrically selected targets are closer than 62 arcsec. Some of
these close objects could be spectroscopically observed when the
same group of objects of the sky was observed by more than one plate.
In this catalogue, we treat these collided groups by up-weighting all
group objects by the same weight value, wcp = Ntarg/Nspec, where
Ntarg is the number of targeted objects and Nspec the number of objects
with actual spectroscopic observation. Note that this differs from the
treatment previously applied to the DR14 eBOSS and DR12 BOSS
analyses. A similar procedure is followed for those galaxies with
no reliable redshift information, due to catastrophic redshift failures.
These types of failures represent 2.1 per cent of the LRG targets. In
this case a redshift failure weight, wnoz is assigned to such galaxies
as a function of the location of its spectrum on the CCD camera and
the overall signal-to-noise ratio of the spectrograph in which it was
observed. By multiplying the redshift-failure and close-pair weight,
we obtain the total eBOSS collision weight

weBOSS
col = wcp · wnoz. (1)

Note that a galaxy that does not suffer from any of these effects
would have a collision weight of unity.

The density of objects with spectroscopic information per sky-
area in the galaxy catalogues is not constant over the eBOSS sky
footprint, due to both observational systematics (varying observa-
tional features across the imaging survey) and geometrical effects
(for example whether a region has been simultaneously observed by
more than one plate). We refer to this whole effect as completeness,
without separating the observational and geometrical contributions.
Qualitatively, the completeness generates spurious signals, we need
to filter out in order to measure the intrinsic clustering. Within the
eBOSS collaboration, we define the completeness as the ratio of
the number of weighted spectra (including also objects classified
as stars and quasars) to the number of targets, which is computed
per sky sector, this is, a connected region of the sky observed
by a unique set of plates. In order to account for the effect of
completeness, we downsample each object of the random catalogue
by the completeness of its corresponding sky sector. In this way, the
definition of completeness includes the systematic weight, wsys, as
well as other effects, including the variation of the mean density as a
function of stellar density and galactic extinction. For further details
on the catalogue creation, we refer the reader to Ross et al. (2020).

Additionally, a minimum variance weight is also applied, the FKP
weight (Feldman, Kaiser & Peacock 1994). This accounts for the
radial mean density dependence, wFKP(z) = 1/[1 + n(z)P0], where
P0 is chosen to be the amplitude of the power spectrum P(k) at the
scales of BAO, k ∼ 0.1 h Mpc−1, P0 = 10 000 ( h−1 Mpc)3.

The objects contained by the LRG galaxy catalogue have the
following total weight which accounts for the four effects described
above

wtot = wFKP × wsys × w
(i)
col. (2)

In this paper, we merge the eBOSS LRG galaxy catalogue with
the BOSS CMASS SDSS-III catalogue above redshift 0.6 (Reid
et al. 2016) into a single LRG catalogue, over which we perform
our analysis. Note that for those galaxies observed by BOSS, the
weighting scheme is different that the one described above. We refer
the reader to the BOSS catalogue paper for details (Reid et al. 2016).
In short, the total collision weight for BOSS galaxies reads

wBOSS
col = wcp + wnoz − 1, (3)

where the collision and failure weights have been obtained using the
traditional nearest neighbour approach.
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Figure 1. Number density of objects with spectroscopic observations for
DR12 BOSS CMASS LRGs (in blue) and DR16 eBOSS LRGs (in orange), for
the NGC (solid lines) and SGC (dashed lines). In black is shown the addition
of CMASS and eBOSS densities. Note that such additions only correspond
to those regions with overlapping area between eBOSS and BOSS CMASS
galaxies, which approximately correspond to the whole eBOSS LRG area.
The effective redshift of the combined sample corresponds to zeff = 0.698
according to the definition of equation (4).

Fig. 1 displays the mean density of objects as a function of redshift
for the eBOSS-only LRG (blue) and CMASS (red) galaxies, and the
combined CMASS + eBOSS LRG catalogue (black). The solid lines
stand for the density of the north galactic cap (NGC) and the dashed
lines for the south galactic cap (SGC).

We have quantified the difference between the NGC and SGC
using the mocks to infer the errors and covariance among redshift
bins. Unlike the CMASS sample, we find that CMASS + eBOSS
LRG n(z) distribution between NGC and SGC is significantly
different, which we have imprinted in the EZMOCKS.

2.2 Synthetic catalogues

In this paper, we employ several type of mocks in order to estimate the
covariance, quantify the impact of systematic errors and to validate
the pipeline and methods employed on the data.

2.2.1 EZMOCKS

The EZMOCKS consist of a set of 1000 independent realizations using
the fast approximative method based on Zeldovich approximation
(Chuang et al. 2015) with the main purpose of estimating the
covariance of the data. Such mocks consist of light-cones with the
radial and angular geometry of the CMASS + eBOSS LRG data set,
with observational effects, such as fibre collision, redshift failures,
and completeness. These light-cones are drawn from four and five
snapshots at different redshifts, for CMASS and eBOSS galaxies,
respectively. A full description of these mocks is presented in Zhao
et al. (2020a). These mocks are generated using fast-techniques,
which are a good approximation of an actual N-body simulation
at large scales, but which eventually fail to reproduce the complex
gravity interaction and peculiar motions at small scales. Because
of this, we use them to estimate the covariance matrix of the data,
but their performance for reproducing physical effects such as BAO
and RSD is not guaranteed at sub- per cent precision level. Thus,
we do not estimate the potential modelling systematics based on

these mocks, but on full N-body mocks. However, these mocks are
useful to estimate the relative change on cosmological parameters
when applying each of these observational features. We use them to
quantify the potential impact of observational systematics in the final
data results. In order to analyse these mocks, we use the covariance
drawn from themselves.

2.2.2 NSERIES mocks

The NSERIES mocks are full N-body mocks populated with a
fixed halo occupation distribution (HOD) model similar to the one
corresponding to the DR12 BOSS NGC CMASS LRGs. Their
effective redshift, zeff = 0.56 is slightly smaller compared to the
effective redshift of the DR16 CMASS + eBOSS LRG sample,
zeff = 0.698, as they were initially designed to test the potential
systematics on the modelling used for the BOSS CMASS sample.
They were generated out of seven independent periodic boxes of
2.6 h−1Gpc side, projected through 12 different orientations and
cuts, per box. In total, after these projections and cuts 84 pseudo-
independent realizations were produced. The mass resolution of
these boxes is 1.5 × 1011 M� h−1 and with 20483 particles per box.
The large effective volume, 84 × 3.67 [Gpc]3 makes them ideal to
test potential BAO and RSD systematics generated by the analysis
pipeline, as to test the response of the arbitrary choice of reference
cosmology on the BAO and full shape model templates, in the galaxy
catalogues when converting redshifts into distances, and its impact on
the inferred cosmological parameters. We use the NGC MD-PATCHY

mocks (Kitaura et al. 2016) to describe the covariance of these mocks.
We rescale the covariance terms by 10 per cent based on the ratio
of particles, as the MD-PATCHY mocks have fewer particles than the
NSERIES mocks due to veto effects on DR12 CMASS data, which
was also imprinted into the MD-PATCHY mocks but not into NSERIES

mocks. When we run reconstruction on the NSERIES mocks, we
consistently also use the covariance from reconstructed MD-PATCHY

mocks.

2.2.3 OUTERRIM–HOD mocks

The OUTERRIM-HOD mocks are drawn from the OUTERRIM N-body
simulation (Heitmann et al. 2019) and populated with different types
of HOD models (see Rossi et al. 2020 for a full description), some
of them similar to the LRG sample, but also others having different
properties. The original simulation corresponds to a single cubic
box realization with periodic boundary conditions whose size is
3 h−1Gpc. This box is divided into 27 cubic sub-boxes of 1 h−1Gpc
per side, without the periodicity of cubic-boxes. For those galaxy
catalogues, whose HOD models are close to the actual data sam-
ple studied here (those labelled ‘Hearin-Threshold-2’, ‘Leauthaud-
Threshold-2’, and ‘Tinker-Threshold-2’, see Rossi et al. 2020 for a
description of all models), we place the galaxies in a larger box of
3 h−1Gpc per side with empty space between the galaxies and the box
edges, and generate a random catalogue with the same distribution
but with no clustering. In this way, when performing the discrete
Fourier transform (FT) the non-periodicity conditions do not impact
the results. We refer to this process as padding. Additionally, we also
apply reconstruction on these padded catalogues.

The effective volume of each sub-box of the ‘Hearin-Threshold-2’,
‘Leauthaud-Threshold-2’, and ‘Tinker-Threshold-2’, corresponds to
∼ 1.1 Gpc3. For the rest of the HOD-models, the effective volume
varies between 2.1 and 2.7 Gpc3, as the number density of objects,
and consequently n̄P , is much higher.
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Table 1. List of reference cosmology models used along the paper. For our baseline analysis of mocks and data, we use the fiducial set of
cosmology parameters, �fid, as a reference cosmology. For all cosmologies, �k = 0.

Model �m �mh2 �b �bh2 103 × �ν h ns As × 109 σ 0
8 rdrag (Mpc) Neff

�fid 0.310 0.1417 0.0481 0.0220 1.400 0.676 0.97 2.040 0.8 147.78 3.046
�EZ 0.307 0.1411 0.0482 0.0220 0 0.678 0.96 2.115 0.8225 147.66 3.046
�Nseries 0.286 0.1401 0.0470 0.0230 0 0.700 0.96 2.146 0.82 147.15 3.046
�OR 0.265 0.1335 0.0448 0.0226 0 0.710 0.96 2.159 0.8 149.35 3.046
�X 0.350 0.1599 0.0481 0.0220 1.313 0.676 0.97 1.767 0.814 143.17 3.046
�Y 0.350 0.1599 0.0481 0.0220 1.313 0.676 0.97 2.040 0.814 138.77 4.046
�Z 0.365 0.2053 0.0658 0.0370 0 0.750 0.96 2.146 0.9484 123.97 3.046

In order to deal with the covariance of these mocks, we have
used the covariance derived from the EZMOCKS and re-scaled by
the difference in particle number. These rescalings correspond to
the factors of 1.0, 0.64, and 9 for ‘Standard’, ‘Threshold-1’, and
‘Threshold-2’, respectively, for Hearin, Leauthaud and Tinker HOD-
types. For Zheng HOD-type, we use 0.60, 2.37, and 0.60, for
‘Standard’, ‘Threshold 1’, and ‘Threshold 2’, respectively.

2.3 Reference cosmology

In this paper, we choose a set of cosmological parameters within the
flat �CDM model to define a reference cosmology, which is used
to (i) transform the redshifts of galaxies into comoving distances;
and (ii) produce a linear template used to build a fitting model. We
use as our main baseline analysis the fiducial set of parameters,
�fid, listed in the first row of Table 1 as a reference cosmology.
In addition, we also analyse the mocks and data using other sets
of reference cosmologies to check the impact of this arbitrary
choice. Among these cosmologies, we choose to use as reference
cosmology the underlying cosmology of the NSERIES mocks, �Nseries,
the OUTERRIM derived mocks, �OR and three high-�m cosmologies,
�X , �Y , and �Z , whose properties are listed in Table 1. In particular,
�Y and �Z have a very different rdrag value compared to the one
inferred from the usual CMB-anisotropy experiments (Hinshaw et al.
2013; Aghanim et al. 2018). In case of �Y , this is driven by a
large value of the total number of neutrino species, and for �Z by
a high value of the baryon density. The �Y and �Z correspond
to a very disfavoured cosmologies compared to the state-of-the art
CMB observations. However, our LSS results are presented in a
compressed set of variables which do not depend on these CMB
priors. Consequently, the results inferred from LSS observations by
assuming any of the tested cosmologies as ‘reference-cosmology’
are valid, as we will demonstrate in Section 5.

In order to determine the effective redshift of the sample, we
perform the following weighted pair-count:

zeff =
⎛
⎝∑

i>j

wiwj (zi + zj )/2

⎞
⎠ /

⎛
⎝∑

i>j

wiwj

⎞
⎠ , (4)

where wi is the total weight of the ith galaxy. When we run the above
formula over all the pairs separated by distances between 25 and 130
h−1 Mpc we obtain zeff = 0.698.3 Such limits correspond to those
used by Bautista et al. (2020) in their FS analysis. Relaxing these
limits and accounting for pairs with separations 0 < s [ h−1 Mpc] <

200 does not modify the effective redshift at three significant figures.

3For the NGC sample, we find zeff = 0.695 and for SGC we find zeff = 0.704.
For the combined NGC–SGC sample, we simply approximate zeff = 0.70 in
the power spectrum linear templates.

We therefore take this value of zeff for the analysis performed here,
although the correspondence to the Fourier space k-ranges to the
configuration space ranges is not exact.

2.4 Reconstruction

The BAO peak detection significance can be enhanced by applying
the reconstruction technique (Eisenstein et al. 2007). We use the
algorithm described by Burden et al. (2014), Burden, Percival &
Howlett (2015) in which the underlying dark matter density field
is inferred from the actual galaxy field by assuming a value of
the growth of structure and bias, which can be estimated from a
full shape-analysis on the pre-reconstruction catalogue, and used to
remove both the non-linear motions and the redshift-space distortions
of galaxies.

We make use of the publicly available code4 employed for
performing reconstruction of the DR14 LRG sample (Bautista
et al. 2018). In this paper, we apply this code to the combined
CMASS + eBOSS sample, by assuming a bias value of b = 2.3
and a growth rate consistent with f (z) = �γ

m(z), which in this case
is f = 0.82, and using a smoothing scale of 15 h−1 Mpc. Recently,
Carter et al. (2019) showed how the inferred cosmological parameters
were not sensitive to these arbitrary choices. Potential systematics
arising from reconstruction are checked in Section 5.

2.5 Power Spectrum estimator

In order to measure the power spectrum multipoles, we start by
defining the function (Feldman et al. 1994)

F (r i) = wtot(r i)[ngal(r i) − αrannran(r i)]/I
1/2
2 , (5)

where wtot is the total weight applied to the galaxy sample described
by equation (2), ngal and nran are the number density of galaxy and
random objects with spectroscopic data, respectively, at position ri,
and αran is the ratio between the weighted number of data-galaxies
and randoms. The wtot quantity at each cell position, ri, is inferred
using the mass interpolation scheme chosen to assign individual
objects into a grid. In this fashion, we compute the weighted galaxy
density per cell by assigning individual galaxies to a grid weighted
by its own individual total weight.

In this work, we use 50 times more density for the random
catalogue of the actual LRG data set and 20 times more for the
randoms of the EZMOCKS. The difference in the estimated power
spectrum using the 20 and 50 times random catalogue is smaller
than 0.5 per cent per k-bin in the power spectrum monopole with
no systematic offset. As described previously, both data and mocks
catalogues total weight wtot is made by the product of the systematic

4Reconstruction code available at github.com/julianbautista/eboss clustering
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BAO and FS measurement from eBOSS LRG PS 2497

weight, wsys which contains both completeness and imaging weight,
the collision weight wcol, which contains both failures and close pairs
collisions, and the FKP-weight. Further details of how these weights
were constructed are given in Ross et al. (2020). The normalization
factor I

1/2
2 normalizes the amplitude of the observed power spectrum

and is defined as, I2 ≡ ∫
dr [ngalwtot(r)]2. Later in this section, we

will comment on how this parameter is inferred and its impact on the
final results.

In order to measure the power spectrum multipoles of the galaxy
distribution, we follow the same procedure described in previous
works (Gil-Marı́n et al. 2017). Briefly, we assign the objects of the
data and random catalogues to a regular Cartesian grid, which allows
the use of FT-based algorithms. We embed the full survey volume
into a cubic box of side Lb = 5000 h−1 Mpc, and subdivide it into
N3

g = 5123 cubic cells, whose resolution and Nyqvist frequency are
9.8 h−1 Mpc and kNy = 0.322 h Mpc−1, respectively. We assign the
particles to the cubic grid cells using a third-order B-spline mass
interpolation scheme, usually referred to as Piecewise cubic shape
(PCS), where each data or random particle is distributed among 53

grid-cells. Additionally, we interlace two identical grid-cells schemes
displaced by 1/2 of the size of the grid-cell; this allows us to reduce
the aliasing effect below 0.1 per cent at scales below the Nyqvist
frequency (Hockney & Eastwood 1981, Sefusatti et al. 2016).

We estimate the power spectrum using RUSTICO5 which relies
on the Yamamoto estimator approach (Yamamoto et al. 2006), and
in particular the implementation presented by Bianchi et al. (2015)
and Scoccimarro (2015), to measure the power spectrum multipoles
accounting for the effect of the varying LOS,

P (	)(k) = (2	 + 1)
∫

d�k

4π

∫
dr1F (r1)e−ik·r1

×
∫

dr2F (r2)e+ik·r2L	(k̂ · r̂h), (6)

where, rh = (r1 + r2)/2, and L	 is the Legendre polynomial of the
order of 	. We approximate rh = r1, which allows us to perform the
two integrals separately using fast FT methods. This approximation
introduces wide-angle effects in the power spectrum multipoles as
well as the associated window function. However, these effects have
been shown to not impact current FS and BAO studies significantly
(Beutler, Castorina & Zhang 2019). The 	 = 0 corresponds to
the power spectrum monopole and can be trivially measured using
FT without any approximation as L0(x) = 1. The quadrupole and
hexadecapole need to expand L	 in powers of its argument. Note
that how one distributes these powers of (k · r) among the galaxies
of the pair is a priori arbitrary. For the quadrupole one could expand
L2(x) = (3x2 − 1)/2 as

L2(k̂ · r̂h) � 1

2
(3(k̂ · r̂1)m(k̂ · r̂2)2−m − 1) (7)

which is equivalent to writing

L2(k̂ · r̂h) ∝ Lm
1 (k̂ · r̂1)L2−m

1 (k̂ · r̂2) (8)

for 0 ≤ m ≤ 1, where L1(x) = x. The obvious option would be to
pick either m = 0 or 1, but note that under this approximation all
range of possibilities are equally valid. Note that the option m =
0 corresponds to L2(k̂ · r̂h) → L2(k̂ · r̂1), whereas option m = 1
corresponds to L2(k̂ · r̂h) → L1(k̂ · r̂1)L1(k̂ · r̂2). In this work, we
opt for m = 0 as it involves FT with Legendre polynomials of
even order. For the hexadecapole the number of options increases

5Rapid foUrier STatIstics COde github.com/hectorgil/rustico.

as it involves a polynomial of fourth order. Among the possible
expansions are L4(k̂ · r̂h) → L4(k̂ · r̂1), as used in Bianchi et al.
(2015), orL4(k̂ · r̂h) → L2(k̂ · r̂1)L2(k̂ · r̂2), as used in Scoccimarro
(2015). Note also the possibility involving polynomials of odd orders,
L4(k̂ · r̂h) → L3(k̂ · r̂1)L1(k̂ · r̂2). We do not intend to perform
a detailed study of the difference in signals and variances of
these different expansions. In this paper for simplicity we choose,
L4(k̂ · r̂h) → L2(k̂ · r̂1)L2(k̂ · r̂2), as it involves the same type of FT
as for the quadrupole, saving a significant amount of computational
time. In this fashion, the multipole estimators reads

P (0)(k) =
∫

d�k

4π
|A0(k)|2 − Pnoise, (9)

P (2)(k) = 5

2

∫
d�k

4π
A0(k)

[
3A∗

2(k) − A∗
0(k)

]
, (10)

P (4)(k) = 9

8

∫
d�k

4π
{35A2[A∗

2 − 2A∗
0] + 3|A0|2}, (11)

where

An(k) =
∫

dr (k̂ · r̂)nF (r)eik·r . (12)

Under this approach, measuring the monopole, quadrupole, and
hexadecapole requires to consider those cases with n = 0, 2. The
case n = 0 can be trivially computed using FT-based algorithms,
such as FFTW.6 The n = 2 case can also be decomposed into six
FT by expanding the scalar product between k and r and pulling
the k-components outside the integral, as shown in equation (10) of
Bianchi et al. (2015). Pnoise is the shot noise component, which under
the Poisson assumption reads as the expression of equation (36).

Unless stated otherwise, we perform the measurement of the
power spectrum linearly binning k in bins of 
k = 0.01 h Mpc−1

up to kmax = 0.32 h Mpc−1, although not all the k-elements will be
necessarily used in the final analysis. The resulting power spectrum
multipoles for the combined CMASS + eBOSS LRG sample are
displayed in Fig. 2. We observe a significant mismatch between the
amplitude of the mocks and data. This difference is caused by an early
version of the mocks (with no completeness) being fitted to reproduce
an early version of the data (with completeness). The normalization
of the data was initially set in such a way that the overall amplitude
depended on the value of the overall completeness. As a consequence,
when the completeness was applied in the final version of the mocks,
mocks, and data did not match. This mismatching only appears to be
evident in Fourier space, but not in configuration space (see e.g. fig.
2 of Bautista et al. 2020). Therefore, this effect must correspond to a
mismatch at scales of around s ∼ 1 − 5 Mpc h−1 in configuration
space. We conclude that this effect has no impact on the final
covariance of the data. On the other hand, the overall normalization
of the data has no impact on the cosmological signal extracted, as
it is appropriately modelled by the window function as we describe
below.

We account for the selection function due to the survey geometry
and radial n(z) dependence using the formalism described in previous
works (Beutler et al. 2017; Wilson et al. 2017). We define the window
selection function as the random pair-counts weighted by a 	-order
Legendre polynomial of the cosine of the angle to the LOS of each
random object

W	(s) = (2	 + 1)

I2α−2
ran

Nran∑
i, j>i

wtot(xi)wtot(xj + s)

2πs2
s
L	(x̂los · ŝ), (13)

6Fastest FT in the West: fftw.org
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Figure 2. Power spectrum multipoles measured from the DR16
CMASS + eBOSS LRG sample, monopole (orange symbols), quadrupole
(green symbols) and hexadecapole (purple symbols). The filled and empty
symbols correspond to measurements from the NGC and SGC, respectively.
The empty symbols are displaced horizontally for visibility. The black dashed
and dotted lines correspond to the clustering of the mean of the 1000
realizations of the EZMOCKS with all the systematics applied, for NGC and
SGC, respectively. The amplitude mismatch, more evident for the monopole,
is due to the effect of completeness on the normalization factor of the power
for data and mocks.

where following the same convention used for the power spectrum
estimator, we assign xlos = x1. The pair-count is divided by the
associated volume under a linear binning, ∝ s2
s. Note that the
summation avoids pair-repetitions as it is performed only over j > i
and consequently the actual volume associated to those pairs within
s ± 
s separation is 2πs2
s. Equation (13) is normalized in such a
way that lims → 0W0(s) = 1. One can impose this normalization by
dividing the function by its value in the first s-bin of W0(s). However,
if the random catalogue is not sufficiently dense with respect to
the typical small-scale variations induced by the selection function,
one would propagate such variations in the normalization of the
window, that will eventually impact the measurement, in particular,
for fσ 8 or b1σ 8, though the BAO peak position is insensitive to the
overall normalization factor. Similarly, the same problem appears
when computing the factor I2 when normalizing the measured
power spectrum in equations (9)–(11). As suggested by de Mattia &
Ruhlmann-Kleider (2019), we follow a consistent normalization of
both window and power spectrum by the same quantity, I2 and
therefore our final measurements are independent of this arbitrary
choice. Note that since I2 is associated to the densities of the galaxy
catalogue, but equation (13) is performed over the random catalogue,
we need to include the factor α−2

ran in the normalization. In Fig. D1,
we show the shape of the window functions of equation (13) for
the survey geometry of the combined CMASS + eBOSS LRGs, for
both NGC (solid lines) and SGC (dashed lines), where the different
colours display different 	-multipoles.

