
1

Fast ReRoute on Programmable Switches
Marco Chiesa∗, Roshan Sedar†, Gianni Antichi‡,

Michael Borokhovich§, Andrzej Kamisiński¶, Georgios Nikolaidis‖, Stefan Schmid∗∗
∗KTH Royal Institute of Technology †Telecommunications Technological Center of Catalonia

‡Queen Mary University of London §Independent Researcher ¶AGH University of Science and Technology
‖Intel, Barefoot Switch Division ∗∗University of Vienna

Abstract—Highly dependable communication networks usually
rely on some kind of Fast Re-Route (FRR) mechanism which
allows to quickly re-route traffic upon failures, entirely in the
data plane. This paper studies the design of FRR mechanisms for
emerging reconfigurable switches. Our main contribution is an
FRR primitive for programmable data planes, PURR, which pro-
vides low failover latency and high switch throughput, by avoiding
packet recirculation. PURR tolerates multiple concurrent failures
and comes with minimal memory requirements, ensuring compact
forwarding tables, by unveiling an intriguing connection to
classic “string theory” (i.e., stringology), and in particular, the
shortest common supersequence problem. PURR is well-suited
for high-speed match-action forwarding architectures (e.g., PISA)
and supports the implementation of a broad variety of FRR
mechanisms. Our simulations and prototype implementation (on
an FPGA and a Tofino switch) show that PURR improves TCAM
memory occupancy by a factor of 1.5x–10.8x compared to a naı̈ve
encoding when implementing state-of-the-art FRR mechanisms.
PURR also improves the latency and throughput of datacenter
traffic up to a factor of 2.8x–5.5x and 1.2x–2x, respectively,
compared to approaches based on recirculating packets.

Index Terms—programmable networks, network robustness,
fast reroute, fast failover, P4, shortest common supersequence.

I. INTRODUCTION

Emerging applications, e.g., in the context of business and
entertainment, pose stringent requirements on the depend-
ability and performance of the underlying communication
networks, which have become a critical infrastructure of our
digital society. In order to meet such requirements, many
communication networks provide Fast Re-Route (FRR) mech-
anisms [3], [4], [5], which allow to quickly reroute traffic upon
unexpected failures, entirely in the data plane. By proactively
provisioning the switches with backup forwarding rules, the
robustness and availability of a network can be increased: as
soon as a switch detects a failure, i.e., defective link or port,
it quickly detours traffic using local backup rules.

Networking equipment manufacturers have so far integrated
FRR capabilities directly in the silicon of their switches,
allowing network operators to simply use such functionality as
a black-box option. Emerging Programmable Data Planes [6],
PDPs, are about to break this black-box approach to data plane
network functionalities. Indeed, by allowing network operators
to deploy customized packet processing algorithms, PDPs are
considered a key enabler of many interesting new use cases
including monitoring [7], [8], traffic load-balancing [9], and
many others [10]. However, little is known today about how

This paper is an extended version of [1] and [2].

to implement FRR mechanisms with reconfigurable switches.
One simple approach is to recirculate the packet back at
the input of the switching pipeline when a failure has been
detected and select a different output port. This however leads
to increased packet processing latency and reduced throughput.

We therefore aim to make FRR efficient, thus avoiding
expensive packet recirculations, and programmable, thus al-
lowing operators to pick any FRR mechanism (e.g., [11]).
This is challenging and involves multiple goals:
• Flexibility: We aim to devise an FRR primitive that supports

a broad variety of FRR mechanisms robust to single and
multiple link failures [12], [13]. FRR mechanisms deal with
the computation of primary and backup forwarding rules.

• Low latency and high throughput: Packets affected by
a failure should be rerouted to an alternate active port as
fast as possible without incurring any packet processing
degradation. This means packet processing latency should
not depend on the number of failed ports on a switch: a key
requirement for latency-critical applications.

• Memory efficiency: A programmable FRR mechanism
should come with minimal memory requirements, i.e., the
resulting forwarding tables are required to be compact.
Memory (especially TCAM) is, in fact, a scarce yet precious
resource of today’s hardware PDPs [14].

In this paper we propose a new FRR primitive, PURR, that
serves as a building block for implementing FRR mecha-
nisms while meeting the above requirements. At the heart
of PURR lies a technique that avoids recirculating packets
through the switch pipeline in search of an active port, which
would lead to worsened performance, i.e., higher latency
and lower throughput. To provide memory efficiency, PURR
leverages a connection between compact FRR forwarding
tables and algorithmic string theory (i.e., stringology): the
main theoretical contribution of this paper. Specifically, we
show that it is possible to implement a wide range of FRR
mechanisms very efficiently using our primitive, by modeling
the optimization problem as a variant of a Shortest Common
Supersequence (SCS) problem. To this end, we devise and
analyze several new algorithms to efficiently solve this SCS
variant. We show how optimized SCS solutions translate into
low-memory realizations of the given FRR mechanisms.

In summary, we make the following contributions:
• We explore the design space alongside the trade-offs of

implementing FRR mechanisms on hardware-based PDPs.
• We propose PURR, a new FRR primitive that can be

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/384445327?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Pa
ck

et
s i

n

Match
FRR_id

Action wrt
port_set

1 1111000

………... ………….

4 0001111

Input
headers &
metadata

Match
port_set

Match
status

Action
fwd

1****** 1*** 1

…………. …………. …….

******1 **1* 3

Pa
ck

et
s o

ut

Ingress pipeline Egress pipeline
Packet recirculation

st
ag

e
1

Selected-Ports table Fwd-Packet table

st
ag

e
…

st
ag

e
N

st
ag

e
1

st
ag

e
…

st
ag

e
N

in
gr

es
s

bu
ffe

r

eg
re

ss

bu
ffe

r

Runtime P4
(Control plane)

Pa
rs

er

Figure 1: PISA abstraction with PURR pipeline.

adopted as a building block for implementing FRR al-
gorithms. PURR provides very low failover latency and
high packet processing throughput by requiring a single
TCAM lookup, and low memory overhead by exploiting an
unexplored connection to classic algorithmic string theory.

• PURR comes with solid algorithmic underpinnings. In
particular, we show that the underlying problem is a variant
of SCS without repetitions, and prove that this variant is still
NP -hard. We then present a novel and efficient heuristic to
solve this variant of the SCS problem, which may be of
interest beyond the scope of this paper.

• We report on an extensive evaluation, combining analytical
results and simulations. We assessed PURR using micro-
benchmarks and large-scale simulations. Our main findings
show PURR dramatically reduces memory requirements
by a factor of 1.5x–10.8x for a variety of existing FRR
mechanisms compared to a naı̈ve approach. Our large-scale
simulations show that packet recirculation has devastating
effects on the flow completion times of the latency-sensitive
flows, up to 2.8x—5.5x worse than PURR.

• We assessed the feasibility of realizing PURR in practice
by implementing it in P4 on the bmv2 software switch [15],
a Tofino switch [16], and an FPGA [17].
Our code is available and fully reproducible [18].

II. BACKGROUND AND MOTIVATION

P4 background. P4 [6] is a programming language specif-
ically designed to program data plane packet processing
pipelines based on a match-action architecture. The P4 lan-
guage is target-independent [19], i.e., it abstracts from the
specific hardware characteristics of a switch. A P4 compiler
translates high-level P4 programs into target-dependent switch
configurations. Network operators write forwarding behavior
using P4 and subsequently compile these programs into P4-
enabled switches using vendor-specific compilers. In this pa-
per, we focus solely on hardware-based P4 switches.

The top part of Fig. 1 depicts a high-level abstraction of the
standard de-facto P4 packet processing pipeline, i.e., the PISA
pipeline [19]. This pipeline consists of a parser component
followed by an ingress and an egress forwarding pipelines. The
parser can be configured by the network operators to match
arbitrary (ad-hoc) fields in the packet header. Each pipeline
consists of a sequence of match-action stages, similarly to
OpenFlow. The network operator can decide upon the size

Table T1

out_port tag
1 1
2 2
3 3
4 4

Table T2

tag status fwd tag & recirc
1 1*** 1 -
2 *1** 2 -
3 **1* 3 -
4 ***1 4 -
* **** − (tag++ % 4) +1

Figure 2: A packet recirculation forwarding table.

and number of match tables, their matching type (e.g., exact,
wildcard, range), and the actions associated with a match “hit”
(e.g., rewrite the packet header, increase a counter). Similarly
to OpenFlow, P4 programmers can use metadata fields to carry
information across different stages and match on those fields.
The metadata attached to a packet is lost as soon as the packet
leaves the switch. It is worth noting that P4 does not dictate
how the match-action tables are mapped onto the TCAM and
other memories contained within each stage of the pipeline.
Clearly, different memories strike different trade-offs in terms
of cost, energy consumption, and latency. TCAM memories
support a wildcard, which we will leverage in the rest of the
paper. The complexity of computing the mapping of the match
tables to the hardware memories is left to the P4 compiler,
which is different for each target packet processing switch.

P4 and Fast ReRoute (FRR). The P4 abstraction has gained
ever-growing interests from the networking community thanks
to its flexibility and general-purpose interface. Yet, P4 comes
with no built-in support for commonly used Fast Re-Route
(FRR) forwarding operations, i.e., the forwarding action con-
sists of a sequence of ports such that a packet matching that
action is forwarded to the first active (i.e., non-failed) port in
the sequence. This is similar to FRR groups, henceforth called
FRR sequences, of OpenFlow [20]. For example, consider an
FRR mechanism that i) indexes all the switches’ ports from
1 to k and ii) when the switch fails to send a packet on
a port with index i, it tries with ports i+ 1, i+ 2, and so on,
modulo the number of ports, until an active port is found. We
call the resulting FRR sequences (i.e., 〈1, 2, 3, 4〉, 〈2, 3, 4, 1〉,
〈3, 4, 1, 2〉, and 〈4, 1, 2, 3〉), circular FRR sequences.

Based on our extensive discussions with P4 developers, the
implementation of FRR sequences in P4 is today left to the
operator [21]. We note that FRR primitives devised in different
contexts (e.g., BGP-PIC [22], [23]) cannot support arbitrary
FRR sequences (namely, only FRR sequences of size 2).

Implementing an FRR primitive is far from being trivial.
Without specific built-in FRR hardware support within the
hardware switch devices, operators have to rely only on
the match-action processing pipeline to enable quick packet
forwarding recomputation upon any number of link failures.
One way to achieve this goal entails recirculating a packet
through the switch pipeline multiple times in search of the
first non-failed port in an FRR sequence, or alternatively, by
writing a P4 program that checks the state of the links in
the FRR sequence either sequentially (i.e., through multiple
stages) or in parallel (i.e., using a TCAM). We now analyze
these three different possible solutions.

FRR sequences with packet recirculation. One simple way
to implement FRR is to recirculate a packet until an active
outgoing port is found. Consider the simple example shown

3

10 20 30 40 50 60 70

Load [%]

0.0

0.5

1.0

1.5

2.0

S
m

al
lfl

ow
s

FC
T

[m
s]

2.4x

FRR recirculation
CP reconvergence

(a) One link failure.

10 20 30 40 50 60 70

Load [%]

0.0

0.5

1.0

1.5

2.0

S
m

al
lfl

ow
s

FC
T

[m
s]

3.7x

FRR recirculation
CP reconvergence

(b) Two link failures.

10 20 30 40 50 60 70

Load [%]

100

101

Th
ro

ug
hp

ut
[G

bp
s]

2.7x

FRR recirculation
CP reconvergence

(c) One link failure.

10 20 30 40 50 60 70

Load [%]

100

101

Th
ro

ug
hp

ut
[G

bp
s]

3.3x

FRR recirculation
CP reconvergence

(d) Two link failures.

