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Abstract
A resilient transport network, which is significant for urban sustainability and security,
is characterized by its ability to recover from disruptions subject to natural and man-
made disasters. Bike sharing could act as a viable alternative in the case of public transit
disruptions given its flexibility and various social, environmental, and economic
benefits. This study aims to estimate quantitatively the potential of bike sharing to
promote transport resilience, by using autoregressive negative binomial time series
model to investigate the effects of public transit closures on bike sharing demand in
Washington, D.C. area during 2015–2017. We find that (1) bike sharing can act as a
supplementary mode to enhance urban transport resilience in the case of complete
transit closure; (2) the proximity of bike sharing docks to metro stations has a powerful
effect on propensity to use a bike sharing program; and (3) extreme weather is one of
major barriers to bicycling. Planners can enhance resilience of urban transport networks
by fully considering the capacity and usage of bike sharing docks, as well as the
coherence of metro stations and bike sharing docks, in distributing and rebalancing
activities.
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1 Introduction

The transport system, as one specific crucial infrastructure system, is fundamental to the
functioning of the society in developed as well as developing countries, acting as a lifeline
for economic value creation and for repairing other infrastructure systems (Mattsson and
Jenelius 2015). Transport resilience is defined as the ability of the transport network to
withstand the impact of extreme weather, to operate in the face of such events and to
recover promptly from its effects (Cox et al. 2011; Bešinović 2020; Department for
Transport 2014). Transport resilience contributes more broadly to a society’s economic
resilience, which can be understood as increasing the adaptative capacities of societies by
reducing nodal vulnerabilities (Darayi et al. 2019). Increasing the resilience of transport
system has become a priority for policymakers, as one pathway to imagining a sustainable
and secure society and to overcoming the vulnerability of transport system due to various
natural and man-made sources of disruption. A characteristic of a resilient and robust
transport network is its ability to recover from disruptions, which can be enhanced by
introducing redundancies. However, the associated investment in multimodal inter-
changes can be quite expensive. Sustainable and feasible strategies call for effective
management of existing infrastructure which relies on thorough understanding of the
underlying complexity of the network systemswhen disruptions occur (Chow et al. 2015).

In recent years, public transit disruption has become a common occurrence, both due
to external factors, such as natural disasters, strikes and emergencies (Lin et al. 2016),
and internal factors, including system failure and infrastructure maintenance. In the case
of transit disruptions, affected transit users may react by adjusting their routes, departure
times, travel modes, and destinations or by canceling trips (Zhu et al. 2017). These
adjustments are important to explore because they may alter default travel modes of
unaffected travelers and disrupt equilibrium of current public transit systems. However,
most research on public transit service closure is based on strikes and accidents which
are unpredictable and only have a short-term impact. Research on prolonged and
planned transit service disruption is limited; these will force travelers to use alternative
modes and provide a glimpse at new travel patterns that could be adopted.

Bike sharing is a new form of transport mode and is becoming increasingly popular
in cities around the world (Zhang and Mi 2018). With flexibility and various social,
environmental, and economic benefits, bike sharing could act as a viable alternative in
the case of public transit disruption. It can also be considered as a useful strategy to
accelerate needed changes in personal transportation choices to foster structural change
towards sustainable societies (Mi and Coffman 2019). First of all, the capacity and
service scope of bike sharing docks continue to expand, making it possible to easily
access a bike or bike parking. Next, bike sharing is cost-efficient compared to private
automobiles, especially for short distance commutes. Thirdly, bike sharing has positive
environmental effectiveness and health effectiveness, including reducing congestion,
improving air quality by replacing private vehicles in short trips and improving the
health of residents (Institute for Transportation and Development Policy 2018).

This main purpose of this study is to explore the role of bike sharing during planned and
long-term disruption of transit service (hereafter referred to as surges, detailed information
of each surge is shown in the supplementary information). This study enriches extant
research by using transit disruption as an experimental way to identify the impact of
maintenance type, influential radius and biking distance on bike sharing demand. Our
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method takes trip-level activities (number of trips between dockswithin an influential radius
of affectedmetro stations) into consideration rather than station-level activities (total number
of trips originating from a dock) to better understand the impact of surges (Hajdu et al.
2019). The results provide clear evidence that bike sharing is used as an alternative transit
mode during transit disruptions periods. This is of importance to planners as it indicates that
a radical shift in transport policy promoting environmentally friendly travel patterns is
possible, which provides guidance for transit agencies to take appropriate actions to increase
resilience and robustness in public transit system.

2 Literature Review

Planned metro disruptions are not unusual as a result of increasing maintenance needs
for aging infrastructure, system failures, and man-made or natural disasters (Marsden
and Docherty 2013). It is a widely used practice to bridge affected lines using parallel
replacement buses (Zhu et al. 2017), which is of limited utility considering its relatively
low capacity compared to metro lines and the frequent occurrence of congestion in
surface traffic networks. Transit agency thus are incentivized to increase investment in
multimodal interchanges.