In Appendix D, we explicitly write how the selection effect is
included in the power spectrum model.

3 ME T H O D O L O G Y

In this paper, we perform two parallel analyses: the analysis of
the position of the BAO peak in the anisotropic power spectrum
(hereafter BAO analysis), and on the RSD and Alcock–Paczynski

effect (AP effect) using the full shape information in the power
spectrum (hereafter Full Shape analysis or simply FS analysis).

(i) The BAO analysis consists of using a fixed and arbitrary
template to compare the relative BAO peak positions in the power
spectrum multipoles. Such analysis can be performed on both pre-
and post-reconstruction catalogues. The analysis performed on the
reconstructed catalogue measurements has a higher probability of
providing a larger significance detection, and consequently, smaller
error bars than the pre-reconstruction measurement. The BAO peak
position along and across the LOS direction is then linked to the
expansion history and angular diameter distance at the redshift-bin
of the measurement.

(ii) The FS analysis consists of a full modelling of the shape and
amplitude of the power spectrum multipoles, taking into account
non-linear dark matter effects, galaxy bias, and RSD, and is only
performed over the pre-reconstructed catalogues. In order to do
so, we choose an underlying linear power spectrum template at
fixed cosmological parameters and infer the scale dilations and the
amplitudes of the power spectrum multipoles. With this we are able
to infer not only the expansion history and angular diameter distance,
but as well the logarithmic growth of structure times the fluctuations
of the dark matter field filtered by a top-hat function of 8 h−1 Mpc,
fσ 8.

Unlike �CDM-model based analyses, the previously described FS
and BAO analyses do not guarantee a consistent relation between the
expansion history and the angular diameter distance within a �CDM
model. In this sense, our analysis goes beyond such assumption and
can be used to actually test the validity of the model.

Pre- and post-reconstruction catalogues are considered to contain
independent, although correlated, cosmological information. In this
fashion, we maximize the amount of cosmological information if we
combine them with the appropriate covariance.

3.1 Modelling the BAO signal

We model the anisotropic power spectrum signal in order to measure
the BAO peak position and marginalize over the broad-band infor-
mation. We take into account the BAO signal both in the radial- and
transverse-to-LOS directions. Accordingly, we define the dilation
scales across and along the LOS as

α‖(z) = DH(z)r ref
drag

Dref
H (z)rdrag

, (14)

α⊥(z) = DM(z)r ref
drag

Dref
M (z)rdrag

, (15)

where DH ≡ c/H(z), H(z) is the Hubble expansion parameter, c is
the speed of light, DM(z) the comoving angular diameter distance
at given redshift z,7 rdrag is the comoving sound horizon at z =
zdrag, where zdrag is the redshift at which the baryon-drag optical
depth equals unity (Hu & Sugiyama 1996), and the “ref′′ superscript
stands for the values corresponding to the reference cosmology (in
the standard approach this will be the fiducial cosmology, �fid).

As the BAO peak position in the power spectrum monopole is
affected by the reference cosmology chosen to convert redshifts into
distance, as well as by the value of rdrag of this reference template,
r ref

drag, one can infer the shift in the expected BAO peak position
with respect to the reference �CDM model and therefore infer the

7The angular diameter distance, DA(z) and the comoving angular diameter
distance are related by DM(z) = (1 + z)DA(z).
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BAO and FS measurement from eBOSS LRG PS 2499

actual cosmology of the Universe.8 This measurement is known as
an isotropic BAO measurement and is sensitive to the isotropic BAO
distance DV

DV (z)

rdrag
= α0

⎛
⎝[

Dref
M (z)

r ref
drag

]2
Dref

H (z)z

r ref
drag

⎞
⎠

1/3

, (16)

where c is the speed of light, and α0 = (α2
⊥α‖)1/3 is the isotropic BAO

scale dilation. Additionally, we can also make a comparison of the
BAO peak position in the radial direction relative to the transverse
direction. Under the cosmological principle, we assume that the
Universe is isotropic and homogeneous and therefore the BAO should
be a symmetric structure along all spacial directions. In this case, any
excess in the relative BAO scales along and across the LOS must be
due to the difference between the reference cosmology and the true
cosmology of the Universe. This apparent anisotropy is known as the
AP effect (Alcock & Paczynski 1979) and is parametrized as

FAP(z) = F−1
ε (z)DM(z)ref/DH(z)ref, (17)

where Fε = α�/α⊥. FAP is a relative parameter, which does not
depend on the sound horizon scale, rdrag and is therefore measured
independently of CMB physics. Alternatively, other parametrizations
also use the variable ε ≡ F 1/3

ε − 1.
The AP effect distorts the true wave numbers of power spectrum:

the observed wavenumber along and across the LOS, k� and k⊥,
are related to the true wave numbers k′

‖ and k′
⊥ as, k′

‖ = k‖/α‖ and
k′

⊥ = k⊥/α⊥, respectively. In terms of the absolute wavenumber k′ =√
k′2‖ + k′2⊥, and the cosine of the angle between the wavenumber

vector and the LOS direction, μ, one can write the relations

k′ = k

α⊥

[
1 + μ2

(
1

F 2
ε

− 1

)]1/2

, (18)

μ′ = μ

Fε

[
1 + μ2

(
1

F 2
ε

− 1

)]−1/2

. (19)

We highlight that in equations (18) and (19) the Fε and α⊥
dependence implies that the scale constraint comes exclusively from
the BAO peak position. This is true for the BAO-type of analysis.
However, for the FS type of analysis, the scale constraints come partly
from the BAO-shift and partly from the modification of the shape
of the smoothed power spectrum. Since this shape is close to be a
power law in the FS range of analysis, 0.02 < k [ h Mpc−1] < 0.15,
most of the scale constraint will effectively come from the BAO-
shift. However, analysis of next-generation data will have to deal
consistently with these two types of re-scalings in order to obtain an
accurate interpretation of cosmology data.

In order to model the BAO peak position in a μ-dependent power
spectrum, we follow the model proposed by Beutler et al. (2017)

P (k, μ) = B(1 + Rβμ2)2Plin(k) {1 + [Olin(k) − 1]

× e−1/2k2(μ22
‖+(1−μ2)⊥)

}
, (20)

where the dark matter linear power spectrum Plin(k) is enhanced
with the Kaiser factor, B(1 + Rβμ2)2, where B is a free parameter,
which under certain conditions could be interpreted as the linear
bias squared, b2

1, β is the redshift space distortion parameter and is

8In this paper, these two reference cosmologies, the cosmology chosen to
convert redshift into distance and the cosmology chosen for the model-
template, are chosen to be the same for simplicity.

also treated as free and nuisance parameter in this analysis.9 R is a
parameter, which stands for the redshift-space distortion suppression
due to reconstruction. In this analysis, it is fixed to R = 1 for
pre-reconstructed catalogues and to R = 1 − exp(−k22

s /2), where
s is the smoothing scale used during the reconstruction process.
The Olin is the linear BAO template defined as Olin ≡ Plin/P

(sm)
lin ,

where P
(sm)
lin is a smoothed power spectrum with no BAO signal. In

this paper, we infer P
(sm)
lin following the methodology described by

Kirkby et al. (2013) where the BAO peak in configuration space is
replaced by a smoothed non-BAO template. Other approaches such
as the one by Eisenstein & Hu (1998) are also possible producing
equivalent results for the given precision of the BOSS and eBOSS
data. The parameters � and ⊥ describe the smoothing of the BAO
along and across the LOS due to non-linear bulk motions. These
parameters can be estimated for the pre-reconstructed catalogues
as, ⊥ = 10.4D(z)σ 8, where D(z) is the linear growth factor, and
⊥ = (1 + f)� (Seo & Eisenstein 2007), where � > ⊥ due
to RSD induced by the logarithmic growth factor f. Such damping
terms reduce the amplitude of BAO oscillations of the linear power
spectrum template of Olin, and make the BAO feature less prominent
and consequently more difficult to detect. For the post-reconstruction
catalogues, the non-linear bulk motions are removed above a certain
smoothing scale and therefore the effective values of � and ⊥
are expected to be reduced. In order to determine � and ⊥, we
fit them as free parameters to the mean of the EZMOCKS,10 and
use these best-fitting values when determining the BAO peak of the
individual mocks, and consequently on the data as well. We choose
the EZMOCKS to determine the best-fitting values of � and ⊥ for
the data, as these are the only mocks with a clustering signal very
similar to the data. In Section 4, we check that allowing for certain
freedom on the values of these parameters does not impact the final
BAO results significantly.

We integrate the template of equation (20) weighting it by the
Legendre polynomials of μ, L	 and add a number of broad-band
nuisance parameters to get the 	 −multipole of the power spectrum

P (	)(k) = 2	 + 1

2

∫ 1

−1
dμL	(μ)P [k′(k,μ),μ′(μ)] +

n∑
i=1

A
(	)
i k2−i ,

(21)

where Ai are the parameters which allow us to marginalize over non-
linear effects of the broad-band. Note that the non-linear part of the
broad-band is not assumed to be dependent of the AP effect in this
model, unlike the FS type of templates. For the BAO fits, we take as
the standard analysis n = 3 as the broad-band parameter maximum
order. We have checked that this order is a good compromise between
speed and precision, given the statistical error bars of the sample.

We fit the data by considering independent NGC and SGC
broad-band and bias parameters, both on the power spectra
monopole and quadrupole. Thus, in the standard fit we consider
two physical parameters, {α�, α⊥} and 15 nuisance parameters,
{β,BN, A

(0)
i N, A

(2)
i N, BS, A

(0)
i S, A

(2)
i S}, where i = 1, . . . , n, and N, S

stand for NGC and SGC, respectively.
Alternatively to the template described above we also check the

performance of the following isotropic template (Gil-Marı́n et al.

9We do not attempt any physical interpretation of β as the ratio of the
logarithmic growth of structure f and the linear bias parameter b1.
10When analysing other type of mocks, such NSERIES or OUTERRIM-derived
mocks, we set � and ⊥ to the best-fitting values of the mean of these
mocks, respectively.
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2016b),

P (	)(k) = P (	)
sm (k)

{
1 + [Olin(k/α	) − 1] e−1/2k22

nl 	

}
, (22)

where

P (	)
sm (k) = B (	)P

(sm)
lin (k) +

n∑
i=1

A
(	)
i k2−i . (23)

For 	 = 0 one fits the monopole, P(0) in order to constrain
α0 = α

1/3
‖ α

2/3
⊥ as in equation (16). The first anisotropic moment,

	 = 2 is not the quadrupole but a linear combination of monopole,
and quadrupole, the μ2-moment, which constrains the variable
a2 = α

3/5
‖ α

2/5
⊥ (Ross, Percival & Manera 2015b). In this fashion one

also can extend this to the next anisotropic moment for 	 = 4, the μ4-
moment, which constrains a4 = α

5/7
‖ α

2/7
⊥ . Such moments are defined

such that

P (μ0) = P (0), (24)

P (μ2) = P (0) + 2/5P (2), (25)

P (μ4) = P (0) + 4/7P (2) + 8/64P (4). (26)

Typically, most of the BAO information is contained by the two first
moments, and by adding μ4 one does not gain much extra information
(see fig. 3 of Ross et al. 2015b).

The main difference between the above isotropic template and
the anisotropic template of Equations (20) and (21) is the effect
of the BAO damping parameter nl. In the anisotropic template,
the exponential argument has an explicit μ-dependence through
the damping terms along and across the LOS, ⊥ and �. In this
case, the monopole and quadrupole contain an effective weighted-
averaged damping parameter, 0, 2, and 4. The main advantage
of the isotropic template is that (i) it is faster to evaluate, as it does
not require an integration over the LOS, and (ii) the broad-band
parameters are in linear combination and therefore an analytical
solver can be applied without the need of running an Markov chain
Monte Carlo (MCMC) solver to explore the likelihood. The drawback
is that the BAO damping is not as accurately described as in the
anisotropic BAO template, especially for the anisotropic signal.

In Section 4, we test this effect on the mean of the mocks and
in Table 3, we present an alternative analysis using this template.
We show that the differences observed among these templates
are sufficiently small to not be relevant for the precision of the
measurements of this paper.

3.2 Modelling the RSD and galaxy bias

The FS analysis model employed to describe the power spectrum
multipoles is the same to the one used in previous analyses of the
BOSS survey for the redshift range 0.15 < z < 0.70 (Gil-Marı́n et al.
2015, Gil-Marı́n et al. 2016a) and for DR14 eBOSS quasars 0.8 ≤ z

≤ 1.2 (Gil-Marı́n et al. 2018), so we briefly present it here to avoid
repetition.

3.2.1 Galaxy bias model

We follow the Eulerian non-linear bias model presented by McDon-
ald & Roy (2009). The model consists of four bias parameters: the
linear galaxy bias b1, the non-linear galaxy bias b2, and two non-local
galaxy bias parameters, bs2 and b3nl. We always consider the local
biases b1 and b2 as nuisance and free parameters of the model. Unless
stated otherwise, the non-local bias parameters are constrained by

assuming the local bias relations from Lagrangian space, bs2 =
−4/7 (b1 − 1) (Baldauf et al. 2012) and b3nl = 32/315 (b1 − 1)
(Saito et al. 2014).

3.2.2 Real-space spectra

The real-space dark matter auto- and cross-power spectra, density–
density, Pδδ , density–velocity, Pδθ and velocity–velocity Pθθ are
given by the 2-loop re-summation perturbation theory. In particular,
we follow the approach described in Gil-Marı́n et al. (2012) (hereafter
GM12) where these moments are given by

Pij (k) = Nij
2(k)

[
Plin(k) + P 1L

ij (k) + P 2L
ij (k)

]
, (27)

where i, j = δ or θ , Nij (k) is the resummed propagator of the order
of 2 (given by equation B39 of GM12), P nL

ij (k) is the full n-loop
coupling (see equation A5 for n = 1 and equation B29 for n =
2, of GM12). These moments accurately describe the clustering
of dark matter up to k � 0.15 at z = 0.5; k � 0.20 at z = 1.0;
and k � 0.30 at z = 1.5 (see fig. 2 of GM12). Using the expres-
sions given above, we express the galaxy density–density, density–
velocity, and velocity–velocity power spectra as (Beutler et al.
2014)

Pg, δδ(k) = b2
1Pδδ(k) + 2b2b1Pb2, δ(k) + 2bs2b1Pbs2, δ(k)

+b2
2Pb22 + 2b2bs2Pb2s2(k) + b2

s2Pbs22(k)

+2b1b3nlσ
2
3 (k)Plin(k), (28)

Pg, δθ (k) = b1Pδθ (k) + b2Pb2, θ (k) + bs2Pbs2, θ (k)

+b3nlσ
2
3 (k)Plin(k) (29)

Pg, θθ (k) = Pθθ (k) (30)

where no velocity bias is being assumed. The bias 1-loop correction,
PbX and σ 2

3 terms can be found in equation (B2)– (B7) of Gil-Marı́n
et al. (2015). Note that there is an implicit scaling ∝ σ 2

8 on all the
terms which depend on Plin or σ 2

3 ; a scaling ∝ σ 4
8 on the terms P 1L

ij

and on the bias terms, PX, which are all 1-loop corrections; and
finally a scaling ∝ σ 6

8 on P 2L
ij . The propagator Nij also depends

on ∝ σ 2
8 and ∝ σ 4

8 through the ratios of P
(13)
ij /Plin and P

(15)
ij /Plin,

respectively.

3.2.3 Redshift space distortions

We include the effect of RSD following the approach proposed by
Scoccimarro (2004) and extended by Taruya, Nishimichi & Saito
(2010). Thus, we write the redshift space galaxy power spectrum as

P (s)
g (k, μ) = DFoG(k, μ)

[
Pg, δδ(k) + 2fμ2Pg, δθ (k)+

f 2μ4Pθθ (k) + b3
1A

TNS(k, μ, f /b1) +
b4

1B
TNS(k, μ, f /b1)

]
. (31)

The galaxy real-space quantities Pg ij are computed using the
prescriptions described above assuming a fixed Plin template at the
reference cosmology computed using CAMB (Lewis, Challinor &
Lasenby 2000). The power spectrum multipoles encode the coherent
velocity field through the redshift space displacement and the loga-
rithmic growth of structure parameter. The effect of this parameter is
to increase the clustering along the LOS with respect to the transverse
direction, boosting the amplitude of the isotropic power spectrum and
generating an anisotropic component. The DFoG term accounts for the
Finger-of-God (hereafter FoG) effect along the LOS direction. The
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physical origin of this term is the velocity dispersion of the satellite
galaxies inside the host dark matter haloes, which damps the power
spectrum at small scales. In this paper, we test both Lorentzian and
Gaussian ansätze,

DLor
FoG(k,μ; σP) = (1 + [kμσP]2/2)−2, (32)

DGau
FoG(k,μ; σP ) = exp (−[kμσP]2/2), (33)

where σ P is a free parameter to marginalize over. We assume DLor
FoG

as the standard modelling approach. The ATNS and BTNS are second-
order corrections and their form is given by equations A3 and A4 of
Taruya et al. (2010). Finally, the AP effect is added in the same way
as in equation (21) when computing the multipoles

P (	)
g (k) = 2	 + 1

2α‖α2
⊥

∫ 1

−1
dμL	(μ)P (s)

g [k′(k,μ),μ′(μ)], (34)

where k
′
(k, μ) and μ

′
(μ) are given by equations (18) and (19),

respectively. In the above equation, the term 1/(α‖α2
⊥) accounts for

the volume rescaling caused by the differences in cosmology. This is
an approximation as the actual volume rescaling should also include
a pre-factor (r ref

drag/rdrag)3. In practice, we account for such difference
by assuming that the reference cosmology, r ref

drag should be close
to the actual value, rdrag, measured by Planck with ∼ 0.02 per cent
precision. We test the impact of such approximation in Section 5,
where templates of cosmologies with different values of r ref

drag are
used to measure the actual cosmology of N-body galaxy mocks.

We also consider that the shot noise contribution to the power
spectrum monopole may differ from the Poisson sampling prediction.
We parametrize this potential deviation through a free parameter,
Anoise, which modifies the amplitude of shot noise, but without
introducing any scale dependence. By default our measured power
spectrum monopole has a fixed Poissonian shot noise contribution
subtracted, P̂ (0) = P (0)

meas. − PPoisson, whereas the higher order multi-
poles do not, P̂ (	>0) = P (	>0)

meas. . Thus, from equation (34), we add the
non-Poissonian contribution on our model in the following way:

P (0)
g (k) → P (0)

g (k) + PPoisson

[
Anoise

α‖α2
⊥

− 1

]
, (35)

where the factor α‖α2
⊥ accounts for the change in density as a result of

the isotropic dilation. Note that the Anoise = α‖α2
⊥ correspond to the

exact Poissonian case, whereas Anoise > α‖α2
⊥ is an over-Poissonian

shot noise and Anoise < α‖α2
⊥ a sub-Poissonian shot noise. Also note

that the higher order multipoles are slightly affected by this parameter
Anoise through the window function coupling. PPoisson is computed as

PPoisson =
∑
i−gal

w2
FKP(r i)w

2
col(r i)w

2
sys(r i) (36)

+ α2
∑
i−ran

w2
FKP(r i)w

2
col(r i)w

2
sys(r i), (37)

under the assumption that all the collided pairs do contribute to shot
noise (all collided pairs are not true pairs). For the CMASS + eBOSS
LRG sample, the shot noise values are 13 071( h−1 Mpc)3 and
12 622 ( h−1 Mpc)3 for NGC and SGC, respectively.

3.3 Parameter inference

We define the likelihood distribution, LG, of the data vector of
parameters, p, as a multivariate Gaussian distribution

LG(p) ∝ e−χ2(p)/2, (38)

where χ2(p) is defined as

χ2(p) ≡ DpC
−1Dp

T , (39)

Table 2. Flat prior ranges on the parameters used in the MCMC analyses.
The priors on α� and α⊥ apply both to FS and BAO analyses. β, B, and Ai

priors correspond to BAO type of analyses; whereas, f, b1, b2, σP, and Anoise

correspond to FS type. For the Anoise term, we try two type of priors, as we
describe in Section 4.

Parameter Flat-prior range

α� [0.5, 1.5]
α⊥ [0.5, 1.5]

β [0 , 30]
B [0, 20]
Ai × 10−3[( h−1 Mpc)5−i ] [−20, + 20]

f [0, 10]
b1 [0, 30]
b2 [−10, 10]
σP [ h−1 Mpc] [0, 20]
Anoise [−5, 5] or [0.5, 1.5]

where Dp represent the difference between the data and the model
for a given p-parameters, and C is the covariance matrix of the data
vector, which we approximate to be independent of the p-set of
parameters and the same for different realizations of the Universe.

In this paper, we infer the covariance matrix from 1000 realizations
of the EZMOCKS (Zhao et al. 2020a). Due to the finite number of
mock catalogues when estimating the covariance, we expect a noise
term arising when inverting the covariance. We apply the corrections
described in Hartlap, Simon & Schneider (2007) which for the current
sample is ∼ 6 per cent factor in the χ2 values for BAO analysis and
4 per cent for FS when the hexadecapole is used. Extra corrections,
such as the ones described in Percival et al. (2014), have a minor
contribution to the final errors. They represent a 2 and 1.4 per cent
increase for the BAO and FS analyses, respectively. We include them
only on the last stage of the analysis along with other systematic
contributions.

In order to explore the full likelihood surface of a given set
of parameters, we run Markov-chains (MCMC-chains). We use
BRASS11 based on the Metropolis–Hasting algorithm with a proposal
covariance and ensure its convergence performing the Gelman–
Rubin convergence test, R − 1 < 0.005, on each parameter. We
apply the flat priors listed in Table 2 otherwise stated.

