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Colonoscopy, the visual inspection of the large bowel using an endoscope, offers protection against colorectal cancer by
allowing for the detection and removal of pre-cancerous polyps. The literature on polyp detection shows widely varying miss
rates among clinicians, with averages ranging around 22–27%. While recent work has considered the use of AI support systems
for polyp detection, how to visualise and integrate these systems into clinical practice is an open question. In this work, we
explore the design of visual markers as used in an AI support system for colonoscopy. Supported by the gastroenterologists in
our team, we designed seven unique visual markers and rendered them on real-life patient video footage. Through an online
survey targeting relevant clinical staff (N = 36), we evaluated these designs and obtained initial insights and understanding
into the way in which clinical staff envision AI to integrate in their daily work-environment. Our results provide concrete
recommendations for the future deployment of AI support systems in continuous, adaptive scenarios.

CCS Concepts: • Human-centered computing → Human computer interaction (HCI); Empirical studies in
interaction design; • Applied computing → Life and medical sciences.

Additional Key Words and Phrases: human-centered AI, video, endoscopy, continuous AI, markers, annotation,
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1 INTRODUCTION
Colonoscopy is a medical procedure in which a trained endoscopist evaluates the inside of a patient’s colon. This
procedure is carried out using a long, flexible tube (colonoscope) containing a camera, light, and, when necessary,
small instruments (e.g., for removing polyps). Colonoscopy is widely considered to be the gold standard for
investigation of the large bowel [45], and allows for simultaneous diagnosis and, if required, removal of bowel
polyps. Colonoscopy is an important screening instrument for the prevention and detection of colorectal cancer,
also known as bowel cancer. Colorectal cancer is fairly common, with an estimated yearly total of 1.8 million new
cases [7]; it is the second leading cause of cancer-related death both globally and within the US [7, 24]. Although
polyps typically grow slowly, the removal of precancerous lesions and the early detection of cancers is key in
increasing survival rate among patients [43].
Recent clinical work has highlighted that a high number of polyps are being missed, with meta-analyses

reporting averages between 22 and 27% [51, 61] – as determined through tandem colonoscopy. Polyps can be
missed during the procedure for a variety of reasons, e.g., shifts in operator attention, partial concealment, or
obstructed from view due to bowel contents [31]. To assist endoscopists in the challenging task of identifying
polyps, novel technologies – sometimes referred to as Computer-Aided Diagnosis (CAD) systems – have been
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developed to automatically detect polyps based on the colonoscope’s video source [1, 36, 41]. While promising
in their ability to detect polyps, these applications raise questions on the design and integration of Artificial
Intelligence (AI) support systems in daily clinical practice. Previous work has highlighted that problems introduced
by a lack of HCI considerations in deploying healthcare technology may result in abandonment by the end-
user [37]. Recent work highlights that additional concerns arise when considering the use of AI in day-to-day
practice [9, 59], where incorrect and missing recommendations can cause patient harm.
To inform the design of a specific aspect of AI support systems, namely the visual marker used to highlight

an object of interest, we systematically explore the design space of visual markers in live video streams. Based
on many conversations with gastroenterologists, we established that they consider this to be a crucial element
of the interaction with future AI systems. In this paper, we identify distinct visualisations currently adopted in
the literature, and devise alternative designs using the literature on visual attention [58] and designing for AI
systems [2] in a collaborative effort with gastroenterologists. The aim of this paper is not to extend the visual
attention literature, but instead to assess how different designs of visual markers are perceived by clinical staff
in the context of continuous AI support. We conceptualise a total of seven distinct visual markers and develop
these designs into operational video markers. Through an online survey (N = 36), we present these designs as
overlaid on patients’ colonoscopy video footage to endoscopists and assistants. Participants rated our designs on
a number of aspects, including their ability to locate polyps as well as their potential to interfere with clinical
work. Furthermore, we investigated the perceptions of the clinical staff in relation to the (future) integration of
AI-based support systems into clinical practice.

Our results indicate that currently used visual markers are perceived as significantly less useful in detecting
and locating polyps in comparison to some of our alternative designs. We identify clear preferences towards
marker colour and system integration. We contrast our findings of AI support in a continuously adapting context
(e.g., video footage) to recent design guidelines and recommendations for AI interaction as brought forward by
the HCI community. Our work contributes to these guidelines by highlighting the disparate requirements of
users in continuously adapting scenarios.

2 RELATED WORK
The Global Cancer Observatory1 lists a yearly 1.8 million new cases of colorectal cancer globally (colorectal
groups cancers in the colon, rectum, and anus – all of which are inspected during colonoscopy) [7]. Surpassed
only by lung cancer, an estimated 880.000 people die as a direct result of colorectal cancers (9.2% of total cancers).
Furthermore, incidence rates are expected to increase to 3.2 million and casualty rates to 1.6 million by 2040 [7] –
an increase of 71.5% and 81.2% respectively. Stage of the disease at diagnosis is the most important prognostic
factor for colorectal cancer [32, 43]. The primary method to detect pre-cancerous developments of colorectal
cancer is through visual inspection of the colon. According to a 2012 survey, an estimated 15 million colonoscopies
are performed annually in the United States [25]. Furthermore, the European Union and its member states have
implemented colorectal cancer screening programs for early detection of cancer – typically consisting of a
self-test and a follow-up colonoscopy if required [16]. Given the extensive number of polyps that are missed
during colonoscopy [51, 61], additional support of clinical staff during this procedure is critical.
Colonoscopies are typically carried out at specialised endoscopy unit by a medical team consisting of one or

two gastroenterologists or nurse endoscopists, as well as up to three nurse/healthcare assistants. The endoscopy
itself is performed by the gastroenterologist or (nurse) endoscopist, controlling the endoscope and being primarily
responsible for polyp detection and clinical decision making. This task is supported by the nurse/healthcare
assistants, who are responsible for maintaining patient sedation, assisting in any required movement of the patient,
and delivering medical instruments through a channel in the endoscope upon request. Although the operating

1Part of the World Health Organization’s International Agency for Research on Cancer: https://gco.iarc.fr/.
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gastroenterologist or endoscopist is primarily responsible for polyp detection they are often supported in this
task by the other medical staff. The withdrawal phase of colonoscopy, in which the endoscope is manoeuvred
from the cecum to the anus, is a critical component of the examination where major attention needs to be paid to
the screen to identify often subtle visual cues that may indicate the presence of a polyp. Prior work shows that
nurses participating as second observers during colonoscopy withdrawal can improve the adenoma detection
rate [30]. Polyp detection is complicated by the fact that polyps can be difficult to see, can be covered in mucosa
and therefore hidden from direct view, or can be missed when moving the camera through the colon.
In addition to the endoscope’s camera, other frequently embedded tools are a light source and a water jet,

respectively used for illumination and the removal of mucus or stool inside the colon. The aforementioned
instrument channel can be used to navigate small medical instruments inside the colon. An example of a
commonly used tool is the snare, a contractible wire loop used for polyp removal (i.e., polypectomy).