Figure 3: Packet recirculation performance analysis.

in Fig. 2 in which we want to support an FRR mechanism that
is based on the aforementioned set of FRR circular sequences,
i.e., 〈1, 2, 3, 4〉, 〈2, 3, 4, 1〉, 〈3, 4, 1, 2〉, and 〈4, 1, 2, 3〉. To
realize an FRR sequence with packet recirculation, we store in
the packet header/metadata information about the port through
which we want to forward the packet, i.e., the tag field, and
increment this value if the pointed port is down. The first table
T1 is used to simply attach the initial tag to a packet. Each
packet carries a port status metadata where each bit in the
status metadata represents the status of a port: it is set to 1 if
the port is active or to 0 otherwise. We assign a port identifier
to each port of the switch and let the ith bit in status
represent the ith port of the switch. The status matching
operation simply checks whether the port indexed by the tag
field is up or down. For instance, consider a packet destined
to port 4. In the absence of failures, this packet will enter the
switch with status = 1111 and get assigned tag = 4 in
T1. It will then match the 4th entry in the second table T2
and be forwarded on port 4. When port 4 fails (i.e., it is not
active), the same packet will now match the 5th entry in T2.
This will modify tag to 1 and the packet will be recirculated,
now matching the 1st entry and being routed on port 1.

Packet recirculation degrades flow completion time. There
are few drawbacks with the above implementation: when
a packet is recirculated, i) it creates a “self-induced incast” on
the ingress buffer, consuming extra bandwidth, ii) it increases
the packet processing latency since the same packet needs to
go through the match-action pipeline (including its buffers)
multiple times. To understand the impact of recirculating pack-
ets, we ran a series of simulations using the ns3 discrete-event
simulator. We validated our ns3 model with a manufacturer
of hardware PDPs. We took an existing ns3 implementation
from the state-of-the-art datacenter load-balancing codebase
(i.e., Hermes [24]) and implemented the F10 [11] state-
of-the-art FRR mechanism. The network topology is a 2-
tier leaf-spine datacenter topology, the congestion control is
DCTCP, and the routing is OSPF/ECMP. Refer to §V for
detailes about the datacenter setting. In Fig. 3, we failed
one or two links simultaneously and compared an “ideal”
OSPF routing approach that reconverges at the time of the
failure (i.e., “CP reconvergence”) with the packet recirculation

approach (i.e., “FRR recirculation”). Our results show that
the flow completion time (FCT) of latency-sensitive flows
(i.e., small flows with size ≤ 100 KB) is a factor of 2.4x
and 3.7x higher with “FRR recirculation” under one and two
link failures, respectively, compared to CP-reconvergence. We
also measured the average throughput achieved by the large
flows (i.e., size ≥ 10 MB) when recirculating packets, which
achieved a 2.7x and 3.3x times lower throughput than CP-
reconvergence under one and two link failures, respectively.

A sequential search of the first active port wastes hardware
resources. Another way to implement the above FRR on
a match-action pipeline would be to either sequentially or
simultaneously check through a specific sequence of outgoing
ports, which port is the first active one. This approach can
easily be expressed in P4 as a set of nested “if-else” statements
and the compiler has to decide whether to realize it in a se-
quential (on SRAM memory) or parallel (on TCAM memory)
manner. In the sequential case, the status of each port in an
FRR sequence is tested in each subsequent stage of the match-
action pipeline. This approach has two clear limitations: i) it
cannot support FRR sequences whose sizes are larger than the
number of stages and ii) it wastes resource at each stage that
cannot be used by forwarding functions that have a functional
dependency with the selected egress port.

A TCAM-based parallel search to the rescue! A P4 compiler
can encode a set of if-else statements within a TCAM memory,
anabling a parallel active-port search. We present a naı̈ve
encoding approach in Fig. 4a where we realize the same
circular FRR sequences of the packet recirculation case with
one single TCAM lookup. We assign an identifier FRRid to
each FRR sequence. When a packet arrives at the switch, we
attach both the status metadata field and a given FRRid to it.
We then match the packet with the TCAM memory and extract
the first active forwarding port in one single TCAM lookup. As
an example, the first four entries in the table realize the FRR
sequence 〈1, 2, 3, 4〉. We now compute the amount of TCAM
space needed to realize a set of n circular FRR sequences using
the aforementioned naı̈ve TCAM encoding. If the number
of ports in each sequence is k, then the number of TCAM
entries will be nk and the TCAM occupancy is nk(k+log n),
where we need log n bits to encode FRR identifiers and k
bits to encode the status match part for each of the nk
entries. In the specific example of Fig. 4a, we can see that
just a single circular FRR sequence requires 4 TCAM entries
and thus 24 bits of TCAM memory. Observe that already for
k = 24 and 10 sets of FRR circular sequences (each set has 24
sequences — all cyclic shift options), we need 5760 TCAM
entries and ∼ 130 kbit of TCAM space, which is already two
orders of magnitude larger than what is available in today’s
high-performance PDPs [14]. In the remaining sections, we
therefore address the following main question:

“Can we enable a new FRR primitive for pro-
grammable data planes that requires minimal TCAM
overhead while minimizing flow performance degrada-
tion due to network failures?”

4

Table T1

FRRid status fwd
1 1*** 1
1 *1** 2
1 **1* 3
1 ***1 4
2 *1** 2
2 **1* 3
2 ***1 4
2 1*** 1
3 **1* 3
3 ***1 4
3 1*** 1
3 *1** 2
4 ***1 4
4 1*** 1
4 *1** 2
4 **1* 3

(a) Naı̈ve approach

Table T1

FRRid port_set
1 1111000
2 0111100
3 0011110
4 0001111

↓
Table T2

port_set status fwd
1****** 1*** 1

*1***** *1** 2

1** **1* 3

1 ***1 4

****1** 1*** 1

*****1* *1** 2

******1 **1* 3

(b) Encoded approach

Figure 4: TCAM encodings of a circular FRR sequence.

III. A PRIMITIVE FOR FAST REROUTE

Here, we provide an approach for encoding an arbitrary set
of FRR sequences into a match-action TCAM-based packet
processing pipeline. We discuss how to do that when the
sequences are “circular”, as in a wide variety of FRR mech-
anisms that have been proposed [11], [25], [26], [27]. Then,
we devise three different heuristics that efficiently encode any
type of arbitrary FRR sequences into TCAM memories.

A. A Model for Programmable FRR

Fast ReRoute (FRR) sequences. Network operators rely on
FRR mechanisms to compute a set of primary and backup
forwarding rules. These rules are used to reroute network
traffic upon arbitrary number of failures without the need
to invoke the slower control plane. When a switch receives
a packet, it classifies it, possibly modifies the packet header,
and finally applies a forwarding action. In this paper, we model
each forwarding action with an FRR sequence, i.e., a sequence
of ports, e.g., 〈port1, port4, port2, port3〉, or 〈1, 4, 2, 3〉 for
brevity. A switch forwards packets to the first (traversing from
left to right) active port in a sequence. For instance, when
all ports are active, a switch using the FRR sequence F0 =
〈1, 2, 3, 4〉 will forward packets through port 1. If both ports 1
and 2 fail, the switch reroute packets through port 3. Packets
belonging to different flows may share the same forwarding
behavior, that is, the same FRR sequence.

Target-dependent constraints. The architecture of a packet
processing system highly influences the way FRR sequences
would be supported. For instance, a software switch can-
not leverage dedicated memories for ternary matching (i.e.,
TCAMs). Even among switches with TCAM support there
are differences to be taken into account. As an example,
Intel FlexPipe [28] does not support arbitrary width sizes for
TCAM tables, a functionality that is supported in the RMT
(Reconfigurable Match Tables) architecture [29]. We note that
these details are not exposed to the P4 programmer but handled
by target-dependent P4 compilers. In this paper, we focus our
attention on the emerging PDPs that support wildcard match
tables (e.g., TCAM memories). We now describe a set of
architectural constraints for hardware PDPs.

• Match-action pipeline stages. There are a fixed number of
stages through which packets are being classified and mod-
ified. Some stages may allow to perform parallel matches
in different tables (e.g., FlexPipe) and each stage contains
a certain amount of resources for exact, prefix, and ternary
matches. As noted in §II, implementing FRR sequences in
a sequential manner is highly undesirable in practice. In
fact, it prevents any forwarding operations with a functional
dependency on the egress port calculation to leverage the
spare SRAM and TCAM memories that reside within the
stages used to implement the FRR sequences. We therefore
require the bulk of our encoding to fit within a single stage
(a small table can be allowed in the previous stage to assign
FRR identifiers and initialize data structures).

• Number of TCAM entries and bits. Each stage s of the
match-action pipeline has a certain number of TCAM en-
tries. For instance, the RMT architecture states a maximum
of 32K TCAM entries per stage, though this amount may
be smaller in practice depending on the specific vendor and
product [14].1 In FlexPipe, there are only two stages with
12K entries each. In each stage s, the amount of TCAM
memory (in bits2) is also limited. In the RMT architecture,
roughly 1 Mbit of TCAM memory is available per stage.

FRR encoding goal. Our objective is to provide a primitive
that allows efficient realization of any set of FRR sequences.
We already explained in §II that such a solution must be based
on a single TCAM lookup implementation. Given a set of FRR
sequences that correspond to a specific fast failover algorithm
(e.g., DFS traversal [26] or circular-arborescence [30]) our
proposed primitive will allow deploying them in a way that
reduces the amount of TCAM memory required.

B. A Primitive for Circular FRR

We now describe a TCAM scheme for encoding a specific
class of widely adopted FRR sequences, i.e., circular FRR
sequences. This class of FRR sequences is common of several
existing FRR mechanisms, including F10 [11], arc-disjoint
arborescences [30], and graph-traversals [26]. We say that a set
of FRR sequences is circular if every FRR sequence in the set
can be obtained from any other sequence by a finite number
of circular shift operations. Consider a switch with four ports
and the following set of FRR sequences: F1 =〈1, 2, 3, 4〉,
F2 =〈2, 3, 4, 1〉, F3 =〈3, 4, 1, 2〉, and F4 =〈4, 1, 2, 3〉. Since
every Fi can be obtained from any other Fj by circularly
shifting Fi to the left j − i mod 4 times, the FRR sequences
in the set {F1, F2, F3, F4} are circular.

Encoding circular FRR sequences. We already described
a naı̈ve approach for encoding circular FRR sequences in
§II, which was illustrated in Fig. 4a. As discussed earlier,
this approach requires nk(k + log n) TCAM bits, where n
is the number of sets of circular FRR sequences and k is the
number of ports of the switch (and hence, the length of an
FRR sequence). Let us now propose a more efficient way of

1Also based on private communication with vendors.
2For simplicity, we use the “bit” terminology as opposed to the more correct

“trits” one, which captures the ternary nature of the TCAM elements.

5

encoding any set of circular FRR sequences (see Fig. 4b).
Let fi,j represent the j’th element of a sequence Fi. For
each sequence Fi, we assign a bit vector port_set of size
2k − 1, where each bit represents a port of the switch in
the order defined by the sequence F1, i.e., bit number b of
port_set represents port f1,b mod k. For each sequence
Fi we set k bits in its port_set vector that correspond
to the ports in Fi but in the same order that the ports
appear in Fi. In our example (Fig. 4b), the port_set vector
represents ports 〈1, 2, 3, 4, 1, 2, 3〉. Hence, for the sequence
F1, the port_set is 1111000, which means that the bits
corresponding to ports 〈1, 2, 3, 4〉 are set to 1. For the sequence
F3, we will have port_set = 0011110 which means that
the bits corresponding to ports 〈3, 4, 1, 2〉 are set.