For the FS type of fit, we let free the cosmological parameters,
{α‖, α⊥, f } and the galaxy bias parameters, {b1, b2, Anoise, σ FoG}
which we treat differently for NGC and SGC; in total 11 free
parameters. σ 8 is kept fixed to its fiducial value during the likelihood
exploration. Then, f and b1 are re-scaled by a fixed σ 8 value eventually
just reporting fσ 8 and b1σ 8. The fixed σ 8 value is not just the one
obtained from filtering the linear power spectrum with a top-hat
function at 8 h−1 Mpc, but we include an additional correction due
to the isotropic BAO-shift between the template and the data,

σ 2
8 (α0) ≡ σ 2

8 = 1

α3
0

∫ ∞

0
dkk2Plin(k/a0)W 2

TH(s8k), (40)

where the smoothing scale is set to s8 = 8 h−1 Mpc and WTH is the FT
of the top-hat function. α0 is inferred from the best-fitting parameters
α� and α⊥ on the same (pre-reconstructed) catalogue. Note that since
the integration limits are unaffected by the change of variables q ≡
k/α0, one could write equation (40) as the usual σ 8 expression just
rescaling s8 by α0. This is an alternative approach to the recently

11Bao and Rsd Algorithm for Spectroscopic Surveys,
github.com/hectorgil/Brass.
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2502 H. Gil-Marı́n et al.

Figure 3. DR16 CMASS + eBOSS LRG power spectrum measurements for the pre- (left-hand panel) and post-reconstructed catalogue (right-hand panel). The
orange points display the power spectrum monopole and the green points the μ2-moment (see equation 25 for definition). The associated errors are drawn from
the covariance of 1000 mocks and the black solid line represent the best-fitting solution (quoted in Table 3 using the anisotropic templated at the fixed values
of ‖ = 7.0 h−1 Mpc and ⊥ = 2.0 h−1 Mpc for post-recon and ‖ = 9.4 h−1 Mpc and ⊥ = 4.8 h−1 Mpc for pre-recon). The bottom sub-panels show the
difference between model and measurement divided by the 1σ errors.

proposed σ 12-parametrization (Sánchez 2020), where the smoothing
scale is set to 12 Mpc instead of 8 h−1 Mpc, in order to obtain growth
of structure measurements in a template-independent way. We later
test in Section 5.3 how the equation (40) re-scaling makes the fσ 8

variable stable under aggressive changes of the reference cosmology.
Note that for those templates whose α0 is sufficiently close to unity,
this correction has a negligible effect, which is the reason why it is
not usually included in the other FS-analysis. Also, one should apply
this re-scaling iteratively as α0 changes within the MCMC chain (or
during the likelihood exploration), to properly account for the cross-
correlation coefficients between the rescaled fσ 8 and α0 (or fσ 8 and
α�, α⊥ in this case). However, we have found that the shape of the
whole likelihood barely changes with respect to the case of applying
a global σ 8 rescaling based on the mean inferred value of α0. This
simplifies the treatment of our data and also opens the possibility of
rescaling other data sets based only on their Gaussian likelihoods.

Since σ 8 is very degenerate with f and b1 this is equivalent to treat
the terms f σn+1

8 in the Equations (27)–(30), as two independent
parameters:12 fσ 8 and σn

8 , where fσ 8 is freely fit, whereas σn
8 is kept

fixed. For large scales n = 0, so this approach is exact. At smaller
scales n > 0 terms arise, but the systematic effect of fixing this part
to a constant is very small. We have checked that varying σ 8 on the
σn

8 terms by 15 per cent, only shifts fσ 8 by 0.2 per cent. In Section 4,
we present a fit to the data where both f and σ 8 are varied freely
and we show how this has no effect on the final results, although the
convergence time for such runs is larger.

For the standard BAO case, we apply equation (21) and leave free
{α‖, α⊥, β} and the broadband parameters {B,A

(	)
i }, which we fit

separately for NGC and SGC. This corresponds to 17 free parameters.
In some cases, we also leave the damping terms, � and ⊥, free,
and treat them as independent.

For both BAO and FS cases the covariances from NGC and SGC
are drawn from two independent sets of mocks and are assumed
to be fully independent, as these are two disconnected patches of

12In these equations, σ 8 is not explicitly written, but it is hidden within the
linear power spectra, Plin ∝ σ 2

8 .

the Universe. In this fashion, the total likelihood is just the product
of NGC and SGC likelihoods: L = LNGC × LSGC. We expect that
only for very large modes (k much smaller than 0.02 h−1 Mpc) this
assumption loses validity.

In this paper, we report the mean of the MCMC chain when
converged, R − 1 < 0.005, except for the burn-in part which we
discard (the first 104 steps), and report its rms as the 1σ error. This
matches the 68 per cent confident level in case of having a Gaussian
distribution. For the mocks, we run six independent sub-chains where
after convergence, we concatenate and treat as a single chain when
calculating the mean and rms. We also test that running different
set of chains on the same data set report the same values within the
statistical precision required, which indicates that the chain noise
is below the statistical precision of the sample. In Appendix B, we
show how the contours drawn from the MCMC chain of the data are
in very good agreement with the inferred Gaussian contours.

The isotropic BAO template described by equations (22) and (23)
can be solved analytically for most of its parameters using the
least-squares method. Given a fixed α�, α⊥, and nl, 	, the rest of
variables, B, and A

(	)
i can be solved analytically so a full MCMC run

is not required. One therefore only needs to perform subsequent fits
changing α�, α⊥, and nl, 	 within a fixed array, in order to resolve the
likelihood shape, and then interpolate to find the best fit and its error.

4 R ESULTS

In this section, we describe the results obtained when applying the
BAO and FS pipeline described in the previous section. We perform
these two analyses separately, and later in Section 6, we discuss
how to combine them. The error bars reported in this section only
contain the statistical error budget. Later, in Section 5, we discuss
qualitatively and quantitatively the systematic error budget of such
approaches.

4.1 BAO analysis

Fig. 3 displays the BAO oscillatory features measured from the
CMASS + eBOSS LRG data with respect to the broadband, for
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BAO and FS measurement from eBOSS LRG PS 2503

Table 3. Impact of different parameters and data-vectors choices when performing a BAO analysis on the DR16
CMASS + eBOSS LRG data set using the pipeline described in Section 3.1. The Fourier space post-recon represent the
main BAO results of this paper and correspond to the model displayed in the right-hand panel of Fig 3. The configuration
space results correspond to the analysis described in Bautista et al. 2020. The rest of the cases (see the text for a
full description) represent variations of the standard pipeline. For each case, we only report the physical BAO scaling
parameters and their corresponding χ2. For the cases, where the � and ⊥ are varied, we find that when these are treated
as free parameters (with a wide uninformative prior), we obtain free

‖ = 2.2 ± 1.7, free
⊥ = 2.3 ± 1.7; whereas under the

Gaussian prior, we find Gauss
‖ = 3.5 ± 1.9 (Gaussian prior: 7 ± 3) and Gauss

⊥ = 2.0 ± 1.4 (Gaussian prior: 2 ± 3). The
error bars correspond to 1σ and only include the statistical error budget.

Case α� α⊥ χ2/dof

Pk pre-recon 0.939 ± 0.036 1.043 ± 0.032 96/(112 − 17)
Pk post-recon 0.956 ± 0.024 1.025 ± 0.019 108/(112 − 17)
ξ s pre-recon 0.954 ± 0.035 1.034 ± 0.025 41/(40 − 9)
ξ s post-recon 0.958 ± 0.026 1.024 ± 0.019 41/(40 − 9)
(Pk + ξ s) post-recon 0.956 ± 0.024 1.024 ± 0.018 −
NGC-only pre-recon 0.932 ± 0.046 1.054 ± 0.043 46/(56 − 10)
NGC-only post-recon 0.947 ± 0.026 1.042 ± 0.024 65/(56 − 10)
SGC-only pre-recon 0.928 ± 0.088 1.058 ± 0.091 46/(56 − 10)
SGC-only post-recon 0.996 ± 0.113 0.992 ± 0.038 40/(56 − 10)
No-mask post-recon 0.953 ± 0.022 1.030 ± 0.016 109/(112 − 17)
No-wsyswcol post-recon 0.950 ± 0.027 1.023 ± 0.020 87/(112 − 17)
Isotropic template post-recon 0.941 ± 0.027 1.030 ± 0.023 126/(112 − 18)
Isotropic template order-5 post-recon 0.941 ± 0.027 1.027 ± 0.024 102/(112 − 26)
Order-5 post-recon 0.959 ± 0.024 1.018 ± 0.021 99/(112 − 25)
‖, ⊥ Free post-recon 0.949 ± 0.019 1.027 ± 0.019 101/(112 − 19)
‖, ⊥ Gaussian prior post-recon 0.950 ± 0.020 1.027 ± 0.019 100/(112 − 19)
+ Hexadecapole pre-recon 0.914 ± 0.035 1.054 ± 0.031 190/(168 − 22)
+ Hexadecapole post-recon 0.949 ± 0.026 1.025 ± 0.020 157/(168 − 22)
�OR (re-scaled to fiducial) 0.962 ± 0.026 1.009 ± 0.018 120/(112 − 17)
�X (re-scaled to fiducial) 0.959 ± 0.025 1.022 ± 0.020 109/(112 − 17)
�Y (re-scaled to fiducial) 0.962 ± 0.025 1.024 ± 0.020 106/(112 − 17)
�Z (re-scaled to fiducial) 0.956 ± 0.024 1.017 ± 0.017 112/(112 − 17)
500 real. in covariance 0.955 ± 0.025 1.029 ± 0.019 106/(112 − 17)

the isotropic signal, in orange symbols, and the anisotropic μ2-
moment, in green symbols. The black solid lines represent the best fit
and the lower panel the model-data deviations in units of statistical
1σ error. The left-hand panel displays the pre-reconstructed results
and the right-hand panel the post-reconstructed results. Reconstruc-
tion enhances significantly the BAO signal both in the isotropic
and anisotropic power spectrum signal. Note that the actual BAO
analysis is performed on the monopole and quadrupole, although
we visually report the μ2-moment, as defined by equation (25)
instead of the quadrupole, as the BAO feature is more evident
there.

Table 3 presents the main results from the BAO analysis of the
data in terms of the scaling parameters, α� and α⊥. We perform
the BAO analysis keeping the � and ⊥ variables fixed at their
best-fitting values on the mean of the pre- and post-reconstructed
mocks. These values are ‖ = 9.4 h−1 Mpc and ⊥ = 4.8 h−1 Mpc
for the pre-reconstructed and ‖ = 7.0 and ⊥ = 2.0 h−1 Mpc for
the post-reconstructed catalogues.13 The first two rows of Table 3
report the BAO analysis on the pre- and post-reconstructed data in
the Fourier space (matching the performance displayed by Fig. 3)
and in configuration space of the same data set (presented in Bautista
et al. 2020). Along with those the consensus between Fourier and
gonfiguration space is also presented. The technique used to infer this
value is described later in Section 6. The rest of the rows represent

13When the reference template is modified, these values are accordingly
changed.

the values obtained from the pre- or post-reconstructed analysis on
Fourier space with variations of the standard pipeline analysis, to
show the sensitivity of the results under certain assumptions. Among
these cases, we present analyses when: NGC and SGC are the only-
fitted regions, ignoring the effect of the selection function in the
modelling (no-mask case), turning off the systematic and collision
weights on the data (no-wsyswcol), using the isotropic template of
equation (22) with three- (Isotropic template) and five-parameter
broad-band (Isotropic template order-5), using the anisotropic tem-
plate of equation (20) with five parameters (Order-5), allowing �

and ⊥ to be free parameters (‖,⊥ Free), or free but with a
Gaussian prior, x̄ ± σx ,14 � = 7 ± 3, and ⊥ = 2 ± 3 (‖,⊥
Gaussian prior), using the hexadecapole along with the monopole
and quadrupole on the BAO fit (+ hexadecapole), using a different
reference cosmology for the BAO fitting template (�OR, �X , �Y ,
and �Z; see Table 1 and the top panel of Fig 10 for a description
of these cosmologies) and finally using only 500 realizations of the
EZmocks to estimate the covariance (500 real.). When using different
x-reference cosmologies, we re-scale the obtained α-parameters by
the appropriate factor, (Dx

H,M/rdrag)/(Dfid
H,M/rfid

drag), to match the results
one would have obtained if a fiducial cosmology would have been
used as reference cosmology instead. In this way, all the α-parameters
of the different rows are comparable, regardless of the template
cosmology used.

14Here, x̄ and σ 2
x represent the mean and the variance, respectively, of the

normal distribution used as a prior.
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2504 H. Gil-Marı́n et al.

Figure 4. Likelihood posterior for 1σ and 2σ contours (only statistical
contribution), from the BAO type of analysis on the DR16 CMASS + eBOSS
LRG data for the pre-reconstructed catalogues (in orange) and the post-
reconstructed catalogues (in blue) in terms of DM(zeff)/rdrag and DH(zeff)/rdrag

variables, at zeff = 0.698. Results corresponding to the first two rows of
Table 3.

In general, we see that most of these arbitrary choices produce no
significant variation (<0.5σ ) with respect to the standard pipeline,
demonstrating a strong robustness on the BAO results. Some excep-
tions are when the data vector is different (pre- versus post-) or when
the NGC and SGC are analysed independently. However, in these
cases the cosmic variance has a much larger impact and therefore
a larger shift is expected. The highest shift we observe (when the
data vector is unchanged) is on the variable α⊥ when the reference
cosmology is varied from �fid to �OR. In such case, α⊥ changes by
0.85σ . Note that these α-values have been re-scaled after the actual
fit to be both with respect to the same reference cosmology, so in the
absence of noise and systematics both α-value should be the same.
Later, in Section 5.1.2 and in Table 5, we investigate such effect using
the EZMOCKS and the NSERIES mocks, and find no strong shift when
the template cosmology is changed, concluding that the difference
we observe for the data is exclusively due to a statistical fluctuation.

The reader could think that the results obtained by adding the
hexadecapole to the standard monopole plus quadrupole analysis
should have reported larger BAO information and smaller statistical
error component. Previously, Ross, Percival & Manera (2015a)
demonstrated that the amount of BAO information that higher-than-
quadrupole moments add in terms of anisotropic BAO is very small.
Indeed, we report as well such findings later in Table 5 when we
apply our analysis to the mocks. However, this is not the case for
an FS analysis, where the hexadecapole is key to break degeneracies
between the anisotropy generated by AP and RSD. We therefore
conclude that the difference between the BAO analyses with and
without hexadecapole are exclusively due to noise fluctuations, and
do not correspond to any significant extra BAO information. Because
of this, we take as our main BAO results those in which only the
monopole and quadrupole are analysed.

Fig. 4 displays the likelihood posteriors for 1σ and 2σ for the
BAO analysis using the pre- (orange) and post-reconstruction (blue)
catalogues, in terms of the physical variables, DM/rdrag – DH/rdrag.

Figure 5. Power spectrum multipoles measured from the DR16
CMASS + eBOSS LRG sample (weight-averaged between NGC and SGC),
monopole (circular orange symbols), quadrupole (square green symbols), and
hexadecapole (triangle purple symbols), along with the error bars predicted
by the rms of the 1000 EZMOCKS. The solid and dashed black lines represent
the FS best-fitting model (weight-averaged between NGC and SGC) when
the monopole and quadrupole only are fitting (black dashed lines) and when
the hexadecapole is also used (black solid line). In the bottom sub-panel, the
differences between the measurement and the model, relative to the value of
1σ error bar, are also displayed using the same colour notation. The results
for the best-fitting parameters are reported in Table F3 for the narrow prior
on the amplitude of shot noise, 0.5 ≤ Anoise ≤ 1.5.

In both cases, the agreement is very good. The statistical errors
on the cosmological parameters inferred from the post-reconstructed
catalogues present are a factor of 1.5 smaller than those obtained from
the pre-reconstructed catalogues. Later, in Section 5, we study how
typical this gain factor is by using the results from individual mocks.

4.2 Full shape analysis

We run the FS pipeline on the power spectrum monopole, quadrupole,
and hexadecapole measured from the CMASS + eBOSS galaxies for
the k-range 0.02 ≤ k [ h Mpc−1] ≤ 0.15, as described in Section 3.2.
The covariance among k-bins is estimated from the analysis of 1000
EZMOCKS.

Fig. 5 displays the monopole (round orange symbols), quadrupole
(square green symbols), and hexadecapole (triangle purple symbols)
for the results of the CMASS + eBOSS LRG data used for the
FS analysis. The black solid lines display the performance of the
best-fitting model when the three multipoles are simultaneously
fitted, whereas the black-dashed lines when only the monopole and
quadrupole are used.

Table 4 displays the results for FS analysis under different
cases. The first two rows represent the case where the monopole
(M), quadrupole (Q), and hexadecapole (H) are fitted up to a
kmax = 0.15 h Mpc−1 with a wide and flat uninformative prior on the
amplitude of shot noise (first row) and with a more restrictive prior
allowing for such amplitude to vary within 50 per cent of its Poisson
prediction (second row). The third row displays the result from the
configuration space analysis reported in Bautista et al. (2020) and the
fourth row the consensus between Fourier and configuration space,
as described in Section 6. The rest of the rows are variations of the
above pipeline (with a wide uninformative prior on the amplitude
of shot noise as a default option): using only the monopole and
quadrupole (M+Q), fitting to NGC- and SGC-only (NGC, SGC
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BAO and FS measurement from eBOSS LRG PS 2505

Table 4. Impact of different parameters and data-vector choices when performing an FS analysis on the DR16 CMASS + eBOSS LRG data set
using the pipeline described in Section 3.2. The second row with the 0.5 ≤ Anoise ≤ 1.5 prior on the amplitude of shot noise represents the main
result of FS analysis of this paper and correspond to the model (in solid black lines) displayed in Fig 5. The configuration space results are main
results reported by Bautista et al. (2020). The rest of the cases (see the text for a full description) represent variations of the standard pipeline
or data-vector choices. For each case, we do not report all the nuisance parameters, only the physical BAO scaling parameters, fσ 8, and their
corresponding χ2. The error bars correspond to 1σ and only include the statistical error budget.

Case α� α⊥ fσ 8 χ2/dof

Pk, kmax = 0.15, M+Q + H 1.017 ± 0.045 1.006 ± 0.027 0.469 ± 0.046 77/(78 − 11)
Pk, 0.5 ≤ Anoise ≤ 1.5 prior 0.999 ± 0.036 1.003 ± 0.027 0.454 ± 0.042 77/(78 − 11)
ξ s 1.016 ± 0.029 1.004 ± 0.019 0.461 ± 0.042 –
Pk + ξ s 1.008 ± 0.027 1.002 ± 0.018 0.449 ± 0.039 –

M+Q 0.977 ± 0.054 1.032 ± 0.037 0.511 ± 0.065 38/(52 − 11)
M+Q, 0.5 ≤ A ≤ 1.5 prior 0.972 ± 0.050 1.026 ± 0.036 0.496 ± 0.062 38/(52 − 11)
NGC M+Q + H 0.983 ± 0.049 1.045 ± 0.036 0.495 ± 0.059 28/(39 − 7)
SGC M+Q + H 1.174 ± 0.109 0.955 ± 0.042 0.375 ± 0.093 45/(39 − 7)
NGC + SGC M+Q + H 1.007 ± 0.044 1.004 ± 0.027 0.459 ± 0.046 34/(39 − 7)
0 ≤ b2 prior 1.002 ± 0.036 1.007 ± 0.026 0.455 ± 0.043 78/(78 − 11)
kmax = 0.20, M+Q 1.006 ± 0.045 1.013 ± 0.027 0.499 ± 0.053 58/(72 − 11)
kmax = (0.20, M + Q) + ( 0.15, H) 1.025 ± 0.035 0.999 ± 0.021 0.481 ± 0.041 97/(98 − 11)
kmax = (0.15, M + Q) + ( 0.10, H) 1.052 ± 0.062 0.989 ± 0.029 0.449 ± 0.052 68/(68 − 11)
kmax = 0.20, M+Q + H 1.041 ± 0.033 0.989 ± 0.021 0.450 ± 0.041 124/(108 − 11)
Hexadecapole as L4(k̂ · r̂1)L0(k̂ · r̂2) 1.017 ± 0.046 1.006 ± 0.028 0.471 ± 0.047 78/(78 − 11)
No-TNS terms 1.007 ± 0.034 0.996 ± 0.025 0.446 ± 0.040 76/(78 − 11)
Only 1-loop terms 1.009 ± 0.042 1.007 ± 0.027 0.470 ± 0.046 76/(78 − 11)
SPT 2-loop 1.012 ± 0.043 1.007 ± 0.027 0.466 ± 0.047 77/(72 − 11)
FoG Gaussian 1.020 ± 0.046 1.003 ± 0.028 0.467 ± 0.045 76/(78 − 11)
σ 8 free 0.989 ± 0.039 1.005 ± 0.026 0.452 ± 0.043 77/(78 − 12)
σ 8 free, 0.5 ≤ A ≤ 1.5 prior 0.979 ± 0.034 1.005 ± 0.026 0.445 ± 0.039 77/(78 − 12)
σ 8 15% high 1.021 ± 0.044 1.008 ± 0.028 0.468 ± 0.047 76/(78 − 11)
�OR (αs re-scaled to fiducial) 1.008 ± 0.038 1.013 ± 0.026 0.453 ± 0.040 85/(78 − 11)
�X (αs re-scaled to fiducial) 1.015 ± 0.042 1.008 ± 0.028 0.472 ± 0.053 77/(78 − 11)
�Y (αs re-scaled to fiducial) 1.041 ± 0.048 1.015 ± 0.029 0.474 ± 0.053 74/(78 − 11)
�Z (αs re-scaled to fiducial) 1.026 ± 0.048 1.005 ± 0.027 0.495 ± 0.058 75/(78 − 11)
wsys off 1.037 ± 0.049 0.992 ± 0.028 0.426 ± 0.047 82/(78 − 11)
wcol off 1.002 ± 0.040 1.003 ± 0.028 0.468 ± 0.048 64/(78 − 11)
wsyswcol off 1.019 ± 0.044 0.990 ± 0.028 0.431 ± 0.047 69/(78 − 11)
500 real. in covariance 1.020 ± 0.042 0.996 ± 0.027 0.464 ± 0.047 79/(78 − 11)

M+Q + H), fitting to the weighted mean signal of NGC and SGC
(NGC+SGC M+Q + H), setting a hard prior on b2 to be positive (b2

> 0 prior), using the monopole, quadrupole, and hexadecapole with
a different k-range, computing the hexadecapole using a different
decomposition on the LOS (hexadecapole as L4(k̂ · r̂1)L0(k̂ · r̂2)),
ignoring the ATNS and BTNS in the modelling of equation (31) (no-
TNS terms), only using one-loop correction in the modelling of
equation (27) (only one-loop terms), using SPT predictions instead of
RPT for the terms of equation (27) (SPT 2-loop), using the Gaussian
form of equation (33) for FoG (FoG Gaussian), setting the fiducial
σ 8 to a 15 per cent higher value than the predicted by the reference
cosmology at z = 0.70 (σ 8 15 per cent high), treating f and σ 8 as
free independent parameters (σ 8 free), using a different cosmology
as a reference cosmology (�OR, �X, �Y, and �Z

15), turning off the
systematics and/or collision weights (wsys off, wcol off, wsyswcol off),
and using only 500 EZMOCK realization to estimate the covariance
(500 real. in covariance).