2.1 Challenges in Colonoscopy
Whilst colonoscopy is effective at preventing colorectal cancer, the procedure is highly operator dependent. The
key metric for determining the quality of colonoscopy is the adenoma detection rate (ADR). An adenoma is
a subtype of polyp that is a common precursor to colorectal cancer. Unfortunately, ADRs vary considerably
between different endoscopists even when accounting for patient related factors [11]. Polyps are missed broadly
due to two reasons. Firstly, polyps may not be exposed by the operator due to poor withdrawal technique e.g. not
manipulating the colonoscope effectively to look behind folds or inadequate washing of bowel contents [46].
Secondly, it is now appreciated that many polyps can be overlooked even when they are in the field of view
particularly due to subtle appearances. Crucially, flat or depressed type polyps are most likely to be missed, which
in turn also are more likely to have an increased risk of cancer progression [15]. Therefore, novel solutions to
overcome both of these problems are essential.
The use of AI based software acting as a ‘second observer’ of the screen and highlighting suspected polyps

in real-time, could potentially help overcome the issue of polyps that may otherwise be overlooked. Recent
evidence suggests that AI assistance could lead to an increase in ADR [55]. Before widespread implementation
and deployment of such AI systems can be considered, it is crucial that their design and integration into clinical
workflow are explored further.

2.2 Artificial Intelligence in Healthcare
As AI support systems enter the medical domain, HCI plays a critical role in integrating these technological
possibilities with clinical practice. Clinical decision-support systems (CDSS), perhaps the most widespread and
enduring effort to bring AI into the hands of health professionals, have long suffered from a lack of successful
integration into daily practice [37]. “There is perhaps no omission that, historically, accounts more fully for the
impracticality of many clinical decision tools than the failure of developers to deal adequately with the logistical,
mechanical, and psychological aspects of system use” [37]. Rather than deploying systems that are disconnected
from existing workflows and practice, Yang et al. describe the concept of an unremarkable AI – suggesting that
AI is most beneficial to clinicians when used to unobtrusively augment existing routines rather than developing
stand-alone tools [59].

Already in 1990, Miller and Masarie critique the ‘Greek Oracle’ model present in diagnosis support systems [35].
These systems work independently from clinicians by first collecting all relevant patient information and
subsequently producing an unintelligible diagnostic recommendation. Given the legislative implications faced
in the healthcare domain, these type of recommendations are deemed unusable [60]. The explainability of AI
systems has since been raised as a critical component for healthcare applications [21, 22].
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Recent pioneering work by Cai et al. has explored the interaction between HCI and AI in medical decision
making, specifically investigating the design of an interface that deals with imperfect algorithms and explainability
in the context of pathology [9]. The system can be used to identify and present images of tissues with visual
similarity to a tissue currently inspected by a pathologist, potentially assisting in their decision making. However,
these images may not necessarily be medically relevant or meet diagnostic needs. In order to combat this problem,
Cai et al. introduce a functionality called ‘refine-by-concept’, allowing pathologists to increase or decrease the
representation of a selected clinical concept in the search results. The refinement tool was reported to increase
both diagnostic utility and user trust in the support system [9]. Wang et al. design a clinical diagnostic tool
for intensive care phenotyping which incorporates counterfactual rules to increase the explainability of AI
conclusions [54]. By contrasting a patient’s state with the parameters of a certain event (e.g., blood pressure and
shock), users can ask ‘why not’ questions and subsequently investigate the system’s behaviour.

While the aforementioned work presents compelling examples of the positive role of HCI in integrating AI in
the healthcare domain, they all focus on scenarios in which the user requires intermittent AI support. In this
work, we explore how to design AI support for live video footage in a clinical context, requiring continuous
adaptation of both user and AI system.

2.3 Video Annotation
Annotation of live video is an increasingly common practice in a number of different fields. For example, the
use of augmented reality allows for the overlay of information on top of real world footage. These systems
can provide support without forcing the user to change their visual focus, and are explored in the clinical and
aerospace domain [14]. Other examples of video annotation can be found in sport broadcasting, where factors
such as camera alignment and player pose estimation directly influence the presented information overlay [48].
Similarly, recent work in esports presents the use of visual overlays to e.g. compare an individual’s performance
against historical data or to explain strategies as they unfold [5].

Despite these existing applications, how to effectively communicate the results of computer vision systems to
end-users is an open research question in HCI [28]. Work on intelligent image overlays in the medical domain
has predominantly focused on still imaging, with radiology being a key area of development [23]. For example,
Rajpurkar et al. show how AI can be used to both detect and localise pneumonia from x-ray images – producing a
heatmap annotation to indicate to the clinician the area most indicative of pneumonia [44]. Their results achieve
a better sensitivity (higher number of true positives) and specificity (lower number of false positives) as compared
to human radiologists. Yet, as these algorithms are not infallible, the use of localised visualisations serves to
inform the clinician and allow them to verify the AI’s classification.
Although existing work on still image annotation is promising [23], the use of AI support for continuously

adapting scenarios (e.g., colonoscopy footage) remains under-explored. The live annotation of medical footage
introduces several new challenges, such as the chance to miss AI annotations, to obscure the clinician’s view of
identified points of interest, and to process images in real time. This paper provides exploration of AI annotation
on live footage by identifying the preferences and concerns of domain experts.

3 STUDY DESIGN
In order to systematically investigate user preferences of the visual marker designs (shown in Figure 1), we
developed an online survey to be distributed among the colonoscopy community. Rather than presenting still
images, we incorporated our designs into endoscopic footage as captured during patient inspection. Although
this enhances the ecological validity of the study as compared to still images, we stress that potential real-world
effects such as end-user fatigue, risk of deskilling in polyp identification, and false positives are outside the scope
of the study. Furthermore, as we expect that AI support will be deemed as more useful when presented with
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Fig. 1. Still frame of visual markers videos (showing apparent polyp). Visual markers are described in detail in Section 3.1.

challenging scenarios, we made use of two unique videos, one video containing an apparent polyp and one
video containing a challenging polyp – a still image from each video is shown in Figure 2. We obtained ethical
approval for the use of these (anonymised) videos for research purposes prior to colonoscopy. Following manual
annotation of the polyps2, the visual markers are subsequently rendered on top of the original videos. As such,
we end up with a total of 14 videos, with each design presented twice to each participant (once for an apparent
polyp and once for a challenging polyp). We randomise the order of these videos (both the visual marker and the
video difficulty) for all participants. Participants are shown both the apparent and challenging video without any
overlay prior to the presentation of the visual markers, allowing participants to (attempt to) identify the polyp on
their own.