Unlike day-long strikes or emergencies, long-term metro closure due to maintenance
usually results in travelers being informed well in advance. Well informed travelers can
adjust their travel modes to respond. These adjustments can be seen as adaptations of
travelers to abrupt changes, which also provide evidence that a more significant and
rapid change in travel policy and travel patterns to achieve eco-friendly mobility are
possible (Younes et al. 2019). From this perspective, long-term transit disruptions are in
fact an opportunity through which to construct through experimentation a different
approach to transport policy that might enable environmentally friendly changes, rather
than simply to frustrate significant numbers of travelers (Marsden and Docherty 2013).

Over the last two decades, the bike sharing system has expanded substantially
around the world. There are three reasons that account for the rapid development of
bike sharing programs in metropolitan areas worldwide. Firstly, the government is
increasingly responsive to the negative externalities of motor vehicle use, including
exhaust pollution and traffic congestion (Fishman 2016). Secondly, as a key component
of future smart cities, bike sharing services offer more flexibility than standard public
transportation, while also providing considerable environmental benefits and health
gains (Shaheen et al. 2010; Fishman et al. 2014; Zhang and Mi 2018). Lastly, bike
sharing can benefit multimodal interchanges by acting as an efficient solution for first-
and last-mile issue, which is caused by the built and social environment (Tilahun et al.
2016). Public transport service availability in the first/last leg of the trip generally are
constrained in cities worldwide (Fan et al. 2019). Bike sharing is considered as a viable
alternative in the case of transit disruptions, especially planned system closures
(Younes et al. 2019), due to its easy access and convenient parking. An integrated
approach to public transport, with bike-sharing schemes supplementing standard bus
and light rail systems, can improve transit times and encourage the shift towards a more
sustainable urban mobility (Brons et al. 2009; Buehler and Pucher 2012).

Despite the potential of bike sharing as an alternative travel mode in the case of
planned transit disruption, most research on public transit closure has paid attention to

The Role of Bike Sharing in Promoting Transport Resilience



motorized mode shift during and after each period of disruption using stated and
revealed preference surveys (Hampshire et al. 2017; Lin 2016; Zhu et al. 2017; Yang
2018) without considering bike-sharing as a choice.

To date, there are only limited studies examining the impact of public transit disruption
on the use of bike sharing (Fuller et al. 2012; Saberi et al. 2018; Kaviti et al. 2018; Younes
et al. 2019). The first two studies focus on the impact of London underground strikes on bike
sharing mobility patterns, and both of them found that the significant increase was observed
in daily bike sharing trip counts and duration during each strike period. As we focus on
planned transit closures which have completely different nature compared to strikes in that
each surge at least lasts for 7 days instead of a single day, and maintenance activities only
affect partial stations and area, our results are not comparable to theirs.

Kaviti et al. (2018) employed paired t-test simple linear regression model to analyze how
disruptions tometro service impact the bike sharing ridership in the event of the concurrency
of the launch of single-trip fare (STF) product with SafeTrack operations (refer to
Section 3.1). However, they did not distinguish the impacts of different kinds of temporary
public transit closure – continuous single-tracking (CST), referring to line closure in a certain
direction, and line segment shutdowns (LSS), referring to line closure in in both directions.
Also, this paper failed to consider the presence of planned disruptions in the regression
model which only considered the week-long period before, during and after each surge, as
well as ignored weekend trips and observations during experiences of precipitation. Younes
et al. (2019) analyzed the impacts of three transit disruptions in SafeTrack project (surge 2, 4
and 10, refer to Supplementary Table 1) on bike sharing use employing autoregressive
Poissonmodel. Nevertheless, they failed to capture the overdispersion characteristics of trips
data and to identify impacts of various influential radii and biking distance on bike sharing
demand in the event of transit closure, as well as to consider the impact of precipitation.
Furthermore, average temperature used in their model is not a suitable indicator to measure
the nonlinear relationship between bike sharing ridership and temperature.

To summarize, the key contributions of this paper includes: (1) this paper enriches
existing research on the SafeTrack project with further analysis of the impact of influential
radii, biking distance and maintenance type, which could provide clear guidance to transit
agencies to take appropriate actions to increase transport resilience; (2) this paper adopts the
difference between daily average temperature and optimum temperature as an indicator to
capture the nonlinear relationship between temperature and bike sharing use, instead of
mean temperature or maximum temperature which is commonly used in previous literature;
(3) this paper shows that the proximity of bike sharing docks to metro stations appears to
have a powerful effect on propensity to use a bike sharing program, which encourages
planners and policymakers to account for coherence of traditional public transport modes
and emerging transit modes to stimulate the development of eco-friendly mobility.

3 Methodology and Data Sources

3.1 A Case Study of Washington, DC

In this study, we focus on the changes in bike sharing ridership during “SafeTrack” project.
This is an accelerated track work plan, occurring between 2016 and 2017, initiated by
Washington Metropolitan Area Transit Authority (WMATA) to address safety
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recommendations of Federal Transit Administration and National Transportation Safety
Board while restoring track infrastructure to good health (WMATA 2017). It consists of 16
surges taking place in theWashington, D.C.metropolitan area in urban centers and suburban
hubs, dividing into two kinds of temporary public transit closure –CST and LSS. This study
will separately explore the impacts of CST and LSS on bike sharing ridership based on 12 of
16 surges (surge 8, 9, 11 and 14 are excluded from analysis due to the absence of bike
sharing docks around affected metro stations) to identify the influences of different types of
transport disruptions. Supplementary Table 1 summarizes the date, duration, affected metro
lines, stations and area, as well as the maintenance type of each surge and Supplementary
Fig. 1 visualizes affected metro lines and stations.