Except for some extreme cases, such as those when the systematic
weights are not applied, we do not observe any strong dependence
of the inferred cosmological parameters with any of the studied
variations. In particular, we observe very mild changes when the

15As in Table 3, the obtained α-parameters are re-scaled after the fit to match
the prediction of the fiducial cosmology when used as a reference cosmology.

underlying linear power spectrum template is changed. We also note
the change in the size of errors of α� and fσ 8 when the 50 per cent
prior on Anoise is set (first versus second row). In this last case the 2σ ,
contours do hit the higher boundary of Anoise = 1.5, and therefore
the reduction of error is a direct consequence of this. The amplitude
of shot noise is very correlated with b2 which is poorly constrained
without higher order moments as the bispectrum (Gil-Marı́n et al.
2017). In particular, the Anoise � 1 solution also corresponds to b2 >

0, whereas Anoise > 1.5 corresponds to b2 < 0 (see Fig. E2). From the
power spectrum and bispectrum analysis of BOSS DR12 CMASS
sample 0.43 < z < 0.70, we expect that b2 for these type of galaxies
is close to the value reported in Gil-Marı́n et al. (2017), b2σ 8 =
0.606 ± 0.069, which agrees with the solution of shot noise being
close to the Poisson prediction. Thus, we find plausible that the shot
noise should not differ by more than 50 per cent (which is already
quite a large amount) from the Poissonian prediction and we decide
to take as the FS analysis main result of this paper the cosmolog-
ical parameters inferred when this 50 per cent prior is applied. In
Appendix E, we further comment on this effect (see also Fig. E1).

In Fig. 6, we display the derived DH/rdrag, DM/rdrag, and fσ 8 cos-
mological parameters from the FS and BAO analysis on the pre- and
post-reconstructed catalogues, respectively. Both measurements rely
on very correlated pre- and post-recon catalogues, and therefore it is
not straightforward to resolve the level of agreement between them.
Later in Section 6, we come back to this question and also compare
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2506 H. Gil-Marı́n et al.

Figure 6. Comparison of the cosmological inferred parameters from the
FS and BAO analysis (on post-reconstructed catalogues), respectively, from
the power spectrum multipoles. In this case, the FS derived results have been
computed from the power spectrum monopole, quadrupole, and hexadecapole
under the analysis with 50 per cent priors on Anoise reported by the second row
of Table 4. The BAO reconstructed results come from the standard analysis on
power spectrum monopole and quadrupole, as it is reported by the second row
of Table 3. In all cases, the contours represent only the statistical contribution.

these findings with the quantities inferred from configuration space.
For now, we just note that the reconstructed-BAO analysis provides
tighter constrains on both DH/rdrag and DM/rdrag than the FS analysis.
This feature is actually expected due to the enhancement that recon-
struction provides in the measurement of the BAO peak oscillatory
features. We also note that the reconstructed-BAO analysis favours
higher values of both DM/rdrag and DH/rdrag with respect to the FS
analysis on pre-reconstructed data. In fact, if we were looking at
the pair of variables α0 and ε we would notice that such difference
arises from the AP variable, ε or Fε , where the results inferred
from reconstructed data present an ∼2σ deviation from the null-
AP behaviour, which is what we observe for the pre-reconstructed
catalogue. We will fully discuss these differences later in Section 6.

5 SYSTEMATIC TESTS

In this section, we aim to run the BAO and FS pipeline analyses
on different sets of mocks to check the performance and to identify
potential systematic errors. In total, we use NEZ = 1000 realizations
of the EZMOCKS, NNseries = 84 realizations of the NSERIES mocks
and NOR = 27 realizations of the OUTERRIM-HOD mocks.

5.1 BAO systematics

We start by running the BAO pipeline described in Section 3.1 on
the pre- and post-reconstructed EZMOCKS, NSERIES and OUTERRIM

+‘Hearin-Threshold-2’, +‘Leauthaud-Threshold-2’ and + ‘Tinker-
Threshold-2’ HOD mocks. We run the BAO pipeline on the power
spectrum monopole and quadrupole for 0.02 ≤ k [ h Mpc−1] ≤ 0.30.
Smaller and larger scales do not contain relevant BAO information.

In this section we aim to

(i) check how typical the data is with respect to the EZMOCKS;
(ii) determine the systematic budget of the pipeline;
(iii) check whether the arbitrary choice of the BAO reference

template has an impact on the inferred cosmological parameters;
and

(iv) determine whether the underlying galaxy HOD has an impact
on the recovered parameters.

The top panels of Fig. 7 display the recovered α� and α⊥ scaling
parameters on the pre- (left-hand panels) and post-reconstructed
(right-hand panel) 1000 EZMOCKS realizations (green points). The
corresponding bottom panels display the distribution of errors in-
ferred from the rms of the individual MCMC chains. In addition, we
represent with a red cross the values for the actual data catalogue,
and with a black dot the values obtained when fitting the average
power spectrum of 1000 EZMOCKS realizations. The error of this last
case is expected to scale with the square root of the total volume,
and therefore we re-scale it by the

√
NEZ factor in order to match the

value of the error of a single realization. For all the cases, the results
inferred from the mean of the mocks are in excellent agreement with
the results of the individual cases, suggesting that the mean of the
fits is close to the fit of the mean (shown later in Table 5). We find
that the values of α� and α⊥ inferred from the data catalogue are
also consistent with the intrinsic scatter observed from the mocks.
However, we obtain atypically small errors when analysing the data
catalogue, both for the pre- and post-reconstructed cases of α�. In
particular, for the post-reconstruction case, we have only found a
total of ∼10/1000 realizations whose error on α� is comparable to
the one found in the data, which certainly suggest a ∼ 1 per cent
probability of being in such situation. As we show later (see Fig. 15
in Section 6), this result is perfectly compatible with what we find in
the complementary BAO analysis in configuration space performed
in Bautista et al. (2020). The χ2 value of the data is not small with
respect to the typical value obtained by the mocks, which suggests
that this small BAO error on α� may be caused by noise fluctuations,
which enhance the BAO signal in the data along the LOS, with
respect to the typical noise level predicted by the mocks. Given the
number of physical parameters (α�, α⊥, pre- and post-reconstructed
catalogues, fσ 8 and their corresponding errors: 10 variables in total)
it is not very unlikely that at least one of them is atypical at 3σ level,
which is known as ‘the look-elsewhere effect’.

The panels in Fig. 8 display how the reconstruction algorithm per-
forms on the EZMOCKS, for the errors of α� and α⊥. Reconstruction
significantly helps to improve the determination of the αs in almost
all the realizations of the mocks, where the typical improvement
(ratio between pre- and post-recon errors) is ∼ 40 per cent for α� and
20 per cent on α⊥. This behaviour is expected for cosmic variance
limited samples, like the LRGs and ELGs, unlike other more sparse
samples like the quasars. We find that for the data, the improvement
on α⊥ is expected and typical with respect to what is observed in the
mocks, whereas for α� the values are atypical as we have commented
above, but the improvement ratio is typical.

5.1.1 Performance of BAO template

We start by applying the BAO anisotropic template described by
equation (21) on the different sets of mocks. Table 5 displays
the results when fitting the mean power spectra of all available
realizations for a given type of mock (rows labelled ‘Mean’); and the
mean of the fits of individual realizations (rows labelled ‘Individual’).

Fig. 9 graphically represents the data contained in Table 5. For
each sub-panel, the difference between the measured α� and α⊥,
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BAO and FS measurement from eBOSS LRG PS 2507

Figure 7. The top sub-panels display the distribution of best-fitting α� and α⊥, for the pre- (left-hand panels) and post-reconstructed (right-hand panels)
power spectrum monopole and quadrupole for 0.02 ≤ k [ h Mpc−1] ≤ 0.30, for the 1000 realizations of the EZMOCKS catalogues (green points), for the DR16
CMASS + eBOSS LRG data catalogue (red cross) and for the best-fit to the mean of the 1000 mock power spectra (black dot). The horizontal and vertical
black dotted lines represent the expected α values for the EZMOCKS. The distribution of χ2 values is also shown for each case. The bottom sub-panels display
analogous plots for the errors of α� and α⊥, instead. In this case, the error of the mean has been re-scaled by the square root of number of realizations.

and their expected value are inferred for the pre- (left-hand side)
and post-reconstructed (right-hand side) catalogues. The individual
results on the mocks are shown in grey, the results of the mean
of the mocks are represented by a �-symbol in green (for the
pre-reconstructed catalogues) and in orange (for post-reconstructed
catalogues). The associated errors are consistently the errors of the
mean, obtained by re-scaling the covariance by a factor the number
of realizations, NEZ, NNseries, and NOR. Therefore, these errors are a
factor

√
Ni smaller than the error we obtain for a single realization

of these mocks. The mean of the individual fits is represented by
a \space-symbol in pink (for pre-reconstructed catalogues) and in
purple (for post-reconstructed catalogues). In this case, the error
associated is the rms of all the individual fits, which is ∼ √

Ni

larger than the error associated to the mean. The sub-panels show
the difference between the measured and the expected value of
α� and α⊥ in terms of number of statistical σ of the error of the
mean, and the rms/

√
Ni . Note that for the EZMOCKS the effective

volume is so large (� 2, 650 Gpc3) that in some cases the result is
totally dominated by systematics and the symbols are off the scale
of ±3σ .

The EZMOCKS ‘Mean’ results on post-reconstruction catalogues
reveal that the α� variable is significantly shifted by 0.6 per cent
with respect to their expected quantity, which corresponds to 6σ

deviation from the expected value; whereas for α⊥, mocks and
model agree to within 0.068 per cent (1σ level). It is also worth
mentioning that at this sub-per cent level of precision, we would
require full N-body mocks to actually validate this kind of systematic
shifts, as the EZMOCKS have not been designed to be accurate
at this level of precision. Therefore, we cannot discern whether
this observed 0.6 per cent shift in α� is due to a limitation of the
model of equation (21), a limitation of the EZMOCKS themselves,
or an effect arising from the reconstruction technique. From the
remaining N-body mocks, we do not observe any significant BAO
peak position shift with respect to their corresponding expected
value in any of the post-reconstructed catalogues analysed. The
BAO pipeline is able to deal with different kinds of HOD models.
We do see some fluctuations, but these are always below ±2.5σ

limit, so we do not take them as significant shifts. However, the
statistical errors associated to these catalogues are not as small as
those corresponding to the EZMOCKS, so we can only state that
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Table 5. Performance of the BAO template of equation (21) in different set of mocks. For The EZmocks expected values are α
exp
‖ =

1 + 8.853 × 10−4 and α
exp
⊥ = 1 − 3.650 × 10−4 as the mocks are not analysed in their underlying true cosmology (except for those where

the cosmology is explicitly varied, �OR,X,Y,Z). For the rest of the mocks, these values are 1, as they are, respectively, analysed in their own
underlying true cosmology. For each set of mocks, the results from both pre- and post-recon catalogues are presented. We display the results
of fitting the mean of all the mocks, indicated with ‘Mean’, and the mean of the individual fits on the mocks, indicated with ‘Individual’.
For the fit to the mean, the error quoted is the 1σ of the error on this fit, where in order to do so, we have scaled the covariances by the
number of realizations used to take the mean, which in all the cases is the maximum number of realizations available, Ntot, 1000, 84, and 27
for EZMOCKS, NSERIES, and OUTERRIM-HOD mocks, respectively. For the OUTERRIM-HOD type of mocks only the ‘Threshold 2’ flavour is
represented, where a padding has been applied to the original non-periodic cubic sub-box in order avoid spurious non-periodic effects. For
the mean of individual best-fits, the error quoted is rms divided by

√
Ndet, where Ndet is the number of BAO detections (those fits with α� and

α⊥ were both between 0.8 and 1.2, for EZMOCKS, NSERIES, and 0.7 and 1.3 for OUTERRIM-HOD). Fig. 9 visually displays the results of this
table.

Mock name Catalogue α‖ − α
exp
‖ α⊥ − α

exp
⊥ Ndet/Ntot

Mean EZMOCKS Pre-recon − 0.0003 ± 0.0015 − 0.004 80 ± 0.000 92 1/1
Individual EZMOCKS Pre-recon − 0.0165 ± 0.0019 0.0025 ± 0.0010 982/1000
Mean EZMOCKS Post-recon 0.0060 ± 0.0010 − 0.00024 ± 0.000 68 1/1
Individual EZMOCKS Post-recon 0.0017 ± 0.0012 0.00071 ± 0.000 73 999/1000

Mean EZMOCKS (+ Hexadecapole) Pre-recon − 0.0039 ± 0.0015 − 0.009 46 ± 0.000 96 1/1
Mean EZMOCKS (+ Hexadecapole) Post-recon − 0.0022 ± 0.0011 − 0.003 67 ± 0.000 66 1/1

Mean EZMOCKS (�OR) Post-recon − 0.0015 ± 0.0013 0.001 18 ± 0.000 75 1/1
Mean EZMOCKS (�X) Post-recon 0.0044 ± 0.0013 − 0.004 01 ± 0.000 76 1/1
Mean EZMOCKS (�Y) Post-recon 0.0032 ± 0.0012 0.000 89 ± 0.000 78 1/1
Mean EZMOCKS (�Z) Post-recon − 0.0004 ± 0.0011 − 0.008 38 ± 0.000 72 1/1

Mean NSERIES Pre-recon − 0.0045 ± 0.0041 − 0.0021 ± 0.0020 1/1
Individual NSERIES Pre-recon − 0.0062 ± 0.0051 0.0000 ± 0.0026 84/84
Mean NSERIES Post-recon − 0.0048 ± 0.0019 0.0005 ± 0.0010 1/1
Individual NSERIES Post-recon − 0.0016 ± 0.0033 − 0.0030 ± 0.0018 84/84

Mean OUTERRIM-HOD-Hearin Pre-recon − 0.022 ± 0.014 0.0108 ± 0.0099 1/1
Individual OUTERRIM-HOD-Hearin Pre-recon − 0.021 ± 0.016 0.016 ± 0.011 27/27
Mean OUTERRIM-HOD-Hearin Post-recon 0.000 ± 0.011 0.0122 ± 0.0075 1/1
Individual OUTERRIM-HOD-Hearin Post-recon 0.009 ± 0.015 0.0167 ± 0.0061 27/27

Mean OUTERRIM-HOD-Leauthaud Pre-recon − 0.011 ± 0.018 0.003 ± 0.011 1/1
Individual OUTERRIM-HOD-Leauthaud Pre-recon 0.000 ± 0.018 0.011 ± 0.012 27/27
Mean OUTERRIM-HOD-Leauthaud Post-recon − 0.006 ± 0.010 − 0.0024 ± 0.0075 1/1
Individual OUTERRIM-HOD-Leauthaud Post-recon 0.002 ± 0.013 − 0.0093 ± 0.0074 27/27

Mean OUTERRIM-HOD-Tinker Pre-recon 0.002 ± 0.018 − 0.005 ± 0.012 1/1
Individual OUTERRIM-HOD-Tinker Pre-recon − 0.011 ± 0.016 0.023 ± 0.011 27/27
Mean OUTERRIM-HOD-Tinker Post-recon − 0.002 ± 0.012 − 0.0025 ± 0.0088 1/1
Individual OUTERRIM-HOD-Tinker Post-recon 0.0038 ± 0.0097 − 0.0006 ± 0.0072 27/27

we have not detected any systematic above the statistical threshold
of 1−2 per cent for OUTERRIM-HOD, and 0.1−0.5 per cent for
NSERIES. Such upper limits are below the statistical precision of
our sample: for post-reconstructed catalogues we obtain a statistical
precision of ∼ 2.4 per cent for α� and ∼ 1.9 per cent for α⊥. From
the NSERIES results, we conclude that there are no strong modelling-
systematic errors associated when determining αs, which validates
our modelling pipeline, including the reconstruction technique. From
the OUTERRIM-HOD results, we conclude that we do not detect any
relative systematic due to different HOD modelling, although the
statistical precision reached on these mocks is comparable to the
statistical precision of our sample.

5.1.2 Effect of reference cosmology on BAO

We are interested in testing the potential impact of the arbitrary choice
of reference cosmology. For simplicity, we use the same cosmology
to (i) produce the BAO template, and (ii) convert redshifts into
distances in both random and galaxy catalogues. The BAO analysis
measures relative differences between the BAO peak position in the

power spectrum with respect to the template. Therefore, a priori the
specific choice of reference cosmology should not impact this result.
In this section, we explicitly check this by analysing the NSERIES

mocks in five different cosmologies: their own cosmology, �Nseries;
the fiducial cosmology which is used for the baseline analysis of
the actual data catalogue, �fid; and three extra cosmologies with a
higher value of �m: �X , �Y , and �Z , all listed in Table 1. The
oscillatory features of these cosmologies are plotted in the top panel
of Fig. 10. The expected values of α� and α⊥ are therefore different
among these cosmologies. We do not analyse these mocks on the
�OR cosmology, as this cosmology is very similar to the �Nseries.
Inputing the values of the true �Nseries and these four cosmologies
into equations (14) and (15), we determine the expected values of the
scaling factors. For the �fid cosmology, we find that α

exp
‖ = 0.9875

and α
exp
⊥ = 0.9787; for the �X cosmology, we find that α

exp
‖ =

0.9846 and α
exp
⊥ = 0.9620; for the �Y cosmology, we find that

α
exp
‖ = 0.9543 and α

exp
⊥ = 0.9325; for the �Z cosmology, we find

that αexp
‖ = 0.9557 and α

exp
⊥ = 0.9291; and of course when the mocks

are analysed in their own cosmology the expected values are unity.
The results of the fits on the mean of the mocks and on the

individual fits are reported in Table F4, for post-reconstruction
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BAO and FS measurement from eBOSS LRG PS 2509

Figure 8. Performance of the reconstruction on the DR16 CMASS + eBOSS
LRG catalogues, the green symbols represent the 1000 realizations of the
EZMOCKS, the red cross the actual DR16 CMASS + eBOSS LRG data
catalogue. The x-axis represents the pre-reconstructed quantity and the y-axis
the post-reconstructed quantity. For reference, a black dashed line, x = y is
also shown. The top and bottom panels display the 1σ errors of α� and α⊥,
respectively. The black dot represents the mean of 1000 realizations re-scaled
by the square root of the 1000 realizations.

analyses, where reconstruction has been performed using the true
value of f and b1. We follow this approach because in this test we
aim to check the impact of the arbitrary choice of the reference
cosmology when recovering the BAO parameters, rather than to
test the efficiency of reconstruction as a function of the assumed
parameters (see Carter et al. 2019 for such a study). The middle
panel of Fig. 10 displays the post-reconstruction results from
Table F4, where the horizontal dashed lines represent the expected
values for αs in each cosmology. For each case, we display the fit
to the mean of the NNseries realizations along with the error of the
mean, the individual fit to these NNseries realizations, and mean of
the fit of these NNseries realizations, along with the rms divided by
N

1/2
Nseries. When studying the post-reconstructed catalogues, we find

that for both α� and α⊥ the highest shift, relative to those parameters
inferred from �Nseries, are those inferred using the templates of �Z ,
which show a deviation of 1 per cent in α� and 0.8 per cent for α⊥.
We note that �Z represents a very distinct cosmology with respect
to the true cosmology of NSERIES, with shifts of 
�m = 0.08 and

�b = 0.019, which are 10σ and 50σ away, respectively, from the
results reported by Planck (Aghanim et al. 2018). On the other hand,

if a closer-to-standard �CDM reference cosmology is used, such
as �fid, these shifts reduce to 0.5 per cent on α� and 0.3 per cent
for α⊥.

5.1.3 Effect of non-periodicity on BAO measurements

The OUTERRIM-HOD mocks comes from a single OUTERRIM dark
matter simulation, split into 27 non-periodic cubic sub-boxes and
populated with different types of HOD models and flavours. In this
section, we aim to quantify the impact of analysing the non-periodic
sub-boxes when DFT algorithms are used to obtain the power
spectra, which implicitly assume periodic boundary conditions. In
this case, and across the paper we only consider wave numbers
between 0.02 ≤ k [ h Mpc−1] ≤ 0.30 for BAO analyses. In order to
test this impact within such scale-range, we only focus on the set of
HOD types and flavours closer to the LRG galaxy sample. We refer
to such padded catalogues as ‘sky-cuts’. In Table F1, we display the
results on the mean of the 27 mocks, for both cubic non-periodic and
sky-cut case. Note that the non-periodic cubic and sky-cut contain
the same galaxies, therefore, the information content should be the
same in the absence of spurious non-periodic effects. We do not
observe any significant changes in α⊥ parameter, but a consistent
shift of α� by 2−3 per cent: for the non-periodic cubic box, we
find an excess in the value of α� with respect to what is expected,
whereas for the sky-cut case the results are in agreement (within
2σ error bars) with the expected values. We conclude that (1) the
non-periodic effects are important when determining α�, but not
α⊥ (2) we do not observe relative shifts in any of the α parameters
when the HOD model or flavour is varied.

5.1.4 Impact of HOD modelling in BAO

In this section, we aim to explore the impact of different HODs
and flavours when recovering the scaling parameters. Ideally, we
should pad as well around these catalogues in order to remove the
effect of non-periodicity. However, since the galaxy catalogues can
be very large for some of the HODs studied (five million galaxies
for threshold1), and the random catalogues need to be at least 20 to
50 times larger, this is not feasible. Since the spurious effects of non-
periodicity have a geometrical origin, they should be independent
of the intrinsic clustering, and we are only interested in the relative
effect of the HOD modelling, we opt to analyse the OUTERRIM-HOD
mocks as if they were periodic boxes, and compare only the relative
recovered values among them, bearing in mind that we expect an
∼ 2 − 3 per cent offset on α�. These results are listed in Table F2 for
the mean of 27 mocks and graphically represented in Fig. 11, where
the filled black symbols are the results for the cubic boxes (affected by
the non-periodicity) and the empty black symbols the results where
the boxes have been padded (not affected by non-periodicity). For all
the HODs, we consistently see that there is the expected 3 per cent
offset on α� as an effect of the non-periodicity of the box, whereas α⊥
is well recovered in all the cases. We therefore conclude that within
the statistical errors of 1−2 per cent the AP parameters recovered
from the BAO type of analysis are not affected by the HOD model
for LRGs. These findings are in agreement with the recent study by
Duan & Eisenstein (2019).