3.1 Materials
Through extensive ideation and iteration with two gastroenterologist team members, combined with a total
of five observation sessions during colonoscopy, we identified an initial set of designs, which we then turned
into visual mockups. We employed a structured approach to the design of the visual markers, as described

2Frame-by-frame annotation by a domain expert using PixelAnnotationTool [8].

Fig. 2. Still frames of the apparent (left) and challenging (right) polyp. Both videos are 9 seconds in length.
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Rationale
Localise attention ✓ ✓ ✓ ✓ ✓ “Display information relevant to the user’s current task

and environment” [2].
Contrast colours ✓ ✓ ✓ ✓ ✓ Guiding attribute in visual attention [58], colour visible

to colour blind operators.
Highlight target ✓ ✓ Highlighting the target area with contrasting colour

guides visual attention [58].
Blurred guidance ✓ Blurring of the non-target area guides visual attention

to target area [20].
Indicate confidence ✓ Communicate to the user the AI’s current level of cer-

tainty [2].
Size ✓ ✓ ✓ Minimum size to ensure visibility [58], otherwise depen-

dent on identified polyp.
Unobtrusive ✓ ✓ ✓ ✓ ✓ ✓ Displayed only when necessary (i.e., on detection) and

avoids overlapping of target area [2].
Motion Although a guiding attribute [58], motion would further

impede the already unstable camera feed.
Orientation Although a guiding attribute [58], orientation is irrele-

vant for our circular and shape-dependent designs.
Table 1. Design space for real-time visualisations in AI-supported colonoscopy. Recommendations based on guidelines from
visual attention [20, 57, 58] and Human-AI interaction [2].

in [40]. In particular, we identified a suitable design space through analysis of relevant guidelines on visual
attention [20, 57, 58] and AI interaction [2] – as well as an identification of visual designs used in existing
systems [36].

Following this, another round of selections was made in consultation with the aforementioned gastroenterolo-
gists – leading to the exclusion of visual designs which were either considered to have a clear undesirable effect
on the endoscopic procedure or contained too much overlap with the other designs. Rather than fully extending
all design options (e.g., include combinations of individual designs, bounding boxes using different geometric
shapes), we selected designs deemed most viable and differentiating as based on the identified design-space
and input from domain experts. This reduced the number of options presented in the survey and helped to
manage participant strain. The selected seven designs were then converted from a stationary visual mockup into
working video-based visual prototypes. For this, we annotated the individual frames of the two aforementioned
colonoscopy examination videos and programmed image overlays using OpenCV [6]. Although the highlights
are based on a frame-by-frame annotation, we apply a straightforward smoothing algorithm based on preceding
frames to increase the fluency of the videos. Both the generated videos and the code required to generate each
individual marker are included in the paper’s auxiliary materials.

, Vol. 1, No. 1, Article . Publication date: January 2021.



Designing Visual Markers for Continuous Artificial Intelligence Support: A Colonoscopy Case Study • 7

Following a third round of discourse, we made a number of minor modifications (e.g., edge thickness). An
overview of our final visual markers is shown in Figure 1 and discussed below. We include the respective rationale
and literature recommendations that drove our design decisions in Table 1.

I. Wide bounding circle. A wide circle positioned around the polyp’s centre point.
II. Tight bounding box. A rectangle enclosing the polyp’s outline.
III. Spotlight. A wide circle positioned around the polyp’s centre point, dims background display.
IV. Segmentation. A transparent overlay of the polyp’s shape, as employed by Ganz et al. [18].
V. Segmentation outline. An outline of the polyp’s shape, as employed by Bernal et al. [3].
VI. Detection confidence. A percentage sign (upper-left corner) indicating likelihood of polyp in the

current frame.Width of annotated polyp used tomimic the confidence of a real-life system. Confidence
level of 0% when no polyp is visible, between 50–75% when the polyp is most clearly visible. Based
on a current deployment [36].

VII. Detection signal. Corners of the viewport highlight in clear red when a polyp is detected. Based on a
current deployment [36].

For the visual markers A–E, we decided on the marker’s colour (blue) by evaluating the visibility of the
marker when positioned on a snapshot of a colon. We evaluate the contrast of marker and colon for trichromacy
(i.e., healthy colour vision), deuteranomaly (i.e., weak green vision), and protanomaly (i.e., weak red vision).
Deuteranomaly and protanomaly account for the majority of colour blindness (known as red-green colour
blindness), affecting 8% percent of men and 0.5% percent of women of Northern European ancestry [13].

3.1.1 Survey questions. Participants were shown a total of 14 videos (seven designs across two different videos) –
with each video totalling nine seconds in length. For each video, participants were asked to answer four questions
concerning the presented design ((1) allow to detect more polyps, (2) locate polyps faster, (3) interference
during polyp removal, and (4) interference with the regular display) as compared to baseline (no visual marker).
Participant responses were restricted to a Likert-item format. We incorporate design recommendations from the
literature such as the use of a 7-point scale [17], including a mid-point option (‘neither agree nor disagree’) [10, 12],
and labelling all answer options as opposed to only the end-points [10]. Furthermore, participants were given
the ability to provide additional commentary on the marker via an open textfield. After the participants had
answered the aforementioned questions for all 14 videos, they were asked to rank both the full set of design
options (seven images) as well as a range of colour options (seven images) in order of preference.
Following this, participants answered a range of questions concerning the design and implementation of an

AI support system. This included questions on alert modalities (e.g., sound) and the general integration of such
a system in the endoscopy room. We included these questions to obtain additional insight into the workplace
integration of AI support systems. The survey also collected the participant’s professional role and demographic
information. We pilot tested our survey with three local endoscopists independent from the project. We include
the survey in full in Appendix A.

3.2 Participants
Following ethical approval, we disseminated the survey using national (anonymised for review) mailing lists
targeting the colonoscopy community. Furthermore, we visited a local hospital to recruit participants not easily
reached through professional mailing lists (i.e., assistants). As colonoscopy is performed by a clinical team, we
aimed to collect responses from the broadest variety of roles present in the endoscopy room – all of whom
are inspecting the video source of the colonoscope, including both assistants (staff nurse, healthcare assistant)
and endoscopists (gastroenterologists, colorectal surgeons, and nurse endoscopists). In order to incentivise
participation among our difficult to reach target group [52], we included a £100 voucher as a raffle.
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Fig. 3. Responses to 7-point Likert items on polyp detection and localisation using the visual markers (combined apparent
and challenging videos).