This study uses Capital Bike Sharing trip history data (Capital Bikeshare 2019) from 1st
January 2015 to 31st December 2017 to investigate changes in bike sharing ridership during
each planned disruption of transit service, which includes duration, start and end date,
origination and destination, as well as member type. This dataset is especially useful as it
covers bike sharing usage of the total population in Washington, D.C., allowing us to
overcome sampling errors. The data has also been processed to remove trips that are taken
by staff as they service and inspect the system and any trips lasting less than 60 s due to
potentially false starts or users trying to re-dock a bike to ensure it is secure (Bao et al. 2017).
Due to data limitations we do not have any information about trip purpose; our analysis is
based on the assumption that any bike sharing trips within the influential radius of metro
stations are either to substitute for the metro or to facilitate the use of the metro.

3.2 Methodology

The main research objectives in this paper are (1) to measure and quantify the impact of
transit closure on bike sharing use; (2) to differentiate this impact across different
maintenance type, influential radii and biking distance. We use an autoregressive
negative binomial time series model to address these questions.

The Breusch-Godfrey test (p = 0.0000) and the Box-Pierce Q test (p = 0.0000)
strongly indicate that time dependency in daily trips exists. For count series data, there
are problems with using linear regression model to analyze these data. The linear
regression model has the wrong model for both the relationship between the predictors
and the expected values of the counts and the relationship between the expected values
and the variance of the counts. It may therefore lead to misleading inferences about the
predictors. The Poisson regression model is defined by a highly restrictive model for
the variance of the dependent variable, which is suitable for data with equi-dispersion
characteristics. Otherwise, badly misleading conclusions might be drawn (Gardner
et al. 1995). Based on the nature of the issue and the characteristics of the data (which
is overdispersion), the most suitable model is an autoregressive negative binomial time
series model, which is listed in formula (1):

yt ¼ β0 þ β1yt−1 þ β2weathert þ β3stf t þ β4surget þ β5nonworkt þ β6nonschoolt þ εt;

ð1Þ
where t denotes time in days. Specifically, the variable yt denotes daily trip counts,
which are derived by aggregating data on the trip counts for that day up to the bike
sharing dock-level. The variable yt–1 denotes autoregressive terms. We use three
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autoregressive terms to capture both short-term and long-term effects: one-day lag, one-
week lag, and one-year lag. To control for seasonality, a series of weather variables
(weathert) are included in analysis, including the absolute value of deviation between
mean temperature and appropriate temperature (hereafter referred to as temp deviation),
mean temperature, maximum wind speed, precipitation, snow depth and visibility. We
obtained these weather variables from Weather Online (Weather Online 2019). Hun-
tington (1922) has presented curves showing optimal temperature for the activities of
lower organisms as well as of humans. The appropriate temperature used in this paper
is the one which is optimal for the combination of mental and physical energy
suggested by this curve. Dummy variables are used to control for the introduction of
STF (a fare product aimed at casual users introduced in June 2016), non-workdays
(weekends and holidays) and non-school days (mid-June to end of August, and mid-
December to early January). A dummy variable indicating the presence of each surge is
used as the intervening variable.

In ArcGIS, to sort out the bike sharing docks potentially impacted by SafeTrack
surges, we filtered all bike sharing docks within a set of buffers (0–0.25mile, 0.25–
0.5mile, 0.5–0.75 mile) of the shutdown metro stations using Multiple Ring Buffer and
Spatial Join tools. Then we created Python functions to find possible pairs of filtered
bike sharing docks connecting affected metro stations, which implied alternative ways
of travel by bike during the surges. Finally, we conducted Network Analysis to
calculate the shortest network distance for each bike sharing dock pair based on the
cycling road network.

We aggregate daily bike sharing trips between docks around affected metro stations
by different influential radii to carry out influential radii analysis. After that, the daily
ridership of bike sharing is re-aggregated by biking distance to explore the impact of
biking distance on shared bike use. These results are found to be robust in a series of
robustness checks, such as shorten sample window, monthly bike sharing trip data
(instead of daily data) and sub-sample analysis, which help to solve the concerns about
both the length of the sample time span and the noisy daily data.

