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Abstract—Performance for optical fibre transmissions can be
improved by digitally reversing the channel environment. When
this is achieved by simulating short segment by separating the
chromatic dispersion and Kerr nonlinearity, this is known as dig-
ital back-propagation (DBP). Time-domain DBP has the potential
to decrease the complexity with respect to frequency domain
algorithms. However, when using finer step in the algorithm, the
accuracy of the individual smaller steps suffers. By adapting the
chromatic dispersion filters of the individual steps to simulated or
measured data this problem can be mitigated. Machine learning
frameworks have enabled the gradient-descent style adaptation
for large algorithms. This allows to adopt many dispersion filters
to accurately represent the transmission in reverse.

The proposed technique has been used in an experimental
demonstration of learned time-domain DBP using a four channel
64-GBd dual-polarization 64-QAM signal transmission over a 10
span recirculating loop totalling 1014 km. The signal processing
scheme consists of alternating finite impulse response filters with
nonlinear phase shifts, where the filter coefficient were adapted
using the experimental measurements. Performance gains to lin-
ear compensation in terms of signal-to-noise ratio improvements
were comparable to those achieved with conventional frequency-
domain DBP. Our experimental investigation shows the potential
of digital signal processing techniques with learned parameters
in improving the performance of high data rate long-haul optical
fibre transmission systems.

I. INTRODUCTION

The non-linear fibre channel has a limited capacity due to
increasing nonlinear signal distortions with increasing trans-
mission power, leading to a peak in achievable information
rate (AIR) for a fixed bandwidth. One approach to increase
this maximum AIR is to mitigate the non-linear distortion.
This can be achieved with digital signal processing (DSP)
by solving the differential equation that describes the non-
linear fibre response backwards, using the received signal as
the initial condition. This method, known as split-step Fourier
method (SSFM) based digital back-propagation (DBP)[1],
[2], has been shown to allow increased data throughput and
transmission reach [3], [4].

A significant drawback of the DBP technique is its computa-
tional complexity, making it challenging to implement in real-
time systems. In conventional frequency-domain DBP (FD-
DBP), dispersion compensation is performed in the frequency
domain and nonlinear phase shifts are corrected in the time

domain, requiring repeated conversions of the signal between
the time and frequency domains using fast Fourier transforms.
This leads to high computational complexity, particularly when
small step-sizes, and hence a large number of steps, are used to
achieve high accuracy. To reduce complexity, both dispersion
and nonlinearity could be compensated in the time-domain
(TD-DBP), with the dispersion compensation being carried
out with tap-and-delay finite impulse response (FIR) filters
[5]. However, low-order FIR filters are fundamentally unable
to accurately compensate small amounts of dispersion. An
approach to overcome this drawback was proposed in [6],
[7], and involves applying machine-learning techniques to
optimise the combined response of all the cascaded filters. The
approach leverages the similarities between time-domain DBP
and deep feed-forward neural networks; in both structures,
linear filters and nonlinear functions are interleaved. The
recent rapid advances in algorithms, and readily available
software packages, allow implementation of these algorithms
for the optical transmission channel.

Machine learning has been subject to a lot of research
interest in recent years for communication systems [8], [9],
in particular optical fibre systems[10], [11], [12]. However,
often the investigated techniques are entirely substituting the
function of the conventional digital processing modules with
a general universal function approximator enabled by an
artificial neural network. In contrast, this work utilises to
a higher extend prior domain knowledge of the task being
performed and individual sub-modules are designed to have
specific tractable tasks, e.g., receiver side chromatic dispersion
and Kerr phase shift compensation.

In this work, we experimentally demonstrate, for the first
time, learned time-domain digital back-propagation. First, the
method of training the required time-domain filter weights is
explained. Next, the performance of the learned TD-DBP is
assessed for 4-channel 64 GBd polarisation division multiplex-
ing (PDM)-64QAM transmission over 1014 km, and compared
with the performance of conventional frequency-domain DBP.
Finally, the resulting filter tap weights and frequency response
of the FIR filters are analysed. We observed performance
improvements over linear compensation comparable to those
obtained using the conventional FD-DBP implementation.
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Fig. 1. a) Experimental configuration with 4×30 GBd channels and 101.4 km recirculating loop. b) Function diagram of the receiver DSP for the L-TDDBP.