5.2 RSD systematics

We repeat the same strategy used for BAO systematics in the previous
Section 5.1. We run the standard FS pipeline described previously
in Section 3.2 on the pre-reconstructed mocks. We aim to check the
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2510 H. Gil-Marı́n et al.

Figure 9. Performance of the BAO type of analysis for α� (top panel) and α⊥ (bottom panel) as indicated. Each of the five vertical sub-panels corresponds to
the results on the EZMOCKS, NSERIES, and the OUTERRIM-HOD mocks by Hearin+threshold2, Leauthaud+threshold2, and Tinker + threshold2, as indicated.
A padding has been applied to the original non-periodic OUTERRIM-HOD cubic sub-box in order avoid spurious non-periodic effects. For each α, we display
the panels 
α ≡ α − αexp and 
α/σ . For each of these sub-panels, we display the pre- (left-hand panel) and post-recon results (right-hand panel). The grey
points correspond to the individual best-fitting parameters. The green (for pre-recon) and orange (for post-recon) triangles symbols correspond to the results of
fitting the mean of the mocks, and its error corresponds to the error of the mean. The pink (for pre-recon) and purple (for post-recon) squares symbols display
the results of taking the mean of Ndet individual fits, and the reported error is its rms. Consequently, the error of the mean of the fits is

√
Ndet times the error of

the mean. In the 
α/σ sub-panels, σ represents the error of the mean for the fit to the mean (orange and green triangles), and the rms/
√

Ndet for the mean of the
individual fits. The numerical results of this plot are also listed in Table 5.

typicality of the data with respect to the EZMOCKS under the FS
analysis, how such analysis responses to change in the HOD of the
mocks, the impact of the arbitrary choice of the reference template
used to compute the FS model, and to calibrate the optimal k-range to
be used on FS in order to maximize the statistical error and minimize
the systematic budget.

The panels of Fig. 12 display the recovered parameters, α�,
α⊥, and fσ 8 (top panels), and their errors (bottom panels) from
an FS analysis on the power spectrum monopole, quadrupole, and
hexadecapole using 0.02 ≤ k [ h Mpc−1] ≤ 0.15. Later, we justify
the choice of these specific scales. As in Fig. 7, the red cross
displays the performance of the DR16 CMASS + eBOSS LRG data
catalogue, and the black dots the performance on the mean of the
1000 realizations of EZMOCKS. In the bottom panels, the error of the
mean has been re-scaled by the factor

√
1000 to match the typical

error of one single realization. We note that the re-scaled error of the
mean of the mocks is displaced from the centre of the cloud of errors
from individual mocks. This behaviour is caused by the 50 per cent
prior on Anoise on the individual mocks (this prior has no effect
when fitting the mean of the mocks) which shrinks the distribution
tail towards smaller errors, especially for α� and fσ 8. The values
and errors of α�, α⊥, and fσ 8 inferred from the data catalogue are
consistent with the intrinsic scatter observed from the mocks; and
also the χ2 value of the data is probable given the distribution of the
mocks.

5.2.1 Optimal range of scales for the FS analysis

We aim to determine the range of scales, we should be using
when performing an FS analysis. Ideally, the wider this range,
the smaller the statistical uncertainty in the inferred cosmological
parameters should be. We expect that at very small scales the amount
of information on cosmological parameters saturates, although the
state-of-the art FS techniques have not reached that limit yet (Hand
et al. 2017). Thus, we set the small scale truncation limit based
on the ability of the FS model to recover unbiased cosmological
parameters. In order to determine this limit, we apply the FS analysis
on the full N-body NSERIES mocks truncating the model at different
scales. Fig. 13 shows the response of α�, α⊥, and fσ 8 on the truncation
scale, kmax, when the monopole and quadrupole are used (denoted
MQ) and when the hexadecapole is also used (MQH).

We study the following cases: using only the power spectrum
monopole and quadrupole for 0.02 ≤ k [ h Mpc−1] ≤ kmax (labelled
MQ kmax); using monopole, quadrupole, and hexadecapole with
the same-scale truncation 0.02 ≤ k [ h Mpc−1] ≤ kmax for all three
(labelled MQH kmax); and truncation of multipoles at different
scales, 0.02 ≤ k [ h Mpc−1] ≤ k(1)

max for monopole and quadrupole
and 0.02 ≤ k [ h Mpc−1] ≤ k(2)

max for hexadecapole (labelled MQ
k(1)

max + H k(2)
max). The hexadecapole is more sensitive to RSD than

the other multipoles, as the modes parallel to the LOS are relatively
more weighted than the transverse ones. Therefore, a potential μ-
dependent systematic could appear as a parameter-shift when kmax
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BAO and FS measurement from eBOSS LRG PS 2511

Figure 10. Top panel: BAO signal, Olin(k) of the cosmologies listed in
Table 1 (except for �EZ), used to test the cosmology dependence of the BAO
and FS analyses with the reference cosmology displayed in the middle panel
(BAO analysis on post-recon catalogues and listed in Table F4) and in the
bottom panel (FS analysis on pre-recon catalogues listed in Table F5). Middle
panel: BAO scale factors along (α�) and across (α⊥) the LOS measured on
the reconstructed NSERIES mocks. The � symbols display the fit on the mean
of the 84 realizations, the grey symbols display the fit on the individual 84
realizations, and the � symbols the mean of the 84 individual fits. The error
associated is the error of the mean and the rms among the 84 realizations
divided by

√
84, respectively. Bottom panel: same notation than the middle

panel applied to FS analysis on the same mocks. The x-axis shows the results
for different cosmologies used for the template (and for mapping redshifts into
comoving distances when computing the power spectrum). The horizontal
dashed lines mark the expected value of α‖, ⊥, and fσ 8.

Figure 11. Inferred scaling parameters, α� and α⊥, and fσ 8 using a BAO
(black symbols) and FS (coloured symbols) type of analysis from the pre-
reconstructed OUTERRIM-HOD mocks, for different types of HOD models
and flavours (listed in the x-axis). Red, purple, orange, and blue colours
correspond to Hearin, Leauthaud, Tinker and Zheng HOD models for the
FS type of analysis, respectively. For each of these models three flavours
have been implemented: standard (std), threshold 1 (th1), and threshold2
(th2), as labelled. The filled symbols correspond to 1 h−1Gpc-size cubic box
without periodic boundary conditions. The empty symbols correspond to the
results obtained from a padded and larger box corresponding to 3 h−1Gpc-
size, where the non-periodicity impact is negligible. All results correspond to
fitting the mean of 27 mocks, and the reported error is 1σ of the error of the
mean.

grows for the hexadecapole, but not necessarily when it grows for
lower multipoles.

For completeness, we perform such analysis using three different
templates, corresponding to �fid at z = 0.70 (red symbols), �Y

at z = 0.55 (blue symbols) and to �Nseries at z = 0.55 (black
symbols). The difference in redshift among these templates (and
in particular for z = 0.70 which is different from the effective
redshift of the NSERIES mocks, zeff = 0.55) only enters in the model
through the fixed σ 8 value in the second-order terms of the model,
and the difference between the σ 8 values at these two redshift is
∼ 11 per cent. From the results of Fig. 13, there is no significant
difference among these templates, suggesting that, (i) the shape of the
template for the reference cosmology has a negligible impact on the
inferred cosmological parameters (we test this later in Section 5.2.3
for a wider range of templates); and (ii) the redshift at which this
template is computed (which solely regulates its amplitude) has
an impact on fσ 8 which is < 1 per cent when the truncation scale
is ≤ 0.15 h Mpc−1 and � 1 per cent when the truncation scale is
0.20 h Mpc−1. This happens due to the non-linear terms proportional
to f × σn

8 for n > 1 in the non-linear terms of the model as already
discussed in Section 3.3. The statistical error on the fσ 8 measurement
is about 10 per cent for this sample and consequently this effect is
completely negligible.

The results reported in Fig. 13 suggest that the effect of the
truncation scale on α� is of the order of ≤ 1 per cent for the k-ranges
studied here. For α⊥, we find that the effect of increasing the value
of kmax and including the hexadecapole tend to underpredict its value
by 1−1.5 per cent depending on the truncation option. On fσ 8 the
effect of increasing kmax can be either overpredict and underpredict,
depending on which template is being used, but the effects are always
below 2−3 per cent.

As a fiducial choice, we opt to truncate the FS analysis at kmax =
0.15 h Mpc−1 for all three multipoles, (MHQ 0.15). This option
shows no detected systematic on α� and 1 per cent systematic on α⊥
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2512 H. Gil-Marı́n et al.

Figure 12. The top sub-panels display the distribution of inferred α�, α⊥,
and fσ 8 parameters using an FS analysis of the power spectrum monopole,
quadrupole, and hexadecapole for the 1000 realizations of the EZMOCKS cata-
logues (blue points), DR16 CMASS + eBOSS LRG data catalogue (red cross)
and the best-fit to the mean of the 1000 mock power spectra. The horizontal
and vertical black dashed lines represent the expected αs and fσ 8 values for
the EZMOCKS. The scales fitted are in all cases 0.02 ≤ k [ h Mpc−1] ≤ 0.15.
In each panel, the distribution of χ2 values is also shown. The bottom sub-
panels display an analogous plots for the errors of α�, α⊥, and fσ 8 instead.
In this case, the error of the mean have been re-scaled by the square root of
number of realizations.

and fσ 8. Alternatively, we could also have considered to use only the
monopole and quadrupole at the same truncation scale (MQ 0.15),
which shows no significant systematic in any of the three variables.
However, not using the hexadecapole significantly increases the
statistical errors (see Fig. 17), which does not compensate for the
reduction of systematic errors. Therefore, our main analysis relies
on the choice MQH 0.15.

We have not shown any results with kmax below 0.15 h Mpc−1.
The reason is that doing this actually also introduces systematics.
This paradoxical effect is caused by worsening the BAO detection. If
kmax is reduced down to 0.10 h Mpc−1, although the power spectrum
and RSD behave closer to linear physics (which is better modelled),
the lost BAO information between 0.10 and 0.15 h Mpc−1 makes it
hard to distinguish the RSD signal from the AP signal, which ends
up introducing very long degeneracy tails between fσ 8, α�, and α⊥,
which in the end introduce other type of systematics. This effect
even appears in a BAO-only analysis, suggesting that there is an

Figure 13. Test of performance when recovering cosmological parameters
for the FS analysis described in Section 3.2 as a function of the range of
scales used in each power spectrum multipole, where 
x ≡ x − xexp for
α�, α⊥, and fσ 8 for the three different panels. The symbols represent the
response on the mean of the 84 realizations of the NSERIES mocks when
the fiducial cosmology is used as reference template (red � symbol), when
the �Y –cosmology template is used (blue � symbol), and when the true
cosmology template is used (black • points). The x-axis labels indicate the
combination of multipoles (monopole, quadrupole, hexadecapole) used, and
the value of kmax in h Mpc−1. The results do not show any particular trend
with the template. Note that in some cases the value of kmax is different for
the hexadecapole compared to that for the monopole and quadrupole. For all
cases, the value of kmin is set to 0.02 h Mpc−1. The horizontal dotted lines
represent the 1 per cent deviation for αs and 2 per cent for fσ 8. The numerical
results of this plot are displayed in Table F5.

intrinsic effect of the data vector not related to the specific model,
BAO or FS, used. On the other hand, we do not explore scales
above kmin = 0.02 h Mpc−1, as they are usually more contaminated
by large-scale systematics, and they barely contain extra information
on α�, α⊥, and fσ 8.

In Beutler et al. (2017) DR12 CMASS LRG galaxies, and in
particular those between 0.5 ≤ z ≤ 0.75 were analysed under the
truncation scheme ‘MQ 0.15 H 0.10’ using a very similar model.
In this work, we have not found significant differences in terms
of systematics between ‘MQ 0.15 H 0.10’ and ‘MQH 0.15’, and
therefore we have decided to also include those hexadecapole modes
between 0.10 ≤ k [ h Mpc−1] ≤ 0.15.

5.2.2 Performance of the RSD modelling

We apply the FS template pipeline described in Section 3.2 for 0.02 ≤
k [ h Mpc−1] ≤ 0.15 on the different set of mocks: the results are
displayed in Fig. 14 for EZMOCKS, NSERIES, and OUTERRIM-HOD
mocks (for threshold2 flavour only and with padding included), as
labelled, when the monopole and quadrupole are used (MQ) and
when the hexadecapole is also used (MQH). The green and orange
symbols display the results when fitting the mean of the mocks and
report the error of the mean. The pink and purple symbols display
the average of the individual fits (displayed in grey) and report the
rms in the error bars. Consequently, the error on the mean of the
fits is a factor

√
Ni larger than the error on the fit of the mean. We

stress that the error bars associated to both measurements should be
the same, as they are both inferred from the same volume (except
for large-scale modes and cases where the BAO is not detected),
although the latter may suffer from extra systematic effects if the
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BAO and FS measurement from eBOSS LRG PS 2513

Figure 14. Performance of the FS type of analyses on different type of mocks, with a similar notation as in Fig. 9. In this case, we analyse only pre-
reconstruction catalogues using monopole and quadrupole only (MQ) and also including the hexadecapole (MQH). In all cases, the range of scales used are
0.02 ≤ k [ h Mpc−1] ≤ 0.15, motivated the findings of Fig. 13. The corresponding numerical results for this figure can be found in Table 6.

individual fits do not have a sufficiently high signal-to-noise ratio.
In Fig. 14 (as in Fig. 9), we opt to display the rms for the mean
of the individual fits as an error bar, along with the individual fits
in grey, for visualization purposes. These results are also presented
in Table 6, using the same notation and format of Table 5, where
the error reported for the mean of individual fits is the rms divided
by

√
Ndet, matching the error of the mean. The results displayed in

Fig. 14 for the EZMOCKS and NSERIES present a good agreement
between the fit of the mean and the mean of individual fits. For
the NSERIES mocks α� and fσ 8 are recovered with no systematics,
for both MQ and MQH. For the NSERIES mocks, we are able to
recover the expected α⊥ when the monopole and quadrupole are
used, whereas when we add the hexadecapole there is a systematic
offset of ∼ 1 per cent, as was reported in the previous section and in
Fig. 13. As we have already mentioned, the EZMOCKS are not full
N-body mocks, and therefore they should not be used to validate our
pipeline in terms of systematics of the model. However, as a general
trend, we observe that the response these mocks have is very similar
to the one observed for the NSERIES, which serves as a validation
of these mocks reproducing the clustering properties of full N-body
mocks, and therefore for producing a reliable covariance.

The results on the OUTERRIM-HOD mocks present a significant
difference between the fit of the mean (green and orange symbols)
and the mean of the fits (pink and purple symbols). In general, for
the fit of the mean the cosmological parameters α�, α⊥ and fσ 8 are
recovered within the statistical uncertainty, which is 1−3 per cent.
However, the individual fits and its mean present systematic shifts,
overestimating α� and fσ 8. These shifts are larger for MQ than MQH.
Since these effects are not shown in the mean of the fits, we conclude
that they are caused by the low signal of individual realizations.
Indeed, the volume of the realizations of each of these mocks is not

high enough to have good BAO detections, in particular for α� which
is always the worse-detected scaling factor. In such low-signal-to
noise conditions, the model tends to shift the BAO scale to larger
scales (recall that k

′ = k/α in Fourier space, or s
′ = sα in configuration

space), where the noise-per-k-mode is higher. This effect is partially
mitigated by adding the hexadecapole, as the signal of the data
vector is increased. The reason why this effect is only present in
the OUTERRIM-HOD mocks, and not in the NSERIES or EZMOCKS

has to do with the effective volume per mock, which is 1.10 Gpc3

for the OUTERRIM-HOD mocks, 3.67 Gpc3 for the NSERIES, and
2.72 Gpc3 for the EZMOCKS.

In summary, (i) the results displayed in Fig. 14 show no systematic
shift as a consequence to the change in the HOD models on any of
the cosmological parameters; (ii) the statistical limit of the previous
statement only applies to potential systematics larger than the sta-
tistical limit of the OUTERRIM-HOD mocks, which is 1−3 per cent;
and (iii) we observe a systematic shift of ∼ 1 per cent on α⊥ when
the NSERIES mocks are analysed and no strong systematic shift on
α� or fσ 8 above the statistical uncertainty, which for these mocks is
∼ 0.5 per cent.

In Table 6, we also display two additional results on potential ob-
servational systematics. We perform the FS analysis on the EZMOCKS

before, labelled EZMOCKS (raw), and after, labelled EZMOCKS,
applying the observational effects (which includes completeness and
collision weights) followed by the corresponding correction applied
in the data catalogue and described in Section 2.1. These effects
are redshift failures, close-pair collisions (only in the eBOSS LRGs)
and completeness. The relative systematic shift of all these effects
can be estimated by the difference of the inferred cosmological
parameters from the EZMOCKS before and after applying them. For
the fiducial case of MQH, we obtain that these shifts are of the order

MNRAS 498, 2492–2531 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/498/2/2492/5893332 by C
atherine Sharp user on 09 February 2021



2514 H. Gil-Marı́n et al.

Table 6. Performance of the FS model of equation (21) in different set of mocks. For The EZmocks α
exp
‖ = 1 + 8.853 × 10−4, α

exp
⊥ =

1 − 3.650 × 10−4, and f σ
exp
8 = 0.467 81. For the rest, the α expected values are 1 as they are, respectively, analysed in their own cosmology.

For the NSERIES mocks, f σ
exp
8 = 0.470 166, and for the OUTERRIM-HOD mocks, f σ

exp
8 = 0.4475. For the OUTERRIM-HOD type of mocks

only the threshold2 flavour is represented, where a padding has been applied to the original non-periodic cubic sub-box in order avoid spurious
non-periodic effects. We follow the same notation presented in Table 5. Fig. 14 visually displays the results of this table. All results at
kmax = 0.15 h Mpc−1.

Mock name Multipoles α‖ − α
exp
‖ α⊥ − α

exp
⊥ f σ8 − f σ

exp
8 Ndet/Ntot

Mean EZMOCKS M+Q + H 0.0040 ± 0.0011 − 0.014 81 ± 0.000 81 − 0.0096 ± 0.0015 1/1
Individual EZMOCKS M+Q + H 0.0079 ± 0.0011 − 0.014 44 ± 0.000 80 − 0.0124 ± 0.0014 1000/1000
Mean EZMOCKS M + Q 0.0025 ± 0.0016 − 0.0075 ± 0.0011 − 0.0053 ± 0.0021 1/1
Individual EZMOCKS M + Q 0.0043 ± 0.0020 − 0.0055 ± 0.0012 0.0003 ± 0.0023 985/1000

Mean EZMOCKS (raw) M+Q + H 0.0108 ± 0.0011 − 0.016 80 ± 0.000 78 − 0.0161 ± 0.0014 1/1
Mean EZMOCKS (raw) M + Q 0.0011 ± 0.0016 − 0.005 68 ± 0.000 98 − 0.0016 ± 0.0019 1/1

Mean EZMOCKS (no-RIC) M+Q + H 0.0073 ± 0.0011 − 0.017 91 ± 0.000 81 − 0.0170 ± 0.0015 1/1
Mean EZMOCKS (no-RIC) M + Q 0.0020 ± 0.0016 − 0.0080 ± 0.0011 − 0.0077 ± 0.0020 1/1

Mean NSERIES M+Q + H 0.0016 ± 0.0032 − 0.0095 ± 0.0020 − 0.0038 ± 0.0041 1/1
Individual NSERIES M+Q + H 0.0082 ± 0.0040 − 0.0089 ± 0.0021 0.0073 ± 0.0043 84/84
Mean NSERIES M + Q − 0.0031 ± 0.0046 − 0.0011 ± 0.0024 0.0047 ± 0.0054 1/1
Individual NSERIES M + Q 0.0045 ± 0.0070 0.0001 ± 0.0029 0.0201 ± 0.0061 84/84

Mean HOD-Hearin M+Q + H − 0.010 ± 0.013 − 0.0020 ± 0.0089 0.019 ± 0.019 1/1
Individual HOD-Hearin M+Q + H 0.045 ± 0.017 0.0001 ± 0.0093 0.026 ± 0.022 27/27
Mean HOD-Hearin M + Q − 0.002 ± 0.017 − 0.001 ± 0.011 0.009 ± 0.023 1/1
Individual HOD-Hearin M + Q 0.154 ± 0.022 0.005 ± 0.014 0.022 ± 0.031 27/27

Mean HOD-Leauthaud M+Q + H 0.003 ± 0.014 − 0.0111 ± 0.0094 − 0.004 ± 0.020 1/1
Individual HOD-Leauthaud M+Q + H 0.061 ± 0.014 − 0.0195 ± 0.0087 0.006 ± 0.016 27/27
Mean HOD-Leauthaud M + Q 0.007 ± 0.018 − 0.006 ± 0.011 − 0.001 ± 0.024 1/1
Individual HOD-Leauthaud M + Q 0.182 ± 0.026 0.009 ± 0.019 0.025 ± 0.037 27/27

Mean HOD-Tinker M+Q + H 0.006 ± 0.014 − 0.018 ± 0.011 − 0.007 ± 0.021 1/1
Individual HOD-Tinker M+Q + H 0.097 ± 0.024 − 0.0047 ± 0.0097 0.014 ± 0.022 27/27
Mean HOD-Tinker M + Q 0.012 ± 0.019 − 0.012 ± 0.013 − 0.005 ± 0.026 1/1
Individual HOD-Tinker M + Q 0.162 ± 0.027 0.056 ± 0.026 0.095 ± 0.046 27/27

of 0.7 per cent for α�; of the order of 0.2 per cent for α⊥; and of
the order of 0.6 per cent for fσ 8. Individually, such shifts are sub-
dominant with respect to the statistical error of the data.

We also check the effect of the radial integral constraint (RIC; see
de Mattia et al. 2020 for a description of this effect). We turn on
and off this effect by computing the power spectra of the individual
mocks with and without a random catalogue that matches the n(z) of
the galaxy catalogue. The best-fitting parameters to the mean of the
mocks without the RIC is shown in Table 6. The effect of RIC on α�

and α⊥ is about 0.3 and 1.6 per cent on fσ 8.