3.3 Analysis
The analysis of Likert items is a widely debated topic, both within the field of HCI [10, 26] and the larger academic
community [29]. A major point of discussion is the interpretation of responses as either ordinal or interval data,
which subsequently informs the selection of the applied statistical test. The use of interval data assumes that
Likert item-answers are equidistant in nature (i.e., the difference between ‘Strongly agree’ and ‘Agree’ is equal to
that of ‘Neither agree nor disagree’ and ‘Somewhat agree’), a contested perspective [29]. In this work, we follow
an ordinal interpretation for the analysis of our dependent variables (i.e., perceived ability to detect more polyps,
locate polyps faster, and interference of the visual markers).
Although a Friedman test is suitable for the analysis of non-parametric ordinal data with repeated measures

(i.e., different conditions, in our case visual markers), it does not allow for the analysis of multiple factors or
interactions (e.g., difficulty of the video, role of the respondent). We therefore analysed both our Likert-response
and rank-order data using Aligned Rank Transform (ART), as described by Wobbrock et al. [56], who explain
that “The ART relies on a preprocessing step that ‘aligns’ data before applying averaged ranks, after which point
common ANOVA procedures can be used.” [56]. We utilised the R package ARTool [27].

In case we reject the null hypothesis, we complete a post-hoc test to identify differences between groups. We
apply a Bonferroni correction to all pairwise comparisons to protect against the increased risk of Type I errors.
In the interests of space, we summarise all pair-wise comparisons on the right-hand margin of the figures (see
e.g. Figure 3). This so called ‘compact letter display’ assigns unique letters for conditions which are significantly
different from one another [42]. Conditions that are not significantly different are followed by a common letter.
A condition assigned the letter ‘a’ is significantly different from a condition marked with a different letter.
A condition marked with two or more letters (e.g., ‘ab’) is not significantly different from conditions labelled with
one or more of the same letters (e.g., ‘a’ or ‘bc’). Our analysis files (survey responses and R scripts) are included
as supplementary material.

4 RESULTS
We collected a total of 36 completed surveys. Our respondents were 8 assistants and 28 endoscopists. From the
36 completed surveys, 31 were collected as a response to our online dissemination, with the remaining five
surveys having been collected from a local hospital (all were assistants). Median survey completion time was
19.02 minutes. Our sample consists of 23 men and 13 women, with an average age of 38.28 (SD = 9.66). The
endoscopists had a varying degree of experience, with seven respondents performing colonoscopy for over 15
years, three respondents between 5–15 years, twelve respondents 2–5 years, and six respondents less than 2
years.
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Fig. 4. Responses to 7-point Likert items on perceived interference of the visual markers (combined apparent and challenging
videos).

Inspired by Sarwar et al.’s analysis of AI usage in pathology [47], we collected the participant’s excitement,
concern, and self-reported likelihood of uptake of AI technology for colonoscopy. Participants were mostly excited
about the use of AI for colonoscopy (14 ‘moderately’, 8 ‘very’, and 9 ‘extremely’ excited), with two participants
reporting to be ‘slightly’ excited and three participants reporting to be ‘not excited at all’. In terms of concerns
surrounding AI for colonoscopy, we find eight participants who are ‘not concerned at all’, 13 who are ‘moderately
concerned’, another 13 ‘slightly concerned’, and two participants who are ‘very concerned’. Finally, participants
report high willingness to use (validated) AI technology in their job, with 27 respondents indicating either ‘likely’
or ‘very likely’, six ‘neutral’, and three either ‘unlikely’ or ‘very unlikely’.

4.1 Detection & Localisation
We distinguish between detecting and locating a polyp within the colon. Detection concerns identification of
a polyp ‘somewhere’ within the frame, whereas localisation additionally considers the exact location of the
polyp. We present an overview of participants’ responses to the two Likert questions concerning detection and
localisation in Figure 3. We note mostly positive responses among participants for both these questions across all
visual markers.

Using the aforementioned Aligned Rank Test (ART) for data alignment [56], an ANOVA reveals a significant
main effect of Visual Marker on Perceived Increase in Polyp Detection (F6,490 = 9.40, p < 0.001). A post-hoc test
using pairwise comparison with Bonferroni correction showed significant differences between the rating of the
visual markers, as indicated using a compact letter display in Figure 3. We find no significant effect of Video
difficulty on Perceived Increase in Polyp Detection (F1,490 = 1.80, p = 0.180). We discuss the effect of video difficulty
in more detail in Section 4.2.1. Summarising these results, we find a significant difference between two clusters of
visual markers. Markers visualised in the corner (i.e., ‘VI. Detection confidence’, ‘VII. Detection signal’) are rated
as significantly less useful in detecting more polyps as compared to the remaining set of markers. Participants
experienced the ‘Detection confidence’ design as distracting; “This [design] takes the attention away from the
mucosa for a number that is almost continuously changing. [...] This display is very inefficient on its own and with
continuous variation.” (P03).
Similarly, we evaluate the effect of visual marker on the perceived ability to locate polyps faster. We find a

significant effect of Visual Marker on Perceived Faster Polyp Detection (F6,490 = 12.58, p < 0.001). A post-hoc test
using pairwise comparison with Bonferroni correction showed significant differences between the rating of
the visual markers, indicated using a compact letter display in Figure 3. We find no significant effect between
Video difficulty and Perceived Faster Polyp Detection (F1,490 = 1.75, p = 0.187). Similar to the previous results, we
find a significant difference between the ‘VI. Detection confidence’ and ‘VII. Detection signal’ markers and the
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Fig. 5. Effect of video condition (Apparent or Challenging to detect polyp) on participant ratings across four Likert items.

remaining markers, with participants assessing the former least positively. Participants noted how the use of e.g.
‘VI. Detection confidence’ would not help in actually finding the target of interest, while pointing out that AI
systems may not be entirely accurate – thereby wasting valuable time; “I don’t see the benefit in this - doesn’t
help you localise the lesion and would be desperately irritating when managing a false positive” (P23). The speed at
which a design helps in locating polyps was raised as an important benefit by some participants, e.g. regarding
the ‘III. Spotlight’ design; “This was much clearer - helped locate the polyp much faster” (P07).

4.2 Interference
As AI support systems will not be 100% foolproof, it is critical that these systems do not interfere with the clinical
staff’s ability to perform their task. In addition to a visual marker’s ability to support in detecting and locating
polyps, we therefore also explore how obstructing the proposed designs are. Here, we distinguish between
interference of the design during a specific task (removal of a polyp) and general interference with the visual
display.

