
Concurrent Program Verification With
Invariant-guided Underapproximation

Sumanth Prabhu S1, Peter Schrammel2, Mandayam Srivas1,
Michael Tautschnig3, and Anand Yeolekar4

1 Chennai Mathematical Institute, Chennai, India,
2 University of Sussex, Brighton, UK,

3 Queen Mary University of London, UK,
4 Tata Research Development and Design Centre, Pune, India

Abstract. Automatic verification of concurrent programs written in
low-level languages like ANSI-C is an important task as multi-core archi-
tectures are gaining widespread adoption. Formal verification, although
very valuable for this domain, rapidly runs into the state-explosion prob-
lem due to multiple thread interleavings. Recently, Bounded Model Check-
ing (BMC) has been used for this purpose, which does not scale in prac-
tice. In this work, we develop a method to further constrain the search
space for BMC techniques using underapproximations of data flow of
shared memory and lazy demand-driven refinement of the approxima-
tion. A novel contribution of our method is that our underapproximation
is guided by likely data-flow invariants mined from dynamic analysis and
our refinement is based on proof-based learning. We have implemented
our method in a prototype tool. Initial experiments on benchmark ex-
amples show potential performance benefit.

1 Introduction
Automatic verification of concurrent programs written in low-level languages like
ANSI-C is an important task as multi-core architectures are gaining widespread
adoption. Difficulty in development of programs due to concurrency and differ-
ent memory models of processors underlines the need for tool support. Bounded
Model Checking (BMC) has been proposed as a solution for this purpose which
tries to ferret shallow bugs limiting unwinding depth [1], number of context-
switches [2], or number of writes [3, 4] as a bounding parameter to restrict search
space and manage complexity. In these techniques, the control flow of the con-
current program is sequentialized by choosing an arbitrary thread order, and
then modeling the effect of all interleavings by symbolically encoding the pos-
sible read-write partial orders as non-deterministic data-flow constraints on all
behaviors up to the chosen BMC bounding parameter.

Contributions. In this work, we develop a method to further restrict proof
search space by using semantic underapproximations of possible data flow (i.e.,
write-to-read relations in happens-before orders) of shared memory accesses and
lazy, on-demand refinement of the approximation. The novel contributions of
our work are the following:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/384445367?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1. Our underapproximation is guided by likely data-flow invariants for the pro-
gram mined from dynamic analysis.

2. We perform automatic refinement of the approximation based on learning
from partial proofs.

3. We present an implementation of the method in a prototype tool inside
CBMC5. The tool fully automates extraction of likely invariants, construc-
tion of the underapproximations and the refinement loop.

4. We report results of experiments we have run on a set of benchmarks.

2 The Method

In practice concurrent programs are developed with synchronization techniques
such as locks to protect shared memory. Even when explicit locks are not used,
the program semantics may constrain data flow. The search space considered by
BMC techniques considered earlier should thus be restricted to the feasible data
flow. To illustrate this problem and our method we use an example program
shown in Fig. 1.

1 void* t1() { 1 void* t2() {

2 while(read_y()<NUM) { 2 int t, tmp1, tmp2;

3 int tmp1, tmp2; 3 while(read_y()<NUM) { }

4 tmp1=read_y(); 4 t=read_y();

5 write_y(tmp1+1); // y=y+1 5 tmp1=read_x();

6 tmp1=read_x(); 6 tmp2=read_y();

7 tmp2=read_y(); // x=x+y 7 write_y(tmp1+tmp2); // y=x+y;

8 write_x(tmp1+tmp2); 8 assert(read_y()==t+read_x());

9 }} 9 }}

Fig. 1. Motivating example

Here two threads are executing functions t1, t2 and x, y are global variables
initialized to 0. This program is not safe as the following execution violates the
asserted condition: y is NUM−1; t12, t13, t14, t15, t23, t24, t25, t26, t16, t17, t18, t12,
t27, t28. For this program the encodings of [1] and [4] consider two writes (t15
and t27) for reads at t14 and t17. However, by considering only local writes
(t15) we can still find the assertion violation in a more constrained model as
shown in the previous execution trace. If we were unable to detect an error then
we would have to refine the model. Now suppose we modify the program by
swapping lines t16 − t18 with lines t14 − t15, then it is indeed a true invariant
that t14 and t17 will always read from the local write. In this case we can
complete verification without refining, if we are able to detect that they are true
invariants or the underapproximation is sufficient for verifying the property at
hand. We use dynamic analysis for this purpose. In particular we extract likely

5 http://www.cprover.org/cbmc/



invariants on data flow following [6]. For instance, in most executions of the
program in Fig. 1, reads at t14 and t17 will refer only to the local write (t15)
due to the spin-lock like condition in t23.