5.2.3 Impact of reference template

In the bottom panel of Fig. 10, we display the recovered cosmological
parameters for the NSERIES mocks when they are analysed assuming
five reference templates: �Nseries, �fid, �X , �Y , and �Z.16 As
before, we display both the fit on the mean, and the mean of the
individual fits (which are also shown in grey). Table F5 lists these
results. The horizontal dashed lines are the expected values, for each
of these cosmologies. Note that the expected α� and α⊥ change with
�m and h, but fσ 8 does not, as the latter is an absolute variable, which
does not depend on the choice of template.

For a displacement in the reference cosmology from �Nseries and
�fid, we do not observe any shift larger than the 1σ error bar of one

16We consistently map the redshifts into comoving distances in the catalogues
using the cosmology of these templates.

of the measurements. As the reference cosmology moves away from
the true cosmology, we observe a mild rise of systematics, which
reaches 0.6 and 0.4 per cent for α� and α⊥, respectively, for �Z ,
although the significance of detection given the statistics of NSERIES

is not very high. For fσ 8 the largest deviation appears for �X , which
reaches 
fσ 8 = 0.009, which is about a 2 per cent shift. As for the
scaling variables, the significance of detection of this shift is well
within a 2σ fluctuation.

Bear in mind that the �X, �Y , �Z templates are very extreme
cases with shifts of the order of 
� � 0.065. In addition, for �Z

the baryon density is ∼50σ above the Planck-inferred value and for
�Y the number of neutrino species is Neff = 4.046. Even in such
cases the systematics on the α’s stay well below 1 per cent. These
findings demonstrate how insensitive LSS structure data is to �b.
Alternatively, one could put priors on �b by assuming a �CDM
model through the horizon scale, which also set tight constraints
on the relation between α� and α⊥ (D’Amico et al. 2019; Ivanov,
Simonović & Zaldarriaga 2019; Tröster et al. 2020). By taking this
approach one would increase the precision in measuring α� and α⊥
at the expense of assuming the functional form that a generic �CDM
imposes between these two-scale factors.

5.2.4 HOD and periodicity

In Section 5.1.3, we have already tested the impact of the non-
periodicity of the 27 sub-boxes generated from the OUTERRIM mocks
for a BAO type of analysis. In this section, we do the same for
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Table 7. Systematic error budget summary for cosmological parameters of interest: α
post
‖ and α

post
⊥ from a BAO analysis on the post-reconstructed catalogues;

αFS
‖ , αFS

⊥ , and fσ 8
FS for an FS analysis and αsim

‖ , αsim
⊥ , and fσ 8

sim for the simultaneous BAO + FS fit, in all cases using the standard pipelines described in
Sections 3.1 and 3.2. The results show the observed relative systematic shift, along with two times the statistical precision inferred from the mean of the mocks.
We consider a detection of systematic error when the deviation with respect to the expected value is larger than 2σ . If no systematic shift is found within this
limit, we adopt as a systematic contribution the 2σ value, as a conservative resolution limit. The potential sources for systematic studied are: modelling, the
arbitrary choice of reference cosmology, and the observational weights: redshift failures, collisions and completeness (FCC), and RIC. σX represents the total
systematic contribution: σ 2

X = ∑
i σ 2

i , where σ i are the individual systematic contributions. The total error budget includes the statistical contribution, σ sta,
added in quadrature with σX.

Case Modelling Reference cosmology (limit) FCC RIC σX/σ sta

√
σ 2

X + σ 2
est


α
post
‖ ± 2σ − 0.0048 ± 0.0038 0.0106 ± 0.0057 (�Z) − − 0.012/0.024 0.027


α
post
⊥ ± 2σ 0.0005 ± 0.0021 −0.0089 ± 0.0032 (�Z) − − 0.0091/0.020 0.021


αFS
‖ ± 2σ 0.0016 ± 0.0064 −0.0063 ± 0.0089 (�Z) 0.0068 ± 0.0031 0.0033 ± 0.0030 0.013/0.036 0.039


αFS
⊥ ± 2σ − 0.0095 ± 0.0040 −0.0041 ± 0.0056 (�Z) − 0.0020 ± 0.0023 − 0.0031 ± 0.0023 0.012/0.027 0.030


f σ8
FS
res ± 2σ − 0.0038 ± 0.0082 0.009 ± 0.012 (�X) − 0.0065 ± 0.0042 − 0.0074 ± 0.0043 0.017/0.042 0.046


αsim
‖ ± 2σ − 0.0008 ± 0.0034 0.0078 ± 0.0048 (�Y) 0.0033 ± 0.0021 0.0024 ± 0.0022 0.0094/0.023 0.025


αsim
⊥ ± 2σ − 0.0017 ± 0.0022 −0.0071 ± 0.0030 (�Z) − 0.0024 ± 0.0017 − 0.0018 ± 0.0017 0.0080/0.017 0.019


fσ 8
sim ± 2σ 0.0181 ± 0.0074 −0.011 ± 0.011 (�Y) − 0.0050 ± 0.0037 − 0.0076 ± 0.0039 0.023/0.037 0.043

the FS analysis. We use the same catalogues as before (Hearin,
Leauthaud and Tinker with threshold2 flavour), and we compare
how embedding the non-periodic 1 h−1Gpc box into a 3 h−1Gpc
box changes the results. Table F6 displays the results on performing
an FS on the padded and unpadded catalogues. These results can
also be seen in Fig. 11, where the empty symbols display the
padded results, for FS analysis on the Hearin+threshold2 (red),
Leauthaud+threshold2 (purple), and Tinker + threshold2 (orange).
As was found for BAO fits (in black symbols in the same figure),
only α� presents a significant shift for the Hearin case, whereas α⊥
and fσ 8 seem barely altered by this effect. In the same panel, and
also along Table F7, the results using other flavours (standard and
threshold 1 as labelled), as well an extra HOD model (Zheng in blue
symbols) are also displayed for FS. The full picture from BAO and
RSD fits is that only α� is affected by the non-periodicity of the box.
The systematic shift is of the order of 1.5 per cent for the FS analysis
(unlike the 2−3 per cent for BAO analysis). This disparity can be due
to the variation in the scales fitted, as well as the intrinsic modelling.
As for the BAO analysis, we do not detect any significant relative
shift on the cosmological parameters when either the HOD model
or the flavour is varied. Such results put constrains in the upper
limit of systematic errors in the modelling as a result of different
HOD models. Such upper limits are of the order of 0.5−1 per cent
systematic shifts.

5.3 Systematic error budget

In this section, we summarize all the potential systematic error
contributions described above, for both BAO and FS analyses, and
describe how the total systematic budget of the main results of this
paper is computed. Additionally, we also quantify the systematic
errors when a simultaneous BAO and FS fit is performed (see
Section 6 for details on how the simultaneous fit is performed). We
consider the BAO-type of analysis on the post-recon catalogue in the
scale range 0.02 ≤ k [ h Mpc−1] ≤ 0.30, and the FS analysis on the
pre-recon catalogue using monopole, quadrupole, and hexadecapole
in the scale range 0.02 ≤ k [ h Mpc−1] ≤ 0.15. We consider the
following systematics:

(i) Modelling systematics: Associated with the inaccuracies in
the theoretical or phenomenological model used. We test these

by comparing the inferred value from the NSERIES mocks and
the expected value, when the mocks are analysed using their own
true cosmology as a reference cosmology. These results have been
presented in Tables 5 and 6 for BAO and FS, respectively.

(ii) Reference cosmology systematics: We test the arbitrary choice
of the reference cosmology (both to convert redshift into distances
and to choose the modelling template), for both BAO and FS analysis.
We test the relative differences between 
x = x − x0 for four different
reference cosmologies, and take the highest observed deviation
(noted as ‘limit’ in Table 7), where the super-index ‘0’ corresponds
to the parameters inferred using its own true cosmology as reference
cosmology. In particular, we test the differences between �Nseries and
�fid, �X , �Y , �Z . These results can be found in Tables F4 and F5
for BAO and FS analysis, respectively.

(iii) Observational systematics: Such as the effect of redshift
failures, collisions, and completeness, and systematics derived from
the RIC. In order to test these types of systematics, we take the
difference between the fit on the EZMOCKS, when these effects are
applied, with respect to the fit to those raw EZMOCKS previous to the
appliance of the effect. We consider two separate cases, (i) collisions,
failures, and completeness effects (FCC); and (ii) the RIC effect.17

We only compute the contribution of the FCC and RIC systematics for
the FS and consensus FS + BAO cases, as the BAO peak position is
very insensitive to such effects. These results have been presented in
Table 6.

For simplicity, we consider only the results from the fit to the
mean of the mocks, as it is less sensitive to noise effects compared
to the mean of individual fits. We also consider that a systematic
is detected if the deviation between the expected and measured
variable is higher than 2σ . In case of no detection, we assign as
a systematic contribution the corresponding 2σ value, which sets
a limit in sensitivity. Note that 2σ corresponds to the 95 per cent
confidence level of the mean of the mocks, whose effective volume is
113 times larger, for the NSERIES mocks, and 1000 times larger for the
EZMOCKS, than the DR16 CMASS + eBOSS LRG data set. Table 7
displays the full systematic contribution on the variables of interest.

17In order to remove the RIC, we generate a common random catalogue
from all the individual 1000 random catalogues, taking a random 0.1 per cent
fraction of the objects.
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For the post-reconstruction BAO analysis, we detect an ∼
0.5 per cent systematic shift induced by the modelling systematic
on α�, and none for α⊥, with a resolution limit of ∼ 0.2 per cent.
The choice of reference cosmology places an error of about ∼ 1 and
∼ 0.9 per cent on α� and α⊥. Such shifts are observed to be higher
for the �Z cosmology. When both effects are taken into account we
find that the total systematic contribution increases by ∼ 10 per cent
for both α� and α⊥. The reader might think that these error bars are
unrealistically inflated as the �Z cosmology represents a cosmology
strongly disfavoured by state-of-the-art CMB measurements. If we
only consider �fid and �X as acceptable templates instead, the
systematic shifts are reduced to 0.5 and 0.3 per cent for α� and α⊥,
respectively (similar to what was found in Gil-Marı́n et al. 2016b for
the DR12 LRG sample). In this less conservative case, the error bars
would increase by 7 per cent, instead. Therefore, the total systematic
error budget is not strongly modified by these ‘priors’ on the selection
of reference cosmologies. As a conservative choice, we keep the total
error budget as the most conservative one, where all four studied
templates are considered.

When we look at the variables of the FS analysis, we find
that, for α� the dominant source of systematics are FCC and
the choice of reference cosmology, both contributing to about ∼
0.7 per cent. The RIC contributes 0.3 per cent and we do not resolve
any modelling systematic contribution (< 0.6 per cent). The total
systematic contribution enlarges the error budget by 7 per cent. For
α⊥ the dominant source of systematics is the modelling, with about
1 per cent systematic contribution. The other sources of systematics
correspond to 0.2 and 0.3 per cent for FCC and RIC, respectively.
We do not detect any systematic related to the choice of the reference
cosmology below the resolution limit (< 0.5 per cent). The total error
contribution of α⊥ increases by 8 per cent due to systematics. For
fσ 8 the dominant source of systematic is the reference cosmology,
which represents a shift of 
fσ 8 � 0.009 (about 2 per cent), which
corresponds to the �X reference cosmology. The FCC and RIC
generate shifts of around 0.007, and we observe no significant shift
caused by modelling systematics. In total, the errors are increased by
8 per cent due to the systematic contribution.

When we analyse BAO and FS simultaneously, we obtain system-
atic shifts, which are comparable to those obtained by considering
these analyses individually. For the scaling parameters, the most
important source of systematics is the choice of reference cosmol-
ogy, which produces systematic shifts of about 0.7 per cent, which
corresponds to the �Y and �Z cosmologies. If only the �fid and
�X reference cosmologies were considered, these shifts would be
reduced to 0.6 per cent and 0.4 per cent for α� and α⊥, respectively.
As before, we take the conservative choice where all the reference
cosmologies are considered, which does not modify significantly the
final errors. We find that the total errors on α� and α⊥ are increased
by 8 and 10 per cent, respectively. For fσ 8, we find that the dominant
source of systematic is the modelling, with a shift of 0.018 (about
4 per cent). The total error budget increases by 15 per cent due to
systematics.

We have not included any BAO-type systematic from the
OUTERRIM-HOD mocks in this section. The reason is that in any
of the cases studied no such systematic shift was detected. However,
the resolution limit of these mocks is poor given their low effective
volume (∼ 27 Gpc3 for Threshold2 HOD types). Consequently,
according to our detection criterion, only shifts of the order of
2−6 per cent would be detected. These figures would set limits
for potential systematic, which are above a reasonable value, as
these models (both for BAO and FS) have been tested in the past
using different sets of tracers, and such large systematics would have

been already identified. Also, adding a 2σ resolution effect would
have artificially inflated our systematic errors, simply due to poor
statistical power in these mocks rather than a reasonable limitation
of our modelling.

We modify the error covariance of the different data vectors by
replacing the statistical contribution only in the diagonal elements, by
the total systematic plus statistical contribution. In other words, the
total covariance elements, ctot

ij , become, ctot
ij = csta

ij + c
sys
i δKr.

ij , where
csta
ij are the elements only accounting for the statistical contribution,

and the c
sys
i terms correspond to σ 2

X according to Table 7. We note that
by doing this we assume that the systematic errors are uncorrelated
among them, as they are only added on the diagonal of the covariance.
This is probably not accurate, but we take this as a conservative
choice, as correlation among systematics would reduce their effect
in the final covariance matrix.

Table 8 presents the final cosmology results with and without the
full error budget for the different DR16 CMASS + eBOSS LRG type
of analysis performed, both in this work and in Bautista et al. (2020).

6 C ONSENSUS RESULTS

The DR16 CMASS + eBOSS LRG data has been analysed perform-
ing four different types of analyses: (i) FS in Fourier space, (ii) BAO
post-reconstruction in Fourier space, and (iii) FS in configuration
space, and (iv) BAO post-reconstruction in configuration space.
Analyses (i) and (ii) are fully described in this paper, whereas
analyses (iii) and (iv) are presented in Bautista et al. (2020). Although
all analyses rely on the same underlying catalogues (pre-recon for FS
and post-recon for BAO) their information content is not the same.
This happens because (1) each space data vector is computed directly
from the catalogue and not as an FT of the complementary-space data
vector; and (2) because data-vectors do not cover an infinite range of
scales, and therefore the DFT of a finite set of elements in configura-
tion space will never match the elements in Fourier space, and vice
versa. Since we intend to produce a single inferred set of cosmologi-
cal parameters per catalogue, we aim to combine Fourier and configu-
ration space measurements into a single consensus set of parameters.

In order to do so, we use a similar approach to the one described
in Sánchez et al. (2017), which was used to produce the consensus
results of BOSS (Alam et al. 2017). This approach, known as the ‘best
linear unbiased estimator’, consists of building a linear estimator
of the consensus parameters (αcons

‖ , αcons
⊥ f σ cons

8 ) as a function of
the individual parameters estimated in Fourier and configuration
space with certain coefficients. These coefficients are determined by
imposing a minimum variance on the resulting consensus parameters.
Thus, we require a covariance that describes the full correlation
among all parameters. This matrix is given by the individual
covariances among parameters of the same space. Note that the
individual covariances are effectively different for each realization
of the mocks, as the noise content of each realization is a stochastic
process. However, we still need to determine those elements of the
full covariance corresponding to the blocks describing the correlation
between different spaces. Such coefficients can be estimated from the
mocks, by inferring the data vector in each mock realization. There
are some choices to be made in the details of building the final
covariance. One can take only the diagonal elements from the actual
data catalogues and the remaining elements from the mocks, or take
the diagonal blocks corresponding to the same space from the data,
and only the off-diagonal blocks across spaces from the mocks, just
as two examples. We have tested that the impact of these choices is
minimal. In this work, we take the approach described in section 3.4
of Bautista et al. (2020).
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BAO and FS measurement from eBOSS LRG PS 2517

Table 8. Summary of the cosmology parameters inferred from the DR16 CMASS + eBOSS LRG catalogue using
BAO and FS analyses, in Fourier space (this paper) and in configuration space (Bautista et al. 2020). Fourier space,
configuration space, BAO, and FS results can be combined (using the parameter-level covariance inferred from
EZMOCKS), which we denote as ‘+’. For the Fourier space, we additionally display the result of the simultaneous
BAO and FS fit (using the covariance at the k-bin level inferred from EZMOCKS), which we denote as ‘×’. The
reported error bars correspond to 1σ and contain only the statistical error budget (first half of the table) and the full
error budget (second half of the table). Full resolution data vectors and covariances can be found on-line.

Probe DM/rdrag DH/rdrag fσ 8

Without systematic error budget
BAO Pk 17.86 ± 0.34 19.30 ± 0.50 −
BAO ξ s 17.86 ± 0.33 19.34 ± 0.54 −
BAO (Pk + ξ s) 17.86 ± 0.32 19.31 ± 0.49 −
FS Pk 17.49 ± 0.48 20.18 ± 0.73 0.454 ± 0.042
FS ξ s 17.42 ± 0.34 20.46 ± 0.60 0.460 ± 0.044
FS (Pk + ξ s) 17.37 ± 0.32 20.39 ± 0.59 0.448 ± 0.040
(BAO + FS) Pk 17.72 ± 0.31 19.58 ± 0.45 0.476 ± 0.038
(BAO × FS) Pk 17.58 ± 0.30 19.96 ± 0.47 0.466 ± 0.037
(BAO + FS) ξ s 17.57 ± 0.29 19.95 ± 0.44 0.491 ± 0.040
(BAO + FS) ξ s + (BAO+FS) Pk 17.39 ± 0.27 19.88 ± 0.43 0.475 ± 0.037
BAO (Pk + ξ s) + FS (Pk + ξ s) 17.55 ± 0.28 19.88 ± 0.42 0.481 ± 0.037

With systematic error budget
BAO Pk 17.86 ± 0.37 19.30 ± 0.56 −
BAO ξ s 17.86 ± 0.33 19.34 ± 0.54 −
BAO (Pk + ξ s) 17.86 ± 0.33 19.33 ± 0.53 −
FS Pk 17.49 ± 0.52 20.18 ± 0.78 0.454 ± 0.046
FS ξ s 17.42 ± 0.40 20.46 ± 0.70 0.460 ± 0.050
FS (Pk + ξ s) 17.40 ± 0.39 20.37 ± 0.68 0.449 ± 0.044
(BAO + FS) Pk 17.72 ± 0.34 19.58 ± 0.50 0.474 ± 0.042
(BAO × FS) Pk 17.58 ± 0.33 19.96 ± 0.50 0.466 ± 0.043
(BAO + FS) ξ s 17.65 ± 0.31 19.81 ± 0.47 0.483 ± 0.047
(BAO + FS) ξ s + (BAO+FS) Pk 17.64 ± 0.30 19.78 ± 0.46 0.470 ± 0.044
BAO (Pk + ξ s) + FS (Pk + ξ s) 17.65 ± 0.30 19.77 ± 0.47 0.473 ± 0.044

Fig. 15 displays the comparison between the Fourier space
results presented in this paper and the configuration space results
presented in Bautista et al. (2020) for BAO analysis using the
post-recon catalogues from the EZMOCKS (green points) and the
DR16 CMASS + eBOSS LRG data catalogue (red cross). The
panels display the comparison between the two analyses for α� and
α⊥ and for their corresponding errors, as indicated. The black dot
displays the result on the mean of the 1000 EZMOCKS, and for the
error case, this quantity has been re-scaled by the factor

√
NEZ to

match the typical error of an individual mock. We find an excellent
agreement, both for measurements and errors, for both mocks and
data. This agreement motivates the combination of both results as
they are fully consistent. The consensus results among BAO-Fourier
space and BAO-configuration space are displayed in Table 8. We
note that when both spaces are combined there is a slight reduction
of errors on both DH/rdrag and DM/rdrag parameters. The extra
information driving this improvement in precision is related to the
fact that Fourier and configuration space data-vectors do not contain
the exact same information, although the amount of correlation is
very high, with cross-correlation parameters between the αs of the
different spaces of ρ = 0.88.

Fig. 16 displays an analogous set of panels corresponding to FS-
type of analysis. In this case, a third pair of panels is added to account
for the fσ 8 variable. As for the BAO type of analysis both Fourier
and configuration show a strong correlation, for both errors and
measurements. We also observe that the DR16 CMASS + eBOSS
LRG catalogue behaves as expected given the performance of the
mocks. We note that for α⊥ there is an offset between the Fourier
and configuration space inferred values. This is caused by the

1 per cent systematic shift identified already in Section 5.2.2. Also,
as a general trend we see that configuration space errors on the
scaling parameters tend to be smaller than the Fourier space one.
This trend is not present in the BAO type of analysis (Fig. 15). We
think that this difference is caused by the shortening of the k-range
of analysis, 0.02 ≤ k [ h Mpc−1] ≤ 0.15, with respect to the BAO,
which reaches kmax = 0.30 h Mpc−1, which we believe adds extra
BAO information. In configuration space, this effect is not present as
the BAO feature is very localized at scales of ∼ 100 h−1 Mpc.

6.1 BAO–FS simultaneous fit

In this section, we aim to perform a simultaneous fit using the BAO
type of analysis on reconstructed catalogues and FS type on pre-
reconstructed catalogues. From the point of view of information
content, we are allowed to do so, because the pre- and post-
reconstructed catalogues are essentially different, and there is an
actual gain of information in the process of using them when
extracting cosmological information.

We start by comparing all Fourier-space BAO analyses (pre-
and post-reconstruction) with the FS analysis with and without
the hexadecapole, and using the 50 per cent-prior on Anoise. Fig. 17
displays the posterior likelihoods for all the Fourier space analyses
presented in this paper: FS using MQ (green), FS using MQH
(red), BAO on the pre-reconstructed catalogues (orange), and BAO
on post-reconstructed catalogues (blue). Note that the BAO pre-
reconstruction and FS M + Q data vectors are the same, except that
the BAO pre-recon data vector contains k-elements up to smaller
scales than the FS. The agreement between all analyses is very good
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Figure 15. Comparison of the of the BAO measurement on the post-reconstructed catalogues in Fourier space (this work) and in Configuration space (Bautista
et al. 2020). The x-axes represent the Fourier space quantities and the y-axes configuration space quantities. The left sub-panels display the performance on α�

(top left-hand panel) and α⊥ (bottom left-hand panel), whereas the right-hand panels display the performance on the 1σ error of the corresponding quantities.
The green symbols display the performance on the individual 1000 mocks, the black dot the performance on the mean power spectra of the 1000 mocks, and the
red cross the performance on the DR16 CMASS + eBOSS LRG data. The errors correspond to 1σ and only represent the statistical contribution.

for all variables of interest. In particular, we see that performing
an FS analysis adding the hexadecapole helps to remove the strong
correlation between the scaling factors and fσ 8.