We find a significant main effect of Visual Marker on Perceived Interference during Polypectomy (F6,490 = 18.07,
p < 0.001). A post-hoc test using pairwise comparison with Bonferroni correction showed significant differences
between the visual markers, as indicated in Figure 4. We find an indicative significant effect of Video difficulty
on Perceived Interference during Polypectomy (F1,490 = 3.69, p = 0.055). Finally, we evaluate the perceived effect
of the visual marker on interference with the regular visual display. We find a significant effect between Visual
Marker and Perceived Interference during Regular Display (F6,490 = 14.29, p < 0.001), with significant post-hoc
results (Bonferroni correction applied) indicated in Figure 4. We find an indicative significant interaction effect
between Video difficulty and Perceived Interference during Regular Display (F1,490 = 3.34, p = 0.068).
Both with regards to interference during polypectomy and interference with the regular visual display,

participants considered the two markers positioned in the corner of the video (i.e., ‘VI. Detection confidence’ and
‘VII. Detection signal’) as significantly less interfering than the other designs, followed by the ‘I. Wide bounding
circle’ and the ‘II. Tight bounding box’. The ‘III. Spotlight’, and ‘IV. Segmentation’ markers were rated as the
most interfering designs. The ‘III. Spotlight’ design in particular was critiqued on the fact that it hides part of
the display from the operator; “It looks nice but VERY distracting and would mean I couldn’t spot other polyps
missed by the AI (which I’m sure is possible!)” (P23). Furthermore, participants expressed on their own accord how
some of these designs would require the ability to turn the device off, an opinion expressed multiple times for
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the ‘Segmentation’ design; “After identification there should be an option to disable the marker so the operator can
proceed with polypectomy” (P03).

4.2.1 Effect of video difficulty. Across two of the four analysed question items, we find an indicative significant
effect of video difficulty on participant answers (with the two remaining questions showing a similar trend).
Investigating these results in more detail, we plot the effect of video type for each question in Figure 5. Although
our tests did not reveal a significant effect of video difficulty, we observe a clear direction of effect for both the
increased detection of polyps and their faster localisation. In videos in which the polyp is more challenging to
spot, our visual markers are rated as more positively as compared to their respective ratings on the video with a
more apparent polyp.

4.3 Marker design
In order to assess the participant’s overall preference of the different designs, our survey included a score sorting
question. Participants ranked each visual marker by assigning a unique number from 1–7. Figure 6 visualises
the distribution of participant rankings, with distinct differences visible between conditions. An ANOVA on
our aligned rank transformed data reveals a significant main effect of Visual Marker on participant Ranking
(F6,238 = 9.88, p < 0.001). No significant interaction was found between Professional Role and Ranking (F1,238 = 0.06,
p = 0.809). A post-hoc test using pairwise comparison with Bonferroni correction showed significant differences
between the rating of the visual markers. From these results, we observe that ‘I. Wide bounding circle’ and ‘V.
Segmentation outline’ are the most popular designs. Reflecting the most common critiques expressed by our
participants, P23 states; “[The] box and circle are very clear - a geographical outline changes too often and is too
distracting. The dimming thing is a pain and the corner flashes and the numbers are too distracting”.

4.3.1 Colour. Similar to the ordering of preferred visual markers, participants indicated their preferences of the
colour of the marker. Figure 7 visualises the distribution of participant colour preferences. An ANOVA on aligned
rank transformed data reveals a significant effect of Colour on participant Ranking (F6,238 = 9.88, p < 0.001). No
significant effect was found for Professional Role on Colour (F1,238 = 0.06, p = 0.809). We label the significant
differences between groups in Figure 7. The colours ‘Blue’ and ‘Black’ rank significantly higher than the other
colours. Although two of our participants do not express a strong opinion on the colour of the visual marker,
“No real preference here” (P30), the majority of the participants comment on the need for contrast and ability to
easily distinguish the visual marker from other entities; “I would favour maximizing contrast between marker and
background” (P03) and “Catches the eye and will usually be alien to see that colour in the colon” (P13).
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4.4 Workplace Integration
We examined participants’ beliefs on how to integrate AI support systems in current practice, focusing on practical
aspects such as the ability to disable the support system and the use of additional modalities in communicating
with the AI.

Participants almost unanimously agreed that it should be possible to disable (and subsequently enable) the
visual markers, with 33 out of 36 participants responding in favour. Participants listed a number of reasons for
wanting to disable the visual markers, such as being able to focus on a polyp during polypectomy, bowel content
requiring cleanup, or in case of poor classification performance by the AI system. A minority of participants
are in favour of an automated disable functionality, for example after signalling the likely presence of a polyp “I
think the marker should only appear when polyp is identified once the polyp is detected and highlighted then the
marker should automatically be turned off ” (P26), however the majority of participants expressed desire for a
manual way to turn off the visual markers. Reasons for turning the visual markers off include training sessions,
occlusion during polyp interrogation and polypectomy, and annoyance with false positives in a specific area
of the colon. Although there appears to be wide support for being able to disable the support system, a small
number of participants warned that turning the system off may have unintended consequences; “If its turned off
then [the] endoscopist may forget to turn it back on.” (P26), and “I don’t want to be able to turn it off by mistake
without realising it, but it does need to be quick and easy and reliable to do – I would suggest a reminder to turn it on
again after a set time (e.g., 1 minute) if it is silenced/switched off ” (P22). When asked how to disable and enable the
system, the most popular answer option – with 27 respondents in favour – was the use of a physical button on
the colonoscope.
When considering the integration of additional modalities in communicating the results of the AI support

tool, our results indicate differences in opinion between participants. We allowed participants to select (multiple
choice) from a list of pre-defined options (sound, vibration, no additional modalities, unsure) as well as free text
input. A total of 14 participants indicated that no additional modalities should be included, and seven participants
expressed that they did not know whether any additional modalities should be included. Remaining participants
primarily supported the inclusion of an audible alert (16 participants). Three participants believed a vibration
alert (e.g., wristband) would be useful. One participant commented that the image could ‘freeze’ for a few seconds
after detection.

5 DISCUSSION
The growing use of AI across a range of application domains has led to an increased focus on usable [9, 39],
fair [49, 53], and transparent [4] systems within the HCI community as well as the wider public debate [33, 50].
The successful uptake and deployment of these algorithmic systems does, however, rely on the incorporation of
stakeholders’ knowledge and feedback [62]. As expressed by Zhu et al., “algorithm developers [need] to think not
just about ‘solving problems’ but also to respect the needs, motivations, and values of stakeholders” [62].
In this work, we have used colonoscopy as a case study for the design of visual markers for AI detection

systems in continuously adapting tasks. Colonoscopy is a highly-skilled task, which – despite careful training
and increased quality standards [45] – features extensive miss rates in polyp detection [51, 61]. Furthermore,
colonoscopy is a multifaceted task, involving a team of specialists to inter alia detect, locate, and remove polyps
while navigating a complex organ. As such, we provide a real-world case study for the integration of AI-technology.
Our results highlight clear differences in end-user preference across the seven presented visual markers, with a
wide bounding circle design (Figure 1-I) being the most popular among our respondents. In addition, blue was
the preferred colour option for the visual marker due to its contrasting nature when overlaid on colon footage.
Participants reported positively on their expected adoption of AI support tools in colonoscopy. These results

are in line with participants’ generally positive take on the use of AI support systems in detecting and locating
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polyps (see Figure 3). Although these results appear promising for the future development of clinical AI support
systems, we note that a survey on AI is likely to attract those who are already invested in the topic (participation
bias).

5.1 Designing AI for Continuous Adaptation
Previous work on the design of AI systems has typically modelled the interaction between user and AI as a turn-
taking process (see e.g., [2, 9, 49]). Following this paradigm, users are presented with a single AI recommendation
following an explicit cue (e.g., an on-screen button, “Hey Siri”). This process is repeated as required, with the user
actively in control of changes in the commands given to the AI (e.g., parameter adjustments made on screen).
In the use case explored in this work, however, interaction between user and AI support follows a different
paradigm. Rather than actively requesting the system’s support, the user provides continuous input and, as such,
relies on a more ubiquitous AI system. This results in a continuous interaction between (sustained) user input
(e.g., moving a camera feed) and AI suggestions. Other recent examples from the HCI literature include the use
of gaze-enabled intention recognition [38] and collaborative music improvisation [34] – showcasing how both
implicit and explicit user input can drive continuous AI support systems. We illustrate these different interaction
paradigms in Figure 8.

Fig. 8. Two distinct models of AI support systems. Top: intermittent AI support in which AI suggestions are pro-actively
requested. Bottom: continuous AI support in which the user’s actions and AI support are intertwined.

Continuous adaptation introduces new challenges in the design of AI systems. The HCI and digital health
community therefore needs to ensure that guidelines on the design of AI systems accurately reflect user needs
when the user is not necessarily the starting nor the end point of an interaction, but instead operates along
a continuum. Here, we discuss some of the challenges in relation to current AI-interaction guidelines when
considering continuous AI support applications.
Our results clearly indicate that users want the ability to turn off the AI system as required. This request to

turn off the AI support follows the ‘Support efficient dismissal’ guideline proposed by Amershi et al. [2]. In our
use case, reasons for turning off the AI support may e.g. be when removing a polyp or when the occurrence
of stool in the colon inhibits the AI from accurately detecting elements of interest. However, such use cases
have universal counterparts; respectively the requirement to switch to a non-AI-supported subtask, and the
presentation of data which the AI system is unable to handle. For continuously adapting scenarios, it is critical
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Design Guidelines for
Continuous AI

Rationale Contrast with Intermittent AI

1. Position support information in
close visual proximity to the area of
interest to the user.

Avoid forcing users to switch their
focus during sustained user input,
subsequently missing critical infor-
mation.

In intermittent AI, the recommenda-
tion from the system is typically the
primary content – not the case for
continuous AI.

2. Do not overlay the user’s area of
interest with additional information.

Avoid obfuscating the view and pre-
vent further analysis by the user
(e.g., in case of false positives).

The recommendation “Make clear
what the system can do.” [2] can re-
sult in an overabundance of infor-
mation.

3. Minimise the amount of visual in-
formation presented outside of the
identified ‘area of interest’.

Allow the user to pick up on infor-
mation failed to be identified by the
system (e.g., false negatives). Pre-
vents distraction.

See above.

4. Allow the user tomanually disable
and enable the AI support system.

The user may wish to switch to a
directly related subtask which is un-
supported and potentially frustrated
by the AI system.

Aligns with previous guidelines [2].

5. Display the current operational
state (i.e., ‘on/off’) of the AI support
system.

Ensure that users do not involuntar-
ily leave the AI system turned off
after disabling AI support.

Displaying the operational state is
noncritical for intermittent AI as the
turn-taking interaction immediately
reveals the state.

6. Allow retrospective access to the
explanations of the AI’s recommen-
dations.

Avoid user interruption with non-
critical information and allow user
to obtain explanation following task
completion.

“Make clear why the system did what
it did.” [2] is typically not appro-
priate in-the-moment. Continuous
scenario requires user to focus else-
where.

7. Use contrasting colour in the pre-
sentation of support elements.

Ensure AI recommendation stands
out from user content.

N/A

Table 2. Overview of design guidelines for continuous AI. Presented as an adaptation to the ‘Guidelines for Human-AI
Interaction’ by Amershi et al. [2] which focused primarily on intermittent AI systems.

for the system to inform the user that AI support has been turned off, for example by displaying an icon on the
screen. Involuntarily completing e.g. the remainder of a colonoscopy without AI support could negatively affect
the user’s performance.
Another recommendation from the literature on AI interaction describes the need for explainability; ‘Make

clear why the system did what it did’ [2]. While explainability (and subsequent causability) is key to increasing
the user’s trust and understanding of an AI system [22, 54], the nature of continuous tasks does not allow
for immediate extensive interactions between user and system. Both the available visual space (e.g., computer
screen) and cognitive space (i.e., user’s focus on the task at hand) do not allow for interruption with additional
explanations. Integrating explainability in these applications therefore has to follow a different model. For example,
in the case of colonoscopy, the clinician can be presented with an explanation of individual AI suggestions in
cases of uncertainty while completing the patient’s operative report.
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Finally, the guidelines by Amershi et al. suggest that the interface should ‘Make clear how well the system
can do what it can do’ and ‘Show contextually relevant information’ [2]. These features most closely resembled
our ‘Detection confidence’ design, in which a percentage sign – positioned in the top-left corner of the video –
indicated the certainty with which the AI had detected a polyp. This design, which was voted as least popular,
was considered as distracting and forcing the operator to focus on two locations simultaneously.

Although our results highlight some of the difficulties in applying existing guidelines in novel scenarios, this
attests to the challenges of designing real-life applications. We call on the HCI community to continue to develop
and revisit our shared guidelines as we learn from evaluations of ‘real world’ AI applications. As stressed by
Amershi et al., “Further research is necessary to understand the implications of these potential interactions and
trade-offs for the design of AI systems and to understand how designers employ these guidelines ‘in the wild’.” [2].
We summarise our contributions to human-AI interaction design guidelines in Table 2.

5.2 Integrating AI in Medical Practice
Recent work has highlighted the disconnect between technological advances in AI and the integration of these
breakthroughs in clinical practice [59]. The use of AI technology in a clinical setting raises numerous questions
regarding e.g. data ownership, anonymity, and representation. These issues are not unique to medical practice, but
such issues come to the fore in the medical context, where patient safety, privacy, etc. are paramount, and where
team working and the uniqueness of each patient increase the inherent complexity of the work. In an assessment
of clinical decision-making processes, Yang et al. attribute the repeated failure of AI systems in healthcare to a “lack
of contextual integration in the design of these systems.” [59]. Rather than developing novel stand-alone tools, Yang
et al. suggest that AI should unobtrusively augment existing routines. We have presented an evaluation of different
visual markers as presented on real-world patient footage, increasing ecological validity without compromising
current clinical practice and patient safety. Our methodological approach highlights solutions deemed clinically
acceptable by our target audience; this approach can be readily applied to other research questions. For example,
while we expect similar results in related applications of endoscopy (e.g., upper gastrointestinal tract), we anticipate
that AI-supported imaging during surgery (e.g., in laparoscopy or thoracoscopy) or endoscopy under distinct
circumstances (e.g., small size during fetoscopy) may result in significantly different end-user requirements. Our
findings show that the design of recently developed and deployed colonoscopy support systems (e.g., [3]) fails to
align with end-user requirements – potentially distracting rather than supporting in the goal of polyp detection.
These results can be used to inform future clinical trials of AI support systems.