4 Results and Discussions

4.1 Influential Radii Analysis

Using the Geographic Information System (GIS) tools, bike sharing docks falling
within the 0.25/0.5/0.75 mile radius of those Metro stations were isolated for SafeTrack
impact analysis (Supplementary Fig. 2). Table 1 presents the analytical results of
negative binomial model and autoregressive negative binomial model by maintenance
type with an influential radius of 0.25 mile. Both Akaike Information Criterion (AIC)
and log likelihood coefficient show that autoregressive negative binomial model
outperforms negative binomial model with no autoregressive terms. Most of time lags
are statistically significant indicating the dependency nature of daily trips data on past
values. The impacts of weather variables are highly consistent regardless of mainte-
nance type. The greater the temp deviation, the greater the negative impact on daily
trips, which is also in line with the nonlinear relationship between temperature and bike
sharing trips count. Mean temperature and visibility have positive and significant
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effects on bike sharing trips, while wind speed, precipitation and snow depth hinders
bike sharing trips. These weather effects are consistent with previous literature (Guo
et al. 2007; Colls et al. 2010; Younes et al. 2019). The coefficients of non-work days
are negative and significant for both LSS and CST, showing that purpose of most trips

Table 1 Results of time series analysis by maintenance type with an influential radius of 0.25 mile

Dependent variable:
daily trip counts

(1) (2) (3) (4) (5) (6)

LSS LSS IRR CST CST IRR

One-day lag N/A 0.007*** 1.007 N/A 0.037*** 1.038

(0.001) (0.009)

One-week lag N/A 0.003*** 1.003 N/A 0.035*** 1.035

(0.001) (0.008)

One-year lag N/A 0.002** 1.002 N/A −0.009 0.991

(0.001) (0.010)

Temp deviation −0.018*** −0.018*** 0.982 −0.018** −0.024** 0.977

(0.003) (0.004) (0.008) (0.010)

Mean temp 0.044*** 0.035*** 1.036 0.055*** 0.045*** 1.046

(0.002) (0.003) (0.006) (0.007)

Max wind speed −0.008*** −0.006** 0.994 −0.010* −0.011* 0.989

(0.002) (0.003) (0.005) (0.006)

Precipitation −0.282*** −0.352*** 0.704 −0.426** −0.537** 0.585

(0.063) (0.076) (0.181) (0.240)

Snow depth −0.176*** −0.233*** 0.792 −0.148* −0.261* 0.770

(0.035) (0.059) (0.081) (0.145)

Visibility 0.126*** 0.098*** 1.103 0.165*** 0.119** 1.126

(0.018) (0.022) (0.042) (0.050)

Presence of STF 0.005 −0.081** 0.922 1.001*** 1.071*** 2.917

(0.022) (0.035) (0.053) (0.122)

Non-work days −0.106*** −0.155*** 0.856 −0.252*** −0.305*** 0.737

(0.024) (0.029) (0.061) (0.074)

Presence of surge 0.256*** 0.194*** 1.214 −0.106 −0.045 0.956

(0.037) (0.035) (0.080) (0.083)

Non-school days −0.096*** −0.073** 0.930 −0.033 −0.006 0.994

(0.029) (0.032) (0.063) (0.078)

Constant 1.557*** 1.720*** 5.584 −1.807*** −1.458*** 0.233

(0.169) (0.205) (0.408) (0.494)

Observations 1096 731 N/A 1096 731 N/A

Pseudo R2 0.123 0.135 N/A 0.145 0.144 N/A

AIC 7554.808 5020.665 N/A 4030.442 2921.845 N/A

Log likelihood −3765.4042 −2495.3325 N/A −2003.221 −1445.9227 N/A

Note: IRR means incidence rate ratio

Standard errors are in parenthesis

******p < 0.1, p < 0.05, p < 0.01
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is to commute rather than leisure. The coefficients of non-school days are negative and
only significant for LSS, meaning that most of affected zones for complete metro lines
shutdown are not tourist attractions. It is worth noting that the intervening variable has a
significant and positive impact merely in the case of LSS, indicating that people prefer
to consider bike sharing as an alternative mode of travel when the metro tracks are
completely closed.

The regression results with an influential radius of 0.5 mile are reported in Table 2. In a
series of weather variables, precipitation has the greatest impact on bike sharing daily trips,
which increases by one unit will result in more than 30% decrease in bike-sharing daily
trips (third and sixth columns in Table 2). In addition, snow depth and temp deviation will
reduce daily trips by more than 20% and 2%, while visibility increase daily trips by nearly
8%. These results indicated that weather conditions and safety concerns are important
factors to consider when individuals weigh in on modes of travel. Bike sharing trips on
weekends decrease by 12.5% compared to that on weekdays, verifying again that most of
bike sharing users are commuters. There is an increase of 7.5% in bike sharing trips
observed in LSS, indicating that redistribution activities should give priority to bike
sharing docks around affected metro stations to better meet the needs of transit users
and to optimize the usage of bike sharing in the event of complete transit closure.

Table 3 shows the analytical results of negative binomial model and autoregressive
negative binomial model for 0.75 mile. By comparing IRR of regression results of
various influential radii, we find that the magnitude of most variables decreases as
influential radii increases, although it is still statistically significant. This shows that the
better the connection between traditional public transport modes and emerging transit
modes, the more encouraging the development of eco-friendly travel modes. This also
urges planners and policymakers to account for the interdependence between demand
and supply of bike sharing in reallocation activities (Jian et al. 2019). The coefficient of
the intervening variable is still strongly significant in the analysis of 0.75 mile
indicating that the influential radius of SafeTrack project on the bike sharing use is at
least 0.75 mile. This provides guidance for temporary remedy measures taken by transit
agency in response to public transport closure.