Fig. 18 presents in purple contours the result of combining
BAO post-recon (blue contours) and FS (red contours) Fourier
space analyses. This result has been obtained by applying the same
technique used to the corresponding Fourier-space and configuration-
space results. As before this approach suffers from having to estimate
cross-method coefficients from the mocks. This may have an impact
on the final contours, as it could fail to accurately describe the
exact correlation that variables among the two spaces have for a
specific realization. The numerical results of this Fourier consensus
are presented in Table 8, as ‘(BAO + FS) Pk’.

We follow an alternative analysis of extracting the combined
BAO post-recon and FS pre-recon information without relying on
the cross-coefficients of parameters estimated from the mocks.
We do so by performing a simultaneous fit on both reconstructed
and pre-reconstructed data vectors using the BAO and FS analysis
respectively, simultaneously fitting α� and α⊥. As for the individual
BAO and FS analyses, we estimate the full covariance matrix using
the EZMOCKS. In Appendix C, we show what the off-diagonal
elements of this matrix look like. Since the data-vectors differ, this
matrix is not singular and can be safely inverted. However, the off-
diagonal cross-correlation coefficients describing the pre- and post-
data-vector elements with the same k-bin and 	-multipole, can be
as high as ∼0.9, which inevitably will introduce some noise when
inverting the matrix. We validate this approach by applying this
pipeline to the NSERIES mocks. Table F8 displays the performance of

the simultaneous BAO and FS fit, along with the individual BAO and
FS analyses, for both a fit on the mean of the mocks and the mean of
the 84 individual fits. In both cases, the result is very similar. We see
how this combined analysis can actually recover well the expected
cosmological parameters with better precision than the individual
BAO and FS analyses. Also the rms and error of the mean for the
combined fit is smaller than any of the individual fits, confirming
the gain of information. In particular, we note that by performing
the consensus fits we obtain lower systematic shifts in the scaling
factor variables than by performing the FS analysis alone. In fact,
we observe an ∼ 1 per cent systematic shift on α⊥ on the FS-alone,
whereas for the simultaneous fit this shift is smaller than 0.5 per cent.
Conversely, for fσ 8, FS-alone reported a shift of ∼−0.004 and for
the FS × BAO this has been increased up to ∼0.018.

Employing the NSERIES and EZMOCKS mocks, we find that using
a third-order polynomial to perform the BAO part of the combined
fit is not sufficient to achieve a sufficiently high accuracy on fσ 8.
This is caused by small inaccuracies in reproducing the BAO
post-reconstruction broad-band, which are severely leaked into the
FS analysis through the cross-covariance terms of the matrix. As a
consequence, these BAO broad-band inaccuracies produced biased
results on fσ 8 as well as a bad-χ2 fits. This behaviour was also
reported in the companion paper by de Mattia et al. (2020) when
performing a similar combined fit. We increase the BAO polynomial
order up to five and find that such behaviour vanishes and we are
able to recover the expected fσ 8 in mocks.

The results of applying this combined fit methodology to the
data are shown by the yellow contours in Fig. 18 with only the

MNRAS 498, 2492–2531 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/498/2/2492/5893332 by C
atherine Sharp user on 09 February 2021
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Figure 16. Comparison of the of the RSD measurement in Fourier space (this work) and in configuration space (Bautista et al. 2020). The x-axes represent the
Fourier space quantities and the y-axes configuration space quantities. The left sub-panels display the performance on α� (top left-hand panel), α⊥ (middle-left
panel) and fσ 8 (bottom left-hand panel), whereas the right-hand panels display the performance on the 1σ error of the corresponding quantities. The blue
symbols display the performance on the individual 1000 mocks and the red cross the performance on the DR16 CMASS + eBOSS LRG data.

statistical error contribution, as well reported in Table 8, under the
notation ‘(BAO × FS) Pk’. We observe some differences between
the two approaches of using both FS and BAO data, but the overall
result is very similar, especially for fσ 8. We observe that for the
consensus result DM/rdrag and DH/rdrag are closer to the BAO-only
results, opposite to the behaviour observed when the final results are
produced by using the simultaneous fit. Also, bear in mind that when
combining BAO and FS analysis, either by doing a consensus or a
simultaneous fit, we do improve the fσ 8 measurement. This might
seem paradoxical as BAO analysis do not constrain fσ 8 information.
However, we obtain an indirect gain on this variable through a better
measurement of the BAO scaling parameters, α� and α⊥, which are
significantly correlated with fσ 8. In terms of information content,
the reconstructed catalogue is produced under the assumption of GR
in order to undo the non-linear physics that degrade the BAO-peak

significance. In this sense, the results on fσ 8 coming from either
combined or simultaneous fit, have stronger priors on gravity than
those derived from the FS analysis on its own.

The general agreement between the simultaneous and consensus fit
in Fourier space serves as a validation of the consensus methodology
applied to combine result from both spaces.

6.2 Consensus final LRG results from BOSS and eBOSS

In this section, we present the most relevant results and corresponding
covariance matrices of this paper.18 For reference, all the results cor-

18The results of all the cases can be found online.

MNRAS 498, 2492–2531 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/498/2/2492/5893332 by C
atherine Sharp user on 09 February 2021



2520 H. Gil-Marı́n et al.

Figure 17. Likelihood posterior for 1σ and 2σ , from the BAO and FS
type of analysis on the DR16 CMASS + eBOSS LRG: BAO type of
analysis on the pre-reconstructed catalogues (yellow contours) and on the
post-reconstructed catalogues (blue contours), FS type of analysis when
the monopole and quadrupole are the only multipoles being used (green
contours), and when the hexadecapole is also included (red contours). For
BAO type of analysis, we use 0.02 ≤ k [ h Mpc−1] ≤ 0.30, whereas for FS
analysis 0.02 ≤ k [ h Mpc−1] ≤ 0.15. For all cases, the contours only account
for the statistical error budget. These contours correspond to the results
presented in the first half (without systematics) of Table 8.

respond to those including the full systematic budget and represented
by the second half of Table 8.

For the DR16 CMASS + eBOSS LRG BAO-only analysis in
Fourier space the data vector and covariance matrix are given by

D
Pk
BAO =

(
DM/rdrag

DH/rdrag

)
=

(
17.8637
19.3033

)
, (41)

and

C
Pk

BAO = 10−2

(
13.9254 −7.35600

30.8339

)
. (42)

For the FS-only analysis in Fourier space we find that

D
Pk
FS =

⎛
⎝DM/rdrag

DH/rdrag

f σ8

⎞
⎠ =

⎛
⎝ 17.4929

20.1817
0.453576

⎞
⎠, (43)

and

C
Pk

FS = 10−3

⎛
⎝267.860 −39.8061 8.53160

607.292 −10.5863
2.10103

⎞
⎠. (44)

By simultaneously fitting BAO and FS in Fourier space (the BAO ×
FS case in Table 8), the data vector and covariance matrix are

D
Pk
BAO×FS =

⎛
⎝DM/rdrag

DH/rdrag

f σ8

⎞
⎠ =

⎛
⎝ 17.5840

19.9603
0.466130

⎞
⎠, (45)

and

C
Pk

BAO×FS = 10−3

⎛
⎝109.7713 −32.1161 4.70509

252.282 −4.95629
1.87876

⎞
⎠. (46)

Figure 18. Likelihood posterior for 1σ and 2σ contour for the Fourier
space BAO and FS consensus (purple contours) and simultaneous fit (yellow
contours). For reference, the individual BAO post-recon (blue contours) and
FS pre-recon (red contours) have also been included. In all cases, the contours
only account for the statistical error budget. These contours correspond to the
results presented in the first half (without systematics) of Table 8.

The full consensus results between BAO and FS, and between Fourier
and configuration space, the BAO (Pk + ξ s) + FS (Pk + ξ s) case
in Table 8, are presented in Table 9, along with the lower redshift
bins of the DR12 BOSS LRG measurements from Alam et al. 2017.
These results cover the full redshift range 0.2 < z < 1.0 using LRG
spectroscopic clustering measurements and are divided in a total of
three redshift bins. The first two lowest redshift bins measured by
BOSS overlap: 0.2 < z < 0.5 with zeff = 0.38, and 0.4 < z < 0.6
with zeff = 0.51. The third non-overlapping redshift bin, consisting
of a combination of BOSS CMASS and eBOSS LRG observations
and spanning 0.6 < z < 1.0 with zeff = 0.698, is used for the main
results of this paper. Table 9 presents all of them consistently in
the same units, DM/rdrag, DH/rdrag, and fσ 8, and making explicit the
correlation coefficients that need to be used when the three of them
are simultaneously used. Additionally, we rescale the original fσ 8

measurements by equation (40) to be fully consistent with our ap-
proach. These corrections are extremely sub-dominant and represent
shifts of less than 1 per cent, which is less than 1/10 of the total error
budget. This covariance is used in the cosmological interpretation of
the eBOSS results in eBOSS Collaboration et al. (2020).

7 D ISCUSSION

In this section, we present a brief interpretation of the results inferred
from the DR16 CMASS + eBOSS LRG samples presented in
this paper in combination with the configuration space counterpart
presented in Bautista et al. (2020). A full and consistent cosmological
analysis is discussed in eBOSS Collaboration et al. (2020).

Fig. 19 displays the comparison between the DR16
CMASS + eBOSS LRG analyses on Fourier space (blue contours),
configuration space (yellow contours) and its combination (red
contours), for the BAO-only analysis on reconstructed catalogues
(top panel) and FS analyses (bottom panel). Additionally, in the
bottom panel, we display the full BAO and FS consensus (grey
contours). In green, we display the prediction of a flat-�CDM model
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Table 9. Legacy BOSS + eBOSS LRG cosmological measurements and covariance matrix within the redshift range 0.2 < z < 1.0. The table presents the
results of the low- (0.2 < z < 0.5, zeff = 0.38) and middle-redshift bin (0.4 < z < 0.6, zeff = 0.51) of the DR12 BOSS galaxies. The new high-redshift bin
(0.6 < z < 1.0, zeff = 0.698) is inferred from the DR16 CMASS + eBOSS LRG galaxies. Note that the low- and middle-redshift bins are overlapping in z, and
therefore correlated, whereas the highest redshift bin does not overlap with any of the other two, and therefore is considered uncorrelated. The results are drawn
from the combination of BAO post-reconstruction and Full Shape analyses, both in Fourier and configuration spaces. The covariance matrix elements include
the full systematic budget. The low- and middle-redshift bin figures are inferred from those presented in table 8 of Alam et al. 2017. fσ 8 values of BOSS DR12
redshift bins have been rescaled by equation (40) to use the same methodology as for the result of the high redshift bin.

Mean cij × 104

DM(0.38)/rdrag 10.274 228.97 −200.70 26.481 134.87 −81.402 10.292 0 0 0
DH(0.38)/rdrag 24.888 − 3384.9 −85.213 −160.24 1365.2 −38.002 0 0 0
fσ 8(0.38) 0.49729 − − 20.319 13.250 −23.012 8.14158 0 0 0

DM(0.51)/rdrag 13.381 − − − 321.58 −200.91 26.409 0 0 0
DH(0.51)/rdrag 22.429 − − − − 2319.2 −55.377 0 0 0
fσ 8(0.51) 0.45902 − − − − − 14.322 0 0 0

DM(0.698)/rdrag 17.646 − − − − − − 911.40 −337.89 24.686
DH(0.698)/rdrag 19.770 − − − − − − − 2200.9 −36.088
fσ 8(0.698) 0.47300 − − − − − − − − 19.616

using the values reported by Planck (Aghanim et al. 2018). For
the fσ 8 panel, the additional relation set by GR is used to infer
f (z) = �6/11

m (z) and the linear growth factor D(z), which propagates
σ 8(z) = D(z)σ 8(z = 0) to the redshift of interest, z = 0.698.

The agreement between Fourier and configuration space is very
good, as we already reported in Tables 8 and 6. When BAO
reconstructed information is used in combination with FS-only
analyses, we obtain the tighter constrains of this paper. In all cases, the
agreement with the flat-�CDM + GR model prediction is excellent.

We remark that the methodology used in this paper to infer
DM(zeff)/rdrag and DH(zeff)/rdrag(z) does not assume the internal
�CDM prior: DM(z) = ∫ z

0 dz′ DH(z′). This relation sets additional
limits on the DH/rdrag−DM/rdrag parameter space, which in the top
panel of Fig. 19 is shown as black lines when the following hard pri-
ors are used: {135 < rdrag [Mpc] < 165; 0.25 < �m < 0.90; 0.55 <

h < 0.80} in dashed lines; and {135 < rdrag [Mpc] < 165; 0.145 <

�mh2 < 0.200}19 in dotted lines. Using the wide �x-type of �CDM
priors (dashed lines) is not the optimal approach, as it easily hits
the LSS contours even in this wide-prior scenario. This situation can
be partially solved by imposing �xh2-type of priors instead (dotted
lines). However, one has to control the effect that priors on �bh2 and
�mh2 has on rdrag, which we do not study here. Therefore, those LSS
analyses that iteratively change the shape of the power spectrum ac-
cording to �CDM templates (see for e.g. D’Amico et al. 2019; Ivanov
et al. 2019; Tröster et al. 2020) have to carefully asses the impact
of these type priors on their analyses. Fig. 20 displays the predicted
evolution with redshift of the parameters DM(z)/rdrag, DH(z)/rdrag,
and fσ 8(z) predicted by the �CDM model and GR using the Planck
measurements (green contours) for the 1σ and 2σ confidence levels.
The symbols show the measurements by the main galaxy sample
(MGS, Howlett et al. 2015), DR12 BOSS LRG sample (Alam et al.
2017), DR14 eBOSS LRG sample (Icaza-Lizaola et al. 2019), and
DR16 CMASS + eBOSS LRG sample (this work in combination
with Bautista et al. 2020) at z = 0.698, for the FS analysis (empty
symbol), and for the FS + BAO analysis (filled symbol).

19The hard low prior on �mh2 seems to exclude the value preferred by
Planck + �CDM. This effect is caused by the wide prior on rdrag. When the
prior on rdrag is tightened, the prior on �mh2 needs to be relaxed to maintain
the same limits on the DH/rdrag−DM/rdrag plane, which would make the �mh2

prior consistent with Planck best fit.

We see the great improvement in the constraining power between
the former DR14 eBOSS LRG analysis and the current work. Part
of this gain is explained by the larger volume of the DR16 sample,
a factor of ∼3 larger, which explains a reduction of about a factor
of 2 in the error bars. The additional reduction is provided by the
use of the hexadecapole signal in the DR16 analysis, which helps to
break degeneracies between parameters, and can explain the further
observed gain.

The results from the DR12 BOSS LRG sample are shown
in orange for the two lowest redshift bins, and in grey for the
highest redshift bin. We remind the reader that with the current
DR16 CMASS+eBOSS LRG sample in play, all the LRG galaxies
contained in the BOSS high redshift bin are also contained either
by either the BOSS middle redshift bin catalogue, or by the
DR16 CMASS+eBOSS LRG catalogue. As a consequence, the
high redshift bin of BOSS is highly correlated with the adjacent
redshift bins, and therefore it barely contains extra information.
Therefore, we reorganize the whole set of LRG galaxies observed
by BOSS + eBOSS galaxies in three redshift bins: the low- (0.2 <

z < 0.5, zeff = 0.38) and middle-redshift bin (0.4 < z < 0.6, zeff =
0.51), both from the DR12 BOSS analysis, and a new high redshift bin
(0.6 < z < 1.0, zeff = 0.698) containing BOSS and eBOSS LRG
galaxies. Table 9 summarizes these measurements and correlations.

Fig. 20 displays a very good agreement between the measured
quantities and model predictions in the redshift range 0.2 < z < 1.0,
showing no significant discrepancy in any of the variables.

8 C O N C L U S I O N S

We have performed BAO and full shape analyses in Fourier space
of the final DR16 CMASS + eBOSS LRG catalogue, consisting of
377 458 galaxies in the redshift range 0.6 < z < 1.0. In order to
increase the BAO signal, we have applied the density-field recon-
struction technique in order to remove the non-linear gravitational
physics, and enhance BAO peak detection. We have extracted the
monopole, quadrupole, and hexadecapole signal of the pre- and post-
reconstructed galaxy catalogues and employed them to measure the
comoving angular diameter distance over the horizon scale at drag
epoch, DM(zeff)/rdrag, the Hubble distance over the horizon scale at
drag epoch, DH(zeff)/rdrag and the logarithmic growth factor times
the amplitude of dark matter fluctuations at scales of 8 h−1 Mpc,
fσ 8(zeff), at the effective redshift of the sample, zeff = 0.698. These
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Figure 19. Top panel: Likelihood posteriors from BAO reconstruction
analysis , inferred from Fourier space (this work), configuration space
(Bautista et al. 2020), and its consensus. The black dashed and dotted lines
show the limits imposed by a flat-�CDM model with two sets of wide priors
(see the text). Bottom panel: same as the top panel but from FS analysis,
additionally a full consensus between Fourier space, configuration space,
BAO, and FS analysis is added. In all cases, the contours do include the
systematic error budget. For reference, we include the prediction of flat-
�CDM and GR using Planck measurements.

analyses are complementary to those performed in configuration
space and presented in Bautista et al. (2020). We have found an
excellent agreement between the Fourier space and configuration
space inferred parameters, both for BAO and FS-type of analysis.

We have combined the cosmological results produced in both
spaces to generate a set of consensus parameters, which represents
the most precise and accurate cosmological measurements at this
epoch: DM(zeff)/rdrag = 17.65 ± 0.30, DH(zeff)/rdrag = 19.77 ± 0.47,
fσ 8(zeff) = 0.473 ± 0.044.

We have tested the validity of the approaches used in this
paper employing realistic N-body simulation catalogues. We have
quantified four types of sources of potential systematic errors: (i)

Figure 20. Cosmology measurements based on low-redshift galaxies, for
the DR7 MGS (Howlett et al. 2015) at z = 0.15, DR12 BOSS LRG sample
(Alam et al. 2017) at z = {0.38, 0.51, 0.61}, DR14 eBOSS LRG sample
(Icaza-Lizaola et al. 2019) at z = 0.72, and DR16 CMASS + eBOSS LRG
sample (this work in combination with Bautista et al. 2020) at z = 0.698.
The DR16 CMASS + eBOSS LRG empty symbol correspond to the values
inferred from the FS-only analysis, whereas the filled symbol to the full
consensus of FS + BAO reconstruction. Note that (i) the low and middle
DR12 BOSS LRG sample measurements are correlated; (ii) the high redshift
bin of DR12 BOSS LRG sample (in grey) is fully contained by the DR16
CMASS + eBOSS LRG sample and the middle redshift bin of DR12 BOSS
LRG sample, and therefore, does not add any extra information. For reference
in green bands, the constraints inferred by flat-�CDM and GR using Planck
measurements (Aghanim et al. 2018) is also shown.

systematic errors arising from the inaccuracy of the modelling;
(ii) systematic errors produced by the arbitrary choice of reference
cosmology, and systematic errors produced by (iii) observational
effects such has redshift failures, collisions, completeness effects,
and (iv) the RIC. The total systematic error budget that results is
sub-dominant compared to the statistical errors. After propagating
the systematic error into the total error budget, we have observed
that the error bars of the cosmological parameters have increased by
about 10 per cent.

We have also tested the BAO and FS models with galaxy catalogues
for different types of using different types of HOD models. We have
observed no significant effect on the cosmological parameters of
interest, although the precision on these catalogues does not allow
to resolve changes of more than few per cent in the cosmological
parameters of interest.

The inferred cosmological parameters from the DR16
CMASS+eBOSS LRG sample show an excellent agreement with the
predictions by the standard cosmological model, flat-�CDM + GR,
using the cosmological parameters inferred by Planck. These ob-
servations complement those based on ELGs (de Mattia et al.
2020; Tamone et al. 2020), quasars (Hou et al. 2020; Neveux
et al. 2020) and Ly-α (des Mas du Bourboux et al. 2020). A full
cosmology interpretation using these and previous BOSS analyses
(Alam et al. 2017) is presented in eBOSS Collaboration et al.
(2020).

Next generation galaxy surveys, such as the Dark Energy Spec-
troscopic Instrument (DESI, DESI Collaboration et al. 2016a, b),
EUCLID (Amendola et al. 2018), the Large Synoptic Survey Tele-
scope (LSST, LSST Science Collaboration et al. 2009) or the Square
Kilometer Array (SKA, Square Kilometre Array Cosmology Science
Working Group et al. 2020), will extensively re-probe the redshift
range 0 < z < 4 with an unprecedented level of precision never
reached before, and in some cases will extend this range up to z � 6.
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The SDSS-I and -II (2004–2009), the BOSS (2009–2014), and
finally the eBOSS observations (2014–2019) have probed for first
time the physics of the late-time Universe using galaxies as dark
matter tracers. These experiments have demonstrated that the BAO
and RSD techniques can effectively be used to measure expansion
and logarithmic growth rate, opening a new window for the next-
generation of experiments, which potentially will reveal hints of new
physics phenomena occurring in our Universe.
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APPENDI X A : EFFECT OF I SOTRO PI C
TEMPLATE ON BAO D ETERMI NATI ON

In this appendix, we aim to show the performance of the isotropic
BAO template described by equations (22) and (23) when is applied
on the analysis the full anisotropic signal, compared to the standard
approach, described by equations (20) and (21). In principle, the
standard approach is more complete as it describe better the damping
of the BAO signal in an explicit μ-dependent way, whereas the
isotropic template takes only the average of this dependence for each
multipole into account. However, for the post-reconstructed data, the
BAO damping is weak (as most of it is removed by the reconstruction
process) and both approaches converge: In the limit, ⊥, ‖ → 0 both
approaches are equivalent. Fig. A1 displays the performance on the
mean of the EZMOCKS for the reconstructed catalogue when the
isotropic template is used using three (orange contours) and five
(red contours) polynomial terms in the broadband; and when the
anisotropic is also used in the same catalogue for three (turquoise

Figure A1. BAO template comparison: pre-recon anisotropic third order
(grey), post-recon isotropic of 3rd order, (orange), post-recon isotropic of
fifth order (red), post-recon anisotropic of third-order (turquoise), post-recon
anisotropic of fifth order (blue).
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contours which corresponds to the standard approach used in the
paper) and five (blue contours) polynomial terms in the broadband.
In all the cases, 0, 2 (in the isotropic template), as well as ‖, ⊥
(in the anisotropic template) have been freely fit to the mean of the
mocks. For reference we also show the performance on the pre-recon
catalogue of the anisotropic template with three terms in the poly-
nomial broadband function. The horizontal and vertical dashed lines
show the expected values given the difference between the reference
(in this case the fiducial) and underlying true cosmology of the
mocks.