Although not the primary focus of this study, we note that the overall positive attitude of our participants
towards AI support was complemented by a number of concerns. First, clinicians were aware of the limitations
of AI, and used appropriate jargon to describe inter alia the occurrence of false positives and false negatives. An
analysis of the effect of false positives and false negatives on endoscopists was out of scope for this study, though
our results highlight the importance of studying this topic in more detail from an HCI and system-integration
perspective. Second, as the responsibility of polyp detection lies with the clinicians rather than the support
system, participants were resolute to dismiss visual markers which may interfere with their own ability to identify
polyps. Simultaneously, visual markers which did not provide a sufficient level of support were not positively
received (see Figure 3). Third, medical practitioners are inevitably going to display signs of fatigue during lengthy
procedures. This may affect the level of support that is required by the user and therefore require a change in the
way that the AI system is presented. Our study design could not capture these changes in end-user fatigue and
we therefore cannot assess how continued usage of the system under real-world circumstances would alter our
study outcomes. Fourth, whether or how AI systems affect a clinician’s level of skill and concentration over time
is an unexplored question – raising both opportunities for education and challenges around patient safety. These
four aforementioned concerns highlight opportunities for future HCI research in this domain.
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5.3 Limitations and Future work
The current study presents a first assessment of the design of visual markers through an online survey. Our study
did not capture the actual behaviour of participants in relation to the different designs. Running the study in
a laboratory environment on e.g. a dummy colon was deemed unfeasible for a multitude of reasons. First, the
duration and complexity of such an experiment would have severely limited our population sample given busy
clinical work schedules. Capturing operator behaviour (e.g., detection of polyps) would require the evaluation of
an entire colon per design and compensate for differences between operator detection rate and the variability
of polyp discoverability. Second, we were interested in collecting insights from a variety of end-user roles (e.g.,
assistants) as opposed to solely focusing on gastroenterologists. Third, the use of a survey allowed us to collect
responses from a national population of experts rather than limiting ourselves to a local colonoscopy centre. The
subjects’ specialist knowledge and the required length of the survey were expected limiting factors in the study’s
sample size [52]. However, we argue that by tapping into the domain specific knowledge of experts we were
able to obtain valuable insights. These insights were often not in line with what we had expected, highlighting
the importance of inviting subject specialists. By showing our designs on video footage of patients as opposed
to the use of still images we more closely resemble the real-life interactions of clinical staff, thereby increasing
the study’s ecological validity, while simultaneously providing a practical approach to reach a difficult target
audience while taking into account patient safety.
A second limitation of our study is the number of visual markers we were able to present to participants.

Although we followed a systematic way to generate the visual markers, we did not include complementary visual
modalities (e.g., combining ‘II. Tight bounding box’ and ‘VI. Detection confidence’) in order to limit the time
required to complete the survey. Interestingly enough, none of our participants suggested the combination of
visual markers.

AI-based detection systems will inevitably register false positives. Future work should investigate the effect of
these false positives on both subsequent (clinical) error (i.e., clinician following an erroneous system suggestion)
and a potential decrease in system uptake. This draws a parallel with the more widely investigated concept of
alarm fatigue in hospitals [19], in which system warnings are ignored due to their prevalence. Similarly, the
occurrence of false negatives (i.e., failure to detect) remains an area of concern which can occur due to a variety
of factors, e.g. poor bowel preparation, incomplete coverage of the bowel, or an over reliance on the AI support
system – especially in light of current omission rates (22–27% [51, 61]).
Our study is focused on the use of AI support for colonoscopy. Given the essential role of live imaging in

today’s clinical practice, AI support systems will be embedded in a range of video examination instruments. While
each area faces its unique challenges, how to best present AI results within existing medical imaging applications
is a shared research question. To support the future systematic study of this question in other (medical) imaging
applications we publicly release the source code required to generate the visual markers on any annotated video
material3.

6 CONCLUSION
In this paper we reported on an online survey study examining the design and implementation of a support
system for colonoscopy. Thirty-six domain experts were shown seven unique designs for visual markers overlaid
on real-world patient footage and asked for their opinion on the integration of AI technology in their daily
work. Our findings reflect the trade-offs present in the selected range of visual markers, and provides concrete
recommendations on the implementation of AI for continuously adapting scenarios. Concretely, our results
identify a wide bounding circle with a high-contrast colour (i.e., blue) as the most preferred visual marker design.
While our work focuses on colonoscopy, the implications of our results extend beyond this application area.
3Available in the paper’s supplementary material and at https://github.com/nielsvanberkel/Visual-Markers.
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Future AI applications will be deployed in continuously adapting scenarios (e.g., endoscopic imaging, autonomous
driving, robot-assisted surgery), where the interaction between user and system is not intermittent. This model
of continuous AI support presents novel challenges around localisation of user attention, the tradeoff between
missing critical content or AI recommendations, and the manual interruption and subsequent continuation of
automated support. Balancing these user needs and the novel opportunities provided by AI in daily practice is a
key avenue for HCI and AI researchers.
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A SURVEY QUESTIONS

A.1 Demographics

Age

Gender
◦ Woman
◦ Man
◦ Non-binary
◦ Prefer not to disclose
◦ Prefer to self-describe

What is your professional role?
◦ Gastroenterology Consultant
◦ Gastroenterology SpR
◦ Surgical Consultant
◦ Surgical SpR
◦ Nurse Endoscopist
◦ Assistant - Staff Nurse (not performing endoscopy)
◦ Assistant - Healthcare Assistant (not performing endoscopy)
◦ Other

What is your JAG certification level in colonoscopy? Please indicate:
◦ None
◦ Provisional
◦ Independent (Full certification)
◦ Other - I am not a UK based colonoscopist

Are you a BCSP accredited colonoscopist?
◦ Yes
◦ No
◦ Other - I am not a UK based colonoscopist

How many years have you been performing colonoscopy? Please indicate:
◦ 0-1
◦ 1-2
◦ 2-5
◦ 5-10
◦ 10-15
◦ >15
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Approximately how many colonoscopies have you performed in total? Please indicate:
◦ 0-100
◦ 100-200
◦ 200-500
◦ 500-1000
◦ 1000-2500
◦ >2500

How many colonoscopies do you perform per week on average (diagnostic and therapeutic combined)? Please
indicate:

◦ <5
◦ 5-10
◦ 11-15
◦ 16-20
◦ 21-25
◦ >25

Do you know your current polyp detection rate?
◦ Yes
◦ No

If yes - please type below:

Do you know your current adenoma detection rate?
◦ Yes
◦ No

If yes - please type below:

How much time do you spend on average during a colonoscopy withdrawal? (approximate answer in minutes)

How often do you spend more than six minutes for a colonoscopy withdrawal?
◦ Never
◦ Rarely
◦ Sometimes
◦ Usually
◦ Always

How often do you use dynamic position change during a colonoscopy withdrawal?
◦ Never
◦ Rarely
◦ Sometimes
◦ Usually
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◦ Always

How often do you use Buscopan (hyoscine butylbromide) during a colonoscopy withdrawal?
◦ Never
◦ Rarely
◦ Sometimes
◦ Usually
◦ Always

A.2 AI Perception

How would you describe your willingness to generally incorporate new technology into endoscopy?
◦ I am not willing to incorporate new advances in the field that were not part of my formal training
◦ I incorporate new advances in the field once they are incorporated into international guidelines
◦ I incorporate new advances in the field once I see they have been adopted by leaders in my field
◦ I incorporate new advances in my field if they are published in highly respected scientific journals
◦ I try to incorporate new technology into my practice where I can, regardless of where it’s published I
actively seek out new technology to use in my practice

How excited are you about the development of Artificial Intelligence technology for endoscopy?
◦ Not excited at all
◦ Slightly excited
◦ Moderately excited
◦ Very excited
◦ Extremely excited

How concerned are you about the development of Artificial Intelligence technology for endoscopy?
◦ Not concerned at all
◦ Slightly concerned
◦ Moderately concerned
◦ Very concerned
◦ Extremely concerned

How likely are you to use validated Artificial Intelligence or Computer-Aided Diagnosis software to help detect
polyps if it was available?

◦ Very unlikely
◦ Unlikely
◦ Neutral
◦ Likely
◦ Very likely
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A.3 Videos previews

In this survey you will be presented with a number of visual markers overlaid on footage obtained from two
separate colonoscopies. The videos are about 9 seconds in duration. You are asked to watch each video from start
to finish. We have included one of the videos below without overlay. Please watch the video before proceeding to
the next page. This video contains one polyp.

[Video]

We have included the other video below without overlay. Please watch the video before proceeding to the next
page. This video contains one polyp.

[Video]

A.4 Videos markers (14 videos – 7 apparent, 7 challenging)

Please watch the above video, showing [design], in its entirety. Please indicate how much you agree with each of
the following statements in relation to the video shown above;

[Video]

I would detect more polyps using this visual marker as compared to without this marker.
◦ Strongly disagree
◦ Disagree
◦ Somewhat disagree
◦ Neither agree nor disagree
◦ Somewhat agree
◦ Agree
◦ Strongly agree

I would locate polyps faster using this visual marker as compared to without this marker.
◦ Strongly disagree
◦ Disagree
◦ Somewhat disagree
◦ Neither agree nor disagree
◦ Somewhat agree
◦ Agree
◦ Strongly agree

This visual marker would interfere during polypectomy.
◦ Strongly disagree
◦ Disagree
◦ Somewhat disagree
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◦ Neither agree nor disagree
◦ Somewhat agree
◦ Agree
◦ Strongly agree

This visual marker would interfere with the regular visual display.
◦ Strongly disagree
◦ Disagree
◦ Somewhat disagree
◦ Neither agree nor disagree
◦ Somewhat agree
◦ Agree
◦ Strongly agree

Please provide any thoughts, suggestions, or comments you may have on this visual marker (optional).

A.5 Rank

Rank the following visual markers in order of preference by dragging them up or down (most preferred marker
at the top). [7 still images]

Please explain your choice of preferred visual marker (optional).

Would this order of preference remain the same for difficult to detect polyps?
◦ Yes, order of preference remains the same.
◦ No, I would have a different order of preference.

A.6 Rank colour

Rank the following colour options in order of preference by dragging them up or down (most preferred colour at
the top) irrespective of the design of the visual marker. [7 still images]

Please explain your choice of preferred colour option (optional).

A.7 Interaction

In addition to the visual marker shown on the screen, should any additional modalities be activated when a
potential polyp is detected? Select as many options as desired.

◦ Yes, in addition to the visual marker I want to hear a sound when a potential polyp is detected.
◦ Yes, in addition to the visual marker I want to feel a vibration on my skin (e.g., through an armband) when
a potential polyp is detected.
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◦ Yes, in addition to the visual marker I want
◦ No, no additional modalities should be included.
◦ I don’t know whether any additional modalities should be included.

Please explain your choice of preferred / no additional modalities (optional).

Should the system allow you to turn the visual markers off (and back on again) during colonoscopy?
◦ Yes, it should be possible to turn the visual markers on/off during colonoscopy.
◦ No, the system should remain on throughout the entire colonoscopy.
◦ I don’t know whether it should be possible to turn the visual markers on/off system should be able to be
turned on and off.

How should you be able to turn the visual markers on and off? Select as many options as desired.
◦ I want to turn on/off the visual markers using a physical button on the colonoscope.
◦ I want to turn on/off the visual markers using a physical button on a separate box.
◦ I want to turn on/off the visual markers using a foot pedal on the floor.
◦ I want to turn on/off the visual markers using a voice command (as used with e.g. Siri on an iPhone).
◦ I want the nurse assistant to be able to turn on/off the visual markers.
◦ I want to be able to turn on/off the visual markers using

Please explain your choice with regards to turning the visual markers on and off (optional).

Please list situations in which you would turn the visual markers off.
What would be your preferred location for displaying the visual marker?

◦ The visual marker should be overlaid (integrated) on the same one monitor that is used during standard
colonoscopy.

◦ The visual marker should be shown on a separate and directly adjacent monitor, copying over the video
from the colonoscope and overlaying the visual marker.

◦ The visual marker should be shown on
◦ No visual marker should be displayed. Instead,
◦ I don’t know where the visual marker should be displayed.

, Vol. 1, No. 1, Article . Publication date: January 2021.


	Abstract
	1 Introduction
	2 Related work
	2.1 Challenges in Colonoscopy
	2.2 Artificial Intelligence in Healthcare
	2.3 Video Annotation

	3 Study design
	3.1 Materials
	3.2 Participants
	3.3 Analysis

	4 Results
	4.1 Detection & Localisation
	4.2 Interference
	4.3 Marker design
	4.4 Workplace Integration

	5 Discussion
	5.1 Designing AI for Continuous Adaptation
	5.2 Integrating AI in Medical Practice
	5.3 Limitations and Future work

	6 Conclusion
	Acknowledgments
	References
	A Survey questions
	A.1 Demographics
	A.2 AI Perception
	A.3 Videos previews
	A.4 Videos markers (14 videos – 7 apparent, 7 challenging)
	A.5 Rank
	A.6 Rank colour
	A.7 Interaction