4.2 Biking Distance Analysis

The above analytical results indicate that CST do not have practically meaningful
impacts on bike sharing daily trips and thus were excluded from the following analysis.
To better capture the impact of biking distance on bike sharing demand, we chose
network distance to estimate biking distance, which depends on the actual length of
road and travelling experience structured by the road hierarchy and obstacles for
shortest path routing, instead of Euclidean distance used in previous study. We divide
biking distance into three groups: 0–2 miles, 2–4 miles and 4–6 miles.

The results of our time series analysis of biking distance are reported in Table 4. For
a range of weather variables, there is a clear trend that the impact of weather on bike
sharing use increases with biking distance, indicating that safety and comfort concerns
are important factors for users to consider. Planners can boost the use of bike sharing by
improving its safety and comfort. Among them, precipitation and snow depth have
significant negative impacts on bike sharing trips, which indicate that individuals tend
to choose motorized modes, such as public bus or private vehicles, in the event of
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extreme weather. For those dummy variables indicating holidays and weekends, the
most significant negative influence is observed in 2–4 miles group. If we consider fare
products of bike sharing, this result is not surprising. There are five most popular fare
products adopted by bike sharing users in Washington, D.C., including single trip, 24-h

Table 2 Results of time series analysis by maintenance type with an influential radius of 0.5 mile

Dependent variable: daily
trip counts

(1) (2) (3) (4) (5) (6)

LSS LSS IRR CST CST IRR

One-day lag N/A 0.001*** 1.001 N/A 0.025*** 1.025

(0.000) (0.006)

One-week lag N/A 0.001*** 1.001 N/A 0.015*** 1.016

(0.000) (0.005)

One-year lag N/A 0.001*** 1.001 N/A −0.002 0.998

(0.000) (0.006)

Temp deviation −0.012*** −0.014*** 0.986 −0.014** −0.024*** 0.976

(0.002) (0.003) (0.006) (0.007)

Mean temperature 0.040*** 0.032*** 1.033 0.049*** 0.046*** 1.047

(0.001) (0.002) (0.004) (0.005)

Max wind speed −0.006*** −0.004** 0.996 −0.010** −0.010** 0.990

(0.002) (0.002) (0.004) (0.004)

Precipitation −0.269*** −0.343*** 0.709 −0.386*** −0.549*** 0.578

(0.042) (0.059) (0.105) (0.150)

Snow depth −0.164*** −0.214*** 0.807 −0.172*** −0.322*** 0.724

(0.033) (0.054) (0.066) (0.121)

Visibility 0.108*** 0.080*** 1.083 0.139*** 0.082** 1.085

(0.013) (0.017) (0.029) (0.037)

Presence of STF 0.032** −0.026 0.974 0.659*** 0.601*** 1.824

(0.015) (0.023) (0.038) (0.076)

Non-work days −0.093*** −0.134*** 0.875 −0.343*** −0.345*** 0.708

(0.017) (0.020) (0.044) (0.054)

Presence of surge 0.088*** 0.073*** 1.075 −0.079 −0.031 0.969

(0.020) (0.020) (0.062) (0.065)

Non-school days −0.102*** −0.078*** 0.925 −0.015 0.013 1.013

(0.023) (0.025) (0.045) (0.057)

Constant 3.304*** 3.387*** 29.585 −0.730*** −0.210 0.811

(0.124) (0.160) (0.281) (0.367)

Observations 1096 731 N/A 1096 731 N/A

Pseudo R2 0.125 0.139 N/A 0.150 0.154 N/A

AIC 10,310.092 6824.477 N/A 4686.906 3290.816 N/A

Log likelihood −5143.0458 −3397.2383 N/A −2331.453 −1630.4081 N/A

Note: IRR means incidence rate ratio

Standard errors are in parenthesis

******p < 0.1, p < 0.05, p < 0.01
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pass, 3-day pass, monthly pass and annual pass. All fare products except the single trip
offer unlimited trips for rides under 30-min duration. If a rider exceeds 30-min of bike
usage, a usage fee is assessed. According to biking speed calculated by Virkler (1998),
biking distance which exceeds 4 miles requires more than 30-mins in some cases,

Table 3 Results of time series analysis by maintenance type with an influential radius of 0.75 mile

Dependent variable:
daily trip counts

(1) (2) (3) (4) (5) (6)

LSS LSS IRR CST CST IRR

One-day lag N/A 0.000*** 1.000 N/A 0.003** 1.003

(0.000) (0.001)

One-week lag N/A 0.000*** 1.000 N/A 0.003** 1.003

(0.000) (0.001)

One-year lag N/A 0.000** 1.000 N/A 0.001 1.001

(0.000) (0.001)

Temp deviation −0.008*** −0.010*** 0.990 −0.013*** −0.018*** 0.983

(0.002) (0.003) (0.003) (0.004)

Mean temperature 0.038*** 0.030*** 1.031 0.042*** 0.037*** 1.038

(0.001) (0.002) (0.002) (0.003)

Max wind speed −0.005*** −0.003 0.997 −0.003 −0.002 0.998

(0.002) (0.002) (0.002) (0.003)