If the set of possible executions of a given program is represented as LC ∩
LD, where LC is the set of executions from the control-flow graph and LD is
the allowed data flow in underlying memory model, then our tool starts with
LC ∩ LD′ , where LD′ ⊆ LD. It either proves that LD \ LD′ is irrelevant to the
property or unfeasible, or refines LD′ towards LD. This has the advantage that
if the program is unsafe in the restricted model (as shown on Fig. 1) then we can
find a counterexample earlier; otherwise we explore data flows which are only
relevant to the property. To construct an initial LD′ such that LD′ ⊆ LD we use
likely invariants on data flow following [6].

We use unsatisfiable cores produced by a SAT solver for refinement of our
data-flow invariants on a demand-driven basis. Our refinement algorithm works
as shown in Fig. 2. We start with a Boolean formula, which is constructed by
converting the conjunction of given program (P ), negation of a property (φ)
and a set of constraints (Inv := I1 ∧ . . . ∧ In) to Boolean form (CNF) using
an appropriate method (like bit-blasting). This yields an underapproximation of
the original formula (P ∧ ¬φ), which is passed to a SAT solver. If the formula
is satisfiable then we deduce that the input program is unsafe. If, however, the
formula is unsatisfiable then we check whether any of I1 . . . In from Inv are
part of the unsatisfiability proof (unsatisfiable core) C. If none of the clauses
originating from I1 . . . In are present in C then we decide that the input program
is safe. Otherwise we consider Inv := {I1, . . . , In} \ C for the next iteration.

Lemma 1. Soundness: If our algorithm terminates with the outcome “Safe”,
then the property φ is guaranteed to hold; if it terminates with “Unsafe” then φ
is violated.

Proof: In symbolic BMC, the program and the assert predicate is converted to
a Boolean formula of the form P ∧ φ, where φ is the negation of the asserted
predicate. To this formula we conjoin additional constraints I1∧ . . .∧ In to get a
Boolean formula P := P ∧ φ ∧ I1 ∧ . . . ∧ In. Here P , φ and I1 . . . In are in CNF.
We declare a given program as Unsafe when P is satisfiable. It is easy to see
that if P is satisfiable then so is P ∧φ. This implies that P ∧φ is also satisfiable
and hence program is unsafe as φ is the negation of the asserted predicate.
We mark a given program as Safe when C ∩ {I1 . . . In} = ∅, where C is an
unsatisfiable core. By definition, C is unsatisfiable and C ⊆ P . Therefore we
conclude that C ⊆ (P ∧ φ) as C ⊆ P and C ∩ {I1 . . . In} = ∅. Since C is
unsatisfiable P ∧ φ is also unsatisfiable as P and φ are in CNF.
This proves the soundness of our algorithm.

Lemma 2. Completeness: Our algorithm always terminates for a finite-state
concurrent program.

Proof: We start with P := P ∧ φ ∧ I1 ∧ . . . ∧ In. At each iteration we either
decide safety of a program or consider {I1 . . . In} \ (C ∩ {I1 . . . In}), where C is



Fig. 2. Refinement flowchart Fig. 3. Design of the tool

an unsatisfiable core. If we proceed without deciding about safety of the given
program we will have P := P ∧φ after a maximum of n iterations. This formula
is the original formula which can be decided. Hence, we always terminate in at
most n+ 1 iterations.

3 Implementation

Our tool operates in two stages, shown in Fig. 3. First, likely invariants are gen-
erated by dynamic analysis, which are used to construct an underapproximation
of the input program. In the second stage the tool performs SAT-based bounded
model checking and refinement on the underapproximated input program. In
subsequent sections we provide details of each stage.

3.1 Likely Invariant Generation and Constraints

The compiled input program is passed to binary instrumentation built using
PIN [5]. We instrument shared memory instructions to collect execution traces,
which are analyzed to detect three classes of likely invariants following [6]. The
generated invariants are sequences of tuples where each tuple consists of a loca-
tion of the instruction in the source code, the name of the variable on which the
instruction operates, and the type of instruction (read or write).