II. DIGITAL BACK-PROPAGATION

DBP implements the non-linear Schrödinger equation
(NLSE) for each step in two parts. For a step starting at
distance z along the fibre, firstly, the chromatic dispersion and
loss are applied, in the frequency domain (in the case of the
conventional FD-DBP implementation) as a linear operator,
and the non-linear phase shift is performed in the time domain,
using the respective transformations[13, Ch. 8];

E(ω, z + ∆z) = eα∆zejK(ωT )2E(ω, z) (1)

E(t, z + ∆z) = e−jγ∆z|Ez(t)|2E(t, z), (2)

where α is fibre loss, ∆z is fibre step length, K = β2∆z
2T 2 , ω

angular frequency, T sampling period, and β2 group velocity
dispersion, γ the nonlinearity coefficient and |Ez(t)|2 the
normalised, step-averaged, instantaneous optical power.

In the time-domain DBP approach, the chromatic dispersion
part of each step is applied using a time-domain finite impulse
response (FIR) filter (tap-and-delay filter). The full-band least-
squares FIR filter design from [14] could be used with a total
number of taps given by Nc ≤ 2b2πKc + 1. However, as
described in [6], if the filter tap weights given by [14, Eq. (13)]
are used for the multiple cascaded low-order FIR filters in the
DBP, the ripples introduced into the frequency response result
in large performance penalties, negating the gains achieved
through the non-linearity mitigation. The solution proposed in
[6] is to update all the FIR filter weights simultaneously using
algorithms which have been developed to update the weights
in deep feed-forward neural networks. The method consists of
implementing the dispersion as a convolutional layer and the
fibre phase shift as a non-linear activation function.

In this work, the deep learning of the filter weights (equiva-
lent to a neural network’s layer parameters) is implemented in
Tensorflow using the RAdam optimiser[15]. Identical complex
FIR filter weights are applied to both polarisations in each
step, reducing the overall number of weights to be optimized.
Initialisation of the time-domain filter taps was carried out via
numerical simulation of the fibre transmission link for a single
channel. The forward propagation was modelled using a small
NLSE fibre step size (100 m) at a launch power of 5 dBm

(beyond optimum launch power for linear compensation).
Starting from the least squares solution[14], a set of 10
filters was designed using a 10 span simulation. Note, these
filters purely compensate fibre transmission and no transceiver
impairments. Further training of the filters was carried on the
experimental waveforms, before the performance was tested.

III. EXPERIMENTAL SETUP

The experimental setup is shown in Fig. 1(a). A fibre
transmission distance of 1014 km was emulated using a
recirculating loop. The waveform of the 64-QAM 64-GBd
channel under test (CUT) was generated offline and sent to two
channels of a 33-GHz 92-GSa/s arbitrary waveform generator
(AWG) and, using a dual-polarization IQ modulator (IQM),
modulated the outputs of two <100 kHz external cavity
lasers (ECLs). Two additional 64-QAM 64-GBd aggressor
channels were modulated using an additional AWG with a
dual polarization IQM onto two ECLs and interleaved with
the other channels to achieve uncorrelated sequences between
neighbouring WDM channels. The recirculating loop with
a 101.4 km span, a polarisation scrambler (PS) and three
Erbium doped fibre amplifiers (EDFA) and an optical band-
pass filter had the signal circulating 10 times, totalling a 1014
km transmission. At the receiver an optical band pass filter
followed by an EDFA extracts the CUT for detection with
a coherent receiver employing 63-GHz bandwidth 160-GS/s
analogue-to-digital converters.

For this experimental demonstration, 10 steps per span were
chosen for the learned TD-DBP. To take fibre loss into account,
non-uniform FIR filter lengths were employed, implementing
steps with equal power differences between their inputs and
outputs. For the fibre nonlinearity compensation of 10 spans
of 101.4 km each, the parameters were α of 0.16 dB/km, β2

of -20.18 ps2/km and γDBP of 0.8 1/W/km. The 10 FIR filters
used in the TD-DBP employed a total of 270 complex-valued
tap weights at a sampling rate of 128 GSa/s. For the FD-
DBP, 50 equidistant steps/span were used. This requires 2 ×
10×50 FFT operations per polarisation, while in the TD-DBP
scheme the use of FFT operations is circumvented, lowering
the computational complexity.