We see that all the post-reconstructed analyses perform very
similarly on the determination of the α� variable, which shows
an about 0.6 per cent shift with respect to the expected value, for
all the studied cases. On the other hand, the different templates
display a different performance when determining the α⊥ variable.
The isotropic template tends to consistently underestimate α⊥ by
about 0.5−0.75 per cent, regardless of the polynomial order of the
broadband. On the other hand, when the anisotropic template is used,
having three broadband parameters shows unbiased results, whereas
when we add two extra parameters, we bias the results in about
0.5 per cent. Finally, we recall that these studies are performed on
fast EZMOCKS, and therefore, such conclusions should be validated
with full N-body simulations.

APPENDIX B: G AU SSIAN TEST

We perform a comparison between the outcome of the MCMC
on the DR16 CMASS + eBOSS LRG data set and its Gaussian
approximation, given by the parameters of Table 3 for BAO and
Table 4 for FS analysis. The comparison is displayed by Fig. B1,
for BAO reconstructed chains (blue contours), FS chains (red
contours); and their corresponding Gaussian contours (black lines),
where no systematic error budget has been taken into account for
simplicity.

We conclude that the Gaussian approximation is very good for
BAO type of analysis up to 3σ confidence levels. The FS analysis
displays some degree of non-Gaussianity at 3σ , specially for DH/rdrag.
This kind of behaviour is expected as the modes along the LOS
present a higher level of noise, which typically induces non-Gaussian
tails. However, such features only appears at the edges of the
likelihood shape and have a very small impact in the cosmological
constrains.

Figure B1. FS and BAO Gaussian test. The top and bottom panel displays the
posterior of the BAO post-reconstruction and FS analysis, respectively. The
black curves display the Gaussian prediction, for 1σ , 2σ , and 3σ confidence
levels. In all cases only the statistical error contribution is shown.
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A P P E N D I X C : C OVA R I A N C E

The top panel of Fig. C1 display the cross-correlation coefficients
of the covariance matrix inferred from the 1000 realizations of the
EZMOCKS. The matrix is divided in five blocks corresponding to the
post-reconstructed monopole and quadrupole, between k = 0.02 and
0.30 h Mpc−1; and the pre-reconstructed monopole, quadrupole, and
hexadecapole, between k = 0.02 and 0.15 h Mpc−1. The high values
of the off-diagonal terms corresponding to those elements cross-
correlating elements with equal k and 	, but corresponding to pre-
and post-catalogues. In order to perform the BAO type of analysis,
we only invert the first first blocks, whereas for the M+Q + H FS
analysis we invert the three last blocks. Only when the simultaneous
fit is performed we invert the five blocks all-together.

The bottom panel of Fig. C1 display the error of P(	) relative to
the value of P(0) as a function of k. For the hexadecapole, 	 = 4, we
report the error of the two estimators according to the expansions
L4(k̂ · r̂h) → L4(k̂ · r̂1) (L0L4) and L4(k̂ · r̂h) → L2(k̂ · r̂1)L2(k̂ ·
r̂2) (L2L2), in equation (6). We see that the variance of these two
estimators of the hexadecapole is very close for the k-range used
here, 0.02 ≤ k [ h Mpc−1], which implies that the wide-angle effects
are in effect negligible.

Figure C1. The top panel shows the cross-correlation elements of the
covariance matrix corresponding to the full power spectrum data vector.
The dashed lines mark the different blocks of the covariance: P(0), P(2)

(for reconstructed catalogues), P(0), P(2), and P(4) (for pre-reconstructed
catalogues). Note that reconstructed elements are two times larger than the
pre-reconstructed ones due to the difference in k-range. The bottom panel
shows the statistical error estimated from 1000 realizations of the EZMOCKS

of P(	)(k) relative to P(0)(k) for 	 = 0, 2, 4, as a function of k. For the
hexadecapole, two errors are displayed, depending on the LOS treatment
(see Section 2.5). In all cases, only the NGC contribution is shown.

A P P E N D I X D : W I N D OW FU N C T I O N

We account for the survey selection, on a ‘unmasked’ given power
spectrum, Ppre-mask through the convolution with a mask function,
which results on the ‘masked’ power spectrum which matches the
measurements, Ppost-mask.. In this case, the survey selection function
is computed from the random catalogue, and therefore only depends
on the geometry of the survey and not in any clustering property. The
convolved power spectrum 	-multipoles are therefore written as the
Hankel transform of ξ̂	,

P
post-mask
	 (k) = 4π(−i)	

∫
dr r2ξ̂	(r)j	(kr) (D1)

where j	(x) are the spherical Bessel functions of 	-order, and ξ̂	(r) is
given by

ξ̂0(r) = ξ0(r)W 2
0 (r) + 1

5
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where ξ	 is the inverse Hankel Transform of Ppre-mask,

ξ	(r) = 4πi	

(2π)3

∫
dk k2P

pre-mask
	 (k)j	(kr). (D5)

Note that W 2
0 (r) = 1 and W 2

	>0(r) = 0 corresponds to the case of
no-selection function, where P pre-mask = P̂ post-mask, as it happens
within a cubic box with uniform mean density and periodic boundary
conditions.

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500  1000  1500  2000  2500

W
l(s

)

s [Mpch-1]

W0
W2
W4
W6
W8

Figure D1. Selection function multipoles according to equation (13) for the
DR16 CMASS + eBOSS LRG catalogue within 0.6 ≤ z ≤ 1.0. The solid
lines represent the NGC and the dashed lines the SGC. The different colours
display the performance for the even 	-multipoles as indicated in the key.
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Fig. D1 display the W 2
	 (r) functions for the NGC/SGC

DR16 CMASS + eBOSS LRG sample (solid lines/dashed
lines).

A P P E N D I X E: EF F E C T O F T H E PR I O R S IN
T H E A M P L I T U D E O F S H OT N O I S E

Fig. E1 displays the effect of the 50 per cent-noise prior, 0.5 < Anoise <

1.5 (purple contours) on the likelihood posterior of the cosmological
parameters of interest, DH/rdrag, DM/rdrag, and fσ 8, for the DR16
CMASS + eBOSS LRG sample. For reference, we show in red
contours the posterior corresponding to a wider and uninformative
prior on Anoise. The effect of the 50 per cent-noise prior prior is almost
uninformative for DM/rdrag and remove the non-Gaussian tail on the

higher side of the likelihood and posteriors of DH/rdrag and fσ 8, which
are highly correlated.

Fig. E2 displays the same effect but extended to the full parameter-
vector of the FS type of analysis. Some of the variables show a
highly non-Gaussian behaviour. This is the case of b2, which is
poorly constrained by the power spectrum. In this case, we observe
a strong banana-shape type of correlation between b2 and Anoise.
This effect is leaked through correlations to the rest of parameters,
in particular into α� and f, which causes the non-Gaussian tails
showed in Fig. E2. We can partly solves this spurious behaviour
by imposing the 50 per cent-noise prior on Anoise (purple contours).
Alternatively, including bispectrum data would also help to constrain
b2 and naturally help to keep Anoise posterior around values of 1, which
is the Poisson prediction.

Figure E1. Effect of the noise prior on the likelihood posteriors of the variables of cosmological interest for the FS analysis. The red contours show the
posteriors with an uninformative prior on the amplitude of shot noise; the purple contours show the same when a hard prior has been applied to this amplitude
to not differ more than 50 per cent from the Poissonian prediction. The effect on the rest of the model parameters is displayed in Table E2.
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Figure E2. Posterior likelihood for all the 11 parameters of the FS fit with M+Q + H and kmax = 0.15 to the DR16 LRG CMASS + eBOSS data set, with an
uninformative prior on Anoise (red contours) and with the prior 0.5 < Anoise < 1.5 (the main result for FS in this paper) in purple. Note at the strong correlation
between b2 and Anoise, which drive Anoise to take unphysical values Anoise ∼ 2.

APPENDIX F: TA BLES

In this section, we include a series of tables, which can be helpful
for the reader to cross-check some values of the plots displayed in
the main text. We list them below briefly.

Table F1 accounts for the impact of non-periodic boundary condi-
tions of the 1 h−1Gpc cubic boxes from the OUTERRIM-HOD mocks
by comparing them with the 3 h−1Gpc padded sky-cut samples.

Table F2 lists the effect of different HOD models and flavours
of the 1 h−1Gpc cubic sub-boxes drawn from the OUTERRIM-HOD
mocks on BAO pre-recon analysis.

Table F3 provides the FS best-fitting parameters to the DR16
CMASS+eBOSS LRG catalogues, for M+Q and M+Q + H cases.
Note that these are the raw results, performed at a given fixed template
amplitude. Therefore, the f and biases values need to be re-scaled
the template amplitude, to be physically interpreted as cosmology-
reference invariant parameters. The rescaling factors are given in the
table caption.

Table F4 corresponds to the middle panel of Fig. 10 and displays
the impact of the arbitrary choice of cosmology on the post-
reconstructed NSERIES mocks on the BAO analysis, for both the
fit to the mean of the mocks, and the mean of the 84 individual fits.
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Table F1. Impact of non-periodicity in OUTERRIM-HOD-mocks for pre-
recon catalogues. The cubic box catalogues consist of non-periodic cubic
boxes of 1 h−1Gpc. The sky-cuts catalogues mimic a sky-mock geometry (i.e.
non-uniform n(z)), where galaxies and randoms are placed in cubic boxes of
3 h−1Gpc, where two-thirds of the volume is empty). The periodicity of the
box is implicitly assumed under any discrete Fourier space calculation. We
expect that the non-periodic effects are negligible for the sky-cuts mocks, but
not for the cubic boxes. For simplicity only the fit to the mean is provided.

HOD-type Catalogue α‖ − α
exp
‖ α⊥ − α

exp
⊥

Hearin Sky-cut − 0.022 ± 0.014 0.0108 ± 0.0099
Hearin Cubic box 0.032 ± 0.018 −0.0002 ± 0.0097

Leauthaud Sky-cut − 0.011 ± 0.018 0.003 ± 0.011
Leauthaud Cubic box 0.023 ± 0.018 0.0030 ± 0.0097

Tinker Sky-cut 0.002 ± 0.018 −0.005 ± 0.012
Tinker Cubic box 0.017 ± 0.024 0.002 ± 0.012

Table F2. Impact of different HOD types and ‘flavours’ on pre-recon BAO
fits on cubic boxes without periodic boundary conditions. For simplicity only
fit on the mean is provided.

HOD-type HOD-flavour α‖ − α
exp
‖ α⊥ − α

exp
⊥

Hearin Standard 0.028 ± 0.010 −0.0005 ± 0.0054
Hearin Threshold 1 0.024 ± 0.011 −0.0002 ± 0.0061
Hearin Threshold 2 0.032 ± 0.018 −0.0002 ± 0.0097

Leauthaud Standard 0.030 ± 0.010 −0.0016 ± 0.0052
Leauthaud Threshold 1 0.029 ± 0.010 −0.0013 ± 0.0052
Leauthaud Threshold 2 0.023 ± 0.018 0.0030 ± 0.0097

Tinker Standard 0.038 ± 0.010 −0.0005 ± 0.0054
Tinker Threshold 1 0.025 ± 0.010 −0.0013 ± 0.0055
Tinker Threshold 2 0.017 ± 0.024 0.002 ± 0.012

Zheng Standard 0.024 ± 0.010 −0.0005 ± 0.0060
Zheng Threshold 1 0.027 ± 0.011 −0.0006 ± 0.0062
Zheng Threshold 2 0.031 ± 0.013 −0.0014 ± 0.0075

Table F3. Parameters from FS analysis corresponding to kmax =
0.15 h Mpc−1 using the power spectrum monopole and quadrupole (M+Q);
and also the hexadecapole (M+Q + H) which is the main FS result of this
paper. In both cases, the results are obtained with with 50 per cent prior
on Anoise. f should be rescaled by the fiducial σ 8(α0) value according to
equation (40), which for the used template is σ 8(α0 = 1.0020) = 0.558 25
(for M+Q + H fit); and σ 8(α0 = 1.0081) = 0.555 90 (for the M + Q fit). For
reference the σ 8(α0 = 1) = 0.559 01.

Parameter Value M + Q Value M+Q + H

α� 0.9724 ± 0.0496 0.9994 ± 0.0357
α⊥ 1.0265 ± 0.0363 1.0033 ± 0.0269
f 0.892 ± 0.111 0.8125 ± 0.0749

bNGC
1 2.1466 ± 0.0942 2.1851 ± 0.0891

bSGC
1 2.1488 ± 0.0881 2.1896 ± 0.0828

bNGC
2 3.16 ± 3.69 2.42 ± 3.71

bSGC
2 3.07 ± 2.68 3.06 ± 2.71

ANGC
noise 1.257 ± 0.133 1.254 ± 0.140

ASGC
noise 1.188 ± 0.119 1.172 ± 0.120

σNGC
FoG 3.658 ± 0.604 3.757 ± 0.598

σ SGC
FoG 3.563 ± 0.605 3.525 ± 0.606

χ2/dof 38/(52 − 11) 77/(78 − 11)

Table F5 corresponds to the bottom panel of Fig. 10 and lists
the impact of the arbitrary choice of cosmology on the NSERIES

catalogues on the FS type of analysis, for both the fit to the mean of
the mocks, and the mean of the 84 individual fits.

Table F6 shows an analogous result displayed by Table F1, but for
the FS type of analysis.

Table F7 displays the effect on the FS analysis of a broad
type of HOD and ‘flavours’ using the OUTERRIM-HOD mocks,
analogously to the results displayed on Table F2 for the BAO type of
analysis.

Table F8 displays the fits on the NSERIES mocks of the BAO post-
recon analysis, the FS analysis, and a simultaneous FS and BAO
analysis. The reference cosmology chosen in this case is the NSERIES

own cosmology.
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Table F4. Impact of the reference cosmology on NSERIES mocks. The different cosmology models are listed in Table 1.
For �Nseries, we expect that both α-parameters are 1; for �fid, we expect α

exp
‖ = 0.9875 and α

exp
⊥ = 0.9787; for �X ,

we expect α
exp
‖ = 0.9846 and α

exp
⊥ = 0.9620; for �Y , we expect α

exp
‖ = 0.9543 and α

exp
⊥ = 0.9325; for �Z , we expect

α
exp
‖ = 0.9557 and α

exp
⊥ = 0.9291. We use the same notation of Table 5 where Mean catalogue display the fits to the mean

with the error on the mean, and Individual catalogue display the mean of the 84 individual fits reporting the rms/
√

N .
The bottom panel of Fig. 10 displays the performance of the results.

Reference cosmology Catalogue α‖ − α
exp
‖ α⊥ − α

exp
⊥ Ndet/Ntot

�Nseries Mean post-recon − 0.0048 ± 0.0019 0.0005 ± 0.0010 1/1
�Nseries Individual post-recon − 0.0016 ± 0.0033 − 0.0030 ± 0.0018 84/84

�fid Mean post-recon 0.0006 ± 0.0018 − 0.0026 ± 0.0012 1/1
�fid Individual post-recon 0.0010 ± 0.0030 − 0.0027 ± 0.0017 84/84

�X Mean post-recon 0.0023 ± 0.0020 − 0.0065 ± 0.0012 1/1
�X Individual post-recon 0.0076 ± 0.0026 − 0.0068 ± 0.0016 84/84

�Y Mean post-recon 0.0037 ± 0.0021 − 0.0022 ± 0.0015 1/1
�Y Individual post-recon 0.0078 ± 0.0025 − 0.0024 ± 0.0016 84/84

�Z Mean post-recon 0.0055 ± 0.0020 − 0.0078 ± 0.0012 1/1
�Z Individual post-recon 0.0031 ± 0.0026 − 0.0078 ± 0.0016 84/84

Table F5. Impact of reference cosmology on NSERIES mocks for FS analyses. The different cosmology models are listed in Table 1. The
expected α values are the same as those from Table F4. In all the cases, we expect to recover the same expected growth of structure,
f σ

exp
8 = 0.4702. We use the same notation of Table 5 where Mean catalogue display the fits to the mean with the error on the mean, and

individual catalogue display the mean of the 84 individual fits reporting the rms/
√

N . The bottom panel of Fig. 10 displays the performance
of the results.

Reference cosmology catalogue α‖ − α
exp
‖ α⊥ − α

exp
⊥ f σ8 − f σ

exp
8 Ndet/Ntot

�Nseries Mean 0.0016 ± 0.0032 − 0.0095 ± 0.0020 − 0.0038 ± 0.0041 1/1
�Nseries Individual 0.0082 ± 0.0040 − 0.0089 ± 0.0021 0.0073 ± 0.0043 84/84

�fid Mean 0.0003 ± 0.0031 − 0.0087 ± 0.0019 − 0.0055 ± 0.0040 1/1
�fid Individual 0.0060 ± 0.0039 − 0.0084 ± 0.0020 0.0107 ± 0.0042 84/84

�X Mean − 0.0046 ± 0.0031 − 0.0115 ± 0.0020 − 0.0050 ± 0.0042 1/1
�X Individual 0.0005 ± 0.0039 − 0.0111 ± 0.0019 0.0106 ± 0.0049 84/84

�Y Mean 0.0028 ± 0.0032 − 0.0062 ± 0.0019 − 0.0054 ± 0.0041 1/1
�Y Individual 0.0102 ± 0.0038 − 0.0064 ± 0.0019 0.0004 ± 0.0046 84/84

�Z Mean − 0.0045 ± 0.0030 − 0.0126 ± 0.0018 0.0039 ± 0.0041 1/1
�Z Individual − 0.0020 ± 0.0032 − 0.0123 ± 0.0018 0.0077 ± 0.0045 84/84

Table F6. Impact of non-periodicity in HOD-mocks for pre-recon catalogues or FS analyses. For simplicity only the fit to the
mean is provided.

Multipoles HOD-type Catalogue α‖ − α
exp
‖ α⊥ − α

exp
⊥ f σ8 − f σ

exp
8

M+Q + H Hearin Sky-cut − 0.010 ± 0.013 − 0.0020 ± 0.0089 0.019 ± 0.019
M+Q + H Hearin Cubic box 0.010 ± 0.013 − 0.0019 ± 0.0085 0.015 ± 0.019
M + Q Hearin Sky-cut − 0.002 ± 0.017 − 0.001 ± 0.011 0.009 ± 0.023
M + Q Hearin Cubic box 0.022 ± 0.016 − 0.0010 ± 0.0092 0.005 ± 0.023

M+Q + H Leauthaud Sky-cut 0.003 ± 0.014 − 0.0111 ± 0.0094 −0.004 ± 0.020
M+Q + H Leauthaud Cubic box − 0.003 ± 0.012 0.0047 ± 0.0095 0.013 ± 0.019
M + Q Leauthaud Sky-cut 0.007 ± 0.018 − 0.006 ± 0.011 −0.001 ± 0.024
M + Q Leauthaud Cubic box 0.002 ± 0.016 0.010 ± 0.010 0.022 ± 0.023

M+Q + H Tinker Sky-cut 0.006 ± 0.014 − 0.018 ± 0.011 −0.007 ± 0.021
M+Q + H Tinker Cubic box 0.004 ± 0.014 − 0.007 ± 0.010 0.004 ± 0.021
M + Q Tinker Sky-cut 0.012 ± 0.019 − 0.012 ± 0.013 −0.005 ± 0.026
M + Q Tinker Cubic box − 0.004 ± 0.019 0.004 ± 0.011 0.025 ± 0.025
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Table F7. Impact of different HOD types and ‘flavours’ on pre-recon FS fits on cubic boxes without periodic boundary
conditions. For simplicity, only fit on the mean is provided where monopole, quadrupole, and hexadecapole are used
up to kmax = 0.15 h Mpc−1.

HOD-type HOD-flavour α‖ − α
exp
‖ α⊥ − α

exp
⊥ f σ8 − f σ

exp
8

Hearin standard 0.0121 ± 0.0069 − 0.0031 ± 0.0051 0.0040 ± 0.0077
Hearin Threshold 1 0.0106 ± 0.0068 − 0.0032 ± 0.0052 −0.0112 ± 0.0066
Hearin Threshold 2 0.010 ± 0.013 − 0.0019 ± 0.0085 0.015 ± 0.019

Leauthaud standard 0.0133 ± 0.0066 − 0.0055 ± 0.0049 −0.0003 ± 0.0074
Leauthaud Threshold 1 0.0093 ± 0.0064 − 0.0035 ± 0.0046 −0.0076 ± 0.0069
Leauthaud Threshold 2 − 0.003 ± 0.012 0.0047 ± 0.0095 0.013 ± 0.019

Tinker standard 0.0178 ± 0.0068 − 0.0027 ± 0.0050 0.0124 ± 0.0084
Tinker Threshold 1 0.0107 ± 0.0066 − 0.0043 ± 0.0049 −0.0055 ± 0.0065
Tinker Threshold 2 0.004 ± 0.014 − 0.007 ± 0.010 0.004 ± 0.021

Zheng standard 0.0108 ± 0.0067 − 0.0025 ± 0.0051 −0.0083 ± 0.0065
Zheng Threshold 1 0.0107 ± 0.0069 − 0.0035 ± 0.0052 −0.0085 ± 0.0073
Zheng Threshold 2 0.0138 ± 0.0095 − 0.0049 ± 0.0072 0.008 ± 0.013

Table F8. Results from the BAO post-recon only analysis, FS pre-reconstruction analysis, and simultaneous BAO + FS fit (BAO × FS);
on the. NSERIES mocks. The NSERIES cosmology has been used as a reference cosmology. BAO stands for post-recon. For the individual
fits, we report the mean and the rms /

√
84, whereas for the ‘Mean’ we report the best fit and the error of the mean. For the BAO only

analysis, we use three polynomial terms for describing the broadband. When the simultaneous BAO + FS fit is performed we use five
polynomial terms for describing the BAO broadband (see the main text for the full motivation of this approach).

Mock name Type of fit α‖ − α
exp
‖ α⊥ − α

exp
⊥ f σ8 − f σ

exp
8 Ndet/Ntot

Mean NSERIES BAO × FS − 0.0008 ± 0.0017 − 0.0017 ± 0.0011 0.0181 ± 0.0037 1/1
Individual NSERIES BAO × FS 0.0062 ± 0.0024 − 0.0068 ± 0.0015 0.0193 ± 0.0041 84/84

Mean NSERIES FS only 0.0015 ± 0.0032 − 0.0095 ± 0.0020 − 0.0038 ± 0.0041 1/1
Individual NSERIES FS only 0.0082 ± 0.0040 − 0.0089 ± 0.0021 0.0073 ± 0.0043 84/84

Mean NSERIES BAO only − 0.0048 ± 0.0019 0.0005 ± 0.0010 – 1/1
Individual NSERIES BAO only − 0.0016 ± 0.0033 − 0.0030 ± 0.0018 – 84/84
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