These invariants are passed to CBMC, together with the input program
and unwinding depth, via newly added options. Option --refine-cpu indicates
to CBMC to invoke our changed code path. Options --invariant-strategy l and
--invariant-file file-name specify that likely invariants are to be read from file-
name for underapproximation. These likely invariants are considered while con-
structing the rf relation: for reads appearing as likely invariants only writes
that are present in the corresponding definition set are considered. In order to
fall back to the original rf relation during refinement we add a switch vari-
able while constructing the rf relation, which, when disabled, yields the orig-
inal rf relation. For example, we construct the following formula: switchv1

⇒
(rv1 = wi1

v1 ∨ w
i2
v1 ∨ . . . w

im
v1 ) ∧ ¬switchv1 ⇒ (rv1 = w1

v1 ∨ w
2
v1 ∨ . . . w

n
v1), where



rv1 = w1
v1 ∨w

2
v1 ∨ . . . w

n
v1 is the original rf relation, wi1

v1 . . . w
im
v1 are writes corre-

sponding to rv1 in the definition set and w1
v1 . . . w

n
v1 is the actual set of writes in

the program. These constraints along with the unwound program and property
are converted to a Boolean formula [1].

3.2 Refinement

We have implemented the refinement algorithm of Fig. 3 in CBMC. Initially,
all switch variables switchvi are true. These constrain the rf relation as seen in
Section 3.1, and will act as constraints I1 . . . In. We pass the Boolean formula
constructed above to a SAT solver, which has the capability of generating an
unsatisfiability proof. If the program is decided to be unsafe, a counterexample
is returned. Otherwise we perform refinement as explained earlier.

4 Experiments

Our experiments address the following questions:
1. How effective are likely data-flow invariants in reducing the proof search

space for verification? We measured the number of considered writes with
our approach relative to the total possible writes of an unconstrained proof.

2. Does such a reduction in search space translate to a reduction in verification
run time? We measure the SAT solver’s time spent on a proof.

A reasonable question to ask related to the second item above is why can
one expect SAT solver time to reduce by constraining proof search space. Note
that we constrain search space by adding additional constraints (invariants)
to the formula sent to the solver. Typically the distribution of solving times
over degrees of constraining has a peak in the middle of the spectrum. That is,
problems that are either under-constrained or over-constrained are easy because
solvers encounter few conflicts. The latter because solver gets a solution mostly
by propagation, the former because you get a solution mostly by making decisions
only. The idea of adding additional constraints is to get us out of the middle of
the peak towards the over-constrained side, which should make it easier for the
solver although the formula is larger in size.

We ran our our tool on a set of targeted benchmark programs as well as
benchmark programs from SV-COMP (pthread and pthread-atomic directories).
The targeted benchmarks were constructed based on concurrent algorithms that
had interesting data-flow invariants, e.g., programs that exhibited a large number
of writes in possible atomic sections and different properties. Our experiments
were run on a system with an i3 CPU (1.70 GHz) and 4GB RAM, running
GNU/Linux OS. Our tool, the benchmark programs, and instructions to repeat
our experiments are available in public [7]. For mining invariants, every program
was executed to completion on random inputs and random interleaving for up
to 50 execution traces. Since invariants were mined on limited runs there is no
a-priori guarantee that they were true invariants. Table 1 shows the results corre-
sponding to the targeted benchmark programs. We have experimented with both
safe and unsafe programs and different unwindings as shown in columns labeled
Type and U. The column Writes Saved indicates the total number of writes that



were not considered when compared to the original encoding of CBMC. This is
measured by taking the difference between the total number of writes that is
considered in CBMC and the total number of writes considered with constraints
for all reads. This will be 0 if we fall back to the original model after refinement
(for example, 7.c). The Refinement columns indicate the number of constraints
added in the beginning, the number of constraints remaining when a decision
was taken, and the total number of iterations completed. The overall time taken
by the SAT solver for CBMC and our tool with likely invariants encoded as
constraints, as explained in Section 3.1, are shown in columns CBMC and LI,
respectively.

Our main observations are:
1. In all our targeted cases the mined invariants have been effective in reducing

the proof search required to be considered as indicated by the numbers in
the Writes Saved column. This shows that use of good invariants can have
a potential impact in reducing proof complexity.

2. There has been a gain in speed in roughly half the number of cases (shown
as bold face entries in File in Tab. 1).

3. However, the effect of the underapproximations on the reduction of the SAT
solver time has been less significant. In some cases, we have observed that the
SAT solver is slowed down even when there has been a significant reduction
in the number of writes.

How can one explain observations 2 and 3, especially 3? SAT solver time is
function of size of the formula as well as the number of variables. The formula
representing the underapproximation is usually much larger (in terms of number
of clauses) than the original model, which is one possible explanation for ob-
servation 3. To get evidence in support of this explanation, we constructed the
underapproximated model more directly by eliminating the unnecessary writes
at the partial-encoding itself (instead of adding them as clauses) resulting in
smaller formulas. The NoR column shows the SAT numbers when run on this
directly encoded model. As the numbers indicate this method of encoding re-
duces SAT time in most cases. There were a few exceptions shown by numbers
in italics font. (TO indicates more than 200s.) One disadvantage of using this
encoding is that it is not amenable for easy refinement.

Our results [8] on the SV-COMP benchmarks were mixed and not as good
as for the targeted set. Since most SV-COMP benchmarks are stripped down to
their minimal functionality, (1) the total number of memory accesses themselves
were very small in most examples and (2) our dynamic analysis step produced
very few invariants that could be used to cut down the partial read-write orders.

5 Conclusions and Future Work

We have developed a sound and complete tool to formally verify concurrent
ANSI-C programs by automatically constructing underapproximations using
likely data-flow invariants and incrementally refining them to get efficient proofs.

Our experimental results show that the tool can lead to reductions in proof
search space and verification time on programs the synchronized behaviors of



File Type U CBMC LI Refinement Writes Saved NoR

1.c Unsafe 10 14.06s 13.541s 87 to 87 in 1 1235/2390 21.719s
2.c Unsafe 10 2.835s 2.034s 28 to 28 in 1 450/912 1.734s
3.c Unsafe 20 21.127s 10.359s 58 to 58 in 1 1900/3727 16.87s
4.c Safe 16 39.633s 23.987s 107 to 88 in 5 1266/4489 6.818s
5.c Unsafe 16 28.273s 34.923s 93 to 93 in 1 2415/3710 5.813s
6.c Unsafe 21 15.984s 11.416s 42 to 42 in 1 1720/3144 12.832s
7.c Safe 6 48.716s 44.519s 22 to 0 in 4 0/599 0.598s
8.c Unsafe 11 4.567s 5.909s 32 to 32 in 1 685/1194 5.41s
9.c Unsafe 10 31.835s 17.196s 76 to 76 in 1 2115/3060 8.553s
10.c Unsafe 10 101.484s 29.699s 76 to 76 in 1 1935/3060 TO
11.c Unsafe 9 38.624s 20.81s 83 to 83 in 1 1744/2868 16.439s
12.c Unsafe 9 62.895s 155.681s 68 to 68 in 1 1935/3060 3.03s
13.c Safe 10 7.392s 10.993s 22 to 8 in 3 144/736 8.4s

Table 1. Result of experiment on targeted benchmarks

which significantly constrain the possible read-write-orders that can be captured
in the form of data-flow invariants. Producer-consumer-like programs, where
consumers can only read from producers on a priority-based schedule, is one
example that exhibits this characteristic. Our future work is aimed at eliminating
some of the bottlenecks: (1) Alternate methods to encode the invariants without
increasing size of the formulas, (2) Integrate an overapproximation step during
refinement. (3) Interface with proficient open-source invariant mining tools. In
related work, the use of underapproximations using number of of interleavings
as a refinement metric was proposed in [9]. Distinction of our work is in the use
likely invariants for this purpose.

References
1. Alglave J, Kroening D, Tautschnig M. Partial orders for efficient bounded model

checking of concurrent software. CAV. 2013.
2. Qadeer S, Wu D. KISS: keep it simple and sequential. ACM SIGPLAN. 2004.
3. Tomasco E, Inverso O, Fischer B, La Torre S, Parlato G. Verifying concurrent

programs by memory unwinding. TACAS. 2015.
4. Yeolekar A, Madhukar K, Bhutada D, Venkatesh R. Sequentialization Using Times-

tamps. TAMC. 2017.
5. Luk CK, Cohn R, Muth R, Patil H, Klauser A, Lowney G, Wallace S, Reddi VJ,

Hazelwood K. Pin: building customized program analysis tools with dynamic in-
strumentation. ACM SIGPLAN. 2005.

6. Shi Y, Park S, Yin Z, Lu S, Zhou Y, Chen W, Zheng W. Do I use the wrong defi-
nition?: DeFuse: definition-use invariants for detecting concurrency and sequential
bugs. ACM SIGPLAN. 2010.

7. https://github.com/sumanthsprabhu/atva_tool
8. http://www.cmi.ac.in/%7Esumanth/dokuwiki/doku.php?id=invariants:

underapproximation:experiments#sv-comp
9. Grumberg O, Lerda F, Strichman O, Theobald M. Proof-guided

underapproximation-widening for multi-process systems. ACM SIGPLAN.
2005.