Next, for the processing of experimental data, the filter
weights from simulation were used for initialisation. To pre-
vent the dispersion filters from learning the response of the
transceiver impairments, an additional 2x2 multiple input, mul-
tiple output (MIMO) filter was added before applying digital
back propagation, as shown in Fig. 1(b). Thus, the resulting
structure has two linear MIMO equalisers, compensating for
PMD and transmitter and receiver impairments. Note that in
this way, using the automatic differentiation in Tensorflow, the
filter that is applied prior the link compensation is also opti-
mized through gradient descent. A root-raised cosine (RRC)
filter was applied before the MIMO blocks. The carrier phase
estimation was achieved by inserting pilot symbols. One in
32 symbol was a known quadrature phase shift keyed symbol
(QPSK). Interpolation of the phase between the pilot symbols
was performed using a Wiener filter [16, Eq. (32)], following
which a mean-squared-error cost is calculated.

During the training procedure, first the linear filters at both
sides of the link compensation were optimised. Subsequently,
all filters were updated on each optimisation step. For the
FD-DBP, the α, γ and launched power were swept for
optimisation, after which pilot-aided DSP was applied. For
the experimental waveform, a single randomly generated 216-
symbol waveform was used. We split the bit sequence and
corresponding received waveforms into two datasets. The first
52224 symbols (80%) were used as training data for updating
the filter weights. The remaining 13312 symbols (20%) were
used as testing data, to obtain results reported in the figures
presented.

IV. RESULTS

The launched power was increased with 1 dB increments
from -6 to +8 dBm per channel. The resulting SNR, defined
as E[|X|2]

E[|X−Y |2] , where X and Y are the transmitted and received
signal respectively. Fig. 2(a) shows a comparison of achieved
SNR for TD-DBP, FD-DBP and EDC. The TD-DBP and FD-
DBP are implemented using 10 and 50 steps per span respec-
tively. Both schemes provide similar performance improve-
ments from non-linearity compensation, with slightly higher
accuracy in the high power regime for the conventional FD-
DBP scheme, due to the larger number of steps used. However,
the TD-DBP achieves a higher SNR in the low power regime,
suggesting a better linear compensation. Fig. 2(b) compares
TD-DBP with two learned linear compensation strategies. The
figure shows the learned DBP performance for two cases, the
proposed non-linear mitigation scheme, and the same scheme
with γDBP = 0, i.e., providing only linear compensation and a
scheme where the whole chromatic dispersion is compensated
in a single filter. For a low launched power into the fibre,
the first two schemes show comparable performance, while a
non-linearity mitigation gain of 0.3 dB is achieved at optimal
launch powers. Using a single filter achieves better linear gain,
but converges to the γDBP = 0 method in the high launched
power regime.

To confirm that the algorithm is performing digital back-
propagation, i.e., approximating the SSFM model, the ampli-
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Fig. 2. a) SNR vs. launched power for learned TD-DBP compared to
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Fig. 3. Amplitude response and group delay of the 10 individual filters used
every span. Bottom right: combined response of all 10 cascaded filters.



tude response and group delay of the 10 individual filter used
each span are plotted in Fig. 3. The expected response is an
all-pass filter (H) with a linear group delay (∆τ ), compensa-
tion for chromatic dispersion. It can be seen that, while the
individual filters have significant ripples, the combined filter,
depicted as the last subplot of Fig. 3, has an almost perfect
response within the signal bandwidth, with a flat amplitude
response and a smooth group delay.
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Fig. 4. The auto-correlation of the learned single filter used to compensate
chromatic dispersion.

V. CONCLUSION

We experimentally demonstrated learned time-domain digi-
tal back-propagation. Our experiment concentrates on wide-
band multi-channel long-haul optical transmission systems.
The learned algorithm was verified to approximate the NLSE
model, showing flat amplitude response and smooth group
delay for the cascaded filters. Furthermore, we highlight the
improvements stemming from linear and non-linear compen-
sation. We show that the investigated method achieves an SNR
improvement of 0.3 dB due to non-linearity mitigation, which
is comparable to the conventional mitigation algorithms.
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