Precipitation −0.282*** −0.370*** 0.691 −0.350*** −0.453*** 0.636

(0.037) (0.050) (0.055) (0.090)

Snow depth −0.184*** −0.219*** 0.803 −0.183*** −0.235*** 0.791

(0.036) (0.054) (0.046) (0.085)

Visibility 0.091*** 0.059*** 1.061 0.116*** 0.082*** 1.086

(0.013) (0.020) (0.017) (0.023)

Presence of STF −0.058*** −0.089*** 0.915 0.393*** 0.379*** 1.461

(0.015) (0.023) (0.024) (0.046)

Non-work days −0.329*** −0.307*** 0.736 −0.510*** −0.466*** 0.628

(0.017) (0.022) (0.029) (0.038)

Presence of surge 0.061*** 0.055*** 1.057 −0.080** −0.049 0.952

(0.020) (0.020) (0.040) (0.040)

Non-school days −0.123*** −0.088*** 0.915 −0.094*** −0.062* 0.940

(0.024) (0.027) (0.031) (0.037)

Constant 4.864*** 4.913*** 136.095 1.514*** 1.746*** 5.729

(0.123) (0.176) (0.163) (0.219)

Observations 1096 731 N/A 1096 731 N/A

Pseudo R2 0.102 0.108 N/A 0.132 0.134 N/A

AIC 13,123.158 8745.682 N/A 7731.362 5260.271 N/A

Log likelihood −6549.5788 −4357.8409 N/A −3853.681 −2615.1353 N/A

Note: IRR means incidence rate ratio

Standard errors are in parenthesis

******P < 0.1, p < 0.05, P < 0.01
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which requires a usage fee in addition to the membership fee. Considering most users
are commuters in peak hour, biking time may exceed 30-min with biking distances
close to 4 miles. This indicates that cost is another crucial factor influencing users’
choice. The variable indicating presence of surge is not significant in all three groups,

Table 4 Results of time series analysis by biking distance

Dependent variable: daily
rip counts

(1) (2) (3) (4) (5) (6)

0–2 miles IRR 2–4 miles IRR 4–6 miles IRR

One-day lag 0.001*** 1.001 0.010*** 1.010 0.017 1.018

(0.000) (0.002) (0.018)

One-week lag 0.000*** 1.000 0.007*** 1.007 0.005 1.005

(0.000) (0.002) (0.015)

One-year lag 0.000* 1.000 0.001 1.001 0.015 1.015

(0.000) (0.002) (0.017)

Temp deviation −0.009*** 0.991 −0.043*** 0.958 −0.058*** 0.944

(0.003) (0.005) (0.021)

Mean temperature 0.029*** 1.030 0.053*** 1.055 0.089*** 1.093

(0.002) (0.004) (0.016)

Max wind speed −0.002 0.998 −0.011*** 0.989 −0.018* 0.982

(0.002) (0.003) (0.009)

Precipitation −0.361*** 0.697 −0.480*** 0.619 −0.838*** 0.433

(0.050) (0.092) (0.223)

Snow depth −0.218*** 0.804 −0.237** 0.789 −0.490** 0.613

(0.053) (0.115) (0.234)

Visibility 0.060*** 1.062 0.093*** 1.097 0.143* 1.154

(0.020) (0.027) (0.074)

Presence of STF −0.090*** 0.914 0.156*** 1.168 0.228 1.256

(0.023) (0.048) (0.147)

Non-work days −0.305*** 0.737 −0.337*** 0.714 0.269*** 1.309

(0.022) (0.037) (0.096)

Presence of surge 0.008 1.008 0.023 1.023 −0.089 0.915

(0.024) (0.048) (0.129)

Non-school days −0.081*** 0.922 −0.136*** 0.873 −0.089 0.914

(0.027) (0.043) (0.125)

Constant 4.856*** 128.570 1.347*** 3.846 −1.740** 0.175

(0.172) (0.265) (0.712)

Observations 731 N/A 731 N/A 731 N/A

Pseudo R2 0.108 N/A 0.143 N/A 0.074 N/A

AIC 8670.960 N/A 4806.720 N/A 2571.222 N/A

Log likelihood −4320.4798 N/A −2388.36 N/A −1270.6111 N/A

Note: IRR means incidence rate ratio

Standard errors are in parenthesis

******p < 0.1, p < 0.05, p < 0.01
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which shows that its impact on bike sharing usage have little to do with biking distance
but closely related with maintenance type.

Considering affected metro stations are distributed across a large area, we divide the
full sample into two sub-samples (central areas and outer districts) to explore the impact
of traffic conditions on bike sharing usage. Central areas refer to regions within the
Washington, D.C. boundary, while outer districts refer to areas outside the Washington,
D.C. boundary. The empirical results (Supplementary Table 2) indicate that bike
sharing trips on central areas increase by 10.1% during the period of public transit
disruption, while the ridership of shared bike in outer areas increase by 11.4% when
surge occurs. We find that traffic conditions do not contribute to significant differences
in bike sharing ridership among regions in the case of public transit disruption.