Table T1 in Fig. 4b assigns the corresponding port_set
for each circular sequence of a given FRR set. Then, table
T2 matches the port_set and the status metadata fields
to determine the first active port for a given FRR sequence.
For example, if a packet needs to be rerouted according to
sequence F4 (this is determined at an earlier stage, not shown
here), then table T1 will assign it port_set = 0001111.
Now, let’s assume that ports 1 and 4 are not active and ports 2
and 3 are active, which corresponds to the status = 0110.
Then, the first matching entry in table T2 will be in row 6
(where port_set = ∗∗∗∗∗1∗) and thus, the packet will be
forwarded via port 2. Notice that different circular FRR sets
will be assigned different FRRid in table T1, and thus will
have dedicated sets of entries in table T2.

Our encoding achieves an order of magnitude smaller
TCAM memory usage compared to a naı̈ve approach.
Let us analyze the TCAM space required to encode a set
of n circular FRR sequences, each of length k (notice that
there are at most k such sequences, i.e., n ≤ k). The table
T1 requires n entries, each of size log n bits. The table
T2 requires 2k − 1 entries, each of size 2k − 1 + k bits.
So, the total TCAM space required for a single FRR set is
n log n + (2k − 1) × (3k − 1) = O(k2). This is an order
of magnitude better than the naı̈ve approach which requires
nk(k + logn) = O(k3) TCAM bits. Moreover, table T1 does
not need ternary matches, thus can be then implemented in
SRAM, further saving expensive TCAM space.

C. A Primitive to Implement Them All

We now introduce the general problem of encoding an
arbitrary set of FRR sequences that are not necessarily circular.
The input is a set of sequences and the output is the set of
wildcard (TCAM) and exact (SRAM) matches and actions to
be installed in the forwarding plane. The aim is to generalize
the port_set vector described in the previous subsection.

Single-table optimization. We first consider the problem of
encoding a set of FRR sequences in a single TCAM table. The
challenge with arbitrary FRR sequences is that the mapping
between bits in the port_set vector and ports is not as
obvious as it was in the circular case. The port_set now has
to represent a sequence of ports that contains all the given FRR
sequences as subsequences. Essentially, this means finding

Algorithm 1 Definition of GREEDY.

Global parameters: A constant d ∈ N
Input: A set F = {F1, . . . , Fcd} of FRR sequences

1) Set currscs :=〈〉
2) Repeat for each i = 1, . . . , c
◦ currscs := DP-SCS (currscs,F(i−1)d+1, . . . , Fid)

3) return currscs

F1=2 3 1 0

F2=0 2 1 3

F3=3 0 2 1

F4=1 0 2 3

2 3 1 0

0 2 1 3 1 0

3 0 2 1 3 1 0

3 1 0 2 1 3 1 0

Figure 5: GREEDY example.

the shortest sequence that contains all the given sequences
as subsequences (i.e., skipping elements is allowed).

Unveiling an unexplored connection between FRR encod-
ings and algorithmic string theory. Our encoding problem
can be seen as a special (and unexplored) version of the classic
Shortest Common Supersequence (SCS) [31] problem, where
no repetitions are allowed. In the SCS problem, the input
is a set of sequences S = {S1, . . . , Sk} and the goal is to
compute a sequence of elements S̄ such that any element
of S is a subsequence of S̄ and S̄ is of minimal size. This
connection is interesting and raises the question whether our
version of the problem without repetitions can render the
problem simpler: SCS is known to be notoriously hard, in fact
NP-hard already for strings over a binary alphabet [32], and
also hard to approximate within polylogarithmic factors [33].
Unfortunately, this is not the case: we state this insight as
a theorem as the result is of independent interest.

Theorem 1. The SCS problem without repetitions is NP -hard
to optimize and approximate.3

The proof follows directly from [33].

The dynamic programming building block: DPSCS. We
first discuss a well-known technique used to solve the SCS
problem optimally based on Dynamic-Programming [34],
called DPSCS. This approach computes an optimum SCS
solution in time O(kn), thus solving the problem in efficient
(polynomial) time only when the number of sequences is con-
stant. We use DPSCS as a baseline to compare our heuristics
and to deal with arbitrary number of sequences. The input to
our problem is a set F = {F1, . . . , Fn} of FRR sequences,
where fi,j indicates the j’th element of sequence Fi. The value
of fi,j represents an index of a port in the switch. We assume
that all the sequences have the same length k.

The GREEDY heuristic. We present a novel greedy algorithm
GREEDY (Alg. 1) which is based on iteratively applying the
optimal DPSCS approach to a subset of sequences. GREEDY
first partitions the FRR sequences F into small groups of con-

3 There exists a constant δ > 0 such that, if SCS has a polynomial-time
approximation algorithm with ratio logδ n, where n is the number of input
sequences, then NP is contained in DTIME(2polylogn).

6

table T1

FRRid port_set
1 00010111
2 00111100
3 10111000
4 01110100

→

table T2

port_set status fwd
1******* ***1 3

*1****** *1** 1

1*** 1*** 0

1* **1* 2

****1*** *1** 1

*****1** ***1 3

******1* *1** 1

*******1 1*** 0

Figure 6: GREEDY TCAM implementation.

stant size d, which are then solved optimally using DPSCS.
More specifically, GREEDY merges subsolutions sequentially,
by feeding the DPSCS subroutine with (currscs, F(i−1)d+1,
. . . , Fid) where currscs is the intermediate SCS solution. We
show an example of GREEDY in Fig. 5 with four sequences
F1=〈2 3 1 0〉, F2 =〈0 2 1 3〉, F3=〈3 0 2 1〉, and F4=〈1 0 2 3〉,
where d = 1. GREEDY first computes the SCS between F1

and F2 using DPSCS, obtaining the sequence 〈0 2 1 3 1 0〉.
It then computes the SCS between this sequence and the
next one, that is, F3, again using DPSCS on just these two
sequences. The output is then fed as input to the last SCS
computation with F4, returning a sequence of 8 elements. We
show the TCAM implementation of this sequence in Fig. 6.
The dynamic program DPSCS is based on a (n× n+ 1)-
dimensional matrix M and can be used to compute the shortest
common supersequence when the number of input sequences,
n, is constant. The complexity of GREEDY is n

dO(kd), and
assuming d is constant, we have O(nkd).

The HIERARCHICAL heuristic. An alternative approach is to
merge subsequences hierarchically (in a tournament fashion),
rather than sequentially like in GREEDY.4 This idea is pursued
by the HIERARCHICAL algorithm (Alg. 2). As we will see,
such an algorithm is faster than GREEDY and computes sub-
sequences of length similar to GREEDY. Like GREEDY, HI-
ERARCHICAL uses DP-SCS to compute optimal solutions in
polynomial time for a constant number of sequences, splitting
F into d sets M1, . . . ,Md. However, unlike GREEDY, HI-
ERARCHICAL merges these optimal sequence hierarchically,
using DP-SCS (H-SCS(M1), . . . ,H-SCS(Md)). In Fig. 7,
we show an example with HIERARCHICAL using the same
four sequences as in the GREEDY example and setting d = 2.
The lowest level of the recursion in HIERARCHICAL computes
the SCS among pairs of sequences using DPSCS, i.e., F1

with F2 and F3 with F4. The two resulting SCS sequences
are fed as input to a final SCS computation (again using
DPSCS) in order to obtain the output of HIERARCHICAL.
The asymptotical complexity of this algorithm is the same as
GREEDY. At the lowest level of the hierarchy, there will be n

d
executions of the DP-SCS; at the previous level we have n

d2

executions, and so on. This results in O(nkd) complexity.

The FAST-GREEDY heuristic. The DPSCS algorithm com-
putes optimal solutions at the cost of running time, i.e.,
exponential time in the number of sequences. For this reason,
we introduce FAST-GREEDY (Alg. 3), which strikes a different
trade-off in terms of fast running time and reasonably good
accuracy. At each iteration, we trim the left-most element

4We note that this algorithm has traditionally been used to solve general
SCS problems [35], thus we use it only as a means of comparison.

Algorithm 2 Definition of HIERARCHICAL (H-SCS).

Global parameters: A constant d ∈ N
Input: A set F = {F1, . . . , Fn} of FRR sequences

1) If |F| ≤ d
◦ return DP-SCS (F)

2) else
a) split F into d sets M1, . . . ,Md

b) return DP-SCS (H-SCS(M1), . . . ,H-SCS(Md))

F1=2 3 1 0

F2=0 2 1 3

F3=3 0 2 1

F4=1 0 2 3

0 2 1 3 1 0

3 1 0 2 3 1

3 1 0 2 1 3 1 0

Figure 7: HIERARCHICAL example.

Algorithm 3 Definition of FAST-GREEDY.

Input: A set F = {F1, . . . , Fn} of FRR sequences
each of length k, where fi,j is the j’th element of
sequence Fi.

1) Set currscs :=〈〉
2) Repeat until ∃i ∈ [1, . . . , n], |Fi| > 0
• Let S = {i | |Fi| = m, i ∈ [1, . . . , n]}, where
m = maxi |Fi|

• Let a be the most frequent element in {fi,1 | i ∈
S}

• ∀i ∈ S, if fi,1 = a then Fi = 〈fi,2, . . . , fi,k〉
• currscs := currscs ∪ 〈a〉

3) return currscs

F1=2 3 1 0
F2=0 2 1 3
F3=3 0 2 1
F4=1 0 2 3
remove 2

F1=3 1 0
F2=0 2 1 3
F3=3 0 2 1
F4=1 0 2 3
remove 0

F1=3 1 0
F2=2 1 3
F3=3 0 2 1
F4=1 0 2 3
remove 3

F1=1 0
F2=2 1 3
F3=0 2 1
F4=1 0 2 3
remove 1

F1=0
F2=2 1 3
F3=0 2 1
F4=0 2 3
remove 0

F1= ---
F2=2 1 3
F3=2 1
F4=2 3
remove 2

F1= ---
F2=1 3
F3=1
F4=3
remove 1

F1= ---
F2=3
F3= ---
F4=3
remove 3

Figure 8: FAST-GREEDY example.

from some of the input sequences according to the following
approach. First, the algorithm identifies the set S of the
longest sequences at the current iteration. Then, it looks
at the leftmost elements of all these longest sequences and
identifies the one that appears most often (ties are broken
arbitrarily). This “most-frequent” element (denoted as a) is
removed from the sequences in S where it appears as the left-
most element, and added to the resulting SCS sequence. The
process continues until all the input sequences are empty. The
running time of FAST-GREEDY is O(n2k) — much faster than
any O(kn) DPSCS-based heuristic, where k is the size of a

7

Table T1

FRRid port_set
1 10111000
2 01010101
3 00101110
4 00011101

→

Table T2

port_set status fwd
1******* **1* 2

*1****** 1*** 0

1*** ***1 3

1* *1** 1

****1*** 1*** 0

*****1** **1* 2

******1* 1*** 1

*******1 ***1 3

Figure 9: FAST-GREEDY TCAM implementation.

FRR sequence. Note that we look at the most frequent element
among the longest sequences as this helps in making progress
over all the sequences. In Fig. 8, we show an example of FAST-
GREEDY with four sequences F1=〈2 3 1 0〉, F2 =〈0 2 1 3〉,
F3=〈3 0 2 1〉, and F4=〈1 0 2 3〉. We highlight with a green
background the longest sequences during the computation,
which are those sequences from which we extract the most
frequent element. At the beginning, all sequences have the
same length and all the left-most elements appear exactly
once. The algorithm selects 2 as the most frequent element and
removes it from all the sequences where it appears as the left-
most element, i.e., only from F1. FAST-GREEDY then applies
the same procedure until the input sequences are empty.
Consider the 3rd stage where FAST-GREEDY selects element 3
as the most frequent and removes it. The element is removed
from F3 (where we selected it) and also from F1 where it
appears as the left-most element. The final supersequence is
〈2 0 3 1 0 2 1 3〉. By iteratively removing the common left-
most elements of each subsequence, we can guarantee the
final sequence will be a supersequence of each individual
subsequence.

We now analyze the computational complexity of FAST-
GREEDY. At each iteration, finding the most frequent left-most
element costs O(n) and each element is removed exactly once
so the number of removals is O(nk). Thus, the running time
of this algorithm is O(n2k).

Multi-table optimization. Here we consider the problem
where the FRR encoding can be realized across multiple
tables instantiated in the same pipeline stage, which is pos-
sible on today’s programmable switches [36]. This allows to
build even more compact representations of a set of FRR
sequences. In some cases, using multiple tables may also
be necessary as hardware switches cannot handle tables of
arbitrary width, e.g., 512 bits. We describe a heuristic that
carefully groups FRR sequences based on a novel insight into
the algorithmic theory of strings, which is tailored for the
specific case of FRR sequences (i.e., no element repetitions).
As an example, consider the same FRR sequences used for
the previous heuristics (see Fig. 8). Initially, S = S′ =
{(2, 3, 1, 0), (0, 2, 1, 3), (3, 0, 2, 1), (1, 0, 2, 3)} and assume the
maximum TCAM width is 10 bits. Clearly, we cannot realize
the solution obtained from FAST-GREEDY since it requires 8
TCAM bits for the port_set and 4 bits for the status. We
can however create two tables, each of 10 bits for the TCAM
width. In the first table, the enconding of the port_set
is (0, 2, 3, 1, 0, 3) while the encoding in the second table is
(1, 3, 0, 2, 1, 3). This requires 10 bits per table and encodes
the first (last) two FRR sequences in the first (second) table.

Algorithm 4 Definition of MULTITABLE-SCS (MT-SCS).

Function input: A set F = {F1, . . . , Fk} of FRR sequences,
and a max TCAM width of t > 0.

1) Let S = {}, add {F1}, . . . , {Fk} into S, and let f =
True

2) Repeat until f is True or ∃f ∈ S s.t. |f | > t
a) S′ = S and (Si, Sj) := maxi,j LCS(Si ∪ Sj)
b) add {Si, Sj} into S′ and remove Si and Sj from S′

c) if cost(S) ≤ cost(S′) and @f ∈ S s.t. |f | > t, then
f =False; else S = S′

3) return S

Algorithm 5 FAST-LCS: LCS without repetitions.

Function input: A universe U of elements and a set
F = {F1, . . . , Fn} of sequences each of length r, where
fi,j ∈ U indicates the j’th element of sequence Fi.

1) Build G(V,E) where V = U ∪ {s} contains a node for
each element in U and E contains a directed arc (a, b)
if a appears before b in all sequences. E also contains
(s, v) for all v ∈ U .

2) Compute the longest paths from s to any vertex of G
through a topological sorting of G from s.

3) return the longest path

The MULTITABLE-SCS heuristic. One way to “pack” FRR
sequences into multiple tables is to aggregate similar FRR
sequences together. Intuitively, this allows similar sequences to
share a small port_set vector, potentially achieving lower
memory overhead than with a single table. Finding similar
sequences leads us to consider a complementary problem
to SCS, i.e., the Longest Common Subsequence (LCS) [37]
problem.5 LCS is renowned for being NP-hard, but again, in
our context, we do need to consider LCS with a tweak: we
do not have any repetitions. This again poses the problem of
whether the NP-hardness of the LCS holds without repetitions.
Interestingly, in this case, we find that this version can be
solved efficiently, in polynomial time (i.e., O

(
nk2

)
). This

result is of independent interest.

Theorem 2. The LCS problem without repetitions is
polynomial-time solvable.

Proof. The proof is constructive and based on Alg. 5. The first
algorithm is by reduction: we note (step (1)) that we can build
a directed graph between the characters as follows: there is an
arc from character a to character b if a is before b in every
string. Now observe that only characters connected with arcs
can appear in the LCS at the same time. The graph must be
acyclic by construction. The problem boils down to finding
the longest path in an acyclic directed graph, which can be
solved efficiently where k is the size of a sequence.

We consider LCS as a way to efficiently group FRR
sequences into different tables so that the encoding of each
group of sequences fits within the maximum TCAM width
t or it produces an overall smaller cost than having a single

5Note that, formally, LCS is not the dual problem of SCS.

8

table. In MULTITABLE-SCS (Alg. 4), we divide the input FRR
sequences into n sets (step (1)) and then aggregate the two
sets Si and Sj with the largest LCS (steps (2a) and (2b)).
If aggregating these elements produces a lower memory cost
or reduces the amount of violations of the TCAM maximum
width, we repeat the procedure. We stop it otherwise and return
the set partitioning, each set corresponding to a table encoding.

IV. IMPLEMENTATION

In order to verify the feasibility of our primitive, we made
several implementations. In the following, we will first report
on P4-based implementations (i.e., bmv2 [15] and Tofino) and
will then discuss a Verilog implementation on the NetFPGA.

P4-based implementations. We successfully implemented
our primitive for a number of existing FRR mechanisms,
including arborescence-based FRR mechanisms [25], as well
as the Depth First Search (DFS), Breadth First Search (BFS)
and the rotor router mechanisms in [38]. We also success-
fully implemented our primitive on the Tofino switch, further
confirming the feasibility of our approach. We will share
our implementations together with this paper. We note that
implementing PURR in P4 simply requires to install the two
tables showed in Fig. 4b in the existing forwarding pipeline.
The first table only requires an exact match operation while
the second table requires the most complex wildcard match.

FPGA-based implementation. We built our prototype on
the NetFPGA-SUME [17], which is a PCIe adapter card with
4x10 Gbps Ethernet interfaces and an FPGA Xilinx Virtex-7.

We leveraged the existing layer-2 switch implementation
provided with NetFGPA-SUME package to deploy PURR. In
this system, packets first enter the device through one of the
four 10 Gbps network interfaces where packets are stored in
First-In-First-Out (FIFO) memory units, named input queues.
The interface modules are connected to the input arbiter.
The arbiter switches between the input queues in a round
robin fashion, each time selecting a non-empty queue and
moving one packet from it to the next stage in the data
path. From the input arbiter on, there is a single pipeline
with a data width of 256 bits running at the frequency of
200 MHz, thus guaranteeing enough bandwidth to support
40 Gbps transmission rates. The forwarding logic comes after
the input arbiter. It is responsible for selecting the output
port based on standard layer-2 switching operation. After the
decision is made, the packet reaches the PURR primitive
logic. Here, constant monitoring of the physical network
interfaces status is needed to activate the programmed FRR
mechanism. Indeed, the appropriate output port is selected
based on the status of the physical network interfaces and
the result of a matching against the TCAM memory. If the
originally selected destination port is active, then nothing
changes. In contrast, if the selected port is down, the new
destination port will be selected based on the TCAM matching
result, which depends on the adopted FRR algorithm.

V. EVALUATION

We now assess the performance of the algorithms introduced
in §III for encoding a set of FRR sequences into a TCAM

memory. We evaluate them along two dimensions: the amount
of memory (bits) needed to encode the FRR sequences and
their running time. First we focus on a single switch that
gets a set of FRR sequences as input and encodes them in
a TCAM memory. Then, we set up a datacenter Clos network
and implement the state-of-the-art FRR mechanism for Clos
networks, i.e., F10 [11], using circular FRR sequences. Using
this scenario, we run simulations in ns3 to study the impact of
using PURR w.r.t. an approach based on recirculating packets.

A. FRR Encoding

In this section, we answer the following question: “How
much TCAM memory (in bits and entries) do we need to
implement a given set of FRR sequences?”. We implement
DPSCS, GREEDY, HIERARCHICAL, and FAST-GREEDY in
Python and consider three different dimensions: i) the number
of FRR sequences n, ii) the size k of the FRR sequences, iii)
we either generate random sequences or construct sequences
derived from existing FRR mechanisms. For each simulation
setting, we run 6 simulations with different seeds.

Encoding FRR sequences is crucial in high port density
switches. We first evaluate the NAÏVE approach described
in Fig. 4a and compare with our encoding-based mechanism
described in Fig. 4b. The results are based on the calculations
described in §III-B. We consider the family of FRR mecha-
nisms (e.g., F10 [11], DFS [26], basic arc-disjoint spanning
trees [25], [39]), which rely on circular FRR sequences.
Realizing a circular FRR sequence over 8, 16, 32, and 64 ports
takes 1.5x, 2.8x, 5.5x, and 10.8x higher memory requirements
than using an encoding-based implementation, respectively.
A PDP with 64 ports would require 327 KB of TCAM to
implement 10 circular FRR sequences. This corresponds to 2
pipeline stages on the RMT architecture and 5 stages in other
programmable data planes [14]. An encoded approach would
require 30 KB, one tenth of the TCAM memory contained in
a single stage of the RMT architecture [29].

FAST-GREEDY performs close to the optimum and is fast.
We now compare FAST-GREEDY against the optimum SCS
solver, i.e., DPSCS. We set the size of the sequences to 7
elements and vary the number of sequences from 2 to 7.
Fig. 10a and Fig. 10b show that FAST-GREEDY performs
remarkably close to the optimum while it consumes roughly
20% more TCAM bits and 10% more TCAM entries than
the optimum. We report the processing time in Fig. 10c.
As expected, dynamic programming grows exponentially in
the number of sequences, requiring 15 minutes to find the
optimum SCS for even just 8 sequences. In contrast, FAST-
GREEDY runs in less than one millisecond.

FAST-GREEDY works best on large sets of sequences. We
compare our three heuristics using larger instances. We plot
our results for the consumption of TCAM memory in Fig. 11a,
Fig. 11b, and Fig. 11c for sequences with 8, 16, and 32
elements each, respectively, followed by their corresponding
running times in Fig. 11d, Fig. 11e, and Fig. 11f, respectively.
We draw two main conclusions. First, for large number of
sequences (i.e, ≥ 100), FAST-GREEDY outperforms both

9

2 3 4 5 6 7 8

number of sequences

0
200
400
600
800

1000

M
em

or
y

co
st

[b
it]

dpscs
greedy

hierarchical
fastgreedy

(a) Memory consumption in TCAM bits.

2 3 4 5 6 7 8

number of sequences

0

10

20

30

#T
C

A
M

en
tr

ie
s dpscs

greedy
hierarchical
fastgreedy

(b) Memory consumption in TCAM entries.

2 3 4 5 6 7 8

number of sequences

10−1
100
101
102
103
104
105
106

Ti
m

e
[m

s]

dpscs
greedy

hierarchical
fastgreedy

(c) Processing time.

Figure 10: Comparison of FAST-GREEDY with respect to the optimum. The size of the sequences is set to 7.

GREEDY and HIERARCHICAL in both TCAM memory utiliza-
tion and running times. Second, GREEDY and HIERARCHICAL
require one second to process merely 20 sequences. FAST-
GREEDY can process tens of thousand of sequences in the
same amount of time, thus achieving higher scalability.

FAST-GREEDY compresses hundreds of thousands of FRR
sequences within limited memory. Fig. 12a and Fig. 12b
show the amount of memory in bits and the number of entries
required to implement a given set of FRR sequences. By
doubling the number of ports on a switch, the number of
TCAM entries increases roughly by a factor of 3.5x while
the number of TCAM bits increases by a factor of 7x. The
required memory stabilizes around 1000 FRR sequences, after
which the encoding is capable of realizing the vast majority of
possible FRR sequences provided as input to FAST-GREEDY.

Compressing short sequences provides larger memory
saving. We also evaluated the case where we have a switch
with a large number of ports but the length of the sequences
is small. For instance, on a 64-port switch, an operator may
define FRR sequences of size 5 to protect against any arbitrary
4 possible link failures. Using the Naı̈ve approach described
in Fig. 4a, one would have to define all possible 4 elements
sequences out of 64 elements, i.e., 64!/(64− 4)! 900 million
sequences each requiring 5 TCAM entries. Using PURR, one
can compute a single SCS containing the 64 ports repeated
five times, i.e., 320 TCAM entries. We refer to the ratio
between the memory (in bits) used by the Naı̈ve approaches
and the memory used by PURR as the memory savings. In
Fig. 12c, we show the memory savings (y-axis) with PURR
for increasing sizes of FRR sequences (x-axis) and different
number of ports on the switch (different lines) in percentages.
We note that on a switch with 8 ports (green line) and FRR
sequences of size 8, PURR uses ∼ 0, 1% of the memory
used by the Naı̈ve approach. When the switch has 16, 32,
or 64, PURR reduces the memory requirements by 7, 9, 11
orders of magnitudes (not visible in the figure), respectively.
We can observe that the memory savings exist also for very
short sequences of just two elements per FRR sequence and
grows exponentially for increasing sizes of FRR sequences.

Memory requirements of state-of-the-art FRR mecha-
nisms. We so far evaluated the memory requirements when
the input of the problem consisted of randomly derived FRR
sequences. One may ask whether existing FRR mechanisms
(robust to multiple failures) would require higher or lower
memory than random sequences. To the best of our knowledge,
the best general FRR mechanisms that are i) scalable, ii)

robust to multiple failures, and iii) do not require expensive
transactional high-speed memories on the chip are those based
on computing a set of “arc-disjoint” spanning trees [25], [40].
We quantify the memory requirements of an arc-disjoint FRR
mechanism, called tree, in Fig. 13 deployed on Jellyfish [41]
datacenter topologies. Through tree, all the spanning trees are
ordered in a sequence and a packet is rerouted once on the
next spanning tree and once “bounced” on the opposite tree
each time it hits a failed link. Our results show that the FRR
sequences created via tree-based FRR approaches induce the
same memory requirements of random sequences.

Multiple tables. We ran simulations using random sequences
in order to assess the benefits of splitting a set of FRR
sequences into multiple tables. In each simulation, we gen-
erate between 10 and 100K different random FRR sequences
and run the LCS-based MULTITABLE-SCS algorithm where
the cost function minimizes the amount of TCAM bits. We
observe that the algorithm always returned a single table, thus
showing limited benefits in splitting a table into multiple tables
(unless some TCAM width constraints apply). We note that
all our encodings would fit in the TCAM width of the RMT
pipeline architecture in one single stage [29].

B. Datacenter Simulations

We now investigate the following main question: How
does the FCT of latency-sensitive flows and the throughput
of bandwidth-intensive applications vary depending on the
implemented FRR primitive? We assess the impact of our FRR
primitive on a real datacenter workload. We note that PURR
can be also applied to other types of networks, e.g., WANs.
We compare PURR against the performance achieved using i)
an FRR primitive based on recirculation (“recirc”), ii) an ideal
immediate reconvergence of the control-plane (“reconv”)6, and
iii) the case in which there are no failures (“no-fail”).

Simulation reproducibility. We used ns3 [43] to evaluate the
impact of different FRR primitives. To make our simulations
realistic, we leverage the publicly-available codebase of the
state-of-the-art datacenter load balancer, i.e., Hermes [24]. We
inherit the same datacenter topology, workloads, traffic gener-
ators, routing schemes, and transport protocols. We implement
different FRR primitives and FRR mechanisms on top of this
code and evaluate their performance. Our code is released to
the public and fully reproducible [18].

6In reality, reconvergence may take up to hundreds of milliseconds or even
seconds to happen [42]. During this time, packets arriving at the failed link
would be dropped.

10

101 102 103

number of sequences

0
1000
2000
3000
4000
5000

M
em

or
y

co
st

[b
it]

greedy
hierarchical

fastgreedy

(a) Sequence size = 8.

101 102 103

number of sequences

0
10000
20000
30000
40000
50000

M
em

or
y

co
st

[b
it]

greedy
hierarchical

fastgreedy

(b) Sequence size = 16.

101 102 103

number of sequences

0
100000
200000
300000
400000
500000

M
em

or
y

co
st

[b
it]

greedy
hierarchical

fastgreedy

(c) Sequence size = 32.

101 102 103

number of sequences

102
103
104
105
106
107
108
109

Ti
m

e
[µ
s]

greedy
hierarchical

fastgreedy

(d) Sequence size = 8.

101 102 103

number of sequences

102
103
104
105
106
107
108
109

1010

Ti
m

e
[µ
s]

greedy
hierarchical

fastgreedy

(e) Sequence size = 16.

101 102 103

number of sequences

102
103
104
105
106
107
108
109

1010

Ti
m

e
[µ
s]

greedy
hierarchical

fastgreedy

(f) Sequence size = 32.

Figure 11: Comparison of TCAM memory bits and processing times with respect to the number of sequences.

101 102 103 104 105

number of sequences

102

103

104

105

106

107

M
em

or
y

co
st

[b
it]

k=8 k=16 k=32

(a) Memory consumption in TCAM bits.

101 102 103 104 105

number of sequences

101

102

103

#T
C

A
M

en
tr

ie
s k=8 k=16 k=32

(b) Memory consumption in TCAM entries.

2 3 4 5 6 7 8

Length of sequences

10−4

10−2

100

102

M
em

or
y

sa
vi

ng
s

[%
]

8
32

16
64

(c) Memory savings for different number of ports.

Figure 12: (a-b) FAST-GREEDY with FRR sequences of size k. (c) Memory savings.

102 103 104 105

number of sequences

20000

30000

40000

50000

M
em

or
y

co
st

[b
it]

random
tree

Figure 13: (a-b) FAST-GREEDY with FRR sequences of size k.
(c) Comparing random and tree [25] sequences.

S1 S2 S3 S4

… … … …

L1 L2 L3 L4

spine
switches

8x10Gbps

leaf
switches

1st failed link

4x10Gbps

2nd failed
link

432
1

4
3

21

Figure 14: Topology used for simulated evaluation.

Topology. We instantiate 4 leaf and 4 spine switches (see
Fig. 14). Each leaf switch interconnects 8 servers. All links
are 10 Gbps. The switching fabric has a 2 : 1 oversubscription
factor [44], [24]. The buffer size is 100 packets per port. The
maximum packet size is 1.3 KB. The leaf-spine and leaf-server
link delays are 10 µs and 1 µs, respectively.

Routing and congestion control. We rely on the widely
adopted Valiant Load Balancing (VLB) routing mechanisms
to forward traffic in the datacenter [45]. Each flow between

two servers connected to two distinct leaf nodes is forwarded
to a random spine node and then directly to the destination
leaf node. VLB has been widely implemented using OSPF/
ECMP [46], which splits flows using a deterministic hash-
based equal traffic splitting mechanism.

Transport protocols. We use DCTCP [47] as the congestion
control mechanism. DCTCP supports low-latency and high-
throughput communication. We use the same parameters used
in Hermes, setting the ECN threshold to [15, 15] packets.

FRR mechanism: F10 [11]. We implement F10 as the FRR
mechanism. F10 is the state-of-the-art FRR mechanism in
datacenter networks. In a datacenter with k links between
a leaf node and the above spine layer, F10 is capable of
tolerating up to k−1 link failures, i.e., packets are guaranteed
to reach their correct destination without entering transient
forwarding loops or being dropped. F10 relies on circular FRR
sequences, which we implement on all the network nodes.
For example, in Fig. 14, the circular sequence at node S4 is
〈1, 2, 3, 4〉, which means that when both links (L4, S4) and
(L1, S4) fail, a packet that should be sent on port 4 would
instead be sent on port 2, which is the first non-failed port in
the circular sequence. When the packet is received at node L2,
we apply again circular FRR forwarding and the packet is sent
to S1, which, in turn, forwards it to the correct destination.

Workloads. We use two empirically-derived realistic work-
loads: i.e., web-search [47] and data-mining [45]. Both dis-
tributions are heavy-tailed, with the data-mining workload
being more skewed, thus causing higher imbalances due to
ECMP. The traffic generator is based on the work in [48],
which generates flows between inter-cluster hosts according
to a Poisson distribution and the given network load, which

11

10 20 30 40 50 60 70

Load [%]

0.0

0.5

1.0

1.5

2.0
S

m
al

lfl
ow

s
FC

T
[m

s]
recirc
reconv

purr no-fail

(a) Data-mining, 1 link failure.

10 20 30 40 50 60 70

Load [%]

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

99
-s

m
al

lF
C

T
[m

s] recirc
reconv

purr no-fail

(b) Data-mining, 1 link failure.

10 20 30 40 50 60 70

Load [%]

100

101

Th
ro

ug
hp

ut
[G

bp
s] recirc

reconv
purr no-fail

(c) Data-mining, 1 link failure.

10 20 30 40 50 60 70

Load [%]

0.0

0.5

1.0

1.5

2.0

S
m

al
lfl

ow
s

FC
T

[m
s]

recirc
reconv

purr no-fail

(d) Data-mining, 2 links failures.

10 20 30 40 50 60 70

Load [%]

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

99
-s

m
al

lF
C

T
[m

s] recirc
reconv

purr no-fail

(e) Data-mining, 2 links failures.

10 20 30 40 50 60 70

Load [%]

100

101

Th
ro

ug
hp

ut
[G

bp
s] recirc

reconv
purr no-fail

(f) Data-mining, 2 links failures.

Figure 15: Comparison between PURR and RECIRCULATION FRR primitives under 1 and 2 link failures.

ranges between 10% and 70%, a typical network utilization
in a datacenter [48]. We distinguish between small flows (i.e.,
size ≤ 100 KB) and large flows (i.e., size ≥ 10 MB).

Metrics. For each network load, workload, and FRR primitive,
we simulate 4 seconds of traffic. For the RECIRCULATION and
PURR FRR primitives, we fail one or two links after 500 ms
from the start of the simulation. This effectively simulates a
failure of 3.5s, which is a worst-case scenario in datacenter
networks [49]. For the OSPF reconvergence approach, we fail
one or two links at time zero and immediately recompute
the optimal routing. We measure the FCT, defined as the
time difference between the last received packet and the
first “time-scheduled” sent packet, for all the flows that end
after 500 ms. We use the OSPF reconvergence simulation to
compute an upper bound on the optimal FCT achievable by
an FRR primitive. For each setting, we ran a minimum of 40
simulations and compute the average and 99’th percentile of
the FCT and flow throughput.

Modeling packet recirculation in ns3. When we recirculate
a packet in a PDP, the packet moves back to the ingress
pipeline, thus congesting the ingress buffer. Since ns3 does
not model ingress buffers, we add one “virtual ingress buffer”
node in front of each port. We set all latencies to zero so
as to mimic an ingress buffer attached to the pipeline. We
collaborated with a network engineer from a manufacturer of
hardware PDPs to make the model general without breaching
our non-disclosure agreement.

PURR dramatically improves the FCT of small flows.
We ran our simulations for the data-mining workload using
the aforementioned setting and we collected our results in
Fig. 15. With low network loads, e.g., 10%, and one link
failure (see Fig. 15a) we observe that our FRR primitive
reduces the FCT of the small flows from the 653 µs with
packet recirculation to 384 µs. This means that the FCT
overhead introduced by FRR compared to the 295 µs of the
reconverged approach is reduced by a factor of 4.3x. The main

reason packet recirculation incurs a higher FCT at low network
loads is the packet recirculation operation, which requires
to traverse the forwarding pipeline (including its possibly
congested ingress buffer) a second time. Even at higher loads,
the PURR FRR primitive reduces the FCT overhead by a factor
of 2x compared to recirculating a packet. At higher network
loads, we note that PURR performs worse than the control
plane approach. This happens because PURR routes packets to
a core node that does not have a valid downward path towards
the destination. This means the traffic has to be rerouted to
a leaf node and bounced back to another core node with
a valid downward path. Consequently, PURR creates more
congestion on the buffers at the core node adjacent to the
failed link, which increases the FCT of the small flows. The
control plane approach instead routes these affected flows of
traffic directly to a core node with a non-failed downward path
to the destination. With two link failures (Fig. 15d) the trends
are similar though the improvements at 10% and 70% network
loads reach 5.5x and 2.8x as the buffers become even more
congested than with one single failure.

PURR guarantees near-optimal throughput at low net-
work loads. We measure the throughput of the largest flows in
the network and compare it among the same four approaches in
Fig. 15c and Fig. 15f under 1 and 2 failures, respectively. The
throughput of the large flows is computed as the ratio between
the amount of all the received bytes and the sum of the
FCTs. We note that at 10% network load, PURR achieves the
same throughput of the reconverged approaches, approaching
8 Gbps, a factor of 2x higher than with packet recirculation.
As the network load increases, the throughput of PURR quickly
decreases, faster than in the reconverged setting. This sharper
drop of throughput can be explained by the simple fact that at
higher load, the impact of going through a node with a lower
available bandwidth is exacerbated. We observe one peculiar
result that seems counter-intuitive. We note that we cannot
compare the performance between one and two link failures,
as both the set of affected flows as well as the number of flows

12

10 20 30 40 50 60 70

Load [%]

1.0

1.5

2.0

2.5

3.0

N
or

m
.

S
m

al
lF

C
T recirc imm

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

N
or

m
.

Th
ro

ug
hp

utrecirc imm

(a) Web-search, 1 link failure.

10 20 30 40 50 60 70

Load [%]

1.0

1.5

2.0

2.5

3.0

N
or

m
.

S
m

al
lF

C
T recirc imm

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

N
or

m
.

Th
ro

ug
hp

utrecirc imm

(b) Web-search, 2 link failures.

Figure 16: FCT and throughput of the large flows normalized
with respect to the PURR FRR primitive.

reaching the node with two failed links are different.
For instance, with two failures, the amount of traffic re-

ceived by leaf node L4 is half than with a single failure.

PURR improves performance on different workloads.
We run simulations using the web-search [45] workload and
measure the FCT of the small flows and the throughput of
the large flows. Fig. 16 quantifies the performance drop of
RECIRCULATION normalized with respect to PURR. As for
the data mining workload, we observe that the benefits of
PURR are higher at low network loads while they decrease as
the network becomes more congested and there is less spare
bandwidth for rerouting the affected flows.

C. FPGA Evaluation

Here, we answer the following question: “How many re-
sources do we need to implement PURR on an FPGA chip?”
Table I compares the resource utilization between a layer2
switch and the same system augmented with our primitive on
NetFPGA-SUME. FRR16, FRR32 and FRR64 represent the
case when PURR needs 16, 32, and 64 entries in the TCAM,
respectively. Such entries can be used to enable different FRR
sequences for the selected output port or to allow a single
FRR sequence in a system with a larger number of ports.
Considering the FRR16 case, PURR impacts only 0.07%
of the total available resources of the Slice Lookup Tables
(LUTs). The impact grows almost quadratically in the number
of TCAM rules. Other resources, i.e., Flip Flops and BRAM,
are not affected. This is because Slice LUTs are the main type
of resources being used to instantiate TCAMs on FPGAs.

Project Slice LUTs Flip Flops BRAM
Switch 43212 64811 204

Switch + FRR16 43523 64845 204
Switch + FRR32 44304 64901 204
Switch + FRR64 46476 65006 204

Table I: HW switch augmented with PURR

VI. FREQUENTLY ASKED QUESTIONS

Does PURR support any FRR mechanism? Yes! To the
best of our knowledge, PURR supports any deterministic FRR
mechanism in which the modifications of the header and the
selected output port only depend on the packet header itself,
the state currently stored on the switch (e.g., its registers,
tables), and the FRR sequence to be applied to the incoming
packet. If the selected outgoing port depends on the specific set
of failed ports, PURR cannot encode such FRR functions. We
are however not aware of any existing FRR scheme that would
not be implementable in PURR. As an example, consider
MPLS FRR [50], [51] where the header rewriting operation,
i.e., addition of a label on the stack, only depends on the
selected egress port and the current label. In this case, when
a packet arrives and its outgoing port is down, PURR selects
the first active outgoing port and the egress pipeline will
add the correct label identifying the backup path on that
interface for that specific packet. We note that restoration
mechanisms requiring control plane invocation require more
complex primitives than PURR, which operates at the data
plane level. We leave probabilistic FRR mechanisms (e.g.,
[30]) as future work.

Could PURR support selective traffic rerouting when
multiple links fail? Yes! When many links fail at one switch,
we could use priority queues to reroute the most critical traffic
(a small fraction of the overall traffic [52]) and drop the rest,
based on the remaining capacity. Studying how to reroute the
traffic and in which proportions is left as future work.

How does PURR deal with dynamic updates? When FRR
sequences need to be added or modified at runtime, we need
to dynamically update the match-action tables. Three cases
can happen (consider Fig. 4b): i) the mapping between bits
in the port_set vector and switch ports remains the same
ii) the mapping between bits in the port_set vector and
switch ports changes but its length remains the same iii) the
mapping between bits in the port_set vector and switch
ports changes and its length has increased. In case i), we do
not have to modify the encoding mapping in T2 and simply
modify or add the port_set entries in T1. In case ii), we
need to update or add the entries in both tables. In the first
two cases, the updates can be issued to the P4 runtime, as
long as the limit on the number of entries is not reached. In
the more remote case iii), the width of Table T2 has to be
increased and the answer clearly depends on the support from
the target device. For instance, techniques on how to partially
reconfigure an FPGA in an online manner exist [53]. Similar
techniques have been explored to dynamically reconfigure the
structure of the P4-based PISA forwarding tables [54], [55].
We note that an operator does not have to recompile the tables
if the sequences have non-uniform lengths as long as the
mapping allows to implement such sequences. Moreover, if
the target architecture imposes certain limits on the TCAM
table width, the multi-table approach (discussed in §III-C) can
be used for splitting the encoding across multiple tables with
a smaller width and length. Finally, we note that one can
carefully implement our encoding in a way that any update

13

to the (backup) FRR sequences does not impact the (primary)
forwarding rules, thus avoiding any disruption.

Could PURR be used to implement fast load-balancing
forwarding decisions? Yes! PURR can be generalized to
support fast forwarding decisions based on a wide range of
conditions. For instance, an operator may be interested in
sending a packet to the first active port that has ≤ 50%
utilization. We could implement such decision using a vector
similar to port status, which would however encode the
utilization of the ports. We leave this extension as future work.

VII. RELATED WORK

Connectivity disruptions in networks due to link failures are
common and happen in all kinds of networks, from wide-area
networks [56], [57] to data center networks [12]. Accordingly,
many mechanisms have been developed to provide fast re-
routing under failures entirely in the data plane, e.g., [23], [58],
[59], [30], [26], [60], [61], [11], [62], [63]. FRR mechanisms
are also included in MPLS networks [64], [4], IP networks [3]
and Openflow [20]. Detecting port failures falls beyond the
scope of this paper as it depends on specific hardware support.
FRR mechanisms can be generally categorized along different
dimensions: e.g., whether they tolerate only a single link/node
failure [65], [66], [67] or multiple ones [68], [69]; whether
routing tables are static (e.g., [11], [30], [60], [70], [69]) or
dynamic (e.g., [71], [62]); whether packet header rewriting
(e.g., [62], [61], [72], [68]) or packet duplication (e.g., [73])
is required; whether provide low stretch [74], [30] or maintain
relatively low load [75], [76], [77].

This paper complements all the above works as our goal is
not to devise a new robust routing mechanism, but rather a
primitive which can be used to efficiently implement existing
mechanisms. Several FRR primitives for quickly rerouting
traffic has been proposed, though in different contexts. BGP-
PIC [22] and Swift [58] support FRR sequences of size 2.
Plinko [69] devised both an FRR mechanism and an FRR
primitive to tolerate multiple failures. Unfortunately, the FRR
primitive is coupled with the proposed FRR mechanism, thus
it cannot support arbitrary FRR sequences. PURR is instead
general and supports arbitrary FRR sequences/mechanisms
of arbitrary size. Indeed, PURR leaves the choice of which
specific failover mechanisms to use to the network operator,
but then supports it with a low-latency and compact real-
ization, even tolerating multiple link failures. For example,
PURR could be used to realize compact implementations of
F10 [11] or [26] which are based on circular FRR sequences.
To give another example, PURR supports DDC [62], which
provides ideal forwarding connectivity by performing series of
link reversal operations dynamically, eventually complement-
ing it with load-aware FRR support as discussed in §VI.

VIII. CONCLUSION

This paper presented an FRR primitive for PDPs, which
allows to implement existing failover mechanisms with low
failover latency and high throughput. Our approach relies
on an interesting connection to a classic string manipulation
problem for which we also provide new insights, and shows

promising results on the PISA-based architectures for which
we implemented a prototype. We see our work as a first step
towards building highly robust and self-driving programmable
networks and believe that it opens several interesting avenues
for future research such as finding better heuristics possibly
with approximation gurantees. In particular, generalizing our
primitive for load-balancing purposes and supporting proba-
bilistic FRR mechanisms seem two attractive future directions.

ACKNOWLEDGEMENTS

We would like to thank Andy Fingerhut and Szymon
Dudycz for fruitful discussions. This research is supported by
the UK’s EPSRC under the EARL project (EP/P025374/1),
by the European COST Action CA15127, and by the WWTF
project WHATIF (ICT19-045).

REFERENCES

[1] M. Chiesa et al., “PURR: A Primitive for Reconfigurable Fast Reroute:
Hope for the Best and Program for the Worst”, in ACM CoNEXT’19.
DOI: 10.1145/3359989.3365410

[2] R. Sedar et al., “Supporting Emerging Applications With Low-
Latency Failover in P4”, in ACM SIGCOMM Workshop on Net-
working for Emerging Applications and Technologies’18. DOI:
10.1145/3229574.3229580

[3] A. Atlas and A. D. Zinin, “Basic Specification for IP Fast Reroute:
Loop-Free Alternates”, RFC 5286, Sep. 2008. DOI: 10.17487/RFC5286

[4] A. Atlas et al., “Fast Reroute Extensions to RSVP-TE for LSP Tunnels”,
RFC 4090, May 2005. DOI: 10.17487/RFC4090

[5] A. Kamisiński, “Evolution of IP Fast-Reroute Strategies”, in IEEE
RNDM’18. DOI: 10.1109/RNDM.2018.8489832

[6] P. Bosshart et al., “P4: Programming Protocol-Independent Packet
Processors”, SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, Jul.
2014. DOI: 10.1145/2656877.2656890

[7] V. Sivaraman et al., “Heavy-Hitter Detection Entirely in the Data Plane”,
in ACM SOSR’17. DOI: 10.1145/3050220.3063772

[8] C. Kim et al., “In-band network telemetry via programmable
dataplanes”, in ACM SIGCOMM Demos’15. [Online]. Available:
https://nkatta.github.io/papers/int-demo.pdf

[9] N. Katta et al., “Clove: Congestion-Aware Load Balancing at the Virtual
Edge”, in ACM CoNEXT’17. DOI: 10.1145/3143361.3143401

[10] Barefoot, “In-Network DDoS Detection”, November 2018, https://
barefootnetworks.com/use-cases/in-nw-DDoS-detection/.

[11] V. Liu et al., “F10: A Fault-Tolerant Engineered Network”,
in USENIX NSDI’13. [Online]. Available: https://www.usenix.org/
conference/nsdi13/technical-sessions/presentation/liu vincent

[12] P. Gill et al., “Understanding Network Failures in Data Centers: Mea-
surement, Analysis, and Implications”, in ACM SIGCOMM’11. DOI:
10.1145/2018436.2018477

[13] A. Markopoulou et al., “Characterization of Failures in an Operational IP
Backbone Network”, IEEE/ACM Transactions on Networking, vol. 16,
no. 4, 2008. DOI: 10.1109/TNET.2007.902727

[14] K. Qian et al., “FlexGate: High-Performance Heterogeneous Gateway
in Data Centers”, in ACM APNet’19. DOI: 10.1145/3343180.3343182

[15] P. L. Consortium, “Behavioral Model (BMv2)”, June 2019, https:
//github.com/p4lang/behavioral-model.

[16] Barefoot, “Tofino: World’s fastest P4-programmable Ethernet switch
ASICs”, 2019, http://barefootnetworks.com/products/brief-tofino/ (ac-
cessed on June 26, 2019).

[17] N. Zilberman et al., “NetFPGA SUME: Toward 100 Gbps as
Research Commodity”, IEEE Micro, vol. 34, no. 5, 2014. DOI:
10.1109/MM.2014.61

[18] GitHub, “PURR Repository”, 2019, https://bitbucket.org/marchiesa/purr.
[19] P. L. Consortium, “P4 Language Specification”, May 2017, https://p4.

org/p4-spec/p4-14/v1.0.4/tex/p4.pdf (accessed on June 26, 2019).
[20] O. N. Foundation, “Switch specification 1.3.1”, September 2012,

https://www.opennetworking.org/wp-content/uploads/2013/04/
openflow-spec-v1.3.1.pdf.

[21] P4-dev maling list, 2018, http://lists.p4.org/pipermail/p4-dev lists.p4.
org/2016-May/002027.html.

http://dx.doi.org/10.1145/3359989.3365410
http://dx.doi.org/10.1145/3229574.3229580
http://dx.doi.org/10.17487/RFC5286
http://dx.doi.org/10.17487/RFC4090
http://dx.doi.org/10.1109/RNDM.2018.8489832
http://dx.doi.org/10.1145/2656877.2656890
http://dx.doi.org/10.1145/3050220.3063772
https://nkatta.github.io/papers/int-demo.pdf
http://dx.doi.org/10.1145/3143361.3143401
https://barefootnetworks.com/use-cases/in-nw-DDoS-detection/
https://barefootnetworks.com/use-cases/in-nw-DDoS-detection/
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/liu_vincent
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/liu_vincent
http://dx.doi.org/10.1145/2018436.2018477
http://dx.doi.org/10.1109/TNET.2007.902727
http://dx.doi.org/10.1145/3343180.3343182
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
http://barefootnetworks.com/products/brief-tofino/
http://dx.doi.org/10.1109/MM.2014.61
https://bitbucket.org/marchiesa/purr
https://p4.org/p4-spec/p4-14/v1.0.4/tex/p4.pdf
https://p4.org/p4-spec/p4-14/v1.0.4/tex/p4.pdf
https://www.opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.3.1.pdf
https://www.opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.3.1.pdf
http://lists.p4.org/pipermail/p4-dev_lists.p4.org/2016-May/002027.html
http://lists.p4.org/pipermail/p4-dev_lists.p4.org/2016-May/002027.html

14

[22] Cisco, “BGP PIC Edge for IP and MPLS-VPN”, 2014,
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute bgp/
configuration/xe-3s/irg-xe-3s-book/irg-bgp-mp-pic.html.

[23] O. Bonaventure et al., “Achieving Sub-50 Milliseconds Recovery Upon
BGP Peering Link Failures”, IEEE/ACM Transactions on Networking,
vol. 15, no. 5, 2007. DOI: 10.1109/TNET.2007.906045

[24] H. Zhang et al., “Resilient Datacenter Load Balancing in the Wild”, in
ACM SIGCOMM’17. DOI: 10.1145/3098822.3098841

[25] M. Chiesa et al., “On the Resiliency of Randomized
Routing Against Multiple Edge Failures”, in ICALP’16. DOI:
10.4230/LIPIcs.ICALP.2016.134

[26] M. Borokhovich et al., “Provable Data Plane Connectivity with Lo-
cal Fast Failover: Introducing Openflow Graph Algorithms”, in ACM
HotSDN’14. DOI: 10.1145/2620728.2620746

[27] M. Chiesa et al., “A Survey of Fast Recovery Mechanisms
in the Data Plane”, May 2020, IEEE TechRxiv. DOI:
10.36227/techrxiv.12367508.v2

[28] R. Ozdag, “Intel R Ethernet Switch FM6000 SeriesSoft-
ware Defined Networking”, 2012, Whitepaper, Intel Corpo-
ration. [Online]. Available: https://people.ucsc.edu/∼warner/Bufs/
ethernet-switch-fm6000-sdn-paper.pdf

[29] P. Bosshart et al., “Forwarding Metamorphosis: Fast Programmable
Match-Action Processing in Hardware for SDN”, in ACM SIG-
COMM’13. DOI: 10.1145/2486001.2486011

[30] M. Chiesa et al., “The quest for resilient (static) forwarding tables”, in
IEEE INFOCOM’16. DOI: 10.1109/INFOCOM.2016.7524552

[31] D. Gusfield, “Algorithms on Strings, Trees, and Sequences: Computer
Science and Computational Biology”. Cambridge University Press,
1997. DOI: 10.1017/CBO9780511574931

[32] “The shortest common supersequence problem over binary alphabet is
NP-complete”, Theoretical Computer Science, vol. 16, no. 2, 1981. DOI:
10.1016/0304-3975(81)90075-X

[33] T. Jiang and M. Li, “On the approximation of shortest common su-
persequences and longest common subsequences”, in ICALP’94. DOI:
10.1007/3-540-58201-0 68

[34] Wikipedia, “Shortest common supersequence problem”, https:
//en.wikipedia.org/wiki/Shortest common supersequence problem
(accessed on June 26, 2019).

[35] K. Ning and H. W. Leong, “Towards a better solution to the shortest
common supersequence problem: The deposition and reduction algo-
rithm”, in IEEE IMSCCS’06. DOI: 10.1109/IMSCCS.2006.136

[36] L. Jose et al., “Compiling packet programs to reconfigurable switches”,
in USENIX NSDI’15. [Online]. Available: https://www.usenix.org/
conference/nsdi15/technical-sessions/presentation/jose

[37] D. Maier, “The Complexity of Some Problems on Subsequences
and Supersequences”, J. ACM, vol. 25, no. 2, Apr. 1978. DOI:
10.1145/322063.322075

[38] “The show must go on: Fundamental data plane connectivity services for
dependable SDNs”, Computer Communications, vol. 116, 2018. DOI:
10.1016/j.comcom.2017.12.004

[39] M. Chiesa et al., “Exploring the limits of static failover routing”,
CoRR, vol. abs/1409.0034, 2014. [Online]. Available: http://arxiv.org/
abs/1409.0034

[40] M. Chiesa et al., “On the Resiliency of Static Forwarding Tables”,
IEEE/ACM Transactions on Networking, vol. 25, no. 2, 2017. DOI:
10.1109/TNET.2016.2619398

[41] A. Singla et al., “Jellyfish: Networking Data Centers Randomly”,
in USENIX NSDI’12. [Online]. Available: https://www.usenix.org/
conference/nsdi12/technical-sessions/presentation/singla

[42] A. Singh et al., “Jupiter Rising: A Decade of Clos Topologies and
Centralized Control in Google’s Datacenter Network”, in ACM SIG-
COMM’15. DOI: 10.1145/2785956.2787508

[43] “ns3 Network Simulator”, June 2019, https://www.nsnam.org/.
[44] M. Alizadeh et al., “CONGA: Distributed Congestion-Aware

Load Balancing for Datacenters”, in ACM SIGCOMM’14. DOI:
10.1145/2619239.2626316

[45] A. Greenberg et al., “VL2: A Scalable and Flexible Data Center
Network”, in ACM SIGCOMM’09. DOI: 10.1145/1592568.1592576

[46] C. Hopps, “Analysis of an Equal-Cost Multi-Path Algorithm”, RFC
2992, Tech. Rep. 2992, Nov. 2000.

[47] M. Alizadeh et al., “Data Center TCP (DCTCP)”, in ACM SIG-
COMM’10. DOI: 10.1145/1851182.1851192

[48] W. Bai et al., “Enabling ECN in Multi-Service Multi-Queue
Data Centers”, in USENIX NSDI’16. [Online]. Available: https:
//www.usenix.org/conference/nsdi16/technical-sessions/presentation/bai

[49] N. K. Edet Nkposong, Tim LaBerge, “Experiences with BGP in Large
Scale Data Centers”, 2014, Janog 33. [Online]. Available: https://www.
janog.gr.jp/meeting/janog33/doc/janog33-bgp-nkposong-1-en.pdf

[50] K. Koushik et al., “Multiprotocol Label Switching Traffic Engineering
Management Information Base for Fast Reroute”, RFC 6445, Nov. 2011.
DOI: 10.17487/RFC6445

[51] K. Foerster et al., “TI-MFA: Keep calm and reroute segments fast”,
in IEEE Global Internet Symposium (INFOCOM WKSHPS’18). DOI:
10.1109/INFCOMW.2018.8406885

[52] S. Jain et al., “B4: Experience with a Globally-Deployed Software
Defined Wan”, in ACM SIGCOMM’13. DOI: 10.1145/2486001.2486019

[53] K. Vipin and S. A. Fahmy, “FPGA Dynamic and Partial Reconfiguration:
A Survey of Architectures, Methods, and Applications”, ACM Comput.
Surv., vol. 51, no. 4, Jul. 2018. DOI: 10.1145/3193827

[54] P. Zheng et al., “P4Visor: Lightweight Virtualization and Composi-
tion Primitives for Building and Testing Modular Programs”, in ACM
CoNEXT’18. DOI: 10.1145/3281411.3281436

[55] ——, “ShadowP4: Building and Testing Modular Programs”, in ACM
SIGCOMM’18 Posters and Demos. DOI: 10.1145/3234200.3234231

[56] C.-Y. Hong et al., “Achieving High Utilization with Software-Driven
WAN”, in ACM SIGCOMM’13. DOI: 10.1145/2486001.2486012

[57] H. H. Liu et al., “Traffic Engineering with Forward Fault Correction”,
in ACM SIGCOMM’14. DOI: 10.1145/2619239.2626314

[58] T. Holterbach et al., “SWIFT: Predictive Fast Reroute”, in ACM SIG-
COMM’17. DOI: 10.1145/3098822.3098856

[59] ——, “Blink: Fast Connectivity Recovery Entirely in the Data Plane”,
in USENIX NSDI’19. [Online]. Available: https://www.usenix.org/
conference/nsdi19/presentation/holterbach

[60] M. Borokhovich and S. Schmid, “How (Not) to Shoot in Your Foot with
SDN Local Fast Failover”, in OPODIS’13, R. Baldoni et al., Eds. DOI:
10.1007/978-3-319-03850-6 6

[61] K. Lakshminarayanan et al., “Achieving Convergence-Free Rout-
ing Using Failure-Carrying Packets”, in ACM SIGCOMM’07. DOI:
10.1145/1282380.1282408

[62] J. Liu et al., “Ensuring connectivity via data plane mechanisms”,
in USENIX NSDI’13. [Online]. Available: https://www.usenix.org/
conference/nsdi13/technical-sessions/presentation/liu junda

[63] B. Stephens and A. L. Cox, “Deadlock-free local fast failover for arbi-
trary data center networks”, in IEEE INFOCOM’16. DOI: 10.1109/IN-
FOCOM.2016.7524356

[64] F. Aubry et al., “Robustly Disjoint Paths with Segment Routing”, in
ACM CoNEXT’18. DOI: 10.1145/3281411.3281424

[65] S. Nelakuditi et al., “Fast Local Rerouting for Handling Transient Link
Failures”, IEEE/ACM Transactions on Networking, vol. 15, no. 2, 2007.
DOI: 10.1109/TNET.2007.892851

[66] J. Wang and S. Nelakuditi, “IP Fast Reroute with Failure Inferencing”, in
ACM SIGCOMM Workshop on Internet Network Management’07. DOI:
10.1145/1321753.1321764

[67] B. Zhang et al., “RPFP: IP fast reroute with providing complete
protection and without using tunnels”, in IEEE/ACM IWQoS’13. DOI:
10.1109/IWQoS.2013.6550274

[68] T. Elhourani et al., “IP Fast Rerouting for Multi-Link Failures”,
IEEE/ACM Transactions on Networking, vol. 24, no. 5, 2016. DOI:
10.1109/TNET.2016.2516442

[69] B. Stephens et al., “Scalable Multi-Failure Fast Failover via Forwarding
Table Compression”, in ACM SOSR’16. DOI: 10.1145/2890955.2890957

[70] ——, “Plinko: Building Provably Resilient Forwarding Tables”, in ACM
HotNets’13. DOI: 10.1145/2535771.2535774

[71] E. Gafni and D. Bertsekas, “Distributed Algorithms for Generating
Loop-Free Routes in Networks with Frequently Changing Topology”,
IEEE Transactions on Communications, vol. 29, no. 1, 1981. DOI:
10.1109/TCOM.1981.1094876

[72] S. S. Lor et al., “Packet Re-Cycling: Eliminating Packet Losses Due to
Network Failures”, in ACM Hotnets’10. DOI: 10.1145/1868447.1868449

[73] P. Hande et al., “Network Pricing and Rate Allocation with Content
Provider Participation”, in IEEE INFOCOM’09. DOI: 10.1109/INF-
COM.2009.5062010

[74] K. Foerster et al., “CASA: Congestion and Stretch Aware Static
Fast Rerouting”, in IEEE INFOCOM’19. DOI: 10.1109/INFO-
COM.2019.8737438

[75] Y. Pignolet et al., “Load-Optimal Local Fast Rerouting for Resilient
Networks”, in IEEE/IFIP DSN’17. DOI: 10.1109/DSN.2017.43

[76] Y. Wang et al., “R3: Resilient Routing Reconfiguration”, in ACM
SIGCOMM’10. DOI: 10.1145/1851182.1851218

[77] M. Suchara et al., “Network Architecture for Joint Failure Re-
covery and Traffic Engineering”, in ACM SIGMETRICS’11. DOI:
10.1145/1993744.1993756

https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_bgp/configuration/xe-3s/irg-xe-3s-book/irg-bgp-mp-pic.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_bgp/configuration/xe-3s/irg-xe-3s-book/irg-bgp-mp-pic.html
http://dx.doi.org/10.1109/TNET.2007.906045
http://dx.doi.org/10.1145/3098822.3098841
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.134
http://dx.doi.org/10.1145/2620728.2620746
http://dx.doi.org/10.36227/techrxiv.12367508.v2
https://people.ucsc.edu/~warner/Bufs/ethernet-switch-fm6000-sdn-paper.pdf
https://people.ucsc.edu/~warner/Bufs/ethernet-switch-fm6000-sdn-paper.pdf
http://dx.doi.org/10.1145/2486001.2486011
http://dx.doi.org/10.1109/INFOCOM.2016.7524552
http://dx.doi.org/10.1017/CBO9780511574931
http://dx.doi.org/10.1016/0304-3975(81)90075-X
http://dx.doi.org/10.1007/3-540-58201-0_68
https://en.wikipedia.org/wiki/Shortest_common_supersequence_problem
https://en.wikipedia.org/wiki/Shortest_common_supersequence_problem
http://dx.doi.org/10.1109/IMSCCS.2006.136
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/jose
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/jose
http://dx.doi.org/10.1145/322063.322075
http://dx.doi.org/10.1016/j.comcom.2017.12.004
http://arxiv.org/abs/1409.0034
http://arxiv.org/abs/1409.0034
http://dx.doi.org/10.1109/TNET.2016.2619398
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/singla
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/singla
http://dx.doi.org/10.1145/2785956.2787508
https://www.nsnam.org/
http://dx.doi.org/10.1145/2619239.2626316
http://dx.doi.org/10.1145/1592568.1592576
http://dx.doi.org/10.1145/1851182.1851192
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/bai
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/bai
https://www.janog.gr.jp/meeting/janog33/doc/janog33-bgp-nkposong-1-en.pdf
https://www.janog.gr.jp/meeting/janog33/doc/janog33-bgp-nkposong-1-en.pdf
http://dx.doi.org/10.17487/RFC6445
http://dx.doi.org/10.1109/INFCOMW.2018.8406885
http://dx.doi.org/10.1145/2486001.2486019
http://dx.doi.org/10.1145/3193827
http://dx.doi.org/10.1145/3281411.3281436
http://dx.doi.org/10.1145/3234200.3234231
http://dx.doi.org/10.1145/2486001.2486012
http://dx.doi.org/10.1145/2619239.2626314
http://dx.doi.org/10.1145/3098822.3098856
https://www.usenix.org/conference/nsdi19/presentation/holterbach
https://www.usenix.org/conference/nsdi19/presentation/holterbach
http://dx.doi.org/10.1007/978-3-319-03850-6_6
http://dx.doi.org/10.1145/1282380.1282408
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/liu_junda
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/liu_junda
http://dx.doi.org/10.1109/INFOCOM.2016.7524356
http://dx.doi.org/10.1109/INFOCOM.2016.7524356
http://dx.doi.org/10.1145/3281411.3281424
http://dx.doi.org/10.1109/TNET.2007.892851
http://dx.doi.org/10.1145/1321753.1321764
http://dx.doi.org/10.1109/IWQoS.2013.6550274
http://dx.doi.org/10.1109/TNET.2016.2516442
http://dx.doi.org/10.1145/2890955.2890957
http://dx.doi.org/10.1145/2535771.2535774
http://dx.doi.org/10.1109/TCOM.1981.1094876
http://dx.doi.org/10.1145/1868447.1868449
http://dx.doi.org/10.1109/INFCOM.2009.5062010
http://dx.doi.org/10.1109/INFCOM.2009.5062010
http://dx.doi.org/10.1109/INFOCOM.2019.8737438
http://dx.doi.org/10.1109/INFOCOM.2019.8737438
http://dx.doi.org/10.1109/DSN.2017.43
http://dx.doi.org/10.1145/1851182.1851218
http://dx.doi.org/10.1145/1993744.1993756

15

Marco Chiesa is an Assistant Professor at the
KTH Royal Institute of Technology, Sweden. He
received his Ph.D. degree in computer engineering
from Roma Tre University in 2014. His research
interests include Internet architectures and protocols,
including aspects of network design, optimization,
security, and privacy. He received the IEEE William
R. Bennett Prize in 2020, the IEEE ICNP Best Paper
Award in 2013, and the IETF Applied Network
Research Prize in 2012. He has been a distinguished
TPC member at IEEE Infocom in 2019 and 2020.

Roshan Sedar received the M.Sc. degree in dis-
tributed computing from KTH Royal Institute of
Technology, Sweden, in 2014. He is currently a
researcher at the Telecommunications Technological
Center of Catalonia, Spain. He is pursuing his Ph.D.
degree at the Polytechnic University of Catalonia,
Spain. His research interests include cybersecurity in
vehicular communication and next-generation cellu-
lar systems, mobile cloud computing, and networked
and distributed systems.

Gianni Antichi is a Assistant Professor at Queen
Mary University of London and Alan Turing Insti-
tute fellow. He received his MSc (2007) and PhD
(2011) from University of Pisa, Italy. Subsequently,
Gianni Antichi worked as postdoc at University of
Pisa and University of Cambridge. From 2016 to
2018, he was senior researcher at University of Cam-
bridge. His research interests are at the intersections
of networks and systems with a special focus on data
plane offloading and end-host networking stacks.

Michael Borokovich received B.Sc. (2005), M.Sc.
(2009) and Ph.D. (2013) degrees in Communication
Systems Engineering from Ben-Gurion University
in Israel. The main research topics included fast
failover in OpenFlow SDN networks, distributed
algorithms, and optimization. Between 2014 and
2015, he was a Postdoc at UT Austin in Texas where
he worked on efficient algorithms for distributed
graph engines. Between 2015 and 2017, Michael
was with AT&T Labs-Research, where he worked on
ONAP (Open Network Automation Platform), and

VNFs (virtual network functions). Currently, Michael is with Amazon, where
he builds innovative SDN solutions for AWS networking.

Andrzej Kamisiński is an Assistant Professor at
the AGH University of Science and Technology
in Krakw, Poland. He received his B.Sc., M.Sc.,
and Ph.D. degrees from the same University in
2012, 2013, and 2017, respectively. In 2015, Andrzej
Kamisiński joined the QUAM Lab at NTNU (Trond-
heim, Norway) where he worked with Prof. Bjarne
E. Helvik and with Telenor Research on depend-
ability of Software-Defined Networks. In summer
2018, he was a Visiting Research Fellow in the
Communication Technologies group led by Prof.

Stefan Schmid at the Faculty of Computer Science, University of Vienna,
Austria. Between 2018 and 2020, he was a member of the Management
Committee of the Resilient Communication Services Protecting End-User
Applications From Disaster-Based Failures European COST Action, and in
2020, a Research Associate in the Networked Systems Research Laboratory
at the School of Computing Science, University of Glasgow, Scotland. His
primary research interests span dependability and security of computer and
communication networks.

Georgios Nikolaidis was born in Larisa, Greece
in 1983. He received his Diploma in electrical and
computer engineering from the National Technical
University of Athens in 2006, his M.Sc. in Data
Communication Networks and Distributed Systems
from University College London (UCL) in 2008
and his PhD in Computer Science from UCL in
2016. The same year he joined Barefoot Networks
(acquired by Intel in 2019), where he works in
the Advanced Applications group. His current inter-
ests include data plane programmability, in-network

computation, telemetry, and congestion control.

Stefan Schmid is a Professor at the University
of Vienna, Austria. He received his MSc (2004)
and PhD (2008) from ETH Zurich, Switzerland.
Subsequently, Stefan Schmid worked as postdoc at
TU Munich and the University of Paderborn (2009).
From 2009 to 2015, he was a senior research sci-
entist at the Telekom Innovations Laboratories (T-
Labs) in Berlin, Germany, and from 2015 to 2018 an
Associate Professor at Aalborg University, Denmark.
His research interests revolve around algorithmic
problems of networked and distributed systems, cur-

rently with a focus on self-adjusting networks (related to his ERC project
AdjustNet).

	Introduction
	Background and Motivation
	A Primitive for Fast Reroute
	A Model for Programmable FRR
	A Primitive for Circular FRR
	A Primitive to Implement Them All

	Implementation
	Evaluation
	FRR Encoding
	Datacenter Simulations
	FPGA Evaluation

	Frequently asked questions
	Related Work
	Conclusion
	References
	Biographies
	Marco Chiesa
	Roshan Sedar
	Gianni Antichi
	Michael Borokovich
	Andrzej Kamisinski
	Georgios Nikolaidis
	Stefan Schmid