5 Robustness Test

5.1 Shorter Window Sample

Owing to the long span of the whole sample and the short time of surges, we adjust the
time bandwidth to further identify whether the impact of surges on bike sharing usage
changes significantly with the length of the sample time span (Yang et al. 2019). The
period without surges should be appropriately shortened in order to avoid other
possible overlooked interference factors. On this basis, the robustness of results can
be tested by changing the sample window. Samples of each surge during the occurrence
and 30 days before and after the surge are retained for a second time of autoregressive
negative binomial analysis in an attempt to eliminate other possible interfering factors
and ensure the validity of our results. As shown in Table 5, after changing sample
window length, the variable of concern (presence of surge) and other weather variables
still significant and hold the same signs with previous results. At this point, it is
reasonable to believe that our previous conclusions are robust and valid.

5.2 Monthly Data

The daily bike sharing trips data can be noisy due to changeable weather conditions and
constantly updated docks. Thus, we also aggregate our data to monthly level to check the
robustness of our results (Liu and Shi 2018). The results from the regression using monthly
data are reported in Table 6. They are similar to what we found earlier from daily data,
including signs and trends, which lend strong support to earlier analysis results. In the
regression using monthly data, the magnitude of coefficients of the intervening variable
(presence of surge) are quantitatively smaller than that in the regression using daily data.
This can be explained by the fact that most surges last no more than 2 weeks, thereby using
monthly data may underestimate the impact of surges on bike sharing demand.

5.3 Sub-Sample Test

The results of full sample robustness test still support our conclusion that bike sharing
can enhance urban transport resilience. We then perform a sub-sample robustness test
based on weather variables to examine the above conclusion. Weather conditions,

Cheng L. et al.



especially precipitation, directly and constantly affect individuals’ travel choices (Guo
et al. 2007; Aultman-Hall et al. 2009; Cools et al. 2010). Affected transit riders may
react by adjusting their departure times, travel modes and destinations or by canceling
trips. We divide the full sample into 12 groups according to total daily precipitation and
maintenance type. Regression results using sub-sample data are reported in Table 7.
They are similar to what we found earlier using full sample data. At this point, it is
reasonable to believe that our previous conclusion is robust and valid.

Table 5 Results of time series analysis based on short sample window

Dependent variable:
daily trip counts

(1) (2) (3) (4) (5) (6)

0.25 LSS 0.25 CST 0.5 LSS 0.5 CST 0.75 LSS 0.75 CST

One-day lag 0.008*** 0.039*** 0.001*** 0.022*** 0.000*** 0.003***

(0.002) (0.011) (0.000) (0.008) (0.000) (0.001)

One-week lag 0.004** 0.024** 0.001*** 0.009 0.000*** 0.002*

(0.002) (0.010) (0.000) (0.007) (0.000) (0.001)

Temp deviation −0.017*** −0.032** −0.014*** −0.026** −0.013*** −0.025***
(0.007) (0.015) (0.004) (0.011) (0.004) (0.006)

Mean temperature 0.036*** 0.051*** 0.032*** 0.051*** 0.033*** 0.043***

(0.005) (0.010) (0.003) (0.008) (0.003) (0.004)

Max wind speed −0.009** −0.012* −0.004* −0.011** −0.004 −0.006
(0.004) (0.007) (0.002) (0.005) (0.002) (0.003)

Precipitation −0.210** −0.818*** −0.256*** −0.581*** −0.296*** −0.516***
(0.089) (0.179) (0.075) (0.140) (0.060) (0.078)

Snow depth −0.094 0.131 −0.149* 0.327 −0.080 0.156

(0.109) (0.368) (0.083) (0.204) (0.106) (0.120)

Visibility 0.143*** 0.138** 0.114*** 0.145*** 0.095*** 0.107***

(0.033) (0.069) (0.026) (0.053) (0.025) (0.033)

Presence of STF 0.099 0.663* 0.069 0.680*** 0.066** 0.472***

(0.080) (0.352) (0.061) (0.245) (0.032) (0.119)

Non-work days −0.184*** −0.272*** −0.145*** −0.329*** −0.286*** −0.436***
(0.036) (0.094) (0.024) (0.070) (0.027) (0.046)

Presence of surge 0.186*** 0.014 0.084*** −0.002 0.065*** −0.031
(0.038) (0.087) (0.022) (0.069) (0.021) (0.039)

Non-school days −0.082* 0.103 −0.072** 0.043 −0.095*** −0.056
(0.044) (0.107) (0.033) (0.077) (0.035) (0.045)

Constant 1.144*** −1.328* 3.031*** −0.986* 4.427*** 1.412***

(0.338) (0.760) (0.265) (0.575) (0.251) (0.359)

Observations 420 420 420 420 420 421

Pseudo R2 0.124 0.090 0.121 0.113 0.107 0.115

AIC 2952.429 1842.247 3938.185 2008.260 4956.988 3062.085

Log likelihood −1462.2147 −907.12372 −1955.0926 −990.12986 −2464.4941 −1517.0427

Standard errors are in parenthesis

******p < 0.1, p < 0.05, p < 0.01
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6 Conclusions

This study explores the effect of public transit closures on bike sharing demand during
the SafeTrack project period initiated by WMATA. This study enriches extant research
by discussing impacts of maintenance type and biking distance on bike sharing usage,
as well as identifying the maximum influential radius of temporary transit closure. Our
analysis suggests that the influence of transit disruption on bike sharing demand

Table 6 Results of time series analysis based on monthly data

Dependent var iable :
monthly trip counts

(1) (2) (3) (4) (5) (6)

0.25LSS 0.25CST 0.5LSS 0.5CST 0.75LSS 0.75CST

One-month lag 0.008*** 0.045*** 0.002*** 0.029*** 0.001*** 0.005***

(0.001) (0.008) (0.000) (0.006) (0.000) (0.001)

One-year lag 0.001 0.029*** 0.000 0.014*** 0.000*** 0.004***

(0.001) (0.008) (0.000) (0.005) (0.000) (0.001)

Temp deviation −0.017*** −0.019** −0.013*** −0.016*** −0.009*** −0.014***
(0.003) (0.008) (0.002) (0.006) (0.002) (0.003)

Mean temperature 0.037*** 0.047*** 0.033*** 0.042*** 0.029*** 0.035***

(0.002) (0.006) (0.002) (0.004) (0.002) (0.002)

Max wind speed −0.006*** −0.010* −0.005*** −0.009** −0.004*** −0.002
(0.002) (0.005) (0.001) (0.004) (0.001) (0.002)

Precipitation −0.291*** −0.459*** −0.283*** −0.405*** −0.299*** −0.386***
(0.063) (0.166) (0.042) (0.100) (0.037) (0.054)

Snow depth −0.166*** −0.157* −0.155*** −0.176*** −0.175*** −0.181***
(0.034) (0.081) (0.031) (0.066) (0.034) (0.044)

Visibility 0.113*** 0.152*** 0.097*** 0.127*** 0.080*** 0.102***

(0.017) (0.042) (0.013) (0.029) (0.013) (0.017)

Presence of STF −0.007 0.800*** 0.011 0.525*** −0.061*** 0.293***

(0.021) (0.063) (0.016) (0.045) (0.014) (0.030)

Non-work days −0.107*** −0.222*** −0.092*** −0.316*** −0.312*** −0.506***
(0.024) (0.062) (0.017) (0.044) (0.017) (0.030)

Presence of surge 0.191*** −0.077 0.069*** −0.051 0.054*** −0.043
(0.035) (0.081) (0.020) (0.063) (0.019) (0.041)

Non-school days −0.080*** −0.046 −0.079*** −0.025 −0.097*** −0.073**
(0.027) (0.062) (0.021) (0.044) (0.022) (0.030)

Constant 1.547*** −1.657*** 3.276*** −0.629** 4.779*** 1.548***

(0.166) (0.412) (0.121) (0.283) (0.116) (0.160)

Observations 1096 1096 1096 1096 1096 1096

Pseudo R2 0.129 0.153 0.129 0.156 0.107 0.136

AIC 7508.347 3994.082 10,257.195 4655.465 13,052.003 7697.842

Log likelihood −3740.1736 −1983.041 −5114.5973 −2313.7326 −6512.0017 −3834.921

Standard errors are in parenthesis

******p < 0.1, p < 0.05, p < 0.01
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depends on maintenance type. The slowdown causes by LSS surges do meaningfully
impact bike sharing trips, and this impact weakens as the influential radius increases.
This is an important finding as it shows that the proximity of bike sharing docks to
metro stations tends to have a powerful effect on propensity to use bike sharing
programs. The influential radius of transit disruptions is at least 0.75 miles. This is a
meaningful finding as it provides guidance for planners and bike sharing firms to
distribute and rebalance bikes in the case of planned maintenance work. Weekday
ridership increased more than weekend ridership, which indicates the likelihood that
these are commuters rather than leisure trips. Results of biking distance analysis
indicate that security and cost concerns are major barriers to bicycling. Planners can
boost the use of bike sharing by strengthening the maintenance and overhaul of bikes,
providing helmets and providing various fare products.

From the perspective of achieving eco-friendly mobility, planned transit disruption
provides evidence that rapid changes to transport policy and travel patterns is possible.
Promoting bike sharing can be considered as a useful strategy to accelerate needed changes
in personal transportation choices thereby fostering structural change towards sustainable
economies. Recommendations for bike sharing management and development are to (1)
take capacity and usage of bike sharing docks into consideration when distributing and
rebalancing bikes to maximize and optimize its use, especially in the case of transit
disruptions when people have to switch transit modes; (2) account for coherence of metro
stations and bike sharing docks to boost the use of eco-friendly transportation choices; and
(3) improve safety and comfort of bike sharing to break down barriers to bike sharing use.

Future research could focus on the analysis of the socioeconomic details of transit
users, as well as trip characteristics, and how these differences affect users’ choices in
transit modes during transit closure. This would provide information to planners on
how to design urban transportation systems to make them more resilient, inclusive, and
better able to cope with natural and man-made emergencies. This type of analysis can
be applied to other cities which plan to undertake public transit maintenance work or
have already gone through such work to better understand attitudinal preferences
towards a modal shift by transit users.